Sample records for macrophage immunomodulatory activity

  1. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Kirpotina, Liliya N.; Klein, Robyn A.; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor ?, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor ?B. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716

  2. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha.

    PubMed

    Schepetkin, Igor A; Xie, Gang; Kirpotina, Liliya N; Klein, Robyn A; Jutila, Mark A; Quinn, Mark T

    2008-10-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average M(r) of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor alpha, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor kappaB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716

  3. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response

    Microsoft Academic Search

    Wei Wang; Jing Wang; Sheng-fu Dong; Chun-hong Liu; Paola Italiani; Shu-hui Sun; Jing Xu; Diana Boraschi; Shi-ping Ma; Di Qu

    2010-01-01

    Aim:To investigate the immunomodulatory effects of andrographolide on both innate and adaptive immune responses.Methods:Andrographolide (10 ?g\\/mL in vitro or 1 mg\\/kg in vivo) was used to modulate LPS-induced classical activated (M1) or IL-4-induced alternative activated (M2) macrophages in vitro and humor immune response to HBsAg in vivo. Cytokine gene expression profile (M1 vs M2) was measured by real-time PCR, IL-12\\/IL-10

  4. Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum

    Microsoft Academic Search

    Igor A. Schepetkin; Craig L. Faulkner; Laura K. Nelson-Overton; James A. Wiley; Mark T. Quinn

    2005-01-01

    Extracts of cones and leaves of different species of the genus Juniperus have been used for centuries to treat a variety of medical problems; however, little is known about the active components conferring therapeutic properties to these extracts. To address this issue, we extracted water-soluble polysaccharides from Juniperus scopolorum cones and used ion exchange and size exclusion chromatography to separate

  5. Macrophage immunomodulatory activity of extracellular polysaccharide (PEP) of Antarctic bacterium Pseudoaltermonas sp.S-5.

    PubMed

    Bai, Yungui; Zhang, Pengying; Chen, Guochuang; Cao, Jianfeng; Huang, Taotao; Chen, Kaoshan

    2012-04-01

    Antarctic bacteria are a novel source of polysaccharides which might have potential applications as biological response modifiers (BRM). A heteropolysaccharide (PEP) was isolated from the liquid culture broth of the Antarctic bacterium Pseudoaltermonas sp.S-5. PEP contained Mannose, Glucose, and Galactose in a ratio of 4.8:50.9:44.3. High performance gel permeation chromatography of this polysaccharide showed a unimodal profile, and the molecular weight was 397 kDa. PEP was studied for its immunological effects on peritoneal macrophage cells. Morphological alterations were observed in macrophages treated with PEP. In vitro exposure to PEP increased the occurrence of activated macrophages and endocytic index in a dose-dependent pattern (2.5-50 ?g/ml) after 24h of incubation, since increase of 136% and 133% was detected in the activated macrophage percentage and endocytic index respectively compared to untreated cells. At 200 ?g/ml PEP caused a greatest increase (44.5%) in NO production when compared to the control group; however, this polysaccharide did not affect respiratory burst in the absence of PMA. Furthermore, it was demonstrated that PEP induces macrophages to secrete tumor necrosis factor (TNF)-? and interleukin (IL)-1?. These results suggested that PEP from Pseudoaltermonas sp.S-5 can be classified as a BRM. PMID:22391090

  6. Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities.

    PubMed

    Liao, Wenzhen; Luo, Zhen; Liu, Dan; Ning, Zhengxiang; Yang, Jiguo; Ren, Jiaoyan

    2015-01-21

    A novel polysaccharide, here named DP1, was isolated from the fruiting body of Dictyophora indusiata using a water extraction method. Structure characterization revealed that DP1 had an average molecular weight of 1132 kDa and consisted of glucose (56.2%), galactose (14.1%), and mannose (29.7%). The main linkage type of DP1 were proven to be (1 ? 3)-linked ?-l-Man, (1 ? 2,6)-linked ?-d-Glc, (1 ? 6)-linked ?-d-Glc, (1 ? 6)-linked ?-d-Gal, and (1 ? 6)-linked ?-d-Man by periodate oxidation-Smith degradation and nuclear magnetic resonance analysis. The immunostimulating assay indicated that DP1 could significantly promote macrophage NO, TNF-?, and IL-6 secretion in murine RAW 264.7 cells involving complement receptor 3 (CR3). The immune activities of DP1 were quite stable under thermal processing (100, 121, and 145 °C). Besides, DP1 retained stability after acidic/alkline treatment (pH 4.0-10.0), which enabled it to be an ideal complementary medicine or functional food for therapeutics of hypoimmunity and immunodeficiency diseases. PMID:25525995

  7. Immunomodulatory effects of Bacillus subtilis (natto) B4 spores on murine macrophages.

    PubMed

    Xu, Xin; Huang, Qin; Mao, Yulong; Cui, Zhiwen; Li, Yali; Huang, Yi; Rajput, Imran Rashid; Yu, Dongyou; Li, Weifen

    2012-12-01

    To investigate the immunomodulatory effects of Bacillus subtilis (B. subtilis) (natto) B4 spores on murine macrophage, RAW 264.7 cells were cultured alone or with B subtilis (natto) B4 spores at 37°C for 12 hrs, then both cells and culture supernatants were collected for analyses. Exposure of RAW 264.7 cells to B. subtilis (natto) B4 spores had no significant effects on macrophage viability and amounts of extracellular lactate dehydrogenase (LDH). However, it remarkably increased the activities of acid phosphatase (ACP), lactate dehydrogenase (LDH) and inducible nitric oxide synthase (iNOS) in cells and the amounts of nitric oxide (NO) and cytokines (tumor necrosis factor-alpha, interferon-gamma, interleukin [IL]-1 beta, IL-6, IL-12, IL-10 and macrophage inflammatory protein-2) in culture supernatants. These results demonstrate that B. subtilis (natto) B4 spores are harmless to murine macrophages and can stimulate their activation through up-regulation of ACP and LDH activities and enhance their immune function by increasing iNOS activity and stimulating NO and cytokine production. The above findings suggest that B. subtilis (natto) B4 spores have immunomodulatory effects on macrophages. PMID:22957751

  8. Immunomodulatory effect of Hibiscus cannabinus extract on macrophage functions

    Microsoft Academic Search

    Yong Gyu Lee; Se Eun Byeon; Joo Young Kim; Ji Yeon Lee; Man Hee Rhee; Sungyoul Hong; Jin Cheng Wu; Han Shin Lee; Myong Jo Kim; Dong Ha Cho; Jae Youl Cho

    2007-01-01

    Hibiscus cannabinus L. (Malvaceae) (known as Kenaf) has long been used as a folk medicine in India and Africa for the treatment of blood and throat disorders, bilious conditions, fever and puerperium. In this study, therefore, we aimed either to demonstrate its ethnopharmacological activity by examining its macrophage function-regulating effects or to expand its therapeutic efficacy into other macrophage-mediated diseases.

  9. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia

    PubMed Central

    Kouakou, Koffi; Schepetkin, Igor A.; Yapi, Ahoua; Kirpotina, Liliya N.; Jutila, Mark A.; Quinn, Mark T.

    2013-01-01

    Ethnopharmacological relevance Extracts of leaves from different species of the genus Alchornea have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Objective The aim of this study was to evaluate the immunomodulatory activity of polysaccharides isolated from the leaves of Alchornea cordifolia. Materials and methods Water-soluble polysaccharides from leaves of A. cordifolia were extracted and fractionated by DEAE-cellulose, Diaion HP-20, and size-exclusion chromatography. Molecular weight, sugar analysis, and other physical and chemical characterization of the fractions were performed. Immunomodulatory activity of the polysaccharide fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO) and cytokine production. Activation of mitogen activated protein kinases (MAPK) was also assessed using a phospho-MAPK array. Activation of nuclear factor ?B (NF-?B) was measured using an alkaline phosphatase reporter gene assay in THP1-Blue monocytic cells. Results Six polysaccharide fractions from A. cordifolia were isolated. Fractions containing type II arabinogalactan had potent immunomodulatory activity. Particularly, the parent fraction AP-AU and its high-molecular weight sub-fraction AP-AU1 (average Mr was estimated to be 39.5 kDa) induced production of NO and cytokines [interleukin (IL)-1?, -6, -10, tumor necrosis factor (TNF)-?, and granulocyte macrophage-colony stimulating factor (GM-CSF)] in human peripheral blood mononuclear cells and human and murine monocyte/macrophages cell lines in vitro. Furthermore, treatment with AP-AU1 induced phosphorylation of Akt2, p38?/p38?, p70S6K1, RSK2, and mTOR, as well as stimulation of NF-?B transcriptional activity. Conclusion Our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of water extracts from A. cordifolia leaves in traditional folk medicine of Africa. PMID:23291534

  10. Immunomodulatory Activity of Triphala on Neutrophil Functions

    Microsoft Academic Search

    Ramasundaram Srikumar; Narayanaperumal Jeya Parthasarathy; Rathinasamy Sheela Devi

    2005-01-01

    Immune activation is an effective as well as protective approach against emerging infectious diseases. The immunomodulatory activities of Triphala (Terminalia chebula, Terminalia belerica and Emblica officinalis) were assessed by testing the various neutrophil functions like adherence, phagocytosis (phagocytic index (P.I) and avidity index (A.I)) and nitro blue tetrazolium (NBT) reduction in albino rats. In recent years much attention is being

  11. Immunomodulatory activity of Withania somnifera

    Microsoft Academic Search

    Leemol Davis; Girija Kuttan

    2000-01-01

    Administration of an extract from the powdered root of the plant Withania somnifera was found to stimulate immunological activity in Babl\\/c mice. Treatment with five doses of Withania root extract (20 mg\\/dose\\/animal; i.p.) was found to enhance the total WBC count (17?125 cells\\/mm3) on 10th day. Bone marrow cellularity (27×106 cells\\/femur) as well as ?-esterase positive cell number (1800\\/4000 cells)

  12. Immunomodulatory Activity of Recombinant Ricin Toxin Binding Subunit B (RTB).

    PubMed

    Liu, Wensen; Xu, Na; Yuan, Hongyan; Li, Songyan; Liu, Linna; Pu, Zhaoyang; Wan, Jiayu; Wang, Huiwen; Chang, Yaping; Li, Ruisheng

    2013-01-01

    Ricin toxin binding subunit B (RTB) is one of the subunits of the ricin protein. RTB has been used as adjuvant, but little is known about its mechanism. In this study, we found that RTB increased not only nitric oxide (NO) release, but also tumor necrosis factor (TNF)-? and interleukin (IL)-6 production in mouse macrophage cell line RAW264.7 cells. They subsequently exhibited enhanced ConA-induced T-cell and LPS-induced B-cell proliferative responses. We also examined the cytokines that were produced from splenocytes following in vitro RTB administration. Increased levels of IL-2, interferon (IFN)-? and TNF-? were observed, while IL-4 and IL-5 were unaffected. These results demonstrate that recombinant RTB can act on the immune system and activate T-cells by introducing a Th1 immune response. Th1 cells might be the primary cellular target affected by RTB. Our results suggest that the recombinant RTB can promote the activation of macrophages and has a beneficial effect on immunomodulatory activity. PMID:23765218

  13. Immunomodulatory Activity of Recombinant Ricin Toxin Binding Subunit B (RTB)

    PubMed Central

    Liu, Wensen; Xu, Na; Yuan, Hongyan; Li, Songyan; Liu, Linna; Pu, Zhaoyang; Wan, Jiayu; Wang, Huiwen; Chang, Yaping; Li, Ruisheng

    2013-01-01

    Ricin toxin binding subunit B (RTB) is one of the subunits of the ricin protein. RTB has been used as adjuvant, but little is known about its mechanism. In this study, we found that RTB increased not only nitric oxide (NO) release, but also tumor necrosis factor (TNF)-? and interleukin (IL)-6 production in mouse macrophage cell line RAW264.7 cells. They subsequently exhibited enhanced ConA-induced T-cell and LPS-induced B-cell proliferative responses. We also examined the cytokines that were produced from splenocytes following in vitro RTB administration. Increased levels of IL-2, interferon (IFN)-? and TNF-? were observed, while IL-4 and IL-5 were unaffected. These results demonstrate that recombinant RTB can act on the immune system and activate T-cells by introducing a Th1 immune response. Th1 cells might be the primary cellular target affected by RTB. Our results suggest that the recombinant RTB can promote the activation of macrophages and has a beneficial effect on immunomodulatory activity. PMID:23765218

  14. Alternative activation of macrophages

    Microsoft Academic Search

    Siamon Gordon

    2003-01-01

    The classical pathway of interferon-?-dependent activation of macrophages by T helper 1 (TH1)-type responses is a well-established feature of cellular immunity to infection with intracellular pathogens, such as Mycobacterium tuberculosis and HIV. The concept of an alternative pathway of macrophage activation by the TH2-type cytokines interleukin-4 (IL-4) and IL-13 has gained credence in the past decade, to account for a

  15. Assessing the immunomodulatory role of heteroglycan in a tumor spheroid and macrophage co-culture model system.

    PubMed

    Devi, K Sanjana P; Mishra, Debasish; Roy, Bibhas; Ghosh, Sudip K; Maiti, Tapas K

    2015-08-20

    The therapeutic benefits of glycans have garnered much attention over the last few decades with most studies being reported in 2D cultures or in animal models. The present work is therefore aimed to assess the effects of an immunomodulatory heteroglycan in a 3D milieu. Briefly, HT29 tumor spheroids were incubated with THP-1 macrophages at 1:1 ratio in a culture medium supplemented with immune stimulants such as heteroglycans or LPS. Spheroidal distortion, migration of tumor cells from the periphery of the spheroids and 46% of higher macrophage invasiveness was noted in heteroglycan-treated co-cultures with respect to control cultures. Histological sections of the treated co-cultures revealed the presence of high apoptotic tumor cells in the spheroidal periphery. CD11c and CD68 staining further suggested the predominance of macrophages in the vicinity of the apoptotic tumor cells. Such an in vitro created tissue system may thereby confirm the effectiveness of heteroglycan in activating the immune cells to exhibit tumor cytotoxic properties. PMID:25965450

  16. A study of immunomodulatory genes responses to macrophages of Schistosoma japonicum infection during different stages by microarray analysis.

    PubMed

    Cheng, Po-Ching; Lin, Ching-Nan; Peng, Shih-Yi; Li, Li-Li; Luo, Tsai-Yueh; Fan, Chia-Kwung; Lee, Kin-Mu

    2013-09-01

    Macrophages initiate, modulate, and also serve as final effector cells in immune responses during the course of schistosomal infections. In this study, we investigated the gene expression profile and functional changes of macrophages in immune responses against the Schistosoma japonicum by microarray analysis. Hierarchical clustering analysis demonstrated that a significant switch in gene transformation associated with a type-1 response and linked with a type-2 cytokine phenotype occurs between 4.5 and 8 weeks post-infection. Moreover, the gene profiles at 3 later time-points following egg challenge were similar in complexity and magnitude. The data also showed that there were mostly inhibition of gene expression related TLR, IFN, MHC and TNFrsf at the switch between 4.5 and 8 weeks post-infection, It is suggested that these immunomodulatory genes may be down-regulated in defense against S. japonicum eggs and granuloma pathology. The induction of alternatively activated macrophage (AAM?) was important for dampening the inflammation in hepatic granulomas and contributing to a decrease in cytotoxicity. The gene expressions involved in repair/remodeling during liver fibrosis were also observed after egg production. Understanding the immune mechanisms associated with parasitic resistance, pathology of parasite infection, and parasite growth will provide useful insight on host-schistosome interactions and for the control of schistosomiasis. PMID:23732117

  17. Alteration of immune functions and Th1/Th2 cytokine balance in nicotine-induced murine macrophages: immunomodulatory role of eugenol and N-acetylcysteine.

    PubMed

    Kar Mahapatra, Santanu; Bhattacharjee, Surajit; Chakraborty, Subhankari Prasad; Majumdar, Subrata; Roy, Somenath

    2011-04-01

    The aim of this study was to evaluate the immune functions by nicotine-induced murine peritoneal macrophages, and Th1/Th2 cytokine balance in it, and concurrently to establish the immunomodulatory role of eugenol, and N-acetylcysteine in nicotine-induced macrophages. Eugenol was isolated from Ocimum gratissimum, and characterized by HPLC, FTIR, and (1)H NMR. The cytotoxic effect of isolated eugenol was studied in murine peritoneal macrophages at various concentrations (0.1-50 ?g/ml) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. To evaluate the immunomodulatory role of eugenol and N-acetylcysteine, ROS and nitrite generations, phenotype functions by macrophages were studied. The effect of eugenol and N-acetylcysteine on the release of Th1 cytokines (TNF-?, IL-12) and Th2 cytokines (IL-10, TGF-?) was measured by ELISA, and the expression of these cytokines at mRNA level were analyzed by real-time PCR. Eugenol, at a dose of 15 ?g/ml, showed less cytotoxicity to the macrophages and it significantly reduced the nicotine-induced ROS, NO generation, and iNOSII expression. Similar kinds of response were observed in the presence of N-acetylcysteine (1 ?g/ml). We have found the decreased adherence, chemotaxis, phagocytosis and intracellular killing of bacteria in nicotine treated macrophages, whereas eugenol and N-acetylcysteine with nicotine treatment enhanced these cellular functions by macrophages significantly (p < 0.05). Eugenol and N-acetylcysteine were found to down regulate the Th1 cytokines in nicotine treated macrophages with concurrent activation of Th2 responses. These findings strongly enhanced our understanding of the molecular mechanism leading to nicotine-induced suppression of immune functions, and provide additional rationale for the application of anti-inflammatory therapeutic approaches by eugenol, and N-acetylcysteine for different inflammatory diseases prevention and treatment during nicotine toxicity. PMID:21237301

  18. A comparative study on immunomodulatory activity of polysaccharides from two official species of Ganoderma (Lingzhi).

    PubMed

    Meng, Lan-Zhen; Xie, Jing; Lv, Guang-Ping; Hu, De-Jun; Zhao, Jing; Duan, Jin-Ao; Li, Shao-Ping

    2014-01-01

    Two Ganoderma species, G. lucidum and G. sinense, are listed as Lingzhi in Chinese Pharmacopoeia and they are considered to have the same therapeutic effects. Polysaccharides were the main immunomodulatory and anticancer components in Ganoderma. In this study, the chemical characters and the effects of polysaccharides from G. lucidum (GLPS) and G. sinense (GSPS) on macrophage functions were investigated and compared. Chemical studies showed that GLPS and GSPS were different, displaying various molecular weight distribution and ratio of monosaccharide components. In vitro pharmacological studies showed that both GLPS and GSPS had potent effects on macrophage functions, such as promoting macrophage phagocytosis, increasing their release of nitric oxide and cytokines interleukin (IL)-1?, IL-6, IL-10, and tumor necrosis factor-?. Generally, GLPS was more powerful than GSPS. This study is helpful to elucidate the active components and pharmacological variation between the 2 Ganoderma species. The structure-activity relationship of polysaccharides from Ganoderma needs further study. PMID:25204488

  19. Immunomodulatory effects of vitamin D in peripheral blood monocyte-derived macrophages from patients with rheumatoid arthritis.

    PubMed

    Neve, Anna; Corrado, Addolorata; Cantatore, Francesco Paolo

    2014-08-01

    1,25-Dihydroxyvitamin D (1,25(OH)2D3), the active form of vitamin D, modulates both innate and adaptive immune responses. Emerging epidemiological data has also demonstrated disease-modifying and immunomodulatory effects of vitamin D in a wide range of human autoimmune diseases, including rheumatoid arthritis (RA). To evaluate in vitro effects of 1,25(OH) 2D3 in primary cultures of peripheral blood monocyte-derived macrophages of RA patients, monocyte/macrophages, isolated from peripheral blood mononuclear cells of RA patients and healthy subjects by exploiting their ability to adhere to plastic, were treated with increasing concentrations of 1,25(OH)2D3 for 48 h. TNF-?, IL-1 ?, IL-1?, IL-6 and RANKL production was determined by ELISA and nitric oxide (NO) release using the Griess method. Immunocytochemistry analysis was also performed to evaluate alterations in transmembrane TNF-? expression after 1,25(OH) 2D3 treatment. A significant dose-dependent decrease in TNF-? and RANKL production by cultured RA macrophages after 1,25(OH)2D3 treatment was found, whereas a significant reduction in normal cells was observed only at higher concentrations. IL-1 ?, IL-1? and IL-6 levels were reduced by 1,25(OH) 2D3 at higher concentrations in all cell populations. TNF-? immunostaining was less intense in treated cells compared with untreated. 1,25(OH) 2D3 significantly reduced NO levels regardless of the concentration used. Vitamin D downregulated proinflammatory mediators in monocyte-derived macrophages, and RA cells appeared more sensitive than normal cells. These effects further provide a rationale for the therapeutic value of vitamin D supplementation in the treatment for RA. PMID:23824148

  20. Adoptive Transfer of Immunomodulatory M2 Macrophages Prevents Type 1 Diabetes in NOD Mice

    PubMed Central

    Parsa, Roham; Andresen, Pernilla; Gillett, Alan; Mia, Sohel; Zhang, Xing-Mei; Mayans, Sofia; Holmberg, Dan; Harris, Robert A.

    2012-01-01

    Macrophages are multifunctional immune cells that may either drive or modulate disease pathogenesis depending on their activation phenotype. Autoimmune type 1 diabetes (T1D) is a chronic proinflammatory condition characterized by unresolved destruction of pancreatic islets. Adoptive cell transfer of macrophages with immunosuppressive properties represents a novel immunotherapy for treatment of such chronic autoimmune diseases. We used a panel of cytokines and other stimuli to discern the most effective regimen for in vitro induction of immunosuppressive macrophages (M2r) and determined interleukin (IL)-4/IL-10/transforming growth factor-? (TGF-?) to be optimal. M2r cells expressed programmed cell death 1 ligand-2, fragment crystallizable region ? receptor IIb, IL-10, and TGF-?, had a potent deactivating effect on proinflammatory lipopolysaccharide/interferon-?–stimulated macrophages, and significantly suppressed T-cell proliferation. Clinical therapeutic efficacy was assessed after adoptive transfer in NOD T1D mice, and after a single transfer of M2r macrophages, >80% of treated NOD mice were protected against T1D for at least 3 months, even when transfer was conducted just prior to clinical onset. Fluorescent imaging analyses revealed that adoptively transferred M2r macrophages specifically homed to the inflamed pancreas, promoting ?-cell survival. We suggest that M2r macrophage therapy represents a novel intervention that stops ongoing autoimmune T1D and may have relevance in a clinical setting. PMID:22745325

  1. Chemical Composition and Immunomodulatory Activity of Mycelia of the Hairy Bracket Mushroom, Trametes hirsuta (Higher Basidiomycetes).

    PubMed

    Ma, Rongxia; Yang, Rongling; Liu, Xueming; Chen, Zhiyi; Yang, Chunying; Wang, Siyuan

    2015-01-01

    Trametes hirsuta is a medicinal mushroom that produces laccase. Its mycelium is a by-product when this species is used for laccase production. Aiming to develop its potential medicinal value, we investigated the chemical composition and immunomodulatory activity of T. hirsuta mycelia (THM). Dried THM contained 26.06% protein, 1.15% fat, 57.87% carbohydrates, and 5.47% ash. Sixteen free amino acids (2.63% total content) and 6 5'-nucleotides (adenosine 5'-monophosphate, cytidine 5'-monophosphate, guanosine 5'-monophosphate, uridine 5'-monophosphate, xanthosine 5'-monophosphate, and inosine 5'-monophosphate) constituting 0.275% were detected. Dominant sugars and polyols were fructose (2.47%), mannitol (2.03%), and glucose (1.8%); trehalose and arabinose contents were less than 0.10%. Evaluation of immunomodulatory activity in mice showed that THM could improve macrophage phagocytic function and serum hemolysin concentrations, but only the low-dose group significantly enhanced the natural killer cell activity and increased the spleen index, and only the middle-dose group remarkably increased the thymus index. Therefore, T. hirsuta mycelia could enhance immune function in mice and have immunomodulatory activity. PMID:25954910

  2. Isolation and characterization of exopolysaccharide with immunomodulatory activity from fermentation broth of Morchella conica

    PubMed Central

    2013-01-01

    Background and the purpose of this study Mushroom polysaccharides have traditionally been used for the prevention and treatment of a multitude of disorders like infectious illnesses, cancers and various autoimmune diseases. In vitro and in vivo studies suggest that certain polysaccharides affect immune system function. Morchella conica (M. conica) is a species of rare edible mushroom whose multiple medicinal functions have been proven. Thus, the objective of this study is to isolate and characterize of exopolysaccharide from submerged mycelial culture of M. conica, and to evaluate its immunomodulatory activity. Methods A water-soluble Morchella conica Polysaccharides (MCP) were extracted and isolated from the fermentation broth of M. conica through a combination of DEAE-cellulose and Sephacryl S-300 HR chromatograph. NMR and IR spectroscopy has played a developing role in identification of polysaccharide with different structure and composition from fungal and plant sources, as well as complex glycosaminoglycans of animal origin. Thus, NMR and IR spectroscopy were used to analyze the chemical structure and composition of the isolated polysaccharide. Moreover, the polysaccharide was tested for its immunomodulatory activity at different concentrations using in vitro model. Results The results showed that MCP may significantly modulate nitric oxide production in macrophages, and promote splenocytes proliferation. Analysis from HPLC, infrared spectra and nuclear magnetic resonance spectroscopy showed that MCP was a homogeneous mannan with an average molecular weight of approximately 81.2 kDa. The glycosidic bond links is ?6)-?-D-Man p-(1?. Conclusion The results suggested that the extracted MCP may modulate nitric oxide production in macrophages and promote splenocytes proliferation, and it may act as a potent immunomodulatory agent. PMID:23351529

  3. Limoniastrum guyonianum methanol extract induces immunomodulatory and anti-inflammatory effects by activating cellular anti-oxidant activity.

    PubMed

    Krifa, Mounira; Mustapha, Nadia; Ghedira, Zied; Ghedira, Kamel; Pizzi, Antonio; Chekir-Ghedira, Leila

    2015-01-01

    Evaluation of the immunomodulatory activity of plant extracts is an interesting and growing area of research. In this study, effects of a methanolic extract of Limoniastrum guyonianum stems (M extract) on mice immune cell function in vitro were investigated. These studies showed that mitogen-induced lymphocyte proliferation was dose-dependently inhibited by the extract. Further, the lectin-induced response appeared to be more sensitive to the suppressive effects of the extract than were LPS-stimulated responses. In studies to assess any potential effects of extract on innate immunity, the results showed that the extract significantly enhanced the killing activity of isolated NK cells. In addition, studies here demonstrated that the extract could enhance lysosomal enzyme activity and inhibit nitrite oxide (NO) production by murine peritoneal macrophages ex vivo, suggesting a potential anti-inflammatory effect in situ. The anti-inflammatory activity was concomitant with the cellular anti-oxidant effect in macrophages and splenocytes. PMID:24724833

  4. Recognition of TLR2 N-glycans: critical role in ArtinM immunomodulatory activity.

    PubMed

    Mariano, Vania Sammartino; Zorzetto-Fernandes, Andre Luiz; da Silva, Thiago Aparecido; Ruas, Luciana Pereira; Nohara, Lilian L; Almeida, Igor Correia de; Roque-Barreira, Maria Cristina

    2014-01-01

    TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-?B activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties. PMID:24892697

  5. Recognition of TLR2 N-Glycans: Critical Role in ArtinM Immunomodulatory Activity

    PubMed Central

    da Silva, Thiago Aparecido; Ruas, Luciana Pereira; Nohara, Lilian L.; de Almeida, Igor Correia; Roque-Barreira, Maria Cristina

    2014-01-01

    TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-?B activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties. PMID:24892697

  6. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Methods Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined. Results Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1?, -1?, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-?), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-?B. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1?/CCL3, and MIP-1?/CCL4. CSP-AU1 treatment of mice with EAE (50 mg/kg, i.p., daily, 13 days) resulted in significantly reduced disease severity in this experimental model of multiple sclerosis. Levels of IL-13, TNF, interferon (IFN)-?, IL-17, and GM-CSF were also significantly decreased, whereas transforming growth factor (TGF)-? was increased in LN cells from CSP-AU1-treated EAE mice. Conclusions Polysaccharide CSP-AU1 is a potent natural innate immunomodulator with a broad spectrum of agonist activity in vitro and immunosupressive properties after chronic administration in vivo. PMID:23806004

  7. The nutritional supplement Active Hexose Correlated Compound (AHCC) has direct immunomodulatory actions on intestinal epithelial cells and macrophages involving TLR/MyD88 and NF-?B/MAPK activation.

    PubMed

    Daddaoua, Abdelali; Martínez-Plata, Enrique; Ortega-González, Mercedes; Ocón, Borja; Aranda, Carlos J; Zarzuelo, Antonio; Suárez, María D; de Medina, Fermín Sánchez; Martínez-Augustin, Olga

    2013-02-15

    Active Hexose Correlated Compound (AHCC) is an immunostimulatory nutritional supplement. AHCC effects and mechanism of action on intestinal epithelial cells or monocytes are poorly described. AHCC was added to the culture medium of intestinal epithelial cells (IEC18 and HT29 cells) and monocytes (THP-1 cells) and assessed the secretion of proinflammatory cytokines by ELISA. Inhibitors of NF?B and MAPKs were used to study signal transduction pathways while TLR4 and MyD88 were silenced in IEC18 cells using shRNA. It was found that AHCC induced GRO? and MCP1 secretion in IEC18 and IL-8 in HT29 cells. These effects depended on NF?B activation, and partly on MAPKs activation and on the presence of MyD88 and TLR4. In THP-1 cells AHCC evoked IL-8, IL-1? and TNF-? secretion. The induction of IL-8 depended on JNK and NF?B activation. Therefore, AHCC exerts immunostimulatory effects on intestinal epithelial cells and monocytes involving TLR4/MyD88 and NF?B/MAPK signal transduction pathways. PMID:23194525

  8. Effects of Activated Macrophages on Nocardia asteroides

    PubMed Central

    Filice, Gregory A.; Beaman, Blaine L.; Remington, Jack S.

    1980-01-01

    The mechanism(s) of host resistance against Nocardia asteroides has not been well defined. Since disease due to N. asteroides frequently occurs in patients with impaired cell-mediated immunity, we studied the interaction of N. asteroides with activated and control mouse peritoneal macrophages. Activated macrophages were from mice infected with Toxoplasma gondii or injected with Corynebacterium parvum. N. asteroides in the early stationary phase (>99% in the coccobacillary form) was used for challenge of macrophage monolayers. Growth of two strains of N. asteroides was markedly inhibited in activated macrophages, whereas N. asteroides grew well in control macrophages. Quantitation of macrophage-associated N. asteroides indicated that activated macrophages killed 40 to 50% of N. asteroides within 6 h (P < 0.002). In control macrophage preparations, it appeared as if Nocardia filaments extended from within macrophages to the outside, and many of these filaments appeared to have extended to and then grown through neighboring macrophages. In activated macrophage preparations, Nocardia remained in the coccobacillary form in most macrophages. Control macrophage monolayers were almost completely overgrown with and destroyed by Nocardia 20 h after challenge, whereas activated macrophage monolayers remained intact. Nocardia that grew in control macrophages were not acid-alcohol fast or only weakly so, whereas the few Nocardia that grew in activated macrophages were strongly acid-alcohol fast. Our results indicate that activated macrophages may be important in host defense against N. asteroides. Images Fig. 1 PMID:6991421

  9. Effects of Ferumoxides – Protamine Sulfate Labeling on Immunomodulatory Characteristics of Macrophage-like THP-1 Cells

    PubMed Central

    Janic, Branislava; Iskander, A. S. M.; Rad, Ali M.; Soltanian-Zadeh, Hamid; Arbab, Ali S.

    2008-01-01

    Superparamagnetic Iron Oxide (SPIO) complexed with cationic transfection agent is used to label various mammalian cells. Labeled cells can then be utilized as an in vivo magnetic resonance imaging (MRI) probes. However, certain number of in vivo administered labeled cells may be cleared from tissues by the host's macrophages. For successful translation to routine clinical application of SPIO labeling method it is important that this mode of in vivo clearance of iron does not elicit any diverse immunological effects. The purpose of this study was to demonstrate that SPIO agent ferumoxides-protamine sulfate (FePro) incorporation into macrophages does not alter immunological properties of these cells with regard to differentiation, chemotaxis, and ability to respond to the activation stimuli and to modulate T cell response. We used THP-1 cell line as a model for studying macrophage cell type. THP-1 cells were magnetically labeled with FePro, differentiated with 100 nM of phorbol ester, 12-Myristate-13-acetate (TPA) and stimulated with 100 ng/ml of LPS. The results showed 1) FePro labeling had no effect on the changes in morphology and expression of cell surface proteins associated with TPA induced differentiation; 2) FePro labeled cells responded to LPS with slightly higher levels of NF?B pathway activation, as shown by immunobloting; TNF-? secretion and cell surface expression levels of CD54 and CD83 activation markers, under these conditions, were still comparable to the levels observed in non-labeled cells; 3) FePro labeling exhibited differential, chemokine dependent, effect on THP-1 chemotaxis with a decrease in cell directional migration to MCP-1; 4) FePro labeling did not affect the ability of THP-1 cells to down-regulate T cell expression of CD4 and CD8 and to induce T cell proliferation. Our study demonstrated that intracellular incorporation of FePro complexes does not alter overall immunological properties of THP-1 cells. The described experiments provide the model for studying the effects of in vivo clearance of iron particles via incorporation into the host's macrophages that may follow after in vivo application of any type of magnetically labeled mammalian cells. To better mimic the complex in vivo scenario, this model may be further exploited by introducing additional cellular and biological, immunologically relevant, components. PMID:18575575

  10. Flavonol Glycosides from Euphorbia microsciadia Bioss. with their Immunomodulatory Activities

    PubMed Central

    Ghanadian, Syed Mustafa; Ayatollahi, Abdul Majid; Afsharypour, Suleiman; Hareem, Sumaira; Abdalla, Omer Mohamed; Jules Kezetas Bankeu, Jean

    2012-01-01

    Four known flavonoids: quercetin 3-O-?-D-rutinoside (Q3Rut), myricetin 3-O-?-D-galactopyranoside (M3Gal), quercetin 3-O-?-D-galactopyranoside (Q3Gal) and quercetin 3-O-?-D-glucopyranoside (Q3Glc), for the first time were isolated from aerial parts of Euphorbia microsciadia. The chemical structure of them was elucidated on the basis of 1 and 2 D-NMR spectra and different spectroscopic techniques. The immunomodulatory activities of isolated compounds were compared using standard T-cell proliferation assay. These data showed that lymphocyte suppression activity of flavonoids (1-4) were comparatively lower than prednisolon as a standard drug. Immunosuppressive activity of flavonoids with hydroxyl groups at both 3?-and 4?-positions in their B-ring (Q3Gal) were more than those with 3?-,4?-and 5?-hydroxyl substitution (M3Gal). In these compounds, Q3Gal showed the most inhibitory activity, whereas M3Gal showed the least lymphocyte antiprolifeartive activity. PMID:24250520

  11. Schistosoma mansoni Hemozoin Modulates Alternative Activation of Macrophages via Specific Suppression of Retnla Expression and Secretion

    PubMed Central

    Truscott, Martha; Evans, D. Andrew; Gunn, Matt

    2013-01-01

    The trematode Schistosoma mansoni is one of the etiological agents of schistosomiasis, a key neglected tropical disease responsible for an estimated annual loss of 70 million disability-adjusted life years. Hematophagy represents the primary nutrient acquisition pathway of this parasite, but digestion of hemoglobin also liberates toxic heme. Schistosomes detoxify heme via crystallization into hemozoin, which is subsequently regurgitated into the host's circulation. Here we demonstrate that during experimental schistosomiasis, hemozoin accumulating in the mouse liver is taken up by phagocytes at a time coincident with the development of the egg-induced T-helper 2 (Th2) granulomatous immune response. Furthermore, the uptake of hemozoin also coincides with the hepatic expression of markers of alternative macrophage activation. Alternatively activated macrophages are a key effector cell population associated with protection against schistosomiasis, making hemozoin well placed to play an important immunomodulatory role in this disease. To systematically explore this hypothesis, S. mansoni hemozoin was purified and added to in vitro bone marrow-derived macrophage cultures concurrently exposed to cytokines chosen to reflect the shifting state of macrophage activation in vivo. Macrophages undergoing interleukin-4 (IL-4)-induced alternative activation in the presence of hemozoin developed a phenotype specifically lacking in Retnla, a characteristic alternatively activated macrophage product associated with regulation of Th2 inflammatory responses. As such, in addition to its important detoxification role during hematophagy, we propose that schistosome hemozoin also provides a potent immunomodulatory function in the coevolved network of host-parasite relationships during schistosomiasis. PMID:23090958

  12. Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation

    Microsoft Academic Search

    Ramesh Agarwal; Sham Diwanay; Pralhad Patki; Bhushan Patwardhan

    1999-01-01

    The immunomodulatory activities of an Indian Ayurvedic medicinal preparation, i.e. extracts from Ashwagandha, Withania somnifera (L.) Dunal (Solanaceae), namely WST and WS2, were studied in mice for immune inflammation: active paw anaphylaxis and delayed type hypersensitivity (DTH). Immunomodulatory effect was assessed in If IgE-mediated anaphylaxis as reduction of ovalbumin-induced paw edema, in animals treated with WS2 at doses of 150

  13. Studies of macrophage immuno-modulating activity of polysaccharides isolated from Paecilomyces tenuipes

    Microsoft Academic Search

    Xiaoming Chen; Jianxin Lu; Yangde Zhang; Jiantai He; Xunzhi Guo; Gengyuan Tian; Liqin Jin

    2008-01-01

    The objective of this study was to evaluate the immunomodulatory effects of the Paecilomyces sinensis polysaccharides (PtP) on the activity of macrophages and human monocytes. A water-soluble polysaccharide, with estimated molecular weight of 2.04×104Da, was isolated from P. sinensis. The results indicate that PtP can increase the activity of LDH and ACP in AM? and PM? of rats and human

  14. Immunomodulatory activities of Ganoderma sinense polysaccharides in human immune cells.

    PubMed

    Yue, Grace G L; Chan, Ben C L; Han, Xiao-Qiang; Cheng, Ling; Wong, Eric C W; Leung, Ping Chung; Fung, Kwok Pui; Ng, Michelle C H; Fan, Kei; Sze, Daniel M Y; Lau, Clara B S

    2013-01-01

    Medicinal mushrooms have been traditionally used as food nutrient supplements in China for thousands of years. The present study aimed to evaluate the immunomodulatory activities of Ganoderma sinense (GS), an allied species of G. lucidum, using human peripheral blood mononuclear cells (PBMC). Our results showed that the polysaccharide-enriched fraction of GS hot water extract (400 ?g/ml) exhibited significant stimulatory effects on PBMC proliferation. When the fruiting bodies of GS were divided into pileus and stipe parts and were separately extracted, the GS stipe polysaccharide-enriched fraction (50-400 ?g/ml) showed concentration-dependent immunostimulating effects in PBMC. The productions of tumor necrosis factor-?, interleukin (IL)-10, and transforming growth factor -? were significantly enhanced by this fraction. In addition, the proportion of CD14(+) monocyte subpopulation within the PBMC was specifically increased. The IL-10 and IL-12 productions in monocyte-derived dendritic cells were significantly enhanced by GS stipe fraction. The composition of monosaccharides of this fraction was determined by ultra performance liquid chromatography and ion exchange chromatography. Our study demonstrated for the first time the immunostimulatory effects of GS stipe polysaccharide-enriched fraction on PBMC and dendritic cells. The findings revealed the potential use of GS (especially including the stipes of fruiting bodies) as adjuvant nutrient supplements for patients, who are receiving immunosuppressive chemotherapies. PMID:23859044

  15. Immunomodulatory and antitumor activity of Biophytum sensitivum extract.

    PubMed

    Guruvayoorappan, C; Kuttan, Girija

    2007-01-01

    An alcoholic extract of Biophytum sensitivum was studied for its immunomodulatory and antitumor activity. The extract was 100% toxic at a concentration of 0.5 mg/ml to Dalton's lymphoma ascites (DLA) and Ehrlich ascites carcinoma (EAC) cells. B. sensitivum extract was also found to be cytotoxic towards L929 cells in culture at a concentration of 0.1 mg/ml. Administration of B. sensitivum extract (500 microg/dose/animal) could inhibit the solid tumor development in mice induced with DLA cells and increase the lifespan of mice bearing Ehrlich ascites carcinoma tumors by 93.3%. B. sensitivum treatment significantly (p<0.001) reduced the tumor cell glutathione (GSH) levels as well as serum gamma glutamyl transpeptidase (GGT) and nitric oxide (NO) levels in ascites tumor bearing animals. The total WBC count was also increased to 14,087 cells/mm(3) on the 12th day in BALB/c mice. The number of plaque forming cells also enhanced significantly (p<0.001), and bone marrow cellularity and beta-esterase positive cells were also increased by the administration of B. sensitivum extract. PMID:17477767

  16. Studies of macrophage immuno-modulating activity of polysaccharides isolated from Paecilomyces tenuipes.

    PubMed

    Chen, Xiaoming; Lu, Jianxin; Zhang, Yangde; He, Jiantai; Guo, Xunzhi; Tian, Gengyuan; Jin, Liqin

    2008-10-01

    The objective of this study was to evaluate the immunomodulatory effects of the Paecilomyces sinensis polysaccharides (PtP) on the activity of macrophages and human monocytes. A water-soluble polysaccharide, with estimated molecular weight of 2.04x10(4) Da, was isolated from P. sinensis. The results indicate that PtP can increase the activity of LDH and ACP in AMphi and PMphi of rats and human mononuclear cells, and enhance the pinocytic activity of macrophages and TNF-alpha production by human peripheral blood mononuclear cells (PBMC), suggesting that PtP had potent immunomodulatory properties and could be explored as a novel potential immunostimulants for the food and pharmaceutical purpose. PMID:18601946

  17. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha

    Microsoft Academic Search

    Igor A. Schepetkin; Gang Xie; Liliya N. Kirpotina; Robyn A. Klein; Mark A. Jutila; Mark T. Quinn

    2008-01-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through

  18. Inhibition of macrophage activation and lipopolysaccaride-induced death by seco-steroids purified from Physalis angulata L

    Microsoft Academic Search

    Milena B. P. Soares; Moema C. Bellintani; Ivone M. Ribeiro; Therezinha C. B. Tomassini; Ricardo Ribeiro dos Santos

    2003-01-01

    Physalis angulata L. is an annual herb widely used in popular medicine for the treatment of a variety of pathologies. Here, we tested immunomodulatory activities of physalins, seco-steroids purified from P. angulata extracts. Addition of physalins B, F or G, but not D, caused a reduction in nitric oxide production by macrophages stimulated with lipopolysaccaride and interferon-?. In the presence

  19. Gene expression profiling of avian macrophage activation

    Microsoft Academic Search

    Travis W. Bliss; John E. Dohms; Marlene G. Emara; Calvin L. Keeler

    2005-01-01

    Through the process of phagocytosis, the macrophage is responsible for the clearance and destruction of both intracellular and extracellular pathogens. When stimulated, macrophages undergo a process of activation involving an increase in size and motility, enhanced phagocytic, bactericidal, and tumoricidal activity, and up-regulation of several cell-surface markers. One well characterized method of mammalian macrophage activation involves the Toll-like receptor (TLR)

  20. Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium1

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Jakiw, Larissa; Khlebnikov, Andrei I.; Blaskovich, Christie L.; Jutila, Mark A.; Quinn, Mark T.

    2009-01-01

    Epilobium angustifolium has been traditionally used to treat of a number of diseases; however, not much is known regarding its effect on innate immune cells. Here, we report that extracts of E. angustifolium activated functional responses in neutrophils and monocyte/macrophages. Activity-guided fractionation, followed by mass spectroscopy and NMR analysis, resulted in the identification of oenothein B as the primary component responsible for phagocyte activation. Oenothein B, a dimeric hydrolysable tannin, dose-dependently induced a number of phagocyte functions in vitro, including intracellular Ca2+ flux, production of reactive oxygen species (ROS), chemotaxis, nuclear factor (NF)-?B activation, and proinflammatory cytokine production. Furthermore, oenothein B was active in vivo, inducing keratinocyte chemoattractant (KC) production and neutrophil recruitment to the peritoneum after intraperitoneal administration. Biological activity required the full oenothein B structure, as substructures of oenothein B (pyrocatechol, gallic acid, pyrogallol, 3,4-dihydroxybenzoic acid) were all inactive. The ability of oenothein B to modulate phagocyte functions in vitro and in vivo suggests that this compound is responsible for at least part of the therapeutic properties of E. angustifolium extracts. PMID:19846877

  1. QSAR and docking studies on capsazepine derivatives for immunomodulatory and anti-inflammatory activity.

    PubMed

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-? (TNF-?) was developed using multiple linear regression method (MLR) with good internal prediction (r2?=?0.8779) and external prediction (r2pred?=?0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-?. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  2. QSAR and Docking Studies on Capsazepine Derivatives for Immunomodulatory and Anti-Inflammatory Activity

    PubMed Central

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-? (TNF-?) was developed using multiple linear regression method (MLR) with good internal prediction (r2?=?0.8779) and external prediction (r2pred?=?0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-?. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  3. Immunomodulatory Activity of Red Ginseng against Influenza A Virus Infection

    PubMed Central

    Lee, Jong Seok; Hwang, Hye Suk; Ko, Eun-Ju; Lee, Yu-Na; Kwon, Young-Man; Kim, Min-Chul; Kang, Sang-Moo

    2014-01-01

    Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE) has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8) probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-? production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions. PMID:24473234

  4. Immunomodulatory effects of clove (Syzygium aromaticum) constituents on macrophages: in vitro evaluations of aqueous and ethanolic components.

    PubMed

    Dibazar, Shaghayegh Pishkhan; Fateh, Shirin; Daneshmandi, Saeed

    2015-01-01

    The present work sought to investigate potential suppressive effects on mouse macrophages by in vitro treatment with clove (Syzygium aromaticum) ethanolic extracted essential oil (containing eugenol) or its water-soluble extract. Using doses (ranging from 0.001-1000?µg/ml) of each material freshly prepared in the laboratory, cell survival and production of nitric oxide (NO), tumor necrosis factor (TNF)-?, interleukin (IL)-6, and IL-12 by the treated cells (that in all cases also had received LPS stimulation) were measured. Results indicated that, except at doses ?100?µg/ml, viability was unaffected in all groups. NO release by LPS-stimulated macrophages was generally significantly suppressed by either material; in contrast, low (i.e. 0.001-1?µg/ml) doses of either extract class appeared to enhance NO release by non-LPS (unstimulated)-treated macrophages. Among LPS-stimulated cells, TNF? release was also significantly affected by each extract; the ethanolic extract was suppressive at all doses tested, while the aqueous material was so up to 1?µg/ml and then became stimulatory. In contrast, nearly every dose of either extract appeared to stimulate IL-6 release from the LPS-treated cells. Effects on IL-12 production were overall inconsistent; in general, the ethanolic extract tended to be stimulatory of production by the LPS-treated cells. The data for the aqueous material showed no discernable pattern of effect. The results suggest that clove extracts do not have a distinct cytotoxic activity, but do impart potential anti- and pro-oxidant effects in cells, depending on their concentrations and on the activation state of the macrophages themselves at the time of exposure to the extracts. The impact of the extracts on macrophage cytokine release also displays a pattern of dose-relatedness. PMID:24873744

  5. Lipoteichoic Acid in Streptomyces hygroscopicus: Structural Model and Immunomodulatory Activities

    PubMed Central

    Cot, Marlène; Ray, Aurélie; Gilleron, Martine; Vercellone, Alain; Larrouy-Maumus, Gérald; Armau, Elise; Gauthier, Sophie; Tiraby, Gérard; Puzo, Germain; Nigou, Jérôme

    2011-01-01

    Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with ?-glucosaminyl and ?-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of Gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-? and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents. PMID:22028855

  6. Different Effects of the Immunomodulatory Drug GMDP Immobilized onto Aminopropyl Modified and Unmodified Mesoporous Silica Nanoparticles upon Peritoneal Macrophages of Women with Endometriosis

    PubMed Central

    Antsiferova, Yuliya; Sotnikova, Nataliya

    2013-01-01

    The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs) and modified by aminopropyl groups silica nanoparticles (AMNPs) for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1), was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages. PMID:24455738

  7. Exploring the full spectrum of macrophage activation

    Microsoft Academic Search

    Justin P. Edwards; David M. Mosser

    2008-01-01

    Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities — host defence, wound healing and immune regulation. We propose that similarly to primary colours, these

  8. Lymphokine regulation of macrophage effector activities.

    PubMed

    Nacy, C A; Belosevic, M; Crawford, R M; Healy, A T; Schreiber, R D; Meltzer, M S

    1988-01-01

    Our concept of the regulation of macrophage activation is ever expanding and contracting. In regard to the number of LK that regulate macrophages killing activities, we have entered a new phase. In the beginning there was one macrophage activation factor, MIF; then there were many macrophage activation factors, most uncharacterized and bearing a variety of names. Then came IFN, a genetically cloned single reagent that induced destruction of virtually every target assessed; all activities of macrophages were assumed to be regulated by IFN. Once again, however, the LK universe is expanding: the number of single, cloned reagents that induce macrophage killing activities is amazing. With just two targets, a fibrosarcoma cell and an intracellular amastigote of L. major, we can identify 5 different macrophage activation factors, four of which are cloned and sequenced. As more recombinant reagents become available, the story of macrophage activation is likely to become even more complex. It is fascinating not only that certain of the LK are capable of inducing single effector reactions in the absence of effects on other effector activities, but also that at least one effector reaction requires the cooperation of several molecularly distinct LK. The complexity of LK activation factors that regulate a single effector reaction in vitro is compounded by the complexity in effector cell populations. For example, inflammatory macrophages exposed to LK kill the fibrosarcoma tumor target 5 to 10-fold better than an equal number of resident peritoneal macrophages. In contrast, LK treated resident macrophages eliminate intracellular amastigotes of leishmania far more efficiently than inflammatory cells. Thus, changes in cell populations dramatically affect the capacity to demonstrate a single effector reaction. Further, simple changes in assay conditions also determine whether an effector reaction can be observed in vitro. And superimposed upon all these layers of complexity is the target itself. The mechanisms a macrophages uses to block the replication of a virus may be totally ineffective in the destruction of a multicellular helminth, such as Schistosoma mansoni. And there is no reason to suspect that the extracellular destruction of a tumor target occurs by the same means that the macrophage uses to kill an intracytoplasmic bacterium, such as a rickettsia.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3059762

  9. Effects of activated macrophages on Mycobacterium leprae.

    PubMed Central

    Ramasesh, N; Adams, L B; Franzblau, S G; Krahenbuhl, J L

    1991-01-01

    Five alternative methods were used to explore in vitro the effects of normal and activated murine macrophages on the metabolic well-being of intracellular Mycobacterium leprae: fluorescein diacetate-ethidium bromide staining, ATP content, synthesis of phenolic glycolipid 1, and two techniques to quantitate oxidation of palmitic acid. In relatively short-term experiments (7 to 10 days), each of these procedures provided strong evidence that activated macrophages exerted a deleterious effect on the leprosy bacillus. These findings appear to confirm the contention that activated macrophages underlie host resistance to clinical leprosy and limitation of M. leprae growth in paucibacillary leprosy. PMID:1908824

  10. Immunomodulation of RAW 264.7 Murine Macrophage Functions and Antioxidant Activities of 11 Plant Extracts.

    PubMed

    Ghonime, Mohammed; Emara, Mohamed; Shawky, Riham; Soliman, Hesham; El-Domany, Ramadan; Abdelaziz, Ahmed

    2015-01-01

    A group of 11 medicinal plants, including Lavandula pubescens, Trigonella foenugricium, Salsola schweinforthi, Calligonum comosum, Silene succulenta, Silene villosa, Bogonvillea glabra, Cakile maritime, Gomphrene celesoids, Mirabilis jalaba, and Silene nocturna growing in Egypt, were extracted and examined for their immunomodulatory and antioxidant activities. RAW 264.7 cells were recruited to investigate the immunomodulatory effect through multiple parameters analysis. First, the proliferation index of macrophages cells was evaluated revealing that Trigonella foenugricium, Silene succulenta and Silene villosa have a significant cytotoxic effect on RAW cells. Interestingly, we observed enhancement of macrophages phagocytic function of by all extracts except Cakile maritime, Gomphrena celosioides and Silene nocturna. Afterwards, macrophages were challenged by incubation with LPS and the effect of various extracts on inflammatory responses was investigated; the generation of NO from activated macrophage was substantially suppressed by 7 extracts namely, Trigonella foenugricium, Calligonum comosum, Silene succulenta, Bougainvillea glabra, Mirabilis jalaba, Gomphrena celosioides and Silene nocturna. TNF-? was decreased by percentage range from 3.8 to 85.8% and Trigonella foenugricium extract showed the highest inhibition of TNF-? release. All extracts except Trigonella foenugricium, Salsola schweinforthi, Silene succulenta and Mirabilis jalaba significantly inhibited COX-2 production from stimulated macrophage. Moreover, evaluating the potential antioxidant activity of these extracts showed that Trigonella foenugricium, Salsola schweinforthi, Calligonum comosum, Bogonvillea glabra and Mirabilis jalaba exhibited some antioxidant activities. Taken together, our results suggest that some of these extracts may have a considerable antinflammatory and antioxidant effects and may be a potential therapeutic choice in the treatment of inflammatory diseases. PMID:25564700

  11. Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus

    PubMed Central

    2005-01-01

    The immunomodulatory effect of aqueous extract of Inonotus obliquus, called as Chaga, was tested on bone marrow cells from chemically immunosuppressed mice. The Chaga water extract was daily administered for 24 days to mice that had been treated with cyclophosphamide (400 mg/kg body weight), immunosuppressive alkylating agent. The number of colony-forming unit (CFU)-granulocytes/macrophages (GM) and erythroid burst-forming unit (BFU-E), increased almost to the levels seen in non-treated control as early as 8 days after treatment. Oral administration of the extract highly increased serum levels of IL-6. Also, the level of TNF-? was elevated by the chemical treatment in control mice, whereas was maintained at the background level in the extract-treated mice, indicating that the extract might effectively suppress TNF-? related pathologic conditions. These results strongly suggest the great potential of the aqueous extract from Inonotus obliquus as immune enhancer during chemotherapy. PMID:24049493

  12. Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus.

    PubMed

    Kim, Yeon-Ran

    2005-09-01

    The immunomodulatory effect of aqueous extract of Inonotus obliquus, called as Chaga, was tested on bone marrow cells from chemically immunosuppressed mice. The Chaga water extract was daily administered for 24 days to mice that had been treated with cyclophosphamide (400 mg/kg body weight), immunosuppressive alkylating agent. The number of colony-forming unit (CFU)-granulocytes/macrophages (GM) and erythroid burst-forming unit (BFU-E), increased almost to the levels seen in non-treated control as early as 8 days after treatment. Oral administration of the extract highly increased serum levels of IL-6. Also, the level of TNF-? was elevated by the chemical treatment in control mice, whereas was maintained at the background level in the extract-treated mice, indicating that the extract might effectively suppress TNF-? related pathologic conditions. These results strongly suggest the great potential of the aqueous extract from Inonotus obliquus as immune enhancer during chemotherapy. PMID:24049493

  13. Immunomodulatory effects of NIM76, a volatile fraction from Neem oil

    Microsoft Academic Search

    M. SaiRam; S. K. Sharma; G. Ilavazhagan; Devendra Kumar; W. Selvamurthy

    1997-01-01

    The immunomodulatory properties of NIM-76 have been described in this paper. Pre-treatment of rats with a single i.p. injection of NIM-76 resulted in an increase in polymorphonuclear (PMN) leukocytes with a concomitant decrease in lymphocyte counts. The immunomodulatory activity of NIM-76 was found to be concentration-dependent. At 120 mg\\/kg body weight, there was an enhanced macrophage activity and lymphocyte proliferation

  14. Peritoneal macrophage activation indicated by enhanced chemiluminescence.

    PubMed Central

    Schleupner, C J; Glasgow, L A

    1978-01-01

    A number of studies have demonstrated the ability of various bacterial preparations, protozoa, and chemicals to activate macrophages and concomitantly to enhance host resistance to both tumors and infections. Recently, viral infections have been shown to have a similar effect upon macrophage function. To better define the metabolic state of activated macrophages, we have evaluated the ability of peritoneal cells (PC) from vaccinia virus- or murine cytomegalovirus-infected or Corynebacterium parvum-treated mice to emit chemiluminescence (CL) during phagocytosis of zymosan particles or yeasts. PC from C. parvum-treated mice (1,400 microgram intraperitoneally) emitted enhanced CL over controls on days 3, 6, 14, and 21 after treatment, thereby establishing the emission of CL as a correlate of metabolic activation. Previous evidence for activation of PC from vaccinia virus-infected mice (10(8) plaque-forming units) was confirmed by demonstration of enhanced levels of CL on days 3, 6, and 13 after murine infection. Likewise, PC from mice infected with murine cytomegalovirus (10(5) plaque-forming units) 3, 6, or 13 days previously demonstrated augmented levels of CL over controls. Opsonized virus particles (vaccinia virus or murine cytomegalovirus) failed to induce the emission of CL with PC from mice infected with the isologous virus. Our data further demonstrate the immunomodulationinduced by virus infections and suggest that the detection of CL is an easily quantitated correlate of macrophage activation which may be helpful in defining metabolic alterations induced during activation. PMID:213391

  15. Brazilian Propolis Antileishmanial and Immunomodulatory Effects

    PubMed Central

    da Silva, Suelen Santos; Thomé, Graciele da Silva; Cataneo, Allan Henrique Depieri; Miranda, Milena Menegazzo; Felipe, Ionice; Andrade, Célia Guadalupe Tardeli de Jesus; Watanabe, Maria Angélica Ehara; Piana, Gilce Maria; Sforcin, José Maurício; Pavanelli, Wander Rogério; Conchon-Costa, Ivete

    2013-01-01

    The antileishmanial and immunomodulatory effects of propolis collected in Botucatu, São Paulo State, Brazil, were evaluated in Leishmania (Viannia) braziliensis experimental infection. The antileishmanial effect of propolis on promastigote forms was verified by reducing growth and by promoting morphologic alterations observed by scanning electron microscopy. In in vitro immunomodulatory assays, macrophages were pretreated with propolis and then infected with L. (V.) braziliensis. In vivo, supernatants from liver cells and peritoneal exudate of BALB/c mice pretreated with propolis and infected with Leishmania (107/mL promastigotes) were collected, and TNF-? and IL-12 were measured by ELISA. Macrophages incubated with propolis showed a significant increase in interiorization and further killing of parasites. An increased TNF-? production was seen in mice pretreated with propolis, whereas IL-12 was downregulated during the infection. In conclusion, Brazilian propolis showed a direct action on the parasite and displayed immunomodulatory effects on murine macrophages, even though the parasite has been reported to affect the activation pathways of the cell. The observed effects could be associated with the presence of phenolic compounds (flavonoids, aromatic acids, and benzopyranes), di- and triterpenes, and essential oils found in our propolis sample. PMID:23762152

  16. Immunomodulatory activity of methanolic extract of Amorphophallus commutatus var. wayanadensis under normal and cyclophosphamide induced immunosuppressive conditions in mice models.

    PubMed

    Raj, Sreena; Gothandam, K M

    2015-07-01

    The present study investigates the immunomodulatory activity of methanolic extract of Amorphophallus commutatus var. wayanadensis (MEAC) under normal and cyclophosphamide induced immunosuppressive conditions in Swiss albino mice models. The splenocyte proliferation assay was performed to study in-vitro immunomodulatory activity of MEAC, where sheep RBC (SRBC) was used to induce immune responses in the experimental animals. The in-vivo immunomodulatory activity was evaluated by humoral antibody titer, quantification of plaque forming cells, qualitative hemolysis, delayed type hypersensitivity assay, phagocytic index and neutrophil adhesion assays. The chemoprotective effect of MEAC was determined against cyclophosphamide induced immunosuppression in mice models. MEAC exhibited significant mitogenic and co-mitogenic activity on Con-A, PHA and LPS stimulated splenocytes isolated from mouse spleen in a dose dependent manner. Furthermore, MEAC also elicited significant immunomodulatory activity with enhanced activation of humoral immune response along with a suppressive effect on cell mediated immune response. Hematological and histopathological analysis revealed the protective effect of MEAC against CP induced immunosuppression. The significant immunomodulatory activity of MEAC observed in the current study could be due to the fatty acids and phytosterols present in the extract. PMID:25916916

  17. Control of macrophage activation and function by PPARs

    PubMed Central

    Chawla, Ajay

    2010-01-01

    Macrophages, a key component of the innate defense against pathogens, participate in the initiation and resolution of inflammation, and in the maintenance of tissues. These diverse and at times antithetical functions of macrophages are executed via distinct activation states, ranging from classical to alternative to deactivation. Because the dysregulation of macrophage activation is pathogenically linked to various metabolic, inflammatory and immune disorders, regulatory proteins controlling macrophage activation have emerged as important new therapeutic targets. Here, the mechanisms by which Peroxisome Proliferator Activated Receptors (PPARs) transcriptionally regulate macrophage activation in health and disease states, including obesity, insulin resistance and cardiovascular disease, will be reviewed. PMID:20508200

  18. Macrophage activation and polarization: nomenclature and experimental guidelines.

    PubMed

    Murray, Peter J; Allen, Judith E; Biswas, Subhra K; Fisher, Edward A; Gilroy, Derek W; Goerdt, Sergij; Gordon, Siamon; Hamilton, John A; Ivashkiv, Lionel B; Lawrence, Toby; Locati, Massimo; Mantovani, Alberto; Martinez, Fernando O; Mege, Jean-Louis; Mosser, David M; Natoli, Gioacchino; Saeij, Jeroen P; Schultze, Joachim L; Shirey, Kari Ann; Sica, Antonio; Suttles, Jill; Udalova, Irina; van Ginderachter, Jo A; Vogel, Stefanie N; Wynn, Thomas A

    2014-07-17

    Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature. PMID:25035950

  19. Lipoproteins inhibit macrophage activation by lipoteichoic acid

    Microsoft Academic Search

    Carl Grunfeld; Maureen Marshall; Judy K. Shigenaga; Arthur H. Moser; Peter Tobias; Kenneth R. Feingold

    Regulation of lipid metabolism during infection is thought to be part of host defense, as lipoproteins neu- tralize endotoxin (LPS) and viruses. Gram-positive infec- tions also induce disturbances in lipid metabolism. There- fore, we investigated whether lipoproteins could inhibit the toxic effects of lipoteichoic acid (LTA), a fragment of gram- positive bacteria. LTA activated RAW264.7 macrophage cells, stimulating production of

  20. Effects of Lycium barbarum extract on production and immunomodulatory activity of the extracellular polysaccharopeptides from submerged fermentation culture of Coriolus versicolor.

    PubMed

    Lin, Fang-Yi; Lai, Yiu-Kay; Yu, Hao-Chen; Chen, Nan-Yin; Chang, Chi-Yue; Lo, Hui-Chen; Hsu, Tai-Hao

    2008-09-15

    Polysaccharopeptides (PSPs) from Coriolus versicolor have been used as immunomodulatory and anticancer agents. However, most studies have concentrated on the mycelial PSPs and not those in the fermented broth. On the other hand, Lycium barbarum fruit has been used as a traditional Chinese herbal medicine for two millennia. Its extract contains various nutrients, minerals, and also polysaccharide-protein complexes, which are proven to be bioactive. Herein we report the effects of L. barbarum fruit extract on the mycelial growth and extracellular PSP (ePSP) production of C. versicolor LH1 by using a submerged fermentation process in 20l fermenters. Fermentation production of C. versicolor biomass and its ePSP were augmented in the presence of L. barbarum extract. The ePSP such obtained differs from those obtained with normal culture medium in terms of simple sugar composition and protein content but shows similar overall chemical structures as analyzed by Fourier transformed infrared spectroscopy. Moreover, the ePSP from C. versicolor cultured with supplementary L. barbarum extract exhibits significant immunomodulatory activity as judged by its effects on the production of nitric oxide and several cytokines by murine RAW264.7 macrophages. PMID:26049238

  1. Effects of immunomodulatory drugs on TNF-? and IL-12 production by purified epidermal langerhans cells and peritoneal macrophages

    PubMed Central

    2011-01-01

    Background Langerhans cells constitute a special subset of immature dendritic cells localized in the epidermis that play a key role in the skin's immune response. The production of cytokines is a key event in both the initiation and the regulation of immune responses, and different drugs can be used to remove or modify their production by DC and, therefore, alter immune responses in a broad spectrum of diseases, mainly in human inflammatory and autoimmune diseases. In the present study, we examined the effects of prednisone, thalidomide, cyclosporine A, and amitriptyline, drugs used in a variety of clinical conditions, on the production of TNF-?, IL-10, and IL-12 by purified epidermal Langerhans cells and peritoneal macrophages in BALB/c mice. Findings All drugs inhibited TNF-? production by Langerhans cells after 36 hours of treatment at two different concentrations, while prednisone and thalidomide decreased IL-12 secretion significantly, amitriptyline caused a less pronounced reduction and cyclosporine A had no effect. Additionally, TNF-? and IL-12 production by macrophages decreased, but IL-10 levels were unchanged after all treatments. Conclusions Our results demonstrate that these drugs modulate the immune response by regulating pro-inflammatory cytokine production by purified epidermal Langerhans cells and peritoneal macrophages, indicating that these cells are important targets for immunosuppression in various clinical settings. PMID:21276247

  2. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  3. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  4. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus.

    PubMed

    Fan, Liuping; Ding, Shaodong; Ai, Lianzhong; Deng, Kequan

    2012-10-01

    The medicinal mushroom Inonotus obliquus has been used as a folk remedy for a long time in Russia and East-European countries to treat gastrointestinal cancer, cardiovascular disease and diabetes. In our study, a water-soluble polysaccharide (ISP2a) was successfully purified from I. obliquus by DEAE-Sepharose CL-6B and Sepharose CL-6B column chromatography. In vivo ISP2a had not only shown antitumor activity, but also could significantly enhance the immune response of tumor-bearing mice. In addition, ISP2a significantly enhanced the lymphocyte proliferation and increased the production of TNF-?. Results of these studies demonstrated that ISP2a had a potential application as natural antitumor agent with immunomodulatory activity. PMID:22840014

  5. Immunomodulatory and Hemagglutinating Activities of Acidic Polysaccharides Isolated from Combretum racemosum

    PubMed Central

    Schepetkin, Igor A.; Kouakou, Koffi; Yapi, Ahoua; Kirpotina, Liliya N.; Jutila, Mark A.; Quinn, Mark T.

    2013-01-01

    Extracts of leaves of different species of the genus Combretum have been used historically to treat a variety of medicinal problems. However, little is known about the active components conferring therapeutic properties to these extracts. In the present studies, we evaluated biochemical properties and immunomodulatory activity of polysaccharides isolated from the leaves of Combretum racemosum. Water-soluble polysaccharides from leaves of C. racemosum were extracted and fractionated by DEAE-cellulose and Diaion HP-20 to obtain a Diaion-bound fraction, designated Combretum polysaccharide-acidic bound or CP-AB, which was eluted with methanol, and an unbound fraction, designated as CP-AU. Molecular weight determination, sugar analysis, and other physical and chemical characterization of the fractions were performed. Fraction CP-AU (mol. weight 5.0 kDa) contained type II arabinogalactan and had potent immunomodulatory activity, inducing the production of interleukin (IL)-1?, -6, -10, and tumor necrosis factor-? (TNF-?) by human peripheral blood mononuclear cells (PBMC) and MonoMac-6 monocytic cells. Likewise, intraperitoneal administration of CP-AU increased in vivo serum levels of IL-6 and monocyte chemoattractant protein-1 (MCP-1) in mice. CP-AU-induced secretion of TNF-? in PBMC was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS. Treatment with CP-AU induced phosphorylation of Akt2, Akt3, GSK-3?, HSP27, mTOR, and all p38 MAPK isoforms (?, ?, ?, and ?), as well as stimulation of AP-1/NF-?B transcriptional activity. In addition, CP-AU effectively agglutinated erythrocytes from several species, including human, mouse, and rabbit. In contrast, fraction CP-AB was inactive in all biological tests, including cytokine production and hemagglutination. These data suggest that at least part of the beneficial therapeutic effects reported for the water extracts of leaves from C. racemosum are due to modulation of leukocyte functions. PMID:23380150

  6. Immunomodulatory Effects of Ethanolic Extract of Thyphonium flagelliforme (Lodd) Blume in Rats Induced by Cyclophosphamide.

    PubMed

    Nurrochmad, Arief; Ikawati, Muthi; Sari, Ika Puspita; Murwanti, Retno; Nugroho, Agung Endro

    2015-07-01

    The present study aimed to examine the immunomodulatory effect of ethanolic extract of Typhonium flagelliforme (Lodd) Blume in cyclophosphamide-treated rats. The immunomodulatory effects were determined by lymphocytes proliferation, phagocytic activity of macrophages, plasma cytokines of tumor necrosis factor-?, interleukin-1?, interleukin-10 levels, and killer T cells (CD8+ T cells) counts. The results showed that the administration of ethanolic extract of T flagelliforme reduced immunosupessive effect on lymphocyte proliferation, increase the number and phagocytic activity of macrophages in cyclophosphamide-treated rats. Moreover, the ethanolic extract of T flagelliforme also significantly (P < .05) improved the immune system activities especially the proliferation of CD8+T cells and reduced the suppressive effects on cytokines such as tumor necrosis factor-? and interleukin-1?. In conclusion, the ethanolic extract of T flagelliforme has immunomodulatory properties in cyclophosphamide-treated rats. The results suggest that T flagelliforme can reduce immunosuppresive effect caused by a chemotherapeutic agent. PMID:25613330

  7. Myelin alters the inflammatory phenotype of macrophages by activating PPARs

    PubMed Central

    2013-01-01

    Background Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor ?/? (PPAR?/?). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPAR?/? is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPAR?/? in macrophages in the human brain. Conclusion Our data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPAR?/? activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics. PMID:24252308

  8. Enhanced Immunomodulatory Activity of Gelatin-Encapsulated Rubus coreanus Miquel Nanoparticles

    PubMed Central

    Seo, Yong Chang; Choi, Woon Yong; Lee, Choon Geun; Cha, Seon Woo; Kim, Young Ock; Kim, Jin-Chul; Drummen, Gregor P. C.; Lee, Hyeon Yong

    2011-01-01

    The aim of this work was to investigate the immunomodulatory activities of Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal imaging confirmed this, since the nanoparticles were internalized within 30 min and heterogeneously distributed throughout the cell. Zeta-potential measurements showed that from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 60%, which is higher than for other components encapsulated in gelatin nanoparticles. Measurements of immune modulation in immune cells showed a significant effect by the crude extract, which was only topped by the nanoparticles containing the extract. Proliferation of B-, T- and NK cells was notably enhanced by Rubus coreanus-gelatin nanoparticles and in general ~2–3 times higher than control and on average ~2 times higher than ferulic acid. R. coreanus-gelatin nanoparticles induced cytokine secretion (IL-6 and TNF-?) from B- and T-cells on average at a ~2–3 times higher rate compared with the extract and ferulic acid. In vivo immunomodulatory activity in mice fed with R. coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody production compared to control, a ~1.3 times higher production compared to the extract only, and a ~1.6 times higher production compared to ferulic acid. Overall, our results suggest that gelatin nanoparticles represent an excellent transport vehicle for Rubus coreanus extract and extracts from other plants generally used in traditional Asian medicine. Such nanoparticles ensure a high local concentration that results in enhancement of immune cell activities, including proliferation, cytokine secretion, and antibody production. PMID:22272118

  9. Amphiphilic tobramycins with immunomodulatory properties.

    PubMed

    Guchhait, Goutam; Altieri, Anthony; Gorityala, Balakishan; Yang, Xuan; Findlay, Brandon; Zhanel, George G; Mookherjee, Neeloffer; Schweizer, Frank

    2015-05-18

    Amphiphilic aminoglycosides (AAGs) are an emerging source of antibacterials to combat infections caused by antibiotic-resistant bacteria. Mode-of-action studies indicate that AAGs predominately target bacterial membranes, thereby leading to depolarization and increased permeability. To assess whether AAGs also induce host-directed immunomodulatory responses, we determined the AAG-dependent induction of cytokines in macrophages in the absence or presence of lipopolysaccharide (LPS). Our results show for the first time that AAGs can boost the innate immune response, specifically the recruitment of immune cells such as neutrophils required for the resolution of infections. Moreover, AAGs can selectively control inflammatory responses induced in the presence of endotoxins to prevent septic shock. In conclusion, our study demonstrates that AAGs possess multifunctional properties that combine direct antibacterial activity with host-directed clearance effects reminiscent of those of host-defense peptides. PMID:25847672

  10. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory activities. PMID:24242245

  11. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants.

    PubMed

    Daoudi, Abdeljlil; Aarab, Lotfi; Abdel-Sattar, Essam

    2013-04-01

    Herbal and traditional medicines are being widely used in practice in many countries for their benefits of treating different ailments. A large number of plants in Morocco were used in folk medicine to treat immune-related disorders. The objective of this study is to evaluate the immunomodulatory activity of protein extracts (PEs) of 14 Moroccan medicinal plants. This activity was tested on the proliferation of immune cells. The prepared total and PEs of the plant samples were tested using MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay on the splenocytes with or without stimulation by concanavalin-A (Con-A), a mitogenic agent used as positive control. The results of this study indicated different activity spectra. Three groups of activities were observed. The first group represented by Citrullus colocynthis, Urtica dioica, Elettaria cardamomum, Capparis spinosa and Piper cubeba showed a significant immunosuppressive activity. The second group that showed a significant immunostimulatory activity was represented by Aristolochia longa, Datura stramonium, Marrubium vulgare, Sinapis nigra, Delphynium staphysagria, Lepidium sativum, Ammi visnaga and Tetraclinis articulata. The rest of the plant extracts did not alter the proliferation induced by Con-A. This result was more important for the PE than for the total extract. In conclusion, this study revealed an interesting immunomodulating action of certain PEs, which could explain their traditional use. The results of this study may also have implications in therapeutic treatment of infections, such as prophylactic and adjuvant with cancer chemotherapy. PMID:22301818

  12. Ursolic Acid Activates Intracellular Killing Effect of Macrophages During Mycobacterium tuberculosis Infection.

    PubMed

    Podder, Biswajit; Jang, Woong Sik; Nam, Kung-Woo; Lee, Byung-Eui; Song, Ho-Yeon

    2015-05-28

    Tuberculosis is one of the most threatening infectious diseases to public health all over the world, for which Mycobacterium tuberculosis (MTB) is the etiological agent of pathogenesis. Ursolic acid (UA) has immunomodulatory function and exhibits antimycobacterial activity. However, the intracellular killing effect of UA has yet to be elucidated. The aim of this study was to evaluate the intracellular killing effect of UA during mycobacterial infection. The intracellular killing activity of UA was evaluated in the macrophage cell line THP-1 by the MGIT 960 system as well as by CFU count. The production of reactive oxygen species (ROS) and the level of nitric oxide (NO) were measured using DCF-DA and Griess reagent, respectively. Phagocytosis was observed by a fluorescence-based staining method, and the colony forming units were enumerated on 7H11 agar medium following infection. In addition, MRP8 mRNA expression was measured by qRT-PCR. UA significantly decreased the number of intracellular Mycobacterium through generation of ROS and NO. In addition, it profoundly activated the phagocytosis process of THP-1 cells during MTB-infection. Furthermore, our data demonstrated that UA activated the phagocytosis process in human monocyte cells through MRP8 induction. These data suggest that UA firmly contributes to the intracellular killing effect of macrophages during mycobacterial infection. PMID:25406534

  13. Ginger extract inhibits LPS induced macrophage activation and function

    Microsoft Academic Search

    Sudipta Tripathi; David Bruch; Dilip S Kittur

    2008-01-01

    BACKGROUND: Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches

  14. Characterization of Two Homogalacturonan Pectins with Immunomodulatory Activity from Green Tea

    PubMed Central

    Wang, Huijun; Wei, Guodong; Liu, Fei; Banerjee, Gautam; Joshi, Manoj; Bligh, S. W. Annie; Shi, Songshan; Lian, Hui; Fan, Hongwei; Gu, Xuelan; Wang, Shunchun

    2014-01-01

    Two natural homogalacturonan (HG) pectins (MW ca. 20 kDa) were isolated from green tea based on their immunomodulatory activity. The crude tea polysaccharides (TPS1 and TPS2) were obtained from green tea leaves by hot water extraction and followed by 40% and 70% ethanol precipitation, respectively. Two homogenous water soluble polysaccharides (TPS1-2a and TPS1-2b) were obtained from TPS1 after purification with gel permeation, which gave a higher phagocytic effect than TPS2. A combination of composition, methylation and configuration analyses, as well as NMR (nuclear magnetic resonance) spectroscopy revealed that TPS1-2a and TPS1-2b were homogalacturonan (HG) pectins consisting of a backbone of 1,4-linked ?-d-galacturonic acid (GalA) residues with 28.4% and 26.1% of carboxyl groups as methyl ester, respectively. The immunological assay results demonstrated that TPS1-2, which consisted mainly of HG pectins, showed phagocytosis-enhancing activity in HL-60 cells. PMID:24901527

  15. Immunomodulatory activity of a Chinese herbal drug Yi Shen Juan Bi in adjuvant arthritis

    PubMed Central

    Perera, Pathirage Kamal; Li, Yunman; Peng, Cheng; Fang, Weirong; Han, Caifeng

    2010-01-01

    Objective: To investigate the immunomodulating mechanisms of a Chinese herbal medicine Yi Shen Juan Bi (YJB) in treatment of adjuvant arthritis (AA) in rats. Materials and Methods: Levels of serum tumor necrosis factor alpha (TNF-?) and interleukin-1? (IL-1?) were measured by the Enzyme-Linked Immunosorbent Assay (ELISA). Expression of TNF-? mRNA and IL-1? mRNA in synovial cells was measured with the semi-quantitative technique of reverse transcription-polymerase chain reaction (RT-PCR), while caspase-3 was examined by western blot analysis. Results: The administration of YJB significantly decreased the production of serum TNF-? and IL-1?. It also decreased significantly the TNF-? mRNA, IL-1? mRNA, and caspase-3 expression in synoviocytes. Conclusions: YJB produces the immunomodulatory effects by downregulating the over-activated cytokines, while it activates caspase-3, which is the key executioner of apoptosis in the immune system. This may be the one of the underlying mechanisms that explains how YJB treats the rheumatoid arthritis. PMID:20711367

  16. Molecular properties of water-unextractable proteoglycans from Hypsizygus marmoreus and their in vitro immunomodulatory activities.

    PubMed

    Bao, Hong Hui; Tarbasa, Mehdi; Chae, Hee Mun; You, Sang Guan

    2011-01-01

    Four proteoglycans were sequentially extracted from Hypsizygus marmoreus using 0.1 M NaOH (alkali-soluble proteoglycans [F1] and alkali-insoluble proteoglycans [F3]) and 0.1 M HCl (acid-soluble proteoglycans [F2] and acid-insoluble proteoglycans [F4]), and their structures and immunomodulatory activities were investigated. The proteoglycans were found to contain carbohydrates (19.8-82.4%) with various amounts of proteins (7.7-67.3%), and glucose was the major monosaccharide unit present, along with trace amounts of galactose. The molecular weights (Mw) and the radius of gyration (Rg) of these proteoglycans showed ranges of 16 × 10(4)-19,545 × 10(4) g/mol and 35-148 nm, respectively, showing significant variations in their molecular conformations. The backbones of F1 and F2 were mainly connected through a-(1?3), (1?4) and b-(1?6)-glycosidic linkages with some branches. The F1 and F2 proteoglycans significantly stimulated Raw264.7 cells to release nitric oxide (NO), prostaglandin E2 (PGE(2)) and various cytokines, such as IL-1?, TNF-? and IL-6 by inducing their mRNA expressions. PMID:22202808

  17. Maternal immune activation leads to activated inflammatory macrophages in offspring.

    PubMed

    Onore, Charity E; Schwartzer, Jared J; Careaga, Milo; Berman, Robert F; Ashwood, Paul

    2014-05-01

    Several epidemiological studies have shown an association between infection or inflammation during pregnancy and increased risk of autism in the child. In addition, animal models have illustrated that maternal inflammation during gestation can cause autism-relevant behaviors in the offspring; so called maternal immune activation (MIA) models. More recently, permanent changes in T cell cytokine responses were reported in children with autism and in offspring of MIA mice; however, the cytokine responses of other immune cell populations have not been thoroughly investigated in these MIA models. Similar to changes in T cell function, we hypothesized that following MIA, offspring will have long-term changes in macrophage function. To test this theory, we utilized the poly (I:C) MIA mouse model in C57BL/6J mice and examined macrophage cytokine production in adult offspring. Pregnant dams were given either a single injection of 20mg/kg polyinosinic-polycytidylic acid, poly (I:C), or saline delivered intraperitoneally on gestational day 12.5. When offspring of poly (I:C) treated dams reached 10weeks of age, femurs were collected and bone marrow-derived macrophages were generated. Cytokine production was measured in bone marrow-derived macrophages incubated for 24h in either growth media alone, LPS, IL-4/LPS, or IFN-?/LPS. Following stimulation with LPS alone, or the combination of IFN-?/LPS, macrophages from offspring of poly (I:C) treated dams produced higher levels of IL-12(p40) (p<0.04) suggesting an increased M1 polarization. In addition, even without the presence of a polarizing cytokine or LPS stimulus, macrophages from offspring of poly (I:C) treated dams exhibited a higher production of CCL3 (p=0.05). Moreover, CCL3 levels were further increased when stimulated with LPS, or polarized with either IL-4/LPS or IFN-?/LPS (p<0.05) suggesting a general increase in production of this chemokine. Collectively, these data suggest that MIA can produce lasting changes in macrophage function that are sustained into adulthood. PMID:24566386

  18. Modelling and analysis of macrophage activation pathways 

    E-print Network

    Raza, Sobia

    2011-11-25

    Macrophages are present in virtually all tissues and account for approximately 10% of all body mass. Although classically credited as the scavenger cells of innate immune system, ridding a host of pathogenic material and ...

  19. Salmonella typhimurium Activates Virulence Gene Transcription within Acidified Macrophage Phagosomes

    Microsoft Academic Search

    Celia M. Alpuche Aranda; Joel A. Swanson; Wendy P. Loomis; Samuel I. Miller

    1992-01-01

    Survival of Salmonella typhimurium within macrophage phagosomes requires the coordinate expression of bacterial gene products. This report examines the contribution of phagosomal pH as a signal for expression of genes positively regulated by the S. typhimurium virulence regulators PhoP and PhoQ. Several hours after bacterial phagocytosis by murine bone marrow-derived macrophages, PhoP-activated gene transcription increased 50- to 77-fold. In contrast,

  20. The role of the Src family kinase Lyn in the immunomodulatory activities of cathelicidin peptide LL-37 on monocytic cells.

    PubMed

    Nijnik, Anastasia; Pistolic, Jelena; Cho, Patricia; Filewod, Niall C J; Falsafi, Reza; Ramin, Alexander; Harder, Kenneth W; Hancock, Robert E W

    2012-04-01

    Cathelicidin LL-37 is a multifunctional, immunomodulatory and antimicrobial host-defense peptide of the human immune system. Here, we identified the role of SFKs in mediating the chemokine induction activity of LL-37 in monocytic cells. LL-37 induced SFK phosphorylation; and chemical inhibitors of SFKs suppressed chemokine production in response to LL-37 stimulation. SFKs were required for the downstream activation of AKT, but Ca(2+)-flux and MAPK induction were SFK-independent. Through systematic siRNA knockdown of SFK members, a requirement for Lyn in mediating LL-37 activity was identified. The involvement of Lyn in cathelicidin activities was further confirmed using Lyn-knockout mouse BMDMs. The role of SFKs and Lyn was also demonstrated in the activities of the synthetic cationic IDR peptides, developed as novel, immunomodulatory therapeutics. These findings elucidate the common molecular mechanisms mediating the chemokine induction activity of natural and synthetic cationic peptides in monocytic cells and identify SFKs as a potential target for modulating peptide responses. PMID:22246800

  1. The role of the Src family kinase Lyn in the immunomodulatory activities of cathelicidin peptide LL-37 on monocytic cells

    PubMed Central

    Nijnik, Anastasia; Pistolic, Jelena; Cho, Patricia; Filewod, Niall C. J.; Falsafi, Reza; Ramin, Alexander; Harder, Kenneth W.; Hancock, Robert E. W.

    2012-01-01

    Cathelicidin LL-37 is a multifunctional, immunomodulatory and antimicrobial host-defense peptide of the human immune system. Here, we identified the role of SFKs in mediating the chemokine induction activity of LL-37 in monocytic cells. LL-37 induced SFK phosphorylation; and chemical inhibitors of SFKs suppressed chemokine production in response to LL-37 stimulation. SFKs were required for the downstream activation of AKT, but Ca2+-flux and MAPK induction were SFK-independent. Through systematic siRNA knockdown of SFK members, a requirement for Lyn in mediating LL-37 activity was identified. The involvement of Lyn in cathelicidin activities was further confirmed using Lyn-knockout mouse BMDMs. The role of SFKs and Lyn was also demonstrated in the activities of the synthetic cationic IDR peptides, developed as novel, immunomodulatory therapeutics. These findings elucidate the common molecular mechanisms mediating the chemokine induction activity of natural and synthetic cationic peptides in monocytic cells and identify SFKs as a potential target for modulating peptide responses. PMID:22246800

  2. In vitro and in vivo evaluation of anti-leishmanial and immunomodulatory activity of Neem leaf extract in Leishmania donovani infection.

    PubMed

    Dayakar, Alti; Chandrasekaran, Sambamurthy; Veronica, Jalaja; Sundar, Shyam; Maurya, Radheshyam

    2015-06-01

    The toxicity and emergence of resistance to available chemical drugs against visceral leishmaniasis is evoking to explore herbal treatment. One such attempt with the Neem is being reported here. The current study is primarily focused to evaluate the anti-leishmanial effects of Neem leaf extracts. Among which, ethyl acetate fraction (EAF) alone was found to exhibit leishmanicidal effect validated through cytotoxicity assay and estimated its IC?? to be 52.4?µg/ml on the promastigote stage. Propidium iodide (PI) staining of dead cells substantiated the aforementioned activity. Carboxy fluorescein-diaceate succinimidyl ester (CFSE) staining of promastigotes has affirmed its anti-proliferation activity. The characteristic features such as DNA fragmentation, reduced mitochondrial membrane potential, increased sub G0/G1 phase parasites and increased reactive oxygen species (ROS) production in EAF treated promastigotes indicate the apoptosis like death. In addition, the reduced parasite burden both in vitro (viz.?~45% in human monocytic leukemia cell line (THP-1) and ~50% in peripheral blood mononuclear cells) and in vivo (spleen and liver) provides the evidence for its anti-leishmanial activity on amastigote stage. The increase of ROS levels in THP-1 and nitric oxide (NO) production from J774.1 cell line (mouse macrophages) upon EAF treatment was evidenced for oxidative killing of intracellular amastigotes. Active immunomodulatory activity at m-RNA level (viz. upregulation of Th1 cytokines, and downregulation of Th2 cytokines) both in vitro and in vivo was also shown to be exhibited by EAF. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of EAF revealed the presence of 14 compounds. PMID:25747203

  3. Activation of spleen cells by ArtinM may account for its immunomodulatory properties.

    PubMed

    Silva, Thiago Aparecido da; Souza, Maria Aparecida de; Cecílio, Nerry Tatiana; Roque-Barreira, Maria Cristina

    2014-09-01

    ArtinM is a D-mannose-binding lectin extracted from Artocarpus heterophyllus that promotes interleukin-12 production by macrophages and dendritic cells. This property is considered responsible for T helper 1 immunity induced in vivo after ArtinM administration. In this study, we investigated the effect of native (jArtinM) and recombinant (rArtinM) forms of lectin on murine spleen cells and isolated T lymphocytes. We found that ArtinM binds to the surface of spleen cells. This interaction, which was blocked by D-mannose, induced cell activation, as manifested by increased mitochondrial activity, interleukin-2 production, and cell proliferation. We verified that a 30-times higher concentration of rArtinM was required to trigger optimal activation of spleen cells compared with that needed with jArtinM, although these proteins have identical sugar recognition properties and use the same signaling molecules to trigger cell activation. Because the distinction between native and recombinant is restricted to their tertiary structure (tetrameric and monomeric, respectively), we postulated that the multi-valence of jArtinM accounts for its superiority in promoting clustering of cell surface glycoreceptors and activation. The jArtinM and rArtinM activation effect exerted on spleen cells was reproduced on purified CD4(+) T cells. Our results suggest that ArtinM interaction with T cells leads to responses that may act in concert with the interleukin-12 produced by antigen-presenting cells to modulate immunity toward the T helper 1 axis. Further studies are necessary to dissect ArtinM/T-cell interactions to more fully understand the immunomodulation induced by carbohydrate recognition. PMID:24842046

  4. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    PubMed Central

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-? concentration. Adherent monocytes/macrophages induced NF-?B activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-? signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-?B/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  5. Inflammasome Activation: How Macrophages Watch What They Eat

    E-print Network

    Vance,. Russell

    Inflammasome Activation: How Macrophages Watch What They Eat Russell E. Vance1,* 1Division of lysozyme in the phagosome and activation of the Nlrp3 inflammasome, a cytosolic regulator of inflammation ``inflammasomes,'' which reside in the cytosol and respond to a variety of infectious or noxious stimuli

  6. Toxic effects of methylmethanesulfonate (MMS) on chicken activated macrophages

    SciTech Connect

    Qureshi, M.A.; Bloom, S.E.; Hamilton, J.W.; Dietert, R.R.

    1986-03-01

    Adherent peritoneal exudate cells rich in macrophages were harvested from Cornell K-strain chickens 42 hours after i.p. stimulation with Sephadex-G-40. Glass adherent monolayers were obtained on coverslips and subjected to in vitro exposure to MMS at various doses for one hour. Solvent (0.17% ethanol final concentration) and sham (RPMI 1640 growth media) exposures were also performed. At selected times after exposure, the macrophages were analyzed for cell density, viability, DNA damage and functional activity. While MMS doses of 5 x 10/sup 3/M and 1 x 10/sup 3/M concentrations resulted in significant cytotoxicity, 2 x 20/sup 4/M MMS had no significant cytotoxic effect. However, this exposure resulted in DNA damage as measured by alkaline elution. Concomitant with the DNA damage was a significant decrease in the phagocytic activity of the macrophages. In contrast, the incidence of Fc receptor-positive cells detected by rosetting increased immediately after MMS exposure. Repair of MMS-induced DNA lesions in macrophages was indicated by a normal DNA alkaline elution profile 10 hours post-treatment. Functional activity of cells also returned to normal levels. These results suggest that the avian macrophage represents a useful target cell for examining the relationship between genotoxic and immunotoxic effects of environmental mutagens.

  7. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    PubMed Central

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-01-01

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pre-treatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pre-treatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pre-treatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from a M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNF? production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia, and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies should therefore consider how exposure to these materials alters susceptibility to other environmental exposures. PMID:23808590

  8. Free radical scavenging and immunomodulatory activities of Ganoderma lucidum polysaccharides derivatives.

    PubMed

    Wang, Jianguo; Wang, Yutang; Liu, Xuebo; Yuan, Yahong; Yue, Tianli

    2013-01-01

    Polysaccharides extracted from the fruit body of Ganoderma lucidum were sulfated and carboxymethylated as reported. Free radical scavenging and immunomodulatory effects of sulfated and carboxymethylated polysaccharides were studied. Generally, sulfated polysaccharides showed better bioactivities than that of carboxymethylated polysaccharides. The two derivatives were injected intraperitoneally with or without 5-fluorouracil over a period of 7 days in BALB/c female mice. The polysaccharide derivatives increased mouse thymus and spleen index, an indication of improved immunity in mice. At the same time, they improved superoxide dismutase and glutathione peroxidase contents in the mice body. PMID:23044102

  9. Cucurbitacin D is a new inflammasome activator in macrophages.

    PubMed

    Song, Yuan; Ding, Ning; Kanazawa, Tamotsu; Yamashita, Uki; Yoshida, Yasuhiro

    2013-12-01

    We previously reported that cucurbitacin D isolated from Trichosanthes kirilowii has anti-tumor roles to leukemia cells. However, the effect of cucurbitacin D on immune cells is not fully understood although there is no toxic activity to normal cells. In this study, immunomodulating activities of cucurbitacin D were investigated in macrophages. Cucurbitacin D could increase LPS-induced interleukin (IL)-1? production in culture supernatant of THP-1 cells, peritoneal exudate cells (PECs), bone marrow derived macrophages (BMDMs), and RAW264 cells. At the transcriptional level, cucurbitacin D enhanced LPS-induced IL-1? mRNA expression through activation of ERK1/2 mitogen-activated protein kinases (MAPKs). At the posttranscriptional level, the activation of caspase-1 induced by cucurbitacin D has also been demonstrated following treatment with a caspase-1 inhibitor and siRNA. Importantly, cucurbitacin D has further been shown to induce inflammasome activation independent of ERK1/2 activation. Western blotting showed interaction of NOD-like receptor family, pyrin domain containing 3 (NALP3) and apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain (ASC), suggesting activation of the inflammasome and a possible reason for activation of caspase-1. Taken together, these results suggest that cucurbitacin D could initiate immunomodulating activity in macrophages to lead to inflammasome activation as well as enhancement of LPS signaling. PMID:24140411

  10. Effect of perorally administered lactobacilli on macrophage activation in mice.

    PubMed Central

    Perdigon, G; de Macias, M E; Alvarez, S; Oliver, G; de Ruiz Holgado, A A

    1986-01-01

    The effect of perorally (p.o) administered Lactobacillus casei and L. bulgaricus on macrophage activation in mice was studied. L. casei and L. bulgaricus were administered p.o. to mice for 8 days. The macrophage activation was measured on days 2, 3, 5, and 8 of lactobacillus administration by using biochemical and functional criteria. We measured the release of lysosomal hydrolases, the level of a nonlysosomal enzyme, and in vitro phagocytic activity of mouse peritoneal macrophages. All the assays were performed comparatively with mice inoculated with L. casei and L. bulgaricus (viable and nonviable cells) intraperitoneally (i.p.) at the same dose as for p.o. administration. The phagocytic activity was significantly higher in mice treated i.p. than in control mice. For p.o. administration, there was an increase only when L. casei was used. L. bulgaricus had little effect. No differences were found between viable and nonviable cells. The phagocytic function of the reticuloendothelial system was tested by the carbon clearance test, which showed that L. casei and L. bulgaricus accelerate the phagocytic function in mice treated p.o and i.p., from day 2 onward. These observations show that L. casei and L. bulgaricus given by p.o. administration are able to activate macrophages in mice and suggest that these bacteria, when passing through the intestinal tract, may be responsible for the enhanced host immune response. This fact is very significant because the diet includes fermented and manufactured products containing lactobacilli. PMID:3733223

  11. Macrophage activating factor(s) secreted by mitogen stimulated goldfish kidney leukocytes synergize with bacterial lipopolysaccharide to induce nitric oxide production in teleost macrophages

    Microsoft Academic Search

    N. F. Neumann; D. Fagan; M. Belosevic

    1995-01-01

    Recent studies in our laboratory demonstrated that fish macrophages produce nitric oxide. To elucidate the mechanisms which regulate nitric oxide production in teleosts, we examined whether macrophage activating factors (MAFs) secreted by mitogen stimulated leukocytes, induced nitric oxide production in a long-term cultured macrophage cell line and in primary cultures of kidney macrophages from the goldfish. The results indicate that

  12. Activation of macrophages by Entamoeba histolytica extracts in mice.

    PubMed

    Ghadirian, E; Kongshavn, P A

    1988-07-01

    The effect of Entamoeba histolytica extracts on the production of inflammatory macrophages and the release of hydrogen peroxide (H2O2) and superoxide (O2-) from these cells was examined in C57BL/6 mice. Two different strains of E. histolytica, either virulent (IP:0682:1) or nonvirulent (DKB), were used in this study. The number of macrophages recovered from the peritoneal cavity of mice treated 5 days previously with 150 micrograms of either strain of amoebic extracts was significantly higher than in the saline-treated groups. Macrophages from mice treated with 150 micrograms of the IP:0682:1 strain of amoebic extracts exhibited a powerful burst of oxidative metabolis when triggered with phorbol myristate acetate (PMA). Extract from the non-virulent strain was much less effective in activating macrophages for the production of oxidative metabolites. Thus, a crude extract preparation from E. histolytica, particularly the virulent strain, induces a strong macrophage inflammatory response in which the cells also produce high levels of H2O2 and O2-. PMID:2907598

  13. Induction of nitric oxide and respiratory burst response in activated goldfish macrophages requires potassium channel activity

    Microsoft Academic Search

    James L Stafford; Fernando Galvez; Gregory G Goss; Miodrag Belosevic

    2002-01-01

    Potassium channel activity is important for modulating mammalian macrophage antimicrobial functions. The involvement of potassium channels in mediation of immune cell function in lower vertebrates, such as teleost, has not been explored. Since relatively little is known about the types of potassium channels present in fish macrophages, pharmacological blockers with broad ranges of activity were tested: 4-aminopyridine (4-AP), quinine, and

  14. Toxoplasmacidal activity of macrophages activated by recombinant major surface antigen (P30) of Toxoplasma gondii.

    PubMed Central

    Makioka, A; Kobayashi, A

    1991-01-01

    Recombinant major surface antigen (P30), which was produced as a glutathione S-transferase (EC 2.5.1.18) fusion protein of Toxoplasma gondii, was found to be able to activate macrophages to kill T. gondii in vitro. The macrophage activation was due to P30 in the fusion protein, not to glutathione S-transferase. Images PMID:1856000

  15. Diet Modifies the Neuroimmune System by Influencing Macrophage Activation

    ERIC Educational Resources Information Center

    Sherry, Christina Lynn

    2009-01-01

    It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…

  16. Carbon nanotubes activate macrophages into a M1/M2 mixed status: recruiting naïve macrophages and supporting angiogenesis.

    PubMed

    Meng, Jie; Li, Xiaojin; Wang, Chuan; Guo, Hua; Liu, Jian; Xu, Haiyan

    2015-02-11

    The potential of carbon nanotubes (CNTs) in medical applications has been attracting constant research interest as well as raising concerns related to toxicity. The immune system serves as the first line of defense against invasion. In this work, interactions of oxidized multiwalled carbon nanotubes (MWCNT) with macrophages were investigated to unravel the activation profile of macrophages, using cytokine array, ELISA assay, transwell assay, confocal microscopy, and reactive oxygen species examination. Results show that MWCNT initiate phagocytosis of macrophages and upregulate CD14, CD11b, TLR-4/MD2, and CD206, which does not alter the MHCII expression of the macrophages. The macrophages engulfing MWCNT (MWCNT-RAW) secrete a large amount of MIP-1? and MIP-2 to recruit naïve macrophages and produce angiogenesis-related cytokines MMP-9 and VEGF, while inducing much lower levels of proinflammatory cytokines than those activated by LPS. In conclusion, MWCNT activate macrophages into a M1/M2 mixed status, which allows the cells to recruit naïve macrophages and support angiogenesis. PMID:25591447

  17. RIG-I activation inhibits HIV replication in macrophages

    PubMed Central

    Wang, Yizhong; Wang, Xu; Li, Jieliang; Zhou, Yu; Ho, Wenzhe

    2013-01-01

    The RIG-I signaling pathway is critical in the activation of the type I IFN-dependent antiviral innate-immune response. We thus examined whether RIG-I activation can inhibit HIV replication in macrophages. We showed that the stimulation of monocyte-derived macrophages with 5?ppp-dsRNA, a synthetic ligand for RIG-I, induced the expression of RIG-I, IFN-?/?, and several IRFs, key regulators of the IFN signaling pathway. In addition, RIG-I activation induced the expression of multiple intracellular HIV-restriction factors, including ISGs, several members of the APOBEC3 family, tetherin and CC chemokines, the ligands for HIV entry coreceptor (CCR5). The inductions of these factors were associated with the inhibition of HIV replication in macrophages stimulated by 5?ppp-dsRNA. These observations highlight the importance of RIG-I signaling in macrophage innate immunity against HIV, which can be beneficial for the treatment of HIV disease, where intracellular immune defense is compromised by the virus. PMID:23744645

  18. Immunostimulatory Effects of Cordyceps militaris on Macrophages through the Enhanced Production of Cytokines via the Activation of NF-?B

    PubMed Central

    Shin, Seulmee; Kwon, Jeonghak; Lee, Sungwon; Kong, Hyunseok; Lee, Seungjeong; Lee, Chong-Kil; Cho, Kyunghae; Ha, Nam-Joo

    2010-01-01

    Background Cordyceps militaris has been used in traditional medicine to treat numerous diseases and has been reported to possess both antitumor and immunomodulatory activities in vitro and in vivo. However, the pharmacological and biochemical mechanisms of Cordyceps militaris extract (CME) on macrophages have not been clearly elucidated. In the present study, we examined how CME induces the production of proinflammatory cytokines, transcription factor, and the expression of co-stimulatory molecules. Methods We confirmed the mRNA and protein levels of proinflammatory cytokines through RT-PCR and western blot analysis, followed by a FACS analysis for surface molecules. Results CME dose dependently increased the production of NO and proinflammatory cytokines such as IL-1?, IL-6, TNF-?, and PGE2, and it induced the protein levels of iNOS, COX-2, and proinflammatory cytokines in a concentration-dependent manner, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as ICAM-1, B7-1, and B7-2 was also enhanced by CME. Furthermore, the activation of the nuclear transcription factor, NF-?B in macrophages was stimulated by CME. Conclusion Based on these observations, CME increased proinflammatory cytokines through the activation of NF-?B, further suggesting that CME may prove useful as an immune-enhancing agent in the treatment of immunological disease. PMID:20532125

  19. Effects of Echinacea extracts on macrophage antiviral activities.

    PubMed

    Senchina, David S; Martin, Aisha E; Buss, Janice E; Kohut, Marian L

    2010-06-01

    Type I interferons are a class of cytokines synthesized by leukocytes such as macrophages that limit viral replication. We hypothesized that one mechanism whereby Echinacea spp. extracts may enhance immunity is through modulating interferon-associated macrophage pathways. We used herpes simplex viral infection in the murine macrophage cell line RAW264.7 and monitored virus-induced cell death, interferon secretion, and two intracellular proteins that indicate activation of interferon pathways. Cells were incubated with control media or extracts from four different species (E. angustifolia, E. purpurea, E. tennesseensis, E. pallida). Cells incubated with extracts prior to infection showed very modest enhancement of viability, and no increase in the secretion of interferons alpha or beta as compared to control cells. Virus-infected macrophages treated with extracts from E. purpurea showed a small (<2-fold) induction of guanylate binding protein (GBP) production, but no effect of extracts from other species was observed. In virus-infected cells, all the extracts increased the amount of inducible nitric oxide synthase (iNOS) protein, and this effect varied by type of extraction preparation. Together, these results suggest that any potential antiviral activities of Echinacea spp. extracts are likely not mediated through large inductions of Type I interferon, but may involve iNOS. PMID:20041425

  20. TLR signaling augments macrophage bactericidal activity through mitochondrial ROS

    PubMed Central

    West, A. Phillip; Brodsky, Igor E.; Rahner, Christoph; Woo, Dong Kyun; Erdjument-Bromage, Hediye; Tempst, Paul; Walsh, Matthew C.; Choi, Yongwon; Shadel, Gerald S.; Ghosh, Sankar

    2012-01-01

    Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria, and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase (Phox) machinery1. However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to macrophage bactericidal activity, although the mechanisms linking innate immune signaling to mitochondria for mROS generation remain unclear2-4. Here we demonstrate that engagement of a subset of Toll-like receptors (TLR1, TLR2 and TLR4) results in the recruitment of mitochondria to macrophage phagosomes and augments mROS production. This response involves translocation of the TLR signaling adapter tumor necrosis factor receptor-associated factor 6 (TRAF6) to mitochondria where it engages evolutionarily conserved signaling intermediate in Toll pathways (ECSIT), a protein implicated in mitochondrial respiratory chain assembly5. Interaction with TRAF6 leads to ECSIT ubiquitination and enrichment at the mitochondrial periphery, resulting in increased mitochondrial and cellular ROS generation. ECSIT and TRAF6 depleted macrophages exhibit decreased levels of TLR-induced ROS and are significantly impaired in their ability to kill intracellular bacteria. Additionally, reducing macrophage mROS by expressing catalase in mitochondria results in defective bacterial killing, confirming the role of mROS in bactericidal activity. These results therefore reveal a novel pathway linking innate immune signaling to mitochondria, implicate mROS as important components of antibacterial responses, and further establish mitochondria as hubs for innate immune signaling. PMID:21525932

  1. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS.

    PubMed

    West, A Phillip; Brodsky, Igor E; Rahner, Christoph; Woo, Dong Kyun; Erdjument-Bromage, Hediye; Tempst, Paul; Walsh, Matthew C; Choi, Yongwon; Shadel, Gerald S; Ghosh, Sankar

    2011-04-28

    Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase machinery. However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to mouse macrophage bactericidal activity, although the mechanisms linking innate immune signalling to mitochondria for mROS generation remain unclear. Here we demonstrate that engagement of a subset of Toll-like receptors (TLR1, TLR2 and TLR4) results in the recruitment of mitochondria to macrophage phagosomes and augments mROS production. This response involves translocation of a TLR signalling adaptor, tumour necrosis factor receptor-associated factor 6 (TRAF6), to mitochondria, where it engages the protein ECSIT (evolutionarily conserved signalling intermediate in Toll pathways), which is implicated in mitochondrial respiratory chain assembly. Interaction with TRAF6 leads to ECSIT ubiquitination and enrichment at the mitochondrial periphery, resulting in increased mitochondrial and cellular ROS generation. ECSIT- and TRAF6-depleted macrophages have decreased levels of TLR-induced ROS and are significantly impaired in their ability to kill intracellular bacteria. Additionally, reducing macrophage mROS levels by expressing catalase in mitochondria results in defective bacterial killing, confirming the role of mROS in bactericidal activity. These results reveal a novel pathway linking innate immune signalling to mitochondria, implicate mROS as an important component of antibacterial responses and further establish mitochondria as hubs for innate immune signalling. PMID:21525932

  2. Characteristics of Suppressor Macrophages Induced by Mycobacterial and Protozoal Infections in relation to Alternatively Activated M2 Macrophages

    PubMed Central

    Tomioka, Haruaki; Tatano, Yutaka; Maw, Win Win; Sano, Chiaki; Kanehiro, Yuichi; Shimizu, Toshiaki

    2012-01-01

    In the advanced stages of mycobacterial infections, host immune systems tend to change from a Th1-type to Th2-type immune response, resulting in the abrogation of Th1 cell- and macrophage-mediated antimicrobial host protective immunity. Notably, this type of immune conversion is occasionally associated with the generation of certain types of suppressor macrophage populations. During the course of Mycobacterium tuberculosis (MTB) and Mycobacterium avium-intracellulare complex (MAC) infections, the generation of macrophages which possess strong suppressor activity against host T- and B-cell functions is frequently encountered. This paper describes the immunological properties of M1- and M2-type macrophages generated in tumor-bearing animals and those generated in hosts with certain microbial infections. In addition, this paper highlights the immunological and molecular biological characteristics of suppressor macrophages generated in hosts with mycobacterial infections, especially MAC infection. PMID:22666284

  3. Immunomodulatory activity of geranial, geranial acetate, gingerol, and eugenol essential oils: evidence for humoral and cell-mediated responses

    PubMed Central

    Farhath, Seema; Vijaya, PP; Vimal, Manivannan

    2013-01-01

    Objective: The immunomodulatory effect of geranial, geranial acetate, gingerol, and eugenol essential oils were evaluated by studying humoral and cell-mediated immune responses. Materials and Method: The essential oils were evaluated for immunomodulatory activity in in vivo studies, using rats as the animal model. The essential oils were tested for hypersensitivity and hemagglutination reactions, using sheep red blood cells (SRBC) as the antigen while sodium carboxy methyl cellulose (SCMC) served as the control in all the tests. Result: Orally administrated essential oils showed a significant increase of test parameters, viz., haemagglutinating antibody titre (HAT) and delayed type hypersensitivity (DTH) response. In rats immunized with sheep RBC, essential oils enhanced the humoral antibody response to the antigen and significantly potentiated the cellular immunity by facilitating the foot pad thickness response to sheep RBC in sensitized rats with doses of 50-800 mg/ml. Haemagglutination titre of geraniol showed the highest increase of 139.3±6.38 and with 5.9±0.7 DTH, respectively. For geranial acetate, the haemagglutination titre showed a moderate increase of 87.5±5.9 and highest increase in DTH with 5.9±0.8, respectively. Using gingerol, the haemagglutination titre showed a moderate increase with 88.2±6.306 and DTH 3.5±0.5, respectively and for eugenol, the haemaggulation titre showed a moderate increase with 112.06±6.169 and DTH 4.4±0.6, respectively. These differences were statistically significant. Conclusion: The essential oils were found to have a significant immunostimulant activity on both the specific and non-specific immune mechanisms. PMID:25050278

  4. A Systematic Approach to Identify Markers of Distinctly Activated Human Macrophages

    PubMed Central

    Sudan, Bayan; Wacker, Mark A.; Wilson, Mary E.; Graff, Joel W.

    2015-01-01

    Polarization has been a useful concept for describing activated macrophage phenotypes and gene expression profiles. However, macrophage activation status within tumors and other settings are often inferred based on only a few markers. Complicating matters for relevance to human biology, many macrophage activation markers have been best characterized in mice and sometimes are not similarly regulated in human macrophages. To identify novel markers of activated human macrophages, gene expression profiles for human macrophages of a single donor subjected to 33 distinct activating conditions were obtained and a set of putative activation markers were subsequently evaluated in macrophages from multiple donors using integrated fluidic circuit (IFC)-based RT-PCR. Using unsupervised hierarchical clustering of the microarray screen, highly altered transcripts (>4-fold change in expression) sorted the macrophage transcription profiles into two major and 13 minor clusters. Among the 1874 highly altered transcripts, over 100 were uniquely altered in one major or two related minor clusters. IFC PCR-derived data confirmed the microarray results and determined the kinetics of expression of potential macrophage activation markers. Transcripts encoding chemokines, cytokines, and cell surface were prominent in our analyses. The activation markers identified by this study could be used to better characterize tumor-associated macrophages from biopsies as well as other macrophage populations collected from human clinical samples. PMID:26074920

  5. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and cytokines and identifies the relationships between macrophage activation states induced by these stimuli. By comparing macrophage activation programs to pathogens and cytokines under identical experimental conditions, we provide new insights into how macrophage responses to kinetoplastids correlate with the overall range of macrophage activation states. PMID:20361029

  6. Macrophage activation: on par with LPS.

    PubMed

    Bock, Florian J; Chang, Paul

    2015-04-23

    The inflammatory response is a critical component of the immune system that is activated by stimuli such as cytokines, foreign DNA, RNA, or other harmful substances. Krukenberg et al. (2015) identify poly(ADP-ribose) as a new signaling molecule that activates inflammation, thus providing yet another mechanism by which PARPs are involved in cellular stress responses. PMID:25910238

  7. J Biol Chem . Author manuscript Human adipose tissue macrophages display activation of cancer-related

    E-print Network

    Paris-Sud XI, Université de

    J Biol Chem . Author manuscript Page /1 10 Human adipose tissue macrophages display activation tissue dysfunctions might play a crucial role therein. Macrophages play important roles in adipose tissue as well as in cancers. Here, we studied whether human adipose tissue macrophages (ATM) modulate cancer

  8. Induction of antitumor activity in macrophages by mycoplasmas in concert with interferon

    Microsoft Academic Search

    Kazuko Uno; Morio Takema; Shigetaka Hidaka; Reishi Tanaka; Takao Konishi; Takuma Kato; Shinji Nakamura; Shigeru Muramatsu

    1990-01-01

    Summary The in vitro growth of tumor cells infected with mycoplasmas was suppressed by macrophages pretreated with interferon (IFN), but the growth of mycoplasma-free tumor cells was not suppressed. Pretreatment of macrophages with IFN plus mycoplasmas or their soluble factors either simultaneously or sequentially, IFN first and mycoplasmas second, but not in the reverse order, was effective in activating macrophages

  9. Investigating the function of a novel protein from Anoectochilus formosanus which induced macrophage differentiation through TLR4-mediated NF-?B activation.

    PubMed

    Kuan, Yen-Chou; Lee, Wan-Tzu; Hung, Chih-Liang; Yang, Ching; Sheu, Fuu

    2012-09-01

    Anoectochilus formosanus is a therapeutic orchid appreciated as a traditional Chinese medicine in Asia. The extracts of A. formosanus have been reported to possess hepatoprotective, anti-inflammatory, and anti-tumor activates. A novel protein was isolated from A. formosanus, and its immunomodulatory effect on murine peritoneal macrophage was investigated. Macrophages obtained from ascites of thioglycollate-induced BALB/c were co-cultured with IPAF (0-20 ?g/ml) for 24 h and then harvested for flow cytometry analysis. The cytokine/chemokine production was measured by real time PCR and ELISA. The interaction between IPAF and toll like receptors (TLRs) was investigated by TLR gene knockout (KO) mice and fluorescence labeled IPAF. The activation of NF-?B was assessed by EMSA. IPAF stimulated the TNF-? and IL-1? production, upregulated the CD86 and MHC II expression, and enhanced the phagocytic activity of macrophages. IPAF induced gene expression of IL-12 and Th1-assosiated cytokines/chemokines. The stimulating effect of IPAF was impaired, and the IPAF-macrophage interaction was reduced in TLR4(-/-) C57BL/10ScNJ mice. In addition, IPAF stimulated expressions of TLR signal-related genes and the activation of NF-?B. IPAF could induce classical activated macrophage differentiation via TLR4-dependent NF-?B activation and had potential of IPAF to modulate the Th1 response. These findings provided valuable information regarding the immune modulatory mechanism of A. formosanus, and indicated the possibility of IPAF as a potential peptide drug. PMID:22749731

  10. An immunomodulatory polysaccharide-rich substance from the fruit juice of Morinda citrifolia (noni) with antitumour activity.

    PubMed

    Hirazumi, A; Furusawa, E

    1999-08-01

    The fruit juice of Morinda citrifolia (noni) contains a polysaccharide-rich substance (noni-ppt) with antitumour activity in the Lewis lung (LLC) peritoneal carcinomatosis model. Therapeutic administration of noni-ppt significantly enhanced the duration of survival of inbred syngeneic LLC tumour bearing mice. It did not exert significant cytotoxic effects in an adapted culture of LLC cells, LLC1, but could activate peritoneal exudate cells (PEC) to impart profound toxicity when co-cultured with the tumour cells. This suggested the possibility that noni-ppt may suppress tumour growth through activation of the host immune system. Concomitant treatment with the immunosuppressive agent, 2-chloroadenosine (C1-Ade) or cyclosporin (cys-A) diminished its activity, thereby substantiating an immunomodulatory mechanism. Noni-ppt was also capable of stimulating the release of several mediators from murine effector cells, including tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-10, IL-12 p70, interferon-gamma (IFN-gamma) and nitric oxide (NO), but had no effect on IL-2 and suppressed IL-4 release. Improved survival time and curative effects occurred when noni-ppt was combined with sub-optimal doses of the standard chemotherapeutic agents, adriamycin (Adria), cisplatin (CDDP), 5-fluorouracil (5-FU), and vincristine (VCR), suggesting important clinical applications of noni-ppt as a supplemental agent in cancer treatment. PMID:10441776

  11. Inhibition of tristetraprolin expression by dexamethasone in activated macrophages.

    PubMed

    Jalonen, Ulla; Lahti, Aleksi; Korhonen, Riku; Kankaanranta, Hannu; Moilanen, Eeva

    2005-03-01

    Tristetraprolin (TTP) is a factor that regulates mRNA stability and the expression of certain inflammatory genes. In the present study, we found that TTP expression was increased in macrophages exposed to bacterial lipopolysaccharide (LPS). Dexamethasone and dissociated steroid RU24858 inhibited LPS-induced TTP protein and mRNA expression and the inhibitory effect was reversed by a glucocorticoid receptor antagonist mifepristone. Histone deacetylase inhibitors trichostatin A (TSA) and apicidin reduced the inhibitory effect of dexamethasone and RU24858 on TTP expression, but the glucocorticoids did not alter TTP mRNA half-life. These results suggest that anti-inflammatory steroids reduce TTP expression in activated macrophages by a glucocorticoid response element (GRE)-independent mechanism, possibly through histone deacetylation and transcriptional silencing. PMID:15710351

  12. Comparative studies on the immunomodulatory and antitumor activities of the different parts of fruiting body of Ganoderma lucidum and Ganoderma spores.

    PubMed

    Yue, Grace G L; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B S

    2008-10-01

    Ganoderma lucidum (GL, Lingzhi) has been suggested as a candidate for immunomodulation and cancer treatment. The present study aimed at comparing the different parts of the fruiting body (whole fruiting body, pileus and stipe) of GL as well as Ganoderma spores (sporoderm-broken and -unbroken), with regard to their antitumor and immunomodulatory activities in S-180 sarcoma-bearing mice. The hot water extracts of different parts of GL or the Ganoderma spores were orally administered to the sarcoma-bearing mice. The results showed that GL whole fruiting body, stipe and sporoderm-broken spore possessed stronger inhibitory activities on sarcoma growth when compared with the pileus extract. Higher immunomodulatory activities in terms of enhancing the proliferative responses and the cytokines (IFN-gamma, IL-4 and IL-6) production of spleen lymphocytes were also found in GL stipe and sporoderm-broken spore treatment groups. The sporoderm-broken spores had higher stimulatory effects on mitogen-activated spleen lymphocytes of healthy mice than those of sarcoma-bearing mice. In addition, the immunostimulatory activities of GL hot water extracts and Ganoderma spores were shown to be comparable; hence the latter did not show superiority in efficacy. This is the first comparative study on the immunomodulatory activities of Ganoderma spores and the fruiting body extracts. PMID:18570198

  13. Diphenyl diselenide-modulation of macrophage activation: Down-regulation of classical and alternative activation markers

    Microsoft Academic Search

    Lucía L Rupil; Andreza F de Bem; German A Roth

    2012-01-01

    Diphenyl diselenide (PhSe)2, a simple organoselenium compound, possesses interesting pharmacological properties that are under extensive research. As macrophages respond to microenvironmental stimuli and can display activities engaged in the initiation and the resolution of inflammation, in the present report we describe the ability of (PhSe)2 to modulate the macrophage activation. Our data indicate that (PhSe)2 could inhibit the NO production

  14. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    PubMed Central

    de la Fuente-Núñez, César; Mansour, Sarah C.; Wang, Zhejun; Jiang, Lucy; Breidenstein, Elena B.M.; Elliott, Melissa; Reffuveille, Fany; Speert, David P.; Reckseidler-Zenteno, Shauna L.; Shen, Ya; Haapasalo, Markus; Hancock, Robert E.W.

    2015-01-01

    Cystic fibrosis (CF) patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive) resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1) and suppressed lipopolysaccharide-mediated tumor necrosis factor-? (TNF-?) production by human peripheral blood mononuclear cells (PBMC) and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients.

  15. Release of cartilage proteoglycan degrading enzyme activity by thioglycollate stimulated mouse peritoneal macrophages in culture

    Microsoft Academic Search

    N. Ackerman; S. Jubb; B. Trimble; B. Yoxall

    1979-01-01

    Media from cultured mouse peritoneal macrophages were tested for cartilage proteoglycan degrading activity using S35-labelled rabbit ear cartilage. Media samples collected at 2-day intervals contained increasing amounts of activity between days two and six. This activity was activated by trypsin and antagonized by chelating agents. The macrophage products induced release of the proteoglycan component of cartilage as determined by biochemical

  16. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  17. Enhancement of nitric oxide production from activated macrophages by a purified form of ginsenoside (Rg1).

    PubMed

    Fan, Z H; Isobe, K; Kiuchi, K; Nakashima, I

    1995-01-01

    We studied the actions of purified ginsenosides Rg1 and Rb1 on nitric oxide production from macrophages and a macrophage cell line RAW264-7. Although neither Rg1 nor Rb1 induced nitric oxide from resting macrophages, Rg1 enhanced the production of nitric oxide from IFN-gamma activated-macrophages or RAW cells. Rg1 also enhanced the production of nitric oxide from macrophages cocultured with nonadherent spleen cells stimulated by conA, LPS or anti-CD3. Rb1, however, did not significantly enhance nitric oxide production from stimulated macrophages or RAW cells. Rg1 enhanced the tumor cell killing by nitric oxide produced from IFN-gamma-activated macrophages. PMID:8571924

  18. Oxidized LDL induces alternative macrophage phenotype through activation of CD36 and PAFR.

    PubMed

    Rios, Francisco J; Koga, Marianna M; Pecenin, Mateus; Ferracini, Matheus; Gidlund, Magnus; Jancar, S

    2013-01-01

    OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR) is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPAR ? and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF- ? significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF- ? , arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV) or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR. PMID:24062612

  19. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  20. Chain conformation and immunomodulatory activity of a hyperbranched polysaccharide from Cordyceps sinensis.

    PubMed

    Wu, Ding-Tao; Meng, Lan-Zhen; Wang, Lan-Ying; Lv, Guang-Ping; Cheong, Kit-Leong; Hu, De-Jun; Guan, Jia; Zhao, Jing; Li, Shao-Ping

    2014-09-22

    A polysaccharide, named as cordysinan, extracted from natural Cordyceps sinensis, was identified as a hyperbranched heteropolysaccharide from the results of FT-IR, GC-MS, and carbohydrate analysis by carbohydrate gel electrophoresis analysis, as well as the degree of branching of cordysinan was 43.3%. The solution properties of cordysinan were investigated by using size exclusion chromatography coupled with multi-angle laser light scattering and triple detector array, respectively. The molecular weights, the radius of gyration and the intrinsic viscosity of cordysinan were determined as 22.45±0.26 kDa and 22.37 kDa, 15.4±2.4 nm and 1.41 mL/g, respectively. By applying the polymer solution theory, the exponent (? and ?) values of g1/2=kMwv and [?]=kMw? were calculated as 0.28 and 0.42, respectively, which firstly revealed that cordysinan existed as a globular shape in 0.9% NaCl aqueous solution. Moreover, the results showed that cordysinan could obviously stimulate macrophages functions. PMID:24906773

  1. PSP activates monocytes in resting human peripheral blood mononuclear cells: immunomodulatory implications for cancer treatment.

    PubMed

    Sekhon, Bhagwant Kaur; Sze, Daniel Man-Yuen; Chan, Wing Keung; Fan, Kei; Li, George Qian; Moore, Douglas Edwin; Roubin, Rebecca Heidi

    2013-06-15

    Polysaccharopeptide (PSP), from Coriolus versicolor, has been used as an adjuvant to chemotherapy, and has demonstrated anti-tumor and immunomodulating effects. However its mechanism remains unknown. To elucidate how PSP affects immune populations, we compared PSP treatments both with and without prior incubation in phytohaemagglutinin (PHA) - a process commonly used in immune population experimentation. We first standardised a capillary electrophoresis fingerprinting technique for PSP identification and characterisation. We then established the proliferative capability of PSP on various immune populations in peripheral blood mononuclear cells, using flow cytometry, without prior PHA treatment. It was found that PSP significantly increased the number of monocytes (CD14(+)/CD16(-)) compared to controls without PHA. This increase in monocytes was confirmed using another antibody panel of CD14 and MHCII. In contrast, proliferations of T-cells, NK, and B-cells were not significantly changed by PSP. Thus, stimulating monocyte/macrophage function with PSP could be an effective therapeutic intervention in targeting tumors. PMID:23497877

  2. Recombinant expression of a novel fungal immunomodulatory protein with human tumor cell antiproliferative activity from Nectria haematococca.

    PubMed

    Li, Shuying; Nie, Ying; Ding, Yang; Shi, Lijun; Tang, Xuanming

    2014-01-01

    To our best knowledge, all of the fungal immunomodulatory proteins (FIPs) have been successfully extracted and identified in Basidomycetes, with only the exception of FIP from ascomycete Nectria haematococca (FIP-nha) discovered through homology alignment most recently. In this work, a gene encoding FIP-nha was synthesized and recombinantly expressed in an Escherichia coli expression system. SDS-PAGE and MALDI-MS analyses of recombinant FIP-nha (rFIP-nha) indicated that the gene was successfully expressed. The yield of the bioactive FIP-nha protein was 42.7 mg/L. In vitro assays of biological activity indicated that the rFIP-nha caused hemagglutination of human and rabbit red blood cells, signi?cantly stimulated mouse spleen lymphocyte proliferation, and enhanced expression of interleukin-2 (IL-2) released from mouse splenocytes, revealing a strong antitumor effect against HL60, HepG2 and MGC823. Through this work, we constructed a rapid and efficient method of FIP production, and suggested that FIP-nha is a valuable candidate for use in future medical care and pharmaceutical products. PMID:25272229

  3. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    PubMed

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages. PMID:8176226

  4. The in vivo immunomodulatory and synergistic anti-tumor activity of thymosin ?1-thymopentin fusion peptide and its binding to TLR2.

    PubMed

    Li, Juan; Cheng, Yanna; Zhang, Xinke; Zheng, Lei; Han, Zhen; Li, Pingli; Xiao, Yuliang; Zhang, Qian; Wang, Fengshan

    2013-09-01

    In the present study, the immunomodulatory and synergistic anti-tumor activity of thymosin ?1-thymopentin fusion peptide (T?1-TP5) was investigated in vivo. In addition, the potential receptor of T?1-TP5 was investigated by surface plasmon resonance (SPR) binding studies. It was found that T?1-TP5 (305 ?g/kg) alleviated immunosuppression induced by hydrocortisone (HC). T?1-TP5 (305 ?g/kg) combined with cyclophosphamide (CY) had a better tumor growth inhibitory effect than CY alone. Furthermore, T?1-TP5 had a higher affinity (KD=6.84 ?mol/L) to toll-like receptor 2 (TLR2) than T?1 (K(D)=35.4 ?mol/L), but its affinity was not significantly different from that of TP5. The results of our present work indicate that T?1-TP5 can possibly be developed as a new immunomodulatory agent. PMID:23684552

  5. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    SciTech Connect

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  6. Differential Inflammasome Activation in M1 and M2a Pulmonary Macrophages

    E-print Network

    Vonessen, Nikolaus

    Differential Inflammasome Activation in M1 and M2a Pulmonary Macrophages Emily K. Kobos, Virginia M There are differing levels of inflammasome activation in macrophage subsets based on IL-1 production and caspase-1 relationship with inflammasome activation will also need to be determined Figure 3: Silica induced pro-IL-1

  7. Putting on the Brakes: Cyclic AMP as a Multipronged Controller of Macrophage Function

    NSDL National Science Digital Library

    Marc Peters-Golden (Ann Arbor; University of Michigan Medical School REV)

    2009-06-16

    Macrophages orchestrate innate immune responses in tissues by activating various proinflammatory signaling programs. A key mechanism for preventing inflammatory disease states that result from excessive activation of such programs is the generation of the second messenger cyclic adenosine monophosphate (cAMP) by ligation of certain guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs). The pleiotropic actions of this cyclic nucleotide on various inflammatory functions of macrophages are mediated by diverse molecular mechanisms, including the assembly of distinct multiprotein complexes. A better understanding of crosstalk between cAMP signaling and proinflammatory pathways in macrophages may provide a basis for improved immunomodulatory strategies.

  8. Immunomodulatory Effects of Interferons in Malignancies

    PubMed Central

    Bekisz, Joseph; Sato, Yuki; Johnson, Chase; Husain, Syed R.; Puri, Raj K.

    2013-01-01

    Investigation of the antitumor and immunomodulatory activities of interferon (IFN) began shortly after the cytokine was discovered in 1957. Early work showed a direct correlation between administration of IFN and inhibition of symptoms associated with virally induced leukemia in mice as well as an increase in their survival time. Subsequent studies with purified IFNs confirmed the direct and indirect stimulation of immune cells, resulting in antitumor activities of IFN. Clinically, IFN-alphas (?s) have been shown to have activity against a variety of tumors. Initially, the U.S. Food and Drug Administration licensed 2 recombinant IFN-?s for the treatment of hairy-cell leukemia and then later for several other cancers. The success rate seen with IFNs and certain tumors has been varied. Unfortunately, some neoplasms show no response to IFN. Monocytes/macrophages play an important role in cancer progression. Monocytes in combination with IFN may be an important therapy for several cancers. This article focuses on the role of IFN and monocytes alone or in combination in affecting malignancies. PMID:23570381

  9. Phenotypic Diversity and Emerging New Tools to Study Macrophage Activation in Bacterial Infectious Diseases

    PubMed Central

    Ka, Mignane B.; Daumas, Aurélie; Textoris, Julien; Mege, Jean-Louis

    2014-01-01

    Macrophage polarization is a concept that has been useful to describe the different features of macrophage activation related to specific functions. Macrophage polarization is responsible for a dichotomic approach (killing vs. repair) of the host response to bacteria; M1-type conditions are protective, whereas M2-type conditions are associated with bacterial persistence. The use of the polarization concept to classify the features of macrophage activation in infected patients using transcriptional and/or molecular data and to provide biomarkers for diagnosis and prognosis has most often been unsuccessful. The confrontation of polarization with different clinical situations in which monocytes/macrophages encounter bacteria obliged us to reappraise this concept. With the exception of M2-type infectious diseases, such as leprosy and Whipple’s disease, most acute (sepsis) or chronic (Q fever, tuberculosis) infectious diseases do not exhibit polarized monocytes/macrophages. This is also the case for commensals that shape the immune response and for probiotics that alter the immune response independent of macrophage polarization. We propose that the type of myeloid cells (monocytes vs. macrophages) and the kinetics of the immune response (early vs. late responses) are critical variables for understanding macrophage activation in human infectious diseases. Explorating the role of these new markers will provide important tools to better understand complex macrophage physiology. PMID:25346736

  10. Lymphokine activation of J774G8 cells and mouse peritoneal macrophages challenged with Toxoplasma gondii.

    PubMed Central

    Sibley, L D; Krahenbuhl, J L; Weidner, E

    1985-01-01

    In vitro activation of macrophage cell line J774G8 and mouse peritoneal macrophages resulted in oxygen-dependent and oxygen-independent killing of intracellular Toxoplasma gondii. Activation was characterized by oxygen-dependent killing detectable by enhanced lysosome fusion and digestion of T. gondii. The toxoplasmacidal activity of activated J774G8 cells and peritoneal macrophages was prevented by adding the oxygen intermediate scavengers catalase or superoxide dismutase during culture. Activated J774G8 cells and peritoneal macrophages also inhibited replication of those Toxoplasma organisms which survived the initial microbicidal activity. The inhibition of Toxoplasma replication was not significantly affected by exogenous catalase or superoxide dismutase. Peritoneal macrophages from Toxoplasma-immune mice showed similar microbicidal and inhibitory responses, supporting the model that activation leads to destruction of intracellular parasites by two different mechanisms. Images PMID:4030103

  11. Review on medicinal uses, pharmacological, phytochemistry and immunomodulatory activity of plants.

    PubMed

    Akram, M; Hamid, A; Khalil, A; Ghaffar, A; Tayyaba, N; Saeed, A; Ali, M; Naveed, A

    2014-01-01

    Since ancient times, plants have been an exemplary source of medicine. Researchers have discovered some important compounds from plants. The present work constitutes a review of the medicinal plants whose immunomodulant activity has been proven. We performed PUBMED, EMBASE, Google scholar searches for research papers of medicinal plants having immunomodulant activity. Medicinal plants used by traditional physicians or reported as having immunomodulant activity include Acacia concocinna, Camellia sinensis, Lawsonia inermis Linn, Piper longum Linn, Gelidium amansii, Petroselinum crispum, Plantago major and Allium sativum. Immunomodulant activities of some of these medicinal plants have been investigated. The medicinal plants documented have immunomodulant activity and should be further investigated via clinical trial. PMID:25280022

  12. Macrophages sense and kill bacteria through carbon monoxide–dependent inflammasome activation

    PubMed Central

    Wegiel, Barbara; Larsen, Rasmus; Gallo, David; Chin, Beek Yoke; Harris, Clair; Mannam, Praveen; Kaczmarek, Elzbieta; Lee, Patty J.; Zuckerbraun, Brian S.; Flavell, Richard; Soares, Miguel P.; Otterbein, Leo E.

    2014-01-01

    Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1–deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1–deficient mice. IL-1? cleavage and secretion were impaired in HO-1–deficient macrophages, and CO-dependent processing of IL-1? required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1? inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes. PMID:25295542

  13. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages

    PubMed Central

    Stolfi, Carmine; Caruso, Roberta; Franzè, Eleonora; Sarra, Massimiliano; De Nitto, Daniela; Rizzo, Angelamaria; Pallone, Francesco; Monteleone, Giovanni

    2011-01-01

    Interleukin-25 (IL-25), a T helper type 2 (Th2) -related factor, inhibits the production of inflammatory cytokines by monocytes/macrophages. Since Th2 cytokines antagonize classically activated monocytes/macrophages by inducing alternatively activated macrophages (AAMs), we here assessed the effect of IL-25 on the alternative activation of human monocytes/macrophages. The interleukins IL-25, IL-4 and IL-13 were effective in reducing the expression of inflammatory chemokines in monocytes. This effect was paralleled by induction of AAMs in cultures added with IL-4 or IL-13 but not with IL-25, regardless of whether cells were stimulated with lipopolysaccharide or interferon-?. Moreover, pre-incubation of cells with IL-25 did not alter the ability of both IL-4 and IL-13 to induce AAMs. Both IL-4 and IL-13 activated signal transducer and activator of transcription 6 (STAT6), and silencing of this transcription factor markedly reduced the IL-4/IL-13-driven induction of AAMs. In contrast, IL-25 failed to trigger STAT6 activation. Among Th2 cytokines, only IL-25 and IL-10 were able to activate p38 mitogen-activated protein kinase. These results collectively indicate that IL-25 fails to induce AAMs and that Th2-type cytokines suppress inflammatory responses in human monocytes by activating different intracellular signalling pathways. PMID:20840631

  14. Chemiluminescence of blood plasma and activity of alveolar macrophages in experimental pneumonia

    Microsoft Academic Search

    U. R. Farkhutdinov; R. R. Farkhutdinov

    2000-01-01

    Acute experimental pneumonia in animals is accompanied by enhanced production of active oxygen forms by alveolar macrophages\\u000a and increased plasma chemiluminescence. Low photosum of chemiluminescence and suppression of bactericidal activity of alveolar\\u000a macrophages together with increased blood content of low-molecular-weight peptides are signs of lung destruction.

  15. Alterations in mouse macrophage migration: a function of assay systems, lymphocyte activation product preparation, and fractionation.

    PubMed Central

    Sandok, P L; Hinsdill, R D; Albrecht, R M

    1975-01-01

    Supernatants from mouse spleen cell and peritoneal cell cultures were tested for the presence of lymphocyte activation products. Supernatants from mouse spleen cell and peritoneal cell cultures incubated with brucella antigens contained a macrophage migration inhibition factor(s) and a macrophage spreading factor(s) only if the cells were harvested from Brucella-infected mice. After dialysis and freeze-drying, the supernatants were fractionated by preparative acrylamide-gel electrophoresis. Three fractions with lymphocyte activation product activity were obtained from the fractionated supernatants of mouse spleen cells and peritoneal cells harvested from Brucella-infected mice and cultured with brucella antigen. One fraction inhibited mouse macrophage migration from capillary tubes but not from agarose wells. A second fraction not only inhibited macrophage migration from both agarose wells and capillary tubes, but also contained an activity(s) that stimulated macrophage migration through Nuclepore filters and induced macrophage spreading. A third fraction timulated macrophage migration from agarose wells and also contained an activity(s) that stimulated macrophage migration through Nuclepore filters. Fractionated supernatants of mouse spleen cells and peritoneal cells harvested from uninfected mice incubated with and without brucella antigen, as well as of cells harvested from infected mice and not incubated with antigen, did not contain detectable lymphocyte activation products. PMID:804442

  16. Hyponatremia, Hypophosphatemia, and Hypouricemia in a Girl With Macrophage Activation Syndrome

    Microsoft Academic Search

    Kazuki Yamazawa; Kazuki Kodo; Jun Maeda; Sayu Omori; Mariko Hida; Tetsuya Mori; Midori Awazu

    Macrophage activation syndrome, a life-threatening complication of rheumatic disorders, is accompanied by the overproduction of cytokines. We describe a girl with macrophage activation syndrome complicating systemic-onset juvenile arthritis who developed hyponatremia, hypophosphatemia, and hypouricemia associated with a high level of serum tumor necrosis factor . Renal proximal tubule dysfunction was considered to be the cause, which may be attributable to

  17. A transient reversal of miRNA-mediated repression controls macrophage activation

    PubMed Central

    Mazumder, Anup; Bose, Mainak; Chakraborty, Abhijit; Chakrabarti, Saikat; Bhattacharyya, Suvendra N

    2013-01-01

    In mammalian macrophages, the expression of a number of cytokines is regulated by miRNAs. Upon macrophage activation, proinflammatory cytokine mRNAs are translated, although the expression of miRNAs targeting these mRNAs remains largely unaltered. We show that there is a transient reversal of miRNA-mediated repression during the early phase of the inflammatory response in macrophages, which leads to the protection of cytokine mRNAs from miRNA-mediated repression. This derepression occurs through Ago2 phosphorylation, which results in its impaired binding to miRNAs and to the corresponding target mRNAs. Macrophages expressing a mutant, non-phosphorylatable AGO2—which remains bound to miRNAs during macrophage activation—have a weakened inflammatory response and fail to prevent parasite invasion. These findings highlight the relevance of the transient relief of miRNA repression for macrophage function. PMID:24030283

  18. Immunomodulatory Activity of Lactococcus lactis A17 from Taiwan Fermented Cabbage in OVA-Sensitized BALB/c Mice

    PubMed Central

    Mei, Hui-Ching; Liu, Yen-Wenn; Chiang, Yi-Chin; Chao, Shiou-Huei; Mei, Nai-Wen; Liu, Yu-Wen; Tsai, Ying-Chieh

    2013-01-01

    From fermented Taiwan foods, we have isolated numerous lactic acid bacteria (LAB) of plant origin and investigated their biological activities. This study aimed to investigate the immunomodulatory effect and mechanism of Lactococcus lactis A17 (A17), isolated from Taiwan fermented cabbage, on ovalbumin (OVA)-sensitized mice. Human peripheral blood mononuclear cells were used to verify immune responses of A17 by IFN-? production. Live (A17-A) and heat-killed A17 (A17-H) were orally administered to OVA-sensitized BALB/c mice to investigate their effects on immunoglobulin (Ig) and cytokine production. The mRNA expression of Toll-like receptors (TLR) and nucleotide binding oligomerization domain (NOD)-like protein receptors in spleen cells was analyzed by real-time RT-PCR. Both live and heat-killed A17 modulate OVA-induced allergic effects. B-cell response was modulated by diminishing IgE production and raising OVA-specific IgG2a production, while T-cell response was modulated by increasing IFN-? production and decreasing IL-4 production. The mRNA expression of NOD-1, NOD-2, and TLR-4 was down-regulated by A17 as well. This is the first report to describe a naïve Lactococcus lactis A17 strain as a promising candidate for prophylactic and therapeutic treatments of allergic diseases via oral administration. Our results suggest the ameliorative effects of A17 may be caused by modulating NOD-1 NOD-2, and TLR-4 expression. PMID:23401710

  19. Characterization of the Conditioned Medium from Amniotic Membrane Cells: Prostaglandins as Key Effectors of Its Immunomodulatory Activity

    PubMed Central

    Rossi, Daniele; Pianta, Stefano; Magatti, Marta; Sedlmayr, Peter; Parolini, Ornella

    2012-01-01

    We previously demonstrated that cells isolated from the mesenchymal region of the human amniotic membrane (human amniotic mesenchymal tissue cells, hAMTC) possess immunoregulatory roles, such as inhibition of lymphocyte proliferation and cytokine production, and suppression of generation and maturation of monocyte-derived dendritic cells, as reported for MSC from other sources. The precise factors and mechanisms responsible for the immunoregulatory roles of hAMTC remain unknown. In this study, we aimed to identify the soluble factors released by hAMTC and responsible for the anti-proliferative effect on lymphocytes, and the mechanisms underlying their actions, in vitro. Conditioned medium (CM) was prepared under routine culture conditions from hAMTC (CM-hAMTC) and also from fragments of the whole human amniotic membrane (CM-hAM). We analyzed the thermostability, chemical nature, and the molecular weight of the factors likely responsible for the anti-proliferative effects. We also evaluated the participation of cytokines known to be involved in the immunomodulatory actions of MSC from other sources, and attempted to block different synthetic pathways. We demonstrate that the inhibitory factors are temperature-stable, have a small molecular weight, and are likely of a non-proteinaceous nature. Only inhibition of cyclooxygenase pathway partially reverted the anti-proliferative effect, suggesting prostaglandins as key effector molecules. Factors previously documented to take part in the inhibitory effects of MSCs from other sources (HGF, TGF-?, NO and IDO) were not involved. Furthermore, we prove for the first time that the anti-proliferative effect is intrinsic to the amniotic membrane and cells derived thereof, since it is manifested in the absence of stimulating culture conditions, as opposed to MSC derived from the bone marrow, which possess an anti-proliferative ability only when cultured in the presence of activating stimuli. Finally, we show that the amniotic membrane could be an interesting source of soluble factors, without referring to extensive cell preparation. PMID:23071674

  20. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)] [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)] [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas M1-macrophage-related molecules such as integrin {alpha}X, IL-1{beta}, MIP2{alpha} and leptin were decreased at rosiglitazone-treated incisional sites. Moreover, transplantation of rosiglitazone-treated peritoneal macrophages into the incisional sites significantly attenuated hyperalgesia. We speculate that local administration of rosiglitazone significantly alleviated the development of postincisional pain, possibly through regulating macrophage polarity at the inflamed site. PPAR{gamma} signaling in macrophages may be a potential therapeutic target for the treatment of acute pain development.

  1. Role of activated macrophages in resistance of mice to infection with Trypanosoma cruzi.

    PubMed

    Williams, D M; Sawyer, S; Remington, J S

    1976-12-01

    The role of the activated macrophage in resistance of mice to infection with Trypanosoma cruzi was investigated with use of mice that had not been infected with T. cruzi but whose macrophages were activated by Toxoplasma gondii or Besnoitia jellisoni. Mice with activated macrophages were significantly more resistant to intra-peritoneal challenge with the Tulahuen strain of T. cruzi than were controls. The role of serum factors in resistance to T. cruzi was excluded by the demonstration of no difference between survival of T. cruzi in serum from mice with activated macrophages and in that from controls. As the only modality of resistance to T. cruzi in this in vivo model appeared to be the activated macrophage, this cell was investigated in vitro. Activated macrophages were shown to be able to inhibit completely multiplication of T. cruzi, whereas significant multiplication of the parasite occurred in control macrophages. Both in vivo and in vitro data suggest that the activated macrophage may play a major role in resistance to infection with T. cruzi. PMID:826595

  2. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    PubMed Central

    2011-01-01

    Background Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS) contributes to neuronal injury. Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS) production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA) oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1?, IL-6 and TNF-?) and of ROS. In contrast, BBI pretreatment (1-100 ?g/ml) of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 ?g/ml), had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 ?g/ml) had no effect on N-methyl-D-aspartic acid (NMDA)-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages. PMID:21324129

  3. Comparison of immunomodulatory activities in mice and guinea pigs of a synthetic desmuramyl peptidolipid triglymyc.

    PubMed Central

    Leclerc, C D; Audibert, F M; Chedid, L A; Deriaud, E J; Masihi, N K; Lederer, E

    1984-01-01

    A nonpyrogenic desmuramyl peptidolipid, 1-O-(L-alanyl-D-isoglutaminyl-L-alanyl-glycerol-mycolate), had previously been shown to be inactive as adjuvant in guinea pigs, but to be very active in stimulating nonspecific resistance. We now show that 1-O-(L-alanyl-D-isoglutaminyl-L-alanyl-glycerol-mycolate) is capable of enhancing or suppressing the immune responses in mice when injected with or before an antigen. In vivo suppression of the immune response to sheep erythrocytes was also observed with high doses of murabutide, a nonpyrogenic adjuvant-active N-acetylmuramyl-L-alanyl-D-isoglutamine analog. Chemiluminescence measurements with mouse spleen cells show a very strong activity of 1-O-(L-alanyl-D-isoglutaminyl-L-alanyl-glycerol-mycolate) by far superior to the effect obtained with the corresponding muramyl peptide, N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanyl-glycerol-myco late. PMID:6698611

  4. Immunomodulatory effects of methoxylated flavonoids from two Chromolaena species: structure-activity relationships.

    PubMed

    Taleb-Contini, S H; Kanashiro, A; Kabeya, L M; Polizello, A C M; Lucisano-Valim, Y M; Oliveira, D C R

    2006-07-01

    Excessive generation of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMNL) is involved in the pathology of many inflammatory diseases. Compounds isolated from natural sources with antioxidant activity can be helpful to inhibit and/or modulate the oxidative damage associated with PMNL-derived ROS. The present study investigated the relationship between the chemical structure of five methoxylated flavonoids, isolated from Chromolaena hirsuta and Chromolaena squalida, and their inhibitory activity on ROS generation by opsonized zymosan-stimulated PMNL. The antioxidant efficacy of the studied flavonoids, assessed by luminol-dependent chemiluminescence, was dependent on the position and number of methoxy and hydroxy groups. PMID:16619335

  5. In vitro, but not in vivo, reversibility of peritoneal macrophages activation during experimental acute pancreatitis

    PubMed Central

    Gea-Sorlí, Sabrina; Closa, Daniel

    2009-01-01

    Background Systemic inflammatory response syndrome is one of the major pathobiologic processes underlying severe acute pancreatitis and the degree of macrophage activation could be one of the factors that finally determine the severity of the disease. We evaluated the activation phenotype in peritoneal macrophages during the progression of an experimental model of acute pancreatitis induced in rats by intraductal administration of 5% sodium taurocholate and the effect of IL-4 and IL-13 to modulate this activation. Samples of pancreas, lung and adipose tissue as well as plasma were also obtained. In some animals IL4 and IL13 were injected 1 h after induction in order to modulate macrophage activation. The expressions of TNF? and Mannose Receptor, as indicators of classical and alternative macrophage activation, were evaluated. Levels of myeloperoxidase and plasma lipase were determined to evaluate the severity of the inflammatory process. The stability of IL-4 in ascitic fluid and plasma was evaluated. Results Peritoneal macrophages showed a classical M1 activation clearly induced 3 h after pancreatitis induction and maintained until 18 h. Treatment with IL-4 and IL-13 reversed the activation of macrophages from a classical M1 to alternative M2 in vitro, but failed to modulate the response of peritoneal macrophages in vivo despite a reduction in inflammation was observed in lung and adipose tissue. Finally, IL-4 shows a short half-live in ascitic fluid when compared with plasma. Conclusion Peritoneal macrophages adopt a pro-inflammatory activation early during acute pancreatitis. Treatment with M2 cytokines could revert in vitro the pancreatitis-induced activation of macrophages but fails to modulate its activation in vivo. This treatment has only a moderate effect in reducing the systemic inflammation associated to acute pancreatitis. Hydrolytic enzymes presents in ascitic fluid could be involved in the degradation of cytokines, strongly reducing its utility to modulate peritoneal macrophages in pancreatitis. PMID:19646232

  6. Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment.

    PubMed

    Ward, Rebecca; Sims, Andrew H; Lee, Alexander; Lo, Christina; Wynne, Luke; Yusuf, Humza; Gregson, Hannah; Lisanti, Michael P; Sotgia, Federica; Landberg, Göran; Lamb, Rebecca

    2015-06-10

    Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation.Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer. PMID:26008983

  7. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  8. In vitro effect of levan-activated macrophages on Lewis lung carcinoma cells.

    PubMed

    Leibovici, J; Hoenig, S; Pinchassov, A

    1986-01-01

    The polysaccharide levan (polyfructose) has previously been shown to exert an inhibitory effect on the growth of several murine tumors. This activity is mediated by a host reaction, involving mainly macrophages but also other elements of the immune system. It was not clear, however, whether levan-activated macrophages act by a direct cytocidal effect on the tumor cells or via the activation of a specific immune response to the tumor. In the present study, the possibility of a direct cytotoxicity of levan-activated macrophages against Lewis lung carcinoma cells was tested by coculture in vitro. It was found that levan-induced (as well as paraffin oil induced) macrophages actually exert a direct cytotoxic effect on Lewis lung carcinoma cells. The tumor cell killing is mediated by cell to cell contact. A cytoplasmic bridge was often seen between the macrophage and the tumor cell. The remaining tumor cells in the lysed area appear slender, shrunken and non-dividing. PMID:3759297

  9. [Immunomodulatory drugs (IMiDs)].

    PubMed

    Oshima, Kumi; Ichinohe, Tatsuo

    2014-06-01

    Immunomodulatory drugs (IMiDs) are a new class of anti-inflammatory and antineoplastic agents that have structural and functional similarities with their prototype compound, thalidomide. Although thalidomide and its derivatives, lenalidomide and pomalidomide, are widely used as an essential component in the treatment of selected hematologic neoplasms including multiple myeloma, the precise mechanisms by which these agents exert anti-tumor effects have yet to be clarified. Recently, a component of E3 ubiquitin ligase complex, cereblon (CRBN), has been identified as a direct molecular target for anti-neoplastic activities of IMiDs. CRBN has also been shown to be involved in IMiDs-mediated T-cell co-stimulation and cytokine production. Further studies are necessary to elucidate the CRBN-related molecular pathways that are essential for antitumor and immunomodulatory activities of IMiDs. PMID:25016816

  10. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities.

    PubMed

    Chlapanidas, Theodora; Faragò, Silvio; Lucconi, Giulia; Perteghella, Sara; Galuzzi, Marta; Mantelli, Melissa; Avanzini, Maria Antonietta; Tosca, Marta Cecilia; Marazzi, Mario; Vigo, Daniele; Torre, Maria Luisa; Faustini, Massimo

    2013-07-01

    Some biological properties of Bombyx mori sericins from twenty strains were investigated, fourteen fed with artificial diet, two with fresh mulberry leaves and four with both diets. Sericin exhibited ROS-scavenging, anti-tyrosinase and anti-elastase properties, the strain significantly influenced these properties, while diet only influenced the anti-tyrosinase activity. Sericins were clustered into 5 groups and one sericin from each group was further studied: sericins showed anti-proliferative activity on in vitro stimulated peripheral blood mononuclear cells; some strains decreased in vitro secretion of IFN?, while no effects were observed on TNF? and IL10 release. Therefore, a mixture of sericins extracted from the most promising strains may be useful for dermatological and cosmetic use. PMID:23541552

  11. Microglia activation by SIV-infected macrophages: alterations in morphology and cytokine secretion

    PubMed Central

    Renner, Nicole A.; Sansing, Hope A.; Morici, Lisa A.; Inglis, Fiona M.; Lackner, Andrew A.; MacLean, Andrew G.

    2012-01-01

    HIV infection in brain and the resultant encephalitis affects approximately one-third of individuals infected with HIV, regardless of treatment with antiretroviral drugs. Microglia are the resident phagocytic cell type in the brain, serving as a “first responder” to neuroinvasion by pathogens. The early events of the microglial response to productively-infected monocyte/macrophages entering the brain can best be investigated using in vitro techniques. We hypothesized that activation of microglia would be specific to the presence of SIV-infected macrophages as opposed to responses to macrophages in general. Purified microglia were grown and stimulated with control or SIV-infected macrophages. After 6 hours, aliquots of supernatant were analyzed for 23 cytokines using Millipore non-human primate-specific kit. In parallel experiments, morphologic changes and cytokine expression by individual microglia were examined by immunofluorescence. Surprisingly, the presence of macrophages was more important to the microglial response rather than whether the macrophages were infected with SIV. None of the cytokines examined was unique to co-incubation with SIV-infected macrophages compared with control macrophages, or their supernatants. Media from SIV-infected macrophages, however, did induce secretion of higher levels of IL-6 and IL-8 than the other treatments. As resident macrophages in the brain, microglia would be expected to have a strong response to infiltrating innate immune cells such as monocyte/macrophages. This response is triggered by incubation with macrophages, irrespective of whether or not they are infected with SIV, indicating a rapid, generalized immune response when infiltrating macrophages enter brain. PMID:22535448

  12. Gamma-interferon activation of macrophages for killing of Paracoccidioides brasiliensis and evidence for nonoxidative mechanisms.

    PubMed

    Brummer, E; Hanson, L H; Stevens, D A

    1988-01-01

    Fungicidal activity of murine peritoneal macrophages for the yeast form of the dimorphic fungal pathogen P. brasiliensis was studied. Killing was assessed by reduction of colony forming units (CFU) using a new medium which has a good plating efficiency. Resident peritoneal macrophages phagocytosed but did not kill P. brasiliensis. Macrophages treated overnight with recombinant gamma-interferon (IFN), lymph node cells plus concanavalin A (Con A) or Con A-stimulated spleen cell culture supernatants (Con A Sup) reproducibly killed three different isolates of P. brasiliensis (35 - 55%, P less than 0.05 - P less than 0.001). This is the first demonstration of killing of this organism by macrophages. Activated macrophages did not show enhanced phagocytosis of P. brasiliensis. Activation of macrophages for killing by IFN was dose-dependent and, varying with the isolate, 100 - 10,000 U/ml was required for inducing significant fungicidal effects against P. brasiliensis. Activation of macrophages by IFN or Con A Sup was abrogated by anti-IFN antibody. These results suggest that immune modulation may be an approach to therapy of paracoccidioidomycosis. Killing was not significantly inhibited in the presence of superoxide dismutase (450 U/ml), catalase (20,000 U/ml), dimethylsulfoxide (300 mM) or azide (1 mM). This indicated that killing mechanism(s) did not depend upon products of the oxidative burst. These results show that P. brasiliensis can be significantly killed by activated macrophages without products of the oxidative burst. PMID:3145925

  13. Immunomodulatory activity of alcoholic extract of Mangifera indica L. in mice.

    PubMed

    Makare, N; Bodhankar, S; Rangari, V

    2001-12-01

    Mangifera indica Linn, a plant widely used in the traditional medicinal systems of India, has been reported to possess antiviral, antibacterial and anti-inflammatory activities. In the present study, the alcoholic extract of stem bark of Mangifera indica Linn (Extract I containing mangiferin 2.6%), has been investigated for its effect on cell mediated and humoral components of the immune system in mice. Administration of test extract I produced increase in humoral antibody (HA) titre and delayed type hypersensitivity (DTH) in mice. It is concluded that test extract I is a promising drug with immunostimulant properties. PMID:11694357

  14. Shosaiko-to and other Kampo (Japanese herbal) medicines: a review of their immunomodulatory activities.

    PubMed

    Borchers, A T; Sakai, S; Henderson, G L; Harkey, M R; Keen, C L; Stern, J S; Terasawa, K; Gershwin, M E

    2000-11-01

    The use of alternative medicine, including consumption of herbal products and dietary supplements, has been increasing substantially both in the United States and in Western Europe. One area that is garnering increased attention is the use of Oriental Medicine including Kampo, or Japanese herbal medicine. Herein, we review representative examples of research available on the most common use of Kampo medicinals, namely to improve the immune response. We also provide an extensive background on the history of Kampo. There are more than 210 different Kampo formulae used in Japan and most uses of Kampo are to modulate the immune response, i.e. to improve immunity. We have extracted data on seven common Kampo medicinals, and the data are reviewed with respect to in vitro and in vivo activities for both humans and experimental animals; the ingredients as well as the problems with classification of these materials are presented. Research suggests that Kampo herbals are biologically active and may have therapeutic potential. While it is believed that Kampo medicines have few side effects, there is a paucity of data on their toxicity as well as a relative lack of knowledge of the bioactive constituents and potential drug interactions of these agents. PMID:11025134

  15. New tigliane-type diterpenoids from Euphorbia aellenii Rech. f. with immunomodulatory activity

    PubMed Central

    Ghanadian, M.; Ayatollahi, A.M.; Mesaik, M.A.; Afsharypuor, S.; Abdalla, O.M.; Kobarfard, F.

    2011-01-01

    The cytotoxic chloroform fraction of Euphorbia aellenii Rech. F. (Euphorbiaceae) afforded two new phorbol diterpenoids: 4-deoxy-4?-phorbol-12-(2,3-dimethyl) butyrate-13-isobutyrate and 17-hydroxy-4-deoxy-4?-phorbol-12-(2,3-dimethyl) butyrate-13-isobutyrate. Their structures were elucidated by NMR and other spectroscopic methods. The immunomodulating potentials of the isolated compounds were tested using standard proliferation and chemiluminescence assays. Compound 2 showed moderate inhibitory activity against both T-cell proliferation and reactive oxygen species (ROS) production in whole blood with IC50 of 14.0 ± 0.57 and 44.1 ± 3.8 ?g/ml, respectively, while compound 1 was relatively inactive with IC50 >50 ?g/mL for T-cell proliferation, and >100 ?g/mL for ROS. PMID:22049276

  16. Platelet Phagocytosis and Processing of Amyloid Precursor Protein as a Mechanism of Macrophage Activation in Atherosclerosis

    Microsoft Academic Search

    Guido R. Y. De; Dieter Meyer; Susan Cooper; Michiel W. M. Knaapen; Dominique M. Jans; Wim Martinet; Arnold G. Herman; Hidde Bult; Mark M. Kockx

    In human occluded saphenous vein grafts, we previously demonstrated cytotoxic foam cells, presumably derived from macrophages engulfing platelets. In the present study, we investigated whether platelet phagocytosis occurs in human atherosclerotic plaques, whether this activates macrophages, and whether the platelet constituent, amyloid precursor protein (APP), was involved. Immunohistochemistry documented the presence of APP, -amyloid peptide (A, cleaved from APP), and

  17. Regulation of Macrophage Activation and Human Immunodeficiency Virus Production by InvasiveSalmonellaStrains

    Microsoft Academic Search

    STEVEN B. MIZEL; LOUIS S. KUCERA; STEPHEN H. RICHARDSON; FEDERICA CIACCI; ANDNATHAN P. IYER

    Salmonellae possess the ability to adhere to and invade macrophages and in so doing trigger a number of intracellular events that are associated with cellular activation. As an initial approach to defining the mech- anisms by which invasive salmonellae alter macrophage function, we have explored the impact of Salmonella infection on the production of human immunodeficiency virus (HIV) in U1

  18. Increased nucleolar localization of SpiA3G in classically but not alternatively activated macrophages

    E-print Network

    Bogyo, Matthew

    , many of which belong to the Toll-like receptor family. Toll-like receptor 4 (TLR4) mediates signals classical, but not alternative activation of macrophages. Despite the increased expression of cathepsin L [2]. In response to LPS, mouse macrophages undergo a major change in gene expression [3]. Interferon

  19. Toxic effects of methyl methanesulfonate (MMS) on activated macrophages from chickens

    Microsoft Academic Search

    Muquarrab A. Qureshi; Stephen E. Bloom; Joshua W. Hamilton; Rodney R. Dietert

    1989-01-01

    Adherent peritoneal exudate cells rich in macrophages were harvested from Cornell K-strain chickens. Glass-adherent monolayers were obtained on coverslips and subjected to in vitro exposure to methyl methanesulfonate (MMS) at various doses for 1 hr. Solvent and sham exposures were also performed. At selected times after exposure, the macrophages were analyzed for cell viability, adherence, DNA damage, and functional activity.

  20. Lymphocyte apoptosis and macrophage function: correlation with disease activity in systemic lupus erythematosus

    Microsoft Academic Search

    Ou Jin; Ling-yun Sun; Kang-xin Zhou; Xin-su Zhang; Xue-bing Feng; Mo-yin Mok; Chak-sing Lau

    2005-01-01

    Increased lymphocyte apoptosis and defects in macrophage removal of apoptotic cells have been suggested to contribute to the development of systemic lupus erythematosus (SLE). The aim of this study was to investigate the relationship between peripheral lymphocyte apoptosis, macrophage function as determined by the serum levels of neopterin and interferon-? (IFN-?), and SLE disease activity. Peripheral apoptotic lymphocytes (AL) were

  1. Macrophage migration inhibitory factor (MIF) enzymatic activity and lung cancer.

    PubMed

    Mawhinney, Leona; Armstrong, Michelle E; O' Reilly, Ciaran; Bucala, Richard; Leng, Lin; Fingerle-Rowson, Gunter; Fayne, Darren; Keane, Michael P; Tynan, Aisling; Maher, Lewena; Cooke, Gordon; Lloyd, David; Conroy, Helen; Donnelly, Seamas C

    2014-01-01

    The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif (P1G)). Primary tumor growth was significantly attenuated in both Mif-KO and Mif (P1G) mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems. PMID:25826675

  2. Morphine Modulates Interleukin-4- or Breast Cancer Cell-induced Pro-metastatic Activation of Macrophages

    PubMed Central

    Khabbazi, Samira; Goumon, Yannick; Parat, Marie-Odile

    2015-01-01

    Interactions between cancer cells and stromal cells in the tumour microenvironment play a key role in the control of invasiveness, metastasis and angiogenesis. Macrophages display a range of activation states in specific pathological contexts and alternatively activated (M2) macrophages can promote tumour aggressiveness. Opioids are able to modulate tumour growth and metastasis. We tested whether morphine modulates the activation of macrophages induced by (i) interleukin-4 (IL-4), the prototypical M2 polarization-inducing cytokine, or (ii) coculture with breast cancer cells. We showed that IL-4 causes increased MMP-9 production and expression of the alternative activation markers arginase-1 and MRC-1. Morphine prevented IL-4-induced increase in MMP-9 in a naloxone- and methylnaltrexone-reversible fashion. Morphine also prevented IL-4-elicited alternative activation of RAW264.7 macrophages. Expression of MMP-9 and arginase-1 were increased when RAW264.7 were subjected to paracrine activation by 4T1 cells, and this effect was prevented by morphine via an opioid receptor-mediated mechanism. Morphine further decreased 4T1 breast cancer cell invasion elicited by co-culture with RAW264.7. Reduction of MMP-9 expression and alternative activation of macrophages by morphine was confirmed using mouse bone marrow-derived macrophages. Taken together, our results indicate that morphine may modulate tumour aggressiveness by regulating macrophage protease production and M2 polarization within the tumour microenvironment. PMID:26078009

  3. Morphine Modulates Interleukin-4- or Breast Cancer Cell-induced Pro-metastatic Activation of Macrophages.

    PubMed

    Khabbazi, Samira; Goumon, Yannick; Parat, Marie-Odile

    2015-01-01

    Interactions between cancer cells and stromal cells in the tumour microenvironment play a key role in the control of invasiveness, metastasis and angiogenesis. Macrophages display a range of activation states in specific pathological contexts and alternatively activated (M2) macrophages can promote tumour aggressiveness. Opioids are able to modulate tumour growth and metastasis. We tested whether morphine modulates the activation of macrophages induced by (i) interleukin-4 (IL-4), the prototypical M2 polarization-inducing cytokine, or (ii) coculture with breast cancer cells. We showed that IL-4 causes increased MMP-9 production and expression of the alternative activation markers arginase-1 and MRC-1. Morphine prevented IL-4-induced increase in MMP-9 in a naloxone- and methylnaltrexone-reversible fashion. Morphine also prevented IL-4-elicited alternative activation of RAW264.7 macrophages. Expression of MMP-9 and arginase-1 were increased when RAW264.7 were subjected to paracrine activation by 4T1 cells, and this effect was prevented by morphine via an opioid receptor-mediated mechanism. Morphine further decreased 4T1 breast cancer cell invasion elicited by co-culture with RAW264.7. Reduction of MMP-9 expression and alternative activation of macrophages by morphine was confirmed using mouse bone marrow-derived macrophages. Taken together, our results indicate that morphine may modulate tumour aggressiveness by regulating macrophage protease production and M2 polarization within the tumour microenvironment. PMID:26078009

  4. The immunomodulatory activity of human amniotic fluid can be correlated with transforming growth factor-beta 1 (TGF-beta 1) and beta 2 activity.

    PubMed Central

    Lang, A K; Searle, R F

    1994-01-01

    The role of alphafetoprotein (AFP) in the immunomodulatory activity of amniotic fluids (AF) from normally progressing human pregnancy (weeks 14-16) was investigated. A panel of 42 AF (25% v/v) reduced significantly phytohaemagglutinin (PHA)-induced peripheral blood mononuclear cell (PBMC) proliferation in serum-free cultures with a mean per cent inhibition of 68.4 +/- 5.5%. In contrast, AFP preparations, with one exception (U.AFP), failed to display inhibitory activity. Pretreatment of AF with anti-TGF-beta 1 and beta 2 antibodies used alone resulted in the mean per cent loss of inhibition of 33.1 +/- 3.9% and 52.3 +/- 7.5%, respectively. A summative loss of AF-mediated inhibition was detected when anti-TGF-beta 1 and beta 2 antibodies were used in combination, but immunomodulation was rarely abolished 100% by this treatment. Anti-TGF-beta 2 antibody treatment, unlike anti-TGF-beta 1 antibody treatment, reversed the inhibitory activity of U.AFP. The amount of TGF-beta 1 and beta 2 contained in human AF was studied by growth inhibition of Mv1 Lu cells. The mean levels of TGF-beta 1 and beta 2 in AF were 11 +/- 0.9 U/ml and 2.3 +/- 0.4 U/ml, respectively, which corresponds with a mean per cent inhibition of 49 +/- 4.7%. U.AFP also significantly inhibited Mv1 Lu cell growth. To investigate the mechanism of AF-mediated inhibition, the effect of AF and AFP on IL-2 production by concanavalin A (Con A)-stimulated PBMC blasts was determined by the CTLL-2 cell bioassay. IL-2 production was reduced 55.5% in AF-treated blasts and 61% in U.AFP-treated blasts compared with controls. Our findings indicate that the immunomodulatory activity of human AF can be correlated with TGF-beta 1 and beta 2 and not with AFP, the inhibitory activity of U.AFP preparation reflecting copurifying TGF-beta 2 activity. PMID:7518368

  5. Antiviral, immunomodulatory, and free radical scavenging activities of a protein-enriched fraction from the larvae of the housefly, Musca domestica.

    PubMed

    Ai, Hui; Wang, Furong; Zhang, Na; Zhang, Lingyao; Lei, Chaoliang

    2013-01-01

    In our previous study, protein-enriched fraction (PEF) that was isolated from the larvae of the housefly, Musca domestica L. (Diptera: Muscidae), showed excellent hepatoprotective activity as well as the potential for clinical application in therapy for liver diseases. In this study, antiviral, immunomodulatory, and free radical scavenging activities of PEF were evaluated. The antiviral results demonstrated that PEF inhibited the infection of avian influenza virus H9N2 and had a virucidal effect against the multicapsid nucleopolyhedrovirus of the alfalfa looper, Autographa californica Speyer (Lepidoptera: Noctuidae) in vitro. The mortality of silkworm larve in a PEF treatment group decreased significantly compared with a negative control. PEF showed excellent scavenging activity for 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radicals, which were similar to those of ascorbic acid. The imunomodulatory results suggested that PEF could effectively improve immune function in experimental mice. Our results indicated that PEF could possibly be used for the prophylaxis and treatment of diseases caused by avian influenza virus infection. In addition, PEF with virucidal activity against insect viruses might provide useful for the development of antimicrobial breeding technology for economically important insects. As a natural product from insects, PEF could be a potential source for the discovery of potent antioxidant and immunomodulatory agents. PMID:24735244

  6. Reverse signaling initiated from GITRL induces NF-?B activation through ERK in the inflammatory activation of macrophages

    Microsoft Academic Search

    Eun Mi Bae; Won-Jung Kim; Kyoungho Suk; Young-Mo Kang; Jeong-Euy Park; Won Young Kim; Eun Mi Choi; Beom Kyu Choi; Byoung S. Kwon; Won-Ha Lee

    2008-01-01

    Glucocorticoid-induced TNF receptor family related protein ligand (GITRL) is known to interact with its cognate receptor GITR. In order to investigate the potential role of GITRL in the pro-inflammatory activation of macrophages and the signaling pathway induced by GITRL, we stimulated the macrophage cell line, THP-1, and primary macrophages with an anti-GITRL monoclonal antibody or a GITR:Fc fusion protein and

  7. Antitumor and Immunomodulatory Effects of Polysaccharides from Broken-Spore of Ganoderma lucidum

    PubMed Central

    Wang, Peng-Yun; Zhu, Xiao-Ling; Lin, Zhi-Bin

    2012-01-01

    The antitumor and immunomodulatory activity of broken-spore of Ganoderma lucidum polysaccharides (Gl-BSP) were investigated in vivo and in vitro. It was showed that Gl-BSP (50, 100, and 200?mg?kg?1) exhibited antitumor effect against Sarcoma 180 (S180) in BALB/c mice. The Gl-BSP was not cytotoxicity in S180 cells and PG cells (human lung carcinoma cell) in vitro. However, serum from Gl-BSP-treated S180-bearing mice significantly inhibited S180 and PG cells proliferation in vitro. Moreover, Gl-BSP promoted the splenic lymphocyte proliferation induced by Con A or LPS, enhanced nature killer cell (NK cell) cytotoxic activity, augmented the percentage of neutral red phagocytosis by macrophages, and increased the percentage of the CD4+ or CD8+ subset in S180-bearing mice. The serum level of IFN-?, TNF-?, and nitric oxide was increased by Gl-BSP. Gl-BSP also showed immunomodulatory activities in tumor-bearing mice. Furthermore, neutralization with anti-TNF-? and/or anti-IFN-? significantly diminished growth inhibition induced by Gl-BSP-treated serum of S180-bearing mice in S180 or PG cells. These observations suggest that the antitumor activity of Gl-BSP may be mainly related to the activation of the immune response of the host organism by the stimulation of NK cells, T cells, and macrophages. PMID:22811667

  8. Antitumor and Immunomodulatory Effects of Polysaccharides from Broken-Spore of Ganoderma lucidum.

    PubMed

    Wang, Peng-Yun; Zhu, Xiao-Ling; Lin, Zhi-Bin

    2012-01-01

    The antitumor and immunomodulatory activity of broken-spore of Ganodermalucidum polysaccharides (Gl-BSP) were investigated in vivo and in vitro. It was showed that Gl-BSP (50, 100, and 200?mg?kg(-1)) exhibited antitumor effect against Sarcoma 180 (S180) in BALB/c mice. The Gl-BSP was not cytotoxicity in S180 cells and PG cells (human lung carcinoma cell) in vitro. However, serum from Gl-BSP-treated S180-bearing mice significantly inhibited S180 and PG cells proliferation in vitro. Moreover, Gl-BSP promoted the splenic lymphocyte proliferation induced by Con A or LPS, enhanced nature killer cell (NK cell) cytotoxic activity, augmented the percentage of neutral red phagocytosis by macrophages, and increased the percentage of the CD4(+) or CD8(+) subset in S180-bearing mice. The serum level of IFN-?, TNF-?, and nitric oxide was increased by Gl-BSP. Gl-BSP also showed immunomodulatory activities in tumor-bearing mice. Furthermore, neutralization with anti-TNF-? and/or anti-IFN-? significantly diminished growth inhibition induced by Gl-BSP-treated serum of S180-bearing mice in S180 or PG cells. These observations suggest that the antitumor activity of Gl-BSP may be mainly related to the activation of the immune response of the host organism by the stimulation of NK cells, T cells, and macrophages. PMID:22811667

  9. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis.

    PubMed

    Kahnert, Antje; Seiler, Peter; Stein, Maik; Bandermann, Silke; Hahnke, Karin; Mollenkopf, Hans; Kaufmann, Stefan H E

    2006-03-01

    A potent Th1 immune response is critical to the control of tuberculosis. The impact of an additive Th2 response on the course of disease has so far been insufficiently characterized, despite increased morbidity after co-infection with Mycobacterium tuberculosis and Th2-eliciting helminths and possible involvement of Th2 polarization in reactivation of latent tuberculosis. Here, we describe the gene expression profile of murine bone marrow-derived macrophages alternatively activated by IL-4 in response to infection with M. tuberculosis. Comparison of transcriptional profiles of infected IL-4- and IFN-gamma-activated macrophages revealed delayed and partially diminished responses to intracellular bacteria in alternatively activated macrophages, characterized by reduced exposure to nitrosative stress and increased iron availability, respectively. Alternative activation of host macrophages correlated with elevated expression of the M. tuberculosis iron storage protein bacterioferritin as well as reduced expression of the mycobactin synthesis genes mbtI and mbtJ. The extracellular matrix-remodeling enzyme matrix metalloproteinase (MMP)-12 was induced in alternatively activated macrophages in vitro, and MMP-12-expressing macrophages were abundant at late, but not early, stages of tuberculosis in murine lungs. Our findings emphasize that alternative activation deprives macrophages of control mechanisms that limit mycobacterial growth in vivo, thus supporting intracellular persistence of M. tuberculosis. PMID:16479545

  10. Fluorofenidone inhibits macrophage IL-1? production by suppressing inflammasome activity.

    PubMed

    Lu, Miaomiao; Yang, Wenjun; Peng, Zhangzhe; Zhang, Jin; Mei, Wenjuan; Liu, Chunyan; Tang, Juan; Ma, Hong; Yuan, Xiangning; Meng, Jie; Lv, Ben; Liu, Jishi; Hu, Gaoyun; Tao, Lijian

    2015-07-01

    Interleukin-1 beta (IL-1?) is a potent pro-inflammatory and pro-fibrotic cytokine that plays an important role in renal fibrosis. Fluorofenidone (AKF-PD) is a novel pyridone agent that exerts a strong renal anti-fibrotic effect. We previously found that administration of AKF-PD could significantly attenuate IL-1? production in vitro and in vivo. However, the underlying mechanism is not fully understood. Here we show that AKF-PD has no effect on the expression of pro-IL-1? in activated mouse macrophages in vitro. Instead, AKF-PD inhibits the inflammasome, lowering caspase-1 levels and thereby decreasing cleavage of pro-IL-1? into IL-1?. AKF-PD was found to block inflammasome activity induced by various signals, including ATP, alum crystals, and Salmonella typhimurium. These results provide a novel mechanistic insight into how AKF-PD exerts its anti-inflammatory and anti-fibrotic activities, and suggest that AKF-PD might block IL-1? production via suppression of inflammasomes in renal fibrosis. In addition, the results suggest that AKF-PD may be of therapeutic potential in other inflammasome-related diseases. PMID:25983199

  11. Comparative study of various immunomodulators for macrophage and natural killer cell activation and antiviral efficacy against exotic RNA viruses.

    PubMed

    Pinto, A J; Morahan, P S; Brinton, M A

    1988-01-01

    Several immunomodulators were compared for immunomodulatory and antiviral activity in B6C3F1 female mice. Our results demonstrate that murine recombinant gamma interferon (rIFN-G), human recombinant alpha A/D interferon (rIFN-A), ampligen (a polyribonucleotide) and CL246,738 modulate nonspecific immunity and are effective antiviral agents in vivo. Administration of each of these agents 1 day before cell harvest induced high levels of splenic natural killer (NK) cell activity against YAC-1 target cells. rIFN-G was also a potent activator of peritoneal macrophages (M phi), as evidenced by high levels of antitumor activity and changes in ectoenzyme phenotype that is characteristic of tumoricidal M phi. rIFN-A, ampligen and CL246,738 induced moderate to low levels of M phi activation by these criteria. In vivo protection experiments showed that repeated therapeutic treatment with rIFN-A protected mice against i.p. infection with Venezuelan equine encephalitis (an alpha togavirus, VEE), Banzi (a flavivirus) and herpes simplex virus type 2 (HSV-2). Similar treatment with rIFN-G was effective against VEE and HSV-2, but ineffective against Banzi virus. A single prophylactic i.p. dose of ampligen 1 day before virus challenge was very effective against Banzi virus, moderately effective against HSV-2, and ineffective against VEE and Caraparu (a bunyavirus) infection. A single prophylactic oral dose of CL246,738 provided almost complete protection of mice against VEE, Banzi, and HSV-2, and also increased the mean survival time for Caraparu infected mice. Collectively, these results indicate that rIFN-A, r-IFN-G, ampligen and CL246,738 may be useful in prophylactic or early therapeutic treatment of several serious virus infections. Since these agents stimulate NK cells and M phi, their antiviral activity may result, in part, from the alterations they induce in the natural immune system. PMID:3182149

  12. Anticipatory cognitive stress appraisal modulates suppression of wound-induced macrophage activation by acute psychosocial stress.

    PubMed

    Kuebler, Ulrike; Wirtz, Petra H; Sakai, Miho; Stemmer, Andreas; Meister, Rebecca E; Ehlert, Ulrike

    2015-04-01

    Anticipatory cognitive stress appraisal (ACSA) can affect the stress-induced release of stress hormones, which, in turn, can modulate microbicidal potential of macrophages. This study examines whether ACSA modulates wound-induced activation of macrophage microbicidal potential in 22 acutely stressed compared to 17 nonstressed healthy men. After catheter-induced wound infliction and completing the ACSA questionnaire, the stress group underwent an acute mental stress task, while the nonstressed group did not. Macrophage microbicidal potential and stress hormones were repeatedly measured. In acutely stressed men, but not in nonstressed men, higher scores in ACSA related to lower macrophage microbicidal potential. This association was statistically mediated by the norepinephrine (NE) stress response. Our data suggest that ACSA modulates stress-induced suppression of wound-induced macrophage activation and that the NE stress response underlies this effect. PMID:25336186

  13. Interferon-? regulates cellular metabolism and mRNA translation to potentiate macrophage activation.

    PubMed

    Su, Xiaodi; Yu, Yingpu; Zhong, Yi; Giannopoulou, Eugenia G; Hu, Xiaoyu; Liu, Hui; Cross, Justin R; Rätsch, Gunnar; Rice, Charles M; Ivashkiv, Lionel B

    2015-08-01

    Interferon-? (IFN-?) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-? regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-? was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-? selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-?-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation. PMID:26147685

  14. Inhibitory kappaB kinase 2 activates airway epithelial cells to stimulate bone marrow macrophages.

    PubMed

    Mathew, Biji; Park, Gye Young; Cao, Hongmei; Azim, Anser C; Wang, Xuerong; Van Breemen, Richard B; Sadikot, Ruxana T; Christman, John W

    2007-05-01

    It has not been resolved whether macrophages or airway epithelial cells primarily respond to infectious and inflammatory stimuli and initiate a cell-to-cell inflammatory interaction within the airways. We hypothesized that the airway epithelial cells are primary responders that activate macrophages in response to environmental stimuli. To investigate the unilateral contribution of airway epithelial cells in the activation of macrophages, we developed an in vitro system in which the primary mouse tracheal epithelial cells (MTEC) and primary bone marrow-derived macrophages (BMDM) were incubated together for a brief period of time in a Transwell culture plate. MTEC were transfected with adenoviral vectors that express a constitutively active form of IKK2 (Ad-cIKK2), Ad-beta-Gal, or PBS for 48 h before incubating with the macrophages. Macrophage activation was determined by measuring surface expression of CD11b, activation of NF-kappaB, phagocytic activity and production of reactive oxygen species, and cyclooxygenase (COX)-2 gene expression and production of prostaglandins. Macrophage adherence to epithelial layer was confirmed by CD68 immunostaining and scanning electron microscopy. MTEC cells transfected with Ad-cIKK2 produced increased amounts of IL-6, mouse GRO-alpha, TNF-alpha, and prostaglandin (PG)E2. Exposure of BMDM to MTEC, transfected with Ad-cIKK2, led to an increase in the CD11b expression and increased adherence of macrophages to the epithelial cell layer. NF-kappaB activation, COX-2 gene expression, and PGD2 synthesis were also increased in BMDM that were incubated with MTEC transfected with Ad-cIKK2. These data suggest that airway epithelial cells potentially play a primary role in generating inflammatory signals that result in activation of macrophages. PMID:17204585

  15. Structure-based discovery of an immunomodulatory inhibitor of TLR1-TLR2 heterodimerization from a natural product-like database.

    PubMed

    Zhong, Zhangfeng; Liu, Li-Juan; Dong, Zhi-Qiang; Lu, Lihua; Wang, Modi; Leung, Chung-Hang; Ma, Dik-Lung; Wang, Yitao

    2015-06-30

    We report herein the identification of an immunomodulatory natural product-like compound as a direct inhibitor of TLR1-TLR2 heterodimerization. Compound suppressed TNF-? and IL-6 secretion in Pam3CSK4-induced macrophages. Moreover, compound inhibited the phagocytic activity of macrophages, presumably through modulation of TLR1-TLR2 signaling and inactivation of NF-?B. Molecular docking revealed that compound bound to the interface region of TLR1-TLR2 by forming two hydrogen bonds with residues lining the binding site. To our knowledge, compound has been only the second inhibitor overall of TLR1-TLR2 heterodimerization reported to date. PMID:26051605

  16. Dysfunctional CFTR Alters the Bactericidal Activity of Human Macrophages against Pseudomonas aeruginosa

    PubMed Central

    Porto, Paola Del; Cifani, Noemi; Guarnieri, Simone; Di Domenico, Enea Gino; Mariggiò, Maria A.; Spadaro, Francesca; Guglietta, Silvia; Anile, Marco; Venuta, Federico; Quattrucci, Serena; Ascenzioni, Fiorentina

    2011-01-01

    Chronic inflammation of the lung, as a consequence of persistent bacterial infections by several opportunistic pathogens represents the main cause of mortality and morbidity in cystic fibrosis (CF) patients. Mechanisms leading to increased susceptibility to bacterial infections in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in microbicidal functions of macrophages is emerging. Tissue macrophages differentiate in situ from infiltrating monocytes, additionally, mature macrophages from different tissues, although having a number of common activities, exhibit variation in some molecular and cellular functions. In order to highlight possible intrinsic macrophage defects due to CFTR dysfunction, we have focused our attention on in vitro differentiated macrophages from human peripheral blood monocytes. Here we report on the contribution of CFTR in the bactericidal activity against Pseudomonas aeruginosa of monocyte derived human macrophages. At first, by real time PCR, immunofluorescence and patch clamp recordings we demonstrated that CFTR is expressed and is mainly localized to surface plasma membranes of human monocyte derived macrophages (MDM) where it acts as a cAMP-dependent chloride channel. Next, we evaluated the bactericidal activity of P. aeruginosa infected macrophages from healthy donors and CF patients by antibiotic protection assays. Our results demonstrate that control and CF macrophages do not differ in the phagocytic activity when infected with P. aeruginosa. Rather, although a reduction of intracellular live bacteria was detected in both non-CF and CF cells, the percentage of surviving bacteria was significantly higher in CF cells. These findings further support the role of CFTR in the fundamental functions of innate immune cells including eradication of bacterial infections by macrophages. PMID:21625641

  17. Macrophage CGI-58 Deficiency Activates ROS-Inflammasome Pathway to Promote Insulin Resistance in Mice

    PubMed Central

    Miao, Hongming; Ou, Juanjuan; Ma, Yinyan; Guo, Feng; Yang, Zhenggang; Wiggins, Melvin D.; Liu, Chaohong; Song, Wenxia; Han, Xianlin; Wang, Miao; Cao, Qiang; Chung, Bik-Ho Florence; Yang, Dan; Liang, Houjie; Xue, Bingzhong; Shi, Hang; Gan, Lixia; Yu, Liqing

    2014-01-01

    SUMMARY Overnutrition activates proinflammatory program in macrophages to induce insulin resistance (IR), but its molecular mechanisms remain incompletely understood. Here we show that saturated fatty acid and lipopolysaccharide, two factors implicated in high-fat diet (HFD)-induced IR, suppress macrophage CGI-58 expression. Macrophage-specific CGI-58 knockout (MaKO) in mice aggravates HFD-induced glucose intolerance and IR, which is associated with augmented systemic/tissue inflammation and proinflammatory activation of adipose tissue macrophages. CGI-58-deficient macrophages exhibit mitochondrial dysfunction due to defective peroxisome proliferator-activated receptor (PPAR)-? signaling. Consequently they overproduce reactive oxygen species (ROS) to potentiate secretion of proinflammatory cytokines by activating NLRP3 inflammasome. Anti-ROS treatment or NLRP3 silencing prevents CGI-58-deficient macrophages from over-secreting proinflammatory cytokines and from inducing proinflammatory signaling and IR in the co-cultured fat slices. Anti-ROS treatment also prevents exacerbation of inflammation and IR in HFD-fed MaKO mice. Our data thus establish CGI-58 as a suppressor of overnutrition-induced NLRP3 inflammasome activation in macrophages. PMID:24703845

  18. Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages.

    PubMed

    Jiménez-Garcia, Lidia; Herránz, Sandra; Luque, Alfonso; Hortelano, Sonsoles

    2015-01-01

    Alternative activation of macrophages plays an important role in a range of physiological and pathological processes. This alternative phenotype, also known as M2 macrophages, is induced by type 2 cytokines such as IL-4. The binding of IL-4 to its receptor leads to activation of two major signaling pathways: STAT-6 and PI3K. However, recent studies have described that p38 MAPK might play a role in IL-4-dependent signaling in some cells, although its role in macrophages is still controversial. In this study, we investigated whether p38 MAPK plays a role in the polarization of macrophages in mice. Our results reveal that IL-4 induces phosphorylation of p38 MAPK in thioglycollate-elicited murine peritoneal macrophages, in addition to STAT-6 and PI3K activation. Furthermore, p38 MAPK inactivation, by gene silencing or pharmacological inhibition, suppressed IL-4-induced typical M2 markers, indicating the involvement of p38 MAPK in the signaling of IL-4 leading to M2-macrophage polarization. Moreover, p38 MAPK inhibition blocked phosphorylation of STAT-6 and Akt, suggesting that p38 MAPK is upstream of these signaling pathways. Finally, we show that in an in vivo model of chitin-induced M2 polarization, p38 MAPK inhibition also diminished activation of M2 markers. Taken together, our data establish a new role for p38 MAPK during IL-4-induced alternative activation of macrophages. PMID:25328047

  19. Liposomal Cholesterol Delivery Activates the Macrophage Innate Immune Arm To Facilitate Intracellular Leishmania donovani Killing

    PubMed Central

    Ghosh, June; Guha, Rajan; Das, Shantanabha

    2014-01-01

    Leishmania donovani causes visceral leishmaniasis (VL) by infecting the monocyte/macrophage lineage and residing inside specialized structures known as parasitophorous vacuoles. The protozoan parasite has adopted several means of escaping the host immune response, with one of the major methods being deactivation of host macrophages. Previous reports highlight dampened macrophage signaling, defective antigen presentation due to increased membrane fluidity, and the downregulation of several genes associated with L. donovani infection. We have reported previously that the defective antigen presentation in infected hamsters could be corrected by a single injection of a cholesterol-containing liposome. Here we show that cholesterol in the form of a liposomal formulation can stimulate the innate immune arm and reactivate macrophage function. Augmented levels of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI), along with proinflammatory cytokines such as tumor necrosis factor alpha (TNF-?) and interleukin 6 (IL-6), corroborate intracellular parasite killing. Cholesterol incorporation kinetics is favored in infected macrophages more than in normal macrophages. Such an enhanced cholesterol uptake is associated with preferential apoptosis of infected macrophages in an endoplasmic reticulum (ER) stress-dependent manner. All these events are coupled with mitogen-activated protein (MAP) kinase activation, while inhibition of such pathways resulted in increased parasite loads. Hence, liposomal cholesterol is a potential facilitator of the macrophage effector function in favor of the host, independently of the T-cell arm. PMID:24478076

  20. Calcium ionophore synergizes with bacterial lipopolysaccharides in activating macrophage arachidonic acid metabolism

    PubMed Central

    1988-01-01

    LPS, a major component of Gram-negative bacterial cell walls, prime macrophages for greatly enhanced arachidonic acid [20:4] metabolism when the cells are subsequently stimulated. The LPS-primed macrophage has been used as a model system in which to study the role of Ca2+ in the regulation of 20:4 metabolism. The Ca2+ ionophore A23187 (0.1 microM) triggered the rapid release of 20:4 metabolites from LPS-primed macrophages but not from cells not previously exposed to LPS. Macrophages required exposure to LPS for at least 40 min before A23187 became effective as a trigger. A23187 (0.1 microM) also synergized with PMA in activating macrophage 20:4 metabolism. The PMA effect could be distinguished from that of LPS since no preincubation with PMA was required. A23187 greatly increased the amount of lipoxygenase products secreted from LPS-primed macrophages, leukotriene C4 synthesis being increased 150-fold. LPS-primed macrophages, partially permeabilized to Ca2+ with A23187, were used to titrate the Ca2+ concentration dependence of the cyclooxygenase and lipoxygenase pathways. Cyclooxygenase metabolites were detected at an order of magnitude lower Ca2+ concentration than were lipoxygenase products. The data suggest that Ca2+ regulates macrophage 20:4 metabolism at two distinct steps: an increase in intracellular Ca2+ regulates the triggering signal and relatively higher Ca2+ concentrations are required for 5-lipoxygenase activity. PMID:3126256

  1. Activation of murine dendritic cells and macrophages induced by Salmonella enterica serovar Typhimurium

    PubMed Central

    Kalupahana, Ruwani Sagarika; Mastroeni, Pietro; Maskell, Duncan; Blacklaws, Barbara Ann

    2005-01-01

    Macrophages and dendritic cells (DCs) are antigen-presenting cells (APCs), and the direct involvement of both cell types in the immune response to Salmonella has been identified. In this study we analysed the phenotypic and functional changes that take place in murine macrophages and DCs in response to live and heat-killed Salmonella enterica serovar Typhimurium. Both types of cell secreted proinflammatory cytokines and nitric oxide (NO) in response to live and heat-killed salmonellae. Bacterial stimulation also resulted in up-regulation of costimulatory molecules on macrophages and DCs. The expression of major histocompatibility complex (MHC) class II molecules by macrophages and DCs was differentially regulated by interferon (IFN)-? and salmonellae. Live and heat-killed salmonellae as well as lipopolysaccharide (LPS) inhibited the up-regulation of MHC class II expression induced by IFN-? on macrophages but not on DCs. Macrophages as well as DCs presented Salmonella-derived antigen to CD4 T cells, although DCs were much more efficient than macrophages at stimulating CD4 T-cell cytokine release. Macrophages are effective in the uptake and killing of bacteria whilst DCs specialize in antigen presentation. This study showed that the viability of salmonellae was not essential for activation of APCs but, unlike live bacteria, prolonged contact with heat-killed bacteria was necessary to obtain maximal expression of the activation markers studied. PMID:16011515

  2. Combination of alphavirus replicon particle-based vaccination with immunomodulatory antibodies: therapeutic activity in the B16 melanoma mouse model and immune correlates.

    PubMed

    Avogadri, Francesca; Zappasodi, Roberta; Yang, Arvin; Budhu, Sadna; Malandro, Nicole; Hirschhorn-Cymerman, Daniel; Tiwari, Shakuntala; Maughan, Maureen F; Olmsted, Robert; Wolchok, Jedd D; Merghoub, Taha

    2014-05-01

    Induction of potent immune responses to self-antigens remains a major challenge in tumor immunology. We have shown that a vaccine based on alphavirus replicon particles (VRP) activates strong cellular and humoral immunity to tyrosinase-related protein-2 (TRP2) melanoma antigen, providing prophylactic and therapeutic effects in stringent mouse models. Here, we report that the immunogenicity and efficacy of this vaccine is increased in combination with either antagonist anti-CTL antigen-4 (CTLA-4) or agonist anti-glucocorticoid-induced TNF family-related gene (GITR) immunomodulatory monoclonal antibodies (mAb). In the challenging therapeutic setting, VRP-TRP2 plus anti-GITR or anti-CTLA-4 mAb induced complete tumor regression in 90% and 50% of mice, respectively. These mAbs had similar adjuvant effects in priming an adaptive immune response against the vaccine-encoded antigen, augmenting, respectively, approximately 4- and 2-fold the TRP2-specific CD8(+) T-cell response and circulating Abs, compared with the vaccine alone. Furthermore, while both mAbs increased the frequency of tumor-infiltrating CD8(+) T cells, anti-CTLA-4 mAb also increased the quantity of intratumor CD4(+)Foxp3(-) T cells expressing the negative costimulatory molecule programmed death-1 (PD-1). Concurrent GITR expression on these cells suggests that they might be controlled by anti-GITR mAbs, thus potentially explaining their differential accumulation under the two treatment conditions. These findings indicate that combining immunomodulatory mAbs with alphavirus-based anticancer vaccines can provide therapeutic antitumor immune responses in a stringent mouse model, suggesting potential utility in clinical trials. They also indicate that tumor-infiltrating CD4(+)Foxp3(-)PD-1(+) T cells may affect the outcome of immunomodulatory treatments. PMID:24795357

  3. Combination of Alphavirus replicon particle-based vaccination with immunomodulatory antibodies: therapeutic activity in the B16 melanoma mouse model and immune correlates

    PubMed Central

    Avogadri, Francesca; Zappasodi, Roberta; Yang, Arvin; Budhu, Sadna; Malandro, Nicole; Hirshhorn-Cymerman, Daniel; Tiwari, Shakuntala; Maughan, Maureen F.; Olmsted, Robert; Wolchok, Jedd D; Merghoub, Taha

    2015-01-01

    Induction of potent immune responses to self-antigens remains a major challenge in tumor immunology. We have shown that a vaccine based on alphavirus replicon particles (VRP) activates strong cellular and humoral immunity to tyrosinase related protein-2 (TRP2) melanoma antigen, providing prophylactic and therapeutic effects in stringent mouse models. Here we report that the immunogenicity and efficacy of this vaccine is increased in combination with either antagonist anti-CTLA-4 or agonist anti-GITR immunomodulatory monoclonal antibodies (mAbs). In the challenging therapeutic setting, VRP-TRP2 plus anti-GITR or anti-CTLA-4 mAb induced complete tumor regression respectively in 90% and 50% of mice. These mAbs had similar adjuvant effects in priming an adaptive immune response against the vaccine-encoded antigen, augmenting respectively ~4- and 2-fold the TRP2-specific CD8+ T-cell response and circulating Abs, compared to the vaccine alone. Furthermore, while both mAbs increased the frequency of tumor-infiltrating CD8+ T cells, anti-CTLA-4 mAb also increased the quantity of intra-tumor CD4+Foxp3? T cells expressing the negative co-stimulatory molecule programmed death-1 (PD-1). Concurrent GITR expression on these cells suggests that they might be controlled by anti-GITR mAbs, thus potentially explaining their differential accumulation under the two treatment conditions. These findings indicate that combining immunomodulatory mAbs with alphavirus-based anti-cancer vaccines can provide therapeutic anti-tumor immune responses in a stringent mouse model, suggesting potential utility in clinical trials. They also indicate that tumor-infiltrating CD4+Foxp3?PD-1+ T cells may affect the outcome of immunomodulatory treatments. PMID:24795357

  4. Macrophage activation and human immunodeficiency virus infection: HIV replication directs macrophages towards a pro-inflammatory phenotype while previous activation modulates macrophage susceptibility to infection and viral production

    Microsoft Academic Search

    Fabrice Porcheray; Boubekeur Samah; Cathie Léone; Nathalie Dereuddre-Bosquet; Gabriel Gras

    2006-01-01

    Macrophages are pivotal for the regulation of immune and inflammatory responses, but whether their role in HIV infection is protective or deleterious remains unclear. In this study, we investigated the effect of pro- and anti-inflammatory stimuli on macrophage sensitivity to two different aspects of HIV infection: their susceptibility to infection stricto sensu, which we measured by endpoint titration method, and

  5. Peroxisome Proliferator-Activated Receptor activation induces 11-Hydroxysteroid Dehydrogenase type 1 activity in human alternative macrophages

    E-print Network

    Boyer, Edmond

    1 Peroxisome Proliferator-Activated Receptor activation induces 11-Hydroxysteroid Dehydrogenase type 1 activity in human alternative macrophages Giulia Chinetti-Gbaguidi 1,2,3,4* , Mohamed Amine;32(3):677-85" DOI : 10.1161/ATVBAHA.111.241364 #12;2 Abstract Objectives - 11-hydroxysteroid dehydrogenase type 1

  6. A role for activated macrophages in resistance to infection with Toxoplasma.

    PubMed

    Remington, J S; Krahenbuhl, J L; Mendenhall, J W

    1972-11-01

    Activated macrophages from mice which were chronically infected with Toxoplasma gondii or Besnoitia jellisoni, or which had received Freund complete adjuvant, had an enhanced capacity to to kill intracellular Toxoplasma. Enhanced killing by activated macrophages was demonstrated by decreased incorporation of isotopically labeled uridine by intracellular Toxoplasma and by inhibition of plaque formation. The latter resulted from lack of proliferation of the intracellular Toxoplasma which is normally followed by destruction of the host cell (macrophage) and secondary invasion and destruction of fibroblast monolayers. PMID:4637298

  7. A Role for Activated Macrophages in Resistance to Infection with Toxoplasma

    PubMed Central

    Remington, Jack S.; Krahenbuhl, James L.; Mendenhall, Joy W.

    1972-01-01

    Activated macrophages from mice which were chronically infected with Toxoplasma gondii or Besnoitia jellisoni, or which had received Freund complete adjuvant, had an enhanced capacity to to kill intracellular Toxoplasma. Enhanced killing by activated macrophages was demonstrated by decreased incorporation of isotopically labeled uridine by intracellular Toxoplasma and by inhibition of plaque formation. The latter resulted from lack of proliferation of the intracellular Toxoplasma which is normally followed by destruction of the host cell (macrophage) and secondary invasion and destruction of fibroblast monolayers. Images PMID:4637298

  8. Defective macrophage function in crohn's disease: role of alternatively activated macrophages in inflammation

    Microsoft Academic Search

    C Karaiskos; B N Hudspith; T Elliott; N B Rayment; V Avgousti; J D Sanderson

    2011-01-01

    IntroductionThe aetiology of Crohn's disease (CD) involves a genetically determined dysregulated immune response to commensal intestinal microflora. In CD, viable E coli are found within lamina propria macrophages (M?s) and E coli intracellular survival is prolonged in CD-derived M?s in vitro. Different M? subpopulations exist, M1 cells are inflammatory cells, M2a cells are involved in tissue repair and M2c are

  9. Tie2 Signaling Cooperates with TNF to Promote the Pro-Inflammatory Activation of Human Macrophages Independently of Macrophage Functional Phenotype

    PubMed Central

    García, Samuel; Krausz, Sarah; Ambarus, Carmen A.; Fernández, Beatriz Malvar; Hartkamp, Linda M.; van Es, Inge E.; Hamann, Jörg; Baeten, Dominique L.; Tak, Paul P.; Reedquist, Kris A.

    2014-01-01

    Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-? and IL-10 –differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-? and IL-10 –differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions. PMID:24404127

  10. CpG oligodeoxynucleotides activate grass carp ( Ctenopharyngodon idellus) macrophages

    Microsoft Academic Search

    Zhen Meng; Jianzhong Shao; Lixin Xiang

    2003-01-01

    In mice and humans, B cells, antigen-presenting cells including monocytes, macrophages and dendritic cells and natural killer cells can be stimulated directly or indirectly by the bacterial DNA and oligodeoxynucleotides (ODN) containing the CpG motifs (CpG DNA). Using head kidney macrophages of grass carp (Ctenopharyngodon idellus) as an in vitro model, we investigated the effects of several CpG-ODNs on fish

  11. The phosphoproteome of toll-like receptor-activated macrophages

    Microsoft Academic Search

    Gabriele Weintz; Jesper V Olsen; Katja Frühauf; Magdalena Niedzielska; Ido Amit; Jonathan Jantsch; Jörg Mages; Cornelie Frech; Lars Dölken; Matthias Mann; Roland Lang

    2010-01-01

    Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino acids in cell culture, phosphopeptide enrichment and high-resolution mass spectrometry. In parallel, nascent

  12. GADD34 inhibits activation-induced apoptosis of macrophages through enhancement of autophagy

    PubMed Central

    Ito, Sachiko; Tanaka, Yuriko; Oshino, Reina; Aiba, Keiko; Thanasegaran, Suganya; Nishio, Naomi; Isobe, Ken-ichi

    2015-01-01

    Autophagy is a common physiological function in all eukaryotes. The process is induced by depletion of nutrients including amino acids. GADD34 is expressed following DNA damage, ER stresses and amino acid deprivation. Here, we investigated the effects of GADD34 on autophagy and cell activation in macrophages. The deprivation of tyrosine and cysteine markedly induced the expression of GADD34 in macrophages. LPS stimulation combined with tyrosine/cysteine-deprivation initially activated macrophages, but then shifted to cell death in late phase of stimulation. When LPS stimulation was combined with tyrosine/cysteine-deprivation, a deficiency of GADD34 enhanced cell activation signaling such as Src-family, Erk1/2, p38 MAPK and Akt. In the late phase of stimulation, a deficiency of GADD34 increased apoptosis more than that in wild-type macrophages. Further we found that mTOR-S6K signaling was highly enhanced in GADD34-deficient macrophages compared with wild-type cells when cells were treated by LPS combined with tyrosine/cysteine-deprivation. LC3-II was increased by LPS stimulation combined with tyrosine/cysteine-deprivation. Defective GADD34 reduced LC3-II and autophagosome formation induced by LPS-stimulation and tyrosine/cysteine-deprivation compared with that seen in wild-type macrophages. These results indicates that GADD34 enhances autophagy and suppresses apoptosis stimulated by LPS combined with amino acid deprivation through regulation of mTOR signaling pathway in macrophages. PMID:25659802

  13. Differential anti-inflammatory pathway by xanthohumol in IFN-? and LPS-activated macrophages

    Microsoft Academic Search

    Young-Chang Cho; Hyun Jung Kim; Young-Jun Kim; Kwang Youl Lee; Hyun Jin Choi; Ik-Soo Lee; Bok Yun Kang

    2008-01-01

    Macrophages are the main cells responsible for the innate immunity, and their activation by lipopolysaccharide (LPS) from Gram-negative bacteria or interferon (IFN)-? from host immune cells is important for controlling infections. However, the overwhelming activation of macrophages can cause a severe inflammatory state. This study investigated the inhibitory mechanism of xanthohumol (XN) against the inflammatory effectors (IL-1?, TNF-?, and iNOS)

  14. Mycobacterium tuberculosis 6 kDa early secreted antigenic target stimulates activation of J774 macrophages

    Microsoft Academic Search

    Gyanesh Singh; Balwan Singh; Vladimir Trajkovic; Pawan Sharma

    2005-01-01

    The influence of the 6kDa early-secreted antigenic target (ESAT-6) of Mycobacterium tuberculosis on macrophage activation was investigated using J774 macrophage cell line. While without effect if applied alone, ESAT-6 in a dose-dependent manner enhanced nitric oxide (NO) release by IFN-?-stimulated J774 cells. However, it completely failed to modulate NO production in J774 cells activated with E. coli lipopolysaccharide. The effect

  15. Methylthioadenosine Reprograms Macrophage Activation through Adenosine Receptor Stimulation

    PubMed Central

    Keyel, Peter A.; Romero, Matthew; Wu, Wenbo; Kwak, Daniel H.; Zhu, Qin; Liu, Xinyu; Salter, Russell D.

    2014-01-01

    Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA), which inhibits TNF? production following LPS stimulation. We found that MTA could block TNF? production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1? production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation. PMID:25117662

  16. Mechanisms of particle-induced activation of alveolar macrophages.

    PubMed

    Gercken, G; Berg, I; Dörger, M; Schlüter, T

    1996-11-01

    Bovine alveolar macrophages were exposed in vitro to quartz dusts, metal-containing dusts or silica particles coated with a single metal oxide. The release of reactive oxygen intermediates (ROI) was measured in short-term incubations (90 min). The secretion of both ROI was markedly enhanced by silica particles coated with vanadium oxide and lowered by copper oxide-coated particles. The particle-induced ROI release was significantly decreased by the inhibition of protein kinase C (PKC) as well as phospholipase A2, suggesting the involvement of both enzymes in the NADPH oxidase activation. Quartz dusts induced a transient increase of free cytosolic calcium ion concentration, slight intracellular acidification, and depolarization of the plasma membrane. In the presence of EGTA or verapamil the rise of [Ca2+]i was diminished, suggesting an influx of extracellular calcium ions. The PKC inhibitor GF 109203X did not inhibit the quartz-induced calcium rise, while both the cytosolic acidification and depolarization were prevented. BSA-coating of the quartz particles abolished the calcium influx as well as the decrease of pHi, and possibly hyperpolarized the plasma membrane. PMID:8920726

  17. In vitro differentiation of human macrophages with enhanced antimycobacterial activity

    PubMed Central

    Vogt, Guillaume; Nathan, Carl

    2011-01-01

    Mycobacterium tuberculosis causes widespread, persistent infection, often residing in macrophages that neither sterilize the bacilli nor allow them to cause disease. How macrophages restrict growth of pathogens is one of many aspects of human phagocyte biology whose study relies largely on macrophages differentiated from monocytes in vitro. However, such cells fail to recapitulate the phenotype of tissue macrophages in key respects, including that they support early, extensive replication of M. tuberculosis and die in several days. Here we found that human macrophages could survive infection, kill Mycobacterium bovis BCG, and severely limit the replication of M. tuberculosis for several weeks if differentiated in 40% human plasma under 5%–10% (physiologic) oxygen in the presence of GM-CSF and/or TNF-? followed by IFN-?. Control was lost with fetal bovine serum, 20% oxygen, M-CSF, higher concentrations of cytokines, or premature exposure to IFN-?. We believe that the new culture method will enable inquiries into the antimicrobial mechanisms of human macrophages. PMID:21911939

  18. Re-evaluation of anti-inflammatory activity of mastic using activated macrophages.

    PubMed

    Zhou, Li; Satoh, Kazue; Takahashi, Keiso; Watanabe, Shuji; Nakamura, Wataru; Maki, Jun; Hatano, Hajime; Takekawa, Fumihiro; Shimada, Chiyako; Sakagami, Hiroshi

    2009-01-01

    Mastic is a resinous exudate obtained from the stem and the main leaves of Pistacia lentiscus. Mastic has shown several beneficial pharmaceutical properties such as antibacterial and apoptosis-modulating activities. The aim of this study was to investigate whether mastic affects the function of activated macrophages. Both solid and liquid types of mastic inhibited the production of pro-inflammatory substances such as nitric oxide (NO) and prostaglandin (PG)E(2) by lipopolysaccharide (LPS)-activated mouse macrophage-like RAW264.7 cells. This was accompanied by the decline of viable cell number. Western blot and RT-PCR analyses showed that mastic inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 at both protein and mRNA levels. ESR spectroscopy revealed that mastic scavenged NO and superoxide radicals very poorly, in contrast to its potent hydroxyl radical scavenging activity. These data demonstrate that mastic inhibits the production of both NO and PGE(2) by activated macrophages mostly via its cytotoxic action. The narrow range of effective concentration of mastic due to its cytotoxicity may limit its potential application as an anti-inflammatory agent. PMID:19567394

  19. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    SciTech Connect

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Patel-Vayas, Kinal; Shen, Jianliang [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)] [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States)] [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)] [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2?-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NF?B. This correlated with expression of monocyte chemotactic protein?1, inducible nitric oxide synthase and cyclooxygenase?2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ? Lung macrophages are highly sensitive to ozone induced oxidative stress. ? Ozone induces autophagy and apoptosis in lung macrophages. ? Proinflammatory and wound repair macrophages are activated early after ozone. ? Oxidative stress may contribute to regulating macrophage phenotype and function.

  20. Infection of macrophages by Theiler's murine encephalomyelitis virus is highly dependent on their activation or differentiation state.

    PubMed Central

    Shaw-Jackson, C; Michiels, T

    1997-01-01

    Macrophages are the main targets of Theiler's murine encephalomyelitis virus (TMEV) during persistent demyelinating infection of mice. Replication of TMEV in macrophages was previously shown to depend on their activation state. Here, we show that the quality of the serum used for culture drastically influences viral entry in RAW264.7 macrophages. PMID:9343249

  1. Macrophage biospecific extraction and high performance liquid chromatography for hypothesis of immunological active components in Cordyceps sinensis

    Microsoft Academic Search

    L. Yu; J. Zhao; Q. Zhu; S. P. Li

    2007-01-01

    A method, namely macrophage biospecific extraction and high performance liquid chromatography for screening potential immunological active components in Cordyceps sinensis, a well-known traditional Chinese medicine, was developed. Two components, which could interact with macrophage, in aqueous extract of C. sinensis (WECS) were found by comparing the HPLC chromatograms of WECS before and after interacted with macrophage. The two compounds were

  2. EXTRACELLULAR CYTOLYSIS BY ACTIVATED MACROPHAGES AND GRANULOCYTES I. Pharmacologic Triggering of Effector Cells and the Release of Hydrogen Peroxide

    Microsoft Academic Search

    CARL F. NATHAN; LINDA H. BRUKNER; SAMUEL C. SILVERSTEIN; ZANVIL A. COHN

    Until recently, we knew of no biochemical basis for the cytotoxic activity of any mononuclear leukocyte (macrophage or lymphocyte). Thymidine (1) and arginase (2, 3) are now thought to account for some of the in vitro cytostatic and cytolytic effects of macrophages. However, those molecules seem unlikely to mediate similar effects of macrophages in vivo, except perhaps in areas of

  3. Immunomodulatory Activity and Protective Effects of Polysaccharide from Eupatorium adenophorum Leaf Extract on Highly Pathogenic H5N1 Influenza Infection

    PubMed Central

    Hou, Lingyu

    2013-01-01

    The development of novel broad-spectrum, antiviral agents against H5N1 infection is urgently needed. In this study, we evaluated the immunomodulatory activities and protective effect of Eupatorium adenophorum polysaccharide (EAP) against the highly pathogenic H5N1 subtype influenza virus. EAP treatment significantly increased the production of IL-6, TNF-?, and IFN-? both in vivo and in vitro as measured by qPCR and ELISA. In a mouse infection model, intranasal administration of EAP at a dose of 25?mg/kg body weight prior to H5N1 viral challenge efficiently inhibited viral replication, decreased lung lesions, and increased survival rate. We further evaluated the innate immune recognition of EAP, as this process is regulated primarily Dectin-1 and mannose receptor (MR). These results indicate that EAP may have immunomodulatory properties and a potential prophylactic effect against H5N1 influenza infection. Our investigation suggests an alternative strategy for the development of novel antiinfluenza agents and benefits of E. adenophorum products. PMID:24159339

  4. Batf2/Irf1 Induces Inflammatory Responses in Classically Activated Macrophages, Lipopolysaccharides, and Mycobacterial Infection.

    PubMed

    Roy, Sugata; Guler, Reto; Parihar, Suraj P; Schmeier, Sebastian; Kaczkowski, Bogumil; Nishimura, Hajime; Shin, Jay W; Negishi, Yutaka; Ozturk, Mumin; Hurdayal, Ramona; Kubosaki, Atsutaka; Kimura, Yasumasa; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Brombacher, Frank; Suzuki, Harukazu

    2015-06-15

    Basic leucine zipper transcription factor Batf2 is poorly described, whereas Batf and Batf3 have been shown to play essential roles in dendritic cell, T cell, and B cell development and regulation. Batf2 was drastically induced in IFN-?-activated classical macrophages (M1) compared with unstimulated or IL-4-activated alternative macrophages (M2). Batf2 knockdown experiments from IFN-?-activated macrophages and subsequent expression profiling demonstrated important roles for regulation of immune responses, inducing inflammatory and host-protective genes Tnf, Ccl5, and Nos2. Mycobacterium tuberculosis (Beijing strain HN878)-infected macrophages further induced Batf2 and augmented host-protective Batf2-dependent genes, particularly in M1, whose mechanism was suggested to be mediated through both TLR2 and TLR4 by LPS and heat-killed HN878 (HKTB) stimulation experiments. Irf1 binding motif was enriched in the promoters of Batf2-regulated genes. Coimmunoprecipitation study demonstrated Batf2 association with Irf1. Furthermore, Irf1 knockdown showed downregulation of IFN-?- or LPS/HKTB-activated host-protective genes Tnf, Ccl5, Il12b, and Nos2. Conclusively, Batf2 is an activation marker gene for M1 involved in gene regulation of IFN-?-activated classical macrophages, as well as LPS/HKTB-induced macrophage stimulation, possibly by Batf2/Irf1 gene induction. Taken together, these results underline the role of Batf2/Irf1 in inducing inflammatory responses in M. tuberculosis infection. PMID:25957166

  5. Enhancing effect of oxygen radical scavengers on murine macrophage anticryptococcal activity through production of nitric oxide

    PubMed Central

    TOHYAMA, M.; KAWAKAMI, K.; FUTENMA, M.; SAITO, A.

    1996-01-01

    We examined the roles of reactive nitrogen intermediates (RNI) and reactive oxygen intermediates (ROI) in interferon-gamma (IFN-?)-induced cryptococcostatic activity of murine peritoneal macrophages using NG-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of RNI synthesis, and superoxide dismutase (SOD) and catalase, oxygen radical scavengers. IFN-?-activated macrophages produced nitric oxide (NO) in a dose-dependent manner, as measured by increased nitrite concentration in the culture supernatant. IFN-? also enhanced the suppressive effect on cryptococcal growth in a similar dose-dependent manner. The induction of killing activity and NO production by an optimal dose of IFN-? (100 U/ml) was virtually suppressed by 500 ?M L-NMMA. These results confirmed the importance of the RNI-mediated effector mechanism in anticryptococcal activity of macrophages. SOD and catalase significantly enhanced the cryptococcostatic activity of macrophages induced by a suboptimal dose of IFN-? (20 U/ml). The augmenting effect of these reagents was mediated by NO, since they potentiated the production of NO by macrophages and their effects were totally blocked by L-NMMA. Our results indicate that the IFN-?-induced anticryptococcal activity of macrophages is dependent mostly on RNI, and suggest that the ROI system down-regulates the effector mechanism for cryptococcostasis by suppressing the RNI system. PMID:8608643

  6. Human activated macrophages and hypoxia: a comprehensive review of the literature

    PubMed Central

    Sotoodehnejadnematalahi, Fattah; Burke, Bernard

    2014-01-01

    Macrophages accumulate in poorly vascularised and hypoxic sites including solid tumours, wounds and sites of infection and inflammation where they can be exposed to low levels of oxygen for long periods. Up to date, different studies have shown that a number of transcription factors are activated by hypoxia which in turn activate a broad array of mitogenic, pro-invasive, pro-angiogenic, and pro-metastatic genes. On the other hand, macrophages respond to hypoxia by up-regulating several genes which are chief factors in angiogenesis and tumorigenesis. Therefore, in this review article we focus mainly on the role of macrophages during inflammation and discuss their response to hypoxia by regulating a diverse array of transcription factors. We also review the existing literatures on hypoxia and its cellular and molecular mechanism which mediates macrophages activation. PMID:25691922

  7. Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages

    Microsoft Academic Search

    Marta Cubero; Anna Planavila; Marta Alegret; Juan Carlos Laguna

    2003-01-01

    Peroxisome proliferator-activated receptors (PPARs) are key regulators of macrophage lipid metabolism. We compared the effects of three PPAR activators (bezafibrate, fenofibrate, and troglitazone) on the mRNA levels of genes involved in lipid metabolism in primary human macrophages and macrophage-derived foam cells. Treatment of human macrophages for 24 hours with 100 [mu ]mol\\/L bezafibrate, a nonselective drug that activates the 3

  8. Relationship of MMP-14 and TIMP-3 Expression with Macrophage Activation and Human Atherosclerotic Plaque Vulnerability

    PubMed Central

    Johnson, Jason L.; Jenkins, Nicholas P.; Huang, Wei-Chun; Sala-Newby, Graciela B.; Scholtes, Vincent P. W.; Moll, Frans L.; Pasterkamp, Gerard; Newby, Andrew C.

    2014-01-01

    Matrix metalloproteinase-14 (MMP-14) promotes vulnerable plaque morphology in mice, whereas tissue inhibitor of metalloproteinases-3 (TIMP-3) overexpression is protective. MMP-14hi??TIMP-3lo rabbit foam cells are more invasive and more prone to apoptosis than MMP-14lo??TIMP-3hi cells. We investigated the implications of these findings for human atherosclerosis. In vitro generated macrophages and foam-cell macrophages, together with atherosclerotic plaques characterised as unstable or stable, were examined for expression of MMP-14, TIMP-3, and inflammatory markers. Proinflammatory stimuli increased MMP-14 and decreased TIMP-3 mRNA and protein expression in human macrophages. However, conversion to foam-cells with oxidized LDL increased MMP-14 and decreased TIMP-3 protein, independently of inflammatory mediators and partly through posttranscriptional mechanisms. Within atherosclerotic plaques, MMP-14 was prominent in foam-cells with either pro- or anti-inflammatory macrophage markers, whereas TIMP-3 was present in less foamy macrophages and colocalised with CD206. MMP-14 positive macrophages were more abundant whereas TIMP-3 positive macrophages were less abundant in plaques histologically designated as rupture prone. We conclude that foam-cells characterised by high MMP-14 and low TIMP-3 expression are prevalent in rupture-prone atherosclerotic plaques, independent of pro- or anti-inflammatory activation. Therefore reducing MMP-14 activity and increasing that of TIMP-3 could be valid therapeutic approaches to reduce plaque rupture and myocardial infarction. PMID:25301980

  9. Visfatin is induced by peroxisome proliferator-activated receptor gamma in human macrophages

    PubMed Central

    Mayi, Thérèse Hèrvée; Duhem, Christian; Copin, Corinne; Bouhlel, Mohamed Amine; Rigamonti, Elena; Pattou, François; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2010-01-01

    Obesity is a low grade chronic inflammatory disease associated with an increased number of macrophages (ATM) in adipose tissue. Within the adipose tissue, ATM are the major source of visfatin/PBEF/NAMPT. The nuclear receptor Peroxisome Proliferator-Activated Receptor (PPAR)? exerts anti-inflammatory effects in macrophages by inhibiting cytokine production and enhancing alternative differentiation. In this study, we investigated whether PPAR? modulates visfatin expression in murine (BMDM) and human (RM, M1, M2, ATM) macrophage models and preadipocyte-derived adipocytes. We show that synthetic PPAR? ligands increased visfatin gene expression in a PPAR?-dependent manner in primary human macrophages (RM) and ATM, but not in adipocytes. The increase of visfatin mRNA (3-fold) was paralleled by an increase of protein expression (30%) and secretion (30%). Electrophoretic Mobility Shift Assay (EMSA) experiments and transient transfection assays indicated that PPAR? induces visfatin promoter activity in human macrophages by binding to a DR1-PPAR? response element. Finally, we show that PPAR? ligands increase NAD+ production in primary human macrophages and this regulation is dampened in the presence of visfatin siRNA or by the visfatin-specific inhibitor FK866. Taken together, our results suggest that PPAR? regulates the expression of visfatin in macrophages leading to increased NAD+ levels. PMID:20608974

  10. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages.

    PubMed

    Mayi, Thérèse Hèrvée; Rigamonti, Elena; Pattou, François; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-01

    Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR)? are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR? target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD(+) concentration was observed. Interestingly, LXR activation decreased the PPAR?-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR? pathways in human macrophages. PMID:21145308

  11. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization.

    PubMed

    Yang, M; Shao, J-H; Miao, Y-J; Cui, W; Qi, Y-F; Han, J-H; Lin, X; Du, J

    2014-08-01

    Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adaptor protein of innate immune responses to extracellular pathogens. We report that increased CARD9 expression is primarily localized in infiltrated macrophages and significantly associated with advanced histopathologic stage and the presence of metastasis. Using CARD9-deficient (CARD9(-/-)) mice, we show that bone marrow-derived CARD9 promotes liver metastasis of colon carcinoma cells. Mechanistic studies reveal that CARD9 contributes to tumor metastasis by promoting metastasis-associated macrophage polarization through activation of the nuclear factor-kappa B signaling pathway. We further demonstrate that tumor cell-secreted vascular endothelial growth factor facilitates spleen tyrosine kinase activation in macrophages, which is necessary for formation of the CARD9-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 complex. Taken together, our results indicating that CARD9 is a regulator of metastasis-associated macrophages will lead to new insights into evolution of the microenvironments supporting tumor metastasis, thereby providing targets for anticancer therapies. PMID:24722209

  12. Anthrax Lethal Factor Activates K+ Channels To Induce IL-1? Secretion in Macrophages

    PubMed Central

    Thomas, Johnson; Epshtein, Yulia; Chopra, Arun; Ordog, Balazs; Ghassemi, Mahmood; Christman, John W.; Nattel, Stanley; Cook, James L.; Levitan, Irena

    2012-01-01

    Anthrax lethal toxin (LeTx) is a virulence factor of Bacilillus anthracis that is a bivalent toxin, containing lethal factor (LF) and protective Ag proteins, which causes cytotoxicity and altered macrophage function. LeTx exposure results in early K+ efflux from macrophages associated with caspase-1 activation and increased IL-1? release. The mechanism of this toxin-induced K+ efflux is unknown. The goals of the current study were to determine whether LeTx-induced K+ efflux from macrophages is mediated by toxin effects on specific K+ channels and whether altered K+-channel activity is involved in LeTx-induced IL-1? release. Exposure of macrophages to LeTx induced a significant increase in the activities of two types of K+ channels that have been identified in mouse macrophages: Ba2+-sensitive inwardly rectifying K+ (Kir) channels and 4-aminopyridine–sensitive outwardly rectifying voltage-gated K+ (Kv) channels. LeTx enhancement of both Kir and Kv required the proteolytic activity of LF, because exposure of macrophages to a mutant LF-protein (LFE687C) combined with protective Ag protein had no effect on the currents. Furthermore, blocking Kir and Kv channels significantly decreased LeTx-induced release of IL-1?. In addition, retroviral transduction of macrophages with wild-type Kir enhanced LeTx-induced release of IL-1?, whereas transduction of dominant-negative Kir blocked LeTx-induced release of IL-1?. Activation of caspase-1 was not required for LeTx-induced activation of either of the K+ channels. These data indicate that a major mechanism through which LeTx stimulates macrophages to release IL-1? involves an LF-protease effect that enhances Kir and Kv channel function during toxin stimulation. PMID:21421849

  13. Hyper-inflammation and skin destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency.

    PubMed

    Das, Lopa M; Rosenjack, Julie; Au, Liemin; Galle, Pia S; Hansen, Morten B; Cathcart, Martha K; McCormick, Thomas S; Cooper, Kevin D; Silverstein, Roy L; Lu, Kurt Q

    2015-02-01

    Injury initiates recruitment of macrophages to support tissue repair; however, excessive macrophage activity may exacerbate tissue damage causing further destruction and subsequent delay in wound repair. Here we show that the peroxisome proliferation-activated receptor-? agonist, rosiglitazone (Rosi), a medication recently reintroduced as a drug to treat diabetes and with known anti-inflammatory properties, paradoxically generates pro-inflammatory macrophages. This is observed in both IL-6-deficient mice and control wild-type mice experimentally induced to produce high titers of auto-antibodies against IL-6, mimicking IL-6 deficiency in human diseases. IL-6 deficiency when combined with Rosi-mediated upregulation of suppressor of cytokine signaling 3 leads to an altered ratio of nuclear signal transducer and activator of transcription 3/NF-?B that allows hyper-induction of inducible nitric oxide synthase (iNOS). Macrophages activated in this manner cause de novo tissue destruction, recapitulating human chronic wounds, and can be reversed in vivo by recombinant IL-6, blocking macrophage infiltration, or neutralizing iNOS. This study provides insight into an unanticipated paradoxical role of Rosi in mediating hyper-inflammatory macrophage activation significant for diseases associated with IL-6 deficiency. PMID:25184961

  14. Augmentation of macrophage growth-stimulating activity of lipids by their peroxidation

    SciTech Connect

    Yui, S.; Yamazaki, M. (Teikyo Univ., Kanagawa (Japan))

    1990-02-15

    Previously, we reported that some kinds of lipids (cholesterol esters, triglycerides, and some negatively charged phospholipids) that are constituents of lipoproteins or cell membranes induce growth of peripheral macrophages in vitro. In this paper, we examined the effect of peroxidation of lipids on their macrophage growth-stimulating activity because lipid peroxidation is observed in many pathological states such as inflammation. When phosphatidylserine, one of the phospholipids with growth-stimulating activity, was peroxidized by UV irradiation, its macrophage growth-stimulating activity was augmented in proportion to the extent of its peroxidation. The activity of phosphatidylethanolamine was also increased by UV irradiation. On the other hand, phosphatidylcholine or highly unsaturated free fatty acids, such as arachidonic acid and eicosapentaenoic acid, did not induce macrophage growth irrespective of whether they were peroxidized. The augmented activity of UV-irradiated phosphatidylserine was not affected by the coexistence of an antioxidant, vitamin E or BHT. These results suggest that some phospholipids included in damaged cells or denatured lipoproteins which are scavenged by macrophages in vivo may induce growth of peripheral macrophages more effectively when they are peroxidized by local pathological processes.

  15. Hyper-Inflammation and Skin Destruction Mediated by Rosiglitazone Activation of Macrophages in IL-6 Deficiency

    PubMed Central

    Das, Lopa M; Rosenjack, Julie; Au, Liemin; Galle, Pia S; Hansen, Morten B; Cathcart, Martha K; McCormick, Thomas S; Cooper, Kevin D; Silverstein, Roy L; Lu, Kurt Q

    2015-01-01

    Injury initiates recruitment of macrophages to support tissue repair; however, excessive macrophage activity may exacerbate tissue damage causing further destruction and subsequent delay in wound repair. Here we show that the peroxisome proliferation–activated receptor-? agonist, rosiglitazone (Rosi), a medication recently reintroduced as a drug to treat diabetes and with known anti-inflammatory properties, paradoxically generates pro-inflammatory macrophages. This is observed in both IL-6-deficient mice and control wild-type mice experimentally induced to produce high titers of auto-antibodies against IL-6, mimicking IL-6 deficiency in human diseases. IL-6 deficiency when combined with Rosi-mediated upregulation of suppressor of cytokine signaling 3 leads to an altered ratio of nuclear signal transducer and activator of transcription 3/NF-?B that allows hyper-induction of inducible nitric oxide synthase (iNOS). Macrophages activated in this manner cause de novo tissue destruction, recapitulating human chronic wounds, and can be reversed in vivo by recombinant IL-6, blocking macrophage infiltration, or neutralizing iNOS. This study provides insight into an unanticipated paradoxical role of Rosi in mediating hyper-inflammatory macrophage activation significant for diseases associated with IL-6 deficiency. PMID:25184961

  16. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2STAT3 signaling pathway

    Microsoft Academic Search

    Esmerij P van der Zanden; Frans O The; Maarten F Bijlsma; David J van Westerloo; Roelof J Bennink; Hans-Rudolf Berthoud; Satoshi Uematsu; Shizuo Akira; Rene M van den Wijngaard; Guy E Boeckxstaens; Wouter J de Jonge

    2005-01-01

    Acetylcholine released by efferent vagus nerves inhibits macrophage activation. Here we show that the anti-inflammatory action of nicotinic receptor activation in peritoneal macrophages was associated with activation of the transcription factor STAT3. STAT3 was phosphorylated by the tyrosine kinase Jak2 that was recruited to the ?7 subunit of the nicotinic acetylcholine receptor. The anti-inflammatory effect of nicotine required the ability

  17. Assessment and comparison of immunoregulatory activity of four hydrosoluble fractions of Angelica sinensisin vitro on the peritoneal macrophages in ICR mice.

    PubMed

    Chen, Ying; Duan, Jin-ao; Qian, Dawei; Guo, Jianming; Song, Bingsheng; Yang, Ming

    2010-04-01

    Angelica sinensis (Oliv) Diels, a traditional oriental herbal medicine, is known to have immunostimulatory and antitumor effects. In this paper, four hydrosoluble fractions were obtained and purified from A. sinensis including: Angelica polysaccharide, oligosaccharides (Angelica oligosaccharide and Angelica sucrose) and Angelica total amino acid, named APS, AOS, AS, and TAA, respectively. Moreover, the immunomodulatory activity of these four fractions on murine peritoneal macrophages were assessed and compared from various aspects including cell proliferation, phagocytic activity, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) release, induced nitric oxide synthetase (iNOS) and lysozyme (LZM) activity, intracellular adhesion molecule-1 (ICAM-1) expression on cell surface and Toll-like receptor 4 (TLR4) gene expression. Although APS exhibited the most obvious growth facilitative activity, AOS did better in activation of H(2)O(2) release; TAA exerted the best activation of phagocytic activity, production of NO and ICAM-1 expression. Furthermore, we found that the action mode of the four fractions was similar to that of LPS and the mechanism may be related to the upregulation of TLR4 mRNA. These results demonstrated that oligosaccharide and amino acid fractions, as well as polysaccharide fraction of Radix A. sinensis, could serve as immunomodulator and TLR4 as one of the immune receptors may play important role for this action. PMID:20093201

  18. Immunomodulatory Activity of Dietary Fiber: Arabinoxylan and Mixed-Linked Beta-Glucan Isolated from Barley Show Modest Activities in Vitro

    PubMed Central

    Samuelsen, Anne Berit; Rieder, Anne; Grimmer, Stine; Michaelsen, Terje E.; Knutsen, Svein H.

    2011-01-01

    High intake of dietary fiber is claimed to protect against development of colorectal cancer. Barley is a rich source of dietary fiber, and possible immunomodulatory effects of barley polysaccharides might explain a potential protective effect. Dietary fiber was isolated by extraction and enzyme treatment. A mixed-linked ?-glucan (WSM-TPX, 96.5% ?-glucan, Mw 886 kDa), an arabinoxylan (WUM-BS-LA, 96.4% arabinoxylan, Mw 156 kDa), a mixed-linked ?-glucan rich fraction containing 10% arabinoxylan (WSM-TP) and an arabinoxylan rich fraction containing 30% mixed-linked ?-glucan (WUM-BS) showed no significant effect on IL-8 secretion and proliferation of two intestinal epithelial cell lines, Caco-2 and HT-29, and had no significant effect on the NF-?B activity in the monocytic cell line U937-3?B-LUC. Further enriched arabinoxylan fractions (WUM-BS-LA) from different barley varieties (Tyra, NK96300, SB94897 and CDCGainer) were less active than the mixed-linked ?-glucan rich fractions (WSM-TP and WSM-TPX) in the complement-fixing test. The mixed-linked ?-glucan rich fraction from NK96300 and CDCGainer showed similar activities as the positive control while mixed-linked ?-glucan rich fractions from Tyra and SB94897 were less active. From these results it is concluded that the isolated high molecular weight mixed-linked ?-glucans and arabinoxylans from barley show low immunological responses in selected in vitro test systems and thus possible anti-colon cancer effects of barley dietary fiber cannot be explained by our observations. PMID:21340001

  19. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome

    PubMed Central

    Canna, Scott W.; de Jesus, Adriana Almeida; Gouni, Sushanth; Brooks, Stephen R.; Marrero, Bernadette; Liu, Yin; DiMattia, Michael A.; Zaal, Kristien J.M.; Montealegre Sanchez, Gina A.; Kim, Hanna; Chapelle, Dawn; Plass, Nicole; Huang, Yan; Villarino, Alejandro V.; Biancotto, Angelique; Fleisher, Thomas A.; Duncan, Joseph A.; O’Shea, John J; Benseler, Susanne; Grom, Alexei; Deng, Zuoming; Laxer, Ronald M; Goldbach-Mansky, Raphaela

    2014-01-01

    Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1? and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1? oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1? and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy. PMID:25217959

  20. Activation of Adipose Tissue Macrophages in Obese Mice does not Require Lymphocytes

    PubMed Central

    Behan, JW; Ehsanipour, EA; Sheng, X; Pramanik, R; Wang, Xingchao; Hsieh, Yao-Te; Kim, Yong-Mi; Mittelman, Steven D.

    2012-01-01

    Macrophages which infiltrate adipose tissue and secrete pro-inflammatory cytokines may be responsible for obesity-induced insulin resistance. However, why macrophages migrate into adipose tissue and become activated remains unknown, though some studies suggest this may be regulated by T and B lymphocytes. In the present study, we test whether T and B lymphocytes and NK cells are necessary for the obesity-induced activation of macrophages in adipose tissue. NOD/SCID/IL2-receptor gamma-chain knockout (NSG) mice, which lack mature T and B lymphocytes and NK cells, were made obese by selectively reducing litters and weaning onto a high-fat diet. Mice were then maintained on the diet for 10-11 weeks. Adipose tissue from obese NSG mice had more activated macrophages than non-obese mice. These macrophages were found in “crown like structures” surrounding adipocytes, and expressed higher levels of the inflammatory cytokine TNF?. However, obesity did not impair glucose tolerance in the NSG mice. These studies demonstrate that T and B lymphocytes and NK cells are not necessary for adipose tissue macrophage activation in obese mice. T and B lymphocytes and/or NK cells may be necessary for the development of obesity-induced impaired glucose tolerance. PMID:23754826

  1. Improved control of tuberculosis and activation of macrophages in mice lacking protein kinase R.

    PubMed

    Wu, Kangyun; Koo, Jovanka; Jiang, Xiuju; Chen, Ran; Cohen, Stanley N; Nathan, Carl

    2012-01-01

    Host factors that microbial pathogens exploit for their propagation are potential targets for therapeuic countermeasures. No host enzyme has been identified whose genetic absence benefits the intact mammalian host in vivo during infection with Mycobacterium tuberculosis (Mtb), the leading cause of death from bacterial infection. Here, we report that the dsRNA-dependent protein kinase (PKR) is such an enzyme. PKR-deficient mice contained fewer viable Mtb and showed less pulmonary pathology than wild type mice. We identified two potential mechanisms for the protective effect of PKR deficiency: increased apoptosis of macrophages in response to Mtb and enhanced activation of macrophages in response to IFN-gamma. The restraining effect of PKR on macrophage activation was explained by its mediation of a previously unrecognized ability of IFN-gamma to induce low levels of the macrophage deactivating factor interleukin 10 (IL10). These observations suggest that PKR inhibitors may prove useful as an adjunctive treatment for tuberculosis. PMID:22359543

  2. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    PubMed Central

    R?szer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  3. The M1 and M2 paradigm of macrophage activation: time for reassessment

    PubMed Central

    2014-01-01

    Macrophages are endowed with a variety of receptors for lineage-determining growth factors, T helper (Th) cell cytokines, and B cell, host, and microbial products. In tissues, macrophages mature and are activated in a dynamic response to combinations of these stimuli to acquire specialized functional phenotypes. As for the lymphocyte system, a dichotomy has been proposed for macrophage activation: classic vs. alternative, also M1 and M2, respectively. In view of recent research about macrophage functions and the increasing number of immune-relevant ligands, a revision of the model is needed. Here, we assess how cytokines and pathogen signals influence their functional phenotypes and the evidence for M1 and M2 functions and revisit a paradigm initially based on the role of a restricted set of selected ligands in the immune response. PMID:24669294

  4. Vitamin D3 modulates the function of chicken macrophages.

    PubMed

    Shojadoost, B; Behboudi, S; Villanueva, A I; Brisbin, J T; Ashkar, A A; Sharif, S

    2015-06-01

    Vitamin D3 is known to modulate both innate and adaptive immune responses in mammals, but there is little information on its effects on avian immune system cells. Here, we studied the effects of vitamin D3 on chicken macrophages. Chicken macrophages expressed vitamin D receptor (VDR) and lipopolysaccharide (LPS) stimulation increased their VDR expression. Macrophages were treated with 1,25(OH)2D3 in the presence or absence of Toll-like receptor ligands, such as LPS and Pam3CSK4. Subsequently, macrophage activation was assessed by measuring nitric oxide (NO) and expression of CXCL8 and interleukin (IL)-1?. In addition, changes in major histocompatibility complex (MHC)-II and CD86 were examined. Treatment of cells with 1,25(OH)2D3 increased the ability of macrophages to respond to stimuli and produce NO, but vitamin D3 alone did not activate macrophages and resulted in the down-regulation of CD86, MHC-II, CXCL8 and IL-1?. These findings suggest that vitamin D3 has an immunomodulatory role in chicken macrophages. PMID:25814176

  5. Functional activity of monocytes and macrophages in HTLV-1 infected subjects.

    PubMed

    Amorim, Camila F; Souza, Anselmo S; Diniz, Angela G; Carvalho, Natália B; Santos, Silvane B; Carvalho, Edgar M

    2014-12-01

    The Human T lymphotropic virus type-1 (HTLV-1) infects predominantly T cells, inducing proliferation and lymphocyte activation. Additionally, HTLV-1 infected subjects are more susceptible to other infections caused by other intracellular agents. Monocytes/macrophages are important cells in the defense against intracellular pathogens. Our aims were to determine the frequency of monocytes subsets, expression of co-stimulatory molecules in these cells and to evaluate microbicidal ability and cytokine and chemokine production by macrophages from HTLV-1 infected subjects. Participants were 23 HTLV-1 carriers (HC), 22 HAM/TSP patients and 22 healthy subjects (HS) not infected with HTLV-1. The frequencies of monocyte subsets and expression of co-stimulatory molecules were determined by flow cytometry. Macrophages were infected with L. braziliensis or stimulated with LPS. Microbicidal activity of macrophages was determined by optic microscopy. Cytokines/chemokines from macrophage supernatants were measured by ELISA. HAM/TSP patients showed an increase frequency of intermediate monocytes, but expression of co-stimulatory molecules was similar between the groups. Macrophages from HTLV-1 infected individuals were infected with L. braziliensis at the same ratio than macrophages from HS, and all the groups had the same ability to kill Leishmania parasites. However, macrophages from HTLV-1 infected subjects produced more CXCL9 and CCL5, and less IL-10 than cells from HS. While there was no correlation between IFN-? and cytokine/chemokine production by macrophages, there was a correlation between proviral load and TNF and CXCL10. These data showed a dissociation between the inflammatory response and microbicidal ability of macrophages from HTLV-1 infected subjects. While macrophages ability to kill an intracellular pathogen did not differ among HTLV-1 infected subjects, these cells secreted high amount of chemokines even in unstimulated cultures. Moreover the increasing inflammatory activity of macrophages was similar in HAM/TSP patients and HC and it was related to HTLV-1 proviral load rather than the high IFN-? production observed in these subjects. PMID:25521499

  6. Plasminogen activator inhibitor-1 regulates infiltration of macrophages into melanoma via phosphorylation of FAK-Tyr?²?.

    PubMed

    Thapa, Bikash; Koo, Bon-Hun; Kim, Yeon Hyang; Kwon, Hyung-Joo; Kim, Doo-Sik

    2014-08-01

    Tumor-infiltrating macrophages are potential candidates for cancer immunotherapy. However, the detailed molecular mechanism underlying macrophage infiltration into tumors is poorly understood. Based on our previous finding that plasminogen activator inhibitor-1 (PAI-1) enhances vitronectin-dependent migration of macrophages, we investigated the potential role of PAI-1 in macrophage invasion into melanoma. Experimental evidence obtained from spheroid confrontation assay clearly showed that PAI-1 overexpression significantly enhanced the invasion of RAW 264.7 cells into B16F10 melanoma. We further demonstrated that PAI-1 induces phosphorylation of focal adhesion kinase (FAK) at Tyr(925), which, in turn, mediated the invasion of macrophages into the melanoma. This work further illustrates that low-density lipoprotein receptor related-protein 1 (LRP1) is essential for PAI-1-mediated FAK phosphorylation and macrophage invasion into melanoma. In conclusion, our study demonstrates a novel role of PAI-1 in macrophage invasion into melanoma and provides insights into the underlying molecular mechanism. PMID:25063025

  7. Alternatively activated alveolar macrophages in pulmonary fibrosis—mediator production and intracellular signal transduction

    Microsoft Academic Search

    Dmitri V. Pechkovsky; Antje Prasse; Florian Kollert; Kathrin M. Y. Engel; Jan Dentler; Werner Luttmann; Karlheinz Friedrich; Joachim Müller-Quernheim; Gernot Zissel

    2010-01-01

    Activated macrophages have been characterized as M1 and M2 according to their inflammatory response pattern. Here we analyzed the M2 marker expression and intracellular signal transduction in the course of cytokine-driven differentiation. We found elevated spontaneous production of the chemokines CCL17, CCL18 and CCL22 and increased expression of CD206 by alveolar macrophages from patients with lung fibrosis. Stimulation of normal

  8. Genetic regulation of macrophage priming/activation: the Lsh gene story.

    PubMed

    Blackwell, J M; Roach, T I; Atkinson, S E; Ajioka, J W; Barton, C H; Shaw, M A

    1991-10-01

    This paper describes functional and genetic studies on the macrophage resistance gene Lsh/Ity/Bcg first described almost two decades ago. Working in vitro with resident peritoneal, liver (Kupffer cells) and bone marrow derived macrophages from congenic B10 (LshS) and B10.L-LshR mice it has been possible to demonstrate that the final effector mechanism for the gene in regulating antileishmanial activity involves production of reactive nitrogen rather than reactive oxygen intermediates. This in turn is dependent upon priming/activation of macrophages for enhanced TNF-alpha release which acts back on the macrophage in an autocrine manner to increase nitric oxide production. The precise point at which Lsh acts to control macrophage priming/activation has not been identified, but studies of early response gene expression show differences in KC mRNA levels at 2 h after LPS stimulation, and in c-fos mRNA as early as 20 min after stimulation with PMA plus ionophore, in peritoneal macrophages from congenic LshS and LshR mice. Data available suggest that both negative and positive signals may be involved in macrophage priming/activation, with LshS macrophages down-regulating their capacity for continued response to the autocrine loop. Work in progress will examine the role of TPA and cAMP response element-binding proteins in regulating gene expression in Lsh congenic mice. A major new initiative has also commenced to clone the Lsh gene by reverse genetics using yeast artificial chromosomes to walk towards Lsh from the closet proximal and distal markers on mouse chromosome 1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1757110

  9. Proteasome Activity Is Required for Anthrax Lethal Toxin To Kill Macrophages

    Microsoft Academic Search

    GUANGQING TANG; STEPHEN H. LEPPLA

    1999-01-01

    Anthrax lethal toxin (LeTx), consisting of protective antigen (PA) and lethal factor (LF), rapidly kills primary mouse macrophages and macrophage-like cell lines such as RAW 264.7. LF is translocated by PA into the cytosol of target cells, where it acts as a metalloprotease to cleave mitogen-activated protein kinase kinase 1 (MEK1) and possibly other proteins. In this study, we show

  10. Macrophage Activation Associated with Chronic Murine Cytomegalovirus Infection Results in More Severe Experimental Choroidal Neovascularization

    Microsoft Academic Search

    Scott W. Cousins; Diego G. Espinosa-Heidmann; Daniel M. Miller; Simone Pereira-Simon; Eleut P. Hernandez; Hsin Chien; Courtney Meier-Jewett; Richard D. Dix

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established

  11. Calcium spikes in activated macrophages during Fc receptor-mediated phagocytosis

    Microsoft Academic Search

    Jesse T. Myers; Joel A. Swanson

    2002-01-01

    Rises in intracellular-free calcium ((Ca2)i) have been variously associated with Fc receptor (FcR)-mediated phagocytosis in macrophages. We show here that activation of murine bone marrow- derived macrophages increases calcium spiking after FcR ligation. Ratiometric fluorescence mi- croscopy was used to measure (Ca2)i during phagocytosis of immunoglobulin G (IgG)-opsonized erythrocytes. Whereas 13% of nonactivated mac- rophages increased (Ca2)i in the form

  12. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells

    Microsoft Academic Search

    Stephan R Krutzik; Belinda Tan; Huiying Li; Maria Teresa Ochoa; Philip T Liu; Sarah E Sharfstein; Thomas G Graeber; Peter A Sieling; Yong-Jun Liu; Thomas H Rea; Barry R Bloom; Robert L Modlin

    2005-01-01

    Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN? dendritic cells. DC-SIGN+ phagocytic macrophages

  13. Toxic effects of methyl methanesulfonate (MMS) on activated macrophages from chickens

    SciTech Connect

    Qureshi, M.A.; Bloom, S.E.; Hamilton, J.W.; Dietert, R.R. (Cornell Univ., Ithaca, NY (USA))

    1989-01-01

    Adherent peritoneal exudate cells rich in macrophages were harvested from Cornell K-strain chickens. Glass-adherent monolayers were obtained on coverslips and subjected to in vitro exposure to methyl methanesulfonate (MMS) at various doses for 1 hr. Solvent and sham exposures were also performed. At selected times after exposure, the macrophages were analyzed for cell viability, adherence, DNA damage, and functional activity. Although MMS doses of 5 {times} 10{sup {minus}3} M and 1 {times} 10{sup {minus}3} M concentrations resulted in significant cytoxicity, 2 {times} 10{sup {minus}4} M had no significant cytotoxic effect. However, this exposure resulted in DNA damage as measured by alkaline elution. Concomitant with the DNA damage was a significant decreases in the phagocytic activity of macrophages. Repair of MMS-induced DNA lesions in macrophages was indicated by a normal DNA alkaline elution profile 10 hr postrecovery. Functional activity of cells also return to normal levels. However, bactericidal ability of MMS-treated macrophages for unopsonized Escherichia coli was significantly depressed. These results suggest that the avian macrophage is a useful target cell for examining possible relationships between genotoxic and immunotoxic effects of environmental mutagens.

  14. Macrophage Derived Platelet Activating Factor Implicated in the Resolution Phase of Gouty Inflammation

    PubMed Central

    2014-01-01

    Human blood derived in vitro differentiated monocytes or macrophages are a population of cells which have been investigated over the years to determine the role these cells play in the resolution phase of gout. Macrophages are able to phagocytose monosodium urate monohydrate (MSU) crystals without releasing inflammatory factors. This study analysed macrophage platelet activating factor secretion and its possible role in the pathway of gout resolution. Analysis of sunatants from in vitro differentiated macrophages stimulated with MSU crystals revealed the secretion of platelet activating factor (PAF)??1.54 ± 0.10 mean ± SEM;?ng/mL per 106 cells. This secretion was absent in immature monocytes treated similarly. When these monocytes were pretreated with recombinant human PAF-acetylhydrolase (rhuPAF-AH) and MSU crystals resulted in TNF? suppression. Addition of WEB2086, a platelet activating factor (PAF) antagonist, to differentiated macrophages with MSU crystals unmasked TNF? secretion 0.7 ± 0.06 mean ± SEM;?ng/mL per 106 cells. This study identifies a role for PAF and the PAF receptor antagonist in the pathway by which macrophages ingest MSU crystals and resolve the concomitant inflammation. PMID:25328755

  15. A Distinctive Alveolar Macrophage Activation State Induced by Cigarette Smoking

    Microsoft Academic Search

    Prescott G. Woodruff; Laura L. Koth; Yee Hwa Yang; Madeleine W. Rodriguez; Silvio Favoreto; Gregory M. Dolganov; Agnes C. Paquet; David J. Erle

    2005-01-01

    Rationale:Macrophagesarebelievedtoplay acentralrole inemphy- sema based largely on data from mouse models. However, the relevance of these models to smoking-related lung disease in hu- mans is uncertain. Objectives: We sought to comprehensively characterize the effects of smoking on gene expression in human alveolar macrophages and to compare these with effects seen in transgenic mouse models of emphysema. Methods: We used DNA

  16. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. ?-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p?activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p?macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal biocompatibility, specifically through the quantification of cell-surface markers of leukocyte activation. PMID:25281645

  17. Moxibustion Activates Macrophage Autophagy and Protects Experimental Mice against Bacterial Infection

    PubMed Central

    Li, Xiaojuan; Guo, Guanhua; Shen, Feng; Kong, Lihong; Liang, Fengxia; Sun, Guojie

    2014-01-01

    Moxibustion is one of main therapies in traditional Chinese medicine and uses heat stimulation on the body surface from the burning of moxa to release pain or treat diseases. Emerging studies have shown that moxibustion can generate therapeutic effects by activating a series of signaling pathways and neuroendocrine-immune activities. Here we show moxibustion promoted profound macrophage autophagy in experimental Kunming mice, with reduced Akt phosphorylation and activated eIF2? phosphorylation. Consequently, moxibustion promoted bacterial clearance by macrophages and protected mice from mortality due to bacterial infection. These results indicate that moxibustion generates a protective response by activating autophagy against bacterial infections. PMID:25140186

  18. Mycobacterium tuberculosis Activates Human Macrophage Peroxisome Proliferator-Activated Receptor ? Linking Mannose Receptor Recognition to Regulation of Immune Responses

    PubMed Central

    Rajaram, Murugesan V. S.; Brooks, Michelle N.; Morris, Jessica D.; Torrelles, Jordi B.; Azad, Abul K.; Schlesinger, Larry S.

    2010-01-01

    Mycobacterium tuberculosis enhances its survival in macrophages by suppressing immune responses in part through its complex cell wall structures. Peroxisome proliferator-activated receptor ? (PPAR?), a nuclear receptor superfamily member, is a transcriptional factor that regulates inflammation and has high expression in alternatively activated alveolar macrophages and macrophage-derived foam cells, both cell types relevant to tuberculosis pathogenesis. In this study, we show that virulent M. tuberculosis and its cell wall mannose-capped lipoarabinomannan induce PPAR? expression through a macrophage mannose receptor-dependent pathway. When activated, PPAR? promotes IL-8 and cyclooxygenase 2 expression, a process modulated by a PPAR? agonist or antagonist. Upstream, MAPK-p38 mediates cytosolic phospholipase A2 activation, which is required for PPAR? ligand production. The induced IL-8 response mediated by mannose-capped lipoarabinomannan and the mannose receptor is independent of TLR2 and NF-?B activation. In contrast, the attenuated Mycobacterium bovis bacillus Calmette-Guérin induces less PPAR? and preferentially uses the NF-?B–mediated pathway to induce IL-8 production. Finally, PPAR? knockdown in human macrophages enhances TNF production and controls the intracellular growth of M. tuberculosis. These data identify a new molecular pathway that links engagement of the mannose receptor, an important pattern recognition receptor for M. tuberculosis, with PPAR? activation, which regulates the macrophage inflammatory response, thereby playing a role in tuberculosis pathogenesis. PMID:20554962

  19. Role of Galectin-3 in Classical and Alternative Macrophage Activation in the Liver following Acetaminophen Intoxication1

    PubMed Central

    Dragomir, Ana-Cristina Docan; Sun, Richard; Choi, Hyejeong; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-01-01

    Inflammatory macrophages have been implicated in hepatotoxicity induced by the analgesic, acetaminophen (APAP). In these studies we characterized the phenotype of macrophages accumulating in the liver following APAP intoxication and evaluated the role of galectin-3 (Gal-3) in macrophage activation. Administration of APAP (300 mg/kg, i.p.) to wild type mice resulted in the appearance of two distinct subpopulations of CD11b+ cells in the liver, which expressed high or low levels of the monocyte/macrophage activation marker Ly6C. Whereas CD11b+/Ly6Chi macrophages exhibited a classically activated proinflammatory phenotype characterized by increased expression of TNF-?, inducible nitric oxide synthase (iNOS), and CCR2, CD11b+/Ly6Clo macrophages were alternatively activated, expressing high levels of the anti-inflammatory cytokine, IL-10. APAP intoxication was also associated with an accumulation of Gal-3+ macrophages in the liver; the majority of these cells were Ly6Chi. APAP-induced increases in CD11b+/Ly6Chi macrophages were significantly reduced in Gal-3?/? mice. This was evident 72 h post-APAP and was correlated with reduced expression of the classical macrophage activation markers, iNOS, IL-12, and TNF-?, as well as the proinflammatory chemokines, CCL2 and CCL3, and chemokine receptors CCR1, and CCR2. Conversely, numbers of CD11b+/Ly6Clo macrophages increased in livers of APAP-treated Gal-3?/? mice. This was associated with increased expression of the alternative macrophage activation markers Ym1 and Fizz1, increased liver repair and reduced hepatotoxicity. These data demonstrate that both classically and alternatively activated macrophages accumulate in the liver following APAP intoxication; moreover, Gal-3 plays a role in promoting a persistent proinflammatory macrophage phenotype. PMID:23175698

  20. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation.

    PubMed

    Pena, Olga M; Afacan, Nicole; Pistolic, Jelena; Chen, Carol; Madera, Laurence; Falsafi, Reza; Fjell, Christopher D; Hancock, Robert E W

    2013-01-01

    Macrophages play a critical role in the innate immune response. To respond in a rapid and efficient manner to challenges in the micro-environment, macrophages are able to differentiate towards classically (M1) or alternatively (M2) activated phenotypes. Synthetic, innate defense regulators (IDR) peptides, designed based on natural host defence peptides, have enhanced immunomodulatory activities and reduced toxicity leading to protection in infection and inflammation models that is dependent on innate immune cells like monocytes/macrophages. Here we tested the effect of IDR-1018 on macrophage differentiation, a process essential to macrophage function and the immune response. Using transcriptional, protein and systems biology analysis, we observed that differentiation in the presence of IDR-1018 induced a unique signature of immune responses including the production of specific pro and anti-inflammatory mediators, expression of wound healing associated genes, and increased phagocytosis of apoptotic cells. Transcription factor IRF4 appeared to play an important role in promoting this IDR-1018-induced phenotype. The data suggests that IDR-1018 drives macrophage differentiation towards an intermediate M1-M2 state, enhancing anti-inflammatory functions while maintaining certain pro-inflammatory activities important to the resolution of infection. Synthetic peptides like IDR-1018, which act by modulating the immune system, could represent a powerful new class of therapeutics capable of treating the rising number of multidrug resistant infections as well as disorders associated with dysregulated immune responses. PMID:23308112

  1. Annexin A2 tetramer activates human and murine macrophages through TLR4

    PubMed Central

    Swisher, Jennifer F. A.; Burton, Nicholas; Bacot, Silvia M.; Vogel, Stefanie N.

    2010-01-01

    Annexins are a large family of intracellular phospholipid-binding proteins, yet several extracellular roles have been identified. Specifically, annexin A2, found in a heterotetrameric complex with S100A10, not only serves as a key extracellular binding partner for pathogens and host proteins alike, but also can be shed or secreted. We reported previously that soluble annexin A2 tetramer (A2t) activates human monocyte-derived macrophages (MDM), resulting in secretion of inflammatory mediators and enhanced phagocytosis. Although a receptor for A2t has been cloned from bone marrow stromal cells, data contained in this study demonstrate that it is dispensable for A2t-dependent activation of MDM. Furthermore, A2t activates wild-type murine bone marrow–derived macrophages, whereas macrophages from myeloid differentiation factor 88–deficient mice display a blunted response, suggesting a role for Toll-like receptor (TLR) signaling. Small interfering RNA knockdown of TLR4 in human MDM reduced the response to A2t, blocking antibodies against TLR4 (but not TLR2) blocked activation altogether, and bone marrow–derived macrophages from TLR4?/? mice were refractory to A2t. These data demonstrate that the modulation of macrophage function by A2t is mediated through TLR4, suggesting a previously unknown, but important role for this stress-sensitive protein in the detection of danger to the host, whether from injury or invasion. PMID:19965653

  2. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion.

    PubMed

    Hanania, Raed; Sun, He Song; Xu, Kewei; Pustylnik, Sofia; Jeganathan, Sujeeve; Harrison, Rene E

    2012-03-01

    As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-? causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly. PMID:22270361

  3. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils.

    PubMed

    Bae, Hong-Beom; Zmijewski, Jaroslaw W; Deshane, Jessy S; Tadie, Jean-Marc; Chaplin, David D; Takashima, Seiji; Abraham, Edward

    2011-12-01

    Although AMPK plays well-established roles in the modulation of energy balance, recent studies have shown that AMPK activation has potent anti-inflammatory effects. In the present experiments, we examined the role of AMPK in phagocytosis. We found that ingestion of Escherichia coli or apoptotic cells by macrophages increased AMPK activity. AMPK activation increased the ability of neutrophils or macrophages to ingest bacteria (by 46 ± 7.8 or 85 ± 26%, respectively, compared to control, P<0.05) and the ability of macrophages to ingest apoptotic cells (by 21 ± 1.4%, P<0.05 compared to control). AMPK activation resulted in cytoskeletal reorganization, including enhanced formation of actin and microtubule networks. Activation of PAK1/2 and WAVE2, which are downstream effectors of Rac1, accompanied AMPK activation. AMPK activation also induced phosphorylation of CLIP-170, a protein that participates in microtubule synthesis. The increase in phagocytosis was reversible by the specific AMPK inhibitor compound C, siRNA to AMPK?1, Rac1 inhibitors, or agents that disrupt actin or microtubule networks. In vivo, AMPK activation resulted in enhanced phagocytosis of bacteria in the lungs by 75 ± 5% vs. control (P<0.05). These results demonstrate a novel function for AMPK in enhancing the phagocytic activity of neutrophils and macrophages. PMID:21885655

  4. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins.

    PubMed Central

    Beharka, A A; Armstrong, J W; Iandolo, J J; Chapes, S K

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules. Images PMID:8063407

  5. Interleukin-4-induced macrophage fusion is prevented by inhibitors of mannose receptor activity.

    PubMed Central

    McNally, A. K.; DeFife, K. M.; Anderson, J. M.

    1996-01-01

    A potential role for the macrophage mannose receptor in human monocyte-derived macrophage fusion was explored by testing the effects of previously described inhibitors of its activity on the formation of interleukin-4-induced foreign body giant cells in vitro Giant cell formation was prevented or reduced in the presence of alpha-man-nan and synthetic neoglycoprotein conjugates according to the following pattern of relative inhibition: mannose-bovine serum albumin (BSA) > N-acetylgucosamine-BSA congruent to glucose-BSA. Laminarin (beta-glucan) or galactose-BSA were not inhibitory. Swainsonine and castanospermine, inhibitors of glycoprotein processing that interfere with the arrival of newly synthesized mannose receptors at the cell surface, also attenuated macrophage fusion and the formation of giant cells, whereas another glycosidase inhibitor, deoxymannojirimycin, was without effect. Mannose receptors were confirmed to be specifically up-regulated by interleukin-4 in this culture system and also demonstrated to be present and concentrated at macrophage fusion interfaces. These data suggest that the macrophage mannose receptor may be an essential participant in the mechanism of interleukin-4-induced macrophage fusion and implicate a novel function for this endocytic/phagocytic receptor in mediating foreign body giant cell formation at sites of chronic inflammation. Images Figure 1 Figure 4 PMID:8780401

  6. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  7. Atorvastatin promotes human monocyte differentiation toward alternative M2 macrophages through p38 mitogen-activated protein kinase-dependent peroxisome proliferator-activated receptor ? activation.

    PubMed

    Zhang, Ou; Zhang, Jinying

    2015-05-01

    M1 and M2 macrophages are detectable in human atherosclerotic lesions, and M2 macrophages are present at locations distant from the lipid core in more stable zones of the plaque and appear to exert anti-inflammatory properties on M1 macrophages. Peroxisome proliferator-activated receptor (PPAR) ? promotes the differentiation of monocytes into anti-inflammatory M2 macrophages. Although both statins and PPAR? ligands have been reported to protect against the progression of atherosclerosis, no data are currently available regarding the implication of statins in the alternative differentiation of human monocytes. In the present study, we hypothesized that atorvastatin may exert novel effects to prime human monocytes toward an anti-inflammatory alternative M2 phenotype. To this aim, we first found that abundant M2 markers were expressed in human circulating monocytes after atorvastatin treatment. Moreover, atorvastatin was able to induce PPAR? expression and activation in human monocytes in vivo and in vitro, resulting in priming primary human monocytes differentiation into M2 macrophages with a more pronounced paracrine anti-inflammatory activity in M1 macrophages. Additional data with molecular approaches revealed that p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) 1/2 activation was involved in atorvastatin-mediated PPAR? activation and enhanced alternative M2 macrophage phenotype. Collectively, our data demonstrated that atorvastatin promotes human monocyte differentiation toward alternative M2 macrophages via p38 MAPK-dependent PPAR? activation. PMID:25794645

  8. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; Lopez-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3?4 months) and aged (14?15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice. Collectively, these results indicate that macrophages isolated from old mice are in a preactivated state that enhances their sensitivities to LPS exposure. The hyper-responsive activation of macrophages in aged animals may act to minimize infection by general bacterial threats that arise due to age-dependent declines in adaptive immunity. However, this hypersensitivity and the associated increase in the level of formation of reactive oxygen species are likely to contribute to observed age-dependent increases in the level of oxidative damage that underlie many diseases of the elderly.

  9. Carbon Nanotube-Induced Pulmonary Granulomatous Disease: Twist1 and Alveolar Macrophage M1 Activation

    PubMed Central

    Barna, Barbara P.; Huizar, Isham; Malur, Anagha; McPeek, Matthew; Marshall, Irene; Jacob, Mark; Dobbs, Larry; Kavuru, Mani S.; Thomassen, Mary Jane

    2013-01-01

    Sarcoidosis, a chronic granulomatous disease of unknown cause, has been linked to several environmental risk factors, among which are some that may favor carbon nanotube formation. Using gene array data, we initially observed that bronchoalveolar lavage (BAL) cells from sarcoidosis patients displayed elevated mRNA of the transcription factor, Twist1, among many M1-associated genes compared to healthy controls. Based on this observation we hypothesized that Twist1 mRNA and protein expression might become elevated in alveolar macrophages from animals bearing granulomas induced by carbon nanotube instillation. To address this hypothesis, wild-type and macrophage-specific peroxisome proliferator-activated receptor gamma (PPAR?) knock out mice were given oropharyngeal instillation of multiwall carbon nanotubes (MWCNT). BAL cells obtained 60 days later exhibited significantly elevated Twist1 mRNA expression in granuloma-bearing wild-type or PPAR? knock out alveolar macrophages compared to sham controls. Overall, Twist1 expression levels in PPAR? knock out mice were higher than those of wild-type. Concurrently, BAL cells obtained from sarcoidosis patients and healthy controls validated gene array data: qPCR and protein analysis showed significantly elevated Twist1 in sarcoidosis compared to healthy controls. In vitro studies of alveolar macrophages from healthy controls indicated that Twist1 was inducible by classical (M1) macrophage activation stimuli (LPS, TNF?) but not by IL-4, an inducer of alternative (M2) macrophage activation. Findings suggest that Twist1 represents a PPAR?-sensitive alveolar macrophage M1 biomarker which is induced by inflammatory granulomatous disease in the MWCNT model and in human sarcoidosis. PMID:24322444

  10. CD14 influences host immune responses and alternative activation of macrophages during Schistosoma mansoni infection.

    PubMed

    Tundup, Smanla; Srivastava, Leena; Nagy, Tamas; Harn, Donald

    2014-08-01

    Antigen-presenting cell (APC) plasticity is critical for controlling inflammation in metabolic diseases and infections. The roles that pattern recognition receptors (PRRs) play in regulating APC phenotypes are just now being defined. We evaluated the expression of PRRs on APCs in mice infected with the helminth parasite Schistosoma mansoni and observed an upregulation of CD14 expression on macrophages. Schistosome-infected Cd14(-/-) mice showed significantly increased alternative activation of (M2) macrophages in the livers compared to infected wild-type (wt) mice. In addition, splenocytes from infected Cd14(-/-) mice exhibited increased production of CD4(+)-specific interleukin-4 (IL-4), IL-5, and IL-13 and CD4(+)Foxp3(+)IL-10(+) regulatory T cells compared to cells from infected wt mice. S. mansoni-infected Cd14(-/-) mice also presented with smaller liver egg granulomas associated with increased collagen deposition compared to granulomas in infected wt mice. The highest expression of CD14 was found on liver macrophages in infected mice. To determine if the Cd14(-/-) phenotype was in part due to increased M2 macrophages, we adoptively transferred wt macrophages into Cd14(-/-) mice and normalized the M2 and CD4(+) Th cell balance close to that observed in infected wt mice. Finally, we demonstrated that CD14 regulates STAT6 activation, as Cd14(-/-) mice had increased STAT6 activation in vivo, suggesting that lack of CD14 impacts the IL-4R?-STAT6 pathway, altering macrophage polarization during parasite infection. Collectively, these data identify a previously unrecognized role for CD14 in regulating macrophage plasticity and CD4(+) T cell biasing during helminth infection. PMID:24866794

  11. INTERLEUKIN-4- AND INTERLEUKIN-13-MEDIATED ALTERNATIVELY ACTIVATED MACROPHAGES: ROLES IN HOMEOSTASIS AND DISEASE

    PubMed Central

    Van Dyken, Steven J.; Locksley, Richard M.

    2013-01-01

    The macrophage, a versatile cell type prominently involved in host defense and immunity, assumes a distinct state of alternative activation in the context of polarized type 2 immune responses such as allergic inflammation and helminth infection. This alternatively activated phenotype is induced by the canonical type 2 cytokines interleukin (IL)-4 and IL-13, which mediate expression of several characteristic markers along with a dramatic shift in macrophage metabolic pathways that influence surrounding cells and tissues. We discuss recent advances in the understanding of IL-4- and IL-13-mediated alternatively activated macrophages and type 2 immune responses; such advances have led to an expanded appreciation for functions of these cells beyond immunity, including maintenance of physiologic homeostasis and tissue repair. PMID:23298208

  12. Size fractions of ambient particulate matter induce granulocyte macrophage colony-stimulating factor in human bronchial epithelial cells by mitogen-activated protein kinase pathways.

    PubMed

    Reibman, Joan; Hsu, Yanshen; Chen, Lung Chi; Kumar, Asok; Su, Wei Cheng; Choy, Wanda; Talbot, Anita; Gordon, Terry

    2002-10-01

    Environmental pollutants, including ambient particulate matter (PM), increase respiratory morbidity. Studies of model PM particles, including residual oil fly ash and freshly generated diesel exhaust particles, have demonstrated that PM affects inflammatory airway responses. Neither of these particles completely represents ambient PM, and therefore questions remain about ambient particulates. We hypothesized that ambient PM of different size fractions collected from an urban environment (New York City air), would activate primary culture human bronchial epithelial cells (HBECs). Because of the importance of granulocyte-macrophage colony-stimulating factor (GM-CSF) on inflammatory and immunomodulatory processes, we focused our studies on this cytokine. We demonstrated that the smallest size fraction (ultrafine/fine; < 0.18 micro m) of ambient PM (11 micro g/cm(2)), upregulated GM-CSF production (2-fold increase). The absence of effect of carbon particles of similar size, and the day-to-day variation in response, suggested that the chemical composition, but not the particle itself, was necessary for GM-CSF induction. Activation of the extracellular signal-regulated kinase and the p38 mitogen-activated protein kinase was associated with, and necessary for, GM-CSF release. These studies serve to corroborate and extend those on model particles. Moreover, they emphasize the role of the smallest size ambient particles in airway epithelial cell responses. PMID:12356579

  13. Regulation of retinoid mediated cholesterol efflux involves liver X receptor activation in mouse macrophages.

    PubMed

    Manna, Pulak R; Sennoune, Souad R; Martinez-Zaguilan, Raul; Slominski, Andrzej T; Pruitt, Kevin

    2015-08-14

    Removal of cholesterol from macrophage-derived foam cells is a critical step to the prevention of atherosclerotic lesions. We have recently demonstrated the functional importance of retinoids in the regulation of the steroidogenic acute regulatory (StAR) protein that predominantly mediates the intramitochondrial transport of cholesterol in target tissues. In the present study, treatment of mouse macrophages with retinoids, particularly all-trans retinoic acid (atRA) and 9-cis RA, resulted in increases in cholesterol efflux to apolipoprotein AI (Apo-A1). Activation of the PKA pathway by a cAMP analog, (Bu)2cAMP, markedly augmented retinoid mediated cholesterol efflux. Macrophages overexpressing hormone-sensitive lipase increased the hydrolysis of cholesteryl esters and concomitantly enhanced the efficacy of retinoic acid receptor and liver X receptor (LXR) ligands on StAR and ATP-binding cassette transporter A1 (ABCA1) protein levels. RAs elevated StAR promoter activity in macrophages, and an increase in StAR levels augmented cholesterol efflux to Apo-A1, suggesting retinoid-mediated efflux of cholesterol involves enhanced oxysterol production. Further studies revealed that retinoids activate the LXR regulated genes, sterol receptor-element binding protein-1c and ABCA1. These findings provide insights into the regulatory events in which retinoid signaling effectively enhances macrophage cholesterol efflux and indicate that retinoid therapy may have important implications in limiting and/or regressing atherosclerotic cardiovascular disease. PMID:26119689

  14. Immunomodulatory Effect of Mangiferin in Experimental Animals with Benzo(a)Pyrene-induced Lung Carcinogenesis

    PubMed Central

    Rajendran, Peramaiyan; Jayakumar, Thangavel; Nishigaki, Ikuo; Ekambaram, Ganapathy; Nishigaki, Yutaka; Vetriselvi, Jayabal; Sakthisekaran, Dhanapal

    2013-01-01

    The immunomodulatory activity of mangiferin was studied in various groups of animals. For this study, adult Swiss albino male mice were treated with benzo(a)pyrene, abbreviated as B(a)P, at 50 mg/kg body weight orally twice a week for 4 weeks; and mangiferin was also given orally (pre- and post-initiation of carcinoma) at 100 mg/kg body weight. Immunocompetence and immune complexes as measured by phagocyte index, avidity index, and soluble immune complex (SIC) levels (p<0.001), as well as NBT reduction, were decreased in the B(a)P-treated animals;whereas increased levels of immunocompetence were noted in the mangiferin-treated animals given B(a)P (p<0.001, p<0.05). The levels of immunoglobulins such as IgG and IgM were decreased considerably (p<0.001) in the B(a)P-treated animals compared with their levels in the control animals; whereas the IgA level was increased (p<0.001). In the mangiferin-treated experimental animals given B(a)P, the levels of IgG and IgM were significantly (p<0.001, p<0.05) increased whereas the IgA level was decreased compared with those for the B(a)P-treated mice. Oxidative changes in lymphocytes, neutrophils, and macrophages were also measured. The enhanced lipid peroxidation and decreased catalase and superoxide dismutase activities found in the lymphocytes, polymorphonuclear cells (PMN), and macrophages from B(a)P-treated mice were significantly reduced and increased, respectively, by the mangiferin treatment. This study confirms the immunomodulatory effect of mangiferin and shows an immunoprotective role arbitrated through a reduction in the reactive intermediate-induced oxidative stress in lymphocytes, neutrophils, and macrophages. PMID:23847456

  15. Macrophage colony-stimulating activity is produced by three different EBV-transformed lymphoblastoid cell lines.

    PubMed

    Reisbach, G; Hültner, L; Kranz, B; Scholz, S; Wolf, H; Dörmer, P

    1987-10-01

    The lymphoblastoid cell lines BLY 9.84, Gl, and Pl constitutively release a colony-stimulating activity (CSA) which specifically stimulates murine macrophage progenitor cells in vitro. The biochemical characterization of BLY 9.84-derived CSA exhibits a molecular size of apparently 150-200 kDa even under dissociating conditions with 6 M guanidine hydrochloride or inhibition of glycosylation. Production of this CSA is inhibited by cycloheximide and its activity is destroyed by reduction with dithiothreitol. Replating experiments give evidence for a functional similarity with CSF-1 (macrophage colony-stimulating factor). PMID:3498542

  16. Multipotent Adult Progenitor Cells Prevent Macrophage-Mediated Axonal Dieback and Promote Regrowth after Spinal Cord Injury

    PubMed Central

    Busch, Sarah A.; Hamilton, Jason A.; Horn, Kevin P.; Cuascut, Fernando X.; Cutrone, Rochelle; Lehman, Nicholas; Deans, Robert J.; Ting, Anthony E.; Mays, Robert W.; Silver, Jerry

    2013-01-01

    Macrophage-mediated axonal dieback presents an additional challenge to regenerating axons after spinal cord injury. Adult adherent stem cells are known to have immunomodulatory capabilities, but their potential to ameliorate this detrimental inflammation-related process has not been investigated. Using an in vitro model of axonal dieback as well as an adult rat dorsal column crush model of spinal cord injury, we found that multipotent adult progenitor cells (MAPCs) can affect both macrophages and dystrophic neurons simultaneously. MAPCs significantly decrease MMP-9 (matrix metalloproteinase-9) release from macrophages, effectively preventing induction of axonal dieback. MAPCs also induce a shift in macrophages from an M1, or “classically activated” proinflammatory state, to an M2, or “alternatively activated” antiinflammatory state. In addition to these effects on macrophages, MAPCs promote sensory neurite outgrowth, induce sprouting, and further enable axons to overcome the negative effects of macrophages as well as inhibitory proteoglycans in their environment by increasing their intrinsic growth capacity. Our results demonstrate that MAPCs have therapeutic benefits after spinal cord injury and provide specific evidence that adult stem cells exert positive immunomodulatory and neurotrophic influences. PMID:21248119

  17. Inhibition of Chlamydia psittaci in oxidatively active thioglycolate-elicited macrophages: distinction between lymphokine-mediated oxygen-dependent and oxygen-independent macrophage activation.

    PubMed Central

    Byrne, G I; Faubion, C L

    1983-01-01

    Immune sensitization of spleen cells was required to generate lymphokines (LK) that activated thioglycolate-elicited peritoneal macrophages (thio MACs) to respond via both oxygen-dependent and oxygen-independent systems. LK produced by incubating spleen cells from immunized A/J and LAF mice with concanavalin A stimulated a response by thio MACs to phorbol-12-myristate-13-acetate (PMA)-induced chemiluminescence and activated these cells to inhibit intracellular Chlamydia psittaci replication. Concanavalin A-incubated spleen cell preparations from unimmunized animals stimulated neither PMA-induced chemiluminescence nor antichlamydial activity. Activated thio MACs demonstrated a rapid chemiluminescence response to the intracellular protozoan Toxoplasma gondii, but C. psittaci did not induce chemiluminescence in LK-activated thio MACs, although cells exposed to C. psittaci retained their responsiveness to PMA-induced chemiluminescence. The PMA-induced response was inhibited by the addition of exogenous superoxide dismutase and catalase and was therefore related to the production of superoxide anion (O2 . -) and H2O2 by these cells. LK preparations incubated at 56 degrees C before macrophage treatment retained antichlamydial activity, but heated preparations no longer stimulated thio MACs to respond in the chemiluminescence assay. These data provide evidence that macrophage oxygen-dependent and oxygen-independent systems are simultaneously activated by LK, and these preparations comprise at least two distinct activities. The portion responsible for activating oxygen-dependent systems (PMA-induced chemiluminescence) is heat labile, whereas the portion responsible for activating oxygen-independent systems is heat stable. It is the latter system that results in restriction of chlamydial growth and in vitro parasite persistence. PMID:6840848

  18. Rat macrophage C-type lectin is an activating receptor expressed by phagocytic cells.

    PubMed

    Lobato-Pascual, Ana; Saether, Per Christian; Dahle, Maria K; Gaustad, Peter; Dissen, Erik; Fossum, Sigbjørn; Daws, Michael R

    2013-01-01

    Macrophage C-type lectin (MCL) is a membrane surface receptor encoded by the Antigen Presenting Lectin-like gene Complex (APLEC). We generated a mouse monoclonal antibody for the study of this receptor in the rat. We demonstrate that rat MCL is expressed on blood monocytes and neutrophils, as well as on several tissue macrophage populations, including alveolar and peritoneal cavity macrophages. We also demonstrate MCL expression on a subset of resident spleen macrophages. Immunohistochemistry analysis of the spleen showed staining specifically in the marginal zone and red pulp. Exposure to pro-inflammatory mediators or to yeast cell wall extract (zymosan) increased surface MCL expression on peritoneal macrophages. We characterized a rat myeloid cell line, RMW, which expresses high levels of MCL. We found that MCL co-immunoprecipitated with the activating adaptor protein Fc?RI? in these cells. Moreover, beads coated with anti-MCL antibody increased phagocytosis in the RMW cells. Together, these observations indicate that rat MCL is a receptor that activates phagocytosis in myeloid cells under inflammatory conditions. PMID:23468983

  19. Vessel-associated myogenic precursors control macrophage activation and clearance of apoptotic cells.

    PubMed

    Bosurgi, L; Brunelli, S; Rigamonti, E; Monno, A; Manfredi, A A; Rovere-Querini, P

    2015-01-01

    Swift and regulated clearance of apoptotic cells prevents the accumulation of cell remnants in injured tissues and contributes to the shift of macrophages towards alternatively activated reparatory cells that sustain wound healing. Environmental signals, most of which are unknown, in turn control the efficiency of the clearance of apoptotic cells and as such determine whether tissues eventually heal. In this study we show that vessel-associated stem cells (mesoangioblasts) specifically modulate the expression of genes involved in the clearance of apoptotic cells and in macrophage alternative activation, including those of scavenger receptors and of molecules that bridge dying cells and phagocytes. Mesoangioblasts, but not immortalized myoblasts or neural precursor cells, enhance CD163 membrane expression in vitro as assessed by flow cytometry, indicating that the effect is specific. Mesoangioblasts transplanted in acutely or chronically injured skeletal muscles determine the expansion of the population of CD163(+) infiltrating macrophages and increase the extent of CD163 expression. Conversely, macrophages challenged with mesoangioblasts engulf significantly better apoptotic cells in vitro. Collectively, the data reveal a feed-forward loop between macrophages and vessel-associated stem cells, which has implications for the skeletal muscle homeostatic response to sterile injury and for diseases in which homeostasis is jeopardized, including muscle dystrophies and inflammatory myopathies. PMID:24749786

  20. Biochemical and functional studies of the activation of tumoricidal properties in macrophages by muramyl peptides

    SciTech Connect

    Fogler, W.E.

    1985-01-01

    The systemic injection of muramyl dipeptides (MDP) encapsulated within phospholipid vesicles (liposomes, MLV) leads to the activation of tumoricidal properties in mononuclear phagocytes and the eradication of established lymph node and pulmonary metastases. These studies were undertaken to elucidate the mechanism(s) by which MDP activates macrophages in vitro and in vivo, and to understand its potential for the therapy of disseminated cancer. The pharmacokinetics and metabolism of intravenously administered free (unencapsulated) and MLV-encapsulated (/sup 3/H)nor-MDP and its (/sup 3/H)-labeled lipophilic derivative, muramyl tripeptide phosphatidylethanolamine (MTP-PE) in mice demonstrated unique patterns of circulatory clearance, organ distribution, metabolism, and excretion. The in vitro activation of tumoricial properties in normal and gamma-interferon primed, noncytotoxic human blood monocytes by nor-MDP could be enhanced by its lipophilic derivatization (MTP-PE) or encapsulation within MLV. Studies using (/sup 3/H)nor-MDP and (/sup 3/H)MTP-PE revealed that the activation of monocytes by muramyl peptides could not be described as resulting from an interaction with MDP cell surface receptors nor from a nonspecific consequence of glycopeptide internalization but rather from a specific intracellular event. Efficient delivery of MDP to macrophages in vivo can be obtained via encapsulation in liposomes, MDP activated macrophages destroy tumor cells without apparent selectivity, and the systemic activation of macrophages by MDP has great potential for enhancing host defense against cancer.

  1. Legumain expression, activity and secretion are increased during monocyte-to-macrophage differentiation and inhibited by atorvastatin.

    PubMed

    Solberg, Rigmor; Smith, Robert; Almlöf, Maria; Tewolde, Eyassu; Nilsen, Hilde; Johansen, Harald Thidemann

    2015-01-01

    Macrophages express several lysosomal cysteine proteases such as cathepsins and legumain. In this study, we assessed the expression, activity and secretion of legumain in cellular models of monocytes/macrophages. Macrophages were derived from M-CSF- or GM-CSF/IFN?-stimulated human primary monocytes (M2 and M1, respectively), PMA-treated human THP-1 cells, or murine RAW264.7 macrophages. In both primary monocytes and THP-1 cells, monocyte-to-macrophage differentiation caused highly increased cellular expression and activity of legumain. Also, secretion of legumain from macrophages, but not from monocytes, was observed. Notably, M2 macrophages expressed significantly higher levels of active legumain than M1 macrophages, which are not previously reported. Legumain mRNA has been shown to be down-regulated in monocytes isolated from patients treated with the HMG-CoA reductase inhibitor atorvastatin. Interestingly, in our study, the active legumain produced by M2 macrophages was found to be inhibited by atorvastatin, which was reflected in aberrant cellular expression and processing. PMID:25205715

  2. Active players in resolution of shock/sepsis induced indirect lung injury: immunomodulatory effects of Tregs and PD-1.

    PubMed

    Tang, Lunxian; Bai, Jianwen; Chung, Chun-Shiang; Lomas-Neira, Joanne; Chen, Yaping; Huang, Xin; Ayala, Alfred

    2014-11-01

    The immunomodulatory effects of PD-1 and CD4(+)CD25(+) Tregs in the resolution of ALI are still poorly understood. Accordingly, 1 million Tregs were isolated from spleens of WT C57BL/6 or PD-1(-/-) mice (magnetical bead purification and subsequent labeling with/without Vybrant dye) and then AT into mice subjected to Hem shock during their resuscitation period, which were subsequently subjected to CLP/septic challenge (24 h post-Hem) to induce iALI. Initially, we demonstrated that Vybrant-labeled AT Tregs appear in the lungs of iALI mice. Subsequently, we found that AT of WT Tregs induced a significant repression of the indices of lung injury: a reduction of neutrophil influx to the lung tissue and a decrease of lung apoptosis compared with vehicle-treated iALI mice. In addition, these mice had substantially higher concentrations of BALF and lung-tissue IL-10 but significantly decreased levels of lung KC. However, these beneficial effects of the AT of Tregs were lost with the administration of PD-1(-/-) mouse Tregs to the recipient WT mice. ALI was exacerbated in these recipient mice receiving AT PD-1(-/-) Tregs to the same extent as iALI mice that did not receive Tregs. These data imply that Tregs can act directly to modify the innate immune response induced by experimental iALI, and this is mediated, in part, by PD-1. Hence, the manipulation of Tregs may represent a plausible target for treating iALI. PMID:25082151

  3. Immunomodulatory effects of Pteridium aquilinum on natural killer cell activity and select aspects of the cellular immune response of mice.

    PubMed

    Latorre, Andréia Oliveira; Furlan, Maria Stella; Sakai, Mônica; Fukumasu, Heidge; Hueza, Isis Machado; Haraguchi, Mitsue; Górniak, Silvana Lima

    2009-06-01

    Pteridium aquilinum (bracken fern) is one of the most common plants. Epidemiological studies have revealed a higher risk of certain types of cancers (i.e., esophageal, gastric) in people who consume bracken fern directly (as crosiers or rhizomes) or indirectly through the consumption of milk from livestock that fed on the plant. In animals, evidence exists regarding the associations between chronic bracken fern intoxication, papilloma virus infection, and the development of carcinomas. While it is possible that some carcinogens in bracken fern could be responsible for these cancers in both humans and animals, it is equally plausible that the observed increases in cancers could be related to induction of an overall immunosuppression by the plant/its various constituents. Under the latter scenario, normal tumor surveillance responses against nascent (non-bracken-induced) cancers or responses against viral infections (specifically those linked to induction of cancers) might be adversely impacted by continuous dietary exposure to this plant. Therefore, the overall objective of this study was to evaluate the immunomodulatory effects of bracken fern following daily ingestion of its extract by a murine host over a period of 14 (or up to 30) days. In C57BL/6 mice administered (by gavage) the extract, histological analyses revealed a significant reduction in splenic white pulp area. Among a variety of immune response parameters/functions assessed in these hosts and isolated cells, both delayed-type hypersensitivity (DTH) analysis and evaluation of IFNgamma production by NK cells during T(H)1 priming were also reduced. Lastly, the innate response in these hosts-assessed by analysis of NK cell cytotoxic functionality-was also diminished. The results here clearly showed the immunosuppressive effects of P. aquilinum and that many of the functions that were modulated could contribute to the increased risk of cancer formation in exposed hosts. PMID:19589097

  4. THE INFLUENCE OF IMMUNOLOGICALLY COMMITTED LYMPHOID CELLS ON MACROPHAGE ACTIVITY IN VIVO

    PubMed Central

    Mackaness, G. B.

    1969-01-01

    It has been shown that the immune response of mice to infection with L. monocytogenes gives rise to a population of immunologically committed lymphoid cells which have the capacity to confer protection and a proportionate level of delayed-type hypersensitivity upon normal recipients. The cells were most numerous in the spleen on the 6th or 7th day of infection, but persisted for at least 20 days. Further study revealed that the immune cells must be alive in order to confer protection, and free to multiply in the tissues of the recipient if they are to provide maximum resistance to a challenge infection. The antibacterial resistance conferred with immune lymphoid cells is not due to antibacterial antibody; it is mediated indirectly through the macrophages of the recipient. These become activated by a process which appears to depend upon some form of specific interaction between the immune lymphoid cells and the infecting organism. This was deduced from the finding that immune lymphoid cells from BCG-immunized donors, which were highly but nonspecifically resistant to Listeria, failed to protect normal recipients against a Listeria challenge unless the recipients were also injected with an eliciting dose of BCG. The peritoneal macrophages of animals so treated developed the morphology and microbicidal features of activated macrophages. It is inferred that acquired resistance depends upon the activation of host macrophages through a product resulting from specific interaction between sensitized lymphoid cells and the organism or or its antigenic products. Discussion is also made of the possibility that activation of macrophages could be dependent upon antigenic stimulation of macrophages sensitized by a cytophilic antibody. PMID:4976110

  5. Effects of drying methods on physicochemical and immunomodulatory properties of polysaccharide-protein complexes from litchi pulp.

    PubMed

    Huang, Fei; Guo, Yajuan; Zhang, Ruifen; Yi, Yang; Deng, Yuanyuan; Su, Dongxiao; Zhang, Mingwei

    2014-01-01

    Dried litchi pulp has been used in traditional remedies in China for many years to treat various diseases, and the therapeutic activity has been, at least partly, attributed to the presence of bioactive polysaccharides. Polysaccharide-protein complexes from vacuum freeze-(VF), vacuum microwave-(VM) and heat pump (HP) dried litchi pulp, which were coded as LP-VF, LP-VM and LP-HP, were comparatively studied on the physicochemical and immunomodulatory properties. LP-HP had a predominance of galactose, while glucose was the major sugar component in LP-VF and LP-VM. Compared with LP-VF and LP-VM, LP-HP contained more aspartate and glutamic in binding protein. LP-HP also exhibited a stronger stimulatory effect on splenocyte proliferation at 200 ?g/mL and triggered higher NO, TNF-? and IL-6 secretion from RAW264.7 macrophages. Different drying methods caused the difference in physicochemical properties of polysaccharide-protein complexes from dried litchi pulp, which resulted in significantly different immunomodulatory activity. HP drying appears to be the best method for preparing litchi pulp to improve its immunomodulatory properties. PMID:25140451

  6. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins

    PubMed Central

    Ledesma-Soto, Yadira; Callejas, Blanca E.; Terrazas, César A.; Reyes, Jose L.; Espinoza-Jiménez, Arlett; González, Marisol I.; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E.; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R.; Terrazas, Luis I.

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAM?s) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAM?s and prostaglandins. PMID:26090422

  7. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages.

    PubMed

    Shi, Yongyu; Felder, Mildred A R; Sondel, Paul M; Rakhmilevich, Alexander L

    2015-08-01

    Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-? and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy. PMID:25829245

  8. Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors

    PubMed Central

    2012-01-01

    Background The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. Results PS-F2-stimulated TNF-? production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3), laminarin, or piceatannol (a spleen tyrosine kinase inhibitor), suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4). PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-?B, which all played essential roles in activating TNF-? expression. Conclusions Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-?B and the production of TNF-?. PMID:22883599

  9. Leishmania donovani Suppresses Activated Protein 1 and NF-?B Activation in Host Macrophages via Ceramide Generation: Involvement of Extracellular Signal-Regulated Kinase

    PubMed Central

    Ghosh, Sanjukta; Bhattacharyya, Sandip; Sirkar, Madhumita; Shankar Sa, Gouri; Das, Tanya; Majumdar, Debashis; Roy, Syamal; Majumdar, Subrata

    2002-01-01

    In vitro infection of murine peritoneal macrophages with the protozoan Leishmania donovani has been found to alter the signaling parameters of the host. The present study indicates that the enhancement of intracellular ceramide level in macrophages after infection is a major event relating to macrophage dysfunction. We have previously demonstrated that increased ceramide synthesis in host macrophages was involved in the dephosphorylation of extracellular signal-regulated kinase (ERK). In the present study, we further show that downregulation of ERK by ceramide was found to be associated with the inhibition of activated protein 1 (AP-1) and NF-?B transactivation. Pharmacological inhibition of ceramide synthesis by Fumonisin B1 restored the induction of AP-1 and NF-?B DNA-binding activities in infected BALB/c macrophages. On the contrary, in the case of macrophages from the leishmaniasis-resistant C.D2 mice, L. donovani failed to induce sustained ceramide synthesis. Enhanced mitogen-activated protein kinase phosphorylation, AP-1 and NF-?B DNA-binding activity, and the generation of nitric oxide (NO) were observed in L. donovani-infected C.D2 macrophages. ERK activation was necessary for the activation of transcription factors AP-1 and NF-?B, NO generation, and restriction of the parasite burden in the resistant murine host macrophages. Hence, the induction of ceramide synthesis in host macrophages appears to be instrumental and one of the turning points leading to silencing of the macrophage antileishmanial responses. PMID:12438359

  10. Activated macrophage-mediated endogenous prostaglandin and nitric oxide-dependent relaxation of lymphatic smooth muscles.

    PubMed

    Wang, H

    1997-02-01

    The effects of macrophages activated by bacterial lipopolysaccharides (LPS) on the mechanical activity of lymph vessels with or without the endothelium were investigated using conventional bioassay preparations. Rat peritoneal macrophages emigrated by an injection of thioglycollate were isolated and cultured for 12 h in RPMI 1,640 medium containing 10 micrograms/ml LPS. More than 97% of the cultured cells were stained with monoclonal antibody ED1 and demonstrated phagocytosis of acetylated low-density lipoprotein. The supernatant of the macrophages (M phi) suppressed significantly the basal tone of the lymphatic bioassay rings precontracted by 10(-8) M U46619. The M phi-induced vasodilation of the lymph nodes was significantly reduced by 12 h preincubation of the macrophages with 5 x 10(-5) M N omega-nitro-L-arginine methyl ester (L-NAME), 10(-5) M indomethacin, 10(-6) M dexamethasone, or 10(-5) M cycloheximide. Simultaneous preincubation of L-NAME and indomethacin caused a synergistic reduction of the M phi-induced vasodilation of the lymphatic bioassay rings. The superfusion of Krebs-bicarbonate solution containing 5 x 10(-5) M L-NAME, 5 x 10(-5) M aspirin, or the culture medium with no macrophages caused no significant effect on the M phi-induced vasodilation. These findings suggest that macrophages activated by bacterial LPS produce a marked relaxation of lymphatic smooth muscles through the co-release of nitric oxide and vasodilative prostaglandins, which may result in the facilitation of edema formation in wound tissues. PMID:9159648

  11. Nitrotyrosine formation after activation of murine macrophages with mycobacteria and mycobacterial lipoarabinomannan

    PubMed Central

    Venkataprasad, N; Riveros-Moreno, V; Sosnowska, D; Moreno, C

    1999-01-01

    Murine peritoneal macrophages, elicited with thioglycollate, were stimulated in vitro with lipopolysaccharide (LPS). The production of nitrite, superoxide anion (SOA), and the accumulation of nitrotyrosine in the cells increased after treatment, and all were inhibitable by the NO synthase inhibitor NG-monomethyl-l-arginine monoacetate (l-NMMA). This effect suggests a direct correlation between the accumulation of those metabolites and NO synthase activity. Lipoarabinomannan (LAM) purified from Mycobacterium tuberculosis was added to peritoneal macrophages in the presence of interferon-gamma (IFN-?); the cells produced nitrite and SOA, both inhibitable by l-NMMA. There was, as well, accumulation of nitrotyrosine in the macrophage proteins. Strikingly, the amount of nitrotyrosine measured after LAM plus IFN-?, or LAM plus the low molecular weight adjuvant glutamylmuramyl dipeptide (GMDP), increased significantly in the presence of l-NMMA. These results suggest that murine macrophages, upon LAM stimulation, might generate reactive nitrogen metabolites by a route other than NO synthase. Nitrotyrosine accumulation after infection of macrophages in vitro, with either live bacille Calmette–Guérin (BCG) or live M. tuberculosis, in the presence or absence of IFN-?, showed no correlation with nitrite production, suggesting a low superoxide production. PMID:10337018

  12. Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin

    PubMed Central

    Kortmann, Jens; Brubaker, Sky W.

    2015-01-01

    Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1? secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6. PMID:26109648

  13. Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin.

    PubMed

    Kortmann, Jens; Brubaker, Sky W; Monack, Denise M

    2015-08-01

    Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1? secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6. PMID:26109648

  14. Macrophage activation state determines the response to rhinovirus infection in a mouse model of allergic asthma

    PubMed Central

    2014-01-01

    Background The mechanisms by which viruses cause asthma exacerbations are not precisely known. Previously, we showed that, in ovalbumin (OVA)-sensitized and -challenged mice with allergic airway inflammation, rhinovirus (RV) infection increases type 2 cytokine production from alternatively-activated (M2) airway macrophages, enhancing eosinophilic inflammation and airways hyperresponsiveness. In this paper, we tested the hypothesis that IL-4 signaling determines the state of macrophage activation and pattern of RV-induced exacerbation in mice with allergic airways disease. Methods Eight week-old wild type or IL-4 receptor knockout (IL-4R KO) mice were sensitized and challenged with OVA and inoculated with RV1B or sham HeLa cell lysate. Results In contrast to OVA-treated wild-type mice with both neutrophilic and eosinophilic airway inflammation, OVA-treated IL-4R KO mice showed increased neutrophilic inflammation with few eosinophils in the airways. Like wild-type mice, IL-4R KO mice showed OVA-induced airway hyperreactivity which was further exacerbated by RV. There was a shift in lung cytokines from a type 2-predominant response to a type 1 response, including production of IL-12p40 and TNF-?. IL-17A was also increased. RV infection of OVA-treated IL-4R KO mice further increased neutrophilic inflammation. Bronchoalveolar macrophages showed an M1 polarization pattern and ex vivo RV infection increased macrophage production of TNF-?, IFN-? and IL-12p40. Finally, lung cells from OVA-treated IL-4R KO mice showed reduced CD206+ CD301+ M2 macrophages, decreased IL-13 and increased TNF-? and IL-17A production by F4/80+, CD11b+?macrophages. Conclusions OVA-treated IL-4R KO mice show neutrophilic airway inflammation constituting a model of allergic, type 1 cytokine-driven neutrophilic asthma. In the absence of IL-4/IL-13 signaling, RV infection of OVA-treated mice increased type 1 cytokine and IL-17A production from conventionally-activated macrophages, augmenting neutrophilic rather than eosinophilic inflammation. In mice with allergic airways inflammation, IL-4R signaling determines macrophage activation state and the response to subsequent RV infection. PMID:24907978

  15. CD40 Signaling in Macrophages Induces Activity against an Intracellular Pathogen Independently of Gamma Interferon and Reactive Nitrogen Intermediates

    PubMed Central

    Andrade, Rosa M.; Portillo, Jose-Andres C.; Wessendarp, Matthew; Subauste, Carlos S.

    2005-01-01

    Gamma interferon (IFN-?) is the major inducer of classical activation of macrophages. Classically activated mouse macrophages acquire antimicrobial activity that is largely dependent on the production of reactive nitrogen intermediates. However, protection against important intracellular pathogens can take place in the absence of IFN-? and nitric oxide synthase 2 (NOS2). Using Toxoplasma gondii as a model, we investigated if CD40 signaling generates mouse macrophages with effector function against an intracellular pathogen despite the absence of priming with IFN-? and lack of production of reactive nitrogen intermediates. CD40-stimulated macrophages acquired anti-T. gondii activity that was not inhibited by a neutralizing anti-IFN-? monoclonal antibody but was ablated by the neutralization of tumor necrosis factor alpha (TNF-?). Moreover, while the induction of anti-T. gondii activity in response to CD40 stimulation was unimpaired in macrophages from IFN-??/? mice, macrophages from TNF receptor 1/2?/? mice failed to respond to CD40 engagement. In contrast to IFN-?-lipopolysaccharide, CD40 stimulation did not induce NOS2 expression and did not trigger production of reactive nitrogen intermediates. Neither NG-monomethyl-l-arginine nor diphenyleneiodonium chloride affected the induction of anti-T. gondii activity in response to CD40. Finally, macrophages from NOS2?/? mice acquired anti-T. gondii activity in response to CD40 stimulation that was similar to that of macrophages from wild-type mice. These results demonstrate that CD40 induces the antimicrobial activity of macrophages against an intracellular pathogen despite the lack of two central features of classically activated macrophages: priming with IFN-? and production of reactive nitrogen intermediates. PMID:15845519

  16. Toll receptors, CD14, and macrophage activation and deactivation by LPS

    Microsoft Academic Search

    Marina A. Dobrovolskaia; Stefanie N. Vogel

    2002-01-01

    This review will focus on the molecular mechanisms of macrophage activation and desensitization by bacterial lipopolysaccharide (LPS). The most recent advances in the understanding of the function of the LPS receptor complex and its role in the development of the septic shock syndrome and endotoxin tolerance will be discussed.

  17. ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON?

    EPA Science Inventory

    ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON? UP Kodavanti1, MCJ Schladweiler1, S Becker2, DL Costa1, P Mayer3, A Ziesenis3, WG Kreyling3, 1ETD, 2HSDivision, NHEERL, USEPA, Research Triangle Park, NC, USA, and 3GSF, Inhalation Biology...

  18. Comparative antiviral activity of integrase inhibitors in human monocyte-derived macrophages and lymphocytes.

    PubMed

    Scopelliti, Fernanda; Pollicita, Michela; Ceccherini-Silberstein, Francesca; Di Santo, Fabiola; Surdo, Matteo; Aquaro, Stefano; Perno, Carlo-Federico

    2011-11-01

    The activity of raltegravir and 4 other integrase inhibitors (MK-2048, L870,810, IN2, and IN5) was investigated in primary human macrophages, PBMC and C8166-lymphocytic T cells, in order to determine their relative potency and efficacy in different cellular systems of HIV infection. Raltegravir showed better protective efficacy in all cell types; MK-2048, L870,810 and IN5 showed a potent anti-HIV-1 activity in macrophages, while in lymphocytes only MK-2048 and L870,810 showed an inhibitory effect comparable to raltegravir. IN2 was a poorly effective anti-HIV-1 compound in all cellular systems. All effective integrase inhibitors exhibited a potent antiviral activity against both X4 and R5 HIV-1 strains. In general, raltegravir, MK-2048, L870,810 and IN5 showed anti HIV activity similar or slightly higher in macrophages compared to PBMC and C8166 T cells: for MK-2048, the EC(50) was 0.4, 0.9, 11.5 nM in macrophages, in PBMCs and T cells, respectively; for L870,810, the EC(50) was 1.5, 14.3, and 10.6 nM, respectively; for IN5 the EC(50) was 0.5, 13.7, and 5.7 nM, respectively. PMID:21867733

  19. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    SciTech Connect

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  20. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    Microsoft Academic Search

    Jingbo Pi; Qiang Zhang; Courtney G. Woods; Victoria Wong; Sheila Collins; Melvin E. Andersen

    2008-01-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of

  1. Exploring the activated adipogenic niche: interactions of macrophages and adipocyte progenitors.

    PubMed

    Lee, Yun-Hee; Thacker, Robert I; Hall, Brian Eric; Kong, Raymond; Granneman, James G

    2014-01-01

    Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by ?3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue. PMID:24394850

  2. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul

    2014-01-01

    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-? (TNF-?) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982

  3. Cytostatic and cytotoxic effects of activated macrophages and nitric oxide donors on Brugia malayi.

    PubMed Central

    Thomas, G R; McCrossan, M; Selkirk, M E

    1997-01-01

    The susceptibility of Brugia malayi microfilariae and adults to injury by the murine macrophage cell line J774 activated with gamma interferon and bacterial lipopolysaccharide has been examined in vitro. Parasites of both stages showed a decline in viability over 48 h of coculture with activated macrophages, assessed by their capacity to reduce the tetrazolium salt 3-[4,5-diethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), although adult parasites were more resistant than microfilariae. Removal of parasites to cell-free medium following exposure to activated macrophages for up to 48 h resulted in partial recovery of their capacity to reduce MTT, suggesting that the effects were primarily cytostatic. However, prolonged exposure to activated J774 cells for 72 h resulted in parasite death. Addition of the nitric oxide synthase inhibitor L-NMMA (N(G)-monomethyl-L-arginine monoacetate) indicated that nitric oxide derivatives were responsible for cytostasis and ultimate toxicity. The toxicity of nitric oxide derivatives was confirmed by coincubation of parasites with chemical donors, although far higher concentrations were required than those generated by activated J774 cells, implying additional complexity in macrophage-mediated cytotoxicity. These experiments further suggested that peroxynitrite or its by-products were more potently damaging to filariae than nitric oxide per se. Examination of ultrastructural changes on exposure of parasites to activated macrophages or donors of nitric oxide indicated that hypodermal mitochondria were highly vacuolated, with less prominent cristae. The data are discussed with reference to immunity to lymphatic filariae and their mechanisms of energy generation. PMID:9199443

  4. Platelet phagocytosis and processing of beta-amyloid precursor protein as a mechanism of macrophage activation in atherosclerosis.

    PubMed

    De Meyer, Guido R Y; De Cleen, Dieter M M; Cooper, Susan; Knaapen, Michiel W M; Jans, Dominique M; Martinet, Wim; Herman, Arnold G; Bult, Hidde; Kockx, Mark M

    2002-06-14

    In human occluded saphenous vein grafts, we previously demonstrated cytotoxic foam cells, presumably derived from macrophages engulfing platelets. In the present study, we investigated whether platelet phagocytosis occurs in human atherosclerotic plaques, whether this activates macrophages, and whether the platelet constituent, amyloid precursor protein (APP), was involved. Immunohistochemistry documented the presence of APP, beta-amyloid peptide (Abeta, cleaved from APP), and platelets (CD9), along with inducible NO synthase (iNOS) and cyclooxygenase-2, two markers of macrophage activation, around microvessels in advanced human carotid artery plaques (n=18). Abeta colocalized with iNOS-expressing macrophages that were often surrounded by platelets. In vitro, murine J774 and human THP-1 macrophages were incubated with or without washed human platelets. Coincubation of macrophages and platelets led to platelet phagocytosis (electron and confocal microscopy) and formation of lipid-, APP-, and Abeta-containing foam cells. These expressed iNOS mRNA (reverse transcription-polymerase chain reaction) and protein and produced nitrite and tumor necrosis factor-alpha (ELISA). Macrophage pretreatment with 4-(2-aminoethyl)benzenesulfonyl fluoride, a protease inhibitor, reduced APP processing and inhibited NO biosynthesis induced by platelet phagocytosis but not by lipopolysaccharides. Human atherosclerotic plaques and J774 and THP-1 macrophages contained mRNA of the APP-cleaving enzyme beta-secretase. This is the first demonstration of Abeta, a peptide extensively studied in Alzheimer's disease, in human atherosclerotic plaques. It was present in activated iNOS-expressing perivascular macrophages that had phagocytized platelets. In vitro studies indicate that platelet phagocytosis leads to macrophage activation and suggest that platelet-derived APP is proteolytically processed to Abeta, resulting in iNOS induction. This represents a novel mechanism for macrophage activation in atherosclerosis. PMID:12065323

  5. Immunomodulatory effects of betulinic acid from the bark of white birch on mice

    PubMed Central

    Yi, Jin-e; Obminska-Mrukowicz, Bozena; Yuan, Li-yun

    2010-01-01

    The objective of this study was to explore the immunomodulatory effects of betulinic acid (BA) extracted from the bark of white birch on mice. Female mice were orally administered BA for 14 days in doses of 0, 0.25, 0.5, and 1 mg/kg body weight. We found that BA significantly enhanced the thymus and spleen indices, and stimulated lymphocyte proliferation induced by Concanavalin A and lipopolysaccharide as shown by MTT assay. Flow cytometry revealed that BA increased the percentage of CD4+ cells in thymus as well as the percentage of CD19+ and the ratios of CD4+/CD8+ in spleen. BA increased the number of plaque-forming cell and macrophage phagocytic activity as indicated by a neutral red dye uptake assay, and the peritoneal macrophages levels of TNF-? were also increased. In contrast, serum levels of IgG and IgM and serum concentrations of IL-2 and IL-6 were significantly decreased in BA-treated mice compared to the control as assayed by haemagglutination tests and ELISA, respectively. Taken together, these results suggest that BA enhances mouse cellular immunity, humoral immunity, and activity of macrophages. Thus, BA is a potential immune stimulator and may strengthen the immune response of its host. PMID:21113099

  6. Activation of c-Jun N-Terminal Kinase in Bacterial Lipopolysaccharide-Stimulated Macrophages

    Microsoft Academic Search

    Julie Hambleton; Steven L. Weinstein; Lawrence Lem; Anthony L. Defranco

    1996-01-01

    Activation of macrophages by bacterial lipopolysaccharide (LPS) induces transcription of genes that encode for proinflammatory regulators of the immune response. Previous work has suggested that activation of the transcription factor activator protein 1 (AP-1) is one LPS-induced event that mediates this response. Consistent with this notion, we found that LPS stimulated AP-1-mediated transcription of a transfected reporter gene in the

  7. Enhancement of NO production in activated macrophages in vivo by an antimalarial crude drug, Dichroa febrifuga.

    PubMed

    Murata, K; Takano, F; Fushiya, S; Oshima, Y

    1998-06-26

    The effect of an antimalarial crude drug, Dichroafebrifuga Lour. on nitric oxide (NO) production in bacillus Calmette Guérin-induced mouse peritoneal macrophages activated by lipopolysaccharide was investigated. The NO production was significantly enhanced by an oral administration of a MeOH extract of D. febrifuga. Febrifugine (1) was isolated as the main active compound, and the activation was dose-dependent in the dosage range of 0.1-1 mg/kg/day. PMID:9644055

  8. Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection.

    PubMed

    Puri, Aaron W; Broz, Petr; Shen, Aimee; Monack, Denise M; Bogyo, Matthew

    2012-09-01

    Here we report AWP28, an activity-based probe that can be used to biochemically monitor caspase-1 activation in response to proinflammatory stimuli. Using AWP28, we show that apoptosis is triggered upon Salmonella enterica var. Typhimurium infection in primary mouse bone marrow macrophages lacking caspase-1. Furthermore, we report that upon Salmonella infection, inflammasome-mediated caspase-1 activity is required to bypass apoptosis in favor of proinflammatory pyroptotic cell death. PMID:22797665

  9. Mechanism of macrophage activation induced by polysaccharide from Cordyceps militaris culture broth.

    PubMed

    Lee, Jong Seok; Kwon, Duck Soo; Lee, Ki Rim; Park, Jun Myoung; Ha, Suk-Jin; Hong, Eock Kee

    2015-04-20

    Mushroom-derived polysaccharides have been shown to stimulate immune responses. Our previous report showed that the novel polysaccharide PLCM isolated from the culture broth of Cordyceps militaris could induce nitric oxide production in the murine macrophage-like cell line RAW264.7. In this study, we show that PLCM enhances immunostimulatory activities such as the release of toxic molecules (nitric oxide and reactive oxygen species), secretion of the cytokine tumor necrosis factor (TNF)-?, and phagocytic uptake in RAW264.7 macrophages. In addition, all the specific inhibitors against the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-?B) (SN50, BAY11-7082, PD98059, SP600125 and SB203580) markedly suppressed the nitric oxide production and phagocytic uptake induced by PLCM. Moreover, antibodies specific to the extracellular domain of Toll-like receptor-2, Toll-like receptor-4 or the macrophage receptor Dectin-1 significantly attenuated PLCM-induced secretion of TNF-?. Our results indicate that the C. militaris polysaccharide activates macrophages through the MAPKs and NF-?B signaling pathways via Toll-like receptor 2, Toll-like receptor 4, and Dectin-1. PMID:25662684

  10. A Yersinia Effector with Enhanced Inhibitory Activity on the NF-?B Pathway Activates the NLRP3\\/ASC\\/Caspase1 Inflammasome in Macrophages

    Microsoft Academic Search

    Ying Zheng; Sarit Lilo; Igor E. Brodsky; Yue Zhang; Ruslan Medzhitov; Kenneth B. Marcu; James B. Bliska

    2011-01-01

    A type III secretion system (T3SS) in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases

  11. Comparative efficacy of liposomes containing synthetic bacterial cell wall analogues for tumoricidal activation of monocytes and macrophages

    Microsoft Academic Search

    Teruhiro Utsugil; Akihiko Nii; Dominic Fan; Charles C. Pak; Yvonne Denkins I; Peter van Hoogevest; Isaiah J. Fidler

    1991-01-01

    Summary We examined the activation to the tumoricidal state of normal mouse peritoneal exudate macrophages, bone marrow macrophages, and human blood monocytes by liposomes containing either lipophilic muramyl tripeptide (CGP 19 835) or a new synthetic analogue of lipoprotein from gram-negative bacteria outer wall, CGP 31 362, or combinations of the two. The superiority of liposomes containing the synthetic lipopeptide

  12. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  13. Regulation of activation-associated microRNA accumulation rates during monocyte-to-macrophage differentiation.

    PubMed

    Eigsti, Renee L; Sudan, Bayan; Wilson, Mary E; Graff, Joel W

    2014-10-10

    Circulating monocytes recruited to tissues can differentiate into macrophages and adopt unique gene expression programs in response to environmental cues. We recently described the regulated expression of several microRNAs (miRNAs) in polarized human monocyte-derived macrophages (MDMs). Basal expression of these activation-associated miRNAs was low in monocytes relative to MDMs. As development occurs in the context of specific cellular environments, we hypothesized that the rate of miRNA accumulation would be modified in the presence of microbial or cellular products during monocyte-to-macrophage differentiation. Indeed, LPS treatment augmented the accumulation of miR-146a and miR-155, whereas IL-4 treatment augmented the accumulation of miR-193b and miR-222 during development. In contrast, some stimuli repressed accumulation of specific miRNAs including interferons (IFNs) (miR-27a, miR-125a-5p, and miR-222), IL-4 (miR-125a-5p), and LPS (miR-27a). RT-PCR-based expression profiling of monocytes differentiated with distinct methods showed that activation-associated miRNAs and markers of macrophage polarization were substantially altered in MDMs differentiated in the presence of non-monocytic peripheral blood mononuclear cells due in part to NF-?B and STAT1 pathway activation. Expression of several of these miRNAs was regulated at a preprocessing step because the expression of the primary miRNAs, but not Dicer, correlated with mature miRNA expression. We conclude that a set of miRNAs is regulated during MDM differentiation, and the rate is uniquely modified for each miRNA by environmental factors. The low basal expression of activation-associated miRNAs in monocytes and their dynamic rates of accumulation during MDM differentiation permit monocytes to tailor miRNA profiles in peripheral tissues during differentiation to macrophages. PMID:25148686

  14. Quercetin-3-O-glucuronide induces ABCA1 expression by LXR? activation in murine macrophages

    SciTech Connect

    Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)] [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Wakabayashi, Hideyuki [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan)] [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan); Taniguchi, Yoshimasa [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)] [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Shindo, Kazutoshi [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan)] [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan); Yajima, Hiroaki [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)] [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Yoshida, Aruto [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)] [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXR?. •Q3GA induced ABCA1 via LXR? activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXR?), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXR? in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  15. Helminth 2Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages

    Microsoft Academic Search

    Sheila Donnelly; Colin M. Stack; Sandra M. O'Neill; Ahmed A. Sayed; David L. Williams; John P. Dalton

    2008-01-01

    During helminth infections, alternatively activated macrophages (AAMacs) are key to promoting Th2 responses and suppressing Th1-driven inflamma- tory pathology. Th2 cytokines IL-4 and\\/or IL-13 are believed to be important in the induction and activation of AAMacs. Using murine models for the helminth infections caused by Fasciola hepatica (Fh) and Schisto- soma mansoni (Sm), we show that a secreted antioxidant, peroxiredoxin

  16. Peroxisome Proliferator-Activated Receptor Is Deficient in Alveolar Macrophages from Patients with Alveolar Proteinosis

    Microsoft Academic Search

    Tracey L. Bonfield; Carol F. Farver; Barbara P. Barna; Anagha Malur; Susamma Abraham; Baisakhi Raychaudhuri; Mani S. Kavuru; Mary Jane Thomassen

    2003-01-01

    Peroxisome proliferator-activated receptor- (PPAR- )i s a ligand-activated, nuclear transcription factor that regulates genes involved in lipid and glucose metabolism, inflammation, and other pathways. The hematopoietic growth factor, gra- nulocyte macrophage colony-stimulating factor (GM-CSF), is essential for lung homeostasis and is thought to regulate surfac- tant clearance, but mechanisms involved are unknown. GM- CSF is reported to stimulate PPAR-, but

  17. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation.

    PubMed

    Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-05-01

    Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation. PMID:12062184

  18. Progesterone-induced activation of membrane-bound progesterone receptors in murine macrophage cells

    PubMed Central

    Lu, Jing; Reese, Joshua; Zhou, Ying; Hirsch, Emmet

    2014-01-01

    Parturition is an inflammatory process mediated to a significant extent by macrophages. Progesterone maintains uterine quiescence in pregnancy, and a proposed functional withdrawal of progesterone classically regulated by nuclear progesterone receptors (nPRs) leads to labor. Progesterone can impact the functions of macrophages despite the reported lack of expression of nPRs in these immune cells. Therefore, in this study we investigated the effects of the activation of the putative membrane-associated progesterone receptor on the function of macrophages (a key cell for parturition) and discuss the implications of these findings for pregnancy and parturition. In murine macrophage cells (RAW264.7), activation of mPRs by progesterone modified to be active only extracellularly by conjugation to BSA (P4BSA, 1.0×10?7 mol/l) caused a pro-inflammatory shift in mRNA expression profile, with significant up-regulation of the expression of cyclooxygenase 2 (Ptgs2), Il1B, and Tnf and down-regulation of membrane progesterone receptor alpha (Paqr7) and oxytocin receptor (Oxtr). Pretreatment with PD98059, a MEK 1/2 inhibitor, significantly reduced P4BSA-induced Il1B, Tnf and Ptgs2 mRNA. Inhibition of protein kinase A (PKA) by H89 blocked P4BSA-induced Il1B and Tnf mRNA levels. P4BSA induced rapid phosphorylation of MEK1/2 and cAMP responsive element binding protein (CREB, a downstream target of PKA). This phosphorylation was inhibited by pretreatment with PD98059 and H89, respectively, revealing that MEK1/2 and PKA are two of the components involved in mPR signaling. Taken together, these data demonstrate that changes in membrane progesterone receptor alpha expression and signaling in macrophages are associated with the inflammatory responses; and that these changes might contribute to the functional withdrawal of progesterone related to labor. PMID:25472814

  19. Alveolar Macrophage Recruitment and Activation by Chronic Second Hand Smoke Exposure in Mice

    PubMed Central

    Ellwanger, Almut; Solon, Margaret; Cambier, Christopher J.; Pinkerton, Kent E.; Koth, Laura L.

    2010-01-01

    Background Approximately 15% of cases of COPD occur in non-smokers. Among the potential risk factors for COPD in non-smokers is second hand smoke (SHS) exposure. However, the Surgeon General reported in 2006 that the evidence linking second hand smoke and COPD is insufficient to infer a causal relationship, largely because current evidence does not establish a biological link. Objectives The goal of this study was to determine whether SHS exposure can induce alveolar macrophage recruitment and expression of activation markers that we have previously demonstrated in human smokers and in mouse models of emphysema. To achieve these goals, we studied mice exposed to an ambient mixture of predominantly [89%] sidestream smoke at increasing doses over 3 months. Results We found that second hand smoke exposure induced a dose-dependent increase in alveolar macrophage recruitment (mean ± sd; 224,511 ± 52,330 vs 166,152 ± 47,989 macrophages/ml of bronchoalveolar lavage in smoke-exposed vs air-exposed controls at 3 months, p=0.003). We also found increased expression of several markers of alveolar macrophage activation (PLA2g7, dkfzp434l142, Trem-2, and pirin, all p<0.01 at 3 months) and increased lavage levels of two inflammatory mediators associated with COPD (CCL2 [MCP-1], 58 ± 12 vs. 43 ± 22 pg/ml, p=0.03; and TNF?, 138 ± 43 vs 88 ± 78 pg/ml, p=0.04 at 3 months). Conclusions These findings indicate that second smoke exposure can cause macrophage recruitment and activation, providing a biological link between second hand smoke exposure and the development of inflammatory processes linked to COPD. PMID:19378221

  20. Modulation of Macrophage Activity During Fracture Repair has Differential Effects in Young Adult and Elderly Mice

    PubMed Central

    Slade Shantz, Jesse Alan; Yu, Yan-Yiu; Andres, Wells; Miclau, Theodore; Marcucio, Ralph

    2014-01-01

    Objectives Advanced age is a factor associated with altered fracture healing. Delays in healing may increase the incidence of complications in the elderly, who are less able to tolerate long periods of immobilization and activity restrictions. The following study sought to determine if fracture repair could be enhanced in elderly animals by inhibiting macrophage activation, blocking the M-CSF receptor c-fms, and inhibiting monocyte trafficking using CC chemokine receptor-2 (CCR2) knockout mice. Methods Closed, unstable tibial shaft fractures were produced in mice aged four, 12 and 78 weeks. Mice were then fed a diet containing PLX3397 or a control diet from days 1–10 post-injury. Fractures were similarly made in CCR2?/? mice aged 78 weeks. The fracture callus was collected during fracture healing and was assessed for its size and the presence of macrophages, both of which were evaluated using the Mann-Whitney U test. Results PLX3397 treatment resulted in a decrease in the number of macrophages in the fracture callus at Day 5. Calluses in juvenile mice trended towards being smaller compared to elderly mice (p=0.08). There was also a trend toward larger callus size and increased bone formation in PLX3397-treated elderly animals compared to those of the control animals (p=0.12). Similar increases in bone formation (p=0.013) and decreases in cartilage within the callus (p=0.03) were seen at Day 10 in CCR2?/? mice. Conclusions The inhibition of macrophages in elderly mice may lead to an acceleration of fracture healing. Altering macrophage activation after fracture may represent a therapeutic strategy for preventing delayed healing and nonunion in the elderly. PMID:24378434

  1. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    PubMed

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-05-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  2. Metformin Inhibits Monocyte-to-Macrophage Differentiation via AMPK-Mediated Inhibition of STAT3 Activation: Potential Role in Atherosclerosis.

    PubMed

    Vasamsetti, Sathish Babu; Karnewar, Santosh; Kanugula, Anantha Koteswararao; Thatipalli, Avinash Raj; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2015-06-01

    Monocyte-to-macrophage differentiation is a critical event that accentuates atherosclerosis by promoting an inflammatory environment within the vessel wall. In this study, we investigated the molecular mechanisms responsible for monocyte-to-macrophage differentiation and, subsequently, the effect of metformin in regressing angiotensin II (Ang-II)-mediated atheromatous plaque formation in ApoE(-/-) mice. AMPK activity was dose and time dependently downregulated during phorbol myristate acetate (PMA)-induced monocyte-to-macrophage differentiation, which was accompanied by an upregulation of proinflammatory cytokine production. Of note, AMPK activators metformin and AICAR significantly attenuated PMA-induced monocyte-to-macrophage differentiation and proinflammatory cytokine production. However, inhibition of AMPK activity alone by compound C was ineffective in promoting monocyte-to-macrophage differentiation in the absence of PMA. On the other hand, inhibition of c-Jun N-terminal kinase activity inhibited PMA-induced inflammation but not differentiation, suggesting that inflammation and differentiation are independent events. In contrast, inhibition of STAT3 activity inhibited both inflammation and monocyte-to-macrophage differentiation. By decreasing STAT3 phosphorylation, metformin and AICAR through increased AMPK activation caused inhibition of monocyte-to-macrophage differentiation. Metformin attenuated Ang-II-induced atheromatous plaque formation and aortic aneurysm in ApoE(-/-) mice partly by reducing monocyte infiltration. We conclude that the AMPK-STAT3 axis plays a pivotal role in regulating monocyte-to-macrophage differentiation and that by decreasing STAT3 phosphorylation through increased AMPK activity, AMPK activators inhibit monocyte-to-macrophage differentiation. PMID:25552600

  3. Inhibition of the immunosuppressive activity of resident pulmonary alveolar macrophages by granulocyte\\/macrophage colony-stimulating factor

    Microsoft Academic Search

    N. Bilyk; P. G. Holt

    1993-01-01

    Summal'y Resident pulmonary alveolar macrophages (PAM) play an important role in the maintenance of immunological homeostasis in the lung via downmodulation of local T cell responses in the steady state. The present study demonstrates that this pathway for T cell suppression is reversible via granulocyte\\/macrophage colony-stimulating factor (GM-CSF). Thus, freshly isolated PAM strongly inhibit mitogen-induced T cell proliferation, and pretreatment

  4. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-?B pathway regulation.

    PubMed

    Jung, Yun Chan; Kim, Mi Eun; Yoon, Ju Hwa; Park, Pu Reum; Youn, Hwa-Young; Lee, Hee-Woo; Lee, Jun Sik

    2014-12-01

    Inflammation is the major symptom of the innate immune response to microbial infection. Macrophages, immune response-related cells, play a role in the inflammatory response. Galangin is a member of the flavonols and is found in Alpinia officinarum, galangal root and propolis. Previous studies have demonstrated that galangin has antioxidant, anticancer, and antineoplastic activities. However, the anti-inflammatory effects of galangin are still unknown. In this study, we investigated the anti-inflammatory effects of galangin on RAW 264.7 murine macrophages. Galagin was not cytotoxic to RAW 264.7 cells, and nitric oxide (NO) production induced by lipopolysaccharide (LPS)-stimulated macrophages was significantly decreased by the addition of 50??M galangin. Moreover, galangin treatment reduced mRNA levels of cytokines, including IL-1? and IL-6, and proinflammatory genes, such as iNOS in LPS-activated macrophages in a dose-dependent manner. Galangin treatment also decreased the protein expression levels of iNOS in activated macrophages. Galangin was found to elicit anti-inflammatory effects by inhibiting ERK and NF-?B-p65 phosphorylation. In addition, galangin-inhibited IL-1? production in LPS-activated macrophages. These results suggest that galangin elicits anti-inflammatory effects on LPS-activated macrophages via the inhibition of ERK, NF-?B-p65 and proinflammatory gene expression. PMID:25270721

  5. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-?B Pathway

    PubMed Central

    Jin, Xian; Yao, Tongqing; Zhou, Zhong'e; Zhu, Jian; Zhang, Song; Hu, Wei; Shen, Chengxing

    2015-01-01

    Atherosclerotic lesions are accelerated in patients with diabetes. M1 (classically activated in contrast to M2 alternatively activated) macrophages play key roles in the progression of atherosclerosis. Since advanced glycation end products (AGEs) are major pathogenic factors and active inflammation inducers in diabetes mellitus, this study assessed the effects of AGEs on macrophage polarization. The present study showed that AGEs significantly promoted macrophages to express IL-6 and TNF-?. M1 macrophage markers such as iNOS and surface markers including CD11c and CD86 were significantly upregulated while M2 macrophage markers such as Arg1 and CD206 remained unchanged after AGEs stimulation. AGEs significantly increased RAGE expression in macrophages and activated NF-?B pathway, and the aforementioned effects were partly abolished by administration of anti-RAGE antibody or NF-?B inhibitor PDTC. In conclusion, our results suggest that AGEs enhance macrophage differentiation into proinflammatory M1 phenotype at least partly via RAGE/NF-?B pathway activation.

  6. Nramp1 transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on antigen processing and presentation.

    PubMed Central

    Lang, T; Prina, E; Sibthorpe, D; Blackwell, J M

    1997-01-01

    The natural resistance-associated macrophage protein (Nramp1) regulates macrophage activation. One of its pleiotropic effects on macrophage function is to regulate expression of major histocompatibility class II molecules. In this study macrophages stably transfected with the wild-type (infection-resistant) or the natural mutant (infection-susceptible) allele of the Nramp1 gene were used to study class II expression and processing and presentation of recombinant protein antigens to CD4+ T-cell hybridomas. As demonstrated previously for macrophages from Nramp1-resistant and -susceptible congenic mouse strains, transfected macrophage clones carrying the wild-type allele showed enhanced upregulation of class II molecules in response to gamma interferon compared to that shown by macrophage clones carrying an endogenous mutant allele or transfected with the mutant allele expressed under a viral long terminal repeat promoter. The wild-type allele-transfected macrophage clones also demonstrated an enhanced, lipopolysaccharide-dependent ability to process the recombinant leishmanial antigen LACK-delta 1 (the Leishmania homolog of receptors for activated C kinase) for presentation to LACK-specific CD4+ T cells. An influence on antigen processing must therefore be added to the growing list of pleiotropic effects of the Nramp1 gene potentially contributing to its role in infectious and autoimmune disease susceptibility. These results also have important implications for analysis of T-cell responses to vaccination, especially where antigens are presented to the immune system using live Salmonella species or Mycobacterium bovis BCG as a vaccine vehicle. PMID:9009286

  7. Stimulation of lymphocyte anti-melanoma activity by co-cultured macrophages activated by complex homeopathic medication

    PubMed Central

    2009-01-01

    Background Melanoma is the most aggressive form of skin cancer, and the most rapidly expanding cancer in terms of worldwide incidence. Chemotherapeutic approaches to treat melanoma have been uniformly disappointing. A Brazilian complex homeopathic medication (CHM), used as an immune modulator, has been recommended for patients with depressed immune systems. Previous studies in mice have demonstrated that the CHM activates macrophages, induces an increase in the number of leukocytes and improves the murine response against Sarcoma-180. Methods Here we studied the interaction of mouse lymph node lymphocytes, co-cultured in vitro with macrophages in the presence or absence of the CHM, with B16F10 melanoma cells. Results Lymphocytes co-cultured with macrophages in the presence of the CHM had greater anti-melanoma activity, reducing melanoma cell density and increasing the number of lysed tumor cells. There was also a higher proportion of activated (CD25+) lymphocytes with increased viability. Overall, lymphocytes activated by treatment destroyed growing cancer cells more effectively than control lymphocytes. Conclusion Co-culture of macrophages with lymphocytes in the presence of the CHM enhanced the anti-cancer performance of lymphocytes against a very aggressive lineage of melanoma cells. These results suggest that non-toxic therapies using CHMs are a promising alternative approach to the treatment of melanomas. In addition, they are attractive combination-therapy candidates, which may enhance the efficacy of conventional medicines by improving the immune response against tumor cells. PMID:19698142

  8. Immune activation of human brain microvascular endothelial cells inhibits HIV replication in macrophages

    PubMed Central

    Li, Jieliang; Wang, Yizhong; Wang, Xu; Ye, Li; Zhou, Yu; Persidsky, Yuri

    2013-01-01

    There is limited information about the role of blood-brain barrier (BBB) endothelial cells (ECs) in the central nervous system (CNS) and their innate immunity against HIV. We examined whether brain ECs can be immunologically activated to produce antiviral factors that inhibit HIV replication in macrophages. Human brain microvascular ECs expressed functional toll-like receptor 3 (TLR3) that could be activated by polyinosinic-polycytidylic acid (PolyI:C), resulting in the induction of endogenous interferon-? (IFN-?) and IFN-?. The TLR3 activation of ECs also induced the phosphorylation of interferon regulatory transcription factor 3 (IRF3) and IRF7, the key regulators of IFN signaling pathway. When supernatant (SN) of PolyI:C-activated EC cultures was applied to infected macrophage cultures, HIV replication was significantly suppressed. This SN action of ECs on HIV was mediated through both IFN-? and IFN-? because antibodies to their receptors could neutralize the SN-mediated anti-HIV effect. The role of IFNs in EC-mediated anti-HIV activity is further supported by the observation that treatment with SN from EC cultures induced the expression of IFN-stimulated genes (ISGs: ISG56, OAS-1, and MxA) in macrophages. These observations indicate that brain microvascular ECs may be a key regulatory bystander, playing a crucial role in the BBB innate immunity against HIV infection. PMID:23401273

  9. Recombinant human granulocyte/macrophage colony-stimulating factor activates intracellular killing of Leishmania donovani by human monocyte-derived macrophages

    PubMed Central

    1987-01-01

    Recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) obtained from cloned complementary Mo cell DNA and expressed in COS-1 cells activates cultured peripheral blood monocyte-derived macrophages in vitro to become cytotoxic for intracellular L. donovani. The antileishmanial effect of rGM-CSF, which can be completely neutralized by anti-rGM-CSF antiserum, is maximal after 36 h preincubation with the cultured macrophages, compared with that of rIFN-gamma, which reaches its maximum at 72 h of preincubation. The antileishmanial effect of GM- CSF as well as IFN-gamma is independent of detectable amounts of LPS and is not augmented by the addition of 10 or 50 ng/ml of LPS. Simultaneous administration of suboptimal doses of rGM-CSF and rIFN- gamma to monocyte-derived macrophages results in greater antileishmanial activity by these cells than administration of either lymphokine alone, although no enhancement of antileishmanial activity is observed when optimal doses of these two lymphokines are applied together. PMID:3119759

  10. Activated Macrophages Promote Hepatitis C Virus Entry in a Tumor Necrosis Factor-Dependent Manner

    PubMed Central

    Fletcher, Nicola F; Sutaria, Rupesh; Jo, Juandy; Barnes, Amy; Blahova, Miroslava; Meredith, Luke W; Cosset, Francois-Loic; Curbishley, Stuart M; Adams, David H; Bertoletti, Antonio; McKeating, Jane A

    2014-01-01

    Macrophages are critical components of the innate immune response in the liver. Chronic hepatitis C is associated with immune infiltration and the infected liver shows a significant increase in total macrophage numbers; however, their role in the viral life cycle is poorly understood. Activation of blood-derived and intrahepatic macrophages with a panel of Toll-like receptor agonists induce soluble mediators that promote hepatitis C virus (HCV) entry into polarized hepatoma cells. We identified tumor necrosis factor ? (TNF-?) as the major cytokine involved in this process. Importantly, this effect was not limited to HCV; TNF-? increased the permissivity of hepatoma cells to infection by Lassa, measles and vesicular stomatitis pseudoviruses. TNF-? induced a relocalization of tight junction protein occludin and increased the lateral diffusion speed of HCV receptor tetraspanin CD81 in polarized HepG2 cells, providing a mechanism for their increased permissivity to support HCV entry. High concentrations of HCV particles could stimulate macrophages to express TNF-?, providing a direct mechanism for the virus to promote infection. Conclusion: This study shows a new role for TNF-? to increase virus entry and highlights the potential for HCV to exploit existing innate immune responses in the liver to promote de novo infection events. (Hepatology 2014;59:1320-1330) PMID:24259385

  11. Recombinant granulocyte/macrophage colony-stimulating factor activates macrophages to inhibit Trypanosoma cruzi and release hydrogen peroxide. Comparison with interferon gamma

    PubMed Central

    1987-01-01

    Recombinant granulocyte/macrophage colony-stimulating factors (rGM-CSF) of mouse and human origins activated macrophages of the homologous species to inhibit the replication of the protozoan parasite T. cruzi. Activation could be induced with 10-100 ng/ml of rMu-GM-CSF, whether it was added before or after uptake of the parasite, in either adherent or suspension cultures. However, the degree of inhibition of parasite replication after exposure to rMu-GM-CSF was not as great as after treatment with rMu-IFN-gamma, and much more rMu-GM-CSF than rMu-IFN- gamma was required to achieve an equivalent antimicrobial effect. These results were mirrored by effects of the cytokines on enhancement of H2O2-releasing capacity in resident mouse peritoneal macrophages. In the latter tests, rMu-IFN-gamma and rHu-TNF-alpha afforded a 44-51-fold enhancement over the untreated control, with a 50% effective concentration (EC50) for rMu-IFN-gamma of approximately 0.05 ng/ml. Using rMu-GM-CSF or rM-CSF, enhancement of H2O2-releasing capacity was 14-15-fold over control, with EC50s of 1 and 14 ng/ml, respectively. However, peak enhancement of macrophage H2O2-releasing capacity was seen at least 24 h earlier with rMu-GM-CSF or rHu-M-CSF than with r-Mu- IFN-gamma or rHu-TNF-alpha. Thus, rMu-GM-CSF and rHu-GM-CSF displayed clear-cut macrophage-activating activity in vitro, but rMu-GM-CSF was less potent and less effective than rMu-IFN-gamma in the tests used. PMID:3119762

  12. The Pro-Inflammatory Cytokine, Interleukin-6, Enhances the Polarization of Alternatively Activated Macrophages

    PubMed Central

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells – immunoregulatory features not observed in the ‘parent’ IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4R? chain, and was independent of autocrine IL-10. In the presence of IFN?, IL-6 promoted the production of IL-1? and TNF? suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its’ anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6. PMID:24736635

  13. Identification of a denitrase activity against calmodulin in activated macrophages using high-field liquid chromatography--FTICR mass spectrometry.

    PubMed

    Smallwood, Heather S; Lourette, Natacha M; Boschek, Curt B; Bigelow, Diana J; Smith, Richard D; Pasa-Toli?, Ljiljana; Squier, Thomas C

    2007-09-18

    We have identified a denitrase activity in macrophages that is upregulated following macrophage activation, which is shown by mass spectrometry to recognize nitrotyrosines in the calcium signaling protein calmodulin (CaM). The denitrase activity converts nitrotyrosines to their native tyrosine structure without the formation of any aminotyrosine. Comparable extents of methionine sulfoxide reduction are also observed that are catalyzed by endogenous methionine sulfoxide reductases. Competing with repair processes, oxidized CaM is a substrate for a peptidase activity that results in the selective cleavage of the C-terminal lysine (i.e., Lys148) that is expected to diminish CaM function. Thus, competing repair and peptidase activities define the abundances and functionality of CaM in modulating cellular metabolism in response to oxidative stress, where the presence of the truncated CaM species provides a useful biomarker for the transient appearance of oxidized CaM. PMID:17711305

  14. CRP enhances soluble LOX-1 release from macrophages by activating TNF-? converting enzyme.

    PubMed

    Zhao, Xue Qiang; Zhang, Ming Wei; Wang, Fei; Zhao, Yu Xia; Li, Jing Jing; Wang, Xu Ping; Bu, Pei Li; Yang, Jian Min; Liu, Xiao Ling; Zhang, Ming Xiang; Gao, Fei; Zhang, Cheng; Zhang, Yun

    2011-05-01

    Circulating levels of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) play an important role in the development and progression of atherosclerosis. We hypothesized that the inflammatory marker C-reactive protein (CRP) might stimulate sLOX-1 release by activating tumor necrosis factor-? converting enzyme (TACE). Macrophages differentiated from THP-1 cells were stimulated with TNF-? and further treated with CRP in the absence or presence of specific inhibitors or small interfering RNA (siRNA). Our results showed that CRP increased sLOX-1 release from activated macrophages in a dose-dependent manner and that these effects were regulated by Fc ? receptor II (Fc?RII)-mediated p47(phox) phosphorylation, reactive oxygen species (ROS) production, and TACE activation. CRP also enhanced sLOX-1 release from macrophages derived from peripheral blood mononuclear cells (PBMC) of patients with acute coronary syndrome (ACS). Pretreatment with antibody against Fc?RII or with CD32 siRNA, p47(phox) siRNA, apocynin, N-acetylcysteine, tumor necrosis factor-? protease inhibitor 1 (TAPI-1) or TACE siRNA attenuated sLOX-1 release induced by CRP. CRP also elevated serum sLOX-1 levels in a rabbit model of atherosclerosis. Thus, CRP might stimulate sLOX-1 release, and the underlying mechanisms possibly involved Fc?RII-mediated p47(phox) phosphorylation, ROS production, and TACE activation. PMID:21364202

  15. CRP enhances soluble LOX-1 release from macrophages by activating TNF-? converting enzyme

    PubMed Central

    Zhao, Xue Qiang; Zhang, Ming Wei; Wang, Fei; Zhao, Yu Xia; Li, Jing Jing; Wang, Xu Ping; Bu, Pei Li; Yang, Jian Min; Liu, Xiao Ling; Zhang, Ming Xiang; Gao, Fei; Zhang, Cheng; Zhang, Yun

    2011-01-01

    Circulating levels of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) play an important role in the development and progression of atherosclerosis. We hypothesized that the inflammatory marker C-reactive protein (CRP) might stimulate sLOX-1 release by activating tumor necrosis factor-? converting enzyme (TACE). Macrophages differentiated from THP-1 cells were stimulated with TNF-? and further treated with CRP in the absence or presence of specific inhibitors or small interfering RNA (siRNA). Our results showed that CRP increased sLOX-1 release from activated macrophages in a dose-dependent manner and that these effects were regulated by Fc ? receptor II (Fc?RII)-mediated p47phox phosphorylation, reactive oxygen species (ROS) production, and TACE activation. CRP also enhanced sLOX-1 release from macrophages derived from peripheral blood mononuclear cells (PBMC) of patients with acute coronary syndrome (ACS). Pretreatment with antibody against Fc?RII or with CD32 siRNA, p47phox siRNA, apocynin, N-acetylcysteine, tumor necrosis factor-? protease inhibitor 1 (TAPI-1) or TACE siRNA attenuated sLOX-1 release induced by CRP. CRP also elevated serum sLOX-1 levels in a rabbit model of atherosclerosis. Thus, CRP might stimulate sLOX-1 release, and the underlying mechanisms possibly involved Fc?RII-mediated p47phox phosphorylation, ROS production, and TACE activation. PMID:21364202

  16. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators

    PubMed Central

    Raza, Sobia; Barnett, Mark W.; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A.; Freeman, Tom C.

    2014-01-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables—LPS dose, LPS versus IFN-? and -?, and genetic background—on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-? signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli. PMID:24721704

  17. Immunostimulating activity of maysin isolated from corn silk in murine RAW 264.7 macrophages

    PubMed Central

    Lee, Jisun; Kim, Sun-Lim; Lee, Seul; Chung, Mi Ja; Park, Yong Il

    2014-01-01

    Corn silk (CS) has long been consumed as a traditional herb in Korea. Maysin is a major flavonoid of CS. The effects of maysin on macrophage activation were evaluated, using the murine macrophage RAW 264.7 cells. Maysin was isolated from CS by methanol extraction, and preparative C18 reverse phase column chromatography. Maysin was nontoxic up to 100 ?g/ml, and dose-dependently increased TNF-? secretion and iNOS production by 11.2- and 4.2-fold, respectively, compared to untreated control. The activation and subsequent nuclear translocation of NF-?B was substantially enhanced upon treatment with maysin (1-100 ?g/ml). Maysin also stimulated the phosphorylation of Akt and MAPKs (ERK, JNK). These results indicated that maysin activates macrophages to secrete TNF-? and induce iNOS expression, via the activation of the Akt, NF-?B and MAPKs signaling pathways. These results suggest for the first time that maysin can be a new immunomodulator, enhancing the early innate immunity. [BMB Reports 2014; 47(7): 382-387] PMID:24286330

  18. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading

    PubMed Central

    Pols, Thijs W.H.; Nomura, Mitsunori; Harach, Taoufiq; Sasso, Giuseppe Lo; Oosterveer, Maaike H.; Thomas, Charles; Rizzo, Giovanni; Gioiello, Antimo; Adorini, Luciano; Pellicciari, Roberto; Auwerx, Johan; Schoonjans, Kristina

    2013-01-01

    SUMMARY The G-protein coupled receptor TGR5 has been identified as an important component of the bile acid signaling network and its activation has been linked to enhanced energy expenditure and improved glycemic control. Here we demonstrate that TGR5 is expressed in macrophages, and that its activation by 6?-ethyl-23(S)-methyl-cholic acid (6-EMCA, INT-777), a semi-synthetic BA, inhibits pro-inflammatory cytokine production, an effect mediated by TGR5-induced cAMP signaling and subsequent NF-?B inhibition. TGR5 activation with the TGR5-specific agonist INT-777 was found to inhibit oxidized LDL uptake in macrophages, and attenuated atherosclerosis in Ldlr?/?Tgr5+/+ mice, but not in Ldlr?/?Tgr5?/? double knockout mice. The inhibition of lesion formation was associated with decreased intraplaque inflammation and less plaque macrophage content. Furthermore, Ldlr?/? animals transplanted with bone marrow of Tgr5?/? mice did not show an inhibition of atherosclerosis by INT-777, further establishing an important role of leukocytes in INT-777-mediated inhibition of vascular lesion formation. Taken together, these data attribute a significant immune modulating function to TGR5 activation in the prevention of atherosclerosis, an important facet of the metabolic syndrome. PMID:22152303

  19. Pulmonary bacterial defense. Effect of the burn wound on transfer of alveolar macrophage activation in rats by parabiosis.

    PubMed

    Harmon, J W; Skornik, W A; McDonald, J; Dressler, D P

    1976-04-01

    The alveolar macrophage was studied in parabiotic rats using an inbred strain. Parabiotic pairs were sutured together at five weeks of age. Rats were subjected to a full thickness cutaneous burn of 20 per cent of the body surface area at seven weeks of age, and alveolar macrophages were washed from the lungs at six days post burn. The number of alveolar macrophages, their per cent of activation, and their ability to phagocytize and kill P aeruginosa in vitro were significantly increased at six days post burn in the burned controls and in both the burned and unburned members of the parabiotic pairs. No change in the alveolar macrophages was found in either unburned parabiotic pairs or in those which were sham-burned. These results indicate that a humoral or cellular agent produced either within the cutaneous burn wound or elsewhere as a response to the injury, traverses the parabiotic cross circulation to stimulate the alveolar macrophages. PMID:817616

  20. Cytokine-mediated activation of macrophages from Mycobacterium bovis BCG-resistant and -susceptible mice: differential effects of corticosterone on antimycobacterial activity and expression of the Bcg gene (Candidate Nramp).

    PubMed Central

    Brown, D H; LaFuse, W; Zwilling, B S

    1995-01-01

    Previous work in our laboratory has shown that corticosterone increases the susceptibility of macrophages from Bcgs mice to the growth of Mycobacterium avium. The innate antimycobacterial activity of macrophages from Bcgr mice was not affected by corticosterone. In contrast to the differential effect of corticosterone on the antimycobacterial activity of the macrophages, corticosterone suppressed the production of tumor necrosis factor alpha and nitric oxide by macrophages from both Bcgr and Bcgs mice. The purpose of this investigation was to compare the effects of corticosterone on the antimycobacterial activity of macrophages from Bcgr and Bcgs mice that have been activated in vitro with recombinant gamma interferon or granulocyte-macrophage colony-stimulating factor. We found that macrophages from both strains of congenic mice responded equally to the activation stimuli. The capacity of the activated macrophages from Bcgs mice to suppress the growth of M. avium was inhibited by the addition of corticosterone to the cultures. The addition of NG-monomethyl-L-arginine to the cultures did not affect the capacity of resident splenic macrophages from Bcgr mice to limit the growth of M. avium. However, NG-monomethyl-L-arginine reduced the capacity of gamma interferon-activated, but not granulocyte-macrophage colony-stimulating factor-activated, macrophages to limit the growth of M. avium by macrophages from both Bcgr and Bcgs mice. The addition of corticosterone suppressed Nramp expression by macrophages from Bcgs mice. Nramp expression by macrophages from Bcgr mice was not affected by corticosterone. PMID:7622220

  1. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    SciTech Connect

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China) [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)] [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China)] [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)] [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5?-hydroxymethyl-2?-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-?B activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ? YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ? The combination of YC-1 and PGE1 increased CREB but not NF?B activation. ? The combined effects were reversed by H89. ? The combination of rolipram and PGE1 triggered NO production and iNOS expression. ? Effect of YC-1 occurred through inhibition of cAMP-specific PDE.

  2. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation

    PubMed Central

    DiAngelo, Susan L.; Silveyra, Patricia; Umstead, Todd M.; Halstead, E. Scott; Davies, Michael L.; Hu, Sanmei; Floros, Joanna; McCormack, Francis X.; Christensen, Neil D.; Chroneos, Zissis C.

    2015-01-01

    The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages’ inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages. PMID:25965346

  3. Evidence against expression of an endogenous murine leukemia virus causing cellular resistance to lysis by activated macrophages.

    PubMed

    Gooding, L R; Taylor, J R; Laster, S M; Wehrly, K; Chesebro, B; Brickell, P M; Latchmann, D S; Rigby, P W

    1989-01-01

    In previous studies we observed that resistance of murine SV40-transformed fibroblast cell lines to cytolysis by activated macrophages was frequently associated with cellular expression of the gp70 of an endogenous ecotropic murine leukemia virus (MuLV). The work described here was initiated to test directly for a causative relationship between MuLV expression and resistance to lysis by macrophages. Northern blot analysis revealed that macrophage-resistant cells contain full length retroviral RNA. A panel of mAb which distinguish among host-range classes of MuLV detected only a non-recombinant ecotropic gp70 in these cells. The ecotropic MuLV from two independently derived macrophage resistant cells were isolated by limiting dilution cloning on Mus dunii fibroblasts. These viruses were then used to infect macrophage-sensitive cell lines and the resultant MuLV-positive cells tested for sensitivity to macrophage cytolysis. The MuLV-infected lines remained highly sensitive to macrophage lysis despite their high levels of cell surface gp70 and release of infectious MuLV. Thus, although we cannot rule out the possibility that MuLV or a product thereof is necessary for development of macrophage resistance in transformed cells, expression of MuLV per se is not sufficient to create the resistant phenotype. PMID:2535857

  4. Thioredoxin Peroxidase Secreted by Fasciola hepatica Induces the Alternative Activation of Macrophages

    Microsoft Academic Search

    Sheila Donnelly; Sandra M. O'Neill; Mary Sekiya; Grace Mulcahy; John P. Dalton

    2005-01-01

    Received 13 April 2004\\/Returned for modification 23 May 2004\\/Accepted 25 August 2004 Alternatively activated macrophages (AAM) are primarily associated with the chronic stages of parasitic infections and the development of a polarized Th2 response. We have shown that Fasciola hepatica infection of BALB\\/c mice induces a polarized Th2 response during both the latent and chronic stage of disease. The acti-

  5. Macrophage activation syndrome in children with systemic onset juvenile idiopathic arthritis: clinical experience from northwest India

    Microsoft Academic Search

    Surjit Singh; Shanmuganathan Chandrakasan; Jasmina Ahluwalia; Deepti Suri; Amit Rawat; Nishath Ahmed; Reena Das; Neelam Varma

    The objective of this study is to describe the clinical and laboratory features of macrophage activation syndrome (MAS) in\\u000a systemic onset juvenile idiopathic arthritis (SOJIA) at a tertiary care center in northwest India. Review of medical records\\u000a of all children with SOJIA admitted during the period January 1995–December 2008 in Pediatric Allergy and Immunology Unit,\\u000a Advanced Pediatrics Centre, Postgraduate Institute

  6. Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury.

    PubMed

    Papa, Simonetta; Rossi, Filippo; Ferrari, Raffaele; Mariani, Alessandro; De Paola, Massimiliano; Caron, Ilaria; Fiordaliso, Fabio; Bisighini, Cinzia; Sammali, Eliana; Colombo, Claudio; Gobbi, Marco; Canovi, Mara; Lucchetti, Jacopo; Peviani, Marco; Morbidelli, Massimo; Forloni, Gianluigi; Perale, Giuseppe; Moscatelli, Davide; Veglianese, Pietro

    2013-11-26

    Much evidence shows that acute and chronic inflammation in spinal cord injury (SCI), characterized by immune cell infiltration and release of inflammatory mediators, is implicated in development of the secondary injury phase that occurs after spinal cord trauma and in the worsening of damage. Activation of microglia/macrophages and the associated inflammatory response appears to be a self-propelling mechanism that leads to progressive neurodegeneration and development of persisting pain state. Recent advances in polymer science have provided a huge amount of innovations leading to increased interest for polymeric nanoparticles (NPs) as drug delivery tools to treat SCI. In this study, we tested and evaluated in vitro and in vivo a new drug delivery nanocarrier: minocycline loaded in NPs composed by a polymer based on poly-?-caprolactone and polyethylene glycol. These NPs are able to selectively target and modulate, specifically, the activated proinflammatory microglia/macrophages in subacute progression of the secondary injury in SCI mouse model. After minocycline-NPs treatment, we demonstrate a reduced activation and proliferation of microglia/macrophages around the lesion site and a reduction of cells with round shape phagocytic-like phenotype in favor of a more arborized resting-like phenotype with low CD68 staining. Treatment here proposed limits, up to 15 days tested, the proinflammatory stimulus associated with microglia/macrophage activation. This was demonstrated by reduced expression of proinflammatory cytokine IL-6 and persistent reduced expression of CD68 in traumatized site. The nanocarrier drug delivery tool developed here shows potential advantages over the conventionally administered anti-inflammatory therapy, maximizing therapeutic efficiency and reducing side effects. PMID:24138479

  7. Immunomodulatory effect of prednisolone (PRD) induced soluble suppressor factor(s) (PRD-SSF) on natural killer (NK) cell activity

    SciTech Connect

    Nair, M.P.N.; Cilik, J.M.; Schwartz, S.A.

    1986-03-01

    The authors have previously reported that peripheral blood lymphocytes precultured for 24 hrs with PRD showed significant suppression of their NK activity. Purified HNK-1/sup +/ lymphocytes were treated either directly with PRD or with supernates from allogeneic lymphocytes precultured with 10/sup -6/ to 10/sup -9/M PRD and examined for any inhibition of NK activity. For the NK assay K562 and U937 cell lines were used as targets in a 4 hr /sup 51/Cr release assay. HNK-1/sup +/ lymphocytes precultured with PRD showed significantly lower level of NK activity. In a single cell assay, both HNK-1/sup +/ and HNK-1/sup -/ subpopulations of PBL precultured with PRD also suppressed the target binding and lytic capacity of allogeneic fresh large granular lymphocytes, suggesting that NK cells/T cells or their precursors can be stimulated by PRD to inhibit NK activity. PBL precultured with increasing concentrations of culture supernates containing PRD-SSF showed a dose dependent inhibitory effect of their NK activity. This data suggest that PRD activated suppressor cells function through the release of soluble mediators. These findings may be of clinical significance to patients receiving corticosteroids for a variety of disorders including malignant, autoimmune and atopic diseases.

  8. Effects of Lycium barbarum extract on production and immunomodulatory activity of the extracellular polysaccharopeptides from submerged fermentation culture of Coriolus versicolor

    Microsoft Academic Search

    Fang-Yi Lin; Yiu-Kay Lai; Hao-Chen Yu; Nan-Yin Chen; Chi-Yue Chang; Hui-Chen Lo; Tai-Hao Hsu

    2008-01-01

    Polysaccharopeptides (PSPs) from Coriolus versicolor have been used as immunomodulatory and anticancer agents. However, most studies have concentrated on the mycelial PSPs and not those in the fermented broth. On the other hand, Lycium barbarum fruit has been used as a traditional Chinese herbal medicine for two millennia. Its extract contains various nutrients, minerals, and also polysaccharide–protein complexes, which are

  9. ELECTROSTATIC CHARGE ON NANO-PARTICLES ACTIVATES CNS MACROPHAGES (MICROGLIA).

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  10. Identification of a Denitrase Activity Against Calmodulin in Activated Macrophages Using High-Field Liquid Chromatography - FTICR Mass Spectrometry

    SciTech Connect

    Smallwood, Heather S.; Lourette, Natacha M.; Boschek, Curt B.; Bigelow, Diana J.; Smith, Richard D.; Pasa-Tolic, Liljiana; Squier, Thomas C.

    2007-09-18

    We have identified a denitrase activity in macrophages that is upregulated following macrophage activation, which is shown by mass spectrometry to recognize nitrotyrosines in the calcium signaling protein calmodulin (CaM) and convert them to their native tyrosine structure without the formation of any aminotyrosine. Comparable extents of methionine sulfoxide reduction are also observed that are catalyzed by endogenous methionine sulfoxide reductases. Competing with repair processes, oxidized CaM is a substrate for a peptidase activity that results in the selective cleavage of the C-terminus lysine (i.e., Lys148) that is expected to diminish CaM function. Thus, competing repair and peptidase activities define the abundances and functionality of CaM to modulate cellular metabolism in response to oxidative stress, where the presence of the truncated CaM species provides a useful biomarker for the transient appearance of oxidized CaM.

  11. The transcriptional PPAR?/? network in human macrophages defines a unique agonist-induced activation state

    PubMed Central

    Adhikary, Till; Wortmann, Annika; Schumann, Tim; Finkernagel, Florian; Lieber, Sonja; Roth, Katrin; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Kleinesudeik, Lara; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    Peroxisome proliferator-activated receptor ?/? (PPAR?/?) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPAR?/?-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NF?B and STAT1 target genes that are repressed by agonists. Accordingly, PPAR?/? agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPAR?/? agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fc? receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPAR?/? transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPAR?/? agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPAR?/? in immune regulation. PMID:25934804

  12. The transcriptional PPAR?/? network in human macrophages defines a unique agonist-induced activation state.

    PubMed

    Adhikary, Till; Wortmann, Annika; Schumann, Tim; Finkernagel, Florian; Lieber, Sonja; Roth, Katrin; Toth, Philipp M; Diederich, Wibke E; Nist, Andrea; Stiewe, Thorsten; Kleinesudeik, Lara; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-05-26

    Peroxisome proliferator-activated receptor ?/? (PPAR?/?) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPAR?/?-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NF?B and STAT1 target genes that are repressed by agonists. Accordingly, PPAR?/? agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPAR?/? agonists enhanced macrophage survival under hypoxic stress and stimulated CD8(+) T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fc? receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPAR?/? transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPAR?/? agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPAR?/? in immune regulation. PMID:25934804

  13. Role of lymphocytes in silicosis: regulation of secretion of macrophage-derived mitogenic activity for fibroblasts.

    PubMed Central

    Li, W.; Kumar, R. K.; O'Grady, R.; Velan, G. M.

    1992-01-01

    We investigated the role of pulmonary lymphocytes in regulating the secretion by alveolar macrophages (AM) of mitogenic activity for lung fibroblasts, in an experimental model of the initial stages of silicotic inflammation and fibrosis. Following intratracheal instillation of silica, pulmonary parenchymal lymphocytes produced a lymphokine(s) that caused modest stimulation of the secretion of mitogenic activity by normal AM. Co-culture of small numbers of lymphocytes from silica-injected animals with AM induced enhanced secretion of fibroblast growth factor activity which was comparable to the maximal response elicited by recombinant interferon-gamma. Lymphocytes from animals given non-fibrogenic titanium dioxide exhibited no such effects. The stimulatory effect of lymphocytes from silica-treated animals in co-culture with macrophages was abrogated when the cells were separated by a microporous membrane. Our findings demonstrate that lymphocytes participating in the response to pulmonary deposition of silica are able to induce the secretion of a growth factor(s) for fibroblasts by pulmonary macrophages, possibly via lymphokines expressed on the cell surface or secreted at sites of cell-to-cell contact. PMID:1337266

  14. Novel anti-inflammatory activity of epoxyazadiradione against macrophage migration inhibitory factor: inhibition of tautomerase and proinflammatory activities of macrophage migration inhibitory factor.

    PubMed

    Alam, Athar; Haldar, Saikat; Thulasiram, Hirekodathakallu V; Kumar, Rahul; Goyal, Manish; Iqbal, Mohd Shameel; Pal, Chinmay; Dey, Sumanta; Bindu, Samik; Sarkar, Souvik; Pal, Uttam; Maiti, Nakul C; Bandyopadhyay, Uday

    2012-07-13

    Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (K(i), 2.11-5.23 ?m). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-?B translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1?, IL-1?, IL-6, and TNF-? when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human. PMID:22645149

  15. Autocrine Regulation of Macrophage Activation via Exocytosis of ATP and Activation of P2Y11 Receptor

    PubMed Central

    Harada, Hitoshi; Moriyama, Yoshinori; Kojima, Shuji

    2013-01-01

    It is important to understand the mechanisms that regulate macrophage activation to establish novel therapies for inflammatory diseases, such as sepsis; a systemic inflammatory response syndrome generally caused by bacterial lipopolysaccharide (LPS). In this study, we investigated the involvement of extracellular ATP-mediated autocrine signaling in LPS-induced macrophage activation. We show here that ATP release via exocytosis, followed by activation of P2Y11 receptor, is a major pathway of the macrophage activation, leading to release of cytokines. Treatment of human monocyte THP-1 cells with LPS induced rapid ATP release from cells, and this release was blocked by knockdown of SLC17A9 (vesicular nucleotide transporter, VNUT), which is responsible for exocytosis of ATP. ATP-enriched vesicles were found in cytosol of THP-1 cells. These data suggest the involvement of vesicular exocytosis in the release of ATP. Knockdown of SLC17A9, the P2Y11 antagonist NF157 or knockdown of P2Y11 receptor significantly suppressed both M1-type polarization and IL-6 production in THP-1 cells, indicating an important role of activation of P2Y11 receptor by released ATP in macrophage activation. Next, the effect of NF157 on LPS-induced immune activation was examined in vivo. Administration of LPS to mice caused increase of serum IL-1ß, IL-6, IL-12 and TNF-alpha levels at 3–24 h after the administration. Pre-treatment of LPS-treated mice with NF157 suppressed both elevation of proinflammatory cytokines in serum and M1 polarization of peritoneal/spleen macrophages. Moreover, post-treatment with NF157 at 30 min after administration of LPS also suppressed the elevation of serum cytokines levels. We conclude that vesicular exocytosis of ATP and autocrine, positive feedback through P2Y11 receptors is required for the effective activation of macrophages. Consequently, P2Y11 receptor antagonists may be drug candidates for treatment of inflammatory diseases such as sepsis. PMID:23577075

  16. Immunological Priming Requires Tregs and Interleukin-10-Producing Macrophages to Accelerate Resolution from Severe Lung Inflammation

    PubMed Central

    Eto, Yoshiki; Tripathi, Ashutosh; Mandke, Pooja; Mock, Jason R.; Garibaldi, Brian T.; Singer, Benjamin D.; Sidhaye, Venkataramana K.; Horton, Maureen R.; King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and non-infectious agents, and is a leading cause of mortality world-wide. In that context, immunomodulatory strategies may be utilized to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose lipopolysaccharide can immunologically prime the lung to augment alveolar macrophage production of interleukin-10 and enhance resolution of lung inflammation induced by a lethal dose of lipopolysaccharide or by pseudomonas bacterial pneumonia. Interleukin-10 deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage interleukin-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared to low-dose lipopolysaccharide, but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal lipopolysaccharide exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures. PMID:24688024

  17. Low Molecular Weight Hyaluronan Activates Cytosolic Phospholipase A2? and Eicosanoid Production in Monocytes and Macrophages* ?

    PubMed Central

    Sokolowska, Milena; Chen, Li-Yuan; Eberlein, Michael; Martinez-Anton, Asuncion; Liu, Yueqin; Alsaaty, Sara; Qi, Hai-Yan; Logun, Carolea; Horton, Maureen; Shelhamer, James H.

    2014-01-01

    Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix. During inflammation, there is an increased breakdown of HA, resulting in the accumulation of low molecular weight (LMW) HA and activation of monocytes and macrophages. Eicosanoids, derived from the cytosolic phospholipase A2 group IVA (cPLA2?) activation, are potent lipid mediators also attributed to acute and chronic inflammation. The aim of this study was to determine the effect of LMW HA on cPLA2? activation, arachidonic acid (AA) release, and subsequent eicosanoid production and to examine the receptors and downstream mechanisms involved in these processes in monocytes and differently polarized macrophages. LMW HA was a potent stimulant of AA release in a time- and dose-dependent manner, induced cPLA2?, ERK1/2, p38, and JNK phosphorylation, as well as activated COX2 expression and prostaglandin (PG) E2 production in primary human monocytes, murine RAW 264.7, and wild-type bone marrow-derived macrophages. Specific cPLA2? inhibitor blocked HA-induced AA release and PGE2 production in all of these cells. Using CD44, TLR4, TLR2, MYD88, RHAMM or STAB2 siRNA-transfected macrophages and monocytes, we found that AA release, cPLA2?, ERK1/2, p38, and JNK phosphorylation, COX2 expression, and PGE2 production were activated by LMW HA through a TLR4/MYD88 pathway. Likewise, PGE2 production and COX2 expression were blocked in Tlr4?/? and Myd88?/? mice, but not in Cd44?/? mice, after LMW HA stimulation. Moreover, we demonstrated that LMW HA activated the M1 macrophage phenotype with the unique cPLA2?/COX2high and COX1/ALOX15/ALOX5/LTA4Hlow gene and PGE2/PGD2/15-HETEhigh and LXA4low eicosanoid profile. These findings reveal a novel link between HA-mediated inflammation and lipid metabolism. PMID:24366870

  18. Serum lipoproteins attenuate macrophage activation and Toll-Like Receptor stimulation by bacterial lipoproteins

    PubMed Central

    2010-01-01

    Background Chlamydia trachomatis was previously shown to express a lipoprotein, the macrophage infectivity potentiator (Mip), exposed at the bacterial surface, and able to stimulate human primary monocytes/macrophages through Toll Like Receptor (TLR)2/TLR1/TLR6, and CD14. In PMA-differentiated THP-1 cells the proinflammatory activity of Mip was significantly higher in the absence than in the presence of serum. The present study aims to investigate the ability of different serum factors to attenuate Mip proinflammatory activity in PMA-differentiated THP-1 cells and in primary human differentiated macrophages. The study was also extend to another lipoprotein, the Borrelia burgdorferi outer surface protein (Osp)A. The proinflammatory activity was studied through Tumor Necrosis Factor alpha (TNF-?) and Interleukin (IL)-8 release. Finally, TLR1/2 human embryonic kidney-293 (HEK-293) transfected cells were used to test the ability of the serum factors to inhibit Mip and OspA proinflammatory activity. Results In the absence of any serum and in the presence of 10% delipidated FBS, production of Mip-induced TNF-? and IL-8 in PMA-differentiated THP-1 cells were similar whereas they were significantly decreased in the presence of 10% FBS suggesting an inhibiting role of lipids present in FBS. In the presence of 10% human serum, the concentrations of TNF-? and IL-8 were 2 to 5 times lower than in the presence of 10% FBS suggesting the presence of more potent inhibitor(s) in human serum than in FBS. Similar results were obtained in primary human differentiated macrophages. Different lipid components of human serum were then tested (total lipoproteins, HDL, LDL, VLDL, triglyceride emulsion, apolipoprotein (apo)A-I, B, E2, and E3). The most efficient inhibitors were LDL, VLDL, and apoB that reduced the mean concentration of TNF-? release in Mip-induced macrophages to 24, 20, and 2%, respectively (p < 0.0001). These lipid components were also able to prevent TLR1/2 induced activation by Mip, in HEK-293 transfected cells. Similar results were obtained with OspA. Conclusions These results demonstrated the ability of serum lipids to attenuate proinflammatory activity of bacterial lipoproteins and suggested that serum lipoproteins interact with acyl chains of the lipid part of bacterial lipoproteins to render it biologically inactive. PMID:20846396

  19. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice. PMID:9682967

  20. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.

    PubMed

    Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien

    2012-10-22

    Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-? and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-?, TNF, LPS and LPS+IFN-?, and the M2 agonists, IL-4, TGF-?1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions. PMID:22967923

  1. Accelerated development of pulmonary fibrosis via Cu,Zn-superoxide dismutase-induced alternative activation of macrophages.

    PubMed

    He, Chao; Ryan, Alan J; Murthy, Shubha; Carter, A Brent

    2013-07-12

    Macrophages not only initiate and accentuate inflammation after tissue injury, but they are also involved in resolution and repair. This difference in macrophage activity is the result of a differentiation process to either M1 or M2 phenotypes. M1 macrophages are pro-inflammatory and have microbicidal and tumoricidal activity, whereas the M2 macrophages are involved in tumor progression and tissue remodeling and can be profibrotic in certain conditions. Because mitochondrial Cu,Zn-superoxide dismutase (Cu,Zn-SOD)-mediated H2O2 is crucial for development of pulmonary fibrosis, we hypothesized that Cu,Zn-SOD modulated the macrophage phenotype. In this study, we demonstrate that Cu,Zn-SOD polarized macrophages to an M2 phenotype, and Cu,Zn-SOD-mediated H2O2 levels modulated M2 gene expression at the transcriptional level by redox regulation of a critical cysteine in STAT6. Furthermore, overexpression of Cu,Zn-SOD in mice resulted in a profibrotic environment and accelerated the development of pulmonary fibrosis, whereas polarization of macrophages to the M1 phenotype attenuated pulmonary fibrosis. Taken together, these observations provide a novel mechanism of Cu,Zn-SOD-mediated and Th2-independent M2 polarization and provide a potential therapeutic target for attenuating the accelerated development of pulmonary fibrosis. PMID:23720777

  2. Evidence for a prosurvival role of alpha-7 nicotinic acetylcholine receptor in alternatively (M2)-activated macrophages.

    PubMed

    Lee, Robert H; Vazquez, Guillermo

    2013-12-01

    Recent observations in endothelial cells and macrophages indicate that nicotinic acetylcholine receptors (nAChRs) are potential novel players in mechanisms linked to atherogenesis. In macrophages, ?7nAChR mediates anti-inflammatory actions and contributes to regulation of cholesterol flux and phagocytosis. Considering that macrophage apoptosis is a key process throughout all stages of atherosclerotic lesion development, in the present study, we examined for the first time the impact of ?7nAChR expression and function in macrophage survival and apoptosis using in vitro polarized (M1 and M2) bone marrow-derived macrophages (BMDMs) from wild-type and ?7nAChR knockout mice. Our findings show that stimulation of ?7nAChR results in activation of the STAT3 prosurvival pathway and protection of macrophages from endoplasmic reticulum (ER) stress-induced apoptosis. These actions are rather selective for M2 BMDMs and are associated to activation of the JAK2/STAT3 axis. Remarkably, these effects are completely lost in M2 macrophages lacking ?7nAChR. PMID:24744866

  3. Accelerated Development of Pulmonary Fibrosis via Cu,Zn-superoxide Dismutase-induced Alternative Activation of Macrophages*

    PubMed Central

    He, Chao; Ryan, Alan J.; Murthy, Shubha; Carter, A. Brent

    2013-01-01

    Macrophages not only initiate and accentuate inflammation after tissue injury, but they are also involved in resolution and repair. This difference in macrophage activity is the result of a differentiation process to either M1 or M2 phenotypes. M1 macrophages are pro-inflammatory and have microbicidal and tumoricidal activity, whereas the M2 macrophages are involved in tumor progression and tissue remodeling and can be profibrotic in certain conditions. Because mitochondrial Cu,Zn-superoxide dismutase (Cu,Zn-SOD)-mediated H2O2 is crucial for development of pulmonary fibrosis, we hypothesized that Cu,Zn-SOD modulated the macrophage phenotype. In this study, we demonstrate that Cu,Zn-SOD polarized macrophages to an M2 phenotype, and Cu,Zn-SOD-mediated H2O2 levels modulated M2 gene expression at the transcriptional level by redox regulation of a critical cysteine in STAT6. Furthermore, overexpression of Cu,Zn-SOD in mice resulted in a profibrotic environment and accelerated the development of pulmonary fibrosis, whereas polarization of macrophages to the M1 phenotype attenuated pulmonary fibrosis. Taken together, these observations provide a novel mechanism of Cu,Zn-SOD-mediated and Th2-independent M2 polarization and provide a potential therapeutic target for attenuating the accelerated development of pulmonary fibrosis. PMID:23720777

  4. Epigenome-Guided Analysis of the Transcriptome of Plaque Macrophages during Atherosclerosis Regression Reveals Activation of the Wnt Signaling Pathway

    PubMed Central

    Menon, Prashanthi; Podolsky, Irina; Feig, Jonathan E.; Aderem, Alan; Fisher, Edward A.; Gold, Elizabeth S.

    2014-01-01

    We report the first systems biology investigation of regulators controlling arterial plaque macrophage transcriptional changes in response to lipid lowering in vivo in two distinct mouse models of atherosclerosis regression. Transcriptome measurements from plaque macrophages from the Reversa mouse were integrated with measurements from an aortic transplant-based mouse model of plaque regression. Functional relevance of the genes detected as differentially expressed in plaque macrophages in response to lipid lowering in vivo was assessed through analysis of gene functional annotations, overlap with in vitro foam cell studies, and overlap of associated eQTLs with human atherosclerosis/CAD risk SNPs. To identify transcription factors that control plaque macrophage responses to lipid lowering in vivo, we used an integrative strategy – leveraging macrophage epigenomic measurements – to detect enrichment of transcription factor binding sites upstream of genes that are differentially expressed in plaque macrophages during regression. The integrated analysis uncovered eight transcription factor binding site elements that were statistically overrepresented within the 5? regulatory regions of genes that were upregulated in plaque macrophages in the Reversa model under maximal regression conditions and within the 5? regulatory regions of genes that were upregulated in the aortic transplant model during regression. Of these, the TCF/LEF binding site was present in promoters of upregulated genes related to cell motility, suggesting that the canonical Wnt signaling pathway may be activated in plaque macrophages during regression. We validated this network-based prediction by demonstrating that ?-catenin expression is higher in regressing (vs. control group) plaques in both regression models, and we further demonstrated that stimulation of canonical Wnt signaling increases macrophage migration in vitro. These results suggest involvement of canonical Wnt signaling in macrophage emigration from the plaque during lipid lowering-induced regression, and they illustrate the discovery potential of an epigenome-guided, systems approach to understanding atherosclerosis regression. PMID:25474352

  5. Quantitative Proteomics Reveals the Induction of Mitophagy in Tumor Necrosis Factor-?-activated (TNF?) Macrophages*

    PubMed Central

    Bell, Christina; English, Luc; Boulais, Jonathan; Chemali, Magali; Caron-Lizotte, Olivier; Desjardins, Michel; Thibault, Pierre

    2013-01-01

    Macrophages play an important role in innate and adaptive immunity as professional phagocytes capable of internalizing and degrading pathogens to derive antigens for presentation to T cells. They also produce pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-?) that mediate local and systemic responses and direct the development of adaptive immunity. The present work describes the use of label-free quantitative proteomics to profile the dynamic changes of proteins from resting and TNF-?-activated mouse macrophages. These analyses revealed that TNF-? activation of macrophages led to the down-regulation of mitochondrial proteins and the differential regulation of several proteins involved in vesicle trafficking and immune response. Importantly, we found that the down-regulation of mitochondria proteins occurred through mitophagy and was specific to TNF-?, as other cytokines such as IL-1? and IFN-? had no effect on mitochondria degradation. Furthermore, using a novel antigen presentation system, we observed that the induction of mitophagy by TNF-? enabled the processing and presentation of mitochondrial antigens at the cell surface by MHC class I molecules. These findings highlight an unsuspected role of TNF-? in mitophagy and expanded our understanding of the mechanisms responsible for MHC presentation of self-antigens. PMID:23674617

  6. The uptake of trehalose glycolipids by macrophages is independent of Mincle.

    PubMed

    Kodar, Kristel; Eising, Selma; Khan, Ashna A; Steiger, Stefanie; Harper, Jacquie L; Timmer, Mattie S M; Stocker, Bridget L

    2015-03-01

    Trehalose glycolipids play an important role in the pathogenesis of Mycobacterium tuberculosis and are used as adjuvants for vaccines; however, much still remains unanswered about the mechanisms through which these glycolipids exert their immunomodulatory potential. Recently, the macrophage-inducible C-type lectin Mincle was determined to be the receptor for trehalose glycolipids, yet the role played by Mincle in glycolipid uptake is unknown. Accordingly, we developed several fluorescent trehalose glycolipid reporter systems that can be used to study the uptake of soluble trehalose glycolipids and glycolipid-coated particles by macrophages. Our studies revealed that, although Mincle is essential for the activation of macrophages by trehalose glycolipids, the receptor does not play a role in the uptake of these glycolipids or of glycolipid-coated particles. PMID:25645884

  7. TH1 and TH2 T-cell subsets are differentially activated by macrophages and B cells in murine leishmaniasis.

    PubMed Central

    Rossi-Bergmann, B; Müller, I; Godinho, E B

    1993-01-01

    The role of antigen-presenting cells in the differential expansion of TH1 and TH2 T cells in murine leishmaniasis was investigated. In general, macrophages preferentially induced gamma interferon and interleukin-2 secretion by syngeneic Leishmania-specific T cells, whereas B cells were more efficient in activating interleukin 4 production. B cells from susceptible BALB/c mice were better in inducing TH2 responses than B cells from resistant C57BL/6 mice, whereas macrophages from C57BL/6 mice were superior to BALB/c macrophages in inducing TH1 responses. PMID:8478122

  8. Antimicrobial, Antiviral and Immunomodulatory Activity Studies of Pelargonium sidoides (EPs® 7630) in the Context of Health Promotion

    PubMed Central

    Kolodziej, Herbert

    2011-01-01

    Pelargonium species contribute significantly to the health care of a large population in the Southern African region, as part of a long-standing medical system intimately linked to traditional healing practices. Most notably, extracts of the roots of P. sidoides have commonly been applied for the treatment of dysentery and diarrhoea but only occasionally for respiratory complaints. Clinical trials have shown that a modern aqueous-ethanolic formulation of P. sidoides extracts (EPs® 7630) is an efficacious treatment for disorders of the respiratory tract, for example bronchitis and sinusitis. It should be noted that EPs® 7630 is the most widely investigated extract and therefore is the focus of this review. In order to provide a rationale for its therapeutic activity extracts have been evaluated for antibacterial activity and for their effects on non-specific immune functions. Only moderate direct antibacterial capabilities against a spectrum of bacteria, including Mycobacteria strains, have been noted. In contrast, a large body of in vitro studies has provided convincing evidence for an anti-infective principle associated with activation of the non-specific immune system. Interestingly, significant inhibition of interaction between bacteria and host cells, a key to the pathogenesis of respiratory tract infections, has emerged from recent studies. In addition, antiviral effects have been demonstrated, including inhibition of the replication of respiratory viruses and the enzymes haemagglutinin and neuraminidase. Besides, an increase of cilliary beat frequency of respiratory cells may contribute to the beneficial effects of P. sidoides extracts. This example provides a compelling argument for continuing the exploration of Nature and traditional medical systems as a source of therapeutically useful herbal medicines.

  9. Escherichia coli Isolates from Inflammatory Bowel Diseases Patients Survive in Macrophages and Activate NLRP3 Inflammasome

    PubMed Central

    De la Fuente, Marjorie; Franchi, Luigi; Araya, Daniela; Díaz-Jiménez, David; Olivares, Mauricio; Álvarez-Lobos, Manuel; Golenbock, Douglas; González, María-Julieta; López-Kostner, Francisco; Quera, Rodrigo; Núñez, Gabriel; Vidal, Roberto; Hermoso, Marcela A.

    2014-01-01

    Crohn’s disease (CD) is a multifactorial pathology associated with the presence of adherent-invasive Escherichia coli (AIEC) and NLRP3 polymorphic variants. The presence of intracellular E. coli in other intestinal pathologies (OIP) and the role of NLRP3-inflammasome in the immune response activated by these bacteria have not been investigated. In this study, we sought to characterize intracellular strains isolated from patients with CD, ulcerative colitis (UC) and OIP, and analyze NLRP3-inflammasome role in the immune response and bactericidal activity induced in macrophages exposed to invasive bacteria. For this, intracellular E. coli isolation from ileal biopsies, using gentamicin-protection assay, revealed a prevalence and CFU/biopsy of E. coli higher in biopsies from CD, UC and OIP patients than in controls. To characterization of bacterial isolates, pulsed-field gel electrophoresis (PFGE) patterns, virulence genes, serogroup and phylogenetic group were analyzed. We found out that bacteria isolated from a given patient were closely related and shared virulence factors; however, strains from different patients were genetically heterogeneous. AIEC characteristics in isolated strains, such as invasive and replicative properties, were assessed in epithelial cells and macrophages, respectively. Some strains from CD and UC demonstrated AIEC properties, but not strains from OIP. Furthermore, the role of NLRP3 in pro-inflammatory cytokines production and bacterial elimination was determined in macrophages. E. coli strains induced IL-1? through NLRP3-dependent mechanism; however, their elimination by macrophages was independent of NLRP3. Invasiveness of intracellular E. coli strains into the intestinal mucosa and IL-1? production may contribute to CD and UC pathogenesis. PMID:24581881

  10. Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome.

    PubMed

    De la Fuente, Marjorie; Franchi, Luigi; Araya, Daniela; Díaz-Jiménez, David; Olivares, Mauricio; Álvarez-Lobos, Manuel; Golenbock, Douglas; González, María-Julieta; López-Kostner, Francisco; Quera, Rodrigo; Núñez, Gabriel; Vidal, Roberto; Hermoso, Marcela A

    2014-05-01

    Crohn's disease (CD) is a multifactorial pathology associated with the presence of adherent-invasive Escherichia coli (AIEC) and NLRP3 polymorphic variants. The presence of intracellular E. coli in other intestinal pathologies (OIP) and the role of NLRP3-inflammasome in the immune response activated by these bacteria have not been investigated. In this study, we sought to characterize intracellular strains isolated from patients with CD, ulcerative colitis (UC) and OIP, and analyze NLRP3-inflammasome role in the immune response and bactericidal activity induced in macrophages exposed to invasive bacteria. For this, intracellular E. coli isolation from ileal biopsies, using gentamicin-protection assay, revealed a prevalence and CFU/biopsy of E. coli higher in biopsies from CD, UC and OIP patients than in controls. To characterize bacterial isolates, pulsed-field gel electrophoresis (PFGE) patterns, virulence genes, serogroup and phylogenetic group were analyzed. We found out that bacteria isolated from a given patient were closely related and shared virulence factors; however, strains from different patients were genetically heterogeneous. AIEC characteristics in isolated strains, such as invasive and replicative properties, were assessed in epithelial cells and macrophages, respectively. Some strains from CD and UC demonstrated AIEC properties, but not strains from OIP. Furthermore, the role of NLRP3 in pro-inflammatory cytokines production and bacterial elimination was determined in macrophages. E. coli strains induced IL-1? through NLRP3-dependent mechanism; however, their elimination by macrophages was independent of NLRP3. Invasiveness of intracellular E. coli strains into the intestinal mucosa and IL-1? production may contribute to CD and UC pathogenesis. PMID:24581881

  11. Immunomodulatory and Antibacterial Effects of Cystatin 9 against Francisella tularensis

    PubMed Central

    Eaves-Pyles, Tonyia; Patel, Jignesh; Arigi, Emma; Cong, Yingzi; Cao, Anthony; Garg, Nisha; Dhiman, Monisha; Pyles, Richard B; Arulanandam, Bernard; Miller, Aaron L; Popov, Vsevolod L; Soong, Lynn; Carlsen, Eric D; Coletta, Ciro; Szabo, Csaba; Almeida, Igor C.

    2013-01-01

    Cystatin 9 (CST9) is a member of the type 2 cysteine protease inhibitor family, which has been shown to have immunomodulatory effects that restrain inflammation, but its functions against bacterial infections are unknown. Here, we report that purified human recombinant (r)CST9 protects against the deadly bacterium Francisella tularensis (Ft) in vitro and in vivo. Macrophages infected with the Ft human pathogen Schu 4 (S4), then given 50 pg of rCST9 exhibited significantly decreased intracellular bacterial replication and increased killing via preventing the escape of S4 from the phagosome. Further, rCST9 induced autophagy in macrophages via the regulation of the mammalian target of rapamycin (mTOR) signaling pathways. rCST9 promoted the upregulation of macrophage proteins involved in antiinflammation and antiapoptosis, while restraining proinflammatory-associated proteins. Interestingly, the viability and virulence of S4 also was decreased directly by rCST9. In a mouse model of Ft inhalation, rCST9 significantly decreased organ bacterial burden and improved survival, which was not accompanied by excessive cytokine secretion or subsequent immune cell migration. The current report is the first to show the immunomodulatory and antimicrobial functions of rCST9 against Ft. We hypothesize that the attenuation of inflammation by rCST9 may be exploited for therapeutic purposes during infection. PMID:23922243

  12. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    PubMed Central

    Ohta, Takashi; Ido, Atsushi; Kusano, Kie; Miura, Chiemi; Miura, Takeshi

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named “dipterose”, with a molecular weight of 1.01×106 and comprising nine monosaccharides. Dipterose was synthesized in the melon fly itself at the pupal stage. The NO-producing activity of dipterose was approximately equal to that of lipopolysaccharide, a potent immunostimulator. Inhibition of Toll-like receptor 4 (TLR4) led to the suppression of NO production by dipterose. Furthermore, dipterose induced the expression of proinflammatory cytokines and interferon ? (IFN?) and promoted the activation of nuclear factor kappa B (NF-?B) in macrophages, indicating that it stimulates the induction of various cytokines in RAW264 cells via the TLR4 signaling pathway. Our results thus suggest that dipterose activates the innate immune response against various pathogenic microorganisms and viral infections. This is the first identification of an innate immune-activating polysaccharide from an animal. PMID:25490773

  13. Bias in macrophage activation pattern influences non-alcoholic steatohepatitis (NASH) in mice.

    PubMed

    Maina, Virginia; Sutti, Salvatore; Locatelli, Irene; Vidali, Matteo; Mombello, Cristina; Bozzola, Cristina; Albano, Emanuele

    2012-06-01

    In humans, there is large inter-individual variability in the evolution of NAFLD (non-alcoholic fatty liver disease) to NASH (non-alcoholic steatohepatitis). To investigate this issue, NASH was induced with an MCD (methionine-choline-deficient) diet in C57BL/6 and Balb/c mice that are characterized by different biases in Th1/Th2 and macrophage (M1/M2) responses. Following 4 weeks on the MCD diet, steatosis and lobular inflammation were prevalent in C57BL/6 (Th1, M1 oriented) than in Balb/c (Th2, M2 oriented) mice. Consistently, hepatic TNF? (tumour necrosis factor ?) mRNA expression and circulating TNF? levels were higher in MCD-fed C57BL/6 than in MCD-fed Balb/c mice. The Th1/Th2 bias did not account for the increased NASH severity, as in both strains MCD feeding did not significantly modify the liver mRNA expression of the Th1 markers IFN? (interferon ?) and T-bet or that of the Th2 markers IL-4 (interleukin 4) and GATA-3. Conversely, MCD-fed C57BL/6 mice displayed higher liver mRNAs for the macrophage M1 activation markers iNOS (inducible NO synthase), IL-12p40 and CXCL10 (CXC chemokine ligand 10) than similarly treated Balb/c mice, without effects on the M2 polarization markers IL-10 and MGL-1 (macrophage galactose-type C-type lectin-1). Circulating IL-12 was also higher in MCD-fed C57BL/6 than in MCD-fed Balb/c mice. The analysis of macrophages isolated from the livers of MCD-fed animals confirmed an enhanced expression of M1 markers in C57BL/6 mice. Among all of the MCD-treated mice, liver iNOS, IL-12p40 and CXCL10 mRNA levels positively correlated with the frequency of hepatic necro-inflammatory foci. We concluded that the macrophage M1 bias in C57BL/6 mice may account for the increased severity of NASH in this strain, suggesting macrophage responses as important contributors to NAFLD progression. PMID:22142284

  14. The effects of drugs with immunosuppressive or immunomodulatory activities on xenobiotics-metabolizing enzymes expression in primary human hepatocytes.

    PubMed

    Vrzal, Radim; Zenata, Ondrej; Bachleda, Petr; Dvorak, Zdenek

    2015-08-01

    In this paper we investigated the effects of several drugs used in transplant medicine, i.e. cyclosporine A, tacrolimus, rapamycin, everolimus, mycophenolate mofetil, fluvastatin and rosuvastatin, on the expression of major drug-metabolizing enzymes in human hepatocytes. Moreover, we tested the ability of these drugs to affect transcriptional activity of glucocorticoid (GR) and aryl hydrocarbon receptor (AhR). We found that most of tested compounds did not induce expression of CYP1A1/1A2/3A4/2A6/2B6/2C9 mRNAs in human hepatocytes. Slight induction was observed for CYP2A6/2C9 mRNAs and CYP2A6 protein in the rapamycin-treated hepatocytes. Decrease of CYP2A6 and CYP2B6 proteins was observed in rosuvastatin-treated cells. Mycophenolate mofetil antagonized the effects of dexamethasone on GR but it potentiated the action of dioxin on AhR. Induction of CYP1A1 mRNA in HepG2 cells by dioxin was modestly antagonized by mycophenolate mofetil, while the induction by benzo[a]pyren or S-omeprazole was significantly potentiated by this drug. In general, tested compounds can be considered safe in the terms of possible drug-drug interaction caused by induction of drug-metabolizing cytochromes P450. Nevertheless, mycophenolate mofetil is of possible concern and its combination with drugs, environmental pollutants or food constituents, which activate AhR, may represent a significant toxicological risk. PMID:25929522

  15. CCR5 blockade promotes M2 macrophage activation and improves locomotor recovery after spinal cord injury in mice.

    PubMed

    Li, Fengtao; Cheng, Bin; Cheng, Jian; Wang, Dong; Li, Haopeng; He, Xijing

    2015-02-01

    Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function and leads to activate diverse cellular mechanisms in the central nervous system to attempt to repair the damaged spinal cord tissue. Chemokine Receptor 5 (CCR5), a major co-receptor for macrophage-tropic human immunodeficiency viruses, is expressed on the surface of monocytes/macrophages, dendritic cells, activated T cells, and NK cells. Recent papers have indicated the important role of CCR5 in SCI, but the mechanism is still unknown. In our current study, CCR5 blockade displayed increased myelin sparring and enhanced SC repair process. The number of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils and CD11b(+) macrophages were all significantly lower in the anti-CCR5 group than that in the control group after SCI. The IL-4 and IL-13 levels in anti-CCR5 group were markedly higher than that in control group after SCI. Correspondingly, the anti-CCR5-treated group showed increased numbers of Arg1- or CD206-expressing macrophages compared with the control IgG group. Furthermore, CCR5 blockade promoted PPAR? activation, and the increased numbers of M2 macrophages induced by CCR5 blockade were both reversed with additional PPAR? antagonist treatment. In conclusion, our present work provides evidence to support the concept that CCR5 blockade promotes M2 macrophage activation and improves locomotor recovery after SCI in mice. PMID:25212047

  16. Activation outcomes induced in naïve CD8 T-cells by macrophages primed via "phagocytic" and nonphagocytic pathways.

    PubMed

    Olazabal, Isabel María; Martín-Cofreces, Noa Beatriz; Mittelbrunn, María; Martínez del Hoyo, Gloria; Alarcón, Balbino; Sánchez-Madrid, Francisco

    2008-02-01

    The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKC. At the same doses of loaded antigen (1 microM), "phagocytic" macrophages were more efficient than peptide-antigen-loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3-30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy. PMID:18077558

  17. Expression and secretion of type. beta. transforming growth factor by activated human macrophages

    SciTech Connect

    Assoian, R.K.; Fleurdelys, B.E.; Stevenson, H.C.; Miller, P.J.; Madtes, D.K.; Raines, E.W.; Ross, R.; Sporn, M.B.

    1987-09-01

    Alveolar macrophages activated with concanavalin A and peripheral blood monocytes activated with lipopolysaccharide secrete type ..beta.. transforming growth factor (TGF-..beta..). There is minimal TGF-..beta.. secretion in unactivated monocytes, even though TGF-..beta.. mRNA is expressed in these cells at a level similar to that in activated, lipopolysaccharide-treated cultures. U937 lymphoma cells, which have momocytic characteristics, also express mRNA for TGF-..beta... Freshly isolated monocytes, both control and lipopolysaccharide-treated, secrete an acid-labile binding protein that inhibits TGF-..beta.. action. They conclude the following: (i) that expression of TGF-..beta.. mRNA is unrelated to monocyte activation, (ii) that secretion of TGF-..beta.. is induced by monocyte activation, and (iii) that cosecretion of TGF-..beta.. and its monocyte/macrophage-derived binding protein may modulate growth factor action. In contrast, monocytic expression of other growth factor genes, such as the B chain of platelet-derived growth factor, is not constitutive and requires activation.

  18. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4

    Microsoft Academic Search

    Li-Chung Hsu; Jin Mo Park; Kezhong Zhang; Jun-Li Luo; Shin Maeda; Randal J. Kaufman; Lars Eckmann; Donald G. Guiney; Michael Karin

    2004-01-01

    Macrophages are pivotal constituents of the innate immune system, vital for recognition and elimination of microbial pathogens. Macrophages use Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns-including bacterial cell wall components, such as lipopolysaccharide or lipoteichoic acid, and viral nucleic acids, such as double-stranded (ds)RNA-and in turn activate effector functions, including anti-apoptotic signalling pathways. Certain pathogens, however, such as Salmonella

  19. Primary alveolar macrophages exposed to diesel particulate matter increase RAGE expression and activate RAGE signaling.

    PubMed

    Barton, David B; Betteridge, Bryce C; Earley, Tyler D; Curtis, Cameron S; Robinson, Adam B; Reynolds, Paul R

    2014-10-01

    Receptors for advanced glycation end-products (RAGE) are members of the immunoglobulin superfamily of cell-surface receptors implicated in mechanisms of pulmonary inflammation. In the current study, we test the hypothesis that RAGE mediates inflammation in primary alveolar macrophages (AMs) exposed to diesel particulate matter (DPM). Quantitative RT-PCR and immunoblotting revealed that RAGE was up-regulated in Raw264.7 cells, an immortalized murine macrophage cell line and primary AMs exposed to DPM for 2 h. Because DPM increased RAGE expression, we exposed Raw264.7 cells and primary AMs isolated from RAGE null and wild-type (WT) mice to DPM prior to the assessment of inflammatory signaling intermediates. DPM led to the activation of Rat sarcoma GTPase (Ras), p38 MAPK and NF-?B in WT AMs and, when compared to WT AMs, these intermediates were diminished in DPM-exposed AMs isolated from RAGE null mice. Furthermore, cytokines implicated in inflammation, including IL-4, IL-12, IL-13 and TNF?, were all significantly decreased in DPM-exposed RAGE null AMs compared to similarly exposed WT AMs. These results demonstrate that diesel-induced inflammatory responses by primary AMs are mediated, at least in part, via RAGE signaling mechanisms. Further work may show that RAGE signaling in both alveolar epithelial cells and resident macrophages is a potential target in the treatment of inflammatory lung diseases exacerbated by environmental pollution. PMID:24859220

  20. Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation

    PubMed Central

    Bewley, Martin A.; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M.; Read, Robert C.; Mitchell, Timothy J.; Whyte, Moira K. B.

    2014-01-01

    ABSTRACT Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY’s ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1?). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. PMID:25293758

  1. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK).

    PubMed

    Chan, Kenny L; Pillon, Nicolas J; Sivaloganathan, Darshan M; Costford, Sheila R; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-07-01

    A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced I?B? degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues. PMID:25987561

  2. Two-photon laser scanning microscopy as a useful tool for imaging and evaluating macrophage-, IL-4 activated macrophage- and osteoclast-based in vitro degradation of beta-tricalcium phosphate bone substitute material.

    PubMed

    Duarte Campos, Daniela F; Vogt, Michael; Lindner, Markus; Kirsten, Armin; Weber, Michael; Megens, Remco T A; Pyta, Jürgen; Zenke, Martin; Van Zandvoort, Marc; Fischer, Horst

    2014-02-01

    Two-photon microscopy is an innovative technology that has high potential to combine the examination of soft and hard tissues in vitro and in vivo. Calcium phosphates are widely used substitutes for bone tissue engineering, since they are degradable and consequently replaced by newly formed tissue. It is well known that osteoclasts are responsible for the resorption processes during bone remodelling. We hypothesize that also macrophages are actively involved in the resorption process of calcium phosphate scaffolds and addressed this question in in vitro culture systems by two-photon laser scanning microscopy. Beta-tricalcium phosphate specimens were incubated with (1) macrophages, (2) interleukin-4 activated macrophages, and (3) osteoclasts for up to 21 days. Interestingly, macrophages degraded beta-tricalcium phosphate specimens in an equivalent fashion compared to osteoclasts and significantly more than IL-4 activated macrophages. An average of ~32% of the macrophages was partially filled with ceramic material while this was 18% for osteoclasts and 9% for IL-4 activated macrophages. For the first time by applying two-photon microscopy, our studies show the previously unrecognized potential of macrophages to phagocytose ceramic material, which is expected to have implication on osteoconductive scaffold design. PMID:24282165

  3. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages.

    PubMed

    Kaur, Gurpreet; Athar, Mohammad; Alam, M Sarwar

    2008-02-15

    The present study reports the antioxidant activity of ethanolic extract of Quercus infectoria galls. The antioxidant potency of galls was investigated employing several established in vitro model systems. Their protective efficacy on oxidative modulation of murine macrophages was also explored. Gall extract was found to contain a large amount of polyphenols and possess a potent reducing power. HPTLC analysis of the extract suggested it to contain 19.925% tannic acid (TA) and 8.75% gallic acid (GA). The extract potently scavenged free radicals including DPPH (IC(50)~0.5 microg/ml), ABTS (IC(50)~1 microg/ml), hydrogen peroxide (H(2)O(2)) (IC(50)~2.6 microg/ml) and hydroxyl (*OH) radicals (IC(50)~6 microg/ml). Gall extract also chelated metal ions and inhibited Fe(3+) -ascorbate-induced oxidation of protein and peroxidation of lipids. Exposure of rat peritoneal macrophages to tertiary butyl hydroperoxide (tBOOH) induced oxidative stress in them and altered their phagocytic functions. These macrophages showed elevated secretion of lysosomal hydrolases, and attenuated phagocytosis and respiratory burst. Activity of macrophage mannose receptor (MR) also diminished following oxidant exposure. Pretreatment of macrophages with gall extract preserved antioxidant armory near to control values and significantly protected against all the investigated functional mutilations. MTT assay revealed gall extract to enhance percent survival of tBOOH exposed macrophages. These results indicate that Q. infectoria galls possess potent antioxidant activity, when tested both in chemical as well as biological models. PMID:18076871

  4. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression.

    PubMed

    Raisch, Jennifer; Rolhion, Nathalie; Dubois, Anaëlle; Darfeuille-Michaud, Arlette; Bringer, Marie-Agnès

    2015-03-01

    Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24?h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72?h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72?h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages. PMID:25545478

  5. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages.

    PubMed

    Clark, Kristopher; MacKenzie, Kirsty F; Petkevicius, Kasparas; Kristariyanto, Yosua; Zhang, Jiazhen; Choi, Hwan Geun; Peggie, Mark; Plater, Lorna; Pedrioli, Patrick G A; McIver, Ed; Gray, Nathanael S; Arthur, J Simon C; Cohen, Philip

    2012-10-16

    Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of anti-inflammatory molecules, such as IL-10, and low levels of proinflammatory cytokines, like IL-12, and are important for the resolution of inflammatory responses. A central problem in this area is to understand how the formation of regulatory macrophages can be promoted at sites of inflammation to prevent and/or alleviate chronic inflammatory and autoimmune diseases. Here, we demonstrate that the salt-inducible kinases (SIKs) restrict the formation of regulatory macrophages and that their inhibition induces striking increases in many of the characteristic markers of regulatory macrophages, greatly stimulating the production of IL-10 and other anti-inflammatory molecules. We show that SIK inhibitors elevate IL-10 production by inducing the dephosphorylation of cAMP response element-binding protein (CREB)-regulated transcriptional coactivator (CRTC) 3, its dissociation from 14-3-3 proteins and its translocation to the nucleus where it enhances a gene transcription program controlled by CREB. Importantly, the effects of SIK inhibitors on IL-10 production are lost in macrophages that express a drug-resistant mutant of SIK2. These findings identify SIKs as a key molecular switch whose inhibition reprograms macrophages to an anti-inflammatory phenotype. The remarkable effects of SIK inhibitors on macrophage function suggest that drugs that target these protein kinases may have therapeutic potential for the treatment of inflammatory and autoimmune diseases. PMID:23033494

  6. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. [Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202 (United States)], E-mail: teotoo01@gwise.louisville.edu; Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni [Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202 (United States)

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  7. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages

    SciTech Connect

    Lancaster, J.R. Jr.; Hibbs, J.B. Jr. (Utah State Univ., Logan (USA))

    1990-02-01

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guerin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine.

  8. Monosodium Urate Activates Src/Pyk2/PI3 Kinase and Cathepsin Dependent Unconventional Protein Secretion From Human Primary Macrophages*

    PubMed Central

    Välimäki, Elina; Miettinen, Juho J.; Lietzén, Niina; Matikainen, Sampsa; Nyman, Tuula A.

    2013-01-01

    Monosodium urate (MSU) is an endogenous danger signal that is crystallized from uric acid released from injured cells. MSU is known to activate inflammatory response in macrophages but the molecular mechanisms involved have remained uncharacterized. Activated macrophages start to secrete proteins to activate immune response and to recruit other immune cells to the site of infection and/or tissue damage. Secretome characterization after activation of innate immune system is essential to unravel the details of early phases of defense responses. Here, we have analyzed the secretome of human primary macrophages stimulated with MSU using quantitative two-dimensional gel electrophoresis based proteomics as well as high-throughput qualitative GeLC-MS/MS approach combining protein separation by SDS-PAGE and protein identification by liquid chromatography-MS/MS. Both methods showed that MSU stimulation induced robust protein secretion from lipopolysaccharide-primed human macrophages. Bioinformatic analysis of the secretome data showed that MSU stimulation strongly activates unconventional, vesicle mediated protein secretion. The unconventionally secreted proteins included pro-inflammatory cytokines like IL-1? and IL-18, interferon-induced proteins, and danger signal proteins. Also active forms of lysosomal proteases cathepsins were secreted on MSU stimulation, and cathepsin activity was essential for MSU-induced unconventional protein secretion. Additionally, proteins associated to phosphorylation events including Src family tyrosine kinases were increased in the secretome of MSU-stimulated cells. Our functional studies demonstrated that Src, Pyk2, and PI3 kinases act upstream of cathepsins to activate the overall protein secretion from macrophages. In conclusion, we provide the first comprehensive characterization of protein secretion pathways activated by MSU in human macrophages, and reveal a novel role for cathepsins and Src, Pyk2, PI3 kinases in the activation of unconventional protein secretion. PMID:23292187

  9. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    SciTech Connect

    Gemelli, Claudia, E-mail: claudia.gemelli@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy); Center for Regenerative Medicine, University of Modena and Reggio Emilia, Via Gottardi 100, 41125 Modena (Italy); Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy)

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  10. CpGB DNA activates dermal macrophages and specifically recruits inflammatory monocytes into the skin.

    PubMed

    Mathes, Allison L; Rice, Lisa; Affandi, Alsya J; DiMarzio, Michael; Rifkin, Ian R; Stifano, Giuseppina; Christmann, Romy B; Lafyatis, Robert

    2015-02-01

    Toll-like receptor 9 (TLR9) drives innate immune responses after recognition of foreign or endogenous DNA containing unmethylated CpG motifs. DNA-mediated TLR9 activation is highly implicated in the pathogenesis of several autoimmune skin diseases, yet its contribution to the inflammation seen in these diseases remains unclear. In this study, TLR9 ligand, CpGB DNA, was administered to mice via a subcutaneous osmotic pump with treatment lasting 1 or 4 weeks. Gene expression and immunofluorescence analyses were used to determine chemokine expression and cell recruitment in the skin surrounding the pump outlet. CpGB DNA skin treatment dramatically induced a marked influx of CD11b+ F4/80+ macrophages, increasing over 4 weeks of treatment, and induction of IFN? and TNF? expression. Chemokines, CCL2, CCL4, CCL5, CXCL9 and CXCL10, were highly induced in CpGB DNA-treated skin, although abrogation of these signalling pathways individually did not alter macrophage accumulation. Flow cytometry analysis showed that TLR9 activation in the skin increased circulating CD11b+ CD115+ Ly6C(hi) inflammatory monocytes following 1 week of CpGB DNA treatment. Additionally, skin-resident CD11b+ cells were found to initially take up subcutaneous CpGB DNA and propagate the subsequent immune response. Using diphtheria toxin-induced monocyte depletion mouse model, gene expression analysis demonstrated that CD11b+ cells are responsible for the CpGB DNA-induced cytokine and chemokine response. Overall, these data demonstrate that chronic TLR9 activation induces a specific inflammatory response, ultimately leading to a striking and selective accumulation of macrophages in the skin. PMID:25425469

  11. CpGB DNA activates dermal macrophages and specifically recruits inflammatory monocytes into the skin

    PubMed Central

    Mathes, Allison L.; Rice, Lisa; Affandi, Alsya J.; DiMarzio, Michael; Rifkin, Ian R.; Stifano, Giuseppina; Christmann, Romy B.; Lafyatis, Robert

    2015-01-01

    Toll-like receptor 9 (TLR9) drives innate immune responses after recognition of foreign or endogenous DNA containing unmethylated CpG motifs. DNA-mediated TLR9 activation is highly implicated in the pathogenesis of several autoimmune skin diseases, yet its contribution to the inflammation seen in these diseases remains unclear. In this study, TLR9 ligand, CpGB DNA, was administered to mice via a subcutaneous osmotic pump with treatment lasting 1 or 4 weeks. Gene expression and immunofluorescence analyses were used to determine chemokine expression and cell recruitment in the skin surrounding the pump outlet. CpGB DNA skin treatment dramatically induced a marked influx of CD11b+ F4/80+ macrophages, increasing over 4 weeks of treatment, and induction of IFN? and TNF? expression. Chemokines, CCL2, CCL4, CCL5, CXCL9 and CXCL10, were highly induced in CpGB DNA-treated skin, although abrogation of these signalling pathways individually did not alter macrophage accumulation. Flow cytometry analysis showed that TLR9 activation in the skin increased circulating CD11b+ CD115+ Ly6Chi inflammatory monocytes following 1 week of CpGB DNA treatment. Additionally, skin-resident CD11b+ cells were found to initially take up subcutaneous CpGB DNA and propagate the subsequent immune response. Using diphtheria toxin-induced monocyte depletion mouse model, gene expression analysis demonstrated that CD11b+ cells are responsible for the CpGB DNA-induced cytokine and chemokine response. Overall, these data demonstrate that chronic TLR9 activation induces a specific inflammatory response, ultimately leading to a striking and selective accumulation of macrophages in the skin. PMID:25425469

  12. Growth of ovine granulocyte-macrophage precursors in vitro without exogenous colony-stimulating activity

    SciTech Connect

    Chandra, P.; Joel, D.D.; Chanana, A.D.

    1983-11-01

    Ovine granulocyte-macrophage colony-forming units (CFU-GM) from peripheral blood and bone marrow were cultured in vitro. The colony-stimulating activity (CSA) was provided by various conditioned-media previously reported to contain CSA and by homologous sheep serum (SS). The maximum number of CFU-GM was observed in the cultures containing SS without the addition of exogenous CSA. The CFU-GM appeared earlier in the cultures containing bone marrow cells when compared to the peripheral blood CFU-GM. Replacement of SS by bovine fetal serum resulted in suboptimal growth of ovine CFU-GM.

  13. Investigation into the Role of Tumor-Associated Macrophages in the Antitumor Activity of Doxil

    Microsoft Academic Search

    Manuela Banciu; Raymond M. Schiffelers; Gert Storm

    2008-01-01

    Purpose  Our recent studies show specific localization of long-circulating liposomes (LCL) within the endosomal\\/lysosomal compartment\\u000a of tumor-associated macrophages (TAM). Based on this finding, the present study aims to investigate whether clinically applied\\u000a LCL formulations such as Doxil (LCL-encapsulated doxorubicin), have alternative mechanisms of action additionally to direct\\u000a drug-mediated cytotoxicity towards tumor cells.\\u000a \\u000a \\u000a \\u000a Methods  The antitumor activity of Doxil was evaluated in B16.F10

  14. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  15. Glycodelin A, an immunomodulatory protein in the endometrium, inhibits proliferation and induces apoptosis in monocytic cells.

    PubMed

    Alok, Anshula; Mukhopadhyay, Debaditya; Karande, Anjali A

    2009-05-01

    Glycodelin A (GdA), is a lipocalin with an immunomodulatory role, secreted by the endometrium under progesterone regulation and proposed to play a role in protecting the fetus from maternal immune attack. Glycodelin A has an inhibitory effect on the proliferation of T cells and B cells and also on the activity of natural killer cells. We have earlier demonstrated that the inhibitory effect of glycodelin A on T cell proliferation is due to apoptosis induced in these cells through the caspase-dependent intrinsic mitochondrial pathway. Studies reported until now have shown that glycodelin modulates the adaptive immune responses. We, therefore, decided to look at its effect, if any, on the innate immune system. The effect of glycodelin on monocytes was studied using human monocytic cell lines, THP1 and U937, and primary human monocytes as model systems. We demonstrated that glycodelin inhibited the proliferation of THP1 and U937 and induced apoptosis in these cells as well as in primary monocytes. We found that this signaling was caspase-independent but followed the intrinsic mitochondrial pathway of apoptosis. No effect of glycodelin was seen on the phagocytic ability of monocytes post-differentiation into macrophages. These observations suggest that, at the fetomaternal interface, glycodelin plays a protective role by deleting the monocytes that could become pro-inflammatory. Importantly, leaving the macrophages untouched to carry on with efficient clearance of the apoptotic cells. PMID:18996219

  16. Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation

    PubMed Central

    Huang, Stanley Ching-Cheng; Everts, Bart; Ivanova, Yulia; O'Sullivan, David; Nascimento, Marcia; Smith, Amber M.; Beatty, Wandy; Love-Gregory, Latisha; Lam, Wing Y.; O'Neill, Christina M.; Yan, Cong; Du, Hong; Abumrad, Nada A.; Urban, Joseph F.; Artyomov, Maxim N.; Pearce, Erika L.; Pearce, Edward J.

    2014-01-01

    Alternative (M2) macrophage activation driven through interleukin 4 receptor ? (IL-4R?) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of fatty acids to support this metabolic program has not been clear. We show that the uptake of triacylglycerol substrates via CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation (OXPHOS), enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth, and blocked protective responses against this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation. PMID:25086775

  17. NSD1 Mitigates Caspase-1 Activation by Listeriolysin O in Macrophages

    PubMed Central

    Sakhon, Olivia S.; Victor, Kaitlin A.; Choy, Anthony; Tsuchiya, Tokuji; Eulgem, Thomas; Pedra, Joao H. F.

    2013-01-01

    Mammals and plants share pathogen-sensing systems named nod-like receptors (NLRs). Some NLRs form the inflammasome, a protein scaffold that regulates the secretion of interleukin (IL)-1? and IL-18 by cleaving catalytically inactive substrates into mature cytokines. Here, we show an immune conservation between plant and mammalian NLRs and demonstrate that the murine nuclear receptor binding SET domain protein 1 (NSD1), a protein that bears similarity to the NLR regulator enhanced downy mildew 2 (EDM2) in Arabidopsis, diminishes caspase-1 activity during extracellular stimulation with Listeria monocytogenes listeriolysin O (LLO). EDM2 is known to regulate plant developmental processes, whereas NSD1 is associated with developmental disorders. We observed that NSD1 neither affects nuclear factor (NF)-?B signaling nor regulates NLRP3 inflammasome gene expression at the chromatin, transcriptional or translational level during LLO stimulation of macrophages. Silencing of Nsd1 followed by LLO stimulation led to increased caspase-1 activation, enhanced post-translational maturation of IL-1? and IL-18 and elevated pyroptosis, a form of cell death associated with inflammation. Furthermore, treatment of macrophages with LLOW492A, which lacks hemolytic activity due to a tryptophan to alanine substitution in the undecapeptide motif, indicates the importance of functional LLO for NSD1 regulation of the NLRP3 inflammasome. Taken together, our results indicate that NLR signaling in plants may be used for gene discovery in mammals. PMID:24058709

  18. Macrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts.

    PubMed

    Dohle, E; Bischoff, I; Böse, T; Marsano, A; Banfi, A; Unger, R E; Kirkpatrick, C J

    2014-01-01

    The successful vascularisation of complex tissue engineered constructs for bone regeneration is still a major challenge in the field of tissue engineering. In this context, co-culture systems of endothelial cells and osteoblasts represent a promising approach to advance the formation of a stable vasculature as well as an excellent in vitro model to identify factors that positively influence bone healing processes, including angiogenesis. Under physiological conditions, the activation phase of angiogenesis is mainly induced by hypoxia or inflammation. Inflammatory cells such as macrophages secrete proinflammatory cytokines and proangiogenic growth factors, finally leading to the formation of new blood vessels. The aim of this study was to investigate if macrophages might positively influence the formation of microvessel-like structures via inflammatory mechanisms in a co-culture system consisting of human outgrowth endothelial cells (OECs) and primary osteoblasts. Treatment of co-cultures with macrophages (induced from THP-1) resulted in a higher number of microvessel-like structures formed by OECs compared to the co-culture. This change correlated with a significantly higher concentration of the proangiogenic VEGF in cell culture supernatants of triple-cultures and was accompanied by an increase in the expression of different proinflammatory cytokines, such as IL-6, IL-8 and TNF?. In addition, the expression of E-selectin and ICAM-1, adhesion molecules which are strongly involved in the interaction between leukocytes and endothelial cells during the process of inflammation was also found to be higher in triple-cultures compared to the double co-cultures, documenting an ongoing proinflammatory stimulus. These results raise the possibility of actively using pro-inflammatory stimuli in a tissue engineering context to accelerate healing mechanisms. PMID:24554272

  19. 64Cu-DOTATATE PET/MRI for Detection of Activated Macrophages in Carotid Atherosclerotic Plaques

    PubMed Central

    Sandholt, Benjamin Vikjær; Keller, Sune Høgild; Hansen, Adam Espe; Clemmensen, Andreas Ettrup; Sillesen, Henrik; Højgaard, Liselotte; Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Objective— A feature of vulnerable atherosclerotic plaques of the carotid artery is high activity and abundance of lesion macrophages. There is consensus that this is of importance for plaque vulnerability, which may lead to clinical events, such as stroke and transient ischemic attack. We used positron emission tomography (PET) and the novel PET ligand [64Cu] [1,4,7,10-tetraazacyclododecane-N,N?,N?,N?-tetraacetic acid]-d-Phe1,Tyr3-octreotate (64Cu-DOTATATE) to specifically target macrophages via the somatostatin receptor subtype-2 in vivo. Approach and Results— Ten patients underwent simultaneous PET/MRI to measure 64Cu-DOTATATE uptake in carotid artery plaques before carotid endarterectomy. 64Cu-DOTATATE uptake was significantly higher in symptomatic plaque versus the contralateral carotid artery (P<0.001). Subsequently, a total of 62 plaque segments were assessed for gene expression of selected markers of plaque vulnerability using real-time quantitative polymerase chain reaction. These results were compared with in vivo 64Cu-DOTATATE uptake calculated as the mean standardized uptake value. Univariate analysis of real-time quantitative polymerase chain reaction and PET showed that cluster of differentiation 163 (CD163) and CD68 gene expression correlated significantly but weakly with mean standardized uptake value in scans performed 85 minutes post injection (P<0.001 and P=0.015, respectively). Subsequent multivariate analysis showed that CD163 correlated independently with 64Cu-DOTATATE uptake (P=0.031) whereas CD68 did not contribute significantly to the final model. Conclusions— The novel PET tracer 64Cu-DOTATATE accumulates in atherosclerotic plaques of the carotid artery. CD163 gene expression correlated independently with 64Cu-DOTATATE uptake measured by real-time quantitative polymerase chain reaction in the final multivariate model, indicating that 64Cu-DOTATATE PET is detecting alternatively activated macrophages. This association could potentially improve noninvasive identification and characterization of vulnerable plaques. PMID:25977567

  20. Inflammation, Macrophage in Cancer Progression and Chinese Herbal Treatment

    PubMed Central

    Deng, Shan; Hu, Bing; Shen, Ke-Ping; Xu, Ling

    2012-01-01

    Inflammation is associated with cancer development, and has been recognized as the seventh hallmarks of the cancer. Cancer-related inflammation can be activated by genetic or epigenetic changes in cancer cells (intrinsic pathway) or mediated by tumor-infiltrating immune cells (extrinsic pathway). Immune cells involved in cancer-related inflammation mainly including tumor-associated macrophages or M2 macrophages, neutrophils, dendritic cells, mast cells, and lymphocytes. As major players of the cancer-related inflammation, M2 macrophages, secreting various of growth factors, immunomodulatory cytokines and matrix metalloproteinases, participate in remodeling of extracellular matrix, contribute to cancer invasion and metastasis, angiogenesis, and inhibit anti-cancer immunity. Inflammation has been considered as an important target for cancer therapy. Some Chinese herbal ingredients have been confirmed to be effective in inhibit inflammation related gene expression in cancer cells, such as COX-2 and NF-B. However, there is a shortage of study on Chinese herb or herbal ingredient against extrinsic cancer inflammation, especially in tumor-associated macrophages. Related studies may provide new insight into cancer treatment. PMID:24826036

  1. Chemerin15-Ameliorated Cardiac Ischemia-Reperfusion Injury Is Associated with the Induction of Alternatively Activated Macrophages

    PubMed Central

    Chang, Chao; Ji, Qingwei; Wu, Bangwei; Yu, Kunwu; Zeng, Qiutang; Xin, Shuanli; Liu, Jixiang; Zhou, Yujie

    2015-01-01

    Chemerin15 (C15), an endogenous anti-inflammatory component, inhibits the activity of neutrophils and macrophages through G protein-coupled receptor ChemR23; however, its role as well as functional mechanism in mouse myocardial ischemia/reperfusion (I/R) injury remains unknown. Methods. Sham or I/R operations were performed on C57BL/6J mice. The I/R mice received an injection of C15 immediately before reperfusion. Serum troponin T levels, infarct size, cardiomyocyte apoptosis, reactive oxygen species (ROS) production, and infiltration of neutrophils were assessed 24?h after reperfusion, while the macrophage phenotypes, macrophage infiltration, and inflammatory cytokine levels were assessed 48?h after reperfusion. Results. Compared with the control group, the C15-treated mice showed an obvious amelioration of I/R injury and displayed less ROS, accompanied by reduced neutrophil recruitment. C15 decreased the tumor necrosis factor- (TNF-) ? and interleukin- (IL-) 6 levels and increased the IL-10 levels in the serum of the I/R mice, which suggested a suppressed inflammatory response that could be related to elevated alternatively activated M2 macrophages with characteristic skewed expression of M2 markers and inhibition of classically activated M1 marker expression. Conclusion. C15 may induce alternatively activated M2 macrophage polarization and suppress the inflammatory response to protect against myocardial I/R injury in mice.

  2. Lymphocyte apoptosis and macrophage function: correlation with disease activity in systemic lupus erythematosus.

    PubMed

    Jin, Ou; Sun, Ling-yun; Zhou, Kang-xin; Zhang, Xin-su; Feng, Xue-bing; Mok, Mo-yin; Lau, Chak-sing

    2005-04-01

    Increased lymphocyte apoptosis and defects in macrophage removal of apoptotic cells have been suggested to contribute to the development of systemic lupus erythematosus (SLE). The aim of this study was to investigate the relationship between peripheral lymphocyte apoptosis, macrophage function as determined by the serum levels of neopterin and interferon-gamma (IFN-gamma), and SLE disease activity. Peripheral apoptotic lymphocytes (AL) were detected by annexin V-fluorescein isothiocyanate (FITC) staining and flow cytometry. Serum levels of neopterin and IFN-gamma were measured by enzyme-linked immunosorbent assay (ELISA). SLE disease activity was determined using the systemic lupus activity measure (SLAM) and the serum titer of anti-dsDNA antibodies. The percentage of AL in the peripheral blood of active SLE patients was significantly higher (13.07+/-7.39%, n=30) than that of the inactive SLE patients (4.08+/-3.55%, n=8, p<0.01) and normal controls (5.13+/-3.37%, n=11, p<0.01). Serum levels of neopterin in active SLE patients were significantly higher (1.39+/-1.10 microg/dl, n=22) than in controls (0.26+/-0.19 microg/dl, n=20, p<0.01). Serum levels of IFN-gamma in active SLE patients were elevated (58.97+/-34.52 ng/l, n=15) when compared with controls (28.06+/-2.35 ng/l, n=16, p<0.05). The percentage of AL correlated significantly with serum levels of neopterin (r=0.446, p<0.05, n=22) and SLAM score (r=0.533, p<0.001, n=38), but not with the serum levels of IFN-gamma. The SLAM score also correlated with the serum levels of neopterin (r=0.485, p<0.05, n=22), but not with those of IFN-gamma. Our study supported the hypothesis that increased lymphocyte apoptosis has a pathogenic role in SLE. The increased levels of serum neopterin may suggest an attempt of the patients' macrophage system to remove the apoptotic cell excess. Since serum levels of neopterin correlated with the overall lupus disease activity, they may be regarded as an index of SLE disease activity. PMID:15818511

  3. Toll-like receptor 3 activation differentially regulates phagocytosis of bacteria and apoptotic neutrophils by mouse peritoneal macrophages.

    PubMed

    Deng, Tingting; Feng, Xueying; Liu, Peipei; Yan, Keqin; Chen, Yongmei; Han, Daishu

    2013-01-01

    Toll-like receptor (TLR) activation by microbial pathogens triggers inflammatory responses against microbes. The phagocytic clearance of invading microbes and apoptotic immune cells is essential to resolve inflammation. However, the relationship between TLR activation and phagocytosis is poorly understood. We found that TLR3 activation promotes bacterial uptake through the activation of interferon-regulating factor 3 (IRF3) and inhibits phagocytosis of apoptotic neutrophils through the activation of nuclear factor-?B (NF-?B) by mouse peritoneal macrophages. The TLR signals that regulate the phagocytic ability of macrophages were also induced by TLR4 and TLR5 activation. Further, we demonstrated that TLR-induced tumor necrosis factor-? and interferon-? contributed to the differential phagocytosis of apoptotic neutrophils and bacteria by macrophages. Moreover, activation of IRF3 upregulated the expression of some receptors involved in bacterial uptake, whereas activation of NF-?B downregulated the expression of molecules that facilitate the phagocytosis of apoptotic cells. These results describe an effect of TLR-triggered innate immunity on the phagocytic activity of macrophages. PMID:22986631

  4. Differential use of chondroitin sulfate to regulate hyaluronan binding by receptor CD44 in Inflammatory and Interleukin 4-activated Macrophages.

    PubMed

    Ruffell, Brian; Poon, Grace F T; Lee, Sally S M; Brown, Kelly L; Tjew, Sie-Lung; Cooper, Jessie; Johnson, Pauline

    2011-06-01

    CD44 is a cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan and is involved in processes ranging from leukocyte recruitment to wound healing. In the immune system, the binding of hyaluronan to CD44 is tightly regulated, and exposure of human peripheral blood monocytes to inflammatory stimuli increases CD44 expression and induces hyaluronan binding. Here we sought to understand how mouse macrophages regulate hyaluronan binding upon inflammatory and anti-inflammatory stimuli. Mouse bone marrow-derived macrophages stimulated with tumor necrosis factor ? or lipopolysaccharide and interferon-? (LPS/IFN?) induced hyaluronan binding by up-regulating CD44 and down-regulating chondroitin sulfation on CD44. Hyaluronan binding was induced to a lesser extent in interleukin-4 (IL-4)-activated macrophages despite increased CD44 expression, and this was attributable to increased chondroitin sulfation on CD44, as treatment with ?-d-xyloside to prevent chondroitin sulfate addition significantly enhanced hyaluronan binding. These changes in the chondroitin sulfation of CD44 were associated with changes in mRNA expression of two chondroitin sulfotransferases, CHST3 and CHST7, which were decreased in LPS/IFN?-stimulated macrophages and increased in IL-4-stimulated macrophages. Thus, inflammatory and anti-inflammatory stimuli differentially regulate the chondroitin sulfation of CD44, which is a dynamic physiological regulator of hyaluronan binding by CD44 in mouse macrophages. PMID:21471214

  5. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  6. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  7. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    SciTech Connect

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)] [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States)] [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)] [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup ?/?} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup ?/?} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup ?/?} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup ?/?} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-?, interleukin (IL)-1?, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNF?, IL-1?, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup ?/?} mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity. -- Highlights: ? STK regulates alternative macrophage activation after acetaminophen intoxication. ? Loss of STK results in increased sensitivity to acetaminophen. ? Increased toxicity involves oxidative stress and decreases in repair macrophages.

  8. IQG-607 abrogates the synthesis of mycolic acids and displays intracellular activity against Mycobacterium tuberculosis in infected macrophages.

    PubMed

    Rodrigues-Junior, Valnês S; dos Santos Junior, André A; Villela, Anne D; Belardinelli, Juan M; Morbidoni, Héctor R; Basso, Luiz A; Campos, Maria M; Santos, Diógenes S

    2014-01-01

    In this work, the antitubercular activity of a pentacyano(isoniazid)ferrate(II) compound (IQG-607) was investigated using a macrophage model of Mycobacterium tuberculosis infection. Importantly, treatment of M.-tuberculosis-infected macrophages with IQG-607 significantly diminished the number of CFU compared with the untreated control group. The antitubercular activity of IQG-607 was similar to that observed for the positive control drugs isoniazid and rifampicin. Nevertheless, higher concentrations of IQG-607 produced a significantly greater reduction in bacterial load compared with the same concentrations of isoniazid. Analysis of the mechanism of action of IQG-607 revealed that the biosynthesis of mycolic acids was blocked. The promising activity of IQG-607 in infected macrophages and the experimental determination of its mechanism of action may help in further studies aimed at the development of a new antimycobacterial agent. PMID:24139881

  9. Maturation of the Legionella pneumophila-containing phagosome into a phagolysosome within gamma interferon-activated macrophages.

    PubMed

    Santic, Marina; Molmeret, Maëlle; Abu Kwaik, Yousef

    2005-05-01

    Legionella pneumophila is an intracellular pathogen that modulates the biogenesis of its phagosome to evade endocytic vesicle traffic. The Legionella-containing phagosome (LCP) does not acquire any endocytic markers and is remodeled by the endoplasmic reticulum during early stages. Here we show that intracellular replication of L. pneumophila is inhibited in gamma interferon (IFN-gamma)-activated, bone marrow-derived mouse macrophages and IFN-gamma-activated, human monocyte-derived macrophages in a dose-dependent manner. This inhibition of intracellular replication is associated with the maturation of the LCP into a phagolysosome, as documented by the acquisition of LAMP-2, cathepsin D, and lysosomal tracer Texas Red ovalbumin, and with the failure of the LCP to be remodeled by the rough endoplasmic reticulum. We conclude that IFN-gamma-activated macrophages override the ability of L. pneumophila to evade endocytic fusion and that the LCP is processed through the "default" endosomal-lysosomal degradation pathway. PMID:15845527

  10. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages

    PubMed Central

    Wu, Shengqian Q; Otero, Miguel; Unger, Frank M; Goldring, Mary B; Phrutivorapongkul, Ampai; Chiari, Catharina; Kolb, Alexander; Viernstein, Helmut; Toegel, Stefan

    2012-01-01

    Aim of the study Caesalpinia sappan is a common remedy in Traditional Chinese Medicine and possesses diverse biological activities including anti-inflammatory properties. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. In order to provide a scientific basis for the applicability of Caesalpinia sappan in arthritic diseases, the present study aimed to assess the effects of an ethanolic Caesalpinia sappan extract (CSE) on human chondrocytes and macrophages. Materials and Methods Primary human chondrocytes were isolated from cartilage specimens of OA patients. Primary cells, SW1353 chondrocytes and THP-1 macrophages were serum-starved and pretreated with different concentrations of CSE prior to stimulation with 10 ng/ml of interleukin-1beta (IL-1ß) or lipopolysaccharide (LPS). Following viability tests, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-?) were evaluated by Griess assay and ELISA, respectively. Using validated real-time PCR assays, mRNA levels of IL-1ß, TNF-?, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified. SW1353 cells were cotransfected with a COX-2 luciferase reporter plasmid and nuclear factor-kappa-B (NF-?B) p50 and p65 expression vectors in the presence or absence of CSE. Results CSE dose-dependently inhibited the expression of pro-inflammatory cytokines IL-1ß and TNF-? in IL-1ß-stimulated chondrocytes and LPS-stimulated THP-1 macrophages. CSE further suppressed the synthesis of NO in primary OA chondrocytes by blocking iNOS mRNA expression. The inhibition of COX-2 transcription was found to be related with the CSE inhibition of the p65/p50-driven transactivation of the COX-2 promoter. Conclusions The present report is first to demonstrate the anti-inflammatory activity of CSE in an in vitro cell model of joint inflammation. CSE can effectively abrogate the IL-1ß-induced over-expression of inflammatory mediators at the transcriptional level in human chondrocytes and macrophages, most likely by inhibiting NF-?B (p65/p50) signaling. Blockade of IL-1ß-induced NF-?B signaling and its downstream pro-inflammatory targets by CSE may be beneficial for reducing cartilage breakdown in arthritis. PMID:21963554

  11. Plasminogen activator activity in lung and alveolar macrophages of rats exposed to graded single doses of. gamma. rays to the right hemithorax

    SciTech Connect

    Ts'ao, C.; Ward, W.F.

    1985-09-01

    Male rats were sacrificed 2 or 6 months after a single dose of 0-30 Gy of /sup 60/Co ..gamma.. rays to the right hemithorax. At autopsy, macrophages were lavaged from the right lung, counted, and frozen. The right (irradiated) and the left (shielded) lungs were frozen, then assayed for plasminogen activator (PLA) activity by the fibrin plate lysis method. Freeze-thawed macrophages were assayed for both PLA activity (/sup 125/I-fibrin clot lysis method) and fibrinolytic inhibitor activity (inhibition of urokinase-induced fibrin lysis). There was a linear, dose-dependent decrease in right lung PLA activity over the dose range of 10-30 Gy at 2 and 6 months postirradiation, reductions of 3.1 and 2.6% per Gy, respectively. PLA activity at all radiation doses was 10-15% higher at 6 months than at 2 months indicative of a partial recovery of this endothelial function in the irradiated lung. PLA activity per 10/sup 6/ macrophages decreased with increasing radiation dose at both autopsy times, closely paralleling lung PLA activity. This radiation-induced decrease in macrophage PLA activity was not due to increased fibrinolytic inhibitor activity in the irradiated macrophages. These data quantitate the dose response and time course of radiation-induced fibrinolytic defects in rat lung and suggest that information obtained from a minimally invasive procedure such as bronchoalveolar lavage may serve as an index of the degree of pulmonary fibrinolytic dysfunction after irradiation.

  12. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40

    PubMed Central

    Oflazoglu, E; Stone, I J; Brown, L; Gordon, K A; van Rooijen, N; Jonas, M; Law, C-L; Grewal, I S; Gerber, H-P

    2008-01-01

    SGN-40 is a therapeutic antibody targeting CD40, which induces potent anti-lymphoma activities via direct apoptotic signalling cells and by cell-mediated cytotoxicity. Here we show antibody-dependent cellular phagocytosis (ADCP) by macrophages to contribute significantly to the therapeutic activities and that the antitumour effects of SGN-40 depend on Fc interactions. PMID:19066610

  13. THE MACROPHAGE CHEMOTACTIC ACTIVITY OF STREPTOCOCCUS AGALACTIAE AND STREPTOCOCCUS INIAE EXTRACELLULAR PRODUCTS (ECP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of Streptococcus agalactiae and Streptococcus iniae to attract macrophages of Nile tilapia (Oreochromis niloticus) was investigated. The extracellular products (ECP) from S. agalactiae and S. iniae were tested for macrophage chemotaxis using in vitro blind well chambers. The macrophage...

  14. Enhanced expression of activation-associated molecules on macrophages of heterogeneous populations in expanding periapical lesions in rat molars.

    PubMed

    Suzuki, N; Okiji, T; Suda, H

    1999-01-01

    Exudative macrophages are the most prevalent inflammatory cells during the entire pathogenetic process in experimentally induced rat periapical lesions. To clarify the significance of macrophages in the pathogenesis of periapical lesions, the way in which the phenotype of ED1 (a general marker for mononuclear phagocytes)-positive cells is modulated in actively expanding lesions was investigated, by immunoperoxidase staining with a panel of antibodies that recognize several activation-associated molecules on macrophages. Periapical lesions were induced experimentally by exposing the pulp in the lower first molars of Wistar rats. Active lesion expansion with morphological diversification of ED1-positive cells occurred between 14 and 28 days after the injury. Double immunoperoxidase staining revealed that ED1-positive cells coexpressing class II molecules of the major histocompatibility complex (MHC) molecules, inducible nitric oxide synthase (iNOS) and/or CD11a increased during the period of active lesion expansion. Increases of endothelial cells expressing intracellular adhesion molecule-1 and CD25 (interleukin-2 receptor)-expressing lymphocytes were also seen during the same period. Moreover, there existed two particular subpopulations of ED1 + cells in the established lesion at 28 days: (1) ED1++/class II MHC - /iNOS+ cells, located around the periapical abscess, and (2) ED1+/class II MHC+/ iNOS- cells with slender or dendritic morphology, distributed predominantly in the outer portion of the lesion where T lymphocytes were abundant. The first cell type could be a macrophage with potent phagocytic and antimicrobial actions, and the second might possess sufficient antigen-presenting capacity to cause the activation of T lymphocytes. It was concluded that macrophages, when activated, may participate in triggering lesion expansion. Functionally distinct subpopulations of macrophages may occupy different sites within the lesion where they can most effectively exert their specific functions. PMID:10075152

  15. Mycobacterium indicus pranii mediates macrophage activation through TLR2 and NOD2 in a MyD88 dependent manner.

    PubMed

    Pandey, Rajeev Kumar; Sodhi, Ajit; Biswas, Subhra K; Dahiya, Yogesh; Dhillon, Manprit K

    2012-08-24

    Mycobacterium indicus pranii (MIP) is a non-pathogenic strain of mycobacterium and has been used as a vaccine against tuberculosis and leprosy. Here, we investigated the role of different pattern recognition receptors in the recognition of heat-killed MIP by macrophages. Treatment of macrophages with MIP caused upregulation of pro-inflammatory cytokines (like TNF? and IL-1?) which was mediated through both TLR2 and NOD2, as revealed by our knockdown and/or knockout studies. Mechanistically, MIP-induced macrophage activation was shown to result in NF-?B activation and drastically abrogated by MyD88 deficiency, suggesting its regulation via an MyD88-dependent, NF-?B pathway. Interestingly, the IFN-inducible cytokine, CXCL10, which is known target of the TRIF-dependent TLR pathway was found to be upregulated in response to MIP but, in an MyD88-dependent manner. Collectively, these results demonstrate macrophages to recognize and respond to MIP through a TLR2, NOD2 and an MyD88-dependent pathway. However, further studies should clarify whether additional TLR-dependent or -independent pathways also exist in regulating the full spectrum of MIP action on macrophage activation. PMID:22796586

  16. Haloperidol treatments increased macrophage activity in male and female rats: influence of corticosterone and prolactin serum levels.

    PubMed

    Lourenço, G A; Dorce, V A C; Palermo-Neto, J

    2005-05-01

    Haloperidol is a receptor D2 antagonist frequently used in the treatment of schizophrenic patients. Haloperidol increased prolactin release from anterior pituitary gland, and prolactin modulates immune system activity. Groups of six male and female rats received an acute 2 mg/kg haloperidol treatment (E1), or a long-term (E2) haloperidol treatments (2 mg/kg/day for 21 days); control rats were treated similarly, but with control solution (groups C1 and C2, respectively). In this work long-term haloperidol treatment (E2) increased macrophage spreading, phagocytosis and NO release in male and female rats. However, acute haloperidol treatment (E1) did not change macrophage activity. Corticosterone and prolactin serum levels were increased after acute (E1) and long-term (E2) haloperidol treatments in male and female rats, being this increment higher in female. Macrophage of male and female rats presented the same pattern of alterations after acute and long-term haloperidol treatments. Haloperidol-induced macrophage activation was discussed in the light of a possible indirect effect through prolactin increments in rats, or, alternatively, as a consequence of a direct action of macrophage dopamine receptor. PMID:15820415

  17. Involvement of a membrane potassium channel in heparan sulphate-induced activation of macrophages.

    PubMed

    Ren, Jian-Dong; Fan, Li; Tian, Fu-Zhou; Fan, Kai-Hua; Yu, Bo-Tao; Jin, Wei-Hua; Tan, Yong-Hong; Cheng, Long

    2014-03-01

    Increasing evidence has demonstrated that Toll-like receptor 4 (TLR4) -mediated systemic inflammatory response syndrome accompanied by multiple organ failure, is one of the most common causes of death in patients with severe acute pancreatitis. Recent reports have revealed that heparan sulphate (HS) proteoglycan, a component of extracellular matrices, potentiates the activation of intracellular pro-inflammatory responses via TLR4, contributing to the aggravation of acute pancreatitis. However, little is known about the participants in the HS/TLR4-mediated inflammatory cascades. Our previous work provided a clue that a membrane potassium channel (MaxiK) is responsible for HS-induced production of inflammatory cytokines. Therefore, in this report we attempted to reveal the roles of MaxiK in the activation of macrophages stimulated by HS. Our results showed that incubation of RAW264.7 cells with HS up-regulated MaxiK and TLR4 expression levels. HS could also activate MaxiK channels to promote the efflux of potassium ions from cells, as measured by the elevated activity of caspase-1, whereas this was significantly abolished by treatment with paxilline, a specific blocker of the MaxiK channel. Moreover, it was found that paxilline substantially inhibited HS-induced activation of several different transcription factors in macrophages, including nuclear factor-?B, p38 and interferon regulatory factor-3, followed by decreased production of tumour necrosis factor-? and interferon-?. Taken together, our investigation provides evidence that the HS/TLR4-mediated intracellular inflammatory cascade depends on the activation of MaxiK, which may offer an important opportunity for a new approach in therapeutic strategies of severe acute pancreatitis. PMID:24138091

  18. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages.

    PubMed

    Lunov, Oleg; Syrovets, Tatiana; Loos, Cornelia; Nienhaus, G Ulrich; Mailänder, Volker; Landfester, Katharina; Rouis, Mustapha; Simmet, Thomas

    2011-12-27

    Specifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH(2)) of ?100 nm in diameter, but not carboxyl- or nonfunctionalized particles, trigger NLRP3 inflammasome activation and subsequent release of proinflammatory interleukin 1? (IL-1?) by human macrophages. PS-NH(2) induced time-dependent proton accumulation in lysosomes associated with lysosomal destabilization, release of cathepsin B, and damage of the mitochondrial membrane. Accumulation of mitochondrial reactive oxygen species was accompanied by oxidation of thioredoxin, a protein playing a central role in maintaining the cellular redox balance. Upon oxidation, thioredoxin dissociated from the thioredoxin-interacting protein (TXNIP). Liberated TXNIP, in turn, interacted with the NLRP3 protein, resulting in a conformational change of the pyrin domain of the NLRP3 protein, as was predicted by molecular modeling. Consequently, this prompted assembly of the NLRP3 inflammasome complex with recruitment and activation of caspase-1, inducing IL-1? release by cleavage of pro-IL-1?. The central role of the NLRP3 inflammasome for cytokine production was confirmed by in vitro knockdown of NLRP3 and of the adaptor protein ASC, confirming that other inflammasomes were not activated by PS-NH(2). The PS-NH(2)-mediated proinflammatory macrophage activation could be antagonized by the radical scavenger N-acetyl-L-cysteine, which prevented mitochondrial damage, caspase-1 activation, and the subsequent release of IL-1?. Our study reveals the molecular mechanism of NLRP3 inflammasome activation by amino-functionalized nanoparticles and suggests a strategy as to how such adverse effects could be antagonized. PMID:22111911

  19. Escherichia coli maltose-binding protein activates mouse peritoneal macrophages and induces M1 polarization via TLR2/4 in vivo and in vitro.

    PubMed

    Ni, Weihua; Zhang, Qingyong; Liu, Guomu; Wang, Fang; Yuan, Hongyan; Guo, Yingying; Zhang, Xu; Xie, Fei; Li, Qiongshu; Tai, Guixiang

    2014-07-01

    Maltose-binding protein (MBP) is a component of the maltose transport system of Escherichia coli. Our previous study found that MBP combined with Bacillus Calmette-Guerin (BCG) increases the percentage of activated macrophages in the spleen and the pinocytic activity of peritoneal macrophages in vivo. However, the effect of MBP alone on macrophages remains unclear. In the present study, the results showed that MBP enhanced LPS-stimulated macrophage activity in vivo. Subsequently, we investigated the regulatory effect of MBP on mouse peritoneal macrophages in vitro and the possible underlying mechanism. The results showed that MBP directly promoted macrophage phagocytic activity and increased the production of NO, IL-1? and IL-6. Notably, macrophage phenotypic analysis showed that MBP significantly increased iNOS, IL-12p70 and CD16/32. In contrast, MBP decreased the secretion of IL-10 and slightly decreased Arg-1 mRNA and CD206 protein expression. These results suggested that MBP activated macrophages and polarized them into M1 macrophages. Further study found that MBP directly bound to macrophages and upregulated TLR2 mRNA expression. This process was accompanied by a clear increase in MyD88 expression and phosphorylation of p38 MAPK and I?B-?, but these effects were largely abrogated by pretreatment with anti-TLR2 or anti-TLR4 antibodies. The effects of MBP on macrophage NO production were also partially inhibited by anti-TLR2 and/or anti-TLR4 antibodies. Furthermore, the effect of MBP on IL-12 and IL-10 secretion was largely influenced by the NF-?B inhibitor PDTC and the p38 MAPK inhibitor SB203580. These results suggest that MBP directly activates macrophages and induces M1 polarization through a process that may involve TLR2 and TLR4. PMID:24825603

  20. Interferon Regulatory Factor (IRF)-1 Is a Master Regulator of the Cross Talk between Macrophages and L929 Fibrosarcoma Cells for Nitric Oxide Dependent Tumoricidal Activity

    PubMed Central

    Nascimento, Flavia R. F.; Gomes, Eliane A.; Russo, Momtchilo; Lepique, Ana P.

    2015-01-01

    Macrophage tumoricidal activity relies, mainly, on the release of Tumor Necrosis Factor alpha (TNF?) and/or on reactive oxygen or nitrogen intermediates. In the present work, we investigated the cytotoxic activity of resident peritoneal macrophages against L929 fibrosarcoma cell line in vitro and in vivo. Resident macrophages lysed L929 cells in a mechanism independent of TNF? and cell-to-cell contact. The cytotoxic activity was largely dependent on nitric oxide (NO) release since treatment with L-NAME (NOS inhibitor) inhibited L929 cells killing. Macrophages from mice with targeted deletion of inducible NO synthase (iNOS) together with L929 cells produced less NO and displayed lower, but still significant, tumoricidal activity. Notably, NO production and tumor lysis were abolished in co-cultures with macrophages deficient in Interferon Regulatory Factor, IRF-1. Importantly, the in vitro findings were reproduced in vivo as IRF-1 deficient animals inoculated i.p with L929 cells were extremely susceptible to tumor growth and their macrophages did not produce NO, while WT mice killed L929 tumor cells and their macrophages produced high levels of NO. Our results indicate that IRF-1 is a master regulator of bi-directional interaction between macrophages and tumor cells. Overall, IRF-1 was essential for NO production by co-cultures and macrophage tumoricidal activity in vitro as well as for the control of tumor growth in vivo. PMID:25659093

  1. Novel modulatory effects of SDZ 62-434 on inflammatory events in activated macrophage-like and monocytic cells

    Microsoft Academic Search

    Ji Yeon Lee; Man Hee Rhee; Jae Youl Cho

    2008-01-01

    In this study, we investigated the novel pharmacological activity of SDZ 62–434 on various inflammatory events mediated by\\u000a monocytes\\/macrophages (peritoneal macrophages and U937\\/RAW 264.7 cells) and its putative mechanism of action. SDZ 62–434 strongly\\u000a inhibited various inflammatory responses induced by lipopolysaccharide (LPS) or function-activating antibody to CD29 (?1-integrins)\\u000a including (1) the production of human and mouse tumor necrosis factor (TNF)-?,

  2. Cbl-b is a critical regulator of macrophage activation associated with obesity-induced insulin resistance in mice.

    PubMed

    Abe, Tomoki; Hirasaka, Katsuya; Kagawa, Sachiko; Kohno, Shohei; Ochi, Arisa; Utsunomiya, Kenro; Sakai, Atsuko; Ohno, Ayako; Teshima-Kondo, Shigetada; Okumura, Yuushi; Oarada, Motoko; Maekawa, Yoichi; Terao, Junji; Mills, Edward M; Nikawa, Takeshi

    2013-06-01

    We previously reported the potential involvement of casitas B-cell lymphoma-b (Cbl-b) in aging-related murine insulin resistance. Because obesity also induces macrophage recruitment into adipose tissue, we elucidated here the role of Cbl-b in obesity-related insulin resistance. Cbl-b(+/+) and Cbl-b(-/-) mice were fed a high-fat diet (HFD) and then examined for obesity-related changes in insulin signaling. The HFD caused recruitment of macrophages into adipose tissue and increased inflammatory reaction in Cbl-b(-/-) compared with Cbl-b(+/+) mice. Peritoneal macrophages from Cbl-b(-/-) mice and Cbl-b-overexpressing RAW264.7 macrophages were used to examine the direct effect of saturated fatty acids (FAs) on macrophage activation. In macrophages, Cbl-b suppressed saturated FA-induced Toll-like receptor 4 (TLR4) signaling by ubiquitination and degradation of TLR4. The physiological role of Cbl-b in vivo was also examined by bone marrow transplantation and Eritoran, a TLR4 antagonist. Hematopoietic cell-specific depletion of the Cbl-b gene induced disturbed responses on insulin and glucose tolerance tests. Blockade of TLR4 signaling by Eritoran reduced fasting blood glucose and serum interleukin-6 levels in obese Cbl-b(-/-) mice. These results suggest that Cbl-b deficiency could exaggerate HFD-induced insulin resistance through saturated FA-mediated macrophage activation. Therefore, inhibition of TLR4 signaling is an attractive therapeutic strategy for treatment of obesity-related insulin resistance. PMID:23349502

  3. Cbl-b Is a Critical Regulator of Macrophage Activation Associated With Obesity-Induced Insulin Resistance in Mice

    PubMed Central

    Abe, Tomoki; Hirasaka, Katsuya; Kagawa, Sachiko; Kohno, Shohei; Ochi, Arisa; Utsunomiya, Kenro; Sakai, Atsuko; Ohno, Ayako; Teshima-Kondo, Shigetada; Okumura, Yuushi; Oarada, Motoko; Maekawa, Yoichi; Terao, Junji; Mills, Edward M.; Nikawa, Takeshi

    2013-01-01

    We previously reported the potential involvement of casitas B-cell lymphoma-b (Cbl-b) in aging-related murine insulin resistance. Because obesity also induces macrophage recruitment into adipose tissue, we elucidated here the role of Cbl-b in obesity-related insulin resistance. Cbl-b+/+ and Cbl-b?/? mice were fed a high-fat diet (HFD) and then examined for obesity-related changes in insulin signaling. The HFD caused recruitment of macrophages into adipose tissue and increased inflammatory reaction in Cbl-b?/? compared with Cbl-b+/+ mice. Peritoneal macrophages from Cbl-b?/? mice and Cbl-b–overexpressing RAW264.7 macrophages were used to examine the direct effect of saturated fatty acids (FAs) on macrophage activation. In macrophages, Cbl-b suppressed saturated FA-induced Toll-like receptor 4 (TLR4) signaling by ubiquitination and degradation of TLR4. The physiological role of Cbl-b in vivo was also examined by bone marrow transplantation and Eritoran, a TLR4 antagonist. Hematopoietic cell-specific depletion of the Cbl-b gene induced disturbed responses on insulin and glucose tolerance tests. Blockade of TLR4 signaling by Eritoran reduced fasting blood glucose and serum interleukin-6 levels in obese Cbl-b?/? mice. These results suggest that Cbl-b deficiency could exaggerate HFD-induced insulin resistance through saturated FA-mediated macrophage activation. Therefore, inhibition of TLR4 signaling is an attractive therapeutic strategy for treatment of obesity-related insulin resistance. PMID:23349502

  4. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid.

    PubMed

    Pi, Jingbo; Zhang, Qiang; Woods, Courtney G; Wong, Victoria; Collins, Sheila; Andersen, Melvin E

    2008-02-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage. PMID:17980396

  5. Enterococcus faecalis Infection Activates Phosphatidylinositol 3-Kinase Signaling To Block Apoptotic Cell Death in Macrophages

    PubMed Central

    Zou, Jun

    2014-01-01

    Apoptosis is an intrinsic immune defense mechanism in the host response to microbial infection. Not surprisingly, many pathogens have evolved various strategies to manipulate this important pathway to benefit their own survival and dissemination in the host during infection. To our knowledge, no attempts have been made to explore the host cell survival signals modulated by the bacterium Enterococcus faecalis. Here, we show for the first time that during early stages of infection, internalized enterococci can prevent host cell (RAW264.7 cells, primary macrophages, and mouse embryonic fibroblasts [MEFs]) apoptosis induced by a wide spectrum of proapoptotic stimuli. Activation of caspase 3 and cleavage of the caspase 3 substrate poly(ADP-ribose) polymerase were inhibited in E. faecalis-infected cells, indicating that E. faecalis protects macrophages from apoptosis by inhibiting caspase 3 activation. This antiapoptotic activity in E. faecalis-infected cells was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which resulted in the increased expression of the antiapoptotic factor Bcl-2 and decreased expression of the proapoptotic factor Bax. Further analysis revealed that active E. faecalis physiology was important for inhibition of host cell apoptosis, and this feature seemed to be a strain-independent trait among E. faecalis isolates. Employing a mouse peritonitis model, we also determined that cells collected from the peritoneal lavage fluid of E. faecalis-infected mice showed reduced levels of apoptosis compared to cells from uninfected mice. These results show early modulation of apoptosis during infection and have important implications for enterococcal pathogenesis. PMID:25267834

  6. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    SciTech Connect

    Pi Jingbo [Division of Translational Biology, Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)], E-mail: jpi@thehamner.org; Zhang Qiang; Woods, Courtney G. [Division of Computational Biology, Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Wong, Victoria [Flow Cytometry and Confocal Core, Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Collins, Sheila [Division of Translational Biology, Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 (United States); Andersen, Melvin E. [Division of Computational Biology, Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)], E-mail: mandersen@thehamner.org

    2008-02-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage.

  7. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years. PMID:19031451

  8. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients. PMID:18058096

  9. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3–mediated pathway

    PubMed Central

    He, Sudan; Liang, Yuqiong; Shao, Feng; Wang, Xiaodong

    2011-01-01

    We report here that mouse macrophages undergo receptor-interacting kinase-3 (RIP3)-dependent but TNF-?–independent necrosis when Toll-like receptors (TLR) 3 and 4 are activated by poly(I:C) and LPS, respectively. An adaptor protein, Toll/IL-1 receptor domain-containing adapter inducing IFN-? (TRIF/TICAM-1), which is dispensable for TNF-?–induced necrosis, forms a complex with RIP3 upon TLR3/TLR4 activation and is essential for TLR3/TLR4-induced necrosis. Mice without RIP3 or functional TRIF did not show macrophage loss and elevation of inflammatory cytokines when they were exposed to LPS. Necrosis in mouse macrophages induced by either TNFR or TLR3/TLR4 is executed by reactive oxygen species. Taken together, these data indicate that there are multiple upstream necrosis-initiating signaling pathways converging on the RIP3 during an innate immune response to viral and bacterial infections in mammals. PMID:22123964

  10. Dichotomy between macrophage activation and degree of protection against Listeria monocytogenes and Toxoplasma gondii in mice stimulated with Corynebacterium parvum.

    PubMed Central

    Swartzberg, J E; Krahenbuhl, J L; Remington, J S

    1975-01-01

    In vivo and in vitro experiments were conducted to determine the effect of Corynebacterium parvum treatment of mice on resistance of Listeria monocytogenes and Toxoplasma gondii. Intravenous immunization with C. parvum conferred transient protection against intravenous challenge with Listeria or an avirulent strain of Toxoplasma but did not protect against a virulent strain of Toxoplasma. Compared with the level of protection conferred by C. parvum, a higher degree of resistance was noted when mice infected with Listeria or Toxoplasma were challenged with the homologous infecting organism. Peritoneal macrophages from mice immunized intravenously with C. parvum were activated to kill Toxoplasma in vitro. Whereas resistance to challenge in vivo was transient, this population of activated macrophages persisted. Peritoneal macrophages from C. parvum mice also markedly inhibited [3H]thymidine uptake by L cells. PMID:811563

  11. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-?

    PubMed Central

    2014-01-01

    Background In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Methods Monocyte-derived M1-like and M2-like macrophages were polarized with LPS?+?IFN-?, L-MTP-PE +/? IFN-? or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. Results M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS?+?IFN-?. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-?. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-? and IL-1?. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS?+?IFN-?–activated M2-like macrophages had low anti-tumor activity, IL-10–polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. Conclusion This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our observation that the induction of macrophage anti-tumor activity by L-MTP-PE required IFN-? may be of relevance for the optimization of L-MTP-PE therapy in osteosarcoma patients. PMID:24612598

  12. Macrophage Polarization in Inflammatory Diseases

    PubMed Central

    Liu, Yan-Cun; Zou, Xian-Biao; Chai, Yan-Fen; Yao, Yong-Ming

    2014-01-01

    Diversity and plasticity are two hallmarks of macrophages. M1 macrophages (classically activated macrophages) are pro-inflammatory and have a central role in host defense against infection, while M2 macrophages (alternatively activated macrophages) are associated with responses to anti-inflammatory reactions and tissue remodeling, and they represent two terminals of the full spectrum of macrophage activation. Transformation of different phenotypes of macrophages regulates the initiation, development, and cessation of inflammatory diseases. Here we reviewed the characters and functions of macrophage polarization in infection, atherosclerosis, obesity, tumor, asthma, and sepsis, and proposed that targeting macrophage polarization and skewing their phenotype to adapt to the microenvironment might hold great promise for the treatment of inflammatory diseases. PMID:24910531

  13. Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation.

    PubMed

    Palmieri, Erika M; Spera, Iolanda; Menga, Alessio; Infantino, Vittoria; Porcelli, Vito; Iacobazzi, Vito; Pierri, Ciro L; Hooper, Douglas C; Palmieri, Ferdinando; Castegna, Alessandra

    2015-08-01

    The mitochondrial citrate-malate exchanger (CIC), a known target of acetylation, is up-regulated in activated immune cells and plays a key role in the production of inflammatory mediators. However, the role of acetylation in CIC activity is elusive. We show that CIC is acetylated in activated primary human macrophages and U937 cells and the level of acetylation is higher in glucose-deprived compared to normal glucose medium. Acetylation enhances CIC transport activity, leading to a higher citrate efflux from mitochondria in exchange with malate. Cytosolic citrate levels do not increase upon activation of cells grown in deprived compared to normal glucose media, indicating that citrate, transported from mitochondria at higher rates from acetylated CIC, is consumed at higher rates. Malate levels in the cytosol are lower in activated cells grown in glucose-deprived compared to normal glucose medium, indicating that this TCA intermediate is rapidly recycled back into the cytosol where it is used by the malic enzyme. Additionally, in activated cells CIC inhibition increases the NADP(+)/NADPH ratio in glucose-deprived cells; this ratio is unchanged in glucose-rich grown cells due to the activity of the pentose phosphate pathway. Consistently, the NADPH-producing isocitrate dehydrogenase level is higher in activated glucose-deprived as compared to glucose rich cells. These results demonstrate that, in the absence of glucose, activated macrophages increase CIC acetylation to enhance citrate efflux from mitochondria not only to produce inflammatory mediators but also to meet the NADPH demand through the actions of isocitrate dehydrogenase and malic enzyme. PMID:25917893

  14. The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-?.

    PubMed

    Appelberg, Rui; Moreira, Diana; Barreira-Silva, Palmira; Borges, Margarida; Silva, Letícia; Dinis-Oliveira, Ricardo Jorge; Resende, Mariana; Correia-Neves, Margarida; Jordan, Michael B; Ferreira, Nuno C; Abrunhosa, Antero J; Silvestre, Ricardo

    2015-08-01

    Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-? (IFN-?). Mycobacterium avium-infected mice lacking IFN-? signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-? signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-? reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-? displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-? is responsible for the Warburg effect observed in organs infected with M. avium. PMID:25807843

  15. Cigarette smoke-induced iBALT mediates macrophage activation in a B cell-dependent manner in COPD.

    PubMed

    John-Schuster, Gerrit; Hager, Katrin; Conlon, Thomas M; Irmler, Martin; Beckers, Johannes; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-11-01

    Chronic obstructive pulmonary disease (COPD) is characterized by a progressive decline in lung function, caused by exposure to exogenous particles, mainly cigarette smoke (CS). COPD is initiated and perpetuated by an abnormal CS-induced inflammatory response of the lungs, involving both innate and adaptive immunity. Specifically, B cells organized in iBALT structures and macrophages accumulate in the lungs and contribute to CS-induced emphysema, but the mechanisms thereof remain unclear. Here, we demonstrate that B cell-deficient mice are significantly protected against CS-induced emphysema. Chronic CS exposure led to an increased size and number of iBALT structures, and increased lung compliance and mean linear chord length in wild-type (WT) but not in B cell-deficient mice. The increased accumulation of lung resident macrophages around iBALT and in emphysematous alveolar areas in CS-exposed WT mice coincided with upregulated MMP12 expression. In vitro coculture experiments using B cells and macrophages demonstrated that B cell-derived IL-10 drives macrophage activation and MMP12 upregulation, which could be inhibited by an anti-IL-10 antibody. In summary, B cell function in iBALT formation seems necessary for macrophage activation and tissue destruction in CS-induced emphysema and possibly provides a new target for therapeutic intervention in COPD. PMID:25128521

  16. Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pande, Ashvin N.; Kohler, Rainer; Aikawa, Elena; Weissleder, Ralph; Jaffer, Farouc

    2006-03-01

    Molecular and cellular mechanisms of atherogenesis and its treatment are largely being unraveled by in vitro techniques. We describe methodology to directly image macrophage cell activity in vivo in a murine model of atherosclerosis using laser scanning fluorescence microscopy (LSFM) and a macrophage-targeted, near-infrared fluorescent (NIRF) magnetofluorescent nanoparticle (MFNP). Atherosclerotic apolipoprotein E deficient (apoE -/-) mice (n=10) are injected with MFNP or 0.9% saline, and wild-type mice (n=4) are injected with MFNP as additional controls. After 24 h, common carotid arteries are surgically exposed and prepared for LSFM. Multichannel LSFM of MFNP-enhanced carotid atheroma (5×5-µm in-plane resolution) shows a strong focal NIRF signal, with a plaque target-to-background ratio of 3.9+/-1.8. Minimal NIRF signal is observed in control mice. Spectrally resolved indocyanine green (ICG) fluorescence angiograms confirm the intravascular location of atheroma. On ex vivo fluorescence reflectance imaging, greater NIRF plaque signal is seen in apoE -/- MFNP mice compared to controls (p<0.01). The NIRF signal correlates well with immunostained macrophages, both by stained surface area (r=0.77) and macrophage number (r=0.86). The validated experimental methodology thus establishes a platform for investigating macrophage activity in atherosclerosis in vivo, and has implications for the detection of clinical vulnerable plaques.

  17. Proteinase Activated Receptor 1 Mediated Fibrosis in a Mouse Model of Liver Injury: A Role for Bone Marrow Derived Macrophages

    PubMed Central

    Kallis, Yiannis N.; Scotton, Christopher J.; MacKinnon, Alison C.; Goldin, Robert D.; Wright, Nicholas A.; Iredale, John P.; Chambers, Rachel C.; Forbes, Stuart J.

    2014-01-01

    Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1) is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment. PMID:24475094

  18. Armillaridin, a Honey Medicinal Mushroom, Armillaria mellea (Higher Basidiomycetes) Component, Inhibits Differentiation and Activation of Human Macrophages.

    PubMed

    Liu, Tsang-Pai; Chen, Chien-Chih; Shiao, Pei-Yu; Shieh, Hui-Ru; Chen, Yu-Yawn; Chen, Yu-Jen

    2015-01-01

    Armillaridin (AM) is an aromatic ester compound isolated from honey medicinal mushroom, Armillaria mellea, which has anti-cancer potential. This study was designed to examine the effects of AM on differentiation and activation macrophages, the major ontogeny of innate immunity. Macrophages were derived from CD14+ monocytes which were sorted from human peripheral blood mononuclear cells. Cell viability was assessed by trypan blue exclusion test. Cells were stained with Liu's dye for observation of morphology. Expression of surface antigens was examined by flow cytometric analysis. Phagocytosis and generation of reactive oxygen species (ROS), as functional assays, were evaluated by counting engulfed yeasts and DCFH-DA reaction. The viability of macrophages was not significantly reduced by AM. AM at nontoxic concentrations markedly increased cytoplasmic vacuoles. The expression of surface CD14, CD16, CD36, and HLA-DR was suppressed. The phagocytosis function, but not ROS production, of macrophages was inhibited by AM. Armillaridin could inhibit the differentiation and activation of human macrophages. It may have potential to be developed as a biological response modifier for inflammatory diseases. PMID:25746621

  19. Macrophage activating effects of new alkamides from the roots of Echinacea species.

    PubMed

    Chen, Ying; Fu, Tong; Tao, Tao; Yang, Jinghua; Chang, Yung; Wang, Meihua; Kim, Linda; Qu, Luping; Cassady, John; Scalzo, Ric; Wang, Xiping

    2005-05-01

    Chemical investigation of the roots of Echinacea angustifolia, E. purpurea, and E. pallida yielded two new alkamides, identified by analysis of spectroscopic data and comparison with reported alkamides. The new compounds were dodeca-2Z,4E,10Z-trien-8-ynoic acid isobutylamide (1) from E. angustifolia and dodeca-2Z,4E-diene-8,10-diynoic acid isobutylamide (2) from E. purpurea and E. pallida. These two components, as well as previously identified alkamides, exerted inhibition on LPS-mediated activation of a murine macrophage line, RAW264.7. These data suggest that these alkamides may have anti-inflammatory activity. The cytotoxicity of these alkamides using MTT assays was also investigated. PMID:15921428

  20. Supplementary immunocytochemistry of hepatocyte growth factor production in activated macrophages early in muscle regeneration.

    PubMed

    Sawano, Shoko; Suzuki, Takahiro; Do, Mai-Khoi Q; Ohtsubo, Hideaki; Mizunoya, Wataru; Ikeuchi, Yoshihide; Tatsumi, Ryuichi

    2014-12-01

    Regenerative intramuscular motor-innervation is thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies showed that resident myogenic stem cells, satellite cells, up-regulate a secreted neural-chemorepellent semaphorin 3A (Sema3A) during the early-differentiation period, in response to hepatocyte growth factor (HGF) elevated in injured muscle. However, a paracrine source of the HGF release is still unknown. Very recently, we proposed a possible contribution of anti-inflammatory macrophages (CD206-positive M2) by showing that M2 cells infiltrate predominantly at the early-differentiation phase (3-5 days post-injury) and produce/secrete large amounts of HGF. However, in understanding this concept there still remains a critical need to examine if phagocytotic pro-inflammatory macrophages (CD86-positive M1), another activated-phenotype still present at the early-differentiation phase concerned, produce HGF upon muscle injury. The current immunocytochemical study demonstrated that the HGF expression is negative for M1 prepared from cardiotoxin-injured Tibialis anterior muscle at day 5, in contrast to the intense fluorescent-signal of M2 served as a positive control. This supplementary result advances our understanding of a spatiotemporal burst of HGF secretion from M2 populations (not M1) to impact Sema3A expression, which ensures a coordinated delay in attachment of motoneuron terminals onto damaged and generating fibers during the early phase of muscle regeneration. PMID:25185534

  1. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells.

    PubMed

    Sarkar, Susobhan; Döring, Axinia; Zemp, Franz J; Silva, Claudia; Lun, Xueqing; Wang, Xiuling; Kelly, John; Hader, Walter; Hamilton, Mark; Mercier, Philippe; Dunn, Jeff F; Kinniburgh, Dave; van Rooijen, Nico; Robbins, Stephen; Forsyth, Peter; Cairncross, Gregory; Weiss, Samuel; Yong, V Wee

    2014-01-01

    Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas. PMID:24316889

  2. The glycosylation and characterization of the candidate Gc macrophage activating factor.

    PubMed

    Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich; Christiansen, Maja; Houen, Gunnar; Højrup, Peter

    2010-04-01

    The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF candidate was tested for its effect on cytokine release from macrophages in human whole blood. PMID:20079467

  3. The Inhibition of Macrophage Foam Cell Formation by 9-Cis ?-Carotene Is Driven by BCMO1 Activity

    PubMed Central

    Zolberg Relevy, Noa; Bechor, Sapir; Harari, Ayelet; Ben-Amotz, Ami; Kamari, Yehuda; Harats, Dror; Shaish, Aviv

    2015-01-01

    Atherosclerosis is a major cause of morbidity and mortality in developed societies, and begins when activated endothelial cells recruit monocytes and T-cells from the bloodstream into the arterial wall. Macrophages that accumulate cholesterol and other fatty materials are transformed into foam cells. Several epidemiological studies have demonstrated that a diet rich in carotenoids is associated with a reduced risk of heart disease; while previous work in our laboratory has shown that the 9-cis ?-carotene rich alga Dunaliella inhibits atherogenesis in mice. The effect of 9-cis ?-carotene on macrophage foam cell formation has not yet been investigated. In the present work, we sought to study whether the 9-cis ?-carotene isomer, isolated from the alga Dunaliella, can inhibit macrophage foam cell formation upon its conversion to retinoids. The 9-cis ?-carotene and Dunaliella lipid extract inhibited foam cell formation in the RAW264.7 cell line, similar to 9-cis retinoic acid. Furthermore, dietary enrichment with the algal powder in mice resulted in carotenoid accumulation in the peritoneal macrophages and in the inhibition of foam cell formation ex-vivo and in-vivo. We also found that the ?-carotene cleavage enzyme ?-carotene 15,15’-monooxygenase (BCMO1) is expressed and active in macrophages. Finally, 9-cis ?-carotene, as well as the Dunaliella extract, activated the nuclear receptor RXR in hepa1-6 cells. These results indicate that dietary carotenoids, such as 9-cis ?-carotene, accumulate in macrophages and can be locally cleaved by endogenous BCMO1 to form 9-cis retinoic acid and other retinoids. Subsequently, these retinoids activate the nuclear receptor RXR that, along with additional nuclear receptors, can affect various metabolic pathways, including those involved in foam cell formation and atherosclerosis. PMID:25629601

  4. Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages.

    PubMed

    Gumireddy, Kiranmai; Reddy, C Damodar; Swamy, Narasimha

    2003-09-01

    Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway. PMID:12938159

  5. Heme oxygenase-1 and anti-inflammatory M2 macrophages.

    PubMed

    Naito, Yuji; Takagi, Tomohisa; Higashimura, Yasuki

    2014-12-15

    Heme oxygenase-1 (HO-1) catalyzes the first and rate-limiting enzymatic step of heme degradation and produces carbon monoxide, free iron, and biliverdin. HO-1, a stress-inducible protein, is induced by various oxidative and inflammatory signals. Consequently, HO-1 expression has been regarded as an adaptive cellular response against inflammatory response and oxidative injury. Although several transcriptional factors and signaling cascades are involved in HO-1 regulation, the two main pathways of Nrf2/Bach1 system and IL-10/HO-1 axis exist in monocyte/macrophage. Macrophages are broadly divisible into two groups: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. More recently, several novel macrophage subsets have been identified including Mhem, Mox, and M4 macrophages. Of these, M2 macrophages, Mhem, and Mox are HO-1 highly expressing macrophages. HO-1 has been recognized as having major immunomodulatory and anti-inflammatory properties, which have been demonstrated in HO-1 deficient mice and human cases of genetic HO-1 deficiency. However, the mechanism underlying the immunomodulatory actions of HO-1 remains poorly defined. This review specifically addresses macrophage polarization. The present current evidence indicates that HO-1 induction mediated by multiple pathways can drive the phenotypic shift to M2 macrophages and suggests that HO-1 induction in macrophages is a potential therapeutic approach to immunomodulation in widely diverse human diseases. PMID:25241054

  6. Mechanisms of protective immunity in experimental cutaneous leishmaniasis of the guinea-pig. II. Selective destruction of different Leishmania species in activated guinea-pig and mouse macrophages.

    PubMed Central

    Behin, R; Mauel, J; Biroum-Noerjasin; Rowe, D S

    1975-01-01

    Macrophages activation as the effector mechanism in destroying L. enriettii in the guinea-pig, and L. tropica in the mouse, was tested in vitro. Activated guinea-pig macrophages, with enhanced anti-Listeria capacity had no effect on the survival of intracellular L. enriettii, irrespective of the antigen used. Activated mouse macrophages, on the other hand, destroyed ingested L. enriettii within 24-48 hr but had no effect on L. tropica during the same time period. It is suggested that the pathogenicity of a Leishmania parasite in a given host depends on the ability of the parasite to survive in the host's activated macrophages. The possible mechanisms by which L. enriettii evades destruction in activated guinea-pig macrophages are discussed. PMID:765014

  7. Involvement of trypsin-digested silk peptides in the induction of RAW264.7 macrophage activation.

    PubMed

    Pyo, Kyoung-Ho; Kim, Min-Ki; Shin, Kwang-Soon; Chun, Hyang Sook; Shin, Eun-Hee

    2013-12-01

    The activation of macrophages by trypsin-digested silk peptides was investigated by considering CD1 lb and CD40 expression in the RAW264.7 cell, a murine macrophage. Silk protein hydrolysates were digested with trypsin, following by centrifugal purification using the Centriprep 30k concentrator. Trypsin-digested total silk peptides and its centrifugal fractions were tested for macrophage activation in vitro. The functional peptide of fractionated silk peptides was examined by LC/MS/MS analysis. Trypsin-digested and fractionated silk peptides of more than 30 kDa induced an increase in the activation markers CD1 lb and CD40 in RAW264.7 cells. These results are supported by morphological changes reflecting an increase in the number of dendrites in activated cells. The fractionated silk peptides examined by LC/MS/MS contained partial peptides of Bombyx mori fibroin. These results suggest that the activation of RAW264.7 macrophages may be induced not by sericin-derived peptides but by fibroin-derived ones. PMID:24555292

  8. The LRP1-independent mechanism of PAI-1-induced migration in CpG-ODN activated macrophages.

    PubMed

    Thapa, Bikash; Kim, Yeon Hyang; Kwon, Hyung-Joo; Kim, Doo-Sik

    2014-04-01

    CpG-oligodeoxynucleotides (CpG-ODNs) induces plasminogen activator inhibitor type-1 (PAI-1) expression in macrophages, leading to enhanced migration through vitronectin. However, the precise role of low-density lipoprotein receptor-related protein 1 (LRP1) in PAI-1 induced migration of macrophages in the inflammatory environment is not known. In this study, we elucidated a novel mechanism describing the altered role of LRP1 in macrophage migration depending on the activation state of the cells. Experimental evidence clearly shows that the blocking of LRP1 function inhibited the PAI-induced migration of resting RAW 264.7 cells through vitronectin but exerted a pro-migratory effect on CpG-ODN-activated cells. We also demonstrate that CpG-ODN downregulates the protein and mRNA levels of LRP1 both in vivo and in vitro, a function that depends on the NF-?B signaling pathway, resulting in reduced internalization of PAI-1. This work illustrates the distinct mechanism that PAI-1-induced migration of CpG-ODN-activated cells through vitronectin depends on the interaction of PAI-1 with vitronectin but not LRP1 unlike in the resting cells, where the migration is LRP1 dependent and vitronectin independent. In conclusion, our experimental results demonstrate the altered function of LRP1 in the migration of resting and activated macrophages in the context of microenvironmental extracellular matrix components. PMID:24440681

  9. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation

    PubMed Central

    Liepelt, Anke; Mossanen, Jana C.; Denecke, Bernd; Heymann, Felix; De Santis, Rebecca; Tacke, Frank; Marx, Gernot; Ostareck, Dirk H.; Ostareck-Lederer, Antje

    2014-01-01

    Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous nuclear ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating hematopoietic cells, was studied in noninduced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed several mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor-?-activated kinase 1 (TAK1) a central player in TLR4 signaling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3? UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis or stability but enhances TAK1 mRNA translation, resulting in elevated TNF-?, IL-1?, and IL-10 mRNA expression. Our data suggest that the hnRNP K-3? UTR complex inhibits TAK1 mRNA translation in noninduced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesized TAK1 boosts macrophage inflammatory response. PMID:24751651

  10. AICAR Enhances the Phagocytic Ability of Macrophages towards Apoptotic Cells through P38 Mitogen Activated Protein Kinase Activation Independent of AMP-Activated Protein Kinase

    PubMed Central

    Lee, Hyun-Jung; Lee, Seong-Heon; Choi, Jeong-Il; Bae, Hong-Beom

    2015-01-01

    Recent studies have suggested that 5-aminoimidazole-4-carboxamide-1-?-D-ribofuranoside (AICAR) increases macrophage phagocytosis through adenosine monophosphate-activated protein kinase (AMPK). However, little information is available on the effects of AICAR on the clearance of apoptotic cells by macrophages, known as efferocytosis, which is essential in maintaining tissue homeostasis and resolving inflammation. AICAR increased p38 MAPK activation and the phagocytosis of apoptotic cells by macrophages, which were inhibited by the p38 MAPK inhibitor, SB203580, the TGF-beta-activated kinase 1 (TAK1) inhibitor, (5Z)-7-oxozeaenol, and siRNA-mediated knock-down of p38?. AICAR increased phosphorylation of Akt, but the inhibition of PI3K/Akt activity using LY294002 did not affect the AICAR-induced changes in efferocytosis in macrophages. CGS15943, a non-selective adenosine receptor antagonist, did not affect AICAR-induced changes in efferocytosis, but dipyridamole, an adenosine transporter inhibitor, diminished the AICAR-mediated increases in efferocytosis. AICAR-induced p38 MAPK phosphorylation was not inhibited by the AMPK inhibitor, compound C, or siRNA-mediated knock-down of AMPK?1. Inhibition of AMPK using compound C or 5’-iodotubercidin did not completely block AICAR-mediated increases in efferocytosis. Furthermore, AICAR also increased the removal of apoptotic neutrophils or thymocytes in mouse lungs. These results reveal a novel mechanism by which AICAR increases macrophage-mediated phagocytosis of apoptotic cells and suggest that AICAR may be used to treat efferocytosis-related inflammatory conditions. PMID:26020972

  11. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages.

    PubMed Central

    Mukherjee, S; Lee, S C; Casadevall, A

    1995-01-01

    Monoclonal antibodies (MAbs) to the capsular polysaccharide of the pathogenic fungus Cryptococcus neoformans can prolong survival and decrease organ fungal burden in experimental murine cryptococcosis. To investigate the mechanism of antibody-mediated protection, the interaction of C. neoformans and murine macrophage-like J774.16 cells was studied in the presence and absence of MAbs differing in isotype. Immunoglobulin G2a (IgG2a) and IgG2b isotype switch variants were isolated from an IgM hybridoma to complete the IgG subclass set. IgM, IgG1, IgG2a, IgG2b, IgG3, and IgA MAbs were studied for their ability to promote phagocytosis and reduce the number of CFU in C. neoformans and J774.16 cell cocultures. The MAbs in this set had similar if not identical fine specificities and were derived from a single B cell. All isotypes promoted phagocytosis; however, the IgG subclasses were more effective opsonins than IgM or IgA. All isotypes enhanced J774.16 anti-C. neoformans activity in vitro, as measured by a reduction in the number of CFU. The IgG1 MAbs were consistently more active in promoting opsonization and reducing the number of CFU. Addition of IgG1 MAb to C. neoformans and J774.16 cocultures resulted in rapid reduction in the number of CFU, which is consistent with fungal killing. Electron microscopy revealed that MAb-opsonized C. neoformans cells were internalized and appeared damaged. Administration of IgM, IgG1, IgG2a, and IgG2b isotype switch variant MAbs revealed that the IgG2a and IgG2b subclasses were the most and least effective isotypes, respectively, in prolonging survival in an intraperitoneal murine infection model. The results indicate that murine antibody subclasses differ in their ability to enhance macrophage anti-C. neoformans activity and suggest that antibody enhancement of macrophage function is a mechanism by which antibodies modify infection in vivo. PMID:7822024

  12. Porphyromonas gingivalis Lipopolysaccharide Weakly Activates M1 and M2 Polarized Mouse Macrophages but Induces Inflammatory Cytokines

    PubMed Central

    Holden, James A.; Attard, Troy J.; Laughton, Katrina M.; Mansell, Ashley; O'Brien-Simpson, Neil M.

    2014-01-01

    Porphyromonas gingivalis is associated with chronic periodontitis, an inflammatory disease of the tooth's supporting tissues. Macrophages are important in chronic inflammatory conditions, infiltrating tissue and becoming polarized to an M1 or M2 phenotype. As responses to stimuli differ between these phenotypes, we investigated the effect of P. gingivalis lipopolysaccharide (LPS) on M1 and M2 macrophages. M1 and M2 polarized macrophages were produced from murine bone marrow macrophages (BMM?) primed with gamma interferon (IFN-?) or interleukin-4 (IL-4), respectively, and incubated with a low or high dose of P. gingivalis LPS or control TLR2 and TLR4 ligands. In M1-M?, the high dose of P. gingivalis LPS (10 ?g/ml) significantly increased the expression of CD40, CD86, inducible nitric oxide synthase, and nitric oxide secretion. The low dose of P. gingivalis LPS (10 ng/ml) did not induce costimulatory or antibacterial molecules but did increase the secretion of IL-1?, IL-6, IL-12p40, IL-12p70, and tumor necrosis factor alpha (TNF-?). P. gingivalis LPS marginally increased the expression of CD206 and YM-1, but it did enhance arginase expression by M2-M?. Furthermore, the secretion of the chemokines KC, RANTES, eotaxin, and MCP-1 from M1, M2, and nonpolarized M? was enhanced by P. gingivalis LPS. TLR2/4 knockout macrophages combined with the TLR activation assays indicated that TLR2 is the main activating receptor for P. gingivalis LPS and whole cells. In conclusion, although P. gingivalis LPS weakly activated M1-M? or M2-M? compared to control TLR ligands, it induced the secretion of inflammatory cytokines, particularly TNF-? from M1-M? and IL-10 from M2-M?, as well as chemotactic chemokines from polarized macrophages. PMID:25047849

  13. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages

    Microsoft Academic Search

    C.-H. Wang; C.-Y. Liu; H.-C. Lin; C.-T. Yu; K. F. Chung; H.-P. Kuo

    1998-01-01

    Nitric oxide (NO) plays an important role in resistance to Mycobacte- rium tuberculosis infection. Our aim was to determine whether inducible NO synthase (iNOS) expression and generation of reactive nitrogen intermediates (RNI) by alveo- lar macrophages (AM) are increased in patients infected with M. tuberculosis. NO levels in the exhaled air of 19 active pulmonary tuberculosis (TB) and 14 con-

  14. Infection of a canine macrophage cell line with Leishmania infantum: determination of nitric oxide production and anti-leishmanial activity

    Microsoft Academic Search

    Elena Pinelli; Douglas Gebhard; A. Mieke Mommaas; Maggy van Hoeij; Jan A. M Langermans; E. Joost Ruitenberg; Victor P. M. G Rutten

    2000-01-01

    We have previously shown that resistance to Leishmaniainfantum in dogs is associated with a Th1 type of immune response. In this study, we use a canine macrophage cell line (030-D) that can readily be infected with this protozoan parasite. Our aim is to further characterize the effector mechanisms involved in killing of Leishmania parasite in dogs. We observed that activation

  15. CD14 expression by activated parenchymal microglia\\/macrophages and infiltrating monocytes following human traumatic brain injury

    Microsoft Academic Search

    Rudi Beschorner; Thai D. Nguyen; Fatma Gözalan; Ingo Pedal; Rainer Mattern; Hermann J. Schluesener; Richard Meyermann; Jan M. Schwab

    2002-01-01

    The immune response in the central nervous system (CNS) is under tight control of regulatory mechanisms, resulting in the establishment of immune privilege. CNS injury induces an acute inflammatory reaction, composed mainly of invading leukocytes and activated microglial cells\\/macrophages. The generation of this robust immune response requires binding of receptors such as CD14, a pattern recognition receptor of the immune

  16. Alternatively Activated Macrophages Revisited: New Insights into the Regulation of Immunity, Inflammation and Metabolic Function following Parasite Infection

    PubMed Central

    Jang, Jessica C.; Nair, Meera G.

    2014-01-01

    The role of macrophages in homeostatic conditions and the immune system range from clearing debris to recognizing and killing pathogens. While classically activated macrophages (CAMacs) are induced by T helper type 1 (Th1) cytokines and exhibit microbicidal properties, Th2 cytokines promote alternative activation of macrophages (AAMacs). AAMacs contribute to the killing of helminth parasites and mediate additional host-protective processes such as regulating inflammation and wound healing. Yet, other parasites susceptible to Th1 type responses can exploit alternative activation of macrophages to diminish Th1 immune responses and prolong infection. In this review, we will delineate the factors that mediate alternative activation (e.g. Th2 cytokines and chitin) and the resulting downstream signaling events (e.g. STAT6 signaling). Next, the specific AAMac-derived factors (e.g. Arginase1) that contribute to resistance or susceptibility to parasitic infections will be summarized. Finally, we will conclude with the discussion of additional AAMac functions beyond immunity to parasites, including the regulation of inflammation, wound healing and the regulation of metabolic disorders. PMID:24772059

  17. Macrophage activation and Fc  receptor-mediated signaling do not require expression of the SLP76 and SLP65 adaptors

    Microsoft Academic Search

    Kim E. Nichols; Kathleen Haines; Peggy S. Myung; Sally Newbrough; Erin Myers; Hassan Jumaa; Devon J. Shedlock; Hao Shen; Gary A. Koretzky

    2003-01-01

    The Src-homology 2 domain-containing, leukocyte-specific phosphoprotein of 76 kDa (SLP-76) is a hematopoietic adaptor that plays a central role during immunoreceptor-mediated activation of T lym- phocytes and mast cells and collagen receptor-induced activation of platelets. Despite similar levels of expres- sion in macrophages, SLP-76 is not required for Fc receptor for immunoglobulin G (IgG; FcR)-mediated activation. We hypothesized that the

  18. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. PMID:9070663

  19. Fasciola hepatica Fatty Acid Binding Protein Induces the Alternative Activation of Human Macrophages

    PubMed Central

    Figueroa-Santiago, Olgary

    2014-01-01

    The liver fluke Fasciola hepatica is a highly evolved parasite that uses sophisticated mechanisms to evade the host immune response. The immunosuppressive capabilities of the parasite have been associated with antigens secreted through the parasite's tegument, called excretory-secretory products (ESPs). Proteomic studies have identified the fatty acid binding protein (FABP) as one of molecules present in the parasite ESPs. Although FABP has been investigated for potential use in the development of vaccines against fascioliasis, its direct interaction with cells of immune system has not been studied. In this study, FABP was purified in native form from soluble extracts of F. hepatica adult flukes using a combination of molecular sieving chromatography and preparative isoelectric focusing. The immunological effect of the purified protein, termed Fh12, was assayed in vitro using monocyte-derived macrophages (MDM) obtained from healthy human donors. Results from the assay indicate that Fh12 produced a significantly increased arginase expression and activity and induced the expression of chitinase-3-like protein (CHI3L1). The assay also showed that Fh12 downregulated the production of nitric oxide (NO) and the expression of nitric oxide synthase (NOS2). This indicates that Fh12 induced the production of alternatively activated macrophages (AAM?). The results also demonstrated the ability of Fh12 to downregulate the secretion of the proinflammatory and inflammatory cytokines tumor necrosis factor alpha (TNF-?), interleukin-12 (IL-12), and IL-1?B, even after stimulation with lipopolysaccharide (LPS), as well as its ability to stimulate the overexpression of IL-10. These results suggest a potent anti-inflammatory role for Fh12, which could occur via targeting of Toll-like receptor 4 (TLR4). PMID:25225247

  20. Soluble CD163 from activated macrophages predicts mortality in acute liver failure

    PubMed Central

    Møller, Holger Jon; Grønbæk, Henning; Schiødt, Frank V.; Holland-Fischer, Peter; Schilsky, Michael; Munoz, Santiago; Hassanein, Tarek; Lee, William M.

    2007-01-01

    BACKGROUND Soluble CD163 (sCD163) is a scavenger receptor shed in serum during inflammatory activation of macrophages. We investigated if sCD163 was increased and predicted outcome in acute liver failure (ALF). METHODS Samples from 100 consecutive patients enrolled in the U.S. ALF Study Group for whom sera were available were collected on days 1 and 3, and clinical data were obtained prospectively. sCD163 levels were determined by ELISA. RESULTS The median level of sCD163 was significantly increased in ALF (21.1 mg/l (range 3.6 – 74.9)) as compared to healthy controls (2.3 mg/l (0.65 – 5.6), p < 0.0001) and patients with stable liver cirrhosis (9.8 mg/l (3.6 – 16.9), p=0.0002). sCD163 on day 1 correlated significantly with ALT, AST, bilirubin, and creatinine. sCD163 concentrations on day 3 were elevated in patients with fatal outcome of disease compared to spontaneous survivors, 29.0 mg/l ((7.2 – 54.0) vs. 14.6 mg/l (3.5 – 67.2), respectively (p = 0.0025). Patients that were transplanted had intermediate levels. Sensitivity and specificity at a cut off level of 26 mg/l was 62 % and 81 % respectively. CONCLUSIONS Activated macrophages are involved in ALF resulting in a 10-fold increase in sCD163. A high level (> 26 mg/l) of sCD163 was significantly correlated with fatal outcome and might be used with other parameters to determine prognosis. PMID:17629586

  1. A Subpopulation of CD163Positive Macrophages Is Classically Activated in Psoriasis

    Microsoft Academic Search

    Judilyn Fuentes-Duculan; Mayte Suárez-Fariñas; Lisa C Zaba; Kristine E Nograles; Katherine C Pierson; Hiroshi Mitsui; Cara A Pensabene; Julia Kzhyshkowska; James G Krueger; Michelle A Lowes

    2010-01-01

    Macrophages are important cells of the innate immune system, and their study is essential to gain greater understanding of the inflammatory nature of psoriasis. We used immunohistochemistry and double-label immunofluorescence to characterize CD163+ macrophages in psoriasis. Dermal macrophages were increased in psoriasis compared with normal skin and were identified by CD163, RFD7, CD68, lysosomal-associated membrane protein 2 (LAMP2), stabilin-1, and

  2. Tumor-derived macrophage migration inhibitory factor (MIF) inhibits T lymphocyte activation

    PubMed Central

    Yan, Xiaocai; Orentas, Rimas J.; Johnson, Bryon D.

    2007-01-01

    Macrophage migration inhibitory factor (MIF) is a multi-functional cytokine that is considered a pro-inflammatory cytokine. However, our studies show that MIF, when produced in super-physiological levels by a murine neuroblastoma cell line (Neuro-2a) exceeding those normally seen during an immune response, inhibits cytokine-, CD3-, and allo-induced T-cell activation. MIF is also able to inhibit T cells that have already received an activation signal. The T-cell inhibitory effects of culture supernatants from neuroblastoma cells were reversed when the cells were transfected with dicer-generated si-RNA to MIF. When T cells were activated in vitro by co-culture with interleukin (IL)-2 and IL-15 and analyzed for cytokine production in the presence or absence of MIF-containing culture supernatant, inhibition of T-cell proliferation and induced cell death were observed even as the treated T cells produced high levels of interferon-gamma (IFN-?). The inhibitory effects of MIF were partially reversed when lymphocytes from IFN-? knockout mice were tested. We propose that the high levels of MIF produced by neuroblastoma cause activation induced T-cell death through an IFN-? pathway and may eliminate activated T cells from the tumor microenvironment and thus contribute to escape from immune surveillance. PMID:16522371

  3. Chitosan leads to downregulation of YKL-40 and inflammasome activation in human macrophages.

    PubMed

    Gudmundsdottir, Steinunn; Lieder, Ramona; Sigurjonsson, Olafur E; Petersen, Petur H

    2015-08-01

    Chitosan, the deacetylated derivative of chitin, is used as biomaterial in diverse settings. It is also found on pathogens and can be proinflammatory. Shorter derivatives of chitosan can be generated chemically or enzymatically, chitosan oligosaccharides (ChOS). There is variation in the chemical composition of ChOS, including size distribution, but in general, they have been described as inert or anti-inflammatory. Active human chitinases can cleave chitin and chitosan, while inactive chitinases bind both but do not cleave. Both active and inactive chitinases have important roles in the immune response. The inactive chitinase YKL-40 is expressed highly during inflammation and has been proposed as a marker of poor prognosis. YKL-40 acts as a negative regulator of the inflammasome and as a positive regulator of angiogenesis. Levels of YKL-40 can therefore regulate levels of inflammation, the extent of angiogenesis, and the process of inflammation resolution. This study shows that chitosan leads to reduced secretion of YKL-40 by primary human macrophages and that this is concomitant with inflammasome activation. This was most pronounced with a highly deacetylated ChOS. No effect on the secretion of the active chitinase Chit-1 was detected. Smaller and more acetylated ChOS did not affect YKL-40 levels nor inflammasome activation. We conclude that this effect on the levels of YKL-40 is a part of the proinflammatory mechanisms of chitosan and its derivatives. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2778-2785, 2015. PMID:25684555

  4. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  5. Photodynamic Quenched Cathepsin Activity Based Probes for Cancer Detection and Macrophage Targeted Therapy

    PubMed Central

    Ben-Nun, Yael; Merquiol, Emmanuelle; Brandis, Alexander; Turk, Boris; Scherz, Avigdor; Blum, Galia

    2015-01-01

    Elevated cathepsins levels and activities are found in several types of human cancer, making them valuable biomarkers for detection and targeting therapeutics. We designed small molecule quenched activity-based probes (qABPs) that fluoresce upon activity-dependent covalent modification, yielding cell killing by Photodynamic Therapy (PDT). These novel molecules are highly selective theranostic probes that enable both detection and treatment of cancer with minimal side effects. Our qABPs carry a photosensitizer (PS), which is activated by light, resulting in oxidative stress and subsequent cell ablation, and a quencher that when removed by active cathepsins allow the PS to fluoresce and demonstrate PD properties. Our most powerful and stable PS-qABP, YBN14, consists of a selective cathepsin recognition sequence, a QC-1 quencher and a new bacteriochlorin derivative as a PS. YBN14 allowed rapid and selective non-invasive in vivo imaging of subcutaneous tumors and induced specific tumor macrophage apoptosis by light treatment, resulting in a substantial tumor shrinkage in an aggressive breast cancer mouse model. These results demonstrate for the first time that the PS-qABPs technology offers a functional theranostic tool, which can be applied to numerous tumor types and other inflammation-associated diseases. PMID:26000057

  6. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    PubMed

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic proline/serine-rich putative SH3 binding domain. PMID:8045593

  7. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    PubMed Central

    Formica, S; Roach, T I; Blackwell, J M

    1994-01-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic proline/serine-rich putative SH3 binding domain. PMID:8045593

  8. Antibacterial resistance, macrophage influx, and activation induced by bacterial rRNA with dimethyldioctadecylammonium bromide.

    PubMed Central

    Gonggrijp, R; Mullers, W J; Dullens, H F; van Boven, C P

    1985-01-01

    Intraperitoneally injected rRNA from Pseudomonas aeruginosa combined with dimethyldioctadecylammonium bromide (DDA) increased nonspecifically the resistance of mice against an intraperitoneal challenge with extracellular (P. aeruginosa, Escherichia coli) and intracellular (Listeria monocytogenes) bacteria. This study concerns the mechanism underlying the nonspecific resistance. RNA with DDA (RNA-DDA) induced a cell influx and activated peritoneal macrophages (M phi) as judged by the decreased 5'-nucleotidase and alkaline phosphodiesterase activities in M phi lysates, the enhanced O2- release, and the increased antitumor activity in comparison with unstimulated M phi. RNA without DDA did not enhance the resistance and did not influence the peritoneal cell numbers or M phi properties. DDA without RNA enhanced the resistance of mice only slightly; it induced a cell influx, yielding elicited M phi as judged by the decreased 5'-nucleotidase activity and increased alkaline phosphodiesterase activity, the slightly enhanced O2- release, and the absence of increased antitumor activity. Both RNA-DDA and DDA M phi showed an enhanced capacity to ingest and kill L. monocytogenes in vitro, DDA M phi being slightly less effective than RNA-DDA M phi with respect to killing. We conclude that the enhanced killing capacity of M phi for L. monocytogenes is characteristic of both elicited DDA M phi and activated RNA-DDA M phi. The relationship between nonspecific resistance, peritoneal cell numbers, and antibacterial M phi activity is discussed. In addition, it is shown that RNA and DDA retain their activity when they are injected apart, suggesting that they activate M phi by sequential action. PMID:2415454

  9. Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage

    PubMed Central

    Ali, Syed Raza; Timmer, Anjuli M.; Bilgrami, Sameera; Park, Eek Joong; Eckmann, Lars; Nizet, Victor; Karin, Michael

    2012-01-01

    Detection of microbial constituents by membrane associated and cytoplasmic pattern recognition receptors is the essence of innate immunity, leading to activation of protective host responses. However, it is still unclear how immune cells specifically respond to pathogenic bacteria. Using virulent and non-virulent strains of Bacillus anthracis, we have shown that secretion of ATP by infected macrophages and the sequential activation of the P2X7 purinergic receptor and nucleotide binding oligomerization domain (NOD)- like receptors are critical for IL-1-dependent host protection from virulent B. anthracis. Importantly, lethal toxin produced by virulent B. anthracis blocked activation of protein kinases, p38 MAPK and AKT, resulting in opening of a connexin ATP release channel and induction of macrophage death. Prevention of cell death or ATP release through constitutive p38 or AKT activation interfered with inflammasome activation and IL-1? production, thereby compromising anti-microbial immunity. PMID:21683629

  10. Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology.

    PubMed

    Shirey, K A; Lai, W; Pletneva, L M; Karp, C L; Divanovic, S; Blanco, J C G; Vogel, S N

    2014-05-01

    Resolution of severe Respiratory Syncytial Virus (RSV)-induced bronchiolitis is mediated by alternatively activated macrophages (AA-M?) that counteract cyclooxygenase (COX)-2-induced lung pathology. Herein, we report that RSV infection of 5-lipoxygenase (LO)(-/-) and 15-LO(-/-) macrophages or mice failed to elicit AA-M? differentiation and concomitantly exhibited increased COX-2 expression. Further, RSV infection of 5-LO(-/-) mice resulted in enhanced lung pathology. Pharmacologic inhibition of 5-LO or 15-LO also blocked differentiation of RSV-induced AA-M? in vitro and, conversely, treatment of 5-LO(-/-) macrophages with downstream products, lipoxin A4 and resolvin E1, but not leukotriene B4 or leukotriene D4, partially restored expression of AA-M? markers. Indomethacin blockade of COX activity in RSV-infected macrophages increased 5-LO and 15-LO, as well as arginase-1 mRNA expression. Treatment of RSV-infected mice with indomethacin also resulted not only in enhanced lung arginase-1 mRNA expression and decreased COX-2, but also decreased lung pathology in RSV-infected 5-LO(-/-) mice. Treatment of RSV-infected cotton rats with a COX-2-specific inhibitor resulted in enhanced lung 5-LO mRNA and AA-M? marker exp