Science.gov

Sample records for macrophage immunomodulatory activity

  1. LL-37 Immunomodulatory Activity during Mycobacterium tuberculosis Infection in Macrophages.

    PubMed

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H; Enciso-Moreno, Jose A; Hancock, Robert E W; Rivas-Santiago, Bruno

    2015-12-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 ?g/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-?) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor ? (TGF-?) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. PMID:26351280

  2. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-?, interleukin-1? and tumor necrosis factor-?, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  3. A proteomic insight into the effects of the immunomodulatory hydroxynaphthoquinone lapachol on activated macrophages.

    PubMed

    Oliveira, Renato A S; Correia-Oliveira, Janaina; Tang, Li-Jun; Garcia, Rodolfo C

    2012-09-01

    We report the effect of an immunomodulatory and anti-mycobacterial naphthoquinone, lapachol, on the bi-dimensional patterns of protein expression of toll-like receptor 2 (TLR2)-agonised and IFN-?-treated THP-1 macrophages. This non-hypothesis driven proteomic analysis intends to shed light on the cellular functions lapachol may be affecting. Proteins of both cytosol and membrane fractions were analysed. After quantification of the protein spots, the protein levels corresponding to macrophages activated in the absence or presence of lapachol were compared. A number of proteins were identified, the levels of which were appreciably and significantly increased or decreased as a result of the action of lapachol on the activated macrophages: cofilin-1, fascin, plastin-2, glucose-6-P-dehydrogenase, adenylyl cyclase-associated protein 1, pyruvate kinase, sentrin-specific protease 6, cathepsin B, cathepsin D, cytosolic aminopeptidase, proteasome ? type-4 protease, tryptophan-tRNA ligase, DnaJ homolog and protein disulphide isomerase. Altogether, the comparative analysis performed indicates that lapachol could be hypothetically causing an impairment of cell migration and/or phagocytic capacity, an increase in NADPH availability, a decrease in pyruvate concentration, protection from proteosomal protein degradation, a decrease in lysosomal protein degradation, an impairment of cytosolic peptide generation, and an interference with NOS2 activation and grp78 function. The present proteomic results suggest issues that should be experimentally addressed ex- and in-vivo, to establish more accurately the potential of lapachol as an anti-infective drug. This study also constitutes a model for the pre-in-vivo evaluation of drug actions. PMID:22705049

  4. Immunomodulatory activity on macrophage of a purified polysaccharide extracted from Laminaria japonica.

    PubMed

    Fang, Qing; Wang, Jing-Fei; Zha, Xue-Qiang; Cui, Shao-Hua; Cao, Lei; Luo, Jian-Ping

    2015-12-10

    In this work, a novel water-soluble homogeneous polysaccharide (LJP-31) with a molecular mass of 2.24×10(6) Da was isolated and purified from Laminaria japonica using DEAE-cellulose and Sephacryl S500 chromatography. Results showed that LJP-31 mainly consists of arabinose, mannose, glucose and galactose in a molar ratio of 1.0:7.8:6.6:0.8. LJP-31 exhibited significant stimulation on macrophages and enhanced the production of NO, TNF-?, IL-1?, IL-6 and IL-10 as well as the up-regulation of their gene expressions. Western blot analysis suggested that LJP-31 has the positive effects on the translocation of NF-?B p65 from cytoplasm to nucleus and the phosphorylation of I?B?, ERK1/2, JNK1/2 and P38 in macrophages. Flow cytometric and confocal laser-scanning microscopy analysis indicated that toll-like receptor 4 (TLR4) was at least one of the recognition receptors of LJP-31 on the plasma membrane of macrophages. Taken together, LJP-31 may exert its immunostimulating potency via TLR4 activation of MAPK and NF-?B signaling pathways. PMID:26428101

  5. Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities.

    PubMed

    Liao, Wenzhen; Luo, Zhen; Liu, Dan; Ning, Zhengxiang; Yang, Jiguo; Ren, Jiaoyan

    2015-01-21

    A novel polysaccharide, here named DP1, was isolated from the fruiting body of Dictyophora indusiata using a water extraction method. Structure characterization revealed that DP1 had an average molecular weight of 1132 kDa and consisted of glucose (56.2%), galactose (14.1%), and mannose (29.7%). The main linkage type of DP1 were proven to be (1 ? 3)-linked ?-l-Man, (1 ? 2,6)-linked ?-d-Glc, (1 ? 6)-linked ?-d-Glc, (1 ? 6)-linked ?-d-Gal, and (1 ? 6)-linked ?-d-Man by periodate oxidation-Smith degradation and nuclear magnetic resonance analysis. The immunostimulating assay indicated that DP1 could significantly promote macrophage NO, TNF-?, and IL-6 secretion in murine RAW 264.7 cells involving complement receptor 3 (CR3). The immune activities of DP1 were quite stable under thermal processing (100, 121, and 145 °C). Besides, DP1 retained stability after acidic/alkline treatment (pH 4.0-10.0), which enabled it to be an ideal complementary medicine or functional food for therapeutics of hypoimmunity and immunodeficiency diseases. PMID:25525995

  6. Immunomodulatory Effects of Cinobufagin on Murine Lymphocytes and Macrophages

    PubMed Central

    Yu, Yang; Wang, Hui; Meng, Xianhua; Hao, Lu; Fu, Yue; Fang, Linlin; Shen, Dan; Yu, Xiaomeng; Li, Jingshung

    2015-01-01

    Cinobufagin (CBG), a major bioactive component of the traditional Chinese medicine ChanSu, has been reported to have potent pharmacological activity. In this study, we aimed to elucidate the effects of CBG on the activity of immune cells in mice. Peritoneal macrophages and splenocytes from mice were prepared and cultured in RPMI1640 supplemented with 10% fetal bovine serum. Concanavalin (ConA), lipopolysaccharide (LPS), and CBG (0.0125, 0.05, 0.15, or 0.25??g/mL) were added to the culture medium, and the phagocytic activity of macrophages was detected by MTT assays. Additionally, lymphocyte secretion of interleukin- (IL-)2 and IL-10 was detected by enzyme-linked immunosorbent assay, and the cell cycle distribution and cell surface markers were detected by flow cytometry. Our results demonstrated that CBG promoted lymphocyte proliferation; this effect was suppressed by combined treatment with ConA or LPS. Moreover, CBG also significantly improved the CD4+/CD8+ ratio in spleen lymphocytes and increased the percentage of spleen lymphocytes in the S phase. Finally, we found that CBG enhanced the secretion of IL-2 and IL-10 and increased the phagocytosis ability of macrophages. In summary, CBG could enhance activity of immune cells. PMID:26664411

  7. Characterization of immunomodulatory activities of honey glycoproteins and glycopeptides.

    PubMed

    Mesaik, M Ahmed; Dastagir, Nida; Uddin, Nazim; Rehman, Khalid; Azim, M Kamran

    2015-01-14

    Recent evidence suggests an important role for natural honey in modulating immune response. To identify active components responsible, this study investigated the immunomodulatory properties of glycoproteins and glycopeptides fractionated from Ziziphus honey. Honey proteins/peptides were fractionated by size exclusion chromatography into five peaks with molecular masses in the range of 2-450 kDa. The fractionated proteins exhibited potent, concentration-dependent inhibition of reactive oxygen species production in zymosan-activated human neutrophils (IC50 = 6-14 ng/mL) and murine macrophages (IC50 = 2-9 ng/mL). Honey proteins significantly suppressed the nitric oxide production by LPS-activated murine macrophages (IC50 = 96-450 ng/mL). Moreover, honey proteins inhibited the phagocytosis latex bead macrophages. The production of pro-inflammatory cytokines IL-1? and TNF-? by human monocytic cell line in the presence of honey proteins was analyzed. Honey proteins did not affect the production of IL-1?; however, TNF-? production was significantly suppressed. These findings indicated that honey glycoproteins and glycopeptides significantly interfere with molecules of the innate immune system. PMID:25496517

  8. Immunomodulatory role of arabinosylated lipoarabinomannan on Leishmania donovani infected murine macrophages.

    PubMed

    Bhattacharjee, Surajit; Majumder, N; Bhattacharyya, P; Bhattacharyya, S; Majumdar, Subrata

    2007-10-01

    Arabinosylated lipoarabinomannan (Ara-LAM), a surface glycolipid antigen isolated from avirulent Mycobacterium smegmatis is involved in modulation of host cell signaling. In this study, we investigated Ara-LAM-mediated modulation of impaired immune responses during visceral leishmaniasis caused by protozoan parasite Leishmania donovani. Ara-LAM treatment at dose of 3 microg/ml in L. donovani infected murine peritoneal macrophages as well as J774A.1 macrophage cell line exhibited a distinct up-regulation of pro-inflammatory cytokines like TNF-alpha and IL-12 both at the protein and transcriptional level. In addition, generation of nitric oxide and iNOS expression were also observed. The present study showed that Ara-LAM was significantly effective in elimination of L. donovani parasites from both peritoneal as well as J774A.1 macrophages. Thus, it could be utilized as an immunomodulatory agent in prevention of leishmanial pathogenesis. PMID:18341212

  9. Storage xyloglucans: potent macrophages activators.

    PubMed

    do Rosário, Marianna Maia Taulois; Kangussu-Marcolino, Mônica Mendes; do Amaral, Alex Evangelista; Noleto, Guilhermina Rodrigues; Petkowicz, Carmen Lúcia de Oliveira

    2011-01-15

    Storage xyloglucans from the seeds of Copaifera langsdorffii, Hymenaea courbaril and Tamarindus indica were obtained by aqueous extraction from the milled and defatted cotyledons, XGC, XGJ and XGT, respectively. The resulting fractions showed similar monosaccharide composition with Glc:Xyl:Gal molar ratios of 2.4:1.5:1.0, 3.8:1.5:1,0 and 3.6:2.4:1.0 for XGC, XGJ and XGT, respectively. High-performance size-exclusion chromatography of the polysaccharides showed unimodal profiles, and the average molar mass (M(w)) was obtained for XGC (9.6 × 10? g/mol), XGJ (9.1 × 10? g/mol) and XGT (7.3 × 10? g/mol). The immunomodulatory effects of the xyloglucans on peritoneal macrophages were evaluated. Phagocytic activity was observed in macrophages treated with XGT. The effect of XGT was tested on the production of O?(.-) and NO. At 25 ?g/ml XGT caused a 100% increase in NO production when compared to the control group; however, it did not affect O?(.-) production in the absence of PMA. The production of TNF-?, interleukins 1? and 6 by macrophages in the presence of the xyloglucans was evaluated. The polysaccharides affected the production of the cytokines by macrophages to different degrees. XGC caused an enhancement of IL-1? and TNF-? production, compared to the other xyloglucans. For IL-6 production, XGT gave greater stimulation than XGC and XGJ, reaching 87% at 50 ?g/ml. XGJ promoted a statistically significant effect on all cytokine productions tested. The results indicate that the xyloglucans from C. langsdorffii, H. courbaril and T. indica can be classified as biological response modifiers (BRM). PMID:20888807

  10. Macrophage Activation Syndrome.

    PubMed

    Ravelli, Angelo; Davì, Sergio; Minoia, Francesca; Martini, Alberto; Cron, Randy Q

    2015-10-01

    Macrophage activation syndrome (MAS) is a potentially life-threatening complication of rheumatic disorders that occurs most commonly in systemic juvenile idiopathic arthritis. In recent years, there have been several advances in the understanding of the pathophysiology of MAS. Furthermore, new classification criteria have been developed. Although the place of cytokine blockers in the management of MAS is still unclear, interleukin-1 inhibitors represent a promising adjunctive therapy, particularly in refractory cases. PMID:26461152

  11. Immunomodulatory activity of a chymotrypsin inhibitor from Momordica cochinchinensis seeds.

    PubMed

    Tsoi, Alex Yuen-Kam; Ng, Tzi-Bun; Fong, Wing-Ping

    2006-09-01

    Serine protease inhibitors are widely distributed in the plant kingdom. Many of them have been purified and characterized from different species. While the physicochemical properties of these protease inhibitors have been extensively investigated, their biological effects, e.g. immunomodulatory effect, remain relatively unexplored. Recently, we isolated a chymotrypsin-specific inhibitor (MCoCI) from the seeds of Momordica cochinchinensis (Lour) Spreng (Family Cucurbitaceae), the traditional Chinese medicine known as Mubiezhi, which has been used as an antiinflammatory agent. In the present study, the effects of MCoCI on different types of cells of the immune system, including splenocytes, splenic lymphocytes, neutrophils, bone marrow cells and macrophages, were investigated. MCoCI was shown to possess immuno-enhancing and antiinflammatory effects. MCoCI could stimulate the proliferation of different cells of the immune system, e.g. splenocytes, splenic lymphocytes and bone marrow cells, in a manner comparable to that of Concanavalin A. Moreover, MCoCI could also suppress the formation of hydrogen peroxide in neutrophils and macrophages. These immunomodulatory effects may explain some of the therapeutic actions of Mubiezhi. PMID:16733830

  12. Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function.

    PubMed

    Dickerhof, Nina; Schindler, Lisa; Bernhagen, Jürgen; Kettle, Anthony J; Hampton, Mark B

    2015-12-01

    Macrophage migration inhibitory factor (MIF) is an important player in the regulation of the inflammatory response. Elevated plasma MIF is found in sepsis, arthritis, cystic fibrosis and atherosclerosis. Immunomodulatory activities of MIF include the ability to promote survival and recruitment of inflammatory cells and to amplify pro-inflammatory cytokine production. MIF has an unusual nucleophilic N-terminal proline with catalytic tautomerase activity. It remains unclear whether tautomerase activity is required for MIF function, but small molecules that inhibit tautomerase activity also inhibit the pro-inflammatory activities of MIF. A prominent feature of the acute inflammatory response is neutrophil activation and production of reactive oxygen species, including myeloperoxidase (MPO)-derived hypochlorous acid and hypothiocyanous acid. We hypothesized that MPO-derived oxidants would oxidize the N-terminal proline of MIF and alter its biological activity. MIF was exposed to hypochlorous acid and hypothiocyanous acid and the oxidative modifications on MIF were examined by LC-MS/MS. Imine formation and carbamylation was observed on the N-terminal proline in response to MPO-dependent generation of hypochlorous and hypothiocyanous acid, respectively. These modifications led to a complete loss of tautomerase activity. However, modified MIF still increased CXCL-8/IL-8 production by peripheral blood mononuclear cells (PBMCs) and blocked neutrophil apoptosis, indicating that tautomerase activity is not essential for these biological functions. Pre-treatment of MIF with hypochlorous acid protected the protein from covalent modification by the MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP). Therefore, oxidant generation at inflammatory sites may protect MIF from inactivation by more disruptive electrophiles, including drugs designed to target the tautomerase activity of MIF. PMID:26453918

  13. Recognition of TLR2 N-Glycans: Critical Role in ArtinM Immunomodulatory Activity

    PubMed Central

    da Silva, Thiago Aparecido; Ruas, Luciana Pereira; Nohara, Lilian L.; de Almeida, Igor Correia; Roque-Barreira, Maria Cristina

    2014-01-01

    TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-?B activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties. PMID:24892697

  14. Recognition of TLR2 N-glycans: critical role in ArtinM immunomodulatory activity.

    PubMed

    Mariano, Vania Sammartino; Zorzetto-Fernandes, Andre Luiz; da Silva, Thiago Aparecido; Ruas, Luciana Pereira; Nohara, Lilian L; Almeida, Igor Correia de; Roque-Barreira, Maria Cristina

    2014-01-01

    TLR2 plays a critical role in the protection against Paracoccidioides brasiliensis conferred by ArtinM administration. ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus, induces IL-12 production in macrophages and dendritic cells, which accounts for the T helper1 immunity that results from ArtinM administration. We examined the direct interaction of ArtinM with TLR2using HEK293A cells transfected with TLR2, alone or in combination with TLR1 or TLR6, together with accessory proteins. Stimulation with ArtinM induced NF-?B activation and interleukin (IL)-8 production in cells transfected with TLR2, TLR2/1, or TLR2/6. Murine macrophages that were stimulated with ArtinM had augmented TLR2 mRNA expression. Furthermore, pre-incubation of unstimulated macrophages with an anti-TLR2 antibody reduced the cell labeling with ArtinM. In addition, a microplate assay revealed that ArtinM bound to TLR2 molecules that had been captured by specific antibodies from a macrophages lysate. Notably,ArtinM binding to TLR2 was selectively inhibited when the lectin was pre-incubated with mannotriose. The biological relevance of the direct interaction of ArtinM with TLR2 glycans was assessed using macrophages from TLR2-KOmice, which produced significantly lower levels of IL-12 and IL-10 in response to ArtinM than macrophages from wild-type mice. Pre-treatment of murine macrophages with pharmacological inhibitors of signaling molecules demonstrated the involvement of p38 MAPK and JNK in the IL-12 production induced by ArtinM and the involvement ofPI3K in IL-10 production. Thus, ArtinM interacts directly with TLR2 or TLR2 heterodimers in a carbohydrate recognition-dependent manner and functions as a TLR2 agonist with immunomodulatory properties. PMID:24892697

  15. Development of QSAR model for immunomodulatory activity of natural coumarinolignoids

    PubMed Central

    Yadav, Dharmendra K; Meena, Abha; Srivastava, Ankit; Chanda, D; Khan, Feroz; Chattopadhyay, SK

    2010-01-01

    Immunomodulation is the process of alteration in immune response due to foreign intrusion of molecules inside the body. Along with the available drugs, a large number of herbal drugs are promoted in traditional Indian treatments, for their immunomodulating activity. Natural coumarinolignoids isolated from the seeds of Cleome viscose have been recognized as having hepatoprotective action and have recently been tested preclinically for their immunomodulatory activity affecting both cell-mediated and humoral immune response. To explore the immunomodulatory compound from derivatives of coumarinolignoids, a quantitative structure activity relationship (QSAR) and molecular docking studies were performed. Theoretical results are in accord with the in vivo experimental data studied on Swiss albino mice. Immunostimulatory activity was predicted through QSAR model, developed by forward feed multiple linear regression method with leave-one-out approach. Relationship correlating measure of QSAR model was 99% (R2 = 0.99) and predictive accuracy was 96% (RCV2 = 0.96). QSAR studies indicate that dipole moment, steric energy, amide group count, lambda max (UV-visible), and molar refractivity correlates well with biological activity, while decrease in dipole moment, steric energy, and molar refractivity has negative correlation. Docking studies also showed strong binding affinity to immunomodulatory receptors. PMID:20856844

  16. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities.

    PubMed

    Urdaci, Maria C; Bressollier, Philippe; Pinchuk, Irina

    2004-07-01

    The clinical benefits observed with probiotic use are mainly attributed to the antimicrobial substances produced by probiotic strains and to their immunomodulatory effects. Currently, the best-documented probiotic bacteria used in human therapy are lactic acid bacteria. In contrast, studies aiming to characterize the mechanisms responsible for the probiotic beneficial effects of Bacillus are rare. The current work seeks to contribute to such characterization by evaluating the antimicrobial and immunomodulatory activities of probiotic B. clausii strains. B. clausii strains release antimicrobial substances in the medium. Moreover, the release of these antimicrobial substances was observed during stationary growth phase and coincided with sporulation. These substances were active against Gram-positive bacteria, in particular against Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile. The antimicrobial activity was resistant to subtilisin, proteinase K, and chymotrypsin treatment, whereas it was sensitive to pronase treatment. The evaluation of the immunomodulatory properties of probiotic B. clausii strains was performed in vitro on Swiss and C57 Bl/6j murine cells. The authors demonstrate that these strains, in their vegetative forms, are able to induce NOS II synthetase activity, IFN-gamma production, and CD4 T-cell proliferation. PMID:15220667

  17. In vivo and in vitro antileishmanial activity of Bungarus caeruleus snake venom through alteration of immunomodulatory activity.

    PubMed

    Bhattacharya, Shamik; Ghosh, Prasanta; De, Tripti; Gomes, Antony; Gomes, Aparna; Dungdung, Sandhya Rekha

    2013-09-01

    Leishmaniasis threatens more than 350 million people worldwide specially in tropical and subtropical region. Antileishmanial drugs that are currently available have various limitations. The search of new drugs from natural products (plants, animals) possessing antileishmanial activity is ventured throughout the world. The present study deals with the antileishmanial activity of Bungarus caeruleus snake venom (BCV) on in vitro promastigotes and amastigotes of Leishmania donovani parasite and leishmania infected BALB/c mice. The effect of BCV on peritoneal macrophage, release of cytokines from the activated macrophages, production of nitric oxide, reactive oxygen species and cytokines were studied in vivo and in vitro. IC50 value of BCV on L. donovani promastigote was 14.5 ?g/ml and intracellular amastigote was 11.2 ?g/ml. It activated peritoneal macrophages, significantly increased cytokines and interleukin production. BCV (20 ?g/kg and 40 ?g/kg body weight of mice) decreased parasite count by 54.9% and 74.2% in spleen and 41.4% and 60.4% in liver of infected BALB/c mice. BCV treatment significantly increased production of TNF-?, IFN-?, ROS, NO in infected mice. Histological studies showed decreased granuloma formation in treated liver as compared with control. Liver and spleen structure was partially restored due to BCV treatment in infected mice. The present study revealed that BCV possessed antileishmanial activity against L. donovani parasite in vivo and in vitro and this activity was partly mediated through immunomodulatory activity involving macrophages. PMID:23830987

  18. Immunomodulatory activity in vitro and in vivo of verbascose from mung beans (Phaseolus aureus).

    PubMed

    Dai, Zhuqing; Su, Di; Zhang, Yun; Sun, Yi; Hu, Bing; Ye, Hong; Jabbar, Saqib; Zeng, Xiaoxiong

    2014-11-01

    In the present study, the immunostimulatory activity of verbascose from mung beans (Phaseolus aureus) was evaluated by using in vitro cell models and in vivo animal models. The results of in vitro experiments showed that verbascose could enhance the ability of devouring neutral red of peritoneal macrophages and promote the release of nitric oxide and immune reactive molecules such as interleukin (IL)-6, IL-1?, interferon (IFN)-?, and IFN-?. Treatment with verbascose at a dose of 200 ?g/mL exhibited the best effects. For assay in vivo, administration of verbascose at a medium dose of 90 mg/kg body weight could significantly increase the index of spleen, activity of lysozyme in spleen and serum, hemolysin level in serum, and swelling rate of earlap in the delayed type of hypersensitivity (DTH) of immunosuppressed mice. All of the results suggested that verbascose had potent immunostimulatory activity and could be explored as a potential natural immunomodulatory agent in functional foods. PMID:25317918

  19. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed. PMID:25796474

  20. Characterization, antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn.

    PubMed

    Li, Chao; Huang, Qiang; Fu, Xiong; Yue, Xiu-Jie; Liu, Rui Hai; You, Li-Jun

    2015-04-01

    Water-soluble polysaccharides from Prunella vulgaris Linn (P. vulgaris) were fractionated using DEAE-Sepharose fast-flow column to obtain several eluents of water (PV-P1), 0.1M NaCl (PV-P2) and 0.2M NaCl (PV-P3). Structural analyses showed that PV-P1 had a higher molecular weight and degree of branching as compared to PV-P2 and PV-P3. Tertiary structure analyses indicated that PV-P1, PV-P2 and PV-P3 did not have triple-helical conformation. PV-P2 and PV-P3 showed stronger antioxidant activities than PV-P1, as measured radical scavenging capacities. PV-P1 showed stronger immunomodulatory activities than PV-P2 and PV-P3 in term of stimulation of the production of pro-inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-? (TNF-?), and interleukin-6 (IL-6) in murine macrophage RAW 264.7 cells. PV-P1, PV-P2 and PV-P3 did not exhibit cytotoxicities against RAW 264.7 at the concentrations tested. These results suggest that P. vulgaris polysaccharides could be explored as potential antioxidant and immunomodulatory agents for the complementary medicine or functional foods. PMID:25596012

  1. Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x.

    PubMed

    Zhu, Jiadan; Ji, Zhiqiang; Wang, Jing; Sun, Ronghua; Zhang, Xiang; Gao, Yang; Sun, Hongfang; Liu, Yuanfang; Wang, Zheng; Li, Aidong; Ma, Jie; Wang, Tiancheng; Jia, Guang; Gu, Yiqun

    2008-08-01

    The tumor-inhibitory effect of C60(OH)x was tested on the murine H22 hepatocarcinoma model. Doses of 0.2 and 1.0 mg kg(-1) body weight both showed significant antitumor activity with tumor inhibition rates of 31.9 and 38.4%, respectively, when mice were treated for 17 consecutive days. The damnification of liver was prominently reduced. Furthermore, histological examination indicated that an envelope of fibroblasts and lymphocytes was formed surrounding tumor tissues in the C60(OH)x-treated group, which inhibited the infiltration of tumor to the neighboring normal skeleton muscle tissues. To understand the antitumor mechanism, the immunomodulatory activity of C60(OH)x was investigated. The results indicate that C60(OH)x enhances the phagocytosis of peritoneal macrophages and elevates the activity of arginase and acid phosphatase in vivo. The tumor necrosis factor alpha production of C60(OH)x-treated macrophages also increases in vitro. These results suggest that C60(OH)x can enhance the innate immunity of tumor-bearing mice, and therefore inhibits growth of the tumor. PMID:18574800

  2. Novel functional polysaccharides from Radix Polygoni Multiflori water extracted residue: Preliminary characterization and immunomodulatory activity.

    PubMed

    Zhang, Qing; Xu, Yi; Zou, Sheng; Zhang, Xiaodan; Cao, Kun; Fan, Qi

    2016-02-10

    The alkali-extractable polysaccharides (APMPs) were isolated from the water extracted residues of Radix Polygoni Multiflori, and further purified by DEAE-52 cellulose and Sephadex G-100 column chromatography to obtain a homogeneous polysaccharide (APMP-2) with molecular weights of 7724.8Da. HPLC chromatography analysis identified that APMP-2 was a heteropolysaccharides and mainly composed of Galactose and Xylose with a molar ratio of 4.31: 1.06. It was shown that both APMP and APMP-2 were of activation effects on splenocytes and peritoneal macrophages, and also significantly restore the proliferation rate, phagocytic index and cytokine (IL-2 and TNF-?) production level of 5-FU-treated splenocytes/peritoneal macrophages in a dosage-dependent manner. The results suggested that polysaccharides presented in Radix Polygoni Multiflori water-extracted residues possessed immunomodulatory activity and could be used as potential immunomodulators, and this finding could be a reference for the utilization of Radix Polygoni Multiflori water extracted residues. PMID:26686172

  3. Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa.

    PubMed

    Mao, Guang-Hua; Ren, Yi; Feng, Wei-Wei; Li, Qian; Wu, Hui-Yu; Jin, Dun; Zhao, Ting; Xu, Cai-Quan; Yang, Liu-Qing; Wu, Xiang-Yang

    2015-12-10

    Grifola frondosa has long been known and respected as a medically important fungus. This study investigated the characterization, antitumor and immunomodulatory activity of a polysaccharide named GP11 purified from G. frondosa. The results revealed that GP11 was composed of ?1)-d-Manp-(6?,?1)-d-Glcp-(4?,?1)-d-Galp-(6?and?2,3,6)-d-Glcp-(1?, with branches attached at O-2,3 of 1,2,3,6-linked Glcp residues and terminal T-Glcp. GP11 exhibited indirect cytotoxic activity against HepG-2 cells in vitro, and it significantly inhibited the growth of Heps cells in vivo. GP11 increased the relative thymus and spleen weights as well as serum tumor necrosis factor-alpha and interleukin-2 levels. GP11 stimulated tumoricidal activity and the production of nitric oxide (NO), TNF-? and interleukin-1?, and it also stimulated the protein expression of iNOS and mRNA expression of iNOS and TNF-?. TLR-4 is a potential receptor for GP11-mediated macrophage activation. The results suggested that the antitumor activity of GP11 may be due to the improvement of immune functions through the TLR-4-mediated up-regulation of NO and TNF-?. PMID:26428141

  4. Structure and Antitumor and Immunomodulatory Activities of a Water-Soluble Polysaccharide from Dimocarpus longan Pulp

    PubMed Central

    Meng, Fa-Yan; Ning, Yuan-Ling; Qi, Jia; He, Zhou; Jie, Jiang; Lin, Juan-Juan; Huang, Yan-Jun; Li, Fu-Sen; Li, Xue-Hua

    2014-01-01

    A new water-soluble polysaccharide (longan polysaccharide 1 (LP1)) was extracted and successfully purified from Dimocarpus longan pulp via diethylaminoethyl (DEAE)-cellulose anion-exchange and Sephacryl S-300 HR gel chromatography. The chemical structure was determined using Infrared (IR), gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. The results indicated that the molecular weight of the sample was 1.1 × 105 Da. Monosaccharide composition analysis revealed that LP1 was composed of Glc, GalA, Ara and Gal in a molar ratio of 5.39:1.04:0.74:0.21. Structural analysis indicated that LP1 consisted of a backbone of ?4)-?-d-Glcp-(1?4)-?-d-GalpA-(1?4)-?-d-Glcp-(1?4)-?-d-Glcp-(1? units with poly saccharide side chains composed of ?2)-?-d-Fruf-(1?2)-l-sorbose-(1? attached to the O-6 position of the ?-d-Glcp residues. In vitro experiments indicated that LP1 had significantly high antitumor activity against SKOV3 and HO8910 tumor cells, with inhibition percentages of 40% and 50%, respectively. In addition, LP1 significantly stimulated the production of the cytokine interferon-? (IFN-?), increased the activity of murine macrophages and enhanced B- and T-lymphocyte proliferation. The results of this study demonstrate that LP1 has potential applications as a natural antitumor agent with immunomodulatory activity. PMID:24663085

  5. Immunomodulatory Activity of Oenothein B Isolated from Epilobium angustifolium1

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Jakiw, Larissa; Khlebnikov, Andrei I.; Blaskovich, Christie L.; Jutila, Mark A.; Quinn, Mark T.

    2009-01-01

    Epilobium angustifolium has been traditionally used to treat of a number of diseases; however, not much is known regarding its effect on innate immune cells. Here, we report that extracts of E. angustifolium activated functional responses in neutrophils and monocyte/macrophages. Activity-guided fractionation, followed by mass spectroscopy and NMR analysis, resulted in the identification of oenothein B as the primary component responsible for phagocyte activation. Oenothein B, a dimeric hydrolysable tannin, dose-dependently induced a number of phagocyte functions in vitro, including intracellular Ca2+ flux, production of reactive oxygen species (ROS), chemotaxis, nuclear factor (NF)-?B activation, and proinflammatory cytokine production. Furthermore, oenothein B was active in vivo, inducing keratinocyte chemoattractant (KC) production and neutrophil recruitment to the peritoneum after intraperitoneal administration. Biological activity required the full oenothein B structure, as substructures of oenothein B (pyrocatechol, gallic acid, pyrogallol, 3,4-dihydroxybenzoic acid) were all inactive. The ability of oenothein B to modulate phagocyte functions in vitro and in vivo suggests that this compound is responsible for at least part of the therapeutic properties of E. angustifolium extracts. PMID:19846877

  6. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities.

    PubMed

    Cardoso, Marcos Veríssimo de Oliveira; Moreira, Diogo Rodrigo Magalhães; Oliveira Filho, Gevanio Bezerra; Cavalcanti, Suellen Melo Tiburcio; Coelho, Lucas Cunha Duarte; Espíndola, José Wanderlan Pontes; Gonzalez, Laura Rubio; Rabello, Marcelo Montenegro; Hernandes, Marcelo Zaldini; Ferreira, Paulo Michel Pinheiro; Pessoa, Cláudia; Alberto de Simone, Carlos; Guimarães, Elisalva Teixeira; Soares, Milena Botelho Pereira; Leite, Ana Cristina Lima

    2015-05-26

    The present work reports the synthesis and evaluation of the antitumour and immunomodulatory properties of new phthalimides derivatives designed to explore molecular hybridization and bioisosterism approaches between thalidomide, thiosemicarbazone, thiazolidinone and thiazole series. Twenty-seven new molecules were assessed for their immunosuppressive effect toward TNF?, IFN?, IL-2 and IL-6 production and antiproliferative activity. The best activity profile was observed for the (6a-f) series, which presents phthalyl and thiazolidinone groups. PMID:25942060

  7. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum).

    PubMed

    Majdalawieh, Amin F; Carr, Ronald I

    2010-04-01

    Although the immunomodulatory effects of many herbs have been extensively studied, research related to possible immunomodulatory effects of various spices is relatively scarce. Here, the potential immunomodulatory effects of black pepper and cardamom are investigated. Our data show that black pepper and cardamom aqueous extracts significantly enhance splenocyte proliferation in a dose-dependent, synergistic fashion. Enzyme-linked immunosorbent assay experiments reveal that black pepper and cardamom significantly enhance and suppress, respectively, T helper (Th)1 cytokine release by splenocytes. Conversely, Th2 cytokine release by splenocytes is significantly suppressed and enhanced by black pepper and cardamom, respectively. Experimental evidence suggests that black pepper and cardamom extracts exert pro-inflammatory and anti-inflammatory roles, respectively. Consistently, nitric oxide production by macrophages is significantly augmented and reduced by black pepper and cardamom, respectively. Remarkably, it is evident that black pepper and cardamom extracts significantly enhance the cytotoxic activity of natural killer cells, indicating their potential anti-cancer effects. Our findings strongly suggest that black pepper and cardamom exert immunomodulatory roles and antitumor activities, and hence they manifest themselves as natural agents that can promote the maintenance of a healthy immune system. We anticipate that black pepper and cardamom constituents can be used as potential therapeutic tools to regulate inflammatory responses and prevent/attenuate carcinogenesis. PMID:20210607

  8. Immunomodulatory effects of clove (Syzygium aromaticum) constituents on macrophages: in vitro evaluations of aqueous and ethanolic components.

    PubMed

    Dibazar, Shaghayegh Pishkhan; Fateh, Shirin; Daneshmandi, Saeed

    2015-01-01

    The present work sought to investigate potential suppressive effects on mouse macrophages by in vitro treatment with clove (Syzygium aromaticum) ethanolic extracted essential oil (containing eugenol) or its water-soluble extract. Using doses (ranging from 0.001-1000?µg/ml) of each material freshly prepared in the laboratory, cell survival and production of nitric oxide (NO), tumor necrosis factor (TNF)-?, interleukin (IL)-6, and IL-12 by the treated cells (that in all cases also had received LPS stimulation) were measured. Results indicated that, except at doses ?100?µg/ml, viability was unaffected in all groups. NO release by LPS-stimulated macrophages was generally significantly suppressed by either material; in contrast, low (i.e. 0.001-1?µg/ml) doses of either extract class appeared to enhance NO release by non-LPS (unstimulated)-treated macrophages. Among LPS-stimulated cells, TNF? release was also significantly affected by each extract; the ethanolic extract was suppressive at all doses tested, while the aqueous material was so up to 1?µg/ml and then became stimulatory. In contrast, nearly every dose of either extract appeared to stimulate IL-6 release from the LPS-treated cells. Effects on IL-12 production were overall inconsistent; in general, the ethanolic extract tended to be stimulatory of production by the LPS-treated cells. The data for the aqueous material showed no discernable pattern of effect. The results suggest that clove extracts do not have a distinct cytotoxic activity, but do impart potential anti- and pro-oxidant effects in cells, depending on their concentrations and on the activation state of the macrophages themselves at the time of exposure to the extracts. The impact of the extracts on macrophage cytokine release also displays a pattern of dose-relatedness. PMID:24873744

  9. QSAR and docking studies on capsazepine derivatives for immunomodulatory and anti-inflammatory activity.

    PubMed

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-? (TNF-?) was developed using multiple linear regression method (MLR) with good internal prediction (r2?=?0.8779) and external prediction (r2pred?=?0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-?. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  10. QSAR and Docking Studies on Capsazepine Derivatives for Immunomodulatory and Anti-Inflammatory Activity

    PubMed Central

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-? (TNF-?) was developed using multiple linear regression method (MLR) with good internal prediction (r2?=?0.8779) and external prediction (r2pred?=?0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-?. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  11. Exploring the full spectrum of macrophage activation

    PubMed Central

    Mosser, David M.; Edwards, Justin P.

    2008-01-01

    Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities—host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other ‘shades’ of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations. PMID:19029990

  12. Immunomodulatory activity of Melaleuca alternifolia concentrate (MAC): inhibition of LPS-induced NF-?B activation and cytokine production in myeloid cell lines.

    PubMed

    Low, Pauline; Clark, Amanda M; Chou, Tz-Chong; Chang, Tsu-Chung; Reynolds, Maxwell; Ralph, Stephen J

    2015-05-01

    Melaleuca alternifolia concentrate (MAC) is a mixture predominantly composed of monoterpenoids and sesquiterpenes, refined from the essential oil of the tea tree by removing up to 99% of the more toxic, hydrophobic monoterpenes. MAC was examined here for its immunomodulatory effects on the human THP1 and murine RAW264.7 myeloid leukemic cell lines as models for macrophage-like cells. Firstly, MAC levels were determined that did not affect either the survival or proliferation of these cell lines in vitro. Next, the levels of lipopolysaccharide (LPS)-induced production of cytokines (IL-6, TNF?, IL-10, GM-CSF, IFN? and IL-3) were examined from the myeloid cell lines using multiplex assays. Many of the LPS-inducible cytokines produced by either cell lines could be significantly inhibited by MAC. Closer examination of the mechanism of action of MAC showed that it inhibited the LPS-induced activation of I?B phosphorylation and nuclear factor (NF)-?B signalling and translocation, inhibiting iNOS protein expression and NO production. These results demonstrate that MAC exerts its immunomodulatory effects by inhibiting NF-?B signalling activation and levels of cytokine production by macrophage-like cell lines. PMID:25858876

  13. Lipoteichoic Acid in Streptomyces hygroscopicus: Structural Model and Immunomodulatory Activities

    PubMed Central

    Cot, Marlène; Ray, Aurélie; Gilleron, Martine; Vercellone, Alain; Larrouy-Maumus, Gérald; Armau, Elise; Gauthier, Sophie; Tiraby, Gérard; Puzo, Germain; Nigou, Jérôme

    2011-01-01

    Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with ?-glucosaminyl and ?-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of Gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-? and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents. PMID:22028855

  14. The Many Alternative Faces of Macrophage Activation

    PubMed Central

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases that provide access for the non-expert. PMID:26257737

  15. Alternatively activated macrophages in helminth infections

    PubMed Central

    Kreider, Timothy; Anthony, Robert M.; Urban, Joseph F.; Gause, William C.

    2007-01-01

    Summary Helminthic parasites can trigger highly polarized immune responses typically associated with increased numbers of CD4+ Th2 cells, eosinophils, mast cells, and basophils. These cell populations are thought to coordinate an effective response ultimately leading to parasite expulsion, but they also play a role in the regulation of associated pathologic inflammation. Recent studies suggest that macrophages, conventionally associated with IFN?-dominant Th1-type responses to many bacteria and viruses, also play an essential role in the Th2-type inflammatory response. These macrophages are referred to as alternatively activated macrophages (AAM?s) as they express a characteristic pattern of cell surface and secreted molecules distinct from that of classically activated macrophages (CAM?s) associated with microbe infections. In this review, we will discuss recent findings regarding the role of AAM?s in the development of disease and host protection following helminth infection. PMID:17702561

  16. Immunostimulatory Activity of Protein Hydrolysate from Oviductus Ranae on Macrophage In Vitro

    PubMed Central

    Huang, Di; Yang, Lubing; Wang, Chenlu; Ma, Sihui; Cui, Li; Huang, Shiyang; Sheng, Xia; Weng, Qiang; Xu, Meiyu

    2014-01-01

    Oviductus Ranae is the dry oviduct of Rana chensinensis, which is also called R. chensinensis oil. Oviductus Ranae is a valuable Chinese crude drug and is recorded in the Pharmacopoeia of the People's Republic of China. The aim of this study was to investigate the immunostimulatory activity of protein hydrolysate of Oviductus Ranae (ORPH) and to assess its possible mechanism. Immunomodulatory activity of ORPH was examined in murine macrophage RAW 264.7 cells. The effect of ORPH on the phagocytic activity of macrophages was determined by the neutral red uptake assay. After treatment with ORPH, NO production levels in the culture supernatant were investigated by Griess assay. The mRNA and protein expressions of inducible nitric oxide synthase (iNOS) were detected by RT-PCR and Western blotting. The production of TNF-?, IL-1?, and IL-6 after treatment with ORPH was measured using ELISA assay. In addition, NF-?B levels were also investigated by Western blot. The results showed that ORPH enhanced the phagocytosis of macrophage, increased productions of TNF-?, IL-1?, IL-6, and NO in RAW 264.7 cells, and upregulated the mRNA and protein expression of iNOS. Besides, NF-?B, levels in RAW 264.7 cells were elevated after ORPH treatment. These findings suggested that ORPH might stimulate macrophage activities by activating the NF-?B pathway. PMID:25610475

  17. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages (Mf). Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pat...

  18. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages. Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pathway ...

  19. Assessing for unique immunomodulatory and neuroplastic profiles of physical activity subtypes: a focus on psychiatric disorders.

    PubMed

    Eyre, Harris A; Baune, Bernhard T

    2014-07-01

    Physical activity (PA) is emerging as a safe and effective tool in the prevention and treatment of psychiatric disorders. PA subtypes include aerobic, resistance, flexibility, neuromotor (involving balance, agility and co-ordination), mind-body (e.g. tai chi, qi gong and yoga) and mixed type trainings. Evidence from clinical trials suggests that PA subtypes can have positive clinical effects, however the effects on the symptomatology may vary according to the PA subtype. It therefore stands to reason that various PA subtypes may modulate the immune system and neuroplastic processes differently. This systematic review aims to assess the immunomodulatory and neuroplastic profiles of various PA subtypes, particularly in unipolar depression and age-related cognitive decline (ARCD). The literature suggests several unique immunomodulatory and neuroplastic profiles for PA subtypes (i.e. resistance, aerobic and mind-body) in depression and ARCD. In depression, levels of various cytokines at baseline may predict treatment response to subtypes of PA and pharmacological agents. The pro-neuroplastic effects of resistance and aerobic PA in ARCD may differ due to variances in neurotrophin profiles. At this stage of literature in the field, it is difficult to draw firm conclusions on the specific immunomodulatory and neuroplastic pathways involved in these PA subtypes given of the small number of comparative studies and methodological heterogeneity between studies (e.g. study population age and illness severity, as well as duration and intensity of PA intervention). This important field requires well-designed, high-quality comparative studies to better describe unique immunomodulatory and neuroplastic profiles. PMID:24269526

  20. Immunomodulatory activity of purified arabinoxylans from finger millet (Eleusine coracana, v. Indaf 15) bran.

    PubMed

    Savitha Prashanth, M R; Shruthi, R R; Muralikrishna, G

    2015-09-01

    Biological activities of alkali extracted (Barium hydroxide: BE-480 kDa, Potassium hydroxide: KE1-1080 and KE2-40 kDa), purified arabinoxylans (AX) from the finger millet bran varying in their molecular weight, phenolic acid content, arabinose to xylose ratios were evaluated for their immune-stimulatory activities using murine lymphocytes and peritoneal exudate macrophages. All three purified AX displayed significant (p?activity and activation of macrophages including phagocytosis. Among these BE has shown higher enhancing lymphocyte proliferation (>2 fold) and macrophage phagocytosis than KE1 and KE2. The above results clearly documented that the immunostimulatory activity of arabinoxylans is directly proportional to the amount of ferulic acid content (0.11 mg/100 g), whereas molecular weight as well as arabinose/xylose ratio, did not have any bearing. Purified AX from the finger millet bran can be explored as a potent natural immunomodulator. PMID:26345027

  1. Immunomodulatory activity of methanolic extract of Amorphophallus commutatus var. wayanadensis under normal and cyclophosphamide induced immunosuppressive conditions in mice models.

    PubMed

    Raj, Sreena; Gothandam, K M

    2015-07-01

    The present study investigates the immunomodulatory activity of methanolic extract of Amorphophallus commutatus var. wayanadensis (MEAC) under normal and cyclophosphamide induced immunosuppressive conditions in Swiss albino mice models. The splenocyte proliferation assay was performed to study in-vitro immunomodulatory activity of MEAC, where sheep RBC (SRBC) was used to induce immune responses in the experimental animals. The in-vivo immunomodulatory activity was evaluated by humoral antibody titer, quantification of plaque forming cells, qualitative hemolysis, delayed type hypersensitivity assay, phagocytic index and neutrophil adhesion assays. The chemoprotective effect of MEAC was determined against cyclophosphamide induced immunosuppression in mice models. MEAC exhibited significant mitogenic and co-mitogenic activity on Con-A, PHA and LPS stimulated splenocytes isolated from mouse spleen in a dose dependent manner. Furthermore, MEAC also elicited significant immunomodulatory activity with enhanced activation of humoral immune response along with a suppressive effect on cell mediated immune response. Hematological and histopathological analysis revealed the protective effect of MEAC against CP induced immunosuppression. The significant immunomodulatory activity of MEAC observed in the current study could be due to the fatty acids and phytosterols present in the extract. PMID:25916916

  2. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization.

    PubMed

    Liu, Qihui; Tian, Yuan; Zhao, Xiangfeng; Jing, Haifeng; Xie, Qi; Li, Peng; Li, Dong; Yan, Dongmei; Zhu, Xun

    2015-10-31

    Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-GuC)rin) activates disabled naC/ve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-N1), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1N2), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-N2) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions. PMID:26429502

  3. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

    PubMed Central

    Liu, Qihui; Tian, Yuan; Zhao, Xiangfeng; Jing, Haifeng; Xie, Qi; Li, Peng; Li, Dong; Yan, Dongmei; Zhu, Xun

    2015-01-01

    Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-Guérin) activates disabled naïve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-?), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1?), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-?) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions. PMID:26429502

  4. MACROPHAGE ACTIVATION SYNDROME AND CYTOKINE DIRECTED THERAPIES

    PubMed Central

    Grom, Alexei A.

    2014-01-01

    Macrophage activation syndrome (MAS) is an episode of overwhelming inflammation that occurs most commonly in children with systemic juvenile idiopathic arthritis. It is characterized by expansion and activation of T lymphocytes and hemophagocytic macrophages, and bears great similarity to hemophagocytic lymphohistiocytosis (HLH). This disorder has substantial morbidity and mortality, and there is frequently a delay in recognition and initiation of treatment. Here, we will review what is known about the pathogenesis of MAS and in particular its similarities to HLH. The development of MAS is characterized by a cytokine storm, with the elaboration of numerous proinflammatory cytokines. We will examine the evidence for various cytokines in the initiation and pathogenesis of MAS, and discuss how new biologic therapies may alter the risk of MAS. Finally we will review current treatment options for MAS, and examine how cytokine-directed therapy could serve as novel treatment modalities. PMID:24974063

  5. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  6. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  7. Assessment of Physicochemical Properties of Rituximab Related to Its Immunomodulatory Activity

    PubMed Central

    Miranda-Hernández, Mariana P.; López-Morales, Carlos A.; Ramírez-Ibáñez, Nancy D.; Piña-Lara, Nelly; Pérez, Nestor O.; Molina-Pérez, Aarón; Revilla-Beltri, Jorge; Flores-Ortiz, Luis F.

    2015-01-01

    Rituximab is a chimeric monoclonal antibody employed for the treatment of CD20-positive B-cell non-Hodgkin's lymphoma, chronic lymphocytic leukemia, rheumatoid arthritis, granulomatosis with polyangiitis and microscopic polyangiitis. It binds specifically to the CD20 antigen expressed on pre-B and consequently on mature B-lymphocytes of both normal and malignant cells, inhibiting their proliferation through apoptosis, CDC, and ADCC mechanisms. The immunomodulatory activity of rituximab is closely related to critical quality attributes that characterize its chemical composition and spatial configuration, which determine the recognition of CD20 and the binding to receptors or factors involved in its effector functions, while regulating the potential immunogenic response. Herein, we present a physicochemical and biological characterization followed by a pharmacodynamics and immunogenicity study to demonstrate comparability between two products containing rituximab. The physicochemical and biological characterization revealed that both products fit within the same response intervals exhibiting the same degree of variability. With regard to clinical response, both products depleted CD20+ B-cells until posttreatment recovery and no meaningful differences were found in their pharmacodynamic profiles. The evaluation of anti-chimeric antibodies did not show differential immunogenicity among products. Overall, these data confirm that similarity of critical quality attributes results in a comparable immunomodulatory activity. PMID:25973441

  8. Brazilian Green Propolis: Anti-Inflammatory Property by an Immunomodulatory Activity

    PubMed Central

    Machado, Joleen Lopes; da Silva, Mayara Cristina Pinto; dos Reis, Aramys Silva; Costa, Graciomar Conceição; Arruda, Diêgo de Sousa; Rocha, Bruno Alves; Vaz, Mirela Mara de Oliveira Lima Leite; Paes, Antonio Marcus de Andrade; Guerra, Rosane Nassar Meireles; Berretta, Andresa Aparecida; do Nascimento, Flávia Raquel Fernandes

    2012-01-01

    The immunomodulatory and anti-inflammatory activities of green propolis extracts from Apis mellifera were investigated using acute and chronic inflammation models. Swiss mice were anesthetized and a cotton pellet granuloma was implanted in subcutaneous tissue. Then the mice were divided into six groups and received apyrogenic water or different propolis extracts by oral route (5?mg/kg). According to the treatment the groups were designated as E1A, E1B, E10, E11, and E12. The control group received apyrogenic water. The treatment was performed by six days when the mice were killed. The blood and the bronchoalveolar lavage (BAL) were collected to measure the leukocyte recruitment. In acute pulmonary inflammation, Balb/c mice received lipopolysaccharide (LPS) of Escherichia coli by intranasal route for three days. Concomitantly the mice received by oral route apyrogenic water (control) or E10 and E11 propolis extracts. BAL was performed to assess the inflammatory infiltrate and cytokine quantification. The results showed that the E11 extract has anti-inflammatory property in both models by the inhibition of proinflammatory cytokines and increase of anti-inflammatory cytokines suggesting an immunomodulatory activity. PMID:23320022

  9. The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway

    SciTech Connect

    Liu, Yanling; Xu, Sanpeng; Xiao, Fei; Xiong, Yan; Wang, Xiaojin; Gao, Sui; Yan, Weiming; Ning, Qin

    2010-05-28

    Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of 'immune coagulation' and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.

  10. In vitro immunomodulatory activity of plants used by the Tacana ethnic group in Bolivia.

    PubMed

    Deharo, E; Baelmans, R; Gimenez, A; Quenevo, C; Bourdy, G

    2004-09-01

    One hundred and seventy-eight ethanolic plant extracts from the pharmacopoeia of the Tacana, an ethnic group from Bolivia, were screened for immunomodulatory activity using complement cascade inhibition and ADP-induced platelet aggregation inhibition assays. Six impaired both complement pathways (classical and alternative): stem bark from Astronium urundeuvea (Anacardiaceae), Cochlospermum vitifolium (Cochlospermaceae), Terminalia amazonica (Combretaceae), Triplaris americana (Polygonaceae), Uncaria tomentosa (Rubiaceae) and Euterpe precatoria (Arecaceae) roots. Inhibition of complement cascade was independent of essential ion complexation, and was not due to direct hemolytic activity on target red blood cells. For A. urundeuvea, C. vitifolium, and T. amazonica, anti-inflammatory activity relied on cyclo-oxygenase inhibition. Four of these species (A. urundeuva, T. americana, U. tomentosa and E. precatoria) are used traditionally to treat inflammatory processes. PMID:15500263

  11. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    PubMed

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-? and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection. PMID:26340935

  12. Self-assembled betulinic acid augments immunomodulatory activity associates with IgG response.

    PubMed

    Dash, Sandeep Kumar; Chattopadhyay, Sourav; Tripathy, Satyajit; Dash, Shib Shankar; Das, Balaram; Mandal, Debasis; Mahapatra, Santanu Kar; Bag, Braja Gopal; Roy, Somenath

    2015-10-01

    Studies relating to the adjuvanic role of self assembly, nanosized betulinic acid (SA-BA) are relatively limited. The concept of immunostimulatory activity of SA-BA is based on the activation of immune system against cancer antigen. This study showed that SA-BA, a pentacyclic triterpene isolated from the bark of the Ziziphus jujube tree, elevated the immunological functions of cancer antigen in anticancer immunotherapy. We found that, SA-BA pulsed human macrophages secreted elevated level of pro-inflammatory cytokines with an increased CD4(+) cell population. Pulse macrophages were also significantly arrested the KG-1A and K562 cell growth in vitro setup at 1:10 ratio for 48h. The use of TNF-? inhibitors confirmed the association between SA-BA with TNF-? function. SA-BA pulsed macrophages displayed substantial T cell allostimulatory capacity and promoted the generation of cytotoxic T lymphocytes (CTLs). The adjuvanticity of SA-BA was proved by the generation of in vivo IgG response. Collectively, these findings will enrich the biomedical applications of SA-BA as a potent immune stimulating agent. Moreover, the macrophage stimulating efficacy of SA-BA might be an effective way in the cancer immunotherapy. PMID:26256937

  13. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    SciTech Connect

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  14. Immunomodulatory Effects of Ethanolic Extract of Thyphonium flagelliforme (Lodd) Blume in Rats Induced by Cyclophosphamide.

    PubMed

    Nurrochmad, Arief; Ikawati, Muthi; Sari, Ika Puspita; Murwanti, Retno; Nugroho, Agung Endro

    2015-07-01

    The present study aimed to examine the immunomodulatory effect of ethanolic extract of Typhonium flagelliforme (Lodd) Blume in cyclophosphamide-treated rats. The immunomodulatory effects were determined by lymphocytes proliferation, phagocytic activity of macrophages, plasma cytokines of tumor necrosis factor-?, interleukin-1?, interleukin-10 levels, and killer T cells (CD8+ T cells) counts. The results showed that the administration of ethanolic extract of T flagelliforme reduced immunosupessive effect on lymphocyte proliferation, increase the number and phagocytic activity of macrophages in cyclophosphamide-treated rats. Moreover, the ethanolic extract of T flagelliforme also significantly (P < .05) improved the immune system activities especially the proliferation of CD8+T cells and reduced the suppressive effects on cytokines such as tumor necrosis factor-? and interleukin-1?. In conclusion, the ethanolic extract of T flagelliforme has immunomodulatory properties in cyclophosphamide-treated rats. The results suggest that T flagelliforme can reduce immunosuppresive effect caused by a chemotherapeutic agent. PMID:25613330

  15. Enhanced Immunomodulatory Activity of Gelatin-Encapsulated Rubus coreanus Miquel Nanoparticles

    PubMed Central

    Seo, Yong Chang; Choi, Woon Yong; Lee, Choon Geun; Cha, Seon Woo; Kim, Young Ock; Kim, Jin-Chul; Drummen, Gregor P. C.; Lee, Hyeon Yong

    2011-01-01

    The aim of this work was to investigate the immunomodulatory activities of Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal imaging confirmed this, since the nanoparticles were internalized within 30 min and heterogeneously distributed throughout the cell. Zeta-potential measurements showed that from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 60%, which is higher than for other components encapsulated in gelatin nanoparticles. Measurements of immune modulation in immune cells showed a significant effect by the crude extract, which was only topped by the nanoparticles containing the extract. Proliferation of B-, T- and NK cells was notably enhanced by Rubus coreanus-gelatin nanoparticles and in general ~2–3 times higher than control and on average ~2 times higher than ferulic acid. R. coreanus-gelatin nanoparticles induced cytokine secretion (IL-6 and TNF-?) from B- and T-cells on average at a ~2–3 times higher rate compared with the extract and ferulic acid. In vivo immunomodulatory activity in mice fed with R. coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody production compared to control, a ~1.3 times higher production compared to the extract only, and a ~1.6 times higher production compared to ferulic acid. Overall, our results suggest that gelatin nanoparticles represent an excellent transport vehicle for Rubus coreanus extract and extracts from other plants generally used in traditional Asian medicine. Such nanoparticles ensure a high local concentration that results in enhancement of immune cell activities, including proliferation, cytokine secretion, and antibody production. PMID:22272118

  16. Expression of surfactant proteins SP-A and SP-D in murine decidua and immunomodulatory effects on decidual macrophages.

    PubMed

    Madhukaran, Shanmuga Priyaa; Koippallil Gopalakrishnan, Aghila Rani; Pandit, Hrishikesh; Marri, Eswari Dodagatta-; Kouser, Lubna; Jamil, Kaiser; Alhamlan, Fatimah S; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules that belong to the C-type lectin family. In lungs, they play an important role in the clearance of pathogens and control of inflammation. SP-A and SP-D are also expressed in the female reproductive tract where they play an important role in pregnancy and parturition. However, the role of SP-A and SP-D expressed at the feto-maternal interface (decidua) remains unclear. Here, we have examined the expression of SP-A and SP-D in the murine decidua at 17.5 (pre-parturition) and 19.5dpc (near parturition) and their effect on lipopolysaccharide (LPS)-treated decidual macrophages. SP-A and SP-D were localized to stromal cells in the murine decidua at 17.5 and 19.5dpc in addition to cells lining the maternal spiral artery. Purified pre-parturition decidual cells were challenged with LPS with and without SP-A or SP-D, and expression of F4/80 and TNF-? were measured by flow cytometry. On their own, SP-A or SP-D did not affect the percentage of F4/80 positive cells while they suppressed the percentage of TNF-? positive cells. However, simultaneous addition of SP-A or SP-D, together with LPS, reduced TNF-? secreting F4/80 positive cells. It is likely that exogenous administration of SP-A and SP-D in decidua can potentially control infection and inflammation mediators during spontaneous term labor and infection-induced preterm labor. Thus, the presence of SP-A and SP-D in the murine decidua is likely to play a protective role against intrauterine infection during pregnancy. PMID:26421960

  17. Immunomodulatory activities of Yoyo bitters: recommended dose precipitated inflammatory responses in male Wistar rats.

    PubMed

    Oyewo, E B; Adetutu, A; Adebisi, J A

    2013-12-15

    This study investigated the immunomodulatory capabilities of the sub-chronic administration of Yoyo bitters in male Wistar rats. Eighteen rats weighing 86.2 +/- 4.43 g were randomly picked into three equal groups. The rats were acclimatized for 14 days, after which 0.308 and 0.462 mL kg(-1) b.wt. of Yoyo bitters were administered once daily to groups B and C respectively for 56 days, while group A received distilled water. The feed intake, body weight, blood glucose, interleukin 2 (IL-2), interleukin 6 (IL-6), tumour necrosis factor alpha (TNF-alpha), haematological parameters, serum lipid profile and uric acid, liver reduced glutathione and malodialdehyde were determined. The feed intake, body weight and blood glucose concentrations were reduced (p < 0.05) at the doses. No changes were recorded in the concentration of serum IL-2 (p > 0.05), but IL-6 decreased (p < 0.05) in group B and increased (p < 0.05) in group C, while TNF-alpha were increased (p < 0.05) dose dependent. The haematological parameters were decreased at all the doses (p < 0.05), except the ESR, WBC and lymphocytes that were increased (p < 0.05) and platelets in group C (p < 0.05). The serum total cholesterol, TAG, LDL-C and atherogenic index were decreased (p < 0.05) and HDL-C increased (p < 0.05) in group B only. Serum uric acid was reduced (p < 0.05) in group B, but increased in group C with the concentration of liver MDA (p < 0.05). The study, therefore, established that a dose lower than the manufacturer's recommended dose presented the desired immunomodulatory activities and the habitual use of Yoyo bitters at the adult recommended dose calls for caution. PMID:24517005

  18. Disruption of tissue plasminogen activator gene reduces macrophage migration

    E-print Network

    metalloproteinase-9; Macrophage; Peripheral nerve injury; Axonal regeneration Tissue plasminogen activator (tDisruption of tissue plasminogen activator gene reduces macrophage migration Changchun Ling a,1, New York, NY 10021, USA Received 1 August 2006 Available online 28 August 2006 Abstract Tissue

  19. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants.

    PubMed

    Daoudi, Abdeljlil; Aarab, Lotfi; Abdel-Sattar, Essam

    2013-04-01

    Herbal and traditional medicines are being widely used in practice in many countries for their benefits of treating different ailments. A large number of plants in Morocco were used in folk medicine to treat immune-related disorders. The objective of this study is to evaluate the immunomodulatory activity of protein extracts (PEs) of 14 Moroccan medicinal plants. This activity was tested on the proliferation of immune cells. The prepared total and PEs of the plant samples were tested using MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide) assay on the splenocytes with or without stimulation by concanavalin-A (Con-A), a mitogenic agent used as positive control. The results of this study indicated different activity spectra. Three groups of activities were observed. The first group represented by Citrullus colocynthis, Urtica dioica, Elettaria cardamomum, Capparis spinosa and Piper cubeba showed a significant immunosuppressive activity. The second group that showed a significant immunostimulatory activity was represented by Aristolochia longa, Datura stramonium, Marrubium vulgare, Sinapis nigra, Delphynium staphysagria, Lepidium sativum, Ammi visnaga and Tetraclinis articulata. The rest of the plant extracts did not alter the proliferation induced by Con-A. This result was more important for the PE than for the total extract. In conclusion, this study revealed an interesting immunomodulating action of certain PEs, which could explain their traditional use. The results of this study may also have implications in therapeutic treatment of infections, such as prophylactic and adjuvant with cancer chemotherapy. PMID:22301818

  20. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses.

    PubMed

    Nácher-Vázquez, Montserrat; Ballesteros, Natalia; Canales, Ángeles; Rodríguez Saint-Jean, Sylvia; Pérez-Prieto, Sara Isabel; Prieto, Alicia; Aznar, Rosa; López, Paloma

    2015-06-25

    Viral infections in the aquaculture of salmonids can lead to high mortality and substantial economic losses. Thus, there is industrial interest in new molecules active against these viruses. Here we describe the production, purification, and the physicochemical and structural characterization of high molecular weight dextrans synthesized by Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10. The purified dextrans, and commercial dextrans with molecular weights ranging from 10 to 2000kDa, were assayed in infected BF-2 and EPC fish cell-line monolayers for antiviral activity. Only T2000 and dextrans from MN1 and RTF10 had significant antiviral activity. This was similar to results obtained against infectious pancreatic necrosis virus. However the dextran from MN1 showed ten-fold higher activity against hematopoietic necrosis virus than T2000. In vivo assays using the MN1 polymer confirmed the in vitro results and revealed immunomodulatory activity. These results together with the high levels of dextran production (2gL(-1)) by Lb. sakei MN1, indicate the compounds potential utility as an antiviral agent in aquaculture. PMID:25839823

  1. Evaluation of a topical herbal drug for its in-vivo immunomodulatory effect on cytokines production and antibacterial activity in bovine subclinical mastitis

    PubMed Central

    Bhatt, Vaibhav D.; Shah, Tejas M.; Nauriyal, Dev S.; Kunjadia, Anju P.; Joshi, Chaitanya G.

    2014-01-01

    Background: Antibiotics have been in use in the treatment of bovine mastitis since decades; however, their use is associated with cost issues and human health concern. Use of herbal drugs does not generally carry these disadvantages. Many plants/herbs have been evaluated in the treatment of bovine mastitis with additional property of immunomodulation in affected mammary gland. Aim: To evaluate a topical herbal drug in two breeds of cattle for its in-vivo immunomodulatory effect on cytokines production and antibacterial activity in bovine subclinical mastitis. Materials and Methods: The response to treatment was evaluated by enumerating somatic cell count (SCC), determining total bacterial load, and studying the expression of different cytokines (interleukin [IL]-6, IL-8, IL-12, granulocyte macrophage-colony stimulating factor, interferon (IFN)-? and tumor necrosis factor [TNF]-?). Results: The pre- and post-treatment SCC in mastitic quarters statistically did not differ significantly, however, total bacterial load declined significantly from day 0 onwards in both the breeds. Highly significant differences (P < 0.01) were observed in all the cytokines on day 0, 5, and 21 postlast treatment in both the breeds. The expression level of all the cytokines showed a significant increase on day 5, while a decrease was noticed on day 21 in both the breeds of cattle. The comparison of cytokine expression profiles between crossbred and Gir cattle revealed a significant difference in expression of IL-6 and TNF-?. However, other cytokines exhibited a similar pattern of expression in both breeds, which was non-significant. Conclusion: The topical herbal drug exhibited antibacterial and immunomodulatory activities in subclinical mastitis and thus the work supports its use as alternative herbal therapy against subclinical udder infection in bovines. PMID:25558168

  2. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages

    PubMed Central

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor ? (TNF-?), interleukin 6 (IL-6), interferon-? (IFN-?), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-?. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419

  3. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants.

    PubMed

    Ng, T B; Chan, W Y; Yeung, H W

    1992-07-01

    1. The biochemical characteristics and biological activities of eight Cucurbitaceae plant proteins designated trichosanthin (isolated from tubers of Trichosanthes kirilowii), beta-trichosanthin (isolated from tubers of Trichosanthes cucumeroides), alpha- and beta-momorcharins (isolated from seeds of Momordica charantia), momorchochin (isolated from tubers of Momordica cochinchinensis), luffaculin (isolated from seeds of Luffa acutangula) and luffin-a and luffin-b (isolated from seeds of Luffa cylindrica), were reviewed. 2. The isolation procedures for all eight proteins are based on aqueous extraction, acetone fractionation and ion exchange chromatography. Ammonium sulfate precipitation and gel filtration are steps which may be included to improve purification. 3. The proteins are basic in nature and possess a molecular weight of approx. 30,000. All except trichosanthin are glycoproteins. The content of Asx and Glx residues is high. The N-terminal amino acid residue is Asp. Their amino acid compositions and N-terminal amino acid sequences are similar. 4. Circular dichroism spectroscopic studies revealed that trichosanthin, alpha- and beta-momorcharins possess similar secondary but different tertiary structures. 5. Most of the proteins are immunologically distinct. 6. The proteins exhibit abortifacient, antitumor, ribosome inactivating and immunomodulatory activities. Trichosanthin manifests anti-human immunodeficiency virus activity. PMID:1397965

  4. Characterization of Two Homogalacturonan Pectins with Immunomodulatory Activity from Green Tea

    PubMed Central

    Wang, Huijun; Wei, Guodong; Liu, Fei; Banerjee, Gautam; Joshi, Manoj; Bligh, S. W. Annie; Shi, Songshan; Lian, Hui; Fan, Hongwei; Gu, Xuelan; Wang, Shunchun

    2014-01-01

    Two natural homogalacturonan (HG) pectins (MW ca. 20 kDa) were isolated from green tea based on their immunomodulatory activity. The crude tea polysaccharides (TPS1 and TPS2) were obtained from green tea leaves by hot water extraction and followed by 40% and 70% ethanol precipitation, respectively. Two homogenous water soluble polysaccharides (TPS1-2a and TPS1-2b) were obtained from TPS1 after purification with gel permeation, which gave a higher phagocytic effect than TPS2. A combination of composition, methylation and configuration analyses, as well as NMR (nuclear magnetic resonance) spectroscopy revealed that TPS1-2a and TPS1-2b were homogalacturonan (HG) pectins consisting of a backbone of 1,4-linked ?-d-galacturonic acid (GalA) residues with 28.4% and 26.1% of carboxyl groups as methyl ester, respectively. The immunological assay results demonstrated that TPS1-2, which consisted mainly of HG pectins, showed phagocytosis-enhancing activity in HL-60 cells. PMID:24901527

  5. Immunomodulatory activity of a Unani gold preparation used in Indian system of medicine.

    PubMed

    Bajaj, S; Ahmad, I; Fatima, M; Raisuddin, S; Vohora, S B

    1999-02-01

    Kushta Tila Kalan (KTK), a gold preparation used in Unani-Tibb is claimed to possess general tonic, anti-infective and rejuvenating properties. We evaluated immunomodulatory activity of KTK in male mice. KTK was orally administered to animals at dosage of 6.25, 12.5, 25 and 50 mg/kg b.w. for 10 days. Beside general immunopathological parameters, cell-mediated immunity was evaluated by measuring delayed type of hypersensitivity response (DTH) while humoral immunity was assessed using plaque forming cell (PFC) assay. KTK augmented both the immune responses at dose levels of 6.25, 12.5 and 25 mg/kg. The optimum activities were recorded at 25 mg/kg. High dose of 50 mg/kg showed suppressive effects on immune functions. The modulatory effects may be attributed to the interactions of gold with herbomineral adjuncts incorporated during the specialized ashing techniques used in the preparation. The results are interesting in view of reported suppressive effects of other gold preparations. PMID:10084336

  6. Effects of lipopolysaccharide on the catabolic activity of macrophages

    SciTech Connect

    Cluff, C.; Ziegler, H.K.

    1986-03-05

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of /sup 125/-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses.

  7. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  8. Immunomodulatory mechanisms of lactobacilli

    PubMed Central

    2011-01-01

    Abstract Over the past decade it has become clear that lactobacilli and other probiotic and commensal organisms can interact with mucosal immune cells or epithelial cells lining the mucosa to modulate specific functions of the mucosal immune system. The most well understood signalling mechanisms involve the innate pattern recognition receptors such as Toll-like receptors, nucleotide oligomerization domain-like receptors and C-type lectin receptors. Binding of microbe-associated molecular patterns with these receptors can activate antigen presenting cells and modulate their function through the expression of surface receptors, secreted cytokines and chemokines. In vitro the cytokine response of human peripheral blood mononuclear cells and dendritic cells to lactobacilli can be strikingly different depending on both the bacterial species and the strain. Several factors have been identified in lactobacilli that influence the immune response in vitro and in vivo including cell surface carbohydrates, enzymes modifying the structure of lipoteichoic acids and metabolites. In mice mechanistic studies point to a role for the homeostatic control of inducible T regulatory cells in the mucosal tissues as one possible immunomodulatory mechanism. Increasing evidence also suggests that induction of epithelial signalling by intestinal lactobacilli can modulate barrier functions, defensin production and regulate inflammatory signalling. Other probiotic mechanisms include modulation of the T cell effector subsets, enhancement of humoral immunity and interactions with the epithelial-associated dendritic cells and macrophages. A major challenge for the future will be to gain more knowledge about the interactions occurring between lactobacilli and the host in vivo and to understand the molecular basis of innate signalling in response to whole bacteria which trigger multiple signalling pathways. PMID:21995674

  9. Structural characterization and immunomodulatory activity of a new heteropolysaccharide from Prunella vulgaris.

    PubMed

    Li, Chao; You, Lijun; Fu, Xiong; Huang, Qiang; Yu, Shujuan; Liu, Rui Hai

    2015-05-01

    A new heteropolysaccharide, here called P1, was isolated from the fruit clusters of Prunella vulgaris using a hot water extraction method. Chemical and physical analyses indicated that P1 had a spherical conformation with an average molecular weight of 1750 kDa and consisted of arabinose (28.37%), xylose (54.67%), mannose (5.61%), glucose (5.46%), and galactose (5.89%). The main types of P1 linkages were proved to be (1?5)-linked ?-L-Ara, (1?)-linked ?-L-Ara, (1?3)-linked ?-D-xyl, (1?3)-linked ?-D-Gal, (1?3,6)-linked ?-D-Gal, (1?3,6)-linked ?-D-Man and (1?6)-linked ?-D-Glc according to the periodate oxidation-Smith degradation and NMR analyses. P1 could significantly enhance the secretion of NO, TNF-?, and IL-6 in murine RAW 264.7 cells, involving the toll-like receptor 2 (TLR2), TLR4 and complement receptor 3 (CR3). Further studies showed that P1 exhibited stable immune activities in the pH range of 4.0-10.0 and below 121 °C. The results suggested that P1 could be used as a potent immunomodulatory agent in functional foods and pharmacological fields. PMID:25825862

  10. Immunomodulatory activity of Bengkoang (Pachyrhizus erosus) fiber extract in vitro and in vivo.

    PubMed

    Kumalasari, Ika Dyah; Nishi, Kosuke; Harmayani, Eni; Raharjo, Sri; Sugahara, Takuya

    2014-01-01

    Bengkoang (Pachyrhizus erosus (L.) Urban) is one of the most popular edible root vegetables in Indonesia. Bengkoang contains fairly large amounts of carbohydrates and crude fiber. The purpose of this research is to evaluate the immunomodulatory effect of the bengkoang fiber extract (BFE) in vitro and in vivo. BFE was prepared by heating the powder of bengkoang fiber suspended in distilled water at 121 °C for 20 min. BFE facilitated IgM production by the human hybridoma cell line HB4C5 cells. In addition, production of IgM, IgG, and IgA by mouse primary splenocytes was facilitated by BFE in a dose-dependent manner. BFE also significantly facilitated production of both interleukin-5 and interleukin-10 by splenocytes. Immunoglobulin production by lymphocytes from the spleen, Peyer's patch, and mesenteric lymph node were significantly activated by oral administration of BFE to mice for 14 days. The serum immunoglobulin levels of IgG, IgM, and IgA were also significantly enhanced. Furthermore, cytokine production by lymphocytes from the spleen, Peyer's patch, and mesenteric lymph node were also facilitated by oral administration of BFE. These results suggest that BFE has positive effects on the immune system in vitro and in vivo. PMID:23361525

  11. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14.

    PubMed

    Fong, Jerry J; Sreedhara, Karthik; Deng, Liwen; Varki, Nissi M; Angata, Takashi; Liu, Qinglian; Nizet, Victor; Varki, Ajit

    2015-11-12

    The intracellular chaperone heat-shock protein 70 (Hsp70) can be secreted from cells, but its extracellular role is unclear, as the protein has been reported to both activate and suppress the innate immune response. Potential immunomodulatory receptors on myelomonocytic lineage cells that bind extracellular Hsp70 are not well defined. Siglecs are Ig-superfamily lectins on mammalian leukocytes that recognize sialic acid-bearing glycans and thereby modulate immune responses. Siglec-5 and Siglec-14, expressed on monocytes and neutrophils, share identical ligand-binding domains but have opposing signaling functions. Based on phylogenetic analyses of these receptors, we predicted that endogenous sialic acid-independent ligands should exist. An unbiased screen revealed Hsp70 as a ligand for Siglec-5 and Siglec-14. Hsp70 stimulation through Siglec-5 delivers an anti-inflammatory signal, while stimulation through Siglec-14 is pro-inflammatory. The functional consequences of this interaction are also addressed in relation to a SIGLEC14 polymorphism found in humans. Our results demonstrate that an endogenous non-sialic acid-bearing molecule can be either a danger-associated or self-associated signal through paired Siglecs, and may explain seemingly contradictory prior reports on extracellular Hsp70 action. PMID:26459514

  12. Modelling and analysis of macrophage activation pathways 

    E-print Network

    Raza, Sobia

    2011-11-25

    Macrophages are present in virtually all tissues and account for approximately 10% of all body mass. Although classically credited as the scavenger cells of innate immune system, ridding a host of pathogenic material and ...

  13. Toxoplasma gondii Chitinase Induces Macrophage Activation

    PubMed Central

    Almeida, Fausto; Sardinha-Silva, Aline; da Silva, Thiago Aparecido; Pessoni, André Moreira; Pinzan, Camila Figueiredo; Alegre-Maller, Ana Claudia Paiva; Cecílio, Nerry Tatiana; Moretti, Nilmar Silvio; Damásio, André Ricardo Lima; Pedersoli, Wellington Ramos; Mineo, José Roberto; Silva, Roberto Nascimento; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50°C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection. PMID:26659253

  14. Cyclic Steroid Glycosides from the Starfish Echinaster luzonicus: Structures and Immunomodulatory Activities.

    PubMed

    Kicha, Alla A; Kalinovsky, Anatoly I; Malyarenko, Timofey V; Ivanchina, Natalia V; Dmitrenok, Pavel S; Menchinskaya, Ekaterina S; Yurchenko, Ekaterina A; Pislyagin, Evgeny A; Aminin, Dmitry L; Huong, Trinh T T; Long, Pham Quoc; Stonik, Valentin A

    2015-06-26

    Five new steroid glycosides, luzonicosides B-E (2-5), belonging to a rare structure group of marine glycosides, containing carbohydrate moieties incorporated into a macrocycle, and a related open carbohydrate chain steroid glycoside, luzonicoside F (6), were isolated from the starfish Echinaster luzonicus along with the previously known cyclic steroid glycoside luzonicoside A (1). The structures of compounds 2-6 were established by extensive NMR and ESIMS techniques as well as chemical transformations. Luzonicoside A (1) at concentrations of 0.01-0.1 ?M was shown to be potent in lysosomal activity stimulation, intracellular ROS level elevation, and NO synthesis up-regulation in RAW 264.7 murine macrophages. Luzonicoside D (4) was less active in these biotests. PMID:26068600

  15. Immunomodulatory activity of ketamine in human astroglial A172 cells: Possible relevance to its rapid antidepressant activity.

    PubMed

    Yuhas, Yael; Ashkenazi, Shai; Berent, Eva; Weizman, Abraham

    2015-05-15

    To determine if the immunomodulatory effect of ketamine is relevant to its rapid antidepressant activity, cultured human astroglial cells were incubated with ketamine, cytokine mix, or both. At 24h, ketamine dose-dependently (100-500 ?M) decreased IL-6 and TNF? production and gene expression and, at clinically relevant concentration (100 ?M), augmented IL-? release and gene expression in both unstimulated and cytokine-stimulated cells. In unstimulated cells, ketamine also increased IL-8 production and mRNA expression. The reduction in IL-6 mRNA was significant within 1h in unstimulated cells and at 4h after stimulation. Ketamine suppressed the production of the only established depression-relevant proinflammatory cytokines, IL-6 and TNF?. PMID:25903726

  16. Teriflunomide, an immunomodulatory drug, exerts anticancer activity in triple negative breast cancer cells.

    PubMed

    Huang, Ou; Zhang, Weili; Zhi, Qiaoming; Xue, Xiaofeng; Liu, Hongchun; Shen, Daoming; Geng, Meiyu; Xie, Zuoquan; Jiang, Min

    2015-04-01

    Triple-negative breast cancer (TNBC) is defined as a group of primary breast cancers lacking expression of estrogen, progesterone, and human epidermal growth factor receptor-2 (HER-2) receptors, characterized by higher relapse rate and lower survival compared with other subtypes. Due to lack of identified targets and molecular heterogeneity, conventional chemotherapy is the only available option for treatment of TNBC, but non-discordant positive therapeutic efficacy could not be achieved. Here, we demonstrated that these TNBC cells were sensitive to teriflunomide, which was a well-known immunomodulatory drug for treatment of relapsing multiple sclerosis (MS). Potent anti-cancer effects in TNBC in vitro, including proliferation inhibition, cell cycle delay, cell apoptosis, and suppression of cell motility and invasiveness, could be achieved with this agent. Of note, we showed that multiple signals involved in TNBC proliferation, survival, migratory, and invasive potential were under regulation by teriflunomide. Among them, we identified down-regulation of growth factor receptors to abolish growth maintenance, suppression of c-Myc, and cyclin D1 to contribute to its anti-proliferative effect, modulation of components of cell cycle to induce S-phase arrest, degradation of Bcl-xL, and up-regulation of BAX via activation of MAPK pathway to induce apoptosis, and inhibition of epithelial-mesenchymal transition (EMT) process, matrix metalloproteinase-9 (MMP9) expression, and inactivation of Src/FAK to reduce TNBC migration and invasion. The results identified teriflunomide may be of therapeutic benefit for the more aggressive and difficult-to-treat breast cancer subtype, indicating the use of teriflunomide for clinical trials for treatment of TNBC patients. PMID:25304315

  17. Modifications of glycosylation patterns in macrophages upon activation.

    PubMed

    Afroun, S; Tenu, J P; Lemaire, G

    1988-09-16

    Activated macrophages, in contrast to inflammatory and resident macrophages, are able to inhibit the growth of intracellular pathogens and tumor cells. In order to understand the adaptative changes which allow macrophages to express antitumor activity, we compared, among several parameters, the glycoproteins of cytotoxic and non-cytotoxic macrophages. After activation of mouse peritoneal macrophages by two stimuli applied in a sequence (trehalose dimycolate in vivo, lipopolysaccharide in vitro), we observed that: (1) surface sialic acid residues (labeled by tritiated borohydride after treatment of intact cells in culture by periodate) were reduced by 37%; (2) total sialic acid, as measured by an adaptation to HPLC of the thiobarbituric assay, was reduced by 30%. Variations in the intensity of the labeling after periodate/borohydride treatment were especially pronounced for a few high-molecular-weight glycoproteins. Analysis of glycopeptides indicated that the reduction of sialylation was accompanied by a slight increase in the relative importance of high mannose-type oligosaccharides (glycopeptides sensitive to endoglycosidase H or retained on concanavalin A-Sepharose) but did not affect the ratio of the various anionic species separated on QAE-Sephadex. A reduced sialylation of glycans after activation may facilitate interactions of macrophages with microbes and tumor cells. PMID:2844283

  18. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis

    PubMed Central

    Xue, Jing; Sharma, Vishal; Hsieh, Michael H.; Chawla, Ajay; Murali, Ramachandran; Pandol, Stephen J.; Habtezion, Aida

    2015-01-01

    Chronic pancreatitis (CP) is a progressive and irreversible inflammatory and fibrotic disease with no cure. Unlike acute pancreatitis, we find that alternatively activated macrophages (AAMs) are dominant in mouse and human CP. AAMs are dependent on IL-4 and IL-13 signaling and we show that mice lacking IL-4R?, myeloid specific IL-4R?, and IL-4/IL-13 were less susceptible to pancreatic fibrosis. Furthermore, we demonstrate that mouse and human pancreatic stellate cells (PSCs) are a source of IL-4/IL-13. Notably, we show that pharmacologic inhibition of IL-4/IL-13 in human ex-vivo studies as well as in established mouse CP decreases pancreatic AAMs and fibrosis. We identify a critical role for macrophages in pancreatic fibrosis and in turn PSCs as important inducers of macrophage alternative activation. Our study challenges and identifies pathways involved in cross talk between macrophages and PSCs that can be targeted to reverse or halt pancreatic fibrosis progression. PMID:25981357

  19. Antitumor and immunomodulatory activities of a water-soluble polysaccharide from Chaenomeles speciosa.

    PubMed

    Xie, Xianfei; Zou, Guolin; Li, Chenghai

    2015-11-01

    In this study, a water-soluble polysaccharide (CSP) was successfully purified from Chaenomeles speciosa by DEAE-Sepharose and Sephadex G-100 column chromatography. CSP had a weight-average molecular weight of about 6.3 × 10(4)Da and was composed of glucose (Glc), galactose (Gal), rhamnose (Rha) and arabinose (Ara) with a relative molar ratio of 4.6:1.3:0.8:0.5. CSP could not only inhibit the growth of S180 tumor transplanted in mice, but also increase the relative spleen index and body weight of tumor bearing mice. Moreover, concanavalin A (ConA) and lipopolysaccharide (LPS) induced splenocyte proliferation and peritoneal macrophage phagocytosis were also enhanced after CSP administration. Furthermore, CSP treatment could improve delayed type hypersensitivity (DTH) and promote the secretion of IL-2, TNF-? and IFN-? in serum. The overall findings suggest that the antitumor effect of CSP is might be associated with its potent immunostimulatory activity. PMID:26256355

  20. [The activating action of mercaptobenzimidazole derivatives on peritoneal macrophages].

    PubMed

    Ratnikov, V I; Ratnikova, L I

    1991-01-01

    It was established that derivatives of mercaptobenzimidazole (bemitil, methoxybemitil, 5-ethoxy-2-ethylmercaptobenzimidazole hydrochloride) in a dose of 25 mg/kg stimulate the mouse peritoneal macrophages by increasing their phagocytic activity and phagocytosis index. Among the studied agents 5-ethoxy-2-ethylmercaptobenzimidazole hydrochloride possesses the greatest effect. The increase of phagocytosis processes was shown to be accompanied with a growth of the number of macrophages reducing nitroblue tetrazolium in diphormazan and with an enhancement of secretion of lysosomal enzymes. PMID:1884800

  1. Establishment of reporter platforms capable of detecting NF-?B mediated immuno-modulatory activity.

    PubMed

    Wang, Chung-Huang; Lin, Ju-Hwa; Lu, Ting-Jang; Chiang, An-Na; Chiou, Shih-Ting; Chen, Yi-An; Pan, Min-Hsiung; Hsieh, Shu-Chen

    2013-12-26

    Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are transcriptional targets of nuclear factor kappa B (NF-?B) that are involved in inflammatory responses. The aim of this study is to develop a method for efficiently detecting inflammation modulatory activities. Here we established RAW264.7 macrophage cells stably expressing a luciferase reporter gene directed by iNOS or COX-2 promoter. Lipopolysaccharide (LPS) treatment stimulated the luciferase activity which paralleled with increased iNOS and COX-2 mRNA levels determined by RT-q-PCR. The LPS-stimulated luciferase activity was blocked by NF-?B inhibitor CAPE and by nobiletin, an anti-inflammatory natural product from citrus peels. We have applied the platforms to screen various mushroom species; analysis by scatter plot revealed a strong correlation to the results obtained by ELISA-based detection of TNF-?. Together we have established luciferase reporter systems sensitive to NF-?B-dependent iNOS and COX-2 activation, which provides an alternative screening method for identifying food components with immune-modulatory activities. PMID:24341698

  2. Immunomodulatory activities of alpha-mangostin on peripheral blood mononuclear cells.

    PubMed

    Kasemwattanaroj, Pimolkan; Moongkarndi, Primchanien; Pattanapanyasat, Kovit; Mangmool, Supachoke; Rodpai, Ekkarat; Samer, Jutima; Konlata, Julaporn; Sukapirom, Kasama

    2013-09-01

    Mangosteen (Garcinia mangostana L.) a tropical fruit, has been used in traditional medicine. A frequently used part of mangosteen is the pericarp, containing a high content of xanthones. alpha-Mangostin, one of the major xanthone derivatives, exhibits a variety of actions, including antimicrobial, antioxidant, cytotoxic and antitumor; however, its function on the immune system is still equivocal. This study aimed to examine the immunomodulatory activities of alpha-mangostin on lymphocyte lineage and cytokine production in human peripheral blood mononuclear cells (PBMCs). The cytotoxic activity of alpha-mangostin was measured by MTT assay. The concentration of alpha-mangostin at 5.55 microg/mL resulted in a 50% survival of PBMCs, which was as potent a cytotoxic activity as that of paclitaxel. After 24 h of PBMCs culture, the percentages of T cells (CD3+), B cells (CD19+) and NK cells (CD3-CD16+CD56+) were not significantly changed by treatment with 1, 2 and 4 microg/mL of alpha-mangostin compared with untreated-PBMCs; in addition, the percentages of these lymphocytes treated with the combination of alpha-mangostin (1, 2 and 4 microg/mL) and the mitogen concanavalin A (ConA) was not significantly different from that of ConA-treated PBMCs. For cytokine secretion, alpha-mangostin (1, 2 and 4 microg/mL) did not significantly induce either proinflammatory cytokines (i.e., TNF-alpha and IL-1beta) or cytokine of adaptive immunity (i.e., IL-2). The combination of alpha-mangostin (1, 2 and 4 microg/mL) and ConA did not significantly alter the relative difference of TNF-alpha and IL-1beta compared with ConA-treated PBMCs; however, these combinations could significantly decrease the relative difference of IL-2 compared with ConA-treated PBMCs. These data indicated that alpha-mangostin was able to inhibit IL-2 release without interfering with human immune cells; therefore, further studies are necessary to investigate its effect on IL-2 production. PMID:24273861

  3. An inducible transgene reports activation of macrophages in live zebrafish larvae.

    PubMed

    Sanderson, Leslie E; Chien, An-Tzu; Astin, Jonathan W; Crosier, Kathryn E; Crosier, Philip S; Hall, Christopher J

    2015-11-01

    Macrophages are the most functionally heterogenous cells of the hematopoietic system. Given many diseases are underpinned by inappropriate macrophage activation, macrophages have emerged as a therapeutic target to treat disease. A thorough understanding of what controls macrophage activation will likely reveal new pathways that can be manipulated for therapeutic benefit. Live imaging fluorescent macrophages within transgenic zebrafish larvae has provided a valuable window to investigate macrophage behavior in vivo. Here we describe the first transgenic zebrafish line that reports macrophage activation, as evidenced by induced expression of an immunoresponsive gene 1(irg1):EGFP transgene. When combined with existing reporter lines that constitutively mark macrophages, we reveal this unique transgenic line can be used to live image macrophage activation in response to the bacterial endotoxin lipopolysaccharide and xenografted human cancer cells. We anticipate the Tg(irg1:EGFP) line will provide a valuable tool to explore macrophage activation and plasticity in the context of different disease models. PMID:26123890

  4. Thymosin ?1 activates complement receptor-mediated phagocytosis in human monocyte-derived macrophages.

    PubMed

    Serafino, Annalucia; Pica, Francesca; Andreola, Federica; Gaziano, Roberta; Moroni, Noemi; Moroni, Gabriella; Zonfrillo, Manuela; Pierimarchi, Pasquale; Sinibaldi-Vallebona, Paola; Garaci, Enrico

    2014-01-01

    Thymosin ?1 (T?1) is a naturally occurring thymic peptide used worldwide in clinical trials for the treatment of infectious diseases and cancer. The immunomodulatory activity of T?1 on innate immunity effector cells has been extensively described, but its mechanism of action is not completely understood. We report that T?1-exposed human monocyte-derived macrophages (MDMs) assume the typical activated morphology also exhibited by lipopolysaccharide-activated MDMs, but show a comparatively higher ability of internalizing fluorescent beads and zymosan particles. T?1 exposure also promptly and dramatically stimulates MDM phagocytosis and killing of Aspergillus niger conidia starting as soon as 30 min after challenge. The effect is dose dependent and early coupled to low transcription of the proinflammatory cytokines tumor necrosis factor ? and interleukin-6 and unmodified Toll-like receptor expression. The T?1-stimulated phagocytosis is strictly dependent on the integrity of the microtubule network and protein kinase C activity and occurs by a variation in the classic zipper model, with recruitment of vinculin and actin at the phagosome exhibiting a punctate distribution. These findings indicate that, in human mature MDMs, T?1 implements pathogen internalization and killing via the stimulation of the complement receptor-mediated phagocytosis. Our observations document that T?1 is an early and potent activator of innate immunity and reinforce the concept of its pleiotropy. PMID:23797159

  5. Active autophagy but not lipophagy in macrophages with defective lipolysis.

    PubMed

    Goeritzer, Madeleine; Vujic, Nemanja; Schlager, Stefanie; Chandak, Prakash G; Korbelius, Melanie; Gottschalk, Benjamin; Leopold, Christina; Obrowsky, Sascha; Rainer, Silvia; Doddapattar, Prakash; Aflaki, Elma; Wegscheider, Martin; Sachdev, Vinay; Graier, Wolfgang F; Kolb, Dagmar; Radovic, Branislav; Kratky, Dagmar

    2015-10-01

    During autophagy, autophagosomes fuse with lysosomes to degrade damaged organelles and misfolded proteins. Breakdown products are released into the cytosol and contribute to energy and metabolic building block supply, especially during starvation. Lipophagy has been defined as the autophagy-mediated degradation of lipid droplets (LDs) by lysosomal acid lipase. Adipose triglyceride lipase (ATGL) is the major enzyme catalyzing the initial step of lipolysis by hydrolyzing triglycerides (TGs) in cytosolic LDs. Consequently, most organs and cells, including macrophages, lacking ATGL accumulate TGs, resulting in reduced intracellular free fatty acid concentrations. Macrophages deficient in hormone-sensitive lipase (H0) lack TG accumulation albeit reduced in vitro TG hydrolase activity. We hypothesized that autophagy is activated in lipase-deficient macrophages to counteract their energy deficit. We therefore generated mice lacking both ATGL and HSL (A0H0). Macrophages from A0H0 mice showed 73% reduced neutral TG hydrolase activity, resulting in TG-rich LD accumulation. Increased expression of cathepsin B, accumulation of LC3-II, reduced expression of p62 and increased DQ-BSA dequenching suggest intact autophagy and functional lysosomes in A0H0 macrophages. Markedly decreased acid TG hydrolase activity and lipid flux independent of bafilomycin A1 treatment, however, argue against effective lysosomal degradation of LDs in A0H0 macrophages. We conclude that autophagy of proteins and cell organelles but not of LDs is active as a compensatory mechanism to circumvent and balance the reduced availability of energy substrates in A0H0 macrophages. PMID:26143381

  6. Active autophagy but not lipophagy in macrophages with defective lipolysis

    PubMed Central

    Schlager, Stefanie; Chandak, Prakash G.; Korbelius, Melanie; Gottschalk, Benjamin; Leopold, Christina; Obrowsky, Sascha; Rainer, Silvia; Doddapattar, Prakash; Aflaki, Elma; Wegscheider, Martin; Sachdev, Vinay; Graier, Wolfgang F.; Kolb, Dagmar; Radovic, Branislav; Kratky, Dagmar

    2015-01-01

    During autophagy, autophagosomes fuse with lysosomes to degrade damaged organelles and misfolded proteins. Breakdown products are released into the cytosol and contribute to energy and metabolic building block supply, especially during starvation. Lipophagy has been defined as the autophagy-mediated degradation of lipid droplets (LDs) by lysosomal acid lipase. Adipose triglyceride lipase (ATGL) is the major enzyme catalyzing the initial step of lipolysis by hydrolyzing triglycerides (TGs) in cytosolic LDs. Consequently, most organs and cells, including macrophages, lacking ATGL accumulate TGs, resulting in reduced intracellular free fatty acid concentrations. Macrophages deficient in hormone-sensitive lipase (H0) lack TG accumulation albeit reduced in vitro TG hydrolase activity. We hypothesized that autophagy is activated in lipase-deficient macrophages to counteract their energy deficit. We therefore generated mice lacking both ATGL and HSL (A0H0). Macrophages from A0H0 mice showed 73% reduced neutral TG hydrolase activity, resulting in TG-rich LD accumulation. Increased expression of cathepsin B, accumulation of LC3-II, reduced expression of p62 and increased DQ-BSA dequenching suggest intact autophagy and functional lysosomes in A0H0 macrophages. Markedly decreased acid TG hydrolase activity and lipid flux independent of bafilomycin A1 treatment, however, argue against effective lysosomal degradation of LDs in A0H0 macrophages. We conclude that autophagy of proteins and cell organelles but not of LDs is active as a compensatory mechanism to circumvent and balance the reduced availability of energy substrates in A0H0 macrophages. PMID:26143381

  7. In vitro and in vivo evaluation of anti-leishmanial and immunomodulatory activity of Neem leaf extract in Leishmania donovani infection.

    PubMed

    Dayakar, Alti; Chandrasekaran, Sambamurthy; Veronica, Jalaja; Sundar, Shyam; Maurya, Radheshyam

    2015-06-01

    The toxicity and emergence of resistance to available chemical drugs against visceral leishmaniasis is evoking to explore herbal treatment. One such attempt with the Neem is being reported here. The current study is primarily focused to evaluate the anti-leishmanial effects of Neem leaf extracts. Among which, ethyl acetate fraction (EAF) alone was found to exhibit leishmanicidal effect validated through cytotoxicity assay and estimated its IC?? to be 52.4?µg/ml on the promastigote stage. Propidium iodide (PI) staining of dead cells substantiated the aforementioned activity. Carboxy fluorescein-diaceate succinimidyl ester (CFSE) staining of promastigotes has affirmed its anti-proliferation activity. The characteristic features such as DNA fragmentation, reduced mitochondrial membrane potential, increased sub G0/G1 phase parasites and increased reactive oxygen species (ROS) production in EAF treated promastigotes indicate the apoptosis like death. In addition, the reduced parasite burden both in vitro (viz.?~45% in human monocytic leukemia cell line (THP-1) and ~50% in peripheral blood mononuclear cells) and in vivo (spleen and liver) provides the evidence for its anti-leishmanial activity on amastigote stage. The increase of ROS levels in THP-1 and nitric oxide (NO) production from J774.1 cell line (mouse macrophages) upon EAF treatment was evidenced for oxidative killing of intracellular amastigotes. Active immunomodulatory activity at m-RNA level (viz. upregulation of Th1 cytokines, and downregulation of Th2 cytokines) both in vitro and in vivo was also shown to be exhibited by EAF. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of EAF revealed the presence of 14 compounds. PMID:25747203

  8. Minocycline inhibits peritoneal macrophages but activates alveolar macrophages in acute pancreatitis.

    PubMed

    Bonjoch, Laia; Gea-Sorlí, Sabrina; Jordan, Joaquin; Closa, Daniel

    2015-12-01

    Minocycline is a tetracycline antibiotic that, in addition to its antimicrobial function, has been reported to possess a relevant anti-inflammatory activity. Its effects have been extensively evaluated in inflammatory-related neurological diseases. Here, we evaluate its effect on the systemic inflammatory response in a model of experimental acute pancreatitis. Minocycline treatment significantly reduced the inflammation in pancreas and mesenterium, had no effect on the adipose tissue inflammation, and increased the inflammatory response in the lung. These differences seem to be related with different effects exerted on peritoneal and alveolar macrophages. In vitro, minocycline reduced the expression of IL-1? and inhibit the activation of nuclear factor kappa B (NF-?B) on peritoneal macrophages, while it had no effect on alveolar macrophages. Our data indicates that although minocycline may be useful as a tool to control some inflammatory processes, differences on its effects depending on the population of macrophages involved in the process can be expected. In the particular case of acute pancreatitis, it could promote or potentiate inflammation in the lung so that its use does not appear to be recommended. PMID:26561345

  9. Activation of spleen cells by ArtinM may account for its immunomodulatory properties.

    PubMed

    Silva, Thiago Aparecido da; Souza, Maria Aparecida de; Cecílio, Nerry Tatiana; Roque-Barreira, Maria Cristina

    2014-09-01

    ArtinM is a D-mannose-binding lectin extracted from Artocarpus heterophyllus that promotes interleukin-12 production by macrophages and dendritic cells. This property is considered responsible for T helper 1 immunity induced in vivo after ArtinM administration. In this study, we investigated the effect of native (jArtinM) and recombinant (rArtinM) forms of lectin on murine spleen cells and isolated T lymphocytes. We found that ArtinM binds to the surface of spleen cells. This interaction, which was blocked by D-mannose, induced cell activation, as manifested by increased mitochondrial activity, interleukin-2 production, and cell proliferation. We verified that a 30-times higher concentration of rArtinM was required to trigger optimal activation of spleen cells compared with that needed with jArtinM, although these proteins have identical sugar recognition properties and use the same signaling molecules to trigger cell activation. Because the distinction between native and recombinant is restricted to their tertiary structure (tetrameric and monomeric, respectively), we postulated that the multi-valence of jArtinM accounts for its superiority in promoting clustering of cell surface glycoreceptors and activation. The jArtinM and rArtinM activation effect exerted on spleen cells was reproduced on purified CD4(+) T cells. Our results suggest that ArtinM interaction with T cells leads to responses that may act in concert with the interleukin-12 produced by antigen-presenting cells to modulate immunity toward the T helper 1 axis. Further studies are necessary to dissect ArtinM/T-cell interactions to more fully understand the immunomodulation induced by carbohydrate recognition. PMID:24842046

  10. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    SciTech Connect

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72h functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.

  11. Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats

    PubMed Central

    Nfambi, Joshua; Bbosa, Godfrey S.; Sembajwe, Lawrence Fred; Gakunga, James; Kasolo, Josephine N.

    2015-01-01

    Background Globally, Moringa oleifera is used by different communities to treat various ailments including modulation of the immune system though with limited scientific evidence. Aim To study the immunomodulatory activity of M. oleifera methanolic leaf extract in Wistar albino rats. Methods An experimental laboratory-based study was done following standard methods and procedures. Nine experimental groups (I, II, III, IV, V, VI, VII, VIII, IX) each comprising of six animals were used. Group I received normal saline. Groups II to IX received 200 mg/kg bwt cyclophosphamide at the beginning of the study. Group III received 50 mg/kg bwt of an immunostimulatory drug levamisole. Groups IV to IX were dosed daily for 14 days with extract at doses of 250, 500, and 1000 mg/kg bwt, respectively, using an intragastric tube. Complete blood count (CBC), delayed-type hypersensitivity reaction (DTH), neutrophil adhesion test, and hemagglutination antibody titer were determined using standard methods and procedures. Statistical analysis was performed using GraphPad prism 5.0a Software. Results There was an increment in WBC, lymphocyte, and neutrophil counts at a dose of 1000 mg/kg bwt similar to the levamisole-positive control group. The neutrophil adhesion was statistically significant (p ? 0.05) for treatment groups that received 1000 mg/kg bwt (29.94%) and 500 mg/kg bwt at 17.28%. The mean percentage increment in footpad thickness was highest (26.9%) after 8 h of injection of antigen in the footpad of rats dosed 500 mg/kg bwt and this later reduced to 25.6% after 24 h. There was a dose-dependent increment in the mean hemagglutination antibody titer to sheep red blood cells (SRBC) from 10.73±0.57 HA units/?L for the 250 mg/kg bwt to 26.22±1.70 HA units/?L for the 1000 mg/kg bwt. Conclusions Methanolic leaf extract of M. oleifera caused a significant immunostimulatory effect on both the cell-mediated and humoral immune systems in the Wistar albino rats. PMID:26103628

  12. Inability of tumour cells to elicit the respiratory burst in cytotoxic, activated macrophages.

    PubMed Central

    Bryant, S M; Hill, H R

    1982-01-01

    Activated macrophages from Corynebacterium parvum-treated mice are cytotoxic to non-antibody-coated tumour cells and have an augmented respiratory burst potential when compared to resident macrophages. We have investigated the possible involvement of the respiratory burst as an effector mechanism in this type of tumour killing. Scavengers of toxic metabolites of oxygen such as catalase, superoxide dismutase, 2,3-dihydroxybenzoate, ethanol, and cytochrome c did not inhibit macrophage cytotoxicity in this system. To investigate whether or not neoplastic cells stimulate the macrophage respiratory burst, we exposed activated macrophages to viable tumour cells and monitored macrophage superoxide anion production, chemiluminescence, and hexose monophosphate shunt activity. None of these indicators of the macrophage respiratory burst was stimulated by the tumour cells towards which the macrophages were cytotoxic. The data suggest that the macrophages burst is not utilized as an effector mechanism in the non-antibody-mediated macrophage tumour cytotoxicity reaction. PMID:6277777

  13. Glycosylation Influences the Lectin Activities of the Macrophage Mannose Receptor*

    E-print Network

    Glycosylation Influences the Lectin Activities of the Macrophage Mannose Receptor* Received, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom The mannose receptor (MR) is a heavily mannose internaliza- tion activity, but could internalize sulfated glycans. Accordingly, purified MR

  14. Immunomodulatory activity and control of Salmonella Enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic.

    PubMed

    Penha Filho, Rafael Antonio Casarin; Díaz, Silvia Juliana Acelas; Fernando, Filipe Santos; Chang, Yung-Fu; Andreatti Filho, Raphael Lucio; Berchieri Junior, Angelo

    2015-09-15

    Lactobacillus-based probiotics (LBP) are used as competitive exclusion to control pathogenic enterobacterial infections and improve the weight gain in broiler chickens. This study assessed the inhibition of Salmonella Enteritidis (SE) infection in one-week-old broiler chicks, using an experimental LBP containing four Lactobacillus strains isolated from chickens (L. acidophilus, L. fermentum, L. reuteri, L. salivarius). The immunomodulatory effects of this treatment were evaluated, through the analysis of cytokines and influx of macrophages, ??, CD4(+) and CD8(+) T cells in the gut. The intestinal colonization by SE was reduced by 1.8 CFU/g (log10) in chicks treated with LBP (p<0.05). The levels of pro-inflammatory cytokines (IL-1?, LITAF) were significantly reduced in treated chicks (p<0.05), whilst untreated chicks showed elevated inflammatory stimulus and an increased population of CD8(+) T cells in the intestinal mucosa after challenge (p<0.05). Additionally, the LBP stimulated TLR2 expression in caecal tonsils. The adjuvant property of the Lactobacillus cell wall (LCW) was evaluated, demonstrating good capability to stimulate T helper 2 (Th2) cell proliferation. Pretreatment of chicks with LBP decreased the intestinal colonization by SE, minimizing the tissue lesions and inflammation after challenge and showed a potential use as adjuvant with injectable killed vaccines. PMID:26099807

  15. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    SciTech Connect

    Kodali, Vamsi K.; Littke, Matt H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-07-09

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pre-treatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pre-treatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pre-treatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from a M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNF? production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia, and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies should therefore consider how exposure to these materials alters susceptibility to other environmental exposures.

  16. Role of macrophage targeting in the antitumor activity of trabectedin.

    PubMed

    Germano, Giovanni; Frapolli, Roberta; Belgiovine, Cristina; Anselmo, Achille; Pesce, Samantha; Liguori, Manuela; Erba, Eugenio; Uboldi, Sarah; Zucchetti, Massimo; Pasqualini, Fabio; Nebuloni, Manuela; van Rooijen, Nico; Mortarini, Roberta; Beltrame, Luca; Marchini, Sergio; Fuso Nerini, Ilaria; Sanfilippo, Roberta; Casali, Paolo G; Pilotti, Silvana; Galmarini, Carlos M; Anichini, Andrea; Mantovani, Alberto; D'Incalci, Maurizio; Allavena, Paola

    2013-02-11

    There is widespread interest in macrophages as a therapeutic target in cancer. Here, we demonstrate that trabectedin, a recently approved chemotherapeutic agent, induces rapid apoptosis exclusively in mononuclear phagocytes. In four mouse tumor models, trabectedin caused selective depletion of monocytes/macrophages in blood, spleens, and tumors, with an associated reduction of angiogenesis. By using trabectedin-resistant tumor cells and myeloid cell transfer or depletion experiments, we demonstrate that cytotoxicity on mononuclear phagocytes is a key component of its antitumor activity. Monocyte depletion, including tumor-associated macrophages, was observed in treated tumor patients. Trabectedin activates caspase-8-dependent apoptosis; selectivity for monocytes versus neutrophils and lymphocytes is due to differential expression of signaling and decoy TRAIL receptors. This unexpected property may be exploited in different therapeutic strategies. PMID:23410977

  17. Iron is essential for oligodendrocyte genesis following intraspinal macrophage activation.

    PubMed

    Schonberg, David L; McTigue, Dana M

    2009-07-01

    Progenitor proliferation and differentiation are necessary for oligodendrocyte replacement. Previously, we showed that intraspinal activation of microglia and macrophages with the TLR4 agonist lipopolysaccharide (LPS) induced robust oligodendrocyte genesis. In this study we investigated whether this process involves iron since LPS can alter macrophage regulation of iron and its storage protein ferritin, and oligodendrocytes require iron for proper development and myelination. Further, activated macrophages can sequester and release iron and ferritin. We first examined whether iron or ferritin was present following LPS microinjection. Using Perl's stain, we noted a slight increase in iron at 1d, and peak iron levels 3d post-injection coincident with maximal macrophage activation. Ferritin+ cells were prevalent by 3d and included macrophages and NG2 cells (putative oligodendrocyte progenitors). At 7d, ferritin was mainly expressed by new oligodendrocytes prevalent throughout the lesions. Because of the timing and distribution of iron and ferritin after LPS, we next used an iron chelator to test whether free iron was necessary for maximal LPS-induced oligodendrocyte genesis. Chelating iron by Deferasirox (Exjade) after LPS microinjection significantly reduced the number of proliferating NG2 cells and new oligodendrocytes. Of the remaining oligodendrocytes, there was a 2-fold decrease in those expressing ferritin, revealing that the number of oligodendrocytes with high iron stores was reduced. Collectively, these results establish that iron accumulates after intraspinal TLR4 activation and is required for maximal TLR4-induced oligodendrogenesis. Since TLR4 agonists are abundant in CNS injury/disease sites, these results suggest that iron may be essential for macrophage/oligodendrocyte communication and adult glial replacement. PMID:19374902

  18. Iron is Essential for Oligodendrocyte Genesis following Intraspinal Macrophage Activation

    PubMed Central

    Schonberg, David L.; McTigue, Dana M.

    2009-01-01

    Progenitor proliferation and differentiation are necessary for oligodendrocyte replacement. Previously, we showed that intraspinal activation of microglia and macrophages with the TLR4 agonist lipopolysaccharide (LPS) induced robust oligodendrocyte genesis. In this study we investigated whether this process involves iron since LPS can alter macrophage regulation of iron and its storage protein ferritin, and oligodendrocytes require iron for proper development and myelination. Further, activated macrophages can sequester and release iron and ferritin. We first examined whether iron or ferritin was present following LPS microinjection. Using Perl’s stain, we noted a slight increase in iron at 1d, and peak iron levels 3d post-injection coincident with maximal macrophage activation. Ferritin+ cells were prevalent by 3d and included macrophages and NG2 cells (putative oligodendrocyte progenitors). At 7d, ferritin was mainly expressed by new oligodendrocytes prevalent throughout the lesions. Because of the timing and distribution of iron and ferritin after LPS, we next used an iron chelator to test whether free iron was necessary for maximal LPS-induced oligodendrocyte genesis. Chelating iron by Deferasirox (Exjade®) after LPS microinjection significantly reduced the number of proliferating NG2 cells and new oligodendrocytes. Of the remaining oligodendrocytes, there was a 2-fold decrease in those expressing ferritin revealing that the number of oligodendrocytes with high iron stores was reduced. Collectively, these results establish that iron accumulates after intraspinal TLR4 activation and is required for maximal TLR4-induced oligodendrogenesis. Since TLR4 agonists are abundant in CNS injury/disease sites, these results suggest that iron may be essential for macrophage/oligodendrocyte communication and adult glial replacement. PMID:19374902

  19. Effect of preliminary load of macrophages with silicium dioxide on phagocytosis of BCG strain micobacteria by macrophages and antimicrobial activity.

    PubMed

    Arkhipov, S A; Shkurupy, V A; Bugrimova, Yu S

    2010-10-01

    We studied the effect of preliminary loading of peritoneal macrophages with silicium dioxide on in vitro viability, phagocytosis of BCG strain mycobacteria, and the capability to destroy the phagocytosed mycobacterium tuberculosis. It was shown that preliminary loading of macrophages with silicium dioxide did not reduce their viability and stimulated phagocytosis of BCG strain mycobacteria, but reduced their antibacterial activity. PMID:21234459

  20. Activation of mouse macrophages by muramyl dipeptide coupled with an anti-macrophage monoclonal antibody.

    PubMed

    Midoux, P; Martin, A; Collet, B; Monsigny, M; Roche, A C; Toujas, L

    1992-01-01

    A rat IgG2a monoclonal antibody (mAb3A33) directed against the mouse Mac-1 antigen was conjugated with muramyl dipeptide (MDP) by using an intermediate polymer; under such conditions 75 MDP molecules were bound to one antibody molecule. A poly(L-lysine) polymer substituted with muramyl dipeptide and 3-(2-pyridyldithio)propionyl residues were prepared, the remaining lysine epsilon-amino groups were acylated with D-gluconolactone, leading to a neutral polymer; then a few polymer conjugates were coupled to mAb3A33 via a disulfide bridge. The binding capacity of the monoclonal antibody was preserved after conjugation with MDP-polymer molecules. Mouse peritoneal macrophages, incubated for 24 h with MDP-mAb3A33 conjugate became cytostatic against P815 mastocytoma cells, whereas unconjugated mAb3A33 and MDP-bound to a nonspecific rat IgG2a were ineffective. An enhancement of the cytostatic activity induced by MDP-mAb3A33 conjugate was obtained in the presence of gamma-IFN. These results show that several tens of MDP molecules can be linked to a macrophage-specific monoclonal antibody by using a neutral intermediate polymer without impairing the binding antibody capacity and that this type of MDP conjugate can efficiently activate macrophages and therefore could be the basis of the development of new antitumor therapy. PMID:1515473

  1. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  2. Immunomodulatory dendritic cells require autologous serum to circumvent nonspecific immunosuppressive activity in vivo

    PubMed Central

    Haase, Claus; Ejrnaes, Mette; Juedes, Amy E.; Wolfe, Tom; Markholst, Helle; von Herrath, Matthias G.

    2005-01-01

    In immunotherapy, dendritic cells (DCs) can be used as powerful antigen-presenting cells to enhance or suppress antigen-specific immunity upon in vivo transfer in mice or humans. However, to generate sufficient numbers of DCs, most protocols include an ex vivo culture step, wherein the cells are exposed to heterologous serum and/or antigenic stimuli. In mouse models of virus infection and virus-induced autoimmunity, we tested how heterologous serum affects the immunomodulatory capacity of immature DCs generated in the presence of IL-10 by comparing fetal bovine serum (FBS)- or normal mouse serum (NMS)-supplemented DC cultures. We show that FBS-exposed DCs induce a systemic immune deviation characterized by reduction of virus-specific T cells, delayed viral clearance, and enhanced systemic production of interleukin 4 (IL-4), IL-5, and IL-10 to FBS-derived antigens, including bovine serum albumin (BSA). By contrast, DCs generated in NMS-supplemented cultures modulated immunity and autoimmunity in an antigen-specific fashion. These cells did not induce systemic IL-4, IL-5, or IL-10 production and inhibited generation of virus-specific T cells or autoimmunity only if pulsed with a viral antigen. These data underscore the importance of using autologous serum-derived immature DCs in preclinical animal studies to accurately assess their immunomodulatory potential in future human therapeutic settings, where application of FBS is not feasible. PMID:16118326

  3. Dynamics of lung macrophage activation in response to helminth infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most of our understanding of the development and phenotype of alternatively activated macrophages (AAM) has been obtained from studies investigating the response of bone marrow- and peritoneal-derived cells to IL-4 or IL-13 stimulation. Comparatively little is known about the development of the AAM...

  4. Diet Modifies the Neuroimmune System by Influencing Macrophage Activation

    ERIC Educational Resources Information Center

    Sherry, Christina Lynn

    2009-01-01

    It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…

  5. DIFFERENTIAL REGULATION OF TYPE I INTERFERON ACTIVATION IN MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulmonary airways are relatively vulnerable to infection because of continuous exposure to antigen during respiration. The innate immune response must be activated promptly, yet incisively, after pathogen recognition. Alveolar macrophages (AM) play a role in initiating the antiviral response in the ...

  6. Fine-tuning nucleophosmin in macrophage differentiation and activation

    PubMed Central

    Guery, Leslie; Benikhlef, Naïma; Gautier, Thomas; Paul, Catherine; Jego, Gaetan; Dufour, Erick; Jacquel, Arnaud; Cally, Radj; Manoury, Bénédicte; Vanden Berghe, Tom; Vandenabeele, Peter; Droin, Nathalie

    2011-01-01

    M-CSF–driven differentiation of peripheral blood monocytes is one of the sources of tissue macrophages. In humans and mice, the differentiation process involves the activation of caspases that cleave a limited number of proteins. One of these proteins is nucleophosmin (NPM1), a multifunctional and ubiquitous protein. Here, we show that caspases activated in monocytes exposed to M-CSF cleave NPM1 at D213 to generate a 30-kDa N-terminal fragment. The protein is further cleaved into a 20-kDa fragment, which involves cathepsin B. NPM1 fragments contribute to the limited motility, migration, and phagocytosis capabilities of resting macrophages. Their activation with lipopolysaccharides inhibits proteolytic processes and restores expression of the full-length protein that negatively regulates the transcription of genes encoding inflammatory cytokines (eg, NPM1 is recruited with NF-?B on the MCP1 gene promoter to decrease its transcription). In mice with heterozygous npm gene deletion, cytokine production in response to lipopolysaccharides, including CXCL1 (KC), MCP1, and MIP2, is dramatically enhanced. These results indicate a dual function of NPM1 in M-CSF–differentiated macrophages. Proteolysis of the protein participates in the establishment of a mature macrophage phenotype. In response to inflammatory stimuli, the full-length protein negatively regulates inflammatory cytokine production. PMID:21876121

  7. TLR signaling augments macrophage bactericidal activity through mitochondrial ROS

    PubMed Central

    West, A. Phillip; Brodsky, Igor E.; Rahner, Christoph; Woo, Dong Kyun; Erdjument-Bromage, Hediye; Tempst, Paul; Walsh, Matthew C.; Choi, Yongwon; Shadel, Gerald S.; Ghosh, Sankar

    2012-01-01

    Reactive oxygen species (ROS) are essential components of the innate immune response against intracellular bacteria, and it is thought that professional phagocytes generate ROS primarily via the phagosomal NADPH oxidase (Phox) machinery1. However, recent studies have suggested that mitochondrial ROS (mROS) also contribute to macrophage bactericidal activity, although the mechanisms linking innate immune signaling to mitochondria for mROS generation remain unclear2-4. Here we demonstrate that engagement of a subset of Toll-like receptors (TLR1, TLR2 and TLR4) results in the recruitment of mitochondria to macrophage phagosomes and augments mROS production. This response involves translocation of the TLR signaling adapter tumor necrosis factor receptor-associated factor 6 (TRAF6) to mitochondria where it engages evolutionarily conserved signaling intermediate in Toll pathways (ECSIT), a protein implicated in mitochondrial respiratory chain assembly5. Interaction with TRAF6 leads to ECSIT ubiquitination and enrichment at the mitochondrial periphery, resulting in increased mitochondrial and cellular ROS generation. ECSIT and TRAF6 depleted macrophages exhibit decreased levels of TLR-induced ROS and are significantly impaired in their ability to kill intracellular bacteria. Additionally, reducing macrophage mROS by expressing catalase in mitochondria results in defective bacterial killing, confirming the role of mROS in bactericidal activity. These results therefore reveal a novel pathway linking innate immune signaling to mitochondria, implicate mROS as important components of antibacterial responses, and further establish mitochondria as hubs for innate immune signaling. PMID:21525932

  8. Characteristics of Suppressor Macrophages Induced by Mycobacterial and Protozoal Infections in relation to Alternatively Activated M2 Macrophages

    PubMed Central

    Tomioka, Haruaki; Tatano, Yutaka; Maw, Win Win; Sano, Chiaki; Kanehiro, Yuichi; Shimizu, Toshiaki

    2012-01-01

    In the advanced stages of mycobacterial infections, host immune systems tend to change from a Th1-type to Th2-type immune response, resulting in the abrogation of Th1 cell- and macrophage-mediated antimicrobial host protective immunity. Notably, this type of immune conversion is occasionally associated with the generation of certain types of suppressor macrophage populations. During the course of Mycobacterium tuberculosis (MTB) and Mycobacterium avium-intracellulare complex (MAC) infections, the generation of macrophages which possess strong suppressor activity against host T- and B-cell functions is frequently encountered. This paper describes the immunological properties of M1- and M2-type macrophages generated in tumor-bearing animals and those generated in hosts with certain microbial infections. In addition, this paper highlights the immunological and molecular biological characteristics of suppressor macrophages generated in hosts with mycobacterial infections, especially MAC infection. PMID:22666284

  9. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology.

    PubMed

    Pello, Oscar M; De Pizzol, Maria; Mirolo, Massimiliano; Soucek, Laura; Zammataro, Luca; Amabile, Angelo; Doni, Andrea; Nebuloni, Manuela; Swigart, Lamorna B; Evan, Gerard I; Mantovani, Alberto; Locati, Massimo

    2012-01-12

    In response to microenvironmental signals, macrophages undergo different activation, including the "classic" proinflammatory phenotype (also called M1), the "alternative" activation induced by the IL-4/IL-13 trigger, and the related but distinct heterogeneous M2 polarization associated with the anti-inflammatory profile. The latter is induced by several stimuli, including IL-10 and TGF-?. Macrophage-polarized activation has profound effects on immune and inflammatory responses and in tumor biology, but information on the underlying molecular pathways is scarce. In the present study, we report that alternative polarization of macrophages requires the transcription factor c-MYC. In macrophages, IL-4 and different stimuli sustaining M2-like polarization induce c-MYC expression and its translocation to the nucleus. c-MYC controls the induction of a subset (45%) of genes associated with alternative activation. ChIP assays indicate that c-MYC directly regulates some genes associated with alternative activation, including SCARB1, ALOX15, and MRC1, whereas others, including CD209, are indirectly regulated by c-MYC. c-MYC up-regulates the IL-4 signaling mediators signal transducer and activator of transcription-6 and peroxisome proliferator-activated receptor?, is also expressed in tumor-associated macrophages, and its inhibition blocks the expression of protumoral genes including VEGF, MMP9, HIF-1?, and TGF-?. We conclude that c-MYC is a key player in alternative macrophage activation, and is therefore a potential therapeutic target in pathologies related to these cells, including tumors. PMID:22067385

  10. Immunostimulatory Effects of Cordyceps militaris on Macrophages through the Enhanced Production of Cytokines via the Activation of NF-?B

    PubMed Central

    Shin, Seulmee; Kwon, Jeonghak; Lee, Sungwon; Kong, Hyunseok; Lee, Seungjeong; Lee, Chong-Kil; Cho, Kyunghae; Ha, Nam-Joo

    2010-01-01

    Background Cordyceps militaris has been used in traditional medicine to treat numerous diseases and has been reported to possess both antitumor and immunomodulatory activities in vitro and in vivo. However, the pharmacological and biochemical mechanisms of Cordyceps militaris extract (CME) on macrophages have not been clearly elucidated. In the present study, we examined how CME induces the production of proinflammatory cytokines, transcription factor, and the expression of co-stimulatory molecules. Methods We confirmed the mRNA and protein levels of proinflammatory cytokines through RT-PCR and western blot analysis, followed by a FACS analysis for surface molecules. Results CME dose dependently increased the production of NO and proinflammatory cytokines such as IL-1?, IL-6, TNF-?, and PGE2, and it induced the protein levels of iNOS, COX-2, and proinflammatory cytokines in a concentration-dependent manner, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as ICAM-1, B7-1, and B7-2 was also enhanced by CME. Furthermore, the activation of the nuclear transcription factor, NF-?B in macrophages was stimulated by CME. Conclusion Based on these observations, CME increased proinflammatory cytokines through the activation of NF-?B, further suggesting that CME may prove useful as an immune-enhancing agent in the treatment of immunological disease. PMID:20532125

  11. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms.

    PubMed

    Sun, Hongxiang; Zhang, Juan; Chen, Fengyang; Chen, Xiangfeng; Zhou, Zhihua; Wang, Hui

    2015-05-01

    The polysaccharide from the roots of Actinidia eriantha (AEPS), a potent antitumor agent and immunological adjuvant, was investigated for the immunomodulatory effects on RAW264.7 macrophages and its molecular mechanisms. AEPS could significantly enhance the pinocytic and phagocytic activity, induce the production of NO, TNF-?, IL-10, IL-1? and IL-6, and promote the expression of accessory and costimulatory molecules in RAW264.7 cells. PCR array assay revealed that AEPS up-regulated 28 genes including TLRs (TLR2, TLR8, TLR9), proinflammatory factors (IL-1?, G-CSF, IL-1?, GM-CSF, IL-6, COX-2, TNF-?, IFN-?, CXCL10, CCL2, TNF-?, IL-10), and the genes involved in NF-?B signaling pathway, and down-regulated 6 genes such as TLR3, TLR4, PGLYRP1, EIF2?K2, MAP3K1 and IRF1. AEPS was further showed to promote cytoplasmic I?B-? degradation and increase nuclear NF-?B p65 levels in RAW264.7 cells. These results suggested that AEPS activated RAW264.7 macrophages and elicited a M1 and M2 response through TLRs/NF-?B signaling pathway. PMID:25659714

  12. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-?1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. PMID:25953850

  13. Role of Chemokines in Shaping Macrophage Activity in AMD.

    PubMed

    Rutar, Matt; Provis, Jan M

    2016-01-01

    Age-related macular degeneration (AMD) is a multifactorial disorder that affects millions of individuals worldwide. While the advent of anti-VEGF therapy has allowed for effective treatment of neovascular 'wet' AMD, no treatments are available to mitigate the more prevalent 'dry' forms of the disease. A role for inflammatory processes in the progression of AMD has emerged over a period of many years, particularly the characterisation of leukocyte infiltrates in AMD-affected eyes, as well as in animal models. This review focuses on the burgeoning understanding of chemokines in the retina, and their potential role in shaping the recruitment and activation of macrophages in AMD. Understanding the mechanisms which promote macrophage activity in the degenerating retina may be key to controlling the potentially devastating consequences of inflammation in diseases such as AMD. PMID:26427387

  14. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and cytokines and identifies the relationships between macrophage activation states induced by these stimuli. By comparing macrophage activation programs to pathogens and cytokines under identical experimental conditions, we provide new insights into how macrophage responses to kinetoplastids correlate with the overall range of macrophage activation states. PMID:20361029

  15. Immunomodulatory effects of curcumin: in-vivo.

    PubMed

    Varalakshmi, Ch; Ali, A Mubarak; Pardhasaradhi, B V V; Srivastava, Raghvendra M; Singh, Sarvjeet; Khar, Ashok

    2008-05-01

    Curcumin specifically exhibits cytostatic and cytotoxic effects against tumors of multiple origin. Previously we have demonstrated apoptotic activity of curcumin against tumor cells with no effect on normal cells in-vitro. Many anti-cancer drugs exhibit deleterious effects on immune cells, which restrict their wide use in-vivo. In the present study, we have evaluated the effect of curcumin on the major functions of T cells, natural killer cells, macrophages and on total splenocytes in-vivo, which insight the role of curcumin on their broad effector functions. This study demonstrates that prolonged curcumin-injections (i.p.) do not impair the cytotoxic function of natural killer cells, the generation of reactive oxygen species and nitric oxide from macrophages and the levels of Th1 regulatory cytokines remained unaltered. Interestingly, curcumin-injections enhanced the mitogen and antigen induced proliferation potential of T cells. We have also evaluated immunomodulatory effects of curcumin in ascites-bearing animals. This study strengthens our belief that curcumin is a safe and useful immunomodulator for the immune system. PMID:18387511

  16. Immunomodulatory activity of butanol fraction of Gentiana olivieri Griseb. on Balb/C mice

    PubMed Central

    Singh, Satnam; CPS, Yadav; Noolvi, Malleshappa N

    2012-01-01

    Objective To explore the immunomodulatory properties of 80% ethanol extract and butanol fraction of Gentiana olivieri (G. olivieri) Griseb on Balb/C mice. Methods The study was performed with basic models of immunomodulation such as the humoral antibody response (hemoglutination antibody titres), cell mediated immune response (delayed type hypersensitivity and in vivo carbon clearance or phagocytosis). Ethanol (80%) extract of flowering aerial parts of G. olivieri and its butanol fraction were administered p.o. (orally) to the mice. Levamisole, 2.5 mg/kg was used as standard drug. Results There was a potentiation of immune response to sheep red blood cells by cellular and humoral mediated mechanisms comparable to levamisole (2.5 mg/kg) by both 80% ethanol extract and the butanol fraction at doses of 50-200 mg/kg in male Balb/C mice. Both significantly (P<0.01) potentiated the humoral immune response in cyclophosphamide (250 mg/kg) immunosupressed mice at 100 and 200 mg/kg of each extract and fraction as compared to control. The potentiation of delayed type hypersensitivity response was statistically significant (P<0.01) at 200 mg/kg of ethanol extract and 100, 200 mg/kg of butanol fraction as compared to control. The phagocytosis was significant at 200 mg/kg with butanol fraction of G. olivieri. Conclusions The results reveal the immunostimulant effects of plant G. olivieri in mice by acting through cellular and humoral immunity in experimental models of immunity in mice. Butanol fraction is the most effective at a dose level of 200 mg/kg. PMID:23569945

  17. Cytokine activation of murine macrophages for in vitro killing of Entamoeba histolytica trophozoites.

    PubMed

    Denis, M; Chadee, K

    1989-06-01

    Macrophage-mediated effector mechanisms against the protozoan parasite Entamoeba histolytica were studied. Unstimulated macrophages were inefficient at killing E. histolytica trophozoites in vitro and were killed by the trophozoites. Conversely, immature cells of the mononuclear phagocyte lineage (promonocytes) were shown to display a strong spontaneous amebicidal activity. The acquisition of macrophage amebicidal activity following cytokine treatment was investigated. Gamma interferon, tumor necrosis factor alpha, and macrophage colony-stimulating factor 1, or combinations thereof, were shown to endow murine bone marrow-derived macrophages with significant amebicidal activity. Low doses of gamma interferon and tumor necrosis factor alpha and of gamma interferon and colony-stimulating factor 1 were shown to act synergistically in this phenomenon. This enhancement of amebicidal activity was shown to operate on bone marrow-derived macrophages, elicited peritoneal macrophages, and, to a much lesser extent, spleen macrophages. Although acquisition of amebicidal activity was associated with a strong respiratory burst, the addition of oxygen-free radical scavengers showed that the killing activity was approximately 45% H2O2 dependent. In addition, amebicidal activity by macrophages was shown to be contact dependent and was inhibited by 61% with the protease inhibitor tosyl lysyl chloromethyl ketone. Our results indicate that immunologic production of gamma interferon, tumor necrosis factor alpha, and colony-stimulating factor 1 could be important in the activation of macrophages for host defense against amebiasis and that promonocytes are strong effector cells against virulent amebae. PMID:2542164

  18. Aloe-emodin exerts a potent anticancer and immunomodulatory activity on BRAF-mutated human melanoma cells.

    PubMed

    Tabolacci, Claudio; Cordella, Martina; Turcano, Lorenzo; Rossi, Stefania; Lentini, Alessandro; Mariotti, Sabrina; Nisini, Roberto; Sette, Giovanni; Eramo, Adriana; Piredda, Lucia; De Maria, Ruggero; Facchiano, Francesco; Beninati, Simone

    2015-09-01

    Aim of this study was to extend the knowledge on the antineoplastic effect of aloe-emodin (AE), a natural hydroxyanthraquinone compound, both in metastatic human melanoma cell lines and in primary stem-like cells (melanospheres). Treatment with AE caused reduction of cell proliferation and induction of SK-MEL-28 and A375 cells differentiation, characterized by a marked increase of transamidating activity of transglutaminase whose expression remained unmodified. In vitro antimetastatic property of AE was evaluated by adhesion and Boyden chamber invasion assays. The effect of AE on melanoma cytokines/chemokines production was determined by a multiplex assay: interestingly AE showed an immunomodulatory activity through GM-CSF and IFN-? production. We report also that AE significantly reduced the proliferation, stemness and invasive potential of melanospheres. Moreover, AE treatment significantly enhanced dabrafenib (a BRAF inhibitor) antiproliferative activity in BRAF mutant cell lines. Our results confirm that AE possesses remarkable antineoplastic properties against melanoma cells, indicating this anthraquinone as a promising agent for differentiation therapy of cancer, or as adjuvant in chemotherapy and targeted therapy. Further, its mechanisms of action support a potential efficacy of AE treatment to counteract resistance of BRAF-mutated melanoma cells to target therapy. PMID:26048310

  19. GM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury.

    PubMed

    Huen, Sarah C; Huynh, Larry; Marlier, Arnaud; Lee, Yashang; Moeckel, Gilbert W; Cantley, Lloyd G

    2015-06-01

    After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4-stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury. PMID:25388222

  20. Depletion of alveolar macrophages prolongs survival in response to acute pneumovirus infection

    PubMed Central

    Rigaux, Peter; Killoran, Kristin E.; Qiu, Zhijun; Rosenberg, Helene F.

    2011-01-01

    Alveolar macrophages are immunoregulatory effector cells that interact directly with respiratory virus pathogens in vivo. We examined the role of alveolar macrophages in acute infection with pneumonia virus of mice (PVM), a rodent pneumovirus that replicates the clinical sequelae of severe human respiratory syncytial virus disease. We show that PVM replicates in primary mouse macrophage culture, releasing infectious virions and proinflammatory cytokines. Alveolar macrophages isolated from PVM-infected mice express activation markers Clec43 and CD86, cytokines TNF?, IL-1, IL-6, and numerous CC and CXC chemokines. Alveolar macrophage depletion prior to PVM infection results in small but statistically significant increases in virus recovery but paradoxically prolonged survival. In parallel, macrophage depleted PVM-infected mice exhibit enhanced NK cell recruitment and increased production of IFN? by NK, CD4+ and CD8+ T cells. These results suggest a protective, immunomodulatory role for IFN?, as overproduction secondary to macrophage depletion may promote survival despite increased virus recovery. PMID:22129848

  1. Control of macrophage metabolism and activation by mTOR and Akt signaling

    PubMed Central

    Covarrubias, Anthony J.; Aksoylar, H. Ibrahim; Horng, Tiffany

    2015-01-01

    Macrophages are pleiotropic cells that assume a variety of functions depending on their tissue of residence and tissue state. They maintain homeostasis as well as coordinate responses to stresses such as infection and metabolic challenge. The ability of macrophages to acquire diverse, context-dependent activities requires their activation (or polarization) to distinct functional states. While macrophage activation is well understood at the level of signal transduction and transcriptional regulation, the metabolic underpinnings are poorly understood. Importantly, emerging studies indicate that metabolic shifts play a pivotal role in control of macrophage activation and acquisition of context-dependent effector activities. The signals that drive macrophage activation impinge on metabolic pathways, allowing for coordinate control of macrophage activation and metabolism. Here we discuss how mTOR and Akt, major metabolic regulators and targets of such activation signals, control macrophage metabolism and activation. Dysregulated macrophage activities contribute to many diseases, including infectious, inflammatory, and metabolic diseases and cancer, thus a better understanding of metabolic control of macrophage activation could pave the way to the development of new therapeutic strategies. PMID:26360589

  2. Anti-tumor and immunomodulatory activity of selenium (Se)-polysaccharide from Se-enriched Grifola frondosa.

    PubMed

    Mao, Guang-Hua; Ren, Yi; Li, Qian; Wu, Hui-Yu; Jin, Dun; Zhao, Ting; Xu, Cai-Quan; Zhang, Deng-Hong; Jia, Qing-Dong; Bai, Yan-Peng; Yang, Liu-Qing; Wu, Xiang-Yang

    2016-01-01

    A polysaccharide termed Se-GP11 was extracted and purified from Se-enriched Grifola frondosa in our previous study. This study investigated the characterization, anti-tumor and immunomodulatory activity of Se-GP11. The results showed that Se-GP11 was composed of mannose, glucose and galactose with a molar ratio of 1:4.91:2.41. The weight-average molecular weight (Mw) and weight-average mean square radius (Rw) of Se-GP11 in 0.1M sodium chloride solution were 3.3×10(4)Da and 32.8nm. Se-GP11 existed as a globular conformation with random coil structure. Se-GP11 had no anti-tumor activity against HepG-2 cells in vitro, and it significantly inhibited the growth of Heps tumor in vivo. Se-GP11 increased the relatively thymus and spleen weights as well as serum necrosis factor-alpha (TNF-?) and interleukin-2 (IL-2) levels. In addition, Se-GP11 promoted the phagocytosis and NO production of RAW264.7 as compared with that of the normal control group. The results revealed that the Se-GP11 may exhibit the anti-tumor through improving immunologic function of the tumor bearing mice. PMID:26522247

  3. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  4. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages.

    PubMed

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane--subdivided into P2Y and P2X subfamilies--whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  5. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  6. Purification, characterization and immunomodulatory activity of a polysaccharide from Celosia cristata.

    PubMed

    Sun, Zhenliang; Peng, You; Zhao, Wei-Wei; Xiao, Lin-Lin; Yang, Pei-Ming

    2015-11-20

    A polysaccharide CP1-1 was isolated and purified from Celosia cristata. Its average molecular weight was 2.3kDa and it was composed of glucose and galactose in a ratio of 1.00:2.03, and traces of mannose. Chemical characterization of CP1-1 was elucidated by methylation analysis. CP1-1 was a branched glucogalactan which was mainly composed of 1,6-linked Galp and 1,6-linked Glcp with a ratio of 5.6:3.8. The branches were at the O-3 of the main chain and might be composed of single terminal (1?)-linked glucopyranose and galactopyranose. CP1-1 also significantly promoted the proliferation and neutral red phagocytosis of RAW 264.7 macrophage cells in vitro. In addition, CP1-1 promoted cell proliferation by enhancing the production of nitric oxide (NO), tumor necrosis factor-? (TNF-?), interleukin (IL)-6 and IL-1?. These results suggested that the polysaccharide from C. cristata could be used as a potential immunostimulator. PMID:26344289

  7. PSP activates monocytes in resting human peripheral blood mononuclear cells: immunomodulatory implications for cancer treatment.

    PubMed

    Sekhon, Bhagwant Kaur; Sze, Daniel Man-Yuen; Chan, Wing Keung; Fan, Kei; Li, George Qian; Moore, Douglas Edwin; Roubin, Rebecca Heidi

    2013-06-15

    Polysaccharopeptide (PSP), from Coriolus versicolor, has been used as an adjuvant to chemotherapy, and has demonstrated anti-tumor and immunomodulating effects. However its mechanism remains unknown. To elucidate how PSP affects immune populations, we compared PSP treatments both with and without prior incubation in phytohaemagglutinin (PHA) - a process commonly used in immune population experimentation. We first standardised a capillary electrophoresis fingerprinting technique for PSP identification and characterisation. We then established the proliferative capability of PSP on various immune populations in peripheral blood mononuclear cells, using flow cytometry, without prior PHA treatment. It was found that PSP significantly increased the number of monocytes (CD14(+)/CD16(-)) compared to controls without PHA. This increase in monocytes was confirmed using another antibody panel of CD14 and MHCII. In contrast, proliferations of T-cells, NK, and B-cells were not significantly changed by PSP. Thus, stimulating monocyte/macrophage function with PSP could be an effective therapeutic intervention in targeting tumors. PMID:23497877

  8. Purification and identification of a polysaccharide from medicinal mushroom Amauroderma rude with immunomodulatory activity and inhibitory effect on tumor growth

    PubMed Central

    Pan, Honghui; Han, Yuanyuan; Huang, Jiguo; Yu, Xiongtao; Jiao, Chunwei; Yang, Xiaobing; Dhaliwal, Preet; Xie, Yizhen; Yang, Burton B.

    2015-01-01

    Medicinal mushrooms in recent years have been the subject of many experiments searching for anticancer properties. We previously screened thirteen mushrooms for their potential in inhibiting tumor growth, and found that the water extract of Amauroderma rude exerted the highest activity. Previous studies have shown that the polysaccharides contained in the water extract were responsible for the anticancer properties. This study was designed to explore the potential effects of the polysaccharides on immune regulation and tumor growth. Using the crude Amauroderma rude extract, in vitro experiments showed that the capacities of spleen lymphocytes, macrophages, and natural killer cells were all increased. In vivo experiments showed that the extract increased macrophage metabolism, lymphocyte proliferation, and antibody production. In addition, the partially purified product stimulated the secretion of cytokines in vitro, and in vivo. Overall, the extract decreased tumor growth rates. Lastly, the active compound was purified and identified as polysaccharide F212. Most importantly, the purified polysaccharide had the highest activity in increasing lymphocyte proliferation. In summary, this molecule may serve as a lead compound for drug development. PMID:26219260

  9. Recombinant Expression of a Novel Fungal Immunomodulatory Protein with Human Tumor Cell Antiproliferative Activity from Nectria haematococca

    PubMed Central

    Li, Shuying; Nie, Ying; Ding, Yang; Shi, Lijun; Tang, Xuanming

    2014-01-01

    To our best knowledge, all of the fungal immunomodulatory proteins (FIPs) have been successfully extracted and identified in Basidomycetes, with only the exception of FIP from ascomycete Nectria haematococca (FIP-nha) discovered through homology alignment most recently. In this work, a gene encoding FIP-nha was synthesized and recombinantly expressed in an Escherichia coli expression system. SDS-PAGE and MALDI-MS analyses of recombinant FIP-nha (rFIP-nha) indicated that the gene was successfully expressed. The yield of the bioactive FIP-nha protein was 42.7 mg/L. In vitro assays of biological activity indicated that the rFIP-nha caused hemagglutination of human and rabbit red blood cells, significantly stimulated mouse spleen lymphocyte proliferation, and enhanced expression of interleukin-2 (IL-2) released from mouse splenocytes, revealing a strong antitumor effect against HL60, HepG2 and MGC823. Through this work, we constructed a rapid and efficient method of FIP production, and suggested that FIP-nha is a valuable candidate for use in future medical care and pharmaceutical products. PMID:25272229

  10. STAT1 Signaling within Macrophages Is Required for Antifungal Activity against Cryptococcus neoformans.

    PubMed

    Leopold Wager, Chrissy M; Hole, Camaron R; Wozniak, Karen L; Olszewski, Michal A; Mueller, Mathias; Wormley, Floyd L

    2015-12-01

    Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals, C. neoformans can lead to life-threatening meningoencephalitis. Studies using a virulent strain of C. neoformans engineered to produce gamma interferon (IFN-?), denoted H99?, demonstrated that protection against pulmonary C. neoformans infection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformans activity remains unknown. The current studies demonstrate that infection with C. neoformans strain H99? in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformans activity via the production of NO. PMID:26351277

  11. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    SciTech Connect

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  12. Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation

    PubMed Central

    Xue, Jia; Schmidt, Susanne V.; Sander, Jil; Draffehn, Astrid; Krebs, Wolfgang; Quester, Inga; De Nardo, Dominic; Gohel, Trupti D.; Emde, Martina; Schmidleithner, Lisa; Ganesan, Hariharasudan; Nino-Castro, Andrea; Mallmann, Michael R.; Labzin, Larisa; Theis, Heidi; Kraut, Michael; Beyer, Marc; Latz, Eicke; Freeman, Tom C.; Ulas, Thomas; Schultze, Joachim L.

    2014-01-01

    Summary Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease. PMID:24530056

  13. Low-power laser irradiation enhance macrophage phagocytic capacity through Src activation

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with organic functions. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages, the regulation mechanism of phagocytosis was also discussed. Our results indicated that Low-power laser irradiation can enhance the phagocytosis of macrophage through activation of Src.

  14. Phenotypic Diversity and Emerging New Tools to Study Macrophage Activation in Bacterial Infectious Diseases

    PubMed Central

    Ka, Mignane B.; Daumas, Aurélie; Textoris, Julien; Mege, Jean-Louis

    2014-01-01

    Macrophage polarization is a concept that has been useful to describe the different features of macrophage activation related to specific functions. Macrophage polarization is responsible for a dichotomic approach (killing vs. repair) of the host response to bacteria; M1-type conditions are protective, whereas M2-type conditions are associated with bacterial persistence. The use of the polarization concept to classify the features of macrophage activation in infected patients using transcriptional and/or molecular data and to provide biomarkers for diagnosis and prognosis has most often been unsuccessful. The confrontation of polarization with different clinical situations in which monocytes/macrophages encounter bacteria obliged us to reappraise this concept. With the exception of M2-type infectious diseases, such as leprosy and Whipple’s disease, most acute (sepsis) or chronic (Q fever, tuberculosis) infectious diseases do not exhibit polarized monocytes/macrophages. This is also the case for commensals that shape the immune response and for probiotics that alter the immune response independent of macrophage polarization. We propose that the type of myeloid cells (monocytes vs. macrophages) and the kinetics of the immune response (early vs. late responses) are critical variables for understanding macrophage activation in human infectious diseases. Explorating the role of these new markers will provide important tools to better understand complex macrophage physiology. PMID:25346736

  15. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling.

    PubMed

    Fleming, Bryan D; Chandrasekaran, Prabha; Dillon, Laura A L; Dalby, Elizabeth; Suresh, Rahul; Sarkar, Arup; El-Sayed, Najib M; Mosser, David M

    2015-09-01

    Macrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and phenotypic alterations were correlated with changes in gene expression. We identified 3 transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands in the presence of 3 different "reprogramming" signals: high-density ICs, PGE2, or Ado. All 3 of these cell populations produced high levels of transcripts for IL-10 and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1?, IL-6, and IL-12. All 3 macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore, we consider each to have anti-inflammatory activity. This ability to regulate innate-immune responses occurred equally well in macrophages from STAT6-deficient mice. The lack of STAT6 did not affect the ability of macrophages to change cytokine production reciprocally or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These anti-inflammatory macrophages are transcriptionally and functionally related to each other and are quite distinct from macrophages treated with IL-4. PMID:26048978

  16. Review on medicinal uses, pharmacological, phytochemistry and immunomodulatory activity of plants.

    PubMed

    Akram, M; Hamid, A; Khalil, A; Ghaffar, A; Tayyaba, N; Saeed, A; Ali, M; Naveed, A

    2014-01-01

    Since ancient times, plants have been an exemplary source of medicine. Researchers have discovered some important compounds from plants. The present work constitutes a review of the medicinal plants whose immunomodulant activity has been proven. We performed PUBMED, EMBASE, Google scholar searches for research papers of medicinal plants having immunomodulant activity. Medicinal plants used by traditional physicians or reported as having immunomodulant activity include Acacia concocinna, Camellia sinensis, Lawsonia inermis Linn, Piper longum Linn, Gelidium amansii, Petroselinum crispum, Plantago major and Allium sativum. Immunomodulant activities of some of these medicinal plants have been investigated. The medicinal plants documented have immunomodulant activity and should be further investigated via clinical trial. PMID:25280022

  17. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; INSERM UR1011, F-59000 Lille; UDSL, F-59000 Lille; Institut Pasteur de Lille, F-59019 Lille ; Pattou, Francois; Department of Endocrine Surgery, University Hospital, Lille; U859 Biotherapies for Diabetes, INSERM, Lille ; Staels, Bart; INSERM UR1011, F-59000 Lille; UDSL, F-59000 Lille; Institut Pasteur de Lille, F-59019 Lille ; Chinetti-Gbaguidi, Giulia; INSERM UR1011, F-59000 Lille; UDSL, F-59000 Lille; Institut Pasteur de Lille, F-59019 Lille

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  18. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas M1-macrophage-related molecules such as integrin {alpha}X, IL-1{beta}, MIP2{alpha} and leptin were decreased at rosiglitazone-treated incisional sites. Moreover, transplantation of rosiglitazone-treated peritoneal macrophages into the incisional sites significantly attenuated hyperalgesia. We speculate that local administration of rosiglitazone significantly alleviated the development of postincisional pain, possibly through regulating macrophage polarity at the inflamed site. PPAR{gamma} signaling in macrophages may be a potential therapeutic target for the treatment of acute pain development.

  19. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages.

    PubMed

    Jung, Sung-Soo; Moon, Jong-Seok; Xu, Jin-Fu; Ifedigbo, Emeka; Ryter, Stefan W; Choi, Augustine M K; Nakahira, Kiichi

    2015-05-15

    Inflammasomes are cytosolic protein complexes that promote the cleavage of caspase-1, which leads to the maturation and secretion of proinflammatory cytokines, including interleukin-1? (IL-1?) and IL-18. Among the known inflammasomes, the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3)-dependent inflammasome is critically involved in the pathogenesis of various acute or chronic inflammatory diseases. Carbon monoxide (CO), a gaseous molecule physiologically produced in cells and tissues during heme catabolism, can act as an anti-inflammatory molecule and a potent negative regulator of Toll-like receptor signaling pathways. To date, the role of CO in inflammasome-mediated immune responses has not been fully investigated. Here, we demonstrated that CO inhibited caspase-1 activation and the secretion of IL-1? and IL-18 in response to lipopolysaccharide (LPS) and ATP treatment in bone marrow-derived macrophages. CO also inhibited IL-18 secretion in response to LPS and nigericin treatment, another NLRP3 inflammasome activation model. In contrast, CO did not suppress IL-18 secretion in response to LPS and poly(dA:dT), an absent in melanoma 2 (AIM2)-mediated inflammasome model. LPS and ATP stimulation induced the formation of complexes between NLRP3 and apoptosis-associated speck-like protein, or NLRP3 and caspase-1. CO treatment inhibited these molecular interactions that were induced by LPS and ATP. Furthermore, CO inhibited mitochondrial ROS generation and the decrease of mitochondrial membrane potential induced by LPS and ATP in macrophages. We also observed that the inhibitory effect of CO on the translocation of mitochondrial DNA into the cytosol was associated with suppression of cytokine secretion. Our results suggest that CO negatively regulates NLRP3 inflammasome activation by preventing mitochondrial dysfunction. PMID:25770182

  20. Oral administration of aqueous extract of Carthami Flos induces macrophage activation and preferentially potentiates type 1 helper T-cell response in vivo.

    PubMed

    Choi, Youn-Hwa; Do, Jeong-Su; Seo, Hyo-Jung; Hwang, Jin-Ki; Kim, Jun-Hee; Song, Eun-Jung; Nam, Sang-Yun

    2007-01-01

    In vivo immunomodulatory activity of aqueous extract of Carthami Flos (AECF) was investigated using a mouse model immunized with keyhole limpet hemocyanin. Serum level of Ag-specific IgG2a was significantly elevated by oral administration of AECF but not IgG1. However, no selective B-cell proliferation by AECF was observed in vivo. Ag-specific proliferation and IFN-gamma and IL-5 production of draining lymph node T cells also was higher in AECF-treated mice when compared with water-treated control mice. However, AECF failed to enhance nonspecific T-cell response under CD3 stimulation. These results led us to hypothesize that AECF potentiates Ag-specific T-cell response, possibly through activation of antigen presenting cells (APC) other than B cells. Functional assessment of splenic macrophages showed that AECF administration significantly enhances IL-12 production as well as APC activity for IFN-gamma production and STAT-4 activation by T cells. Collectively, these data strongly support that AECF preferentially potentiates immune response polarized toward TH1 and for which increased activation of macrophages is most likely to be responsible. The present data implicate a possible application of AECF to potentiate cellular immunity and, we hope, prevent intracellular infections. PMID:17849267

  1. Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties.

    PubMed

    Gupta, Kshitij; Kotian, Akhil; Subramanian, Hariharan; Daniell, Henry; Ali, Hydar

    2015-10-01

    Preclinical evaluation of Retrocyclins (RC-100, RC-101) and Protegrin-1 (PG-1) antimicrobial peptides (AMPs) is important because of their therapeutic potential against bacterial, fungal and viral infections. Human mast cells (HMCs) play important roles in host defense and wound healing but the abilities of retrocyclins and protegrin-1 to harness these functions have not been investigated. Here, we report that chemically synthesized RC-100 and PG-1 caused calcium mobilization and degranulation in HMCs but these responses were not blocked by an inhibitor of formyl peptide receptor-like 1 (FPRL1), a known receptor for AMPs. However, RC-100 and PG-1 induced degranulation in rat basophilic leukemia (RBL-2H3) cells stably expressing Mas related G protein coupled receptor X2 (MrgX2). Chemical synthesis of these AMPs is prohibitively expensive and post-synthesis modifications (cyclization, disulfide bonds, folding) are inadequate for optimal antimicrobial activity. Indeed, we found that synthetic RC-100, which caused mast cell degranulation via MrgX2, did not display any antimicrobial activity. Green-fluorescent protein (GFP)-tagged RC-101 (analog of RC-100) and GFP-tagged PG-1 purified from transgenic plant chloroplasts killed bacteria and induced mast cell degranulation. Furthermore, GFP-PG1 bound specifically to RBL-2H3 cells expressing MrgX2. These findings suggest that retrocyclins and protegrins activate HMCs independently of FPRL1 but via MrgX2. Harnessing this novel feature of AMPs to activate mast cell's host defense/wound healing properties in addition to their antimicrobial activities expands their clinical potential. Low cost production of AMPs in plants should facilitate their advancement to the clinic overcoming major hurdles in current production systems. PMID:26378047

  2. In vitro killing of Entamoeba histolytica trophozoites by interferon-gamma-activated mouse macrophages.

    PubMed

    Ghadirian, E; Bout, D T

    1988-03-01

    The effect of murine interferon gamma (IFN-gamma) on macrophage activation for amoebicidal activity was examined. Peritoneal macrophages were harvested from C57BL/6 mice and preincubated with IFN-gamma and/or lipopolysaccharide (LPS). In vitro amoebicidal activity of these macrophages was determined by trypan blue exclusion test against a virulent strain of E. histolytica (IP:0682:1). It was found that in vitro amoebicidal activity was evident in macrophage monolayers treated with both IFN-gamma and LPS. Macrophages treated with IFN-gamma alone did not develop cytotoxic activity unless they were exposed to LPS as a second triggering signal. The ability of IFN-gamma to prime macrophages to respond to trigger signals of LPS and develop cytotoxicity increased with time of incubation, the highest response being observed after 24 h. There was a dose-dependent relationship between the concentrations of both IFN-gamma and LPS used to activate macrophages and the number of dead trophozoites. These data suggest that macrophages are important in host defense against amoebiasis. PMID:2899056

  3. Thalidomide Inhibits Alternative Activation of Macrophages In Vivo and In Vitro: A Potential Mechanism of Anti-Asthmatic Effect of Thalidomide

    PubMed Central

    Park, Da-Eun; Woo, Yeon Duk; Kim, Hye Young; Kim, Hang-Rae; Cho, Sang-Heon; Min, Kyung-Up; Kang, Hye-Ryun; Chang, Yoon-Seok

    2015-01-01

    Background Thalidomide is known to have anti-inflammatory and immunomodulatory actions. However, the effect and the anti-asthmatic mechanism of thalidomide in the pathogenesis of asthmatic airways are not fully understood. Objective This study is designed to determine the effect and the potential mechanism of thalidomide in the pathogenesis of asthmatic airways using animal model of allergic asthma. Methods Six-week-old female BALB/C mice were sensitized with alum plus ovalbumin (OVA) and were exposed to OVA via intranasal route for 3 days for challenge. Thalidomide 200 mg/kg was given via gavage twice a day from a day before the challenge and airway hyperresponsivenss (AHR), airway inflammatory cells, and cytokines in bronchoalveolar lavage fluids (BALF) were evaluated. The expression levels of pro-inflammatory cytokines and other mediators were evaluated using ELISA, real time (RT)-qPCR, and flow cytometry. CRL-2456, alveolar macrophage cell line, was used to test the direct effect of thalidomide on the activation of macrophages in vitro. Results The mice with thalidomide treatment showed significantly reduced levels of allergen-induced BALF and lung inflammation, AHR, and the expression of a number of pro-inflammatory cytokines and mediators including Th2 related, IL-17 cytokines, and altered levels of allergen-specific IgG1/IgG2a. Of interesting note, thalidomide treatment significantly reduced expression levels of allergen- or Th2 cytokine-stimulated alternative activation of macrophages in vivo and in vitro. Conclusion These studies highlight a potential use of thalidomide in the treatment of allergic diseases including asthma. This study further identified a novel inhibitory effect of thalidomide on alternative activation of macrophages as a potential mechanism of anti-asthmatic effect of thalidomide. PMID:25905462

  4. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  5. Regulation of macrophage cholesterol efflux and liver X receptor ? activation by nicotine

    PubMed Central

    Zhang, Hongming; Li, Xiaoyan; Qian, Zongjie

    2015-01-01

    Objective: This study aims to investigate the characteristics of liver X receptor ? (LXR?) and its target gene expression, as well as cholesterol efflux in human macrophages treated by nicotine. Methods: Human monocyte-derived macrophages were collected. Before apoA-I-mediated human monocyte-derived macrophage cholesterol efflux, and mRNA expression of LXR?, and some of its target genes being detected, the macrophages were induced with or without nicotine. Results: Pre-incubation of Human monocyte-derived macrophages with nicotine, cholesterol efflux was suppressed to apolipoprotein AI. Nicotine also inhibited LXR? and some of its target genes mRNA expression involved cholesterol metabolism, and facilitated some inflammatory genes expression. Conclusion: The changed function of cholesterol efflux and some genes expression may be the pathogenetic cause, and LXR activity of macrophage may offer potential therapeutic benefit in the treatment of atherosclerosis. Thus nicotine can regulate foam cell formation by inhibiting LXR pathway.

  6. Inhibition of macrophage procoagulant activity with lipids reduces intra-abdominal abscess formation in mice.

    PubMed

    Sawyer, R G; Pruett, T L

    1995-01-01

    Macrophage procoagulant activity (PCA) has been proposed as a critical element in the formation of intra-abdominal abscesses. We tested the ability of local and systemic lipids (a known PCA inhibitor in vitro) to alter both peritoneal macrophage PCA and mixed Escherichia coli/Bacteroides fragilis intra-abdominal abscess formation in vivo. Lipids given intraperitoneally inhibited measured inducible peritoneal macrophage PCA for 8 h, and, in other animals, significantly decreased the number of abscesses formed and prevented abscesses in 29% of animals. Parallel experiments using subcutaneous intralipids did not show these effects. These results support the hypothesis that macrophage PCA produced locally is critical for intraperitoneal abscess formation. PMID:7649208

  7. 5-Lipoxygenase contributes to PPAR? activation in macrophages in response to apoptotic cells.

    PubMed

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor ? (PPAR?) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPAR?. Assuming that a molecule causing PPAR? activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPAR? in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPAR? in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPAR? in macrophages. PMID:24036216

  8. The homeobox transcription factor VentX controls human macrophage terminal differentiation and proinflammatory activation

    PubMed Central

    Wu, Xiaoming; Gao, Hong; Ke, Weixiong; Giese, Roger W.; Zhu, Zhenglun

    2011-01-01

    Macrophages are critical players in both innate and adaptive immunity. While the exogenous signaling events leading to the terminal differentiation of macrophages from monocytes have been studied extensively, the underlying intracellular transcriptional mechanisms remain poorly understood. Here we report that the homeobox transcription factor VentX plays a pivotal role in human macrophage terminal differentiation and proinflammatory function. Our study showed that VentX expression was upregulated upon human primary monocyte-to-macrophage differentiation induced by cytokines such as M-CSF, GM-CSF, and IL-3. Moreover, ablation of VentX expression in primary monocytes profoundly impaired their differentiation to macrophages, and ectopic expression of VentX in a myeloid progenitor cell line triggered its differentiation with prominent macrophage features. Further analysis revealed that VentX was pivotal for the proinflammatory response of terminally differentiated macrophages. Mechanistically, VentX was found to control expression of proteins key to macrophage differentiation and activation, including M-CSF receptor. Importantly, preliminary analysis of gene expression in leukocytes from patients with autoimmune diseases revealed a strong correlation between levels of VentX and those of proinflammatory cytokines. Our results provide mechanistic insight into the crucial roles of VentX in macrophage differentiation and proinflammatory activation and suggest that dysregulation of VentX may play a role in the pathogenesis of autoimmune diseases. PMID:21670496

  9. Antitumor and immunomodulatory activity of genkwanin on colorectal cancer in the APC(Min/+) mice.

    PubMed

    Wang, Xue; Song, Zi-Jing; He, Xin; Zhang, Run-Qi; Zhang, Chun-Feng; Li, Fei; Wang, Chong-Zhi; Yuan, Chun-Su

    2015-12-01

    Colorectal cancer is the third most common malignant tumor with high morbidity and mortality. To evaluate the antitumor effect of genkwanin on colorectal cancer enhanced by western high-fat diet, we investigated the activity of genkwanin on HT-29 and SW-480 human colorectal cancer lines in vitro and on the APC(Min/+) mice in vivo. In a cell culture system, six different inflammatory cytokines obviously stimulated two cancer cells growth in a concentration-dependent manner, while genkwanin significantly inhibited HT-29 and SW-480 human colorectal cancer cells proliferation and inflammatory cytokine IL-8 secretion. In the APC(Min/+) mice, the body weights, spleen and thymus indexes and immunity cytokine secretions were significantly improved after oral administration 12.5 and 25mg/kg/day of genkwanin. Besides, the tumor multiplicity changes and inflammatory cytokine levels were markedly reduced in two genkwanin-treated groups. The dysplastic adenomatous changes were also obviously ameliorated in gut histopathology. Taken together, our results indicated that genkwanin had a better antitumor activity partly via enhancing host immunity and decreasing the inflammatory cytokine levels. Genkwanin may be an effective chemotherapeutic agent for the treatment of colorectal cancer. PMID:26388189

  10. Effect of gamma irradiation on mistletoe (Viscum album) lectin-mediated toxicity and immunomodulatory activity.

    PubMed

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Jung, Pil-Mun; Byun, Myung-Woo; Lee, Ju-Woon; Park, Sang-Hyun; Kim, Jae-Hun

    2013-01-01

    This study evaluated the effect of gamma irradiation on the reduction of the toxicity of mistletoe lectin using both in vitro and in vivo models. To extract the lectin from mistletoe, an (NH4)2SO4 precipitation method was employed and the precipitant purified using a Sepharose 4B column to obtain the pure lectin fraction. Purified lectin was then gamma-irradiated at doses of 0, 5, 10, 15, and 20 kGy, or heated at 100 °C for 30 min. Toxic effects of non-irradiated, irradiated, and heat-treated lectins were tested using hemagglutination assays, cytotoxicity assays, hepatotoxicity, and a mouse survival test and immunological response was tested using cytokine production activity. Hemagglutination of lectin was remarkably decreased (P < 0.05) by irradiation at doses exceeding 10 kGy and with heat treatment. However, lectin irradiated with 5 kGy maintained its hemagglutination activity. The cytotoxicity of lectin was decreased by irradiation at doses over 5 kGy and with heat treatment. In experiments using mouse model, glutamate oxaloacetate transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels were decreased in the group treated with the 5 kGy irradiated and heat-treated lectins as compared to the intact lectin, and it was also shown that 5 kGy irradiated and heat-treated lectins did not cause damage in liver tissue or mortality. In the result of immunological response, tumor necrosis factor (TNF-?) and interleukin (IL-6) levels were significantly (P < 0.05) increased in the 5 kGy gamma-irradiated lectin treated group. These results indicate that 5 kGy irradiated lectin still maintained the immunological response with reduction of toxicity. Therefore, gamma-irradiation may be an effective method for reducing the toxicity of lectin maintaining the immune response. PMID:23847758

  11. Effect of gamma irradiation on mistletoe (Viscum album) lectin-mediated toxicity and immunomodulatory activity?

    PubMed Central

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Jung, Pil-Mun; Byun, Myung-Woo; Lee, Ju-Woon; Park, Sang-Hyun; Kim, Jae-Hun

    2013-01-01

    This study evaluated the effect of gamma irradiation on the reduction of the toxicity of mistletoe lectin using both in vitro and in vivo models. To extract the lectin from mistletoe, an (NH4)2SO4 precipitation method was employed and the precipitant purified using a Sepharose 4B column to obtain the pure lectin fraction. Purified lectin was then gamma-irradiated at doses of 0, 5, 10, 15, and 20 kGy, or heated at 100 °C for 30 min. Toxic effects of non-irradiated, irradiated, and heat-treated lectins were tested using hemagglutination assays, cytotoxicity assays, hepatotoxicity, and a mouse survival test and immunological response was tested using cytokine production activity. Hemagglutination of lectin was remarkably decreased (P < 0.05) by irradiation at doses exceeding 10 kGy and with heat treatment. However, lectin irradiated with 5 kGy maintained its hemagglutination activity. The cytotoxicity of lectin was decreased by irradiation at doses over 5 kGy and with heat treatment. In experiments using mouse model, glutamate oxaloacetate transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels were decreased in the group treated with the 5 kGy irradiated and heat-treated lectins as compared to the intact lectin, and it was also shown that 5 kGy irradiated and heat-treated lectins did not cause damage in liver tissue or mortality. In the result of immunological response, tumor necrosis factor (TNF-?) and interleukin (IL-6) levels were significantly (P < 0.05) increased in the 5 kGy gamma-irradiated lectin treated group. These results indicate that 5 kGy irradiated lectin still maintained the immunological response with reduction of toxicity. Therefore, gamma-irradiation may be an effective method for reducing the toxicity of lectin maintaining the immune response. PMID:23847758

  12. Macrophage activation and its role in repair and pathology after spinal cord injury.

    PubMed

    Gensel, John C; Zhang, Bei

    2015-09-01

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. PMID:25578260

  13. Puerarin Inhibits oxLDL-Induced Macrophage Activation and Foam Cell Formation in Human THP1 Macrophage

    PubMed Central

    Zhang, Heng; Zhai, Zhenhua; Zhou, Hongyu; Li, Yao; Li, Xiaojie; Lin, Yuhan; Li, Weihong; Shi, Yueping; Zhou, Ming-Sheng

    2015-01-01

    Puerarin, an isoflavone derived from Kudzu roots, has been widely used for treatment of cardiovascular and cerebral vascular diseases in China and other Asian countries. However, the underlying mechanisms are largely unknown. The present study investigated whether puerarin inhibited atherogenic lipid oxLDL-mediated macrophage activation and foam cell formation in human THP1 macrophage. Treatment with oxLDL significantly increased the mRNA expression of proinflammatory cytokines tumor necrosis factor ? (TNF?, 160%) and interleukin (IL) 1? (13 fold) accompanied by upregulation of toll-like receptor 4 (TLR4, 165%) and the ratio of phospho-I?B?/I?B? in THP1 macrophage. Puerarin dose-dependently prevented an increase in oxLDL-induced proinflammatory gene expression with downregulation of TLR4 and the ratio of phospho-I?B?/I?B?. Furthermore, puerarin prevented oxLDL-mediated lipid deposition and foam cell formation associated with downregulation of scavenger receptor CD36. Flow cytometry analysis showed that puerarin reduced the number of early apoptotic cells of macrophages induced by oxLDL. Our results show that puerarin has anti-inflammatory and antiatherogenic effects in vitro; the underlying mechanisms may involve the inhibition of TLR4/NF?B pathway and downregulation of CD36 expression. The results from the present study provide scientific evidence and may expand our armamentarium to use puerarin for prevention and treatment of cardiovascular and atherosclerotic diseases. PMID:26576421

  14. Vascular Smooth Muscle Cell-derived TGF-? Promotes Maturation of Activated, Neointima Lesion-Like Macrophages

    PubMed Central

    Ostriker, Allison; Horita, Henrick N.; Poczobutt, Joanna; Weiser-Evans, Mary C.M.; Nemenoff, Raphael A.

    2014-01-01

    Objective To define the contribution of vascular smooth muscle cell (SMC)-derived factors to macrophage phenotypic modulation in the setting of vascular injury. Approach and Results By flow cytometry, macrophages were the predominant myeloid cell type recruited to wire-injured femoral arteries, in mouse, compared to neutrophils or eosinophils. Recruited macrophages from injured vessels exhibited a distinct expression profile relative to circulating mononuclear cells (PBMCs) (Increased: Il-6, Il-10, Il-12b, CCR3, CCR7, TNF-?, iNOS, Arg I; decreased: Il-12a, MMP9). This phenotype was recapitulated in vitro by maturing rat bone marrow cells in the presence of macrophage-colony stimulating factor (M-CSF) and 20% conditioned media from cultured rat SMC (sM?), compared to maturation in M-CSF alone (M0). Recombinant TGF-?1 recapitulated the effect of SMC conditioned media. Macrophage maturation studies performed in the presence of a pan-TGF-? neutralizing antibody, a TGF-? receptor inhibitor, or conditioned media from TGF-?-depleted SMCs confirmed the SMC-derived factor responsible for macrophage activation was TGF-?. Finally, the effect of SMC-mediated macrophage activation on SMC biology was assessed. SMCs co-cultured with sM? exhibited increased rates of proliferation relative to SMCs cultured alone or with M0 macrophages. Conclusions SMC-derived TGF-? modulates the phenotype of maturing macrophages in vitro, recapitulating the phenotype found in vascular lesions in vivo. SMC-modulated macrophages induce SMC activation to a greater extent than control macrophages. PMID:24526697

  15. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection.

    PubMed

    Vural, Ali; Al-Khodor, Souhaila; Cheung, Gordon Y C; Shi, Chong-Shan; Srinivasan, Lalitha; McQuiston, Travis J; Hwang, Il-Young; Yeh, Anthony J; Blumer, Joe B; Briken, Volker; Williamson, Peter R; Otto, Michael; Fraser, Iain D C; Kehrl, John H

    2016-01-15

    Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the G? subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens. PMID:26667172

  16. Morphine Modulates Interleukin-4- or Breast Cancer Cell-induced Pro-metastatic Activation of Macrophages

    PubMed Central

    Khabbazi, Samira; Goumon, Yannick; Parat, Marie-Odile

    2015-01-01

    Interactions between cancer cells and stromal cells in the tumour microenvironment play a key role in the control of invasiveness, metastasis and angiogenesis. Macrophages display a range of activation states in specific pathological contexts and alternatively activated (M2) macrophages can promote tumour aggressiveness. Opioids are able to modulate tumour growth and metastasis. We tested whether morphine modulates the activation of macrophages induced by (i) interleukin-4 (IL-4), the prototypical M2 polarization-inducing cytokine, or (ii) coculture with breast cancer cells. We showed that IL-4 causes increased MMP-9 production and expression of the alternative activation markers arginase-1 and MRC-1. Morphine prevented IL-4-induced increase in MMP-9 in a naloxone- and methylnaltrexone-reversible fashion. Morphine also prevented IL-4-elicited alternative activation of RAW264.7 macrophages. Expression of MMP-9 and arginase-1 were increased when RAW264.7 were subjected to paracrine activation by 4T1 cells, and this effect was prevented by morphine via an opioid receptor-mediated mechanism. Morphine further decreased 4T1 breast cancer cell invasion elicited by co-culture with RAW264.7. Reduction of MMP-9 expression and alternative activation of macrophages by morphine was confirmed using mouse bone marrow-derived macrophages. Taken together, our results indicate that morphine may modulate tumour aggressiveness by regulating macrophage protease production and M2 polarization within the tumour microenvironment. PMID:26078009

  17. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    SciTech Connect

    Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-06-15

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of the proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce macrophage ROS production and expression of COX-2, chemokines, and RAGE. > Hepatocyte-mediated macrophage activation involves p44/42 MAP kinase signaling. > HMGB1 is released from acetaminophen-injured hepatocytes and contributes to macrophage activation.

  18. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages.

    PubMed

    Dai, Ming; Wang, Xu; Li, Jie-Liang; Zhou, Yu; Sang, Ming; Liu, Jin-Biao; Wu, Jian-Guo; Ho, Wen-Zhe

    2015-12-01

    Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type ? interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-?, macrophage inflammatory protein 1-?, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV.-Dai, M., Wang, X., Li, J.-L., Zhou, Y., Sang, M., Liu, J.-B., Wu, J.-G., Ho, W.-Z. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages. PMID:26296370

  19. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the ?-Catenin Pathway

    PubMed Central

    Wu, Ming-Hsun; Lee, Wei-Jiunn; Hua, Kuo-Tai; Kuo, Min-Liang; Lin, Ming-Tsan

    2015-01-01

    Background Despite evidence that activated macrophages act in an inflammatory microenvironment to promote gastric tumorigenesis via ?-catenin signaling, the effects of ?-catenin signaling on gastric cancer cell metastasis and the relationship of these cells with surrounding tumor associated macrophages have not been directly studied. Methods Immunohistochemical staining was employed to analyze 103 patients. An invasion assay was used to evaluate the relationship between macrophages and gastric cancer cells. ?-catenin gain-of-function and loss-of-function approaches were performed. To assess the ?-catenin regulation mechanism in gastric cancer cells, Western blotting and reverse-transcription polymerase chain reaction were used. Results Increased density of macrophages was associated with advanced stage and poor survival. Gastric cancer cell lines co-cultured with macrophages conditioned medium showed increased nuclear accumulation of ?-catenin and increased invading ability. AKT but not ERK regulated ?-catenin translocation. MMP7 and CD44, both ?-catenin downstream genes, were involved in macrophage-activated gastric cancer cell invasion. Conclusion(s) Collectively, the clinical data suggest that macrophage infiltration is correlated with increased grade and poor prognosis for gastric cancer patients who underwent radical resection. Macrophages may induce invasiveness by activating the ?-catenin pathway. PMID:26226629

  20. CD73 Activity is Dispensable for the Polarization of M2 Macrophages

    PubMed Central

    Eichin, Dominik; Laurila, Juha P.; Jalkanen, Sirpa; Salmi, Marko

    2015-01-01

    The ectoenzyme CD73 catalyzes the hydrolysis of AMP, and is one of the most important producers of extracellular adenosine. On regulatory T cells, CD73 is necessary for immunosuppressive functions, and on Th17 cells CD73-generated adenosine exerts anti-inflammatory effects. However, the expression and function of CD73 in pro-inflammatory M1 and in immunosuppressive M2 macrophages is largely unknown. Here we show that CD73 expression and enzyme activity were induced in in vitro polarized pro-inflammatory human M(LPS+TNF) monocytes/macrophages, while CD73 was absent from immunosuppressive M(IL-4+M-CSF)-polarized macrophages. Inhibition of CD73 activity with the inhibitor AMPCP did not affect the polarization of human monocytes. In mice, CD73 was present on resident peritoneal macrophages. In striking contrast, elicited peritoneal macrophages remained CD73 negative regardless of their polarization towards either a pro-inflammatory M(LPS) or anti-inflammatory M(IL-4c) direction. Finally, the ability of peritoneal macrophages to polarize to pro- and anti-inflammatory cells was perfectly normal in CD73-deficient mice in vivo. These data indicate that, in contrast to other major leukocyte subpopulations, CD73 activity on macrophages does not play a major role in their polarization and that in mice host CD73 on any cell type is not required in vivo for peritoneal macrophage polarization towards either a pro- or an anti-inflammatory direction. PMID:26258883

  1. Immunomodulatory effects of feruloylated oligosaccharides from rice bran.

    PubMed

    Fang, Hsin-Yu; Chen, Yu-Kuo; Chen, Hua-Han; Lin, Su-Yi; Fang, Yi-Ting

    2012-09-15

    Feruloylated oligosaccharides (FOs), the ferulic acid ester of oligosaccharides, can be released either by the enzymatic or mild acid hydrolysis of arabinoxylans present in cereal bran, and are usually considered as natural antioxidants. However, no related research is available to explain their immunomodulatory effects. This report elucidated their immunomodulatory effects through the variations of pro-inflammatory mediators in vitro. FOs were obtained from the mild acid hydrolysis of rice bran. We found that FOs (0.1-100 ?g/ml) induced tumour necrosis factor alpha (TNF-?), IL-1?, IL-6, nitric oxide (NO) and PGE(2) production in unstimulated macrophages, RAW264.7 cells. Furthermore, pre- and post-treated FOs (0.1-100 ?g/ml) dose-dependently suppressed TNF-?, IL-1?, IL-6 and NO production, and induced IL-10 production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells without exerting cytotoxicity. As a result anti-inflammatory and therapeutic activities were revealed. It is noteworthy that prostaglandin E(2) (PGE(2)) production was significantly suppressed at an FO level of 100 ?g/ml. The in vitro assessment of inflammatory mediators should be useful in further characterising the effects of FOs on immunomodulation. Moreover, it will create the economical value of rice bran, which has long been considered as conventional agricultural wastes. PMID:23107698

  2. Depolymerization of macrophage microfilaments prevents induction and inhibits activity of nitric oxide synthase.

    PubMed

    Fernandes, P D; Araujo, H M; Riveros-Moreno, V; Assreuy, J

    1996-12-01

    We have investigated the relationship between peritoneal murine macrophage cytoskeleton and nitric oxide (NO) synthase (NOS). Activation of the cells with lipopolysaccharide plus interferon-gamma (LI) induced iNOS, detected by nitrite or by labeled L-citrulline production and by a specific antibody against macrophage iNOS. Addition of cytochalasin B (a microfilament-depolymerizing agent) caused a dose-dependent inhibition in NO production by macrophages, whereas colchicine (a microtubule depolymerizing agent) inhibited it only by 20% and not dose-dependently. Addition of cytochalasin B together with LI abolished nitrite and L-citrulline accumulation as well as the amount of iNOS antigen in activated macrophage. Moreover, addition of cytochalasin B 6 or 12 h after stimulus, also decreased the nitrite and L-citrulline production by macrophages although iNOS antigen content by Western blot was the same in the presence or in the absence of cytochalasin B added 12 h after activation. Since cytochalasin B failed to inhibit iNOS activity directly, its inhibitory effects on NO production by macrophages is likely to be indirect, through microfilament network in central regions of cells, but not in filaments seen at pseudopodia or edging processes. Our findings demonstrate that disruption of microfilaments but not of microtubules prevents the iNOS induction process and inhibits its enzymatic activity in activated macrophages. PMID:8980906

  3. Further characterization of macrophage adsorption of suppressor cell activity from tumor-allosensitized spleen

    SciTech Connect

    Zografos-Miller, L.E.; Argyris, B.F.

    1983-06-01

    Suppressor cell activity from P815-allosensitized C57BL/6 spleen can be decreased by incubating the tumor-allosensitized spleen cells on monolayers of thioglycollate-stimulated BDF1 peritoneal macrophages for 2 or 4 hr. The adsorption response appears to be specific for macrophages, because adsorption of suppressor cell activity does not occur following incubation of P815-allosensitized spleen cells on confluent monolayers of mouse spleen cells or mouse embryonic fibroblasts. Pretreatment of macrophage monolayers with X irradiation (2,000 rads) or anti-Thy 1.2 serum (and complement) does not affect their ability to bind suppressor cell activity. Adsorption of suppressor cell activity from P815-allosensitized spleen can also be carried out by proteose peptone-stimulated or Corynebacterium parvum-stimulated macrophages. Blockage of macrophage Fc receptors decreases the ability of thioglycollate-stimulated macrophages to adsorb suppressor cell activity. Monolayers of P815 or P388 cells, two cell types positive for Fc receptors, are unable to adsorb suppressor cell activity from the tumor-allosensitized spleen. The significance of our findings is discussed in terms of the relationship between macrophages and suppressor cells in the immune response to normal or tumor allografts.

  4. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk[S

    PubMed Central

    Fullerton, Morgan D.; Ford, Rebecca J.; McGregor, Chelsea P.; LeBlond, Nicholas D.; Snider, Shayne A.; Stypa, Stephanie A.; Day, Emily A.; Lhoták, Šárka; Schertzer, Jonathan D.; Austin, Richard C.; Kemp, Bruce E.; Steinberg, Gregory R.

    2015-01-01

    Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk ?1-deficient (?1?/?) mice. Macrophages from Ampk ?1?/? mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk ?1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk ?1?/? macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk ?1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk ?1?/? macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis. PMID:25773887

  5. Pulmonary Chlamydia muridarum challenge activates lung interstitial macrophages which correlate with IFN-? production and infection control in mice.

    PubMed

    Gracey, Eric; Baglaenko, Yuriy; Prayitno, Nadia; Van Rooijen, Nico; Akram, Ali; Lin, Aifeng; Chiu, Basil; Inman, Robert D

    2015-12-01

    Protective immunity to the pathogen Chlamydia is dependent on a robust IFN-? response generated by innate and adaptive lymphocytes. Here we assess the role of the macrophage in orchestrating a protective response in vivo to the murine pathogen, Chlamydia muridarum. During acute pulmonary and peritoneal infection, resident macrophages in both sites are infected with C. muridarum and adopt an inflammatory phenotype. In the lung, this activation is restricted to interstitial macrophages, which harbor higher levels of C. muridarum 16sRNA than alveolar macrophages. We examined innate and adaptive lymphocyte activation in the peritoneal cavity with macrophage depletion and with adoptive transfer of infected macrophages. These experiments demonstrate macrophage activation correlates with a protective IFN-? response and effective control of C. muridarum. These studies suggest that a quantitative or qualitative alteration in macrophages may play a key role in the development of Chlamydia-associated diseases. PMID:26344246

  6. Th2 cytokine-Induced Alterations in Intestinal Smooth Muscle Function Depend on Alternatively Activated Macrophages

    PubMed Central

    Zhao, Aiping; Urban, Joseph F; Anthony, Robert M.; Sun, Rex; Stiltz, Jennifer; van Rooijen, Nico; Wynn, Thomas A.; Gause, William C.; Shea-Donohue, Terez

    2008-01-01

    Background & Aims Enteric nematode infection induces a strong Th2 cytokine response and is characterized by increased infiltration of various immune cells including macrophages. The role of these immune cells in host defense against enteric nematode infection, however, remains poorly defined. The present study investigated the role of macrophages and the arginase pathway in nematode-induced changes in intestinal smooth muscle function and worm expulsion. Methods Mice were infected with Nippostrongylus brasiliensis, and were injected intravenously with clodronate-containing liposome to deplete macrophages or given S-(2-boronoethyl)-I-cysteine in the drinking water to inhibit arginase activity. Segments of intestinal smooth muscle were suspended in organ baths to determine responses to acetylcholine, 5-HT, or nerve stimulation. The phenotype of macrophages was monitored by measuring mRNA expression of the specific molecular markers via real-time PCR or viewed by immunofluoresence staining. Results Nippostrongylus brasiliensis infection increased the infiltration of macrophages and induced the up-regulation of specific markers for alternatively activated macrophages by a mechanism dependent on IL-4 or IL-13 activation of Stat6. Elimination of alternatively activated macrophages by treatment of mice with clodronate-liposomes blocked smooth muscle hyper-contractility and increased smooth muscle thickness, and impaired worm expulsion. In addition, specific inhibition of arginase activity interfered with smooth muscle contractility, but only partially affected the protective immunity of the host. Conclusions These data show that the phenotype of macrophages is determined by the local immune environment and that alternatively activated macrophages play a major role in the effects of Th2 cytokines, IL-4 and IL-13, on intestinal smooth muscle function. PMID:18471439

  7. MicroRNA-223 is a crucial mediator of PPAR?-regulated alternative macrophage activation.

    PubMed

    Ying, Wei; Tseng, Alexander; Chang, Richard Cheng-An; Morin, Andrew; Brehm, Tyler; Triff, Karen; Nair, Vijayalekshmi; Zhuang, Guoqing; Song, Hui; Kanameni, Srikanth; Wang, Haiqing; Golding, Michael C; Bazer, Fuller W; Chapkin, Robert S; Safe, Stephen; Zhou, Beiyan

    2015-11-01

    Polarized activation of adipose tissue macrophages (ATMs) is crucial for maintaining adipose tissue function and mediating obesity-associated cardiovascular risk and metabolic abnormalities; however, the regulatory network of this key process is not well defined. Here, we identified a PPAR?/microRNA-223 (miR-223) regulatory axis that controls macrophage polarization by targeting distinct downstream genes to shift the cellular response to various stimuli. In BM-derived macrophages, PPAR? directly enhanced miR-223 expression upon exposure to Th2 stimuli. ChIP analysis, followed by enhancer reporter assays, revealed that this effect was mediated by PPAR? binding 3 PPAR? regulatory elements (PPREs) upstream of the pre-miR-223 coding region. Moreover, deletion of miR-223 impaired PPAR?-dependent macrophage alternative activation in cells cultured ex vivo and in mice fed a high-fat diet. We identified Rasa1 and Nfat5 as genuine miR-223 targets that are critical for PPAR?-dependent macrophage alternative activation, whereas the proinflammatory regulator Pknox1, which we reported previously, mediated miR-223-regulated macrophage classical activation. In summary, this study provides evidence to support the crucial role of a PPAR?/miR-223 regulatory axis in controlling macrophage polarization via distinct downstream target genes. PMID:26436647

  8. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs

    PubMed Central

    Mócsai, Attila; Abram, Clare L; Jakus, Zoltán; Hu, Yongmei; Lanier, Lewis L; Lowell, Clifford A

    2015-01-01

    At sites of inflammation, ligation of leukocyte integrins is critical for the activation of cellular effector functions required for host defense. However, the signaling pathways linking integrin ligation to cellular responses are poorly understood. Here we show that integrin signaling in neutrophils and macrophages requires adaptors containing immunoreceptor tyrosine-based activation motifs (ITAMs). Neutrophils and macrophages lacking two ITAM-containing adaptor proteins, DAP12 and FcR?, were defective in integrin-mediated responses. Activation of the tyrosine kinase Syk by integrins required that DAP12 and FcR? were first phosphorylated by Src family kinases. Retroviral transduction of neutrophils and macrophages with wild-type and mutant Syk or DAP12 demonstrated that the Src homology 2 domains of Syk and the ITAM of DAP12 were required for integrin signaling. Our data show that integrin signaling for the activation of cellular responses in neutrophils and macrophages proceeds by an immunoreceptor-like mechanism. PMID:17086186

  9. NBS1 is required for macrophage homeostasis and functional activity in mice.

    PubMed

    Pereira-Lopes, Selma; Tur, Juan; Calatayud-Subias, Juan A; Lloberas, Jorge; Stracker, Travis H; Celada, Antonio

    2015-11-26

    Nijmegen breakage syndrome 1 (NBS1) is a component of the MRE11 complex, which is a sensor of DNA double-strand breaks and plays a crucial role in the DNA damage response. Because activated macrophages produce large amounts of reactive oxygen species (ROS) that can cause DNA lesions, we examined the role of NBS1 in macrophage functional activity. Proliferative and proinflammatory (interferon gamma [IFN-?] and lipopolysaccharide [LPS]) stimuli led to increased NBS1 levels in macrophages. In mice expressing a hypomorphic allele of Nbs1, Nbs1(?B/?B), macrophage activation-induced ROS caused increased levels of DNA damage that were associated with defects in proliferation, delayed differentiation, and increased senescence. Furthermore, upon stimulation, Nbs1(?B/?B) macrophages exhibited increased expression of proinflammatory cytokines. In the in vivo 2,4-dinitrofluorobenezene model of inflammation, Nbs1(?B/?B) animals showed increased weight and ear thickness. By using the sterile inflammation by zymosan injection, we found that macrophage proliferation was drastically decreased in the peritoneal cavity of Nbs1(?B/?B) mice. Our findings show that NBS1 is crucial for macrophage function during normal aging. These results have implications for understanding the immune defects observed in patients with NBS and related disorders. PMID:26324700

  10. Protease activated receptor-1 regulates macrophage-mediated cellular senescence: a risk for idiopathic pulmonary fibrosis.

    PubMed

    Lin, Cong; Rezaee, Farhad; Waasdorp, Maaike; Shi, Kun; van der Poll, Tom; Borensztajn, Keren; Spek, C Arnold

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive disease in part resulting from premature or mature cellular aging. Protease-activated receptor-1 (PAR-1) recently emerged as a critical component in the context of fibrotic lung diseases. Therefore, we aimed to study the role of macrophages in PAR-1-mediated idiopathic pulmonary fibrosis. The number of macrophages were significantly reduced in lungs of PAR-1 antagonist (P1pal-12) treated animals upon bleomycin instillation. In line with these data, PAR-1 stimulation increased monocyte / macrophage recruitment in response to epithelium injury in in vitro trans-well assays. Moreover, macrophages induced fibroblasts migration, differentiation and secretion of collagen, which were inhibited in the presence of TGF-? receptor inhibitors. Interestingly, these profibrotic effects were partially inhibited by treatment with the PAR-1 inhibitor P1pal-12. Using shRNA mediated PAR-1 knock down in fibroblasts, we demonstrate that fibroblast PAR-1 contributes to TGF-? activation and production. Finally, we show that the macrophage-dependent induction of PAR-1 driven TGF-? activation was mediated by FXa. Our data identify novel mechanisms by which PAR-1 stimulation on different cell types can contribute to IPF and identify macrophages as key players in PAR-1 dependent development of this devastating disease. IPF may result from cellular senescence mediated by macrophages in the lung. PMID:26474459

  11. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    SciTech Connect

    Sunil, Vasanthi R.; Patel-Vayas, Kinal; Shen, Jianliang; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2?-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NF?B. This correlated with expression of monocyte chemotactic protein?1, inducible nitric oxide synthase and cyclooxygenase?2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ? Lung macrophages are highly sensitive to ozone induced oxidative stress. ? Ozone induces autophagy and apoptosis in lung macrophages. ? Proinflammatory and wound repair macrophages are activated early after ozone. ? Oxidative stress may contribute to regulating macrophage phenotype and function.

  12. Metabolic characterization of Leishmania major infection in activated and nonactivated macrophages.

    PubMed

    Lamour, Sabrina D; Choi, Beak-San; Keun, Hector C; Müller, Ingrid; Saric, Jasmina

    2012-08-01

    Infection with Leishmania spp. can lead to a range of symptoms in the affected individual, depending on underlying immune-metabolic processes. The macrophage activation state hereby plays a key role. Whereas the l-arginine pathway has been described in detail as the main biochemical process responsible for either nitric oxide mediated parasite killing (classical activation) or amplification of parasite replication (alternative activation), we were interested in a wider characterization of metabolic events in vitro. We therefore assessed cell growth medium, parasite extract, and intra- and extracellular metabolome of activated and nonactivated macrophages, in presence and absence of Leishmania major. A metabolic profiling approach was applied combining 1H NMR spectroscopy with multi- and univariate data treatment. Metabolic changes were observed along both conditional axes, that is, infection state and macrophage activation, whereby significantly higher levels of potential parasite end products were found in parasite exposed samples including succinate, acetate, and alanine, compared to uninfected macrophages. The different macrophage activation states were mainly discriminated by varying glucose consumption. The presented profiling approach allowed us to obtain a metabolic snapshot of the individual biological compartments in the assessed macrophage culture experiments and represents a valuable read out system for further multiple compartment in vitro studies. PMID:22724526

  13. Pioglitazone Suppresses CXCR7 Expression To Inhibit Human Macrophage Chemotaxis through Peroxisome Proliferator-Activated Receptor ?.

    PubMed

    Zhao, Duo; Zhu, Zhicheng; Li, Dan; Xu, Rihao; Wang, Tiance; Liu, Kexiang

    2015-11-17

    Cardiovascular disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Pioglitazone, the widely used thiazolidinedione, is shown to be efficient in the prevention of cardiovascular complications of T2DM. In this study, we report that pioglitazone inhibits CXCR7 expression and thus blocks chemotaxis in differentiated macrophage without perturbing cell viability or macrophage differentiation. In addition, pioglitazone-mediated CXCR7 suppression and chemotaxis inhibition occur via activating peroxisome proliferator-activated receptor ? (PPAR?) but not PPAR? in differentiated macrophage. More importantly, pioglitazone therapy-induced PPAR? activation suppresses CXCR7 expression in human carotid atherosclerotic lesions. Collectively, our data demonstrate that pioglitazone suppresses CXCR7 expression to inhibit human macrophage chemotaxis through PPAR?. PMID:26507929

  14. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization.

    PubMed

    Yang, M; Shao, J-H; Miao, Y-J; Cui, W; Qi, Y-F; Han, J-H; Lin, X; Du, J

    2014-08-01

    Macrophages are critical immune effector cells of the tumor microenvironment that promote seeding, extravasation and persistent growth of tumor cells in primary tumors and metastatic sites. Tumor progression and metastasis are affected by dynamic changes in the specific phenotypes of macrophage subpopulations; however, the mechanisms by which tumor cells modulate macrophage polarization remain incompletely understood. Caspase recruitment domain-containing protein 9 (CARD9) is a central adaptor protein of innate immune responses to extracellular pathogens. We report that increased CARD9 expression is primarily localized in infiltrated macrophages and significantly associated with advanced histopathologic stage and the presence of metastasis. Using CARD9-deficient (CARD9(-/-)) mice, we show that bone marrow-derived CARD9 promotes liver metastasis of colon carcinoma cells. Mechanistic studies reveal that CARD9 contributes to tumor metastasis by promoting metastasis-associated macrophage polarization through activation of the nuclear factor-kappa B signaling pathway. We further demonstrate that tumor cell-secreted vascular endothelial growth factor facilitates spleen tyrosine kinase activation in macrophages, which is necessary for formation of the CARD9-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 complex. Taken together, our results indicating that CARD9 is a regulator of metastasis-associated macrophages will lead to new insights into evolution of the microenvironments supporting tumor metastasis, thereby providing targets for anticancer therapies. PMID:24722209

  15. Hyper-inflammation and skin destruction mediated by rosiglitazone activation of macrophages in IL-6 deficiency.

    PubMed

    Das, Lopa M; Rosenjack, Julie; Au, Liemin; Galle, Pia S; Hansen, Morten B; Cathcart, Martha K; McCormick, Thomas S; Cooper, Kevin D; Silverstein, Roy L; Lu, Kurt Q

    2015-02-01

    Injury initiates recruitment of macrophages to support tissue repair; however, excessive macrophage activity may exacerbate tissue damage causing further destruction and subsequent delay in wound repair. Here we show that the peroxisome proliferation-activated receptor-? agonist, rosiglitazone (Rosi), a medication recently reintroduced as a drug to treat diabetes and with known anti-inflammatory properties, paradoxically generates pro-inflammatory macrophages. This is observed in both IL-6-deficient mice and control wild-type mice experimentally induced to produce high titers of auto-antibodies against IL-6, mimicking IL-6 deficiency in human diseases. IL-6 deficiency when combined with Rosi-mediated upregulation of suppressor of cytokine signaling 3 leads to an altered ratio of nuclear signal transducer and activator of transcription 3/NF-?B that allows hyper-induction of inducible nitric oxide synthase (iNOS). Macrophages activated in this manner cause de novo tissue destruction, recapitulating human chronic wounds, and can be reversed in vivo by recombinant IL-6, blocking macrophage infiltration, or neutralizing iNOS. This study provides insight into an unanticipated paradoxical role of Rosi in mediating hyper-inflammatory macrophage activation significant for diseases associated with IL-6 deficiency. PMID:25184961

  16. Hyper-Inflammation and Skin Destruction Mediated by Rosiglitazone Activation of Macrophages in IL-6 Deficiency

    PubMed Central

    Das, Lopa M; Rosenjack, Julie; Au, Liemin; Galle, Pia S; Hansen, Morten B; Cathcart, Martha K; McCormick, Thomas S; Cooper, Kevin D; Silverstein, Roy L; Lu, Kurt Q

    2015-01-01

    Injury initiates recruitment of macrophages to support tissue repair; however, excessive macrophage activity may exacerbate tissue damage causing further destruction and subsequent delay in wound repair. Here we show that the peroxisome proliferation–activated receptor-? agonist, rosiglitazone (Rosi), a medication recently reintroduced as a drug to treat diabetes and with known anti-inflammatory properties, paradoxically generates pro-inflammatory macrophages. This is observed in both IL-6-deficient mice and control wild-type mice experimentally induced to produce high titers of auto-antibodies against IL-6, mimicking IL-6 deficiency in human diseases. IL-6 deficiency when combined with Rosi-mediated upregulation of suppressor of cytokine signaling 3 leads to an altered ratio of nuclear signal transducer and activator of transcription 3/NF-?B that allows hyper-induction of inducible nitric oxide synthase (iNOS). Macrophages activated in this manner cause de novo tissue destruction, recapitulating human chronic wounds, and can be reversed in vivo by recombinant IL-6, blocking macrophage infiltration, or neutralizing iNOS. This study provides insight into an unanticipated paradoxical role of Rosi in mediating hyper-inflammatory macrophage activation significant for diseases associated with IL-6 deficiency. PMID:25184961

  17. A patatin-like protein protects Toxoplasma gondii from degradation in activated macrophages

    PubMed Central

    Mordue, Dana G.; Scott-Weathers, Casey F.; Tobin, Crystal M.; Knoll, Laura J.

    2012-01-01

    Summary The apicomplexan parasite Toxoplasma gondii is able to suppress nitric oxide production in activated macrophages. A screen of over 6000 T. gondii insertional mutants identified two clones, which were consistently unable to suppress nitric oxide production from activated macrophages. One strain, called 89B7, grew at the same rate as wild-type parasites in naïve macrophages, but unlike wild type, the mutant was degraded in activated macrophages. This degradation was marked by a reduction in the number of parasites within vacuoles over time, the loss of GRA4 and SAG1 protein staining by immunofluorescence assay, and the vesiculation and breakdown of the internal parasite ultrastructure by electron microscopy. The mutagenesis plasmid in the 89B7 clone disrupts the promoter of a 3.4 kb mRNA that encodes a predicted 68 kDa protein with a cleavable signal peptide and a patatin-like phospholipase domain. Genetic complementation with the genomic locus of this patatin-like protein restores the parasites ability to suppress nitric oxide and replicate in activated macrophages. A haemagglutinin-tagged version of this patatin-like protein shows punctate localization into atypical T. gondii structures within the parasite. This is the first study that defines a specific gene product that is needed for parasite survival in activated but not naïve macrophages. PMID:17166175

  18. Alternatively activated macrophages as therapeutic agents for kidney disease: in vivo stability is a key factor.

    PubMed

    Alagesan, Senthilkumar; Griffin, Matthew D

    2014-04-01

    Infusing ex vivo-generated alternatively activated macrophages (AAM) has shown promise in experimental systems as a therapeutic strategy for inflammatory kidney disease. In the mouse Adriamycin nephropathy model, however, Cao et al. report that AAM derived from bone marrow precursors fail to ameliorate disease severity. Absence of the anticipated protective effect resulted from a loss of macrophage anti-inflammatory (M2) phenotype following trafficking to injured kidney-an effect that was mediated by localized colony-stimulating factor-1-dependent macrophage proliferation. PMID:24682117

  19. In vivo activation of macrophage oxidative burst activity by cytokines and amphotericin B.

    PubMed Central

    Wolf, J E; Massof, S E

    1990-01-01

    Alterations in macrophage oxidative burst activity following in vivo administration of recombinant murine gamma interferon (IFN-gamma), recombinant murine tumor necrosis factor alpha, and the antifungal antibiotic amphotericin B were investigated. Mice were given intraperitoneal injections of these agents alone and in combination, and the oxidative responses of their resident peritoneal macrophages to challenge with Histoplasma capsulatum or zymosan particles were measured 1 to 5 days later. Various degrees of enhanced oxidative burst activity were achieved following treatment with each agent. However, a synergistic response was observed only when mice were treated with the combination of recombinant murine IFN-gamma and amphotericin B. These results not only confirm the dual role of amphotericin as an antifungal agent and as an immunomodulator but also suggest that IFN-gamma may serve as a useful adjunct in the treatment of intracellular fungal infections. PMID:2157668

  20. The adjuvant effect of Corynebacterium parvum: T-cell dependence of macrophage activation

    PubMed Central

    1977-01-01

    Splenic and peritoneal macrophages from mice treated with Corynebacterium parvum enhanced the antibody response in vitro of normal nonadherent spleen cells to SRBC, but not to DNP-POL. This enhancement was dependent on the dose and time of administration of C. parvum and could be abrogated by pretreatment with carrageenan. Macrophages from T-cell-depleted mice failed to enhance the response, but this ability was restored if the mice had been reconstituted with purified T lymphocytes. Macrophages that are activated by C. parvum are a resident nondividing population. It is postulated that activated macrophages, capable of enhancing antibody responses to T-cell- dependent antigens, arise through a cell-mediated reaction to C. parvum. PMID:299769

  1. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    PubMed Central

    R?szer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  2. Functional Activity of Monocytes and Macrophages in HTLV-1 Infected Subjects

    PubMed Central

    Amorim, Camila F.; Souza, Anselmo S.; Diniz, Angela G.; Carvalho, Natália B.; Santos, Silvane B.; Carvalho, Edgar M.

    2014-01-01

    The Human T lymphotropic virus type-1 (HTLV-1) infects predominantly T cells, inducing proliferation and lymphocyte activation. Additionally, HTLV-1 infected subjects are more susceptible to other infections caused by other intracellular agents. Monocytes/macrophages are important cells in the defense against intracellular pathogens. Our aims were to determine the frequency of monocytes subsets, expression of co-stimulatory molecules in these cells and to evaluate microbicidal ability and cytokine and chemokine production by macrophages from HTLV-1 infected subjects. Participants were 23 HTLV-1 carriers (HC), 22 HAM/TSP patients and 22 healthy subjects (HS) not infected with HTLV-1. The frequencies of monocyte subsets and expression of co-stimulatory molecules were determined by flow cytometry. Macrophages were infected with L. braziliensis or stimulated with LPS. Microbicidal activity of macrophages was determined by optic microscopy. Cytokines/chemokines from macrophage supernatants were measured by ELISA. HAM/TSP patients showed an increase frequency of intermediate monocytes, but expression of co-stimulatory molecules was similar between the groups. Macrophages from HTLV-1 infected individuals were infected with L. braziliensis at the same ratio than macrophages from HS, and all the groups had the same ability to kill Leishmania parasites. However, macrophages from HTLV-1 infected subjects produced more CXCL9 and CCL5, and less IL-10 than cells from HS. While there was no correlation between IFN-? and cytokine/chemokine production by macrophages, there was a correlation between proviral load and TNF and CXCL10. These data showed a dissociation between the inflammatory response and microbicidal ability of macrophages from HTLV-1 infected subjects. While macrophages ability to kill an intracellular pathogen did not differ among HTLV-1 infected subjects, these cells secreted high amount of chemokines even in unstimulated cultures. Moreover the increasing inflammatory activity of macrophages was similar in HAM/TSP patients and HC and it was related to HTLV-1 proviral load rather than the high IFN-? production observed in these subjects. PMID:25521499

  3. Vitamin D3 modulates the function of chicken macrophages.

    PubMed

    Shojadoost, B; Behboudi, S; Villanueva, A I; Brisbin, J T; Ashkar, A A; Sharif, S

    2015-06-01

    Vitamin D3 is known to modulate both innate and adaptive immune responses in mammals, but there is little information on its effects on avian immune system cells. Here, we studied the effects of vitamin D3 on chicken macrophages. Chicken macrophages expressed vitamin D receptor (VDR) and lipopolysaccharide (LPS) stimulation increased their VDR expression. Macrophages were treated with 1,25(OH)2D3 in the presence or absence of Toll-like receptor ligands, such as LPS and Pam3CSK4. Subsequently, macrophage activation was assessed by measuring nitric oxide (NO) and expression of CXCL8 and interleukin (IL)-1?. In addition, changes in major histocompatibility complex (MHC)-II and CD86 were examined. Treatment of cells with 1,25(OH)2D3 increased the ability of macrophages to respond to stimuli and produce NO, but vitamin D3 alone did not activate macrophages and resulted in the down-regulation of CD86, MHC-II, CXCL8 and IL-1?. These findings suggest that vitamin D3 has an immunomodulatory role in chicken macrophages. PMID:25814176

  4. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    PubMed

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1?. Although palmitate-induced endoplasmic reticulum stress and nuclear factor ?B pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1? and HIF-2? alone or in combination failed to reduce IL-6 and only modestly reduced IL-1? gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1? and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  5. E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation.

    PubMed

    Gomes, Rodrigo Saar; de Carvalho, Luana Cristina Faria; de Souza Vasconcellos, Raphael; Fietto, Juliana Lopes Rangel; Afonso, Luís Carlos Crocco

    2015-04-01

    Leishmania amazonensis, the causal agent of diffuse cutaneous leishmaniasis, is known for its ability to modulate the host immune response. Because a relationship between ectonucleotidase activity and the ability of Leishmania to generate injury in C57BL/6 mice has been demonstrated, in this study we evaluated the involvement of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of L. amazonensis in the process of infection of J774-macrophages. Our results show that high-activity parasites show increased survival rate in LPS/IFN-?-activated cells, by inhibiting the host-cell NO production. Conversely, inhibition of E-NTPDase activity reduces the parasite survival rates, an effect associated with increased macrophage NO production. E-NTPDase activity generates substrate for the production of extracellular adenosine, which binds to A2B receptors and reduces IL-12 and TNF-? produced by activated macrophages, thus inhibiting NO production. These results indicate that E-NTPDase activity is important for survival of L. amazonensis within macrophages, showing the role of the enzyme in modulating macrophage response and lower NO production, which ultimately favors infection. Our results point to a new mechanism of L. amazonensis infection that may pave the way for the development of new treatments for this neglected disease. PMID:25554487

  6. Immunomodulatory drugs: Oral and systemic adverse effects

    PubMed Central

    Mattila, Riikka; Gomez-Font, Rafael; Meurman, Jukka H.

    2014-01-01

    Objectives: The main objectives are to present the different adverses effects of the immunomodulatory drugs that can impair the quality of life of the immunosupressed patients and study the impact of immunomodualtion on oral diseases. Immunomodulatory drugs have changed the treatment protocols of many diseases where immune functions play a central role, such as rheumatic diseases. Their effect on oral health has not been systematically investigated, however. Study Design: We review current data on the new immunomodulatory drugs from the oral health perspective based on open literature search of the topic. Results: These target specific drugs appear to have less drug interactions than earlier immunomodulating medicines but have nevertheless potential side effects such as activating latent infections. There are some data showing that the new immunomodulatory drugs may also have a role in the treatment of certain oral diseases such as lichen planus or ameliorating symptoms in Sjögren´s syndrome, but the results have not been overly promising. Conclusions: In general, data are sparse of the effect of these new drugs vs. oral diseases and there are no properly powered randomized controlled trials published on this topic. Key words:Immunomodulatory drugs, oral diseases, adverse effects, therapeutic action. PMID:23986016

  7. Pulmonary Infection with an Interferon-?-Producing Cryptococcus neoformans Strain Results in Classical Macrophage Activation and Protection

    PubMed Central

    Hardison, Sarah E.; Ravi, Sailatha; Wozniak, Karen L.; Young, Mattie L.; Olszewski, Michal A.; Wormley, Floyd L.

    2010-01-01

    Alternative macrophage activation is associated with exacerbated disease in murine models of pulmonary cryptococcosis. The present study evaluated the efficacy of interferon-? transgene expression by Cryptococcus neoformans strain H99? in abrogating alternative macrophage activation in infected mice. Macrophage recruitment into the lungs of mice after infection with C. neoformans strain H99? was comparable with that observed in mice challenged with wild-type C. neoformans. However, pulmonary infection in mice with C. neoformans strain H99? was associated with reduced pulmonary fungal burden, increased pulmonary Th1-type and interleukin-17 cytokine production, and classical macrophage activation as evidenced by increased inducible nitric oxide synthase expression, histological evidence of enhanced macrophage fungicidal activity, and resolution of inflammation. In contrast, progressive pulmonary infection, enhanced Th2-type cytokine production, and the induction of alternatively activated macrophages expressing arginase-1, found in inflammatory zone 1, Ym1, and macrophage mannose receptor were observed in the lungs of mice infected with wild-type C. neoformans. These alternatively activated macrophages were also shown to harbor highly encapsulated, replicating cryptococci. Our results demonstrate that pulmonary infection with C. neoformans strain H99? results in the induction of classically activated macrophages and promotes fungal clearance. These studies indicate that phenotype, as opposed to quantity, of infiltrating macrophages correlates with protection against pulmonary C. neoformans infection. PMID:20056835

  8. Entamoeba histolytica extract and interferon-gamma activation of macrophage-mediated amoebicidal function.

    PubMed

    Ghadirian, E; Denis, M

    1992-06-01

    The effect of recombinant murine interferon-gamma (IFN-gamma) and E. histolytica extract (E.h.E.) on macrophage (M phi) activation for amoebicidal activity was examined. Peritoneal macrophages were harvested from C57BL/6 and A/J mice and preincubated with IFN-gamma and/or E.h.E. It was found that amoebicidal activity could be induced in both C57BL/6 and A/J-derived macrophages by pretreatment with IFN-gamma and E.h.E. Pretreatment of the M phi with E. histolytica extract or IFN-gamma alone did not result in the activation of significant cytotoxic activity against E. histolytica trophozoites. In the presence of IFN-gamma, E.h.E. had a dose-dependent effect on the activation of M phi amoebicidal function. PMID:1398736

  9. Cholera Toxin Induces a Shift from Inactive to Active Cyclooxygenase 2 in Alveolar Macrophages Activated by Mycobacterium bovis BCG

    PubMed Central

    Kogiso, Mari; Shinohara, Tsutomu; Dorey, C. Kathleen

    2013-01-01

    Intranasal vaccination stimulates formation of cyclooxygenases (COX) and release of prostaglandin E2 (PGE2) by lung cells, including alveolar macrophages. PGE2 plays complex pro- or anti-inflammatory roles in facilitating mucosal immune responses, but the relative contributions of COX-1 and COX-2 remain unclear. Previously, we found that Mycobacterium bovis BCG, a human tuberculosis vaccine, stimulated increased release of PGE2 by macrophages activated in vitro; in contrast, intranasal BCG activated no PGE2 release in the lungs, because COX-1 and COX-2 in alveolar macrophages were subcellularly dissociated from the nuclear envelope (NE) and catalytically inactive. This study tested the hypothesis that intranasal administration of BCG with cholera toxin (CT), a mucosal vaccine component, would shift the inactive, NE-dissociated COX-1/COX-2 to active, NE-associated forms. The results showed increased PGE2 release in the lungs and NE-associated COX-2 in the majority of COX-2+ macrophages. These COX-2+ macrophages were the primary source of PGE2 release in the lungs, since there was only slight enhancement of NE-associated COX-1 and there was no change in COX-1/COX-2 levels in alveolar epithelial cells following treatment with CT and/or BCG. To further understand the effect of CT, we investigated the timing of BCG versus CT administration for in vivo and in vitro macrophage activations. When CT followed BCG treatment, macrophages in vitro had elevated COX-2-mediated PGE2 release, but macrophages in vivo exhibited less activation of NE-associated COX-2. Our results indicate that inclusion of CT in the intranasal BCG vaccination enhances COX-2-mediated PGE2 release by alveolar macrophages and further suggest that the effect of CT in vivo is mediated by other lung cells. PMID:23147035

  10. Isolation and immunomodulatory activity of bursal peptide, a novel bursal peptide from the chicken bursa of Fabricius.

    PubMed

    Liu, Xiao-Dong; Qian, Yingjuan; Jung, Yong-Sam; Chen, Pu-Yan

    2015-12-30

    The bursa of Fabricius (BF), which is unique to birds, serves as the central humoral immune organ and plays a significant role in B lymphocyte differentiation. In this study, a new bursal peptide (BP-IV) was isolated from BF, which promoted colony-forming unit pre-B formation and regulated B cell differentiation. BP-IV also exerted immunomodulatory effects on antigen-specific immune responses via both humoral and cellular immunity in chicken and mice that had been immunized with inactivated avian influenza virus (AIV; H9N2 subtype), including enhancing AIV-specific antibody and cytokine production. The results of this study provided novel insights into the use of a potential candidate reagent for B cell development and future immuno-pharmacological use. PMID:26119163

  11. Nanotube sensors Probing Macrophage Activity with Carbon-Nanotube

    E-print Network

    Dekker, Cees

    known as phagocytosis.[5] We coat SWNT sensors with antibodies to stimulate macrophages to attach to, ingest, and attempt to digest the sensors. During phagocytosis a multitude of processes occur, including configuration,[6] we aim to follow the process of phagocytosis in real-time by simultaneously monitoring both

  12. The macrophage chemotactic activity of Edwardsiella tarda extracellular products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemoattractant capabilities of Edwardsiella tarda extracellular products (ECP) were investigated from two isolates, the virulent FL6-60 parent and less virulent RET-04 mutant. Chemotaxis and chemokinesis were assayed in vitro using blind well chambers with peritoneal macrophages obtained from ...

  13. In vitro immunomodulatory properties of a sesquiterpene lactone-bearing fraction from Artemisia khorassanica.

    PubMed

    Zamanai Taghizadeh Rabe, Shahrzad; Iranshahi, Mehrdad; Rastin, Maryam; Tabasi, Nafise; Mahmoudi, Mahmoud

    2015-01-01

    Artemisia species are important medicinal plants throughout the world. The present in vitro study, using a sesquiterpene lactone-bearing fraction prepared from Artemisia khorassanica (SLAK), sought to investigate immunomodulatory/anti-inflammatory properties of this plant and elucidate potential underlying mechanisms for the actions. Effects of the SLAK on mitogen-induced murine splenocyte proliferation and interleukin (IL)-4 and interferon (IFN)-? secretion were evaluated. To assess anti-inflammatory activities, levels of inducible of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in peritoneal macrophages was examined. The results showed that SLAK noticeably was capable of suppressing PHA/LPS-stimulated splenocyte proliferation and of up-regulating production of the T-helper (TH)-2 cell cytokine IL-4 while down-regulating formation of TH1 IFN?. In addition, while SLAK caused negligible proliferation inhibition, peritoneal macrophages displayed considerable decrease in NO and PGE2 production along with iNOS and COX-2 expression. The current experiment shows Artemisia khorasanica - a traditionally used herb - may have immunomodulatory and anti-inflammatory effects. It is anticipated that the ingredients may be employed as therapeutic candidates in the regulation of some immune responses implicated in various conditions and ailments. PMID:25020192

  14. Effect of age on proteasomal activity of T cells and macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell function is impaired with aging. Proteasome activity in T cells is important for T cell activation and its activity in macrophages is required for processing antigens in order to be presented via class I major histocompatibility complex to CD8+ T cells. Since studies have demonstrated that pr...

  15. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-?B

    PubMed Central

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-?, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-?B activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization. PMID:26664149

  16. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-?B.

    PubMed

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-?, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-?B activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization. PMID:26664149

  17. Transcriptomic Analysis of Human Polarized Macrophages: More than One Role of Alternative Activation?

    PubMed Central

    Derlindati, Eleonora; Dei Cas, Alessandra; Montanini, Barbara; Spigoni, Valentina; Curella, Valentina; Aldigeri, Raffaella; Ardigò, Diego; Zavaroni, Ivana; Bonadonna, Riccardo C.

    2015-01-01

    Background Macrophages are a heterogeneous cell population which in response to the cytokine milieu polarize in either classically activated macrophages (M1) or alternatively activated macrophages (M2). This plasticity makes macrophages essential in regulating inflammation, immune response and tissue remodeling and a novel therapeutic target in inflammatory diseases such as atherosclerosis. The aim of the study was to describe the transcriptomic profiles of differently polarized human macrophages to generate new hypotheses on the biological function of the different macrophage subtypes. Methods and Results Polarization of circulating monocytes/macrophages of blood donors was induced in vitro by IFN-? and LPS (M1), by IL-4 (M2a), and by IL-10 (M2c). Unstimulated cells (RM) served as time controls. Gene expression profile of M1, M2a, M2c and RM was assessed at 6, 12 and 24h after polarization with Whole Human Genome Agilent Microarray technique. When compared to RM, M1 significantly upregulated pathways involved in immunity and inflammation, whereas M2a did the opposite. Conversely, decreased and increased expression of mitochondrial metabolism, consistent with insulin resistant and insulin sensitive patterns, was seen in M1 and M2a, respectively. The time sequence in the expression of some pathways appeared to have some specific bearing on M1 function. Finally, canonical and non-canonical Wnt genes and gene groups, promoting inflammation and tissue remodeling, were upregulated in M2a compared to RM. Conclusion Our data in in vitro polarized human macrophages: 1. confirm and extend known inflammatory and anti-inflammatory gene expression patterns; 2. demonstrate changes in mitochondrial metabolism associated to insulin resistance and insulin sensitivity in M1 and M2a, respectively; 3. highlight the potential relevance of gene expression timing in M1 function; 4. unveil enhanced expression of Wnt pathways in M2a suggesting a potential dual (pro-inflammatory and anti-inflammatory) role of M2a in inflammatory diseases. PMID:25799240

  18. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    PubMed Central

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 ?g/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-?, IL-1? in cell supernatants although levels of TNF- ? and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-? were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1? and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-?B and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  19. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    SciTech Connect

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-?B pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1?), while minimally regulating the expression of interleulin-6 (IL-6), IL-1?, and tumor necrosis factor alpha (TNF?). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-?B activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation of Nrf2 independently of Keap1 and NF-?B, suggesting a unique therapeutic potential of dh404 for specific targeting a Nrf2-mediated resolution of inflammation.

  20. Classical Macrophage Activation Up-Regulates Several Matrix Metalloproteinases through Mitogen Activated Protein Kinases and Nuclear Factor-?B

    PubMed Central

    Susana, Angela; Johnson, Jason L.; Newby, Andrew C.

    2012-01-01

    Remodelling of the extracellular matrix (ECM) and cell surface by matrix metalloproteinases (MMPs) is an important function of monocytes and macrophages. Recent work has emphasised the diverse roles of classically and alternatively activated macrophages but the consequent regulation of MMPs and their inhibitors has not been studied comprehensively. Classical activation of macrophages derived in vitro from un-fractionated CD16+/? or negatively-selected CD16? macrophages up-regulated MMP-1, -3, -7, -10, -12, -14 and -25 and decreased TIMP-3 steady-state mRNA levels. Bacterial lipopolysaccharide, IL-1 and TNF? were more effective than interferon? except for the effects on MMP-25, and TIMP-3. By contrast, alternative activation decreased MMP-2, -8 and -19 but increased MMP -11, -12, -25 and TIMP-3 steady-state mRNA levels. Up-regulation of MMPs during classical activation depended on mitogen activated protein kinases, phosphoinositide-3-kinase and inhibitor of ?B kinase-2. Effects of interferon? depended on janus kinase-2. Where investigated, similar effects were seen on protein concentrations and collagenase activity. Moreover, activity of MMP-1 and -10 co-localised with markers of classical activation in human atherosclerotic plaques in vivo. In conclusion, classical macrophage activation selectively up-regulates several MMPs in vitro and in vivo and down-regulates TIMP-3, whereas alternative activation up-regulates a distinct group of MMPs and TIMP-3. The signalling pathways defined here suggest targets for selective modulation of MMP activity. PMID:22880008

  1. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  2. Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages

    PubMed Central

    González-Perilli, Lucía; Álvarez, María Noel; Prolo, Carolina; Radi, Rafael; Rubbo, Homero; Trostchansky, Andrés

    2013-01-01

    Nitration of arachidonic acid (AA) to nitroarachidonic acid (AANO2) leads to anti-inflammatory intracellular activities during macrophage activation. However, less is known about the capacity of AANO2 to regulate the production of reactive oxygen species (ROS) under pro-inflammatory conditions. One of the immediate responses upon macrophage activation involves the production of superoxide radical (O2·?), due to the NADPH dependent univalent reduction of oxygen to O2·? by the phagocytic NADPH-oxidase isoform (NOX2), being the activity of NOX2 the main source of O2·? in monocytes/macrophages. Since NOX2 and AA pathways are connected, we propose that AANO2can modulate macrophage activation by inhibiting O2·? formation by NOX2. When macrophages were activated in the presence of AANO2, a significant inhibition of NOX2 activity was observed as evaluated by cytochrome c reduction, luminol chemiluminescence, Amplex Red fluorescence and flow cytometry; this process also occurs in physiological mimic conditions within the phagosomes. AANO2 decreased O2·? production in a dose-(IC50= 4.1 ± 1.8 ?M AANO2) and time-dependent manner. The observed inhibition was not due to a decreased phosphorylation of the cytosolic subunits (e.g. p40phox and p47phox), as analyzed by immunoprecipitation and western blot. However, a reduction of the migration to the membrane of p47phox was obtained suggesting that the protective actions involve the prevention of the correct assembly of the active enzyme in the membrane. Finally, the observed in vitro effects were confirmed in an in vivo inflammatory model, where subcutaneous injection of AANO2 was able to decrease NOX2 activity in macrophages from thioglycolate treated mice. PMID:23318789

  3. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    PubMed

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages. PMID:25577295

  4. Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity

    PubMed Central

    Cabanel, Mariana; Brand, Camila; Oliveira-Nunes, Maria Cecilia; Cabral-Piccin, Mariela Pires; Lopes, Marcela Freitas; Brito, Jose Marques; de Oliveira, Felipe Leite

    2015-01-01

    Inflammatory chronic pathologies are complex processes characterized by an imbalance between the resolution of the inflammatory phase and the establishment of tissue repair. The main players in these inflammatory pathologies are bone marrow derived monocytes (BMDMs). However, how monocyte differentiation is modulated to give rise to specific macrophage subpopulations (M1 or M2) that may either maintain the chronic inflammatory process or lead to wound healing is still unclear. Considering that inhibitors of Histone Deacetylase (HDAC) have an anti-inflammatory activity, we asked whether this enzyme would play a role on monocyte differentiation into M1 or M2 phenotype and in the cell shape transition that follows. We then induced murine bone marrow progenitors into monocyte/macrophage differentiation pathway using media containing GM-CSF and the HDAC blocker, Trichostatin A (TSA). We found that the pharmacological inhibition of HDAC activity led to a shape transition from the typical macrophage pancake-like shape into an elongated morphology, which was correlated to a mixed M1/M2 profile of cytokine and chemokine secretion. Our results present, for the first time, that HDAC activity acts as a regulator of macrophage differentiation in the absence of lymphocyte stimuli. We propose that HDAC activity down regulates macrophage plasticity favoring the pro-inflammatory phenotype. PMID:26196676

  5. Histone deacetylase inhibition by sodium valproate regulates polarization of macrophage subsets.

    PubMed

    Wu, Chenming; Li, Ang; Leng, Ye; Li, Yuan; Kang, Jiuhong

    2012-04-01

    Recent studies suggest that change of macrophage phenotype (M1/M2) is associated with autoimmune diseases. Sodium valproate (VPA) is a class I histone deacetylase (HDAC) inhibitor, which has immunomodulatory function in graft-versus-host disease. However, its impact on macrophage polarization has not been defined. We evaluated the effects of VPA on both mouse macrophage cell line RAW264.7 and primary mouse bone marrow macrophages (BMMs). Exposure to VPA significantly repressed the production of interleukin 12 (IL-12), and tumor necrosis factor ? by lipopolysaccharide (LPS)-induced macrophage activation, in contrast, promoted IL-10 expression. VPA also affected the costimulatory molecule expression on LPS-stimulated RAW264.7 and BMMs (downregulation of CD40 and CD80, and upregulation of CD86). Specifically, VPA inhibited macrophage-mediated T helper 1 (Th1) effector but enhanced Th2 effector cell activation. Together, our preclinical study demonstrates that VPA significantly affects the phenotype and function of macrophage, indicating an important role of HDAC activity in immune regulation and inflammation. It also provides a rationale to evaluate VPA activity for the treatment of macrophage dysfunction-associated diseases. PMID:22054065

  6. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  7. Biodegradable chitosan particles induce chemokine release and negligible arginase-1 activity compared to IL-4 in murine bone marrow-derived macrophages

    E-print Network

    Buschmann, Michael

    compared to IL-4 in murine bone marrow-derived macrophages Jessica Guzmán-Morales a,b , Marianne B January 2011 Available online xxxx Keywords: Chitosan Bone marrow-derived macrophages Macrophage bone marrow-derived macrophages (BMDM) in vitro to an alternatively activated phenotype. Control

  8. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; Lopez-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3?4 months) and aged (14?15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice. Collectively, these results indicate that macrophages isolated from old mice are in a preactivated state that enhances their sensitivities to LPS exposure. The hyper-responsive activation of macrophages in aged animals may act to minimize infection by general bacterial threats that arise due to age-dependent declines in adaptive immunity. However, this hypersensitivity and the associated increase in the level of formation of reactive oxygen species are likely to contribute to observed age-dependent increases in the level of oxidative damage that underlie many diseases of the elderly.

  9. TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation.

    PubMed

    Ferri, Federica; Parcelier, Aude; Petit, Vanessa; Gallouet, Anne-Sophie; Lewandowski, Daniel; Dalloz, Marion; van den Heuvel, Anita; Kolovos, Petros; Soler, Eric; Squadrito, Mario Leonardo; De Palma, Michele; Davidson, Irwin; Rousselet, Germain; Romeo, Paul-Henri

    2015-01-01

    Despite its importance during viral or bacterial infections, transcriptional regulation of the interferon-? gene (Ifnb1) in activated macrophages is only partially understood. Here we report that TRIM33 deficiency results in high, sustained expression of Ifnb1 at late stages of toll-like receptor-mediated activation in macrophages but not in fibroblasts. In macrophages, TRIM33 is recruited by PU.1 to a conserved region, the Ifnb1 Control Element (ICE), located 15?kb upstream of the Ifnb1 transcription start site. ICE constitutively interacts with Ifnb1 through a TRIM33-independent chromatin loop. At late phases of lipopolysaccharide activation of macrophages, TRIM33 is bound to ICE, regulates Ifnb1 enhanceosome loading, controls Ifnb1 chromatin structure and represses Ifnb1 gene transcription by preventing recruitment of CBP/p300. These results characterize a previously unknown mechanism of macrophage-specific regulation of Ifnb1 transcription whereby TRIM33 is critical for Ifnb1 gene transcription shutdown. PMID:26592194

  10. TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation

    PubMed Central

    Ferri, Federica; Parcelier, Aude; Petit, Vanessa; Gallouet, Anne-Sophie; Lewandowski, Daniel; Dalloz, Marion; van den Heuvel, Anita; Kolovos, Petros; Soler, Eric; Squadrito, Mario Leonardo; De Palma, Michele; Davidson, Irwin; Rousselet, Germain; Romeo, Paul-Henri

    2015-01-01

    Despite its importance during viral or bacterial infections, transcriptional regulation of the interferon-? gene (Ifnb1) in activated macrophages is only partially understood. Here we report that TRIM33 deficiency results in high, sustained expression of Ifnb1 at late stages of toll-like receptor-mediated activation in macrophages but not in fibroblasts. In macrophages, TRIM33 is recruited by PU.1 to a conserved region, the Ifnb1 Control Element (ICE), located 15?kb upstream of the Ifnb1 transcription start site. ICE constitutively interacts with Ifnb1 through a TRIM33-independent chromatin loop. At late phases of lipopolysaccharide activation of macrophages, TRIM33 is bound to ICE, regulates Ifnb1 enhanceosome loading, controls Ifnb1 chromatin structure and represses Ifnb1 gene transcription by preventing recruitment of CBP/p300. These results characterize a previously unknown mechanism of macrophage-specific regulation of Ifnb1 transcription whereby TRIM33 is critical for Ifnb1 gene transcription shutdown. PMID:26592194

  11. Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages

    PubMed Central

    Namatame, Ichiji; Tomoda, Hiroshi; Ishibashi, Shun; ?mura, Satoshi

    2004-01-01

    Beauveriolides I and III, isolated from the culture broth of fungal Beauveria sp. FO-6979, showed potent inhibitory activity of lipid droplet accumulation in primary mouse peritoneal macrophages. The cellular molecular target of this inhibitory activity was studied in macrophages. Beauveriolides I and III strongly inhibited the cholesteryl ester (CE) synthesis with IC50 values of 0.78 and 0.41 ?M, respectively, without showing significant effects on the triacylglycerol and phospholipid synthesis. Furthermore, lysosomal cholesterol metabolism to CE in macrophages was inhibited by the compounds, indicating that the inhibition site lies within steps between cholesterol departure from the lysosome and CE synthesis in the endoplasmic reticulum. Therefore, acyl-CoA:cholesterol acyltransferase (ACAT) activity in the membrane fractions prepared from mouse macrophages was studied, resulting in a dose-dependent inhibition by beauveriolides I and III with IC50 values of 6.0 and 5.5 ?M, respectively. Thus, we showed that the beauveriolides inhibit macrophage ACAT activity specifically, resulting in blockage of the CE synthesis, leading to a reduction of lipid droplets in macrophages. ACAT activity in the membrane fractions prepared from mouse liver and Caco-2 cells was also inhibited, indicating that the beauveriolides block both ACAT-1 and -2. Moreover, beauveriolides I and III exert antiatherogenic activity in both low-density lipoprotein receptor- and apolipoprotein E-knockout mice without any side effects such as diarrhea or cytotoxicity to adrenal tissues as observed for many synthetic ACAT inhibitors. Beauveriolides I and III are the first microbial cyclodepsipeptides having an in vivo antiatherosclerotic effect and show promise as potential lead compounds for antiatherosclerotic agents. PMID:14718664

  12. Immunomodulatory Effect of Mangiferin in Experimental Animals with Benzo(a)Pyrene-induced Lung Carcinogenesis

    PubMed Central

    Rajendran, Peramaiyan; Jayakumar, Thangavel; Nishigaki, Ikuo; Ekambaram, Ganapathy; Nishigaki, Yutaka; Vetriselvi, Jayabal; Sakthisekaran, Dhanapal

    2013-01-01

    The immunomodulatory activity of mangiferin was studied in various groups of animals. For this study, adult Swiss albino male mice were treated with benzo(a)pyrene, abbreviated as B(a)P, at 50 mg/kg body weight orally twice a week for 4 weeks; and mangiferin was also given orally (pre- and post-initiation of carcinoma) at 100 mg/kg body weight. Immunocompetence and immune complexes as measured by phagocyte index, avidity index, and soluble immune complex (SIC) levels (p<0.001), as well as NBT reduction, were decreased in the B(a)P-treated animals;whereas increased levels of immunocompetence were noted in the mangiferin-treated animals given B(a)P (p<0.001, p<0.05). The levels of immunoglobulins such as IgG and IgM were decreased considerably (p<0.001) in the B(a)P-treated animals compared with their levels in the control animals; whereas the IgA level was increased (p<0.001). In the mangiferin-treated experimental animals given B(a)P, the levels of IgG and IgM were significantly (p<0.001, p<0.05) increased whereas the IgA level was decreased compared with those for the B(a)P-treated mice. Oxidative changes in lymphocytes, neutrophils, and macrophages were also measured. The enhanced lipid peroxidation and decreased catalase and superoxide dismutase activities found in the lymphocytes, polymorphonuclear cells (PMN), and macrophages from B(a)P-treated mice were significantly reduced and increased, respectively, by the mangiferin treatment. This study confirms the immunomodulatory effect of mangiferin and shows an immunoprotective role arbitrated through a reduction in the reactive intermediate-induced oxidative stress in lymphocytes, neutrophils, and macrophages. PMID:23847456

  13. Successful treatment of macrophage activation syndrome in a patient with dermatomyositis by combination with immunosuppressive therapy and plasmapheresis.

    PubMed

    Kaieda, Shinjiro; Yoshida, Naomi; Yamashita, Fumiya; Okamoto, Masaki; Ida, Hiroaki; Hoshino, Tomoaki; Fukuda, Takaaki

    2015-11-01

    Macrophage activation syndrome (MAS), also known as secondary hemophagocytic lymphohistiocytosis, is mediated by cytokine overproduction from excessive activation of T lymphocytes and macrophages. We present a dermatomyositis patient with MAS, caused by hypercytokinemia. The combination of tacrolimus and plasma exchange therapy was effective in this case for treating MAS. This combination therapy is especially useful for MAS refractory to steroids. PMID:24252010

  14. Multipotent Adult Progenitor Cells Prevent Macrophage-Mediated Axonal Dieback and Promote Regrowth after Spinal Cord Injury

    PubMed Central

    Busch, Sarah A.; Hamilton, Jason A.; Horn, Kevin P.; Cuascut, Fernando X.; Cutrone, Rochelle; Lehman, Nicholas; Deans, Robert J.; Ting, Anthony E.; Mays, Robert W.; Silver, Jerry

    2013-01-01

    Macrophage-mediated axonal dieback presents an additional challenge to regenerating axons after spinal cord injury. Adult adherent stem cells are known to have immunomodulatory capabilities, but their potential to ameliorate this detrimental inflammation-related process has not been investigated. Using an in vitro model of axonal dieback as well as an adult rat dorsal column crush model of spinal cord injury, we found that multipotent adult progenitor cells (MAPCs) can affect both macrophages and dystrophic neurons simultaneously. MAPCs significantly decrease MMP-9 (matrix metalloproteinase-9) release from macrophages, effectively preventing induction of axonal dieback. MAPCs also induce a shift in macrophages from an M1, or “classically activated” proinflammatory state, to an M2, or “alternatively activated” antiinflammatory state. In addition to these effects on macrophages, MAPCs promote sensory neurite outgrowth, induce sprouting, and further enable axons to overcome the negative effects of macrophages as well as inhibitory proteoglycans in their environment by increasing their intrinsic growth capacity. Our results demonstrate that MAPCs have therapeutic benefits after spinal cord injury and provide specific evidence that adult stem cells exert positive immunomodulatory and neurotrophic influences. PMID:21248119

  15. Dimethyl sulfoxide modulates NF-kappa B and cytokine activation in lipopolysaccharide-treated murine macrophages.

    PubMed Central

    Kelly, K A; Hill, M R; Youkhana, K; Wanker, F; Gimble, J M

    1994-01-01

    Antioxidants are protective against septic shock in animal models. Recently, free radical scavengers have been found to inhibit the activation of the NF-kappa B protein in a number of cell lines. This transcriptional regulatory protein binds to the promoters of the proinflammatory cytokines tumor necrosis factor, interleukin-6, and the macrophage inflammatory proteins. The current work examined lipopolysaccharide-induced NF-kappa B activation in the J774 macrophage-like cell line and primary peritoneal macrophages from lipopolysaccharide-responsive (C3HeB/Fej) and -nonresponsive (C3H/HeJ) murine strains. The DNA-binding activity of the NF-kappa B protein directly correlated with mRNA expression for the genes encoding the proinflammatory cytokines and the free radical scavenging enzyme, superoxide dismutase. Both the p50 and p65 NF-kappa B subunits were detected on gel supershift assays. Minimal NF-kappa B activity was observed following exposure of C3H/HeJ macrophages to lipopolysaccharide. The antioxidant dimethyl sulfoxide decreased the level of NF-kappa B activation in the J774 cells. This correlated with decreased expression of cytokine mRNAs and tumor necrosis factor bioactivity. These results suggest that modulation of NF-kappa B activation may provide a mechanism through which antioxidants protect against endotoxemia in murine models. Images PMID:8039880

  16. Immunomodulatory properties of the protein fraction from Phorphyra columbina.

    PubMed

    Cian, Raúl E; López-Posadas, Rocío; Drago, Silvina R; de Medina, Fermín Sánchez; Martínez-Augustin, Olga

    2012-08-22

    The phycobiliproteins from Rhodophyta , R-phycoerythrin (R-PE) and C-phycocyanin (C-PC), have been shown to exert immunomodulatory effects. This study evaluated the effects of a Phorphyra columbina protein fraction (PF) and R-PE and C-PC on rat primary splenocytes, macrophages, and T-lymphocytes in vitro. PF featured various protein species, including R-PE and C-PC. PF showed mitogenic effects on rat splenocytes and was nontoxic to cells except at 1 g L(-1) protein. IL-10 secretion was enhanced by PF in rat splenocytes, macrophages, and especially T-lymphocytes, whereas it was markedly diminished by R-PE and C-PC. The production of pro-inflammatory cytokines by macrophages was inhibited. The effect of PF on IL-10 was evoked by JNK/p38 MAPK and NF-?B-dependent pathways in macrophages and T-lymphocytes. It was concluded that PF has immunomodulatory effects on macrophages and lymphocytes that appear to be predominantly anti-inflammatory via up-regulated IL-10 production and cannot be accounted for by R-PE and C-PC. PMID:22867423

  17. Heterogeneous platelet-activating factor (PAF) receptors and calcium increase in platelets and macrophages.

    PubMed

    Centemeri, C; Colli, S; Tosarello, D; Ciceri, P; Nicosia, S

    1999-02-01

    We used the increase in cytosolic Ca2+ levels, [Ca2+]i, as a way to characterize PAF (platelet-activating factor, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) receptors in human platelets and rat and human macrophages. [Ca2+] was measured by means of the fluorescent probe fura-2/acetoxymethylester. PAF recognized heterogeneous receptors in human macrophages only (curve slope <1). The PAF antagonist SCH 37370 (1-acetyl-4(8-chloro-5,6-dihydro-11H-benzo[5.6]cyclohepta[1,2-b]pyridine -11-ylidine)piperidine) abolished [Ca2+]i elevation in human platelets, while in rat and human macrophages the maximal inhibition was 76% and 85%, respectively. On the contrary, the antagonist WEB 2086 (3-[4-(2-chlorophenyl)-9-methyl-6Hthieno[3,2-f] [1,2,4]triazolo-[4,3-a] [1,4]-diazepin-2-yl]-1-(4-morpholiny)-1-propanon, apafant) totally inhibited the effect of PAF in both platelets and macrophages. The WEB 2086 concentration-response curves had a slope <1 in the three cell types, indicating interaction with heterogeneous receptors. Accordingly, 3H-WEB 2086 bound to two different classes of sites. Both phases of [Ca2+]i elevation (influx or release) were equally affected by the antagonists. These data support the notions that: 1) PAF receptors are heterogeneous; 2) the two antagonists have a different selectivity toward the receptor subtypes: WEB 2086 recognizes two different receptors both in platelets and in macrophages, while SCH 37370 does not discriminate between receptor subtypes in platelets, and only interacts with one subtype in macrophages; and 3) both SCH 37370 and WEB 2086 display different potencies in rat and human macrophages. PMID:9890553

  18. Toll-like receptor 9-dependent macrophage activation by Entamoeba histolytica DNA.

    PubMed

    Ivory, Catherine P A; Prystajecky, Michael; Jobin, Christian; Chadee, Kris

    2008-01-01

    Activation of the innate immune system by bacterial DNA and DNA of other invertebrates represents a pathogen recognition mechanism. In this study we investigated macrophage responses to DNA from the intestinal protozoan parasite Entamoeba histolytica. E. histolytica genomic DNA was purified from log-phase trophozoites and tested with the mouse macrophage cell line RAW 264.7. RAW cells treated with E. histolytica DNA demonstrated an increase in levels of tumor necrosis factor alpha (TNF-alpha) mRNA and protein production. TNF-alpha production was blocked by pretreatment with chloroquine or monensin. In fact, an NF-kappaB luciferase reporter assay in HEK cells transfected with human TLR9 demonstrated that E. histolytica DNA signaled through Toll-like receptor 9 (TLR9) in a manner similar to that seen with CpG-ODN. Immunofluorescence assays confirmed NF-kappaB activation in RAW cells, as seen by nuclear translocation of the p65 subunit. Western blot analysis demonstrated mitogen-activated protein kinase activation by E. histolytica DNA. E. histolytica DNA effects were abolished in MYD88-/- mouse-derived macrophages. In the context of disease, immunization with E. histolytica DNA protected gerbils from an E. histolytica challenge infection. Taken together, these results demonstrate that E. histolytica DNA is recognized by TLR9 to activate macrophages and may provide an innate defense mechanism characterized by the induction of the inflammatory mediator TNF-alpha. PMID:17984204

  19. Immunomodulatory Effects of Triphala and its Individual Constituents: A Review

    PubMed Central

    Belapurkar, Pranoti; Goyal, Pragya; Tiwari-Barua, Preeti

    2014-01-01

    The role of plant extracts and Ayurvedic polyherbal preparations in treating various ailments has been acknowledged since time immemorial. Studies based on the effect of these extracts in treatment of different diseases have also been well documented. Indian medicinal literature also emphasizes the synergistic effect of polyherbal drugs in restoring and rejuvenating immune system. This review focuses on the immunomodulatory potential of the polyherbal preparation, Triphala and its three constituents, Terminalia bellerica, Terminalia chebula and Emblica officinalis. The role of Triphala and its extract has been emphasized in stimulating neutrophil function. Under stress condition such as noise, Triphala significantly prevents elevation of IL-4 levels as well as corrects decreased IL-2 and IFN-? levels. Under the condition of inflammatory stress its immunosuppressive activity is attributed to its inhibitory action on complement system, humoral immunity, cell mediated immunity and mitogen-induced T-lymphocyte proliferation. The aqueous and alcoholic extracts of the individual constituents reportedly enhance especially the macrophage activation due to their free radical scavenging activity and the ability to neutralize reactive oxygen species. This study thus concludes the use of Triphala and its three individual constituents as potential immunostimulants and/or immunosuppressants further suggests them to be a better alternative for allopathic immunomodulators. PMID:25593379

  20. Screening for immunomodulators: Effects of xenobiotics on macrophage chemiluminescence in vitro

    SciTech Connect

    Tam, P.E.; Hinsdill, R.D. )

    1990-04-01

    Macrophage chemiluminescence (CL) was evaluated as a primary screening assay by assessing the modulatory activity of 17 different chemicals. The chemicals were either known immunomodulatory drugs or environmental toxicants with reported immunomodulatory activity. Elicited mouse peritoneal macrophages were exposed to the chemicals in vitro, and CL was measured in response to an opsonized yeast stimulus. Ten chemicals (hydrocortisone, dextran sulfate, di-n-octyltin dichloride, dimethyltin dichloride, azathioprine, lambda carrageenan (l-carrageenan), lead, N-propyl gallate, gallic acid, and indomethacin) were identified as effective modulators of CL. The polyanions dextran sulfate and l-carrageenan either suppressed or enhanced CL, depending on the experimental conditions, while the remaining modulators were inhibitory. A series of secondary assays was used to verify this modulatory activity and to explore different mechanisms of action. Each effective modulator altered only a few specific components of the more complex CL response, and the following general mechanisms were apparent. At least 2 chemicals showed distinct antioxidant activity and thus probably did not alter functional aspects of macrophage CL. Chemicals which blocked Fc receptor function delayed the peak CL of macrophages stimulated by opsonized yeast. Nine of the 10 modulators inhibited hydrogen peroxide release, but only 3 inhibited the release of superoxide. Finally, some effective modulators were chemicals known to interact with cell membranes or specific membrane receptors, and these were able to directly induce a CL response without the addition of opsonized yeast as a stimulus. Thus, macrophage CL was a simple, quantitative, yet sensitive immunotoxicologic screening assay capable of identifying many known immunomodulatory drugs.

  1. Immunoregulation by macrophages II. Separation of mouse peritoneal macrophages having tumoricidal and bactericidal activities and those secreting PGE and interleukin I

    SciTech Connect

    Hopper, K.E.; Cahill, J.M.

    1983-06-01

    Macrophage subpopulations having bactericidal or tumoricidal activities and secreting interleukin I (IL1) or prostaglandin E (PGE) were identified through primary or secondary infection with Salmonella enteritidis and separated by sedimentation velocity. Bactericidal activity was measured by (3H)-thymidine release from Listeria monocytogenes and tumoricidal activity by 51Cr-release from C-4 fibrosarcoma or P815 mastocytoma cells. Macrophages with bactericidal activity were distinguished from those with tumoricidal activity a) during secondary infection when cytolytic activity occurred only at days 1-4 post injection and bactericidal activity remained high throughout and b) after sedimentation velocity separation. Cytolysis was consistently greatest among adherent cells of low sedimentation velocity, whereas cells with bactericidal activity increased in size during the infection. Tumour cytostasis (inhibition and promotion of (3H)-thymidine uptake) differed from cytolysis in that the former was more prolonged during infection and was also detected among large cells. Secretion of immunoregulatory molecules PGE and IL1 occurred maximally among different macrophage subpopulations separated by sedimentation velocity and depending on the type of stimulus used in vitro. There was an inverse correlation between IL1 production and PGE production after stimulation with C3-zymosan or lipopolysaccharide (LPS). The development of immunity during infection may therefore be dependent upon the relative proportions of effector and regulatory macrophage subpopulations and the selective effects of environmental stimuli on these functions.

  2. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins

    PubMed Central

    Ledesma-Soto, Yadira; Callejas, Blanca E.; Terrazas, César A.; Reyes, Jose L.; Espinoza-Jiménez, Arlett; González, Marisol I.; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E.; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R.; Terrazas, Luis I.

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAM?s) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAM?s and prostaglandins. PMID:26090422

  3. Activated macrophages for treating skin ulceration: gene expression in human monocytes after hypo-osmotic shock

    PubMed Central

    FRENKEL, O; SHANI, E; BEN-BASSAT, I; BROK-SIMONI, F; ROZENFELD-GRANOT, G; KAJAKARO, G; RECHAVI, G; AMARIGLIO, N; SHINAR, E; DANON, D

    2002-01-01

    Macrophages play a major role in almost all stages of the complex process of wound healing. It has been previously shown that the incorporation of a hypo-osmotic shock step, in the process of monocyte-concentrate preparation from a blood unit, induces monocyte/macrophage activation. As the macrophages are produced using a unique, closed and sterile system, they are suitable for local application on ulcers in elderly and paraplegic patients. Enhanced phagocytosis by the activated cells, as well as increased secretion of cytokines such as IL-1, IL-6, were detected in a recent study which are in accord with the very encouraging clinical results. In the present study, we used DNA microarrays to analyse the differential gene expressions of the hypo-osmotic shock-activated monocytes/macrophages and compare them to non-treated cells. Of the genes that exhibited differences of expression in the activated cell population, 94% (68/72) displayed increased activity. The mRNA levels of 43/68 of these genes (63%) were found to be 1·5-fold or higher (1·5–7·98) in the activated macrophages cell population as compared to the non-treated cells. Only four genes were found to have lower mRNA levels in the activated cells, with ratios of expression of 0·62–0·8, which may suggest that the changes are insignificant. A significant number of the genes that showed increased levels of expression is known to be directly involved in macrophage function and wound healing. This may correlate with the increased secretion of different cytokines by the activated macrophages depicted previously. Other groups of genes expressed are known to be involved in important pathways such as neuronal growth and function, developmental defects and cancer. The hypo-osmotic shock induces a gene expression profile of cytokines and receptors in the activated cells. These may evoke potential abilities to produce a variety of protein products needed in the wound healing process and may bring to light possibilities for other therapeutic applications of these cells. PMID:11982591

  4. Antitumor and Antimetastatic Activity of Synthetic Hydroxystilbenes Through Inhibition of Lymphangiogenesis and M2 Macrophage Differentiation of Tumor-associated Macrophages.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho; Baba, Kimiye

    2016-01-01

    An increase in tumor-associated macrophages (TAMs) around the tumor microenvironment has been closely associated with a poor prognosis in patients with cancer, and M2 TAMs promote tumor growth and tumor metastasis by stimulating angiogenesis or lymphangiogenesis in tumors. We herein examined the effects of nine synthetic hydroxystilbenes on M2 macrophage activation and differentiation, and three selected dihydroxystilbenes on vascular endothelial cell growth factor (VEGF)-C-induced tube formation in human lymphatic endothelial cells (HLECs) (in vitro). We also investigated the antitumor and antimetastatic effects of three synthetic dihydroxystilbenes in LM8-bearing mice in vivo. The three selected synthetic stilbenes (at concentrations of 5, 10, 25, and 50 ?M) inhibited the production of interleukin-10 and monocyte chemoattractant protein-1 in M2 macrophages, but promoted that of transforming growth factor-?1. The three dihydroxystilbenes (at concentrations of 10-50 ?M) inhibited the phosphorylation of signal transducer and activator of transcript 3 without affecting its expression in the differentiation of M2 macrophages. Furthermore, the 2,3- and 4,4'-dihydroxystilbene inhibited VEGF-C-induced lymphangiogenesis in HLECs. Both 2,3- and 4,4'-dihydroxystilbene (at 10 and 25 mg/kg, twice daily) inhibited tumor growth and metastasis to the lung in mice. These results suggested that the antitumor and antimetastatic effects of 2,3- and 4,4'-dihydroxystilbene were partly due to anti-lymphangiogenesis, and the regulation of M2 macrophage activation and differentiation. PMID:26722037

  5. Mesenchymal stem cells promote CD206 expression and phagocytic activity of macrophages through IL-6 in systemic lupus erythematosus.

    PubMed

    Deng, Wei; Chen, Weiwei; Zhang, Zhuoya; Huang, Saisai; Kong, Wei; Sun, Yue; Tang, Xiaojun; Yao, Genhong; Feng, Xuebing; Chen, WanJun; Sun, Lingyun

    2015-12-01

    Human umbilical cord-derived mesenchymal stem cells (UCMSCs) show therapeutic effects on systemic lupus erythematosus (SLE). Deficiency in functional polarization and phagocytosis in macrophages has been suggested in the pathogenesis of SLE. We found that macrophages from B6.MRL-Fas(lpr) mice exhibited lower level of CD206, the marker for alternatively activated macrophage (AAM, also called M2). In addition, the phagocytic activity of B6.MRL-Fas(lpr) macrophages was also decreased. UCMSC transplantation improved the proportion of CD206(+) macrophages and their phagocytic activity in B6.MRL-Fas(lpr) mice. Importantly, macrophages from SLE patients also showed lower expression of CD206 and reduced phagocytic activity, which were corrected by being co-cultured with UCMSCs in vitro and in SLE patients receiving UCMSC transplantation. Mechanistically, we demonstrated that IL-6 was required for the up-regulation of CD206 expression and phagocytic activity of UCMSC-treated SLE macrophages. Our results indicate that UCMSCs alleviate SLE through promoting CD206 expression and phagocytic activity of macrophages in an IL-6 dependent manner. PMID:26209923

  6. Escherichia coli and Candida albicans Induced Macrophage Extracellular Trap-Like Structures with Limited Microbicidal Activity

    PubMed Central

    Liao, Chengshui; Liu, Xiaolei; Du, Jing; Shi, Haining; Wang, Xuelin; Bai, Xue; Peng, Peng; Yu, Lu; Wang, Feng; Zhao, Ying; Liu, Mingyuan

    2014-01-01

    The formation of extracellular traps (ETs) has recently been recognized as a novel defense mechanism in several types of innate immune cells. It has been suggested that these structures are toxic to microbes and contribute significantly to killing several pathogens. However, the role of ETs formed by macrophages (METs) in defense against microbes remains little known. In this study, we demonstrated that a subset of murine J774A.1 macrophage cell line (8% to 17%) and peritoneal macrophages (8.5% to 15%) form METs-like structures (METs-LS) in response to Escherichia coli and Candida albicans challenge. We found only a portion of murine METs-LS, which are released by dying macrophages, showed detectable killing effects on trapped E. coli but not C. albicans. Fluorescence and scanning electron microscopy analyses revealed that, in vitro, both microorganisms were entrapped in J774A.1 METs-LS composed of DNA and microbicidal proteins such as histone, myeloperoxidase and lysozyme. DNA components of both nucleus and mitochondrion origins were detectable in these structures. Additionally, METs-LS formation occurred independently of ROS produced by NADPH oxidase, and this process did not result in cell lysis. In summary, our results emphasized that microbes induced METs-LS in murine macrophage cells and that the microbicidal activity of these METs-LS differs greatly. We propose the function of METs-LS is to contain invading microbes at the infection site, thereby preventing the systemic diffusion of them, rather than significantly killing them. PMID:24587206

  7. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    SciTech Connect

    Prasad, H.K.; Hastings, R.C.

    1985-05-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of /sup 14/C-amino acid mixture, (/sup 14/C)leucine, (/sup 14/C)uridine, and carrier-free /sup 32/P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli.

  8. Delayed presence of alternatively activated macrophages during a Francisella tularensis infection.

    PubMed

    D'Elia, Riccardo V; Laws, Thomas R; Núñez, Alejandro; Taylor, Christopher; Clark, Graeme C

    2015-01-01

    Francisella tularensis is an intracellular bacterium that has the ability to multiply within the macrophage. The phenotype of a macrophage can determine whether the infection is cleared or the host succumbs to disease. Previously published data has suggested that F. tularensis LVS actively induces the alternative phenotype as a survival mechanism. In these studies we demonstrate that this is not the case for the more virulent strain of F. tularensis SCHU-S4. During an intranasal mouse model of infection, immuno-histochemistry identified that iNOS positive ("classical") macrophages are present at 72 h post-infection and remain high (supported by CCL-5 release) in numbers. In contrast, arginase/FIZZ-1 positive ("alternative") cells appear later and in low numbers during the development of the disease tularemia. PMID:25284816

  9. Macrophage-stimulating activity of polysaccharides extracted from fruiting bodies of Coriolus versicolor (Turkey Tail Mushroom).

    PubMed

    Jeong, Sang-Chul; Yang, Byung-Keun; Kim, Guk-Nam; Jeong, Hun; Wilson, Michael A; Cho, Yip; Rao, K Sundar; Song, Chi-Hyun

    2006-01-01

    The macrophage-stimulating effect of polysaccharides extracted from Coriolus versicolor (Turkey Tail mushroom) was investigated, and their effectiveness was compared with that of lipopolysaccharide (LPS). The purified polysaccharide (CV-S2-Fr.I) of C. versicolor obtained by Sepharose CL-6B gel chromatography stimulated macrophage lysosomal enzyme activity by 250% at a concentration of 100 microg/mL, which was higher than that of LPS at the same concentration. When CV-S2-Fr.I was used in combination with interferon-gamma, there was a marked cooperative induction of nitric oxide production. However, CV-S2-Fr.I had no effect on nitric oxide production by itself. The proportion of C3-positive macrophages in the CV-S2-Fr.I group increased by 7.2-fold compared with the control group. PMID:16822202

  10. Interleukin-7 enhances antimicrobial activity against Leishmania major in murine macrophages.

    PubMed Central

    Gessner, A; Vieth, M; Will, A; Schröppel, K; Röllinghoff, M

    1993-01-01

    Recently, it has been shown that interleukin-7 (IL-7) is able to induce secretion of cytokines and tumoricidal activity by human monocytes. This study shows that treatment of murine macrophages infected with Leishmania major with IL-7 without any other stimulus reduced the percentage of infected cells, as well as the parasite burden per cell, in a dose-dependent manner to a limited degree (45% reduction of the number of amastigotes per 100 macrophages). Simultaneous treatment of macrophages with gamma interferon and IL-7 led to nearly complete (> 99%) elimination of amastigotes. Addition of anti-tumor necrosis factor alpha or N omega-monomethyl-L-arginine acetate reversed the leishmanicidal effects of IL-7, and production of nitric oxide was induced in the presence of IL-7. PMID:8359927

  11. ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON?

    EPA Science Inventory

    ARE MACROPHAGES ACTIVATED AND INDUCE PULMONARY INJURY BY INTRACELLULARLY BIOAVAILABLE IRON? UP Kodavanti1, MCJ Schladweiler1, S Becker2, DL Costa1, P Mayer3, A Ziesenis3, WG Kreyling3, 1ETD, 2HSDivision, NHEERL, USEPA, Research Triangle Park, NC, USA, and 3GSF, Inhalation Biology...

  12. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    SciTech Connect

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  13. Reactive oxygen species in the tumor niche triggers altered activation of macrophages and immunosuppression: Role of fluoxetine.

    PubMed

    Ghosh, Sayan; Mukherjee, Sudeshna; Choudhury, Sreetama; Gupta, Payal; Adhikary, Arghya; Baral, Rathindranath; Chattopadhyay, Sreya

    2015-07-01

    Macrophages are projected as one of the key players responsible for the progression of cancer. Classically activated (M1) macrophages are pro-inflammatory and have a central role in host defense, while alternatively activated (M2) macrophages are associated with immunosuppression. Macrophages residing at the site of neoplastic growth are alternately activated and are referred to as tumor-associated macrophages (TAMs). These "cooperate" with tumor tissue, promoting increased proliferation and immune escape. Selective serotonin reuptake inhibitors like fluoxetine have recently been reported to possess anti-inflammatory activity. We used fluoxetine to target tumor-associated inflammation and consequent alternate polarization of macrophages. We established that murine peritoneal macrophages progressed towards an altered activation state when exposed to cell-free tumor fluid, as evidenced by increased IL-6, IL-4 and IL-10 levels. These polarized macrophages showed significant pro-oxidant bias and increased p65 nuclear localization. It was further observed that these altered macrophages could induce oxidative insult and apoptosis in cultured mouse CD3(+) T cells. To validate these findings, we replicated key experiments in vivo, and observed that there was increased serum IL-6, IL-4 and IL-10 in tumor-bearing animals, with increased % CD206(+) cells within the tumor niche. TAMs showed increased nuclear localization of p65 with decreased Nrf2 expression in the nucleus. These results were associated with increase in apoptosis of CD3(+) T cells co-cultured with TAM-spent media. We could establish that fluoxetine treatment could specifically re-educate the macrophages both in vitro and in vivo by skewing their phenotype such that immune suppression mediated by tumor-dictated macrophages was successfully mitigated. PMID:25819340

  14. Bacille Calmette-Guerin infection in the mouse. Regulation of macrophage plasminogen activator by T lymphocytes and specific antigen

    PubMed Central

    1978-01-01

    High levels of plasminogen activator (PA) were induced in mouse peritoneal macrophages by infection with BCG, 2-6 X 10(7) viable organisms intravenously, followed 3-4 wk later by intraperitoneal challenge with purified protein derivative (PPD) 2 days before harvest. Macrophages obtained from infected animal without boosting showed little fibrinolytic activity, but challenge of Bacille-Calmette-Guerin (BCG)-primed peritoneal cells with PPD in culture also enhanced macrophage PA 4- to 10-fold. Stimulation of macrophage PA by PPD depended on specifically sensitized thymus-derived (T) lymphocytes because it was abolished by pretreatment of BCG-primed peritoneal cells with anti-thy 1.2 antiserum and complement. A direct assay was developed in which nylon wool separated sensitized lymphocytes and PPD induced PA in macrophages from uninfected animals under defined conditions on 125I-fibrin. Enhanced macrophage fibrinolysis was proportional to concentration of PPD and the number of sensitized lymphocytes transferred. An indirect two-stage assay was also used to show that BCG-sensitized peritoneal cells released a soluble inducer of macrophage PA into the culture medium, after challenge with PPD. Induction of macrophage PA by PPD challenge in vitro made it possible to study the generation and activity of sensitized peritoneal lymphocytes at different stages of infection. Our results show that nonadherent peritoneal cells of BCG-infected mice provide a rich source of specifically sensitized lymphocytes and that macrophage activation is limited by continued availability of antigen, as well as sensitized lymphocytes. Induction of macrophage PA provides a sensitive, versatile, and rapid in vitro assay to study the role of lymphocytes and specific antigen in macrophage activation by BCG. PMID:349108

  15. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    PubMed Central

    Roy, Sugata; Schmeier, Sebastian; Arner, Erik; Alam, Tanvir; Parihar, Suraj P.; Ozturk, Mumin; Tamgue, Ousman; Kawaji, Hideya; de Hoon, Michiel J. L.; Itoh, Masayoshi; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Bajic, Vladimir B.; Guler, Reto; Consortium, FANTOM; Brombacher, Frank; Suzuki, Harukazu

    2015-01-01

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation. PMID:26117544

  16. Activation of the Macrophage ?7 Nicotinic Acetylcholine Receptor and Control of Inflammation.

    PubMed

    Báez-Pagán, Carlos A; Delgado-Vélez, Manuel; Lasalde-Dominicci, José A

    2015-09-01

    Inflammatory responses to stimuli are essential body defenses against foreign threats. However, uncontrolled inflammation may result in serious health problems, which can be life-threatening. The ?7 nicotinic acetylcholine receptor, a ligand-gated ion channel expressed in the nervous and immune systems, has an essential role in the control of inflammation. Activation of the macrophage ?7 receptor by acetylcholine, nicotine, or other agonists, selectively inhibits production of pro-inflammatory cytokines while leaving anti-inflammatory cytokines undisturbed. The neural control of this regulation pathway was discovered recently and it was named the cholinergic anti-inflammatory pathway (CAP). When afferent vagus nerve terminals are activated by cytokines or other pro-inflammatory stimuli, the message travels through the afferent vagus nerve, resulting in action potentials traveling down efferent vagus nerve fibers in a process that eventually leads to macrophage ?7 activation by acetylcholine and inhibition of pro-inflammatory cytokines production. The mechanism by which activation of ?7 in macrophages regulates pro-inflammatory responses is subject of intense research, and important insights have thus been made. The results suggest that activation of the macrophage ?7 controls inflammation by inhibiting NF-?B nuclear translocation, and activating the JAK2/STAT3 pathway among other suggested pathways. While the ?7 is well characterized as a ligand-gated ion channel in neurons, whole-cell patch clamp experiments suggest that ?7's ion channel activity, defined as the translocation of ions across the membrane in response to ligands, is absent in leukocytes, and therefore, ion channel activity is generally assumed not to be required for the operation of the CAP. In this perspective, we briefly review macrophage ?7 activation as it relates to the control of inflammation, and broaden the current view by providing single-channel currents as evidence that the ?7 expressed in macrophages retains its ion translocation activity despite the absence of whole-cell currents. Whether this ion-translocating activity is relevant for the proper operation of the CAP or other important physiological processes remains obscure. PMID:25870122

  17. Effective macrophage redox defense against Chlamydia pneumoniae depends on L-type Ca2+ channel activation.

    PubMed

    Azenabor, Anthony A; Chaudhry, Aziz U

    2003-05-01

    Macrophage immune capability depends on their efficient redox potential expressed in the effective release of reactive oxygen species (ROS) and nitric oxide. In this study the effect of the activation of a specialized Ca(2+) channel on macrophage redox function during Chlamydia pneumoniae infection was explored. C. pneumoniae exhibited a profound and sustained Ca(2+) influx capacity, with evidence of activity attributable to their lipopolysaccharide (cLPS) content. Also the organism showed an additional Ca(2+) influx signal in macrophages exposed to thapsigargin, and there was evidence for the operation of a single ion channel of the L type as demonstrated by the effect of L-type channel antagonists (methoxyverapamil and nimodipine) despite exposure to Ca(2+)-rich medium. C. pneumoniae or cLPS induced intracellular ROS and NO generation in a manner consistent with dependence on intracellular calcium. L-type Ca(2+) channel blocking significantly prompted C. pneumoniae inclusion formation. These findings suggest that Ca(2+) influx signal and redox function in C. pneumoniae-infected macrophages depend on L-type Ca(2+) channel activation. PMID:12736823

  18. Comparison of various assays to quantitate macrophage activation by biological response modifiers

    SciTech Connect

    Schultz, R.M.; Nanda, S.; Altom, M.G.

    1984-01-01

    Macrophages treated with various compounds that enhance host antitumor resistance exhibit measurable changes in metabolism, function, and surface antigens. In this study, murine peptone-induced peritoneal macrophages were stimulated in vitro by bacterial lipopolysaccharide (LPS), muramyl dipeptide (MDP), and poly I.poly C. They were subsequently compared in their ability to release superoxide and act as tumoristatic and tumoricidal effector cells. Superoxide generation was assayed by the reduction of ferricytochrome C. All three compounds failed to induce significant O/sub 2/- release, unless the cells were also treated with phorbol myristate acetate (PMA). MDP was most active in potentiating the PMA response. In the tumor growth inhibition assay, cytostatic activity was comparable for all three compounds and did not exceed 32 percent. The combination of subthreshold levels of these compounds and hybridoma-derived MAF acted synergistically to induce potent cytostatic activity. In the chromium release assay, LPS and poly I.poly C rendered macrophages cytolytic for P815 target cells at concentrations greater than or equal to 1 microgram/ml. In contrast, significant cytolysis was observed with MDP only at 100 micrograms/ml. Defining precisely the effect of various biological response modifiers on several parameters of macrophage function may facilitate use of these agents in cancer therapy.

  19. Modulation of macrophage activities in proliferation, lysosome, and phagosome by the nonspecific immunostimulator, mica.

    PubMed

    Jung, Myunghwan; Shin, Min-Kyoung; Jung, Yeon-Kwon; Yoo, Han Sang

    2015-01-01

    It was reported that the aluminosilicate material mica activated macrophages and showed its immunostimulating effects. However, the mechanisms by which it exerts these effects are unclear. To address this, we evaluated the effects of mica fine particles (MFP, 804.1 ± 0.02 nm) on the murine macrophage cell line, RAW 264.7. Specifically, RAW 264.7 cells were treated with 100 and 500 ?g/mL MFP and their proliferative response was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Changes in global gene expression upon MFP treatment for 12 and 48 h were also determined using microarrays. Following the MFP treatment, RAW 264.7 cells showed a low level of proliferation compared to nontreated cells (p < 0.01). There was a change in an expression level of 1,128 genes after 48 h treatment. Specifically, genes associated with the cell cycle, DNA replication, and pyrimidine and purine metabolisms, were down-regulated in cells treated with MFP, which resulted in reduction of cell proliferation. MFP treatment also up-regulated genes associated with lysosome and phagosome function, which are both required for macrophage activities. We speculate that activation of macrophages by mica is in part derived from up-regulation of these pathways. PMID:25668030

  20. Modulation of Macrophage Activities in Proliferation, Lysosome, and Phagosome by the Nonspecific Immunostimulator, Mica

    PubMed Central

    Jung, Myunghwan; Shin, Min-Kyoung; Jung, Yeon-Kwon; Yoo, Han Sang

    2015-01-01

    It was reported that the aluminosilicate material mica activated macrophages and showed its immunostimulating effects. However, the mechanisms by which it exerts these effects are unclear. To address this, we evaluated the effects of mica fine particles (MFP, 804.1 ± 0.02 nm) on the murine macrophage cell line, RAW 264.7. Specifically, RAW 264.7 cells were treated with 100 and 500 ?g/mL MFP and their proliferative response was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Changes in global gene expression upon MFP treatment for 12 and 48 h were also determined using microarrays. Following the MFP treatment, RAW 264.7 cells showed a low level of proliferation compared to nontreated cells (p < 0.01). There was a change in an expression level of 1,128 genes after 48 h treatment. Specifically, genes associated with the cell cycle, DNA replication, and pyrimidine and purine metabolisms, were down-regulated in cells treated with MFP, which resulted in reduction of cell proliferation. MFP treatment also up-regulated genes associated with lysosome and phagosome function, which are both required for macrophage activities. We speculate that activation of macrophages by mica is in part derived from up-regulation of these pathways. PMID:25668030

  1. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury.

    PubMed

    Harvey, Lloyd D; Yin, Yan; Attarwala, Insiya Y; Begum, Gulnaz; Deng, Julia; Yan, Hong Q; Dixon, C Edward; Sun, Dandan

    2015-12-01

    We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16?mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1?ml/kg) was administered intraperitonially at 5?min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1(+) microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32(+) microglia or macrophages, but an increased CD206(+) phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1(+) microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1(+) microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic potential to ameliorate TBI-induced cellular pathology. PMID:26685193

  2. Urokinase plasminogen activator is a central regulator of macrophage three-dimensional invasion, matrix degradation, and adhesion.

    PubMed

    Fleetwood, Andrew J; Achuthan, Adrian; Schultz, Heidi; Nansen, Anneline; Almholt, Kasper; Usher, Pernille; Hamilton, John A

    2014-04-15

    Urokinase plasminogen activator (uPA) and its receptor (uPAR) coordinate a plasmin-mediated proteolytic cascade that has been implicated in cell adhesion, cell motility, and matrix breakdown, for example, during inflammation. As part of their function during inflammatory responses, macrophages move through tissues and encounter both two-dimensional (2D) surfaces and more complex three-dimensional (3D) interstitial matrices. Based on approaches employing uPA gene-deficient macrophages, plasminogen supplementation, and neutralization with specific protease inhibitors, it is reported in this study that uPA activity is a central component of the invasion of macrophages through a 3D Matrigel barrier; it also has a nonredundant role in macrophage-mediated matrix degradation. For murine macrophages, matrix metalloproteinase-9 activity was found to be required for these uPA-mediated effects. Evidence for a unique role for uPA in the inverse relationship between macrophage adhesion and 2D migration was also noted: macrophage adhesion to vitronectin was enhanced by uPA and blocked by plasminogen activator inhibitor-1, the latter approach also able to enhance in turn the 2D migration on this matrix protein. It is therefore proposed that uPA can have a key role in the inflammatory response at several levels as a central regulator of macrophage 3D invasion, matrix remodeling, and adhesion. PMID:24616477

  3. High Fc Density Particles Result in Binary Complement Activation but Tunable Macrophage Phagocytosis

    NASA Astrophysics Data System (ADS)

    Sulchek, Todd; Pacheco, Patricia; White, David

    2014-03-01

    Macrophage phagocytosis and complement system activation represent two key components of the immune system and both can be activated through the presentation of multiple Fc domains of IgG antibodies. We have created functionalized micro- and nanoparticles with various densities of Fc domains to understand the modulation of the immune system for eventual use as a novel immunomodulation platform. Phagocytosis assays were carried out by adding functionalized particles to macrophage cells and quantitatively determined using fluorescent microscopy and flow cytometry. Complement system activation by the functionalized particles in human serum was quantified with an enzyme immunoassay. Our phagocytosis assay revealed a strong dependence on particle size and Fc density. For small particles, as the Fc density increased, the number of particles phagocytosed also increased. Large particles were phagocytosed at significantly lower levels and showed no dependency on Fc density. Complement was successfully activated at levels comparable to positive controls for small particles at high Fc densities. However at low Fc densities, there is a significant decrease in complement activation. This result suggests a binary response for complement system activation with a threshold density for successful activation. Therefore, varying the Fc density on micro/nanoparticles resulted in a tunable response in macrophage phagocytosis while a more binary response for complement activation.

  4. [Functional macrophage activity in infection with virulent and avirulent strains of the dysentery microbe].

    PubMed

    Kirillicheva, G B; Kudriavtsev, L Iu; Belaia, Iu A; Tumanian, M A

    1987-05-01

    The effect of S. flexneri virulent and avirulent (vaccine) strains 2a on the cytoplasmic membrane of mouse macrophages has been studied by evaluating the action of these bacteria on the activity of 5-nucleotidase. The dynamics of the activity of 5-nucleotidase after the introduction of both virulent and avirulent strains has a phasic character with alternating rises and falls in the activity of this enzyme in comparison with the control. S. flexneri vaccine strain produces mainly a stimulating effect on the functional activity of peritoneal macrophages in mice, which is confirmed by a decrease in the activity of 5-nucleotidase; on the contrary, S. flexneri virulent strain- has mainly an inhibiting effect on the functional activity of peritoneal macrophages, which is confirmed by an increase in the activity of 5-nucleotidase in these cells. The comparative study of changes in the activity of 5-nucleotidase, following the introduction of S. flexneri, in mice, previously immunized with smallpox vaccine, and in intact mice has shown that the use of animals immunized with smallpox vaccine in the study of metabolic characteristics may lead to distortions in the results of the experiment. PMID:3039764

  5. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  6. Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection.

    PubMed

    Dai, Kai; Huang, Ling; Sun, Xiaomei; Yang, Lihua; Gong, Zuojiong

    2015-12-01

    Hepatitis B virus is a major cause of chronic liver inflammation worldwide. Innate and adaptive immune responses work together to restrain or eliminate hepatitis B virus in the liver. Compromised or failed adaptive immune response results in persistent virus replication and spread. How to promote antiviral immunity is a research focus for hepatitis B virus prevention and therapy. In this study, we investigated the role of macrophages in the regulation of antiviral immunity. We found that F4/80(+)CD206(+)CD80(lo/+) macrophages were a particular hepatic macrophage subset that expressed amphiregulin in our mouse hepatitis B virus infection model. CD206(+) macrophage-derived amphiregulin promoted the immunosuppressive activity of intrahepatic regulatory T cells, demonstrated by higher expression of CTLA-4, ICOS, and CD39, as well as stronger inhibition of antiviral function of CD8(+) T cells. Amphiregulin-neutralizing antibody diminished the effect of CD206(+) macrophages on regulatory T cells. In addition, we found that CD206(+) macrophage-derived amphiregulin activated mammalian target of rapamycin signaling in regulatory T cells, and this mammalian target of rapamycin activation was essential for promotion of regulatory T cell activity by CD206(+) macrophages. Adoptive transfer of CD206(+) macrophages into hepatitis B virus-infected mice increased cytoplasmic hepatitis B virus DNA in hepatocytes and also increased serum hepatitis B surface antigen. The antiviral activity of CD8(+) T cells was decreased after macrophage transfer. Therefore, our research indicated that amphiregulin produced by CD206(+) macrophages plays an important role in modulating regulatory T cell function and subsequently restrains the antiviral activity of CD8(+) T cells. Our study offers new insights into the immunomodulation in hepatitis B virus infection. PMID:26216935

  7. Myeloid-derived tissue-type plasminogen activator promotes macrophage motility through FAK, Rac1, and NF-?B pathways.

    PubMed

    Lin, Ling; Jin, Yang; Mars, Wendy M; Reeves, W Brian; Hu, Kebin

    2014-10-01

    Macrophage accumulation is one of the hallmarks of progressive kidney disease. Tissue-type plasminogen activator (tPA) is known to promote macrophage infiltration and renal inflammation during chronic kidney injury. However, the underlying mechanism remains largely unknown. We examined the role of tPA in macrophage motility in vivo by tracking fluorescence-labeled bone marrow-derived macrophages, and found that tPA-deficient mice had markedly fewer infiltrating fluorescence-labeled macrophages than the wild-type (WT) mice. Experiments in bone marrow chimeric mice further demonstrated that myeloid cells are the main source of endogenous tPA that promotes macrophage migration. In vitro studies showed that tPA promoted macrophage motility through its CD11b-mediated protease-independent function; and focal adhesion kinase (FAK), Rac-1, and NF-?B were indispensable to tPA-induced macrophage migration as either infection of FAK dominant-negative adenovirus or treatment with a Rac-1-specific inhibitor or NF-?B inhibitor abolished the effect of tPA. Moreover, ectopic FAK mimicked tPA and induced macrophage motility. tPA also activated migratory signaling in vivo. The accumulation of phospho-FAK-positive CD11b macrophages in the obstructed kidneys from WT mice was clearly attenuated in tPA knockout mice, which also displayed lower Rac-1 activity than their WT counterparts. Therefore, our results indicate that myeloid-derived tPA promotes macrophage migration through a novel signaling cascade involving FAK, Rac-1, and NF-?B. PMID:25131752

  8. Nitric oxide involvement in the anti-tumor effect of mistletoe (Viscum album L.) extracts Iscador on human macrophages.

    PubMed

    Mossalayi, M Djavad; Alkharrat, Abir; Malvy, Denis

    2006-06-01

    Lectins from different types of mistletoe (Viscum album, VA) have cytotoxic and immunomodulatory properties that may be relevant in the inhibition of tumor growth. The mechanism of this anti-tumoral activity remains unknown, although recent investigations point out the induction of anti-tumoral cytotoxic T cell activation. In this study therapeutically available mistletoe extracts (Iscador) prepared from Quercus (VA-Q), apple (Malus, VA-M) or pine (Pinus, VA-P) were used to investigate their capacity to induce tumor regression through the modulation of another T helper-1 (Th-1)-mediated anti-tumoral activity: the activation of macrophages. Macrophages are essential targets for both pro- or anti-inflammatory drugs and constitute an essential member of the anti-tumoral immune response. Freshly isolated human monocyte-derived macrophages are activated and various VA extracts are directly incorporated to cultures to assay their properties on the inflammatory and/or tumor cytotoxic responses. The data indicate that immunomodulatory activities of VA extracts differ according to their origin. VA-M and VA-P were able to increase anti-tumoral activity of activated human macrophages, with a possible role for nitric oxide in this effect. PMID:16927526

  9. Protective effect of cyclosporin A and FK506 from nitric oxide-dependent apoptosis in activated macrophages

    PubMed Central

    Hortelano, Sonsoles; López-Collazo, Eduardo; Boscá, Lisardo

    1999-01-01

    Activation of macrophages with lipopolysaccharide (LPS) and low doses of interferon-? (IFN-?) induced apoptotic death through a nitric oxide-dependent pathway. Treatment of cells with the immunosuppressors cyclosporin A (CsA) or FK506 inhibited the activation-dependent apoptosis. These drugs decreased the up-regulation of p53 and Bax characteristic of activated macrophages. Moreover, incubation of activated macrophages with CsA and FK506 contributed to maintain higher levels of Bcl-2 than in LPS/IFN-? treated cells. The inhibition of apoptosis exerted by CsA and FK506 in macrophages was also observed when cell death was induced by treatment with chemical nitric oxide donors. Incubation of macrophages with LPS/IFN-? barely affected caspase-1 but promoted an important activation of caspase-3. Both CsA and FK506 inhibited pathways leading to caspase-3 activation. Moreover, the cleavage of poly(ADP-ribose) polymerase, a well established caspase substrate, was reduced by these immunosuppressive drugs. CsA and FK506 reduced the release of cytochrome c to the cytosol and the activation of caspase-3 in cells treated with nitric oxide donors. These results indicate that CsA and FK506 protect macrophages from nitric oxide-dependent apoptosis and suggest a contribution of the macrophage to innate immunity under conditions of immunosuppression of the host. PMID:10205001

  10. Activation of macrophages stimulated by the bengkoang fiber extract through toll-like receptor 4.

    PubMed

    Kumalasari, Ika Dyah; Nishi, Kosuke; Putra, Agus Budiawan Naro; Sugahara, Takuya

    2014-07-25

    Bengkoang (Pachyrhizus erosus (L.) Urban) is an edible root tuber containing fairly large amounts of carbohydrates and crude fibers. Our previous studies showed that the bengkoang fiber extract (BFE) stimulates activation of macrophages, leading to induction of phagocytotic activity and cytokine production. In the present study we investigated the mechanism underlying activation of murine macrophages by BFE. BFE increased production of TNF-?, IL-6, and nitric oxide by J774.1 cells. In addition BFE also facilitated the gene expression levels of inducible nitric oxide synthase. We examined the effect of a TLR4 inhibitor on cytokine production to investigate the membrane receptor of macrophage activation by BFE. Treatment of J774.1 cells with the TLR4 inhibitor significantly inhibited production of IL-6 and TNF-?, suggesting that TLR4 is the target membrane receptor for BFE. The main signal molecules located downstream of TLR4 such as JNK, p38, ERK, and NF-?B were activated by BFE treatment. The immunostimulatory effect of BFE was cancelled by the pectinase treatment, suggesting that the active ingredient in BFE is pectin-like molecules. Overall results suggested that BFE activates J774.1 cells via the MAPK and NF-?B signaling pathways. PMID:24770453

  11. IL-33 attenuates EAE by suppressing IL-17 and IFN-? production and inducing alternatively activated macrophages.

    PubMed

    Jiang, Hui-Rong; Milovanovi?, Marija; Allan, Debbie; Niedbala, Wanda; Besnard, Anne-Galle; Fukada, Sandra Y; Alves-Filho, Jose C; Togbe, Dieudonnée; Goodyear, Carl S; Linington, Christopher; Xu, Damo; Lukic, Miodrag L; Liew, Foo Y

    2012-07-01

    Interleukin (IL)-33, a member of the IL-1 cytokine family, is an important modulator of the immune system associated with several immune-mediated disorders. High levels of IL-33 are expressed by the central nervous system (CNS) suggesting a potential role of IL-33 in autoimmune CNS diseases. We have investigated the expression and function of IL-33 in the development of experimental autoimmune encephalomyelitis (EAE) in mice. We report here that IL-33 and its receptor ST2 (IL-33R?) are highly expressed in spinal cord tissue, and ST2 expression is markedly increased in the spinal cords of mice with EAE. Furthermore, ST2-deficient (ST2(-/-) ) mice developed exacerbated EAE compared with wild-type (WT) mice while WT, but not ST2(-/-) EAE mice treated with IL-33 developed significantly attenuated disease. IL-33-treated mice had reduced levels of IL-17 and IFN-? but produced increased amounts of IL-5 and IL-13. Lymph node and splenic macrophages of IL-33-treated mice showed polarization toward an alternatively activated macrophage (M2) phenotype with significantly increased frequency of MR(+) PD-L2(+) cells. Importantly, adoptive transfer of these IL-33-treated macrophages attenuated EAE development. Our data therefore demonstrate that IL-33 plays a therapeutic role in autoimmune CNS disease by switching a predominantly pathogenic Th17/Th1 response to Th2 activity, and by polarization of anti-inflammatory M2 macrophages. PMID:22585447

  12. Quercetin-3-O-glucuronide induces ABCA1 expression by LXR? activation in murine macrophages

    SciTech Connect

    Ohara, Kazuaki; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa; Shindo, Kazutoshi; Yajima, Hiroaki; Yoshida, Aruto

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXR?. •Q3GA induced ABCA1 via LXR? activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXR?), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXR? in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  13. The hydroxy-naphthoquinone lapachol arrests mycobacterial growth and immunomodulates host macrophages.

    PubMed

    Oliveira, Renato A S; Azevedo-Ximenes, Eulalia; Luzzati, Roberto; Garcia, Rodolfo C

    2010-11-01

    The present study reports the anti-mycobacterial activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol) as well as its influence on macrophage functions. Lapachol (L) did not induce apoptosis/necrosis of THP-1 macrophages at ?32 ?g/mL. Mycobacterium avium liquid growth was arrested by ?32 ?g/mL and intra-macrophage proliferation by ?16 ?g/mL lapachol. The main immuno-modulatory effects of lapachol observed were an up-regulation of interferon-?-receptor 1 (IFN-?R1) and major histocompatibility complex class II (MHCII) surface expression, and a marked inhibition of IL-10 secretion. Lapachol did not affect resting, IFN-?- or toll-like receptor 2 (TLR2)-induced levels of oxygen and nitrogen metabolism key proteins nor the TLR2-mediated secretion of TNF-?, nor induced either oxidative or endoplasmic reticulum (ER) stress. Lapachol inhibited the surface expression of the co-stimulatory molecule CD86 but not that of CD80 and CD83. The results obtained indicate that the substituted naphthoquinone lapachol exhibits an anti-mycobacterial activity that is more efficient intra- than extra-cellularly, and exerts immuno-modulatory effects some of which may enhance the capacity of the host cell to control mycobacterial growth. The immune-modulatory action of lapachol could contribute to its more efficient intra-macrophage anti-mycobacterial activity. PMID:20837170

  14. Alveolar Macrophage Recruitment and Activation by Chronic Second Hand Smoke Exposure in Mice

    PubMed Central

    Ellwanger, Almut; Solon, Margaret; Cambier, Christopher J.; Pinkerton, Kent E.; Koth, Laura L.

    2010-01-01

    Background Approximately 15% of cases of COPD occur in non-smokers. Among the potential risk factors for COPD in non-smokers is second hand smoke (SHS) exposure. However, the Surgeon General reported in 2006 that the evidence linking second hand smoke and COPD is insufficient to infer a causal relationship, largely because current evidence does not establish a biological link. Objectives The goal of this study was to determine whether SHS exposure can induce alveolar macrophage recruitment and expression of activation markers that we have previously demonstrated in human smokers and in mouse models of emphysema. To achieve these goals, we studied mice exposed to an ambient mixture of predominantly [89%] sidestream smoke at increasing doses over 3 months. Results We found that second hand smoke exposure induced a dose-dependent increase in alveolar macrophage recruitment (mean ± sd; 224,511 ± 52,330 vs 166,152 ± 47,989 macrophages/ml of bronchoalveolar lavage in smoke-exposed vs air-exposed controls at 3 months, p=0.003). We also found increased expression of several markers of alveolar macrophage activation (PLA2g7, dkfzp434l142, Trem-2, and pirin, all p<0.01 at 3 months) and increased lavage levels of two inflammatory mediators associated with COPD (CCL2 [MCP-1], 58 ± 12 vs. 43 ± 22 pg/ml, p=0.03; and TNF?, 138 ± 43 vs 88 ± 78 pg/ml, p=0.04 at 3 months). Conclusions These findings indicate that second smoke exposure can cause macrophage recruitment and activation, providing a biological link between second hand smoke exposure and the development of inflammatory processes linked to COPD. PMID:19378221

  15. Alveolar macrophage recruitment and activation by chronic second hand smoke exposure in mice.

    PubMed

    Woodruff, Prescott G; Ellwanger, Almut; Solon, Margaret; Cambier, Christopher J; Pinkerton, Kent E; Koth, Laura L

    2009-04-01

    Approximately 15% of cases of COPD occur in non-smokers. Among the potential risk factors for COPD in non-smokers is second-hand smoke (SHS) exposure. However, the Surgeon General reported in 2006 that the evidence linking second hand smoke and COPD is insufficient to infer a causal relationship, largely because current evidence does not establish a biological link. The goal of this study was to determine whether SHS exposure can induce alveolar macrophage recruitment and expression of activation markers that we have previously demonstrated in human smokers and in mouse models of emphysema. To achieve these goals, we studied mice exposed to an ambient mixture of predominantly [89%] sidestream smoke at increasing doses over 3 months. We found that second hand smoke exposure induced a dose-dependent increase in alveolar macrophage recruitment (mean +/- sd; 224,511 +/- 52,330 vs 166,152 +/- 47,989 macrophages/ml of bronchoalveolar lavage in smoke-exposed vs air-exposed controls at 3 months, p = 0.003). We also found increased expression of several markers of alveolar macrophage activation (PLA2g7, dkfzp434l142, Trem-2, and pirin, all p < 0.01 at 3 months) and increased lavage levels of two inflammatory mediators associated with COPD (CCL2 [MCP-1], 58 +/- 12 vs. 43 +/- 22 pg/ml, p = 0.03; and TNFalpha, 138 +/- 43 vs 88 +/- 78 pg/ml, p = 0.04 at 3 months). These findings indicate that second smoke exposure can cause macrophage recruitment and activation, providing a biological link between second-hand smoke exposure and the development of inflammatory processes linked to COPD. PMID:19378221

  16. Immunomodulatory Effect of Gymnema sylvestre (R.Br.) Leaf Extract: An In Vitro Study in Rat Model

    PubMed Central

    Dwivedi, Padmanabh; Chaudhary, B. R.

    2015-01-01

    Gymnema sylvestre Wild R.Br (family: Asclepidaceae) is a valuable medicinal plant used in folk medicine to treat diabetes, obesity, asthma etc. in India for antiquity. Diabetes mellitus is a syndrome characterized immunologically by lymphocyte apoptosis and reduced cell-mediated and humoral immunity. Modulation of immune responses to alleviate diseases has been of interest, and traditional herbal medicines may play an important role in this regard. In this study, we aim to evaluate the immunomodulatory potential of methanolic extract of G. sylvestre leaf using rat model. HPLC analysis of leaf extract was carried out for gymnemic acid. The method involves the initial hydrolysis of gymnemic acids, the active ingredients, to a common aglycone followed by the quantitative estimation of gymnemagenin, using gymnemagenin as reference standard. Gymnemic acid content was 2.40% (w/w) in G. sylvestre leaf extract. In vitro immunomodulatory activity of the methanolic extract of G. sylvestre leaf (1–200?g/ml) was evaluated by gauging its effects on nitroblue tetrazolium reduction and nitrite release in rat peritoneal macrophages and on mitogen (ConA, PHA and LPS) induced splenic lymphocyte proliferation. G. sylvestre leaf extract showed significant (<0.05) enhancement in NO and ROS generation in macrophages and in proliferation of lymphocytes in dose dependent manner. EC50 value was 3.10, 3.75 and 2.68?g/ml for NBT reduction, nitrite release and lymphoproliferation, respectively. Potential effect was observed at 100 ?g/ml in NO and ROS generation in macrophages and 20 ?g/ml in lymphocyte proliferation. G. sylvestre leaf extract stimulates macrophage reactivity, increasing the level of activity even higher when combined with PMA or LPS. These findings suggest the presence of active compounds, gymnemic acid, in methanolic extract of G. sylvestre leaf that stimulates both myeloid and lymphoid components of immune system, and therefore can restore the innate immune function. Through this study, the traditional knowledge of anti-diabetic property of G. sylvestre is scientifically supplemented with its immunomodulatory properties. PMID:26474420

  17. Anti-Mycobacterial Activity of Tamoxifen Against Drug-Resistant and Intra-Macrophage Mycobacterium tuberculosis.

    PubMed

    Jang, Woong Sik; Kim, Sukyung; Podder, Biswajit; Jyoti, Md Anirban; Nam, Kung-Woo; Lee, Byung-Eui; Song, Ho-Yeon

    2015-06-01

    Recently, it has become a struggle to treat tuberculosis with the current commercial antituberculosis drugs because of the increasing emergence of multidrug-resistant (MDR) tuberculosis and extensively drug-resistant (XDR) tuberculosis. We evaluated here the antimycobacterial activity of tamoxifen, known as a synthetic anti-estrogen, against eight drug-sensitive or resistant strains of Mycobacterium tuberculosis (TB), and the active intracellular killing of tamoxifen on TB in macrophages. The results showed that tamoxifen had antituberculosis activity against drug-sensitive strains (MIC, 3.125-6.25 ?g/ml) as well as drug-resistant strains (MIC, 6.25 to 12.5 ?g/ml). In addition, tamoxifen profoundly decreased the number of intracellular TB in macrophages in a dose-dependent manner. PMID:25639719

  18. Effects of Nanosized Lithium Carbonate Particles on the Functional Activity of Macrophages During Development of Hepatocarcinoma 29.

    PubMed

    Konenkov, V I; Borodin, Yu I; Makarova, O P; Bgatova, N P; Rachkovskaya, L N

    2015-08-01

    The functional activity of macrophages in response to injection of nanosized lithium carbonate particles after initiation of hepatocarcinoma 29 in male CBA mice was evaluated by the production of NO, arginase activity, and absorption of zymosan granules. In intact animals, NO production by peritoneal macrophages increased by 4 times and arginase activity 3.1 times in response to a single injection of nanosized particles into the hip muscle. The level of NO production by macrophages remained high after 4 and 5 injections, while arginase activity returned to normal. The level of phagocytic peritoneal macrophages increased by 1.4 times after 5 injections of the particles. The level of NO production by macrophages gradually increased in animals with hepatocarcinoma developing in the hip muscle: by 1.6 times on day 3, 3.2 times on day 7, and by 2.6 times on day 13 in comparison with the corresponding parameters in intact animals. The increase of NO production by peritoneal macrophages after tumor process initiation was not paralleled by changes in arginase activity and absorption of zymosan granules. The results indicated that injection of nanosized lithium carbonate particles after inoculation of hepatocarcinoma 29 cells in the right hip muscle tissue was inessential for the function of peritoneal macrophages by the studied parameters. PMID:26388569

  19. Neither Classical nor Alternative Macrophage Activation Is Required for Pneumocystis Clearance during Immune Reconstitution Inflammatory Syndrome.

    PubMed

    Zhang, Zhuo-Qian; Wang, Jing; Hoy, Zachary; Keegan, Achsah; Bhagwat, Samir; Gigliotti, Francis; Wright, Terry W

    2015-12-01

    Pneumocystis is a respiratory fungal pathogen that causes pneumonia (Pneumocystis pneumonia [PcP]) in immunocompromised patients. Alveolar macrophages are critical effectors for CD4(+) T cell-dependent clearance of Pneumocystis, and previous studies found that alternative macrophage activation accelerates fungal clearance during PcP-related immune reconstitution inflammatory syndrome (IRIS). However, the requirement for either classically or alternatively activated macrophages for Pneumocystis clearance has not been determined. Therefore, RAG2(-/-) mice lacking either the interferon gamma (IFN-?) receptor (IFN-?R) or interleukin 4 receptor alpha (IL-4R?) were infected with Pneumocystis. These mice were then immune reconstituted with wild-type lymphocytes to preserve the normal T helper response while preventing downstream effects of Th1 or Th2 effector cytokines on macrophage polarization. As expected, RAG2(-/-) mice developed severe disease but effectively cleared Pneumocystis and resolved IRIS. Neither RAG/IFN-?R(-/-) nor RAG/IL-4R?(-/-) mice displayed impaired Pneumocystis clearance. However, RAG/IFN-?R(-/-) mice developed a dysregulated immune response, with exacerbated IRIS and greater pulmonary function deficits than those in RAG2 and RAG/IL-4R?(-/-) mice. RAG/IFN-?R(-/-) mice had elevated numbers of lung CD4(+) T cells, neutrophils, eosinophils, and NK cells but severely depressed numbers of lung CD8(+) T suppressor cells. Impaired lung CD8(+) T cell responses in RAG/IFN-?R(-/-) mice were associated with elevated lung IFN-? levels, and neutralization of IFN-? restored the CD8 response. These data demonstrate that restricting the ability of macrophages to polarize in response to Th1 or Th2 cytokines does not impair Pneumocystis clearance. However, a cell type-specific IFN-?/IFN-?R-dependent mechanism regulates CD8(+) T suppressor cell recruitment, limits immunopathogenesis, preserves lung function, and enhances the resolution of PcP-related IRIS. PMID:26371121

  20. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  1. Molecular Mechanism of Macrophage Activation by Red Ginseng Acidic Polysaccharide from Korean Red Ginseng

    PubMed Central

    Byeon, Se Eun; Lee, Jaehwi; Kim, Ji Hye; Yang, Woo Seok; Kwak, Yi-Seong; Kim, Sun Young; Choung, Eui Su; Rhee, Man Hee; Cho, Jae Youl

    2012-01-01

    Red ginseng acidic polysaccharide (RGAP), isolated from Korean red ginseng, displays immunostimulatory and antitumor activities. Even though numerous studies have been reported, the mechanism as to how RGAP is able to stimulate the immune response is not clear. In this study, we aimed to explore the mechanism of molecular activation of RGAP in macrophages. RGAP treatment strongly induced NO production in RAW264.7 cells without altering morphological changes, although the activity was not strong compared to LPS-induced dendritic-like morphology in RAW264.7 cells. RGAP-induced NO production was accompanied with enhanced mRNA levels of iNOS and increases in nuclear transcription factors such as NF-?B, AP-1, STAT-1, ATF-2, and CREB. According to pharmacological evaluation with specific enzyme inhibitors, Western blot analysis of intracellular signaling proteins and inhibitory pattern using blocking antibodies, ERK, and JNK were found to be the most important signaling enzymes compared to LPS signaling cascade. Further, TLR2 seems to be a target surface receptor of RGAP. Lastly, macrophages isolated from RGS2 knockout mice or wortmannin exposure strongly upregulated RGAP-treated NO production. Therefore, our results suggest that RGAP can activate macrophage function through activation of transcription factors such as NF-?B and AP-1 and their upstream signaling enzymes such as ERK and JNK. PMID:22474399

  2. Constitutive ERK MAP Kinase Activity Regulates Macrophage ATP Production and Mitochondrial Integrity1

    PubMed Central

    Monick, Martha M.; Powers, Linda S.; Barrett, Christopher W.; Hinde, Sara; Ashare, Alix; Groskreutz, Dayna J.; Nyunoya, Toru; Coleman, Mitchell; Spitz, Douglas R.; Hunninghake, Gary W.

    2008-01-01

    A unique feature of human alveolar macrophages is their prolonged survival in the face of a stressful environment. We have shown previously that the ERK MAP kinase is constitutively active in these cells and is important in prolonging cell survival. This study examines the role of the ERK pathway in maintaining mitochondrial energy production. The data demonstrate that ATP levels in alveolar macrophages depend on intact mitochondria and optimal functioning of the electron transport chain. Significant levels of MEK and ERK localize to the mitochondria and inhibition of ERK activity induces an early and profound depletion in cellular ATP coincident with a loss of mitochondrial transmembrane potential. The effect of ERK suppression on ATP levels was specific as it did not occur with PI3-kinase/Akt, p38 or JNK suppression. ERK inhibition led to cytosolic release of mitochondrial proteins and caspase activation. Both ERK inhibition and mitochondrial blockers induced loss of plasma membrane permeability and cell death. The cell death induced by ERK inhibition had hallmarks of both apoptotic (caspase activation) and necrotic (ATP loss) cell death. By blocking ERK-inhibition induced reactive oxygen species, caspase activation was prevented, though necrotic pathways continued to induce cell death. This suggests that mitochondrial dysfunction caused by ERK inhibition generates both apoptotic and necrotic cell death-inducing pathways. As a composite, these data demonstrate a novel mitochondrial role for ERK in maintaining mitochondrial membrane potential and ATP production in human alveolar macrophages. PMID:18490749

  3. ACROLEIN ACTIVATES MATRIX METALLOPROTEINASES BY INCREASING REACTIVE OXYGEN SPECIES IN MACROPHAGES

    PubMed Central

    O’Toole, Timothy E.; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+]i), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+]I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+]I, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure. PMID:19371603

  4. LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPAR? ligand synthesis

    PubMed Central

    Lefèvre, Lise; Authier, Hélène; Stein, Sokrates; Majorel, Clarisse; Couderc, Bettina; Dardenne, Christophe; Eddine, Mohamad Ala; Meunier, Etienne; Bernad, José; Valentin, Alexis; Pipy, Bernard; Schoonjans, Kristina; Coste, Agnès

    2015-01-01

    Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPAR? ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPAR? axis. PMID:25873311

  5. Macrophage peroxisome proliferator-activated receptor ? deficiency delays skin wound healing through impairing apoptotic cell clearance in mice

    PubMed Central

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-01

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPAR?) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPAR? expression was upregulated during skin wound healing. Furthermore, macrophage PPAR? deficiency (PPAR?-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-?) expression in wounds of PPAR?-KO mice was significantly increased and local restoration of TNF-? reversed the healing deficit in PPAR?-KO mice. Wound macrophages produced higher levels of TNF-? in PPAR?-KO mice compared with control. In vitro, the higher production of TNF-? by PPAR?-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPAR?-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPAR? agonist accelerated wound healing and reduced local TNF-? expression and wound apoptotic cells accumulation in wild type but not PPAR?-KO mice. Therefore, PPAR? has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing. PMID:25590807

  6. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    SciTech Connect

    Hwang, Tsong-Long; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan ; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5?-hydroxymethyl-2?-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-?B activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ? YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ? The combination of YC-1 and PGE1 increased CREB but not NF?B activation. ? The combined effects were reversed by H89. ? The combination of rolipram and PGE1 triggered NO production and iNOS expression. ? Effect of YC-1 occurred through inhibition of cAMP-specific PDE.

  7. Anti-Inflammatory Effects of Lactobacillus Rahmnosus and Bifidobacterium Breve on Cigarette Smoke Activated Human Macrophages

    PubMed Central

    Mortaz, Esmaeil; Adcock, Ian M.; Ricciardolo, Fabio L. M.; Varahram, Mohammad; Jamaati, Hamidreza; Velayati, Ali Akbar; Folkerts, Gert; Garssen, Johan

    2015-01-01

    Background Chronic obstructive pulmonary disease (COPD) is a major global health problem with cigarette smoke (CS) as the main risk factor for its development. Airway inflammation in COPD involves the increased expression of inflammatory mediators such as CXCL-8 and IL-1? which are important mediators for neutrophil recruitment. Macrophages are an important source of these mediators in COPD. Lactobacillus rhamnosus (L. rhamnosus) and Befidobacterium breve (B. breve) attenuate the development of ‘allergic asthma’ in animals but their effects in COPD are unknown. Objective To determine the anti-inflammatory effects of L. rhamnosus and B. breve on CS and Toll-like receptor (TLR) activation. Design We stimulated the human macrophage cell line THP-1 with CS extract in the presence and absence of L. rhamnosus and B. breve and measured the expression and release of inflammatory mediators by RT-qPCR and ELISA respectively. An activity assay and Western blotting were used to examine NF-?B activation. Results Both L. rhamnosus and B. breve were efficiently phagocytized by human macrophages. L. rhamnosus and B. breve significantly suppressed the ability of CS to induce the expression of IL-1?, IL-6, IL-10, IL-23, TNF?, CXCL-8 and HMGB1 release (all p<0.05) in human THP-1 macrophages. Similar suppression of TLR4- and TLR9-induced CXCL8 expression was also observed (p<0.05). The effect of L. rhamnosus and B. breve on inflammatory mediator release was associated with the suppression of CS-induced NF-?B activation (p<0.05). Conclusions This data indicate that these probiotics may be useful anti-inflammatory agents in CS-associated disease such as COPD. PMID:26317628

  8. Blockade of TGF-?-activated kinase 1 prevents advanced glycation end products-induced inflammatory response in macrophages.

    PubMed

    Xu, Xingxin; Qi, Xiangming; Shao, Yunxia; Li, Yuanyuan; Fu, Xin; Feng, Shiyao; Wu, Yonggui

    2016-02-01

    Advanced glycation end products (AGEs), inflammatory-activated macrophages are essential in the initiation and progression of diabetic nephropathy (DN). TGF-?-activated kinase 1 (TAK1) plays a vital role in innate immune responses and inflammation. However, little information has been available about the effects of AGEs on the regulation of TAK1 expression and underlying mechanisms in AGEs-stimulated macrophage activation. We hypothesized TAK1 signal pathway in AGEs conditions could be a vital factor contributing to macrophage activation and inflammation. Thus, in the present study, we used bone marrow-derived macrophages (BMMs) to explore the functional role and potential mechanisms of TAK1 pathway under AGEs conditions. Results indicated that TAK1 played important roles in AGEs-induced mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B protein (NF-?B) activation, which regulated the production of monocyte chemo-attractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-?) in AGEs-stimulated macrophages. The results also suggested that TAK1 inhibitor (5Z-7-oxozeaenol) could inhibit AGEs-induced macrophage activation to down-regulate inflammatory cytokine production via MAPKs and NF-?B pathways, indicating that 5Z-7-oxozeaenol might be an immunoregulatory agent against AGEs-stimulated inflammatory response in DN. PMID:26687627

  9. ELECTROSTATIC CHARGE ON NANO-PARTICLES ACTIVATES CNS MACROPHAGES (MICROGLIA).

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  10. Mesenchymal stem cell-educated macrophages

    PubMed Central

    2012-01-01

    Mesenchymal stem cells (MSC) mediate their immunosuppressive effects via a variety of mechanisms. One of these mechanisms involves the induction of macrophages with immunomodulatory capacities. This effect of MSC may be exploited when MSC are used as a cell therapeutic product. Furthermore, MSC are resident in tissues where they may locally target infiltrating macrophages to adapt more regulatory properties. The present review discusses the interaction between MSC and macrophages, the induction of MSC-educated macrophages, how these cells position between other immune regulatory cells, and how they may be used in the clinic. PMID:23369493

  11. Immune Activity of BCG Infected Mouse Macrophages Treated with a Novel Recombinant Mouse Lactoferrin.

    PubMed

    O'Shea, Kelly M; Hwang, Shen-An; Actor, Jeffrey K

    2015-09-01

    Lactoferrin has been investigated for its adjuvant action to boost the BCG vaccine. Previous studies demonstrated that lactoferrin (LF) enhanced efficacy of the Bacillus Calmette-Guérin (BCG) vaccine to protect mice against the virulent Erdman Mycobacterium tuberculosis challenge. The studies here investigate the hypothesis that a novel CHO-derived recombinant mouse LF can modify cytokine production and antigen presentation molecules on macrophages. The mouse LF (rmLF) was examined for effects on bone marrow derived macrophage (BMM) activities when cultured with BCG. Comparisons were made to CHO-derived recombinant human LF (rhLF). Inflammatory cytokine responses were investigated, as were antigen presentation and associated co-stimulatory molecules. Cytokine responses were subsequently measured when these cells were co-cultured with naïve or BCG sensitized CD4+ lymphocytes. While overall responses were similar between mouse, human, and bovine forms, the homologous rmLF treated infected BMMs showed unique activation patterns of cytokine production. These results indicate that species-specific LF can have different effects on mouse macrophages exposed to BCG, thus potentially affecting adjuvant activity when used in models of vaccination in mice. PMID:26586698

  12. Production of macrophage activating factor by human leukemic T cell lines.

    PubMed

    Imai, K; Suzuki, Y; Harada, T; Morikawa, S; Tanaka, A

    1985-01-01

    Human leukemic T cell lines were tested for their ability to produce a macrophage activating factor. When mouse peritoneal macrophages were cultured for 48 hr in the presence of culture supernatants from cell lines HPB-ALL, CCRF-CEM, or MOLT-4, glucose oxidation via the hexose monophosphate pathway was enhanced by five to seven fold. Culture supernatants from cell line HPB-MLT stimulated the oxidation to a lesser extent. However, cell line CCRF-HSB-2 was essentially inactive as a producer. The active supernatants also stimulated the release of hydrogen peroxide from macrophages, whereas the inactive one did not. Since treatment of the cell lines with 12-o-tetradecanoyl phorbol acetate or phytohemagglutinin had little effect on the production of the factor except HPB-ALL, the cell lines seemed to secrete the factor constitutively. The stimulatory effect was dose-dependent and evident at a concentration as low as a 1/80 dilution. The factor was resistant to heat treatment at 100 C for 20 min, nondialysable and sensitive to protease digestion. The activating factor could be partially purified by anion exchange and gel filtration chromatographies. PMID:3906371

  13. Activation of human monocytes/macrophages by hypo-osmotic shock

    PubMed Central

    Frenkel, O; Shani, E; Ben-Bassat, I; Brok-Simoni, F; Shinar, E; Danon, D

    2001-01-01

    Phagocytosis and secretion of interleukins and growth factors put the macrophage in the centre of the wound healing process. For the last four years over 400 human ulcers have been treated in elderly and paraplegic patients by local application of monocytes prepared from a blood unit, in a unique, closed, sterile system. The process of preparation includes a step of hypo-osmotic shock, which induces monocyte/macrophage activation. This is different from any other known method of activation. In the present study we evaluated the efficacy of the hypo-osmotic shock. We found enhanced levels of IL-1 (P = 0·004) and IL-6 (P = 0·001) in the incubation medium (100% autologous serum) of the activated cells, as compared with controls, prepared in the same system. The IL-1 reached a plateau after 6 and 12 h incubation at 37°C, in both experimental and control incubation medium. The level of IL-6 was further elevated after 12 and 24 h incubation in experimental and control incubation mediums (P = 0·001). The phagocytosis of fluorescent beads was markedly enhanced after hypo-osmotic shock (P = 0·005). The osmotic shock induced macrophages were compared to those stimulated with LPS, and osmotic shock was proved to be at least as efficient method of stimulation as LPS. PMID:11359448

  14. The transcriptional PPAR?/? network in human macrophages defines a unique agonist-induced activation state

    PubMed Central

    Adhikary, Till; Wortmann, Annika; Schumann, Tim; Finkernagel, Florian; Lieber, Sonja; Roth, Katrin; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Kleinesudeik, Lara; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    Peroxisome proliferator-activated receptor ?/? (PPAR?/?) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPAR?/?-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NF?B and STAT1 target genes that are repressed by agonists. Accordingly, PPAR?/? agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPAR?/? agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fc? receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPAR?/? transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPAR?/? agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPAR?/? in immune regulation. PMID:25934804

  15. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith

    PubMed Central

    2011-01-01

    Background Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of M. fasciculata geopropolis against oral pathogens, its effects on S. mutans biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on S. mutans and its immunotoxicological potential. Methods Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs. Results Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for S. mutans and C. albicans, but presented no activity against L. acidophilus. The MBCs for HAE-2 and HAE-3 against S. mutans were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on S. mutans biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected. Conclusions In summary, geopropolis produced by M. fasciculata can exert antimicrobial action against S. mutans and C. albicans, with significant inhibitory activity against S. mutans biofilms. The extract with the highest flavonoid concentration, HAE-2, presented the highest antimicrobial activity. In addition, a geopropolis-based gel is not toxic in an animal model and displays anti-inflammatory effect. PMID:22053900

  16. Activation of autophagy in macrophages by pro-resolving lipid mediators.

    PubMed

    Prieto, Patricia; Rosales-Mendoza, César Eduardo; Terrón, Verónica; Toledano, Víctor; Cuadrado, Antonio; López-Collazo, Eduardo; Bannenberg, Gerard; Martín-Sanz, Paloma; Fernández-Velasco, María; Boscá, Lisardo

    2015-10-01

    The resolution of inflammation is an active process driven by specialized pro-resolving lipid mediators, such as 15-epi-LXA4 and resolvin D1 (RvD1), that promote tissue regeneration. Macrophages regulate the innate immune response being key players during the resolution phase to avoid chronic inflammatory pathologies. Their half-life is tightly regulated to accomplish its phagocytic function, allowing the complete cleaning of the affected area. The balance between apoptosis and autophagy appears to be essential to control the survival of these immune cells within the inflammatory context. In the present work, we demonstrate that 15-epi-LXA4 and RvD1 at nanomolar concentrations promote autophagy in murine and human macrophages. Both compounds induced the MAP1LC3-I to MAP1LC3-II processing and the degradation of SQSTM1 as well as the formation of MAP1LC3(+) autophagosomes, a typical signature of autophagy. Furthermore, 15-epi-LXA4 and RvD1 treatment favored the fusion of the autophagosomes with lysosomes, allowing the final processing of the autophagic vesicles. This autophagic response involves the activation of MAPK1 and NFE2L2 pathways, but by an MTOR-independent mechanism. Moreover, these pro-resolving lipids improved the phagocytic activity of macrophages via NFE2L2. Therefore, 15-epi-LXA4 and RvD1 improved both survival and functionality of macrophages, which likely supports the recovery of tissue homeostasis and avoiding chronic inflammatory diseases. PMID:26506892

  17. Macrophage Bactericidal Activities against Staphylococcus aureus Are Enhanced In Vivo by Selenium Supplementation in a Dose-Dependent Manner

    PubMed Central

    Aribi, Mourad; Meziane, Warda; Habi, Salim; Boulatika, Yasser

    2015-01-01

    Background Dietary selenium is of fundamental importance to maintain optimal immune function and enhance immunity during infection. To this end, we examined the effect of selenium on macrophage bactericidal activities against Staphylococcus aureus. Methods Assays were performed in golden Syrian hamsters and peritoneal macrophages cultured with S. aureus and different concentrations of selenium. Results Infected and selenium-supplemented animals have significantly decreased levels of serum nitric oxide (NO) production when compared with infected but non-selenium-supplemented animals at day 7 post-infection (p < 0.05). A low dose of 5 ng/mL selenium induced a significant decrease in macrophage NO production, but significant increase in hydrogen peroxide (H2O2) levels (respectively, p = 0.009, p < 0.001). The NO production and H2O2 levels were significantly increased with increasing concentrations of selenium; the optimal macrophage activity levels were reached at 20 ng/mL. The concentration of 5 ng/mL of selenium induced a significant decrease in the bacterial arginase activity but a significant increase in the macrophage arginase activity. The dose of 20 ng/mL selenium induced a significant decrease of bacterial growth (p < 0.0001) and a significant increase in macrophage phagocytic activity, NO production/arginase balance and S. aureus killing (for all comparisons, p < 0.001). Conclusions Selenium acts in a dose-dependent manner on macrophage activation, phagocytosis and bacterial killing suggesting that inadequate doses may cause a loss of macrophage bactericidal activities and that selenium supplementation could enhance the in vivo control of immune response to S. aureus. PMID:26340099

  18. Autocrine Regulation of Macrophage Activation via Exocytosis of ATP and Activation of P2Y11 Receptor

    PubMed Central

    Harada, Hitoshi; Moriyama, Yoshinori; Kojima, Shuji

    2013-01-01

    It is important to understand the mechanisms that regulate macrophage activation to establish novel therapies for inflammatory diseases, such as sepsis; a systemic inflammatory response syndrome generally caused by bacterial lipopolysaccharide (LPS). In this study, we investigated the involvement of extracellular ATP-mediated autocrine signaling in LPS-induced macrophage activation. We show here that ATP release via exocytosis, followed by activation of P2Y11 receptor, is a major pathway of the macrophage activation, leading to release of cytokines. Treatment of human monocyte THP-1 cells with LPS induced rapid ATP release from cells, and this release was blocked by knockdown of SLC17A9 (vesicular nucleotide transporter, VNUT), which is responsible for exocytosis of ATP. ATP-enriched vesicles were found in cytosol of THP-1 cells. These data suggest the involvement of vesicular exocytosis in the release of ATP. Knockdown of SLC17A9, the P2Y11 antagonist NF157 or knockdown of P2Y11 receptor significantly suppressed both M1-type polarization and IL-6 production in THP-1 cells, indicating an important role of activation of P2Y11 receptor by released ATP in macrophage activation. Next, the effect of NF157 on LPS-induced immune activation was examined in vivo. Administration of LPS to mice caused increase of serum IL-1ß, IL-6, IL-12 and TNF-alpha levels at 3–24 h after the administration. Pre-treatment of LPS-treated mice with NF157 suppressed both elevation of proinflammatory cytokines in serum and M1 polarization of peritoneal/spleen macrophages. Moreover, post-treatment with NF157 at 30 min after administration of LPS also suppressed the elevation of serum cytokines levels. We conclude that vesicular exocytosis of ATP and autocrine, positive feedback through P2Y11 receptors is required for the effective activation of macrophages. Consequently, P2Y11 receptor antagonists may be drug candidates for treatment of inflammatory diseases such as sepsis. PMID:23577075

  19. Immunological Priming Requires Tregs and Interleukin-10-Producing Macrophages to Accelerate Resolution from Severe Lung Inflammation

    PubMed Central

    Eto, Yoshiki; Tripathi, Ashutosh; Mandke, Pooja; Mock, Jason R.; Garibaldi, Brian T.; Singer, Benjamin D.; Sidhaye, Venkataramana K.; Horton, Maureen R.; King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and non-infectious agents, and is a leading cause of mortality world-wide. In that context, immunomodulatory strategies may be utilized to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose lipopolysaccharide can immunologically prime the lung to augment alveolar macrophage production of interleukin-10 and enhance resolution of lung inflammation induced by a lethal dose of lipopolysaccharide or by pseudomonas bacterial pneumonia. Interleukin-10 deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage interleukin-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared to low-dose lipopolysaccharide, but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal lipopolysaccharide exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures. PMID:24688024

  20. Phagocytosis-induced 51Cr release from activated macrophages and blood mononuclears. Effect of colchicine and antioxidants

    SciTech Connect

    McGee, M.P.; Hale, A.H.

    1981-09-01

    The chromium-release test was adapted to the measurement of the cellular injury induced when activated macrophages phagocytose particulates. Macrophages obtained from rabbit lungs undergoing BCG-induced chronic inflammation released more chromium when incubated in the presence of phagocytosable particles than when incubated under resting conditions. Blood mononuclear cells, 40-60% monocytes, procured from the same BCG-injected animals, were less susceptible to phagocytosis-induced injury than the macrophages obtained from the lungs. The amount of chromium released by the activated macrophages was proportional to the number of particles present during incubation. In the presence of catalase, the amounts of chromium released by phagocytosing and resting macrophages were similar; in the presence of superoxide dismutase and cytochrome c, the amount of chromium released by phagocytosing macrophages was 13-35% less than the amount of chromium released by macrophages incubated without the antioxidants. In addition, colchicine, an inhibitor of degranulation also exerted partial inhibition of the chromium release. These results suggest that oxygen radicals and lysosomal contents contribute to the cellular injury that results from phagocytosis.

  1. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.

    PubMed

    Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien

    2012-10-22

    Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-? and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-?, TNF, LPS and LPS+IFN-?, and the M2 agonists, IL-4, TGF-?1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions. PMID:22967923

  2. Netrin-1 attenuates cardiac ischemia reperfusion injury and generates alternatively activated macrophages.

    PubMed

    Mao, Xiaogang; Xing, Hui; Mao, Aihua; Jiang, Hong; Cheng, Li; Liu, Yun; Quan, Xiaozhen; Li, Lin

    2014-04-01

    Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. Netrin-1 is a laminin-related protein identified as a neuronal guidance cue and netrin-1 expressed outside the nervous system inhibits migration of leukocytes in vitro and in vivo and attenuates inflammation-mediated tissue injury. In our study, hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 h and then transplanted into syngeneic recipient. We found that netrin-1 decreased cardiomyocyte apoptosis and recruitment of neutrophils and macrophages. Troponin T (TnT) production on 24 h after myocardial IR injury was reduced by netrin-1 administration. Cardiac output at 60 mmHg of afterload pressure was significantly increased in hearts with netrin-1 administration (IR?+?Netrin-1: 59.9?±?5.78 ml/min; IR: 26.2?±?4.3 ml/min; P?activated macrophage (AAM) markers arginase-1 (Arg-1) and mannose receptor (MR) and promoted proliferator-activated receptor ? (PPAR?) expression in cardiac allograft. Furthermore, decreased TnT expression and reduced allograft infiltration of neutrophils and monocytes/macrophages by netrin-1 was abolished with addition of PPAR? antagonist. In conclusion, netrin-1 attenuates cardiac IR injury and generates AAM which contributes to the protective effect of netrin-1. PMID:24234226

  3. Effect of Estragole on Leukocyte Behavior and Phagocytic Activity of Macrophages

    PubMed Central

    Wiirzler, Luiz Alexandre Marques; Silva-Filho, Saulo Euclides; Kummer, Raquel; Pedroso, Raissa Bocchi; Spironello, Ricardo Alexandre; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2014-01-01

    Estragole, a chemical constituent of the essential oils of many aromatic plants, is used as flavoring in beverage and food industries. In vivo and in vitro experimental assays have shown that EST has sedative, anticonvulsant, antioxidant, antimicrobial, and anesthetic activity. In this work, we evaluate the effect of EST on leukocyte behavior and phagocytic activity of macrophages. In the peritonitis model, EST (500 and 750?mg/kg) decreased the infiltration of peritoneal exudate leukocytes. In vitro chemotaxis assay showed that EST (3, 10, 30, and 60??g/mL) inhibited neutrophil migration toward fMLP. In the in vivo microcirculation assay, EST at doses of 250, 500, and 750?mg/kg significantly reduced the number of rolling and adherent leukocytes and at doses of 250 and 500?mg/kg decreased number of leukocyte migrated to perivascular tissue. The results showed that EST (3, 10, and 30??g/mL) was able to stimulate the macrophages phagocytosis but only at concentration of 10??g/mL promoted an increase in nitric oxide (NO) production. In conclusion, this study showed that EST had potential anti-inflammatory effects, likely by inhibiting leukocyte migration and by stimulating macrophages phagocytosis. PMID:25152763

  4. Anti-inflammatory activity of horseradish (Armoracia rusticana) root extracts in LPS-stimulated macrophages.

    PubMed

    Marzocco, Stefania; Calabrone, Luana; Adesso, Simona; Larocca, Marilena; Franceschelli, Silvia; Autore, Giuseppina; Martelli, Giuseppe; Rossano, Rocco

    2015-12-01

    Horseradish (Armoracia rusticana) is a perennial crop belonging to the Brassicaceae family. Horseradish root is used as a condiment due to its extremely pungent flavour, deriving from the high content of glucosinolates and their breakdown products such as isothiocyanates and other sulfur compounds. Horseradish also has a long history in ethnomedicine. In this study the anti-inflammatory potential of three accessions of Armoracia rusticana on lipopolysaccharide from E. coli treated J774A.1 murine macrophages was evaluated. Our results demonstrate that Armoracia rusticana reduced nitric oxide, tumor necrosis factor-? and interleukin-6 release and nitric oxide synthase and cyclooxygenase-2 expression in macrophages, acting on nuclear transcription factor NF-?B p65 activation. Moreover Armoracia rusticana reduced reactive oxygen species release and increased heme-oxygenase-1 expression, thus contributing to the cytoprotective cellular effect during inflammation. PMID:26411988

  5. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPAR?, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-?, IL-1?, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  6. The early synthesis of p35 and activation of CDK5 in LPS-stimulated macrophages suppresses interleukin-10 production.

    PubMed

    Na, Yi Rang; Jung, Daun; Gu, Gyo Jeong; Jang, Ah Ram; Suh, Yoo-Hun; Seok, Seung Hyeok

    2015-01-01

    Interleukin-10 (IL-10) is an important anti-inflammatory cytokine that is produced primarily by macrophages. We investigated mechanisms by which the timing of IL-10 production was controlled in macrophages and found that cyclin-dependent kinase 5 (CDK5) activity was markedly increased in lipopolysaccharide (LPS)-stimulated macrophages through the synthesis of the CDK5-binding partner and activator p35. Degradation of p35 released the inhibition on anti-inflammatory signaling mediated by CDK5-p35 complexes. The transiently active CDK5-p35 complexes limited the LPS-stimulated phosphorylation and activation of various mitogen-activated protein kinases (MAPKs), thereby preventing the premature production of SOCS3 (suppressor of cytokine signaling 3), an inhibitor of inflammatory responses in macrophages, and IL-10. Furthermore, we showed that dextran sodium sulfate failed to induce colitis in p35-deficient mice, which was associated with the enhanced production of IL-10 by macrophages. Together, our results suggest that CDK5 enhances the inflammatory function of macrophages by inhibiting the MAPK-dependent production of IL-10. PMID:26602020

  7. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-?B.

    PubMed

    Chow, Amy; Zhou, Weiying; Liu, Liang; Fong, Miranda Y; Champer, Jackson; Van Haute, Desiree; Chin, Andrew R; Ren, Xiubao; Gugiu, Bogdan Gabriel; Meng, Zhipeng; Huang, Wendong; Ngo, Vu; Kortylewski, Marcin; Wang, Shizhen Emily

    2014-01-01

    Growing evidence links tumor progression with chronic inflammatory processes and dysregulated activity of various immune cells. In this study, we demonstrate that various types of macrophages internalize microvesicles, called exosomes, secreted by breast cancer and non-cancerous cell lines. Although both types of exosomes targeted macrophages, only cancer-derived exosomes stimulated NF-?B activation in macrophages resulting in secretion of pro-inflammatory cytokines such as IL-6, TNF?, GCSF, and CCL2. In vivo mouse experiments confirmed that intravenously injected exosomes are efficiently internalized by macrophages in the lung and brain, which correlated with upregulation of inflammatory cytokines. In mice bearing xenografted human breast cancers, tumor-derived exosomes were internalized by macrophages in axillary lymph nodes thereby triggering expression of IL-6. Genetic ablation of Toll-like receptor 2 (TLR2) or MyD88, a critical signaling adaptor in the NF-?B pathway, completely abolished the effect of tumor-derived exosomes. In contrast, inhibition of TLR4 or endosomal TLRs (TLR3/7/8/9) failed to abrogate NF-?B activation by exosomes. We further found that palmitoylated proteins present on the surface of tumor-secreted exosomes contributed to NF-?B activation. Thus, our results highlight a novel mechanism used by breast cancer cells to induce pro-inflammatory activity of distant macrophages through circulating exosomal vesicles secreted during cancer progression. PMID:25034888

  8. Staphylococcus aureus and derived exotoxins induce nuclear factor kappa B-like activity in murine bone marrow macrophages.

    PubMed Central

    Busam, K; Gieringer, C; Freudenberg, M; Hohmann, H P

    1992-01-01

    Heat-killed gram-positive Staphylococcus aureus as well as S. aureus-derived exotoxins B and toxic shock syndrome toxin 1 can induce nuclear factor kappa B (NF-kappa B)-like activity in murine bone marrow macrophages. The induction of NF-kappa B-like activity in murine macrophages by S. aureus was as effective as induction by tumor necrosis factor alpha (TNF-alpha) or lipopolysaccharides (LPS) and was observed in macrophages derived from LPS-sensitive and LPS-resistant mice. Stimulation of macrophages with S. aureus but not with the exotoxins resulted in the accumulation of TNF-alpha in the culture medium. The induction of NF-kappa B-like activity by S. aureus, however, clearly preceded TNF-alpha secretion and was not inhibited by a neutralizing serum against TNF-alpha. In addition, pretreatment of macrophages with the protein synthesis inhibitor cycloheximide or dexamethasone, which prevented the secretion of TNF-alpha from macrophages, did not interfere with the induction of NF-kappa B-like activity by S. aureus. This findings reveal the existence of bacterial components other than LPS which can induce NF-kappa B-like activity in susceptible cells. Images PMID:1563792

  9. Immunomodulatory vaccines against autoimmune diseases.

    PubMed

    Sela, Michael

    2006-01-01

    Vaccines are for healthy people, to prevent them from becoming ill. Such prophylactic vaccines have been a great success. Therapeutic vaccines become more and more important, especially as life expectancy increases. Efforts to develop vaccines against such diseases as cancer, AIDS, hepatitis, tuberculosis, Alzheimer disease, and mad cow disease have not yet reached the stage where they can be successfully used on a daily basis. However, significant progress has been made in the realm of autoimmune diseases, resulting (at least in one case) in an immunomodulatory vaccine against multiple sclerosis that was developed in the author's laboratory, and that is in daily use by about 100,000 patients. The drug or therapeutic vaccine against the exacerbating-remitting type of multiple sclerosis is a copolymer of four amino acid residues, denoted Copaxone, which are related to myelin basic protein. This paper discusses Copaxone as well as a candidate immunomodulatory vaccine against myasthenia gravis, a peptide derived from the nicotinic acetylcholine receptor. Copolymer 1 (Cop 1, glatiramer acetate, Copaxone) is a synthetic amino acid random copolymer that is immunologically cross-reactive with myelin basic protein and suppresses experimental allergic encephalomyelitis in several animal species. Cop 1 slows the progression of disability and reduces the relapse rate in exacerbating-remitting multiple sclerosis patients. Cop 1 is a potent inducer of T helper 2 (Th2) regulatory cells in mice and humans; and Th2 cells are found in both the brains and spinal cords of Cop 1-treated mice and humans. MG and experimental autoimmune MG are T cell-regulated, antibody-mediated autoimmune diseases. Two peptides, representing sequences of the human AChR-alpha-subunit, p195-212 and p259-271, are immunodominant T-cell epitopes in MG patients and two strains of mice. Altered peptide ligand, composed of the randomly arranged two single amino acid analogs inhibits in vitro and in vivo MG-associated autoimmune responses. The active suppression is mediated by the CD4+ CD25+ immunoregulatory cells and is associated with the downregulation of Th1-type cytokines and upregulation of the secretion of IL-10 and the immunosuppressive cytokine transforming growth factor beta. PMID:16608409

  10. Involvement of Toso in activation of monocytes, macrophages, and granulocytes

    PubMed Central

    Lang, Karl S.; Lang, Philipp A.; Meryk, Andreas; Pandyra, Aleksandra A.; Boucher, Louis-Martin; Pozdeev, Vitaly I.; Tusche, Michael W.; Göthert, Joachim R.; Haight, Jillian; Wakeham, Andrew; You-Ten, Annick J.; McIlwain, David R.; Merches, Katja; Khairnar, Vishal; Recher, Mike; Nolan, Garry P.; Hitoshi, Yasumichi; Funkner, Pauline; Navarini, Alexander A.; Verschoor, Admar; Shaabani, Namir; Honke, Nadine; Penn, Linda Z.; Ohashi, Pamela S.; Häussinger, Dieter; Lee, Kyeong-Hee; Mak, Tak W.

    2013-01-01

    Rapid activation of immune responses is necessary for antibacterial defense, but excessive immune activation can result in life-threatening septic shock. Understanding how these processes are balanced may provide novel therapeutic potential in treating inflammatory disease. Fc receptors are crucial for innate immune activation. However, the role of the putative Fc receptor for IgM, known as Toso/Faim3, has to this point been unclear. In this study, we generated Toso-deficient mice and used them to uncover a critical regulatory function of Toso in innate immune activation. Development of innate immune cells was intact in the absence of Toso, but Toso-deficient neutrophils exhibited more reactive oxygen species production and reduced phagocytosis of pathogens compared with controls. Cytokine production was also decreased in Toso?/? mice compared with WT animals, rendering them resistant to septic shock induced by lipopolysaccharide. However, Toso?/? mice also displayed limited cytokine production after infection with the bacterium Listeria monocytogenes that was correlated with elevated presence of Listeria throughout the body. Accordingly, Toso?/? mice succumbed to infections of L. monocytogenes, whereas WT mice successfully eliminated the infection. Taken together, our data reveal Toso to be a unique regulator of innate immune responses during bacterial infection and septic shock. PMID:23359703

  11. Guanylate Binding Proteins Enable Rapid Activation of Canonical and Noncanonical Inflammasomes in Chlamydia-Infected Macrophages.

    PubMed

    Finethy, Ryan; Jorgensen, Ine; Haldar, Arun K; de Zoete, Marcel R; Strowig, Till; Flavell, Richard A; Yamamoto, Masahiro; Nagarajan, Uma M; Miao, Edward A; Coers, Jörn

    2015-12-01

    Interferon (IFN)-inducible guanylate binding proteins (GBPs) mediate cell-autonomous host resistance to bacterial pathogens and promote inflammasome activation. The prevailing model postulates that these two GBP-controlled activities are directly linked through GBP-dependent vacuolar lysis. It was proposed that the rupture of pathogen-containing vacuoles (PVs) by GBPs destroyed the microbial refuge and simultaneously contaminated the host cell cytosol with microbial activators of inflammasomes. Here, we demonstrate that GBP-mediated host resistance and GBP-mediated inflammatory responses can be uncoupled. We show that PVs formed by the rodent pathogen Chlamydia muridarum, so-called inclusions, remain free of GBPs and that C. muridarum is impervious to GBP-mediated restrictions on bacterial growth. Although GBPs neither bind to C. muridarum inclusions nor restrict C. muridarum growth, we find that GBPs promote inflammasome activation in C. muridarum-infected macrophages. We demonstrate that C. muridarum infections induce GBP-dependent pyroptosis through both caspase-11-dependent noncanonical and caspase-1-dependent canonical inflammasomes. Among canonical inflammasomes, we find that C. muridarum and the human pathogen Chlamydia trachomatis activate not only NLRP3 but also AIM2. Our data show that GBPs support fast-kinetics processing and secretion of interleukin-1? (IL-1?) and IL-18 by the NLRP3 inflammasome but are dispensable for the secretion of the same cytokines at later times postinfection. Because IFN-? fails to induce IL-1? transcription, GBP-dependent fast-kinetics inflammasome activation can drive the preferential processing of constitutively expressed IL-18 in IFN-?-primed macrophages in the absence of prior Toll-like receptor stimulation. Together, our results reveal that GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections. PMID:26416908

  12. Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome.

    PubMed

    De la Fuente, Marjorie; Franchi, Luigi; Araya, Daniela; Díaz-Jiménez, David; Olivares, Mauricio; Álvarez-Lobos, Manuel; Golenbock, Douglas; González, María-Julieta; López-Kostner, Francisco; Quera, Rodrigo; Núñez, Gabriel; Vidal, Roberto; Hermoso, Marcela A

    2014-05-01

    Crohn's disease (CD) is a multifactorial pathology associated with the presence of adherent-invasive Escherichia coli (AIEC) and NLRP3 polymorphic variants. The presence of intracellular E. coli in other intestinal pathologies (OIP) and the role of NLRP3-inflammasome in the immune response activated by these bacteria have not been investigated. In this study, we sought to characterize intracellular strains isolated from patients with CD, ulcerative colitis (UC) and OIP, and analyze NLRP3-inflammasome role in the immune response and bactericidal activity induced in macrophages exposed to invasive bacteria. For this, intracellular E. coli isolation from ileal biopsies, using gentamicin-protection assay, revealed a prevalence and CFU/biopsy of E. coli higher in biopsies from CD, UC and OIP patients than in controls. To characterize bacterial isolates, pulsed-field gel electrophoresis (PFGE) patterns, virulence genes, serogroup and phylogenetic group were analyzed. We found out that bacteria isolated from a given patient were closely related and shared virulence factors; however, strains from different patients were genetically heterogeneous. AIEC characteristics in isolated strains, such as invasive and replicative properties, were assessed in epithelial cells and macrophages, respectively. Some strains from CD and UC demonstrated AIEC properties, but not strains from OIP. Furthermore, the role of NLRP3 in pro-inflammatory cytokines production and bacterial elimination was determined in macrophages. E. coli strains induced IL-1? through NLRP3-dependent mechanism; however, their elimination by macrophages was independent of NLRP3. Invasiveness of intracellular E. coli strains into the intestinal mucosa and IL-1? production may contribute to CD and UC pathogenesis. PMID:24581881

  13. Effect of toll-like receptor activation on thymosin beta-4 production by chicken macrophages.

    PubMed

    Kannan, Lakshmi; Rath, Narayan C; Liyanage, Rohana; Lay, Jackson O

    2010-11-01

    Thymosin beta-4 (T?4) is an actin-binding intracellular peptide that promotes wound healing, tissue remodeling, and angiogenesis. The mechanism of T?4 secretion to the extracellular environment is not understood. The macrophage is a rich source of T?4 which also participates in wound healing process. The objective of this study was to find how T?4 may be externalized. Using activation of macrophage through their toll-like receptors (TLR), the changes in cellular T?4 was studied. A naturally transformed chicken macrophage cell line HTC was treated with different TLR agonists and the cellular T?4 changes was determined at 6 and 24 h after stimulations using stable isotope labelling of amino acids in cell culture (SILAC) and mass spectrometry. Real time PCR was used to determine changes in gene expression. The results showed that TLR agonists such as peptidoglycan (PGN) or lipopolysacharide (LPS) caused depletions in cellular T?4 peptide along with its detection in the cell culture supernatant at 24 h. These TLR agonists also induced the expression of interleukins-1?, -6, and nitric oxide synthase genes at 6 h but failed to modulate T?4 gene at that time point indicating that the T?4 externalization was not associated with its production. To find whether T?4 externalization was associated with cell death, we measured the lactate dehydrogenase (LDH) activity of the conditioned media as an indicator of cell damage. The results showed that the TLR agonists which induced depletion of intracellular T?4 at 24 h also increased the LDH content of the conditioned media, suggesting that the T?4 in the extracellular media most likely originated from dying macrophages. PMID:20614231

  14. Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement.

    PubMed

    Tu, Ming-Gene; Chen, Yi-Wen; Shie, Ming-You

    2015-12-01

    The use of calcium silicate (CS) cement holds great promise for bone substitute biomaterials. However, the effects of CS on osteoblast and macrophage cells are not fully understood. This study examines cell proliferation and differentiation of mono- or co-cultured MC3T3-E1 and Raw 264.7 cells on CS cement. Very few studies to date have looked at the effects of osteoblast and macrophages on biomaterial-regulated osteogenesis. In this study the proliferation and differentiation of MC3T3-E1, Raw 264.7 and co-cultured MC3T3-E1/Raw 264.7 on CS cements have been analyzed using a PrestoBlue kit and ELISA. In addition, the effect of macrophages on CS-coordinated osteogenesis of MC3T3-E1 has been investigated. Results show that MC3T3-E1, Raw 264.7 and co-cultured MC3T3-E1/Raw 264.7 adhere to and proliferate well on the CS cement. In a co-culture, the CS cements inhibit receptor activator of nuclear factor kappa B ligand expression of both genes and proteins in Raw 264.7 cells when compared to those grown in mono-cultured system. Ca deposition of MC3T3-E1 in the co-culture is higher than that of cells in a mono-culture. Bone morphogenetic protein 2 (BMP2) is also significantly up-regulated by the CS cement stimulation, indicating that macrophages may participate in the CS stimulated osteogenesis. Interestingly, when macrophage are cultured with BMP2 receptor-blocking MC3T3-E1 on the CS cements, the osteogenesis differentiation of the cells is significantly inhibited, indicating the important role of macrophages in biomaterial-induced osteogenesis via BMP2 receptors. It is assumed that it is an increase in the secretion of the BMP2 from the Raw 264.7 cell that is primarily involved in the promotion of the osteogenesis of the MC3T3-E1. These results provide valuable insights into both the mechanism of CS-stimulated osteogenesis, and strategies to optimize the evaluation system for the in vitro osteogenesis capacity of bone substitute biomaterials. PMID:26543022

  15. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    PubMed Central

    Ohta, Takashi; Ido, Atsushi; Kusano, Kie; Miura, Chiemi; Miura, Takeshi

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named “dipterose”, with a molecular weight of 1.01×106 and comprising nine monosaccharides. Dipterose was synthesized in the melon fly itself at the pupal stage. The NO-producing activity of dipterose was approximately equal to that of lipopolysaccharide, a potent immunostimulator. Inhibition of Toll-like receptor 4 (TLR4) led to the suppression of NO production by dipterose. Furthermore, dipterose induced the expression of proinflammatory cytokines and interferon ? (IFN?) and promoted the activation of nuclear factor kappa B (NF-?B) in macrophages, indicating that it stimulates the induction of various cytokines in RAW264 cells via the TLR4 signaling pathway. Our results thus suggest that dipterose activates the innate immune response against various pathogenic microorganisms and viral infections. This is the first identification of an innate immune-activating polysaccharide from an animal. PMID:25490773

  16. IL-16 activates the SAPK signaling pathway in CD4+ macrophages.

    PubMed

    Krautwald, S

    1998-06-15

    IL-16 has been reported as a modulator of T cell activation and was shown to function as chemoattractant factor. The chemotactic activity of IL-16 depends on the expression of CD4 on the surface of target cells, but the intracellular signaling pathways are only now being deciphered. This report describes IL-16 as an additional activator of the stress-activated protein kinase (SAPK) pathway in CD4+ macrophages. Treatment of these cells with recombinant expressed IL-16 leads to the phosphorylation of SEK-1, resulting in activation of the SAPKs p46 and p54. IL-16 stimulation also leads to the phosphorylation of c-Jun and p38 MAPK (mitogen-activated protein kinase), without inducing MAPK-family members ERK-1 and ERK-2. Interestingly, the IL-16-mediated activation of SAPKs and p38 MAPK in macrophages alone induces no detectable apoptotic cell death. These observations suggest specific regulatory functions of IL-16 distinct from the proinflammatory cytokines TNF-alpha and IL-1beta. PMID:9637499

  17. Activation of J77A.1 Macrophages by Three Phospholipases A2 Isolated from Bothrops atrox Snake Venom

    PubMed Central

    Furtado, Juliana L.; Oliveira, George A.; Pontes, Adriana S.; Setúbal, Sulamita da S.; Xavier, Caroline V.; Lacouth-Silva, Fabianne; Lima, Beatriz F.; Zaqueo, Kayena D.; Kayano, Anderson M.; Calderon, Leonardo A.; Stábeli, Rodrigo G.; Soares, Andreimar M.; Zuliani, Juliana P.

    2014-01-01

    In the present study, we investigated the in vitro effects of two basic myotoxic phospholipases A2 (PLA2), BaTX-I, a catalytically inactive Lys-49 variant, and BaTX-II, a catalytically active Asp-49, and of one acidic myotoxic PLA2, BaPLA2, a catalytically active Asp-49, isolated from Bothrops atrox snake venom, on the activation of J774A.1 macrophages. At noncytotoxic concentrations, the toxins did not affect the adhesion of the macrophages, nor their ability to detach. The data obtained showed that only BaTX-I stimulated complement receptor-mediated phagocytosis. However, BaTX-I, BaTX-II, and BaPLA2 induced the release of the superoxide anion by J774A.1 macrophages. Additionally, only BaTX-I raised the lysosomal volume of macrophages after 15?min of incubation. After 30?min, all the phospholipases increased this parameter, which was not observed within 60?min. Moreover, BaTX-I, BaTX-II, and BaPLA2 increased the number of lipid bodies on macrophages submitted to phagocytosis and not submitted to phagocytosis. However, BaTX-II and BaPLA2 induced the release of TNF-? by J774A.1 macrophages. Taken together, the data show that, despite differences in enzymatic activity, the three toxins induced inflammatory events and whether the enzyme is acidic or basic does not seem to contribute to these effects. PMID:24592395

  18. Primary alveolar macrophages exposed to diesel particulate matter increase RAGE expression and activate RAGE signaling.

    PubMed

    Barton, David B; Betteridge, Bryce C; Earley, Tyler D; Curtis, Cameron S; Robinson, Adam B; Reynolds, Paul R

    2014-10-01

    Receptors for advanced glycation end-products (RAGE) are members of the immunoglobulin superfamily of cell-surface receptors implicated in mechanisms of pulmonary inflammation. In the current study, we test the hypothesis that RAGE mediates inflammation in primary alveolar macrophages (AMs) exposed to diesel particulate matter (DPM). Quantitative RT-PCR and immunoblotting revealed that RAGE was up-regulated in Raw264.7 cells, an immortalized murine macrophage cell line and primary AMs exposed to DPM for 2 h. Because DPM increased RAGE expression, we exposed Raw264.7 cells and primary AMs isolated from RAGE null and wild-type (WT) mice to DPM prior to the assessment of inflammatory signaling intermediates. DPM led to the activation of Rat sarcoma GTPase (Ras), p38 MAPK and NF-?B in WT AMs and, when compared to WT AMs, these intermediates were diminished in DPM-exposed AMs isolated from RAGE null mice. Furthermore, cytokines implicated in inflammation, including IL-4, IL-12, IL-13 and TNF?, were all significantly decreased in DPM-exposed RAGE null AMs compared to similarly exposed WT AMs. These results demonstrate that diesel-induced inflammatory responses by primary AMs are mediated, at least in part, via RAGE signaling mechanisms. Further work may show that RAGE signaling in both alveolar epithelial cells and resident macrophages is a potential target in the treatment of inflammatory lung diseases exacerbated by environmental pollution. PMID:24859220

  19. pO2 Dependent NO Production Determines OPPC Activity in Macrophages

    PubMed Central

    Robinson, Mary A.; Turtle, Stephen W.; Otto, Cynthia M.; Koch, Cameron J.

    2014-01-01

    Stimulated macrophages produce nitric oxide (NO) via inducible nitric oxide synthase (iNOS) using molecular O2, L-arginine, and NADPH. Exposure of macrophages to hypoxia decreases NO production within seconds suggesting substrate limitation as the mechanism. Conflicting data exist regarding the effect of pO2 on NADPH production via the oxidative pentose phosphate cycle (OPPC). Therefore, the present studies were developed to determine whether NADPH could be limiting for NO production under hypoxia. Production of NO metabolites (NOx) and OPPC activity by RAW 264.7 cells was significantly increased by stimulation with lipopolysaccharide (LPS) and interferon ? (IFN?) at pO2 ranging from 0.07% to 50%. OPPC activity correlated linearly with NOx production at pO2 > 0.13%. Increased OPPC activity by stimulated RAW 264.7 cells was significantly reduced by 1400W, an iNOS inhibitor. OPPC activity was significantly increased by concomitant treatment of stimulated RAW 264.7 cells with chemical oxidants such as hydroxy-ethyldisulfide or pimonidazole, at 0.07% and 50% O2, without decreasing NOx production. These results are the first to investigate the effect of pO2 on the relationship between NO production and OPPC activity, and to rule out limitations in OPPC activity as a mechanism by which NO production is decreased under hypoxia. PMID:19822207

  20. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation

    SciTech Connect

    Migliori, R.J.; Gruber, S.A.; Sawyer, M.D.; Hoffman, R.; Ochoa, A.; Bach, F.H.; Simmons, R.L.

    1987-08-01

    Successful adoptive cancer immunotherapy presumably depends on the accumulation of tumoricidal leukocytes at the sites of tumor growth. Large numbers of lymphokine-activated killer (LAK) cells can be generated in vitro by growth in high concentrations of interleukin-2 (IL-2), but relatively few arrive at the tumor site after intravenous injection. We hypothesize that the delivery of LAK cells to tumor sites may be augmented by previously demonstrated lymphocyte-recruiting factors, including activated macrophage products such as interleukin-1 (IL-1) and tumor necrosis factor. /sup 111/Indium-labeled LAK cells were injected intravenously into syngeneic mice bearing the macrophage activator endotoxin (LPS) in one hind footpad, and saline solution was injected into the contralateral footpad. Significantly more activity was recovered from the LPS-bearing footpad at all times during a 96-hour period. Recombinant IL-1 also attracted more LAK cells after injection into tumor-free hind footpads. Furthermore, LAK cells preferentially homed to hind footpads that were bearing 3-day established sarcomas after intralesional injections of LPS, IL-1, or tumor necrosis factor when compared with contralateral tumor-bearing footpads injected with saline solution alone. In preliminary experiments, mice with hind-footpad tumors appeared to survive longer after combined systemic IL-2 and LAK therapy if intralesional LPS was administered. These studies demonstrate that macrophage activation factors that have been shown capable of attracting circulating normal lymphocytes can also effectively attract LAK cells from the circulation. By the stimulation of macrophages at the sites of tumor growth, more LAK cells can be attracted. It is hoped that by focusing the migration of LAK cells to tumors, LAK cells and IL-2 would effect tumor regression more efficiently and with less toxicity.

  1. Macrophages activated by fibrin increase albumin permeability across pulmonary artery endothelial monolayers

    SciTech Connect

    Ferro, T.J.; Lynch, J.J.; Malik, A.B.

    1989-04-01

    We have examined the effects of alveolar macrophages (AM) obtained after challenge with alpha-thrombin on 125I-labeled albumin permeability across ovine pulmonary artery endothelial monolayers. AM were obtained by bronchoalveolar lavage before and after challenging the sheep with alpha-thrombin (80 U/kg). Post-thrombin AM increased 125I-labeled albumin transendothelial permeability, whereas resting AM had no effect (82.7 +/- 7.9% increase versus 17.2 +/- 1.6% increase at the AM:endothelial cell ratio of 1:1; p less than 0.001). The permeability increase was also seen at AM:endothelial cell ratios of 0.2:1 and 5:1. Endothelial permeability to 125I-labeled albumin did not increase after in vitro incubation of macrophages with 10(-8) M thrombin, suggesting that AM are activated as a result of thrombin-induced fibrin microembolism rather than by the alpha-thrombin per se. The increase in permeability was not due to endothelial lysis since macrophages did not cause release of endothelial lactate dehydrogenase. Adherence of AM to the endothelium did not correlate with the ability of AM to increase endothelial permeability. Superoxide anion production was increased when post-thrombin AM were exposed to the endothelial monolayers (30.6 +/- 4.2 nmol/10(6) cells/10 min) compared with production by post-thrombin AM in the absence of endothelial cells (2.5 +/- 0.5 nmol/10(6) cells/10 min). The addition of superoxide dismutase (SOD) blunted the permeability increase induced by AM (32.3 +/- 3.9% increase with SOD versus 84.1 +/- 7.1% increase without SOD; p less than 0.001), indicating that superoxide anion is an important mediator of the macrophage-induced increase in endothelial monolayer permeability.

  2. Osteopontin Deficiency Accelerates Spontaneous Colitis in Mice with Disrupted Gut Microbiota and Macrophage Phagocytic Activity

    PubMed Central

    Toyonaga, Takahiko; Nakase, Hiroshi; Ueno, Satoru; Matsuura, Minoru; Yoshino, Takuya; Honzawa, Yusuke; Itou, Ayako; Namba, Kazuyoshi; Minami, Naoki; Yamada, Satoshi; Koshikawa, Yorimitsu; Uede, Toshimitsu; Chiba, Tsutomu; Okazaki, Kazuichi

    2015-01-01

    Background Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear. Aims To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice. Methods We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay. Results OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml. Conclusions OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity. PMID:26274807

  3. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages.

    PubMed Central

    Büscher, D; Hipskind, R A; Krautwald, S; Reimann, T; Baccarini, M

    1995-01-01

    Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation. PMID:7799956

  4. Quercus infectoria galls possess antioxidant activity and abrogates oxidative stress-induced functional alterations in murine macrophages.

    PubMed

    Kaur, Gurpreet; Athar, Mohammad; Alam, M Sarwar

    2008-02-15

    The present study reports the antioxidant activity of ethanolic extract of Quercus infectoria galls. The antioxidant potency of galls was investigated employing several established in vitro model systems. Their protective efficacy on oxidative modulation of murine macrophages was also explored. Gall extract was found to contain a large amount of polyphenols and possess a potent reducing power. HPTLC analysis of the extract suggested it to contain 19.925% tannic acid (TA) and 8.75% gallic acid (GA). The extract potently scavenged free radicals including DPPH (IC(50)~0.5 microg/ml), ABTS (IC(50)~1 microg/ml), hydrogen peroxide (H(2)O(2)) (IC(50)~2.6 microg/ml) and hydroxyl (*OH) radicals (IC(50)~6 microg/ml). Gall extract also chelated metal ions and inhibited Fe(3+) -ascorbate-induced oxidation of protein and peroxidation of lipids. Exposure of rat peritoneal macrophages to tertiary butyl hydroperoxide (tBOOH) induced oxidative stress in them and altered their phagocytic functions. These macrophages showed elevated secretion of lysosomal hydrolases, and attenuated phagocytosis and respiratory burst. Activity of macrophage mannose receptor (MR) also diminished following oxidant exposure. Pretreatment of macrophages with gall extract preserved antioxidant armory near to control values and significantly protected against all the investigated functional mutilations. MTT assay revealed gall extract to enhance percent survival of tBOOH exposed macrophages. These results indicate that Q. infectoria galls possess potent antioxidant activity, when tested both in chemical as well as biological models. PMID:18076871

  5. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression.

    PubMed

    Raisch, Jennifer; Rolhion, Nathalie; Dubois, Anaëlle; Darfeuille-Michaud, Arlette; Bringer, Marie-Agnès

    2015-03-01

    Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24?h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72?h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72?h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages. PMID:25545478

  6. Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death

    PubMed Central

    Kataoka, K; Matsumoto, H; Kaneko, H; Notomi, S; Takeuchi, K; Sweigard, J H; Atik, A; Murakami, Y; Connor, K M; Terasaki, H; Miller, J W; Vavvas, D G

    2015-01-01

    Detachment of photoreceptors from the retinal pigment epithelium is seen in various retinal disorders, resulting in photoreceptor death and subsequent vision loss. Cell death results in the release of endogenous molecules that activate molecular platforms containing caspase-1, termed inflammasomes. Inflammasome activation in retinal diseases has been reported in some cases to be protective and in others to be detrimental, causing neuronal cell death. Moreover, the cellular source of inflammasomes in retinal disorders is not clear. Here, we demonstrate that patients with photoreceptor injury by retinal detachment (RD) have increased levels of cleaved IL-1?, an end product of inflammasome activation. In an animal model of RD, photoreceptor cell death led to activation of endogenous inflammasomes, and this activation was diminished by Rip3 deletion. The major source of Il1b expression was found to be infiltrating macrophages in the subretinal space, rather than dying photoreceptors. Inflammasome inhibition attenuated photoreceptor death after RD. Our data implicate the infiltrating macrophages as a source of damaging inflammasomes after photoreceptor detachment in a RIP3-dependent manner and suggest a novel therapeutic target for treatment of retinal diseases. PMID:25906154

  7. Nitroglycerin Alters Matrix Remodeling Proteins in THP-1 Human Macrophages and Plasma Metalloproteinase Activity in Rats

    PubMed Central

    Krishnatry, Anu Shilpa; Fung, Sun Mi; Brazeau, Daniel A.; Soda, David; Fung, Ho-Leung

    2010-01-01

    Several studies suggested that long-term nitrate therapy may produce negative outcomes in patient mortality and morbidity. A possible mechanism may involve nitrate-mediated activation of various extracellular matrix (ECM) proteases, particularly matrix metalloproteinase-9 (MMP-9), and adhesion molecules in human macrophages, leading to the destabilization of atherosclerotic plaques. We examined the gene and protein regulating effects on THP-1 human macrophages by repeated exposure to therapeutically relevant concentrations of nitroglycerin (NTG) and possible involvement of nuclear factor (NF)-?B signaling mechanism in mediating some of these observed effects. THP-1 human macrophages repeatedly exposed to NTG (at 10 nM, added on days 1, 4 and 7) exhibited extensive alterations in the expression of multiple genes encoding ECM proteases and adhesion molecules. These effects were dissimilar to those produced by a direct nitric oxide donor, diethylenetriamine NONOate. NTG exposure significantly up-regulated NF-?B DNA nuclear binding activity and MMP-9 protein expression, and reduced tissue inhibitor of metalloproteinase-1 (TIMP-1) expression; these effects were abrogated in the presence of the NF-?B inhibitor parthenolide (a chemical inhibitor derived from the feverfew plant). Further, we examined whether our in vitro findings (an elevated MMP-9/TIMP-1 ratio and gelatinase activity) can be translated to in vivo effects, in a rat model. Sprague-Dawley rats exposed continuously to NTG subcutaneously for 8 days via mini-osmotic pumps showed significant induction of plasma MMP-9 dimer concentrations and the expression of a complex of MMP-9 with lipocalin-2 or neutrophil gelatinase associated lipocalin (NGAL). Plasma gelatinase activity was significantly increased by NTG over the entire study period, attaining peak elevation at day 6. Plasma TIMP-1 protein was down-regulated significantly by day 2 and days 4 to 7 in the NTG-treated rats. Pharmacokinetic monitoring of NTG and its dinitrate metabolites indicated that concentrations were well within therapeutic levels observed in humans. Our studies indicate that clinically relevant concentrations of NTG not only altered ECM matrix by changing the expression of multiple genes that govern cellular integrity, affecting cellular MMP-9/TIMP-1 balance in THP-1 human macrophages possibly via NF-?B activation, but also led to systemic changes in MMP-9/TIMP-1 expression and gelatinase activity in rats. These effects may contribute to extracellular matrix degradation and possible atherosclerotic plaque destabilization. PMID:21156214

  8. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  9. Differential Inhibition of Macrophage Activation by Lymphocytic Choriomeningitis Virus and Pichinde Virus Is Mediated by the Z Protein N-Terminal Domain.

    PubMed

    Xing, Junji; Chai, Zheng; Ly, Hinh; Liang, Yuying

    2015-12-15

    Several arenavirus pathogens, such as Lassa and Junin viruses, inhibit macrophage activation, the molecular mechanism of which is unclear. We show that lymphocytic choriomeningitis virus (LCMV) can also inhibit macrophage activation, in contrast to Pichinde and Tacaribe viruses, which are not known to naturally cause human diseases. Using a recombinant Pichinde virus system, we show that the LCMV Z N-terminal domain (NTD) mediates the inhibition of macrophage activation and immune functions. PMID:26423945

  10. Identification and characterization of monoclonal antibodies specific for macrophages at intermediate stages in the tumoricidal activation pathway

    SciTech Connect

    Paulnock, D.M.; Lambert, L.E. )

    1990-01-15

    Macrophage activation for tumor cell killing is a multistep pathway in which responsive macrophages interact sequentially with priming and triggering stimuli in the acquisition of full tumoricidal activity. A number of mediators have been identified which have activating capability, including in particular IFN-gamma and bacterial LPS. Although the synergistic functional response of normal macrophages to sequential incubation with these activation signals has been well-established, characterization of the intermediate stages in the activation pathway has been difficult. We have developed a model system for examination of various aspects of macrophage activation, through the use of the murine macrophage tumor cell line, RAW 264.7. These cells, like normal macrophages, exhibit a strict requirement for interaction with both IFN-gamma and LPS in the development of tumor cytolytic activity. In addition, these cells can be stably primed by the administration of gamma-radiation. In the studies reported here, we have used RAW 264.7 cells treated with IFN-gamma alone or with IFN-gamma plus LPS to stimulate the production of rat mAb probes recognizing cell surface changes occurring during the activation process. In this way we have identified three Ag associated with intermediate stages of the activation process. One Ag, TM-1, is expressed on RAW 264.7 cells primed by IFN-gamma or gamma-radiation. This surface Ag thus identifies cells at the primed cell intermediate stage of the tumoricidal activation pathway regardless of the mechanism of activation. A second Ag, TM-2, is expressed on IFN-treated RAW 264.7 cells but not on RAW 264.7 cells primed with gamma-radiation alone. Expression of this Ag can be induced by treatment of irradiated cells with IFN-gamma, but is not induced by IFN-gamma treatment of a noncytolytic cell line, WEHI-3.

  11. Macrophages Reprogrammed In Vitro Towards the M1 Phenotype and Activated with LPS Extend Lifespan of Mice with Ehrlich Ascites Carcinoma

    PubMed Central

    Kalish, Sergey V.; Lyamina, Svetlana V.; Usanova, Elena A.; Manukhina, Eugenia B.; Larionov, Nikolai P.; Malyshev, Igor Y.

    2015-01-01

    Background The majority of tumors trigger macrophage reprogramming from an anti-tumor M1 phenotype towards a pro-tumor M2 phenotype. The M2 phenotype promotes tumor growth. We hypothesized that increasing the number of M1 macrophages in a tumor would limit carcinogenesis and extend the lifespan of the tumor host. The aim of this study was to verify this hypothesis in Ehrlich ascites carcinoma (EAC). The objectives were to evaluate effects of 1) EAC on a macrophage phenotype and NO-producing macrophage activity in vivo; 2) ascitic fluid from mice with EAC on a macrophage phenotype and NO-producing macrophage activity in vitro; and 3) in vitro reprogrammed M1 macrophages on lifespan of mice with EAC. Material/Methods The study was conducted using C57BL/6J mice. Results Concentration of nitrite, a stable NO metabolite and an index of NO production, was measured spectrophotometrically. Shifts of macrophage phenotype were assessed by changes in NO production as well as by amounts of CD80, a marker of M1 phenotype, and CD206, a marker of M2 phenotype. The CD markers were measured by flow cytometry. Macrophages were reprogrammed towards the M1 phenotype using two reprogramming factors: 0% FBS and 20 ng/ml IFN-?. The study results showed that 1) EAC inhibited the macrophage NO production in vivo and reprogrammed macrophages towards the M2 phenotype; 2) ascitic fluid of mice with EAC inhibited the macrophage NO production in vitro and reprogrammed macrophages towards the M2 phenotype; and 3) injection of in vitro reprogrammed M1 macrophages into mice with EAC significantly increased the lifespan of mice. Conclusions These findings suggest that promising biotechnologies for restriction of tumor growth could be developed based on the in vitro macrophage reprogramming. PMID:26471744

  12. CpGB DNA activates dermal macrophages and specifically recruits inflammatory monocytes into the skin

    PubMed Central

    Mathes, Allison L.; Rice, Lisa; Affandi, Alsya J.; DiMarzio, Michael; Rifkin, Ian R.; Stifano, Giuseppina; Christmann, Romy B.; Lafyatis, Robert

    2015-01-01

    Toll-like receptor 9 (TLR9) drives innate immune responses after recognition of foreign or endogenous DNA containing unmethylated CpG motifs. DNA-mediated TLR9 activation is highly implicated in the pathogenesis of several autoimmune skin diseases, yet its contribution to the inflammation seen in these diseases remains unclear. In this study, TLR9 ligand, CpGB DNA, was administered to mice via a subcutaneous osmotic pump with treatment lasting 1 or 4 weeks. Gene expression and immunofluorescence analyses were used to determine chemokine expression and cell recruitment in the skin surrounding the pump outlet. CpGB DNA skin treatment dramatically induced a marked influx of CD11b+ F4/80+ macrophages, increasing over 4 weeks of treatment, and induction of IFN? and TNF? expression. Chemokines, CCL2, CCL4, CCL5, CXCL9 and CXCL10, were highly induced in CpGB DNA-treated skin, although abrogation of these signalling pathways individually did not alter macrophage accumulation. Flow cytometry analysis showed that TLR9 activation in the skin increased circulating CD11b+ CD115+ Ly6Chi inflammatory monocytes following 1 week of CpGB DNA treatment. Additionally, skin-resident CD11b+ cells were found to initially take up subcutaneous CpGB DNA and propagate the subsequent immune response. Using diphtheria toxin-induced monocyte depletion mouse model, gene expression analysis demonstrated that CD11b+ cells are responsible for the CpGB DNA-induced cytokine and chemokine response. Overall, these data demonstrate that chronic TLR9 activation induces a specific inflammatory response, ultimately leading to a striking and selective accumulation of macrophages in the skin. PMID:25425469

  13. CpGB DNA activates dermal macrophages and specifically recruits inflammatory monocytes into the skin.

    PubMed

    Mathes, Allison L; Rice, Lisa; Affandi, Alsya J; DiMarzio, Michael; Rifkin, Ian R; Stifano, Giuseppina; Christmann, Romy B; Lafyatis, Robert

    2015-02-01

    Toll-like receptor 9 (TLR9) drives innate immune responses after recognition of foreign or endogenous DNA containing unmethylated CpG motifs. DNA-mediated TLR9 activation is highly implicated in the pathogenesis of several autoimmune skin diseases, yet its contribution to the inflammation seen in these diseases remains unclear. In this study, TLR9 ligand, CpGB DNA, was administered to mice via a subcutaneous osmotic pump with treatment lasting 1 or 4 weeks. Gene expression and immunofluorescence analyses were used to determine chemokine expression and cell recruitment in the skin surrounding the pump outlet. CpGB DNA skin treatment dramatically induced a marked influx of CD11b+ F4/80+ macrophages, increasing over 4 weeks of treatment, and induction of IFN? and TNF? expression. Chemokines, CCL2, CCL4, CCL5, CXCL9 and CXCL10, were highly induced in CpGB DNA-treated skin, although abrogation of these signalling pathways individually did not alter macrophage accumulation. Flow cytometry analysis showed that TLR9 activation in the skin increased circulating CD11b+ CD115+ Ly6C(hi) inflammatory monocytes following 1 week of CpGB DNA treatment. Additionally, skin-resident CD11b+ cells were found to initially take up subcutaneous CpGB DNA and propagate the subsequent immune response. Using diphtheria toxin-induced monocyte depletion mouse model, gene expression analysis demonstrated that CD11b+ cells are responsible for the CpGB DNA-induced cytokine and chemokine response. Overall, these data demonstrate that chronic TLR9 activation induces a specific inflammatory response, ultimately leading to a striking and selective accumulation of macrophages in the skin. PMID:25425469

  14. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    SciTech Connect

    Gemelli, Claudia; Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  15. Dectin-1 Activation by a Natural Product ?-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype.

    PubMed

    Liu, Min; Luo, Fengling; Ding, Chuanlin; Albeituni, Sabrin; Hu, Xiaoling; Ma, Yunfeng; Cai, Yihua; McNally, Lacey; Sanders, Mary Ann; Jain, Dharamvir; Kloecker, Goetz; Bousamra, Michael; Zhang, Huang-Ge; Higashi, Richard M; Lane, Andrew N; Fan, Teresa W-M; Yan, Jun

    2015-11-15

    Tumor-associated macrophages (TAM) with an alternatively activated phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. In this study, we demonstrate that particulate yeast-derived ?-glucan, a natural polysaccharide compound, converts polarized alternatively activated macrophages or immunosuppressive TAM into a classically activated phenotype with potent immunostimulating activity. This process is associated with macrophage metabolic reprograming with enhanced glycolysis, Krebs cycle, and glutamine utilization. In addition, particulate ?-glucan converts immunosuppressive TAM via the C-type lectin receptor dectin-1-induced spleen tyrosine kinase-Card9-Erk pathway. Further in vivo studies show that oral particulate ?-glucan treatment significantly delays tumor growth, which is associated with in vivo TAM phenotype conversion and enhanced effector T cell activation. Mice injected with particulate ?-glucan-treated TAM mixed with tumor cells have significantly reduced tumor burden with less blood vascular vessels compared with those with TAM plus tumor cell injection. In addition, macrophage depletion significantly reduced the therapeutic efficacy of particulate ?-glucan in tumor-bearing mice. These findings have established a new paradigm for macrophage polarization and immunosuppressive TAM conversion and shed light on the action mode of ?-glucan treatment in cancer. PMID:26453753

  16. Platelet-activating factor inhibits the secretion of platelet-activating factor acetylhydrolase by human decidual macrophages.

    PubMed

    Narahara, Hisashi; Kawano, Yasushi; Nasu, Kaei; Yoshimatsu, Jun; Johnston, John M; Miyakawa, Isao

    2003-12-01

    To clarify the role of platelet-activating factor (PAF) in parturition, the effects of PAF on the secretion of PAF-acetylhydrolase (PAF-AH), a PAF-inactivating enzyme, by decidual macrophage populations were examined. The cells were isolated from human decidual tissue by enzymatic digestion, Ficoll-Paque centrifugation, or flow cytometric sorting. The nonhydrolyzable agonist of PAF, carbamyl-PAF (C-PAF), inhibited the secretion of PAF-AH by either decidual cells or flow cytometrically purified decidual macrophages. A specific PAF receptor antagonist, WEB 2086, blocked the C-PAF-induced inhibition. Lyso-PAF, a metabolite of PAF, had no effect on the enzyme secretion. An intracellular calcium channel blocker, bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester, partially blocked the inhibition by C-PAF, whereas extracellular calcium channel blockers, nifedipine and verapamil, were without effect. The inhibitory effect of C-PAF was also partially blocked by protein kinase C (PKC) inhibitors, sphingosine and H-7. A PKC activator, 12-O-tetradecanoylphobol 13-acetate, decreased the secretion of PAF-AH. The decrease was abolished by the addition of sphingosine and H-7. It is suggested that PAF inhibits the PAF-AH secretion by decidual macrophages and that the inhibitory action is mediated by a signal transduction mechanism involving intracellular calcium and PKC. PMID:14671207

  17. Immunomodulatory effects of Lactobacillus strains: emphasis on their effects on cancer cells.

    PubMed

    Abedin-Do, Atieh; Taherian-Esfahani, Zahra; Ghafouri-Fard, Soudeh; Ghafouri-Fard, Somayyeh; Motevaseli, Elahe

    2015-12-01

    Lactobacilli are a group of normal microbiota whose immunomodulatory effects have been known for a long time. Recently, they have gained more attention for their direct and indirect effects on cancer cells. Several cell line experiments, animal model studies as well as clinical trials have indicated their inhibitory effects on cancer initiation and progression. Different lactobacilli strains could modulate innate and adoptive immune system. Such effects have been documented in modulation of function of T cells, dendritic cells and macrophages as well as cytokine production. In this review, the various immunomodulatory effects of lactobacilli on tumor cells as well as their direct cytotoxic effects on cancer cells are discussed. PMID:26595390

  18. Silica-induced inflammasome activation in macrophages: role of ATP and P2X7 receptor.

    PubMed

    Luna-Gomes, Tatiana; Santana, Patricia Teixeira; Coutinho-Silva, Robson

    2015-09-01

    Silicosis is a fibrotic lung disease caused by the inhalation of silica particles, and is considered an occupational disease, given that these particles are present in the working environment of many mining and civil construction industries. NLRP3 inflammasome activation is an important mechanism during the inflammatory process of silicosis, and it promotes the production of cytokines, such as IL-1? and IL-18. ATP also plays an important role in silicosis. Specifically, extracellular ATP can activate P2X7 receptor, which then participates in the complete assembly of the NLRP3 inflammasome and its activation. Herein, we analyze the literature to provide a better understanding of the mechanisms underlying inflammasome activation and the role of P2X7 receptors in macrophages during silicosis. PMID:26024943

  19. Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-induced Pulmonary Hypertension

    PubMed Central

    Vergadi, Eleni; Chang, Mun Seog; Lee, Changjin; Liang, Olin; Liu, Xianlan; Fernandez-Gonzalez, Angeles; Mitsialis, S. Alex; Kourembanas, Stella

    2011-01-01

    Background Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, is protective in HPH. Methods and Results We generated bitransgenic mice that overexpress human HO-1 under doxycycline (dox) control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of dox resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of Found in Inflammatory Zone-1, Arginase-1 and Chitinase-3-like-3. A brief, two-day pulse of dox delayed but did not prevent the peak of hypoxic inflammation, and could not protect from HPH. In contrast, a seven-day dox treatment sustained high HO-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage IL-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted proliferation of pulmonary artery smooth muscle cells while treatment with carbon monoxide, a HO-1 enzymatic product, abrogated this effect. Conclusions Early recruitment and alternative activation of macrophages in hypoxic lungs is critical for the later development of HPH. HO-1 may confer protection from HPH by effectively modifing macrophage activation state in hypoxia. PMID:21518986

  20. Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation.

    PubMed

    Khan, Junaid; Sharma, Praveen K; Mukhopadhaya, Arunika

    2015-11-01

    Polarization of the monocytes and macrophages toward the M1 and M2 states is important for hosts' defense against the pathogens. Moreover, it plays a crucial role to resolve the overwhelming inflammatory responses that can be harmful to the host. Polarization of macrophages/monocytes can be induced by pathogen-associated molecular patterns (PAMPs). PAMP-mediated monocyte/macrophage polarization is important during the infection, as pathogen can suppress host immune system by altering the polarization status of the macrophages/monocytes. OmpU, an outer membrane porin protein of Vibrio cholerae, possesses the ability to induce pro-inflammatory responses in monocytes/macrophages. It is also able to down-regulate the LPS-mediated activation of the monocytes/macrophages. Such observation leads us to believe that OmpU may induce a state that can be called as M1/M2-intermediate state. In the present study, we evaluated a set of M1 and M2 markers in RAW 264.7 murine macrophage cell line, and THP-1 human monocytic cell line, in response to the purified OmpU protein. We observed that OmpU, as a PAMP, induced M1-polarization by activating the Toll-like receptor (TLR) signaling pathway. OmpU induced formation of TLR1/TLR2-heterodimers. OmpU-mediated TLR-activation led to the MyD88 recruitment to the TLR1/TLR2 complex. MyD88, in turn, recruited IRAK1. Ultimately, OmpU-mediated signaling led to the activation and subsequent nuclear translocation of the NF?B p65 subunit. We also observed that blocking of the TLR1, TLR2, IRAK1, and NF?B affected OmpU-mediated production of M1-associated pro-inflammatory cytokines such as TNF? and IL-6. PMID:26093918

  1. Metabolic Impact of 4-Hydroxynonenal on Macrophage-Like RAW 264.7 Function and Activation

    PubMed Central

    Harry, Reese S.; Hiatt, Leslie A.; Kimmel, Danielle W.; Carney, Clare K.; Halfpenny, Kristin C.; Cliffel, David E.; Wright, David W.

    2012-01-01

    Metabolic profiling of macrophage metabolic response upon exposure to 4-hydroxynonenal (HNE) demonstrates that HNE does not simply inactivate superoxide generating enzymes but could also be responsible for the impairment of downfield signaling pathways. Multianalyte microphysiometry (MAMP) was employed to simultaneously measure perturbations in extracellular acidification, lactate production and oxygen consumption for the examination of aerobic and anaerobic pathways. Combining the activation of oxidative burst with phorbol myristate acetate (PMA) and the immunosuppression with HNE, the complex nature of HNE toxicity was determined to be concentration- and time-dependent. Further analysis was utilized to assess the temporal effect of HNE on reactive oxygen species (ROS) production and on protein kinase C (PKC). Increased levels of HNE with decreasing PKC activity suggest PKC is a target for HNE adductation prior to oxidative burst. Additionally, localization of PKC to the cell membrane was prevented with the introduction of HNE, demonstrating a consequence of HNE adductation on NADPH activation. The impairment of ROS by HNE suggests HNE has a greater role in foam cell formation and tissue damage than is already known. Although work has been performed to understand the effect of HNE’s regulation of specific signaling pathways, details regarding its involvement in cellular metabolism as a whole are generally unknown. This study examines the impact of HNE on macrophage oxidative burst and identifies PKC as a key protein for HNE suppression and eventual metabolic response. PMID:22799741

  2. Rapid Temporal Dynamics of Transcription, Protein Synthesis, and Secretion during Macrophage Activation*

    PubMed Central

    Eichelbaum, Katrin; Krijgsveld, Jeroen

    2014-01-01

    Macrophages provide the first line of host defense with their capacity to react to an array of cytokines and bacterial components requiring tight regulation of protein expression and secretion to invoke a properly tuned innate immune response. To capture the dynamics of this system, we introduce a novel method combining pulsed stable isotope labeling with amino acids in cell culture (SILAC) with pulse labeling using the methionine analog azidohomoalanine that allows the enrichment of newly synthesized proteins via click-chemistry followed by their identification and quantification by mass spectrometry. We show that this permits the analysis of proteome changes on a rapid time scale, as evidenced by the detection of 4852 newly synthesized proteins after only a 20-min SILAC pulse. We have applied this methodology to study proteome response during macrophage activation in a time-course manner. We have combined this with full proteome, transcriptome, and secretome analyses, producing an integrative analysis of the first 3 h of lipopolysaccharide-induced macrophage activation. We observed the rapid induction of multiple processes well known to TLR4 signaling, as well as anti-inflammatory proteins and proteins not previously associated with immune response. By correlating transcriptional, translational, and secretory events, we derived novel mechanistic principles of processes specifically induced by lipopolysaccharides, including ectodomain shedding and proteolytic processing of transmembrane and extracellular proteins and protein secretion independent of transcription. In conclusion, we demonstrate that the combination of pulsed azidohomoalanine and pulsed SILAC permits the detailed characterization of proteomic events on a rapid time scale. We anticipate that this approach will be very useful in probing the immediate effects of cellular stimuli and will provide mechanistic insight into cellular perturbation in multiple biological systems. The data have been deposited in ProteomeXchange with the identifier PXD000600. PMID:24396086

  3. Overcrowding stress decreases macrophage activity and increases Salmonella Enteritidis invasion in broiler chickens.

    PubMed

    Gomes, A V S; Quinteiro-Filho, W M; Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Baskeville, E; Akamine, A T; Astolfi-Ferreira, C S; Ferreira, A J P; Palermo-Neto, J

    2014-01-01

    Overcrowding stress is a reality in the poultry industry. Chickens exposed to long-term stressful situations present a reduction of welfare and immunosuppression. We designed this experiment to analyse the effects from overcrowding stress of 16 birds/m(2) on performance parameters, serum corticosterone levels, the relative weight of the bursa of Fabricius, plasma IgA and IgG levels, intestinal integrity, macrophage activity and experimental Salmonella Enteritidis invasion. The results of this study indicate that overcrowding stress decreased performance parameters, induced enteritis and decreased macrophage activity and the relative bursa weight in broiler chickens. When the chickens were similarly stressed and infected with Salmonella Enteritidis, there was an increase in feed conversion and a decrease in plasma IgG levels in the stressed and Salmonella-infected birds. We observed moderate enteritis throughout the duodenum of chickens stressed and infected with Salmonella. The overcrowding stress decreased the macrophage phagocytosis intensity and increased Salmonella Enteritidis counts in the livers of birds challenged with the pathogenic bacterium. Overcrowding stress via the hypothalamic-pituitary-adrenal axis that is associated with an increase in corticosterone and enteritis might influence the quality of the intestinal immune barrier and the integrity of the small intestine. This effect allowed pathogenic bacteria to migrate through the intestinal mucosa, resulting in inflammatory infiltration and decreased nutrient absorption. The data strengthen the hypothesis that control of the welfare of chickens and avoidance of stress from overcrowding in poultry production are relevant factors for the maintenance of intestinal integrity, performance and decreased susceptibility to Salmonella infection. PMID:24350836

  4. Inflammation, Macrophage in Cancer Progression and Chinese Herbal Treatment

    PubMed Central

    Deng, Shan; Hu, Bing; Shen, Ke-Ping; Xu, Ling

    2012-01-01

    Inflammation is associated with cancer development, and has been recognized as the seventh hallmarks of the cancer. Cancer-related inflammation can be activated by genetic or epigenetic changes in cancer cells (intrinsic pathway) or mediated by tumor-infiltrating immune cells (extrinsic pathway). Immune cells involved in cancer-related inflammation mainly including tumor-associated macrophages or M2 macrophages, neutrophils, dendritic cells, mast cells, and lymphocytes. As major players of the cancer-related inflammation, M2 macrophages, secreting various of growth factors, immunomodulatory cytokines and matrix metalloproteinases, participate in remodeling of extracellular matrix, contribute to cancer invasion and metastasis, angiogenesis, and inhibit anti-cancer immunity. Inflammation has been considered as an important target for cancer therapy. Some Chinese herbal ingredients have been confirmed to be effective in inhibit inflammation related gene expression in cancer cells, such as COX-2 and NF-B. However, there is a shortage of study on Chinese herb or herbal ingredient against extrinsic cancer inflammation, especially in tumor-associated macrophages. Related studies may provide new insight into cancer treatment. PMID:24826036

  5. Hemin-activated macrophages home to the pancreas and protect from acute pancreatitis via heme oxygenase-1 induction

    PubMed Central

    Nakamichi, Ikuo; Habtezion, Aida; Zhong, Bihui; Contag, Christopher H.; Butcher, Eugene C.; Omary, M. Bishr

    2005-01-01

    Hemin upregulates heme oxygenase-1 (HO-1), a stress-induced enzyme implicated in protection from a variety of injuries while its related isoform HO-2 is constitutively expressed. The role of hemin or HO-1 in the pancreas and their potential modulation of pancreatic injury are unknown. We show that HO-1 is induced in pancreatitis caused by caerulein and more prominently in severe pancreatitis caused by feeding a choline-deficient diet (CDD). Intraperitoneal hemin administration dramatically increases peritoneal and pancreas macrophages that overexpress HO-1 in association with pancreatic induction of the chemoattractants monocyte chemotactic protein-1 and macrophage inflammatory protein-1? but not RANTES or macrophage inflammatory protein-2. Hemin administration before CDD feeding protected 8 of 8 mice from lethality while 7 of 16 controls died. Protection is mediated by HO-1–overexpressing macrophages since hemin-primed macrophages home to the pancreas after transfer to naive mice and protect from CDD-induced pancreatitis. Suppression of hemin-primed peritoneal cell HO-1 using HO-1–specific small interfering RNA prior to cell transfer abolishes protection from CDD-induced pancreatitis. Similarly, hemin pretreatment in caerulein-induced pancreatitis reduces serum amylase and lipase, decreases pancreatic trypsin generation, and protects from lung injury. Therefore, hemin-like compounds or hemin-activated macrophages may offer novel therapeutic approaches for preventing acute pancreatitis and its pulmonary complication via upregulation of HO-1. PMID:16239966

  6. Kruppel-Like Factor 2-Mediated Suppression of MicroRNA-155 Reduces the Proinflammatory Activation of Macrophages

    PubMed Central

    Li, Dazhu; Li, Ming

    2015-01-01

    Objective Recent evidence indicates that significant interactions exist between Kruppel-like factor 2 (KLF2) and microRNAs (miRNAs) in endothelial cells. Because KLF2 is known to exert anti-inflammatory effects and inhibit the pro-inflammatory activation of monocytes, we sought to identify how inflammation-associated miR-155 is regulated by KLF2 in macrophages. Approach and Results Peritoneal macrophages from wild-type (WT) C57Bl/6 mice were transfected with either recombinant adenovirus vector expressing KLF2 (Ad-KLF2) or siRNA targeting KLF2 (KLF2-siRNA) for 24 h–48 h, then stimulated with oxidized low-density lipoproteins (ox-LDL, 50 ?g/mL) for 24 h. Quantitative real-time polymerase chain reaction showed that KLF2 markedly reduced the expression of miR-155 in quiescent/ox-LDL-stimulated macrophages. We also found that the increased expression of miR-155, monocyte chemoattractant protein (MCP-1) and interleukin (IL)-6 and the decreased expression of the suppressor of cytokine signaling (SOCS)-1 and IL-10 in ox-LDL-treated macrophages were significantly suppressed by KLF2. Most importantly, over-expression of miR-155 could partly reverse the suppressive effects of KLF2 on the inflammatory response of macrophages. Conversely, the suppression of miR-155 in KLF2 knockdown macrophages significantly overcame the pro-inflammatory properties associated with KLF2 knockdown. Finally, Ad-KLF2 significantly attenuated the diet-induced formation of atherosclerotic lesions in apolipoprotein E-deficient (apoE-/-) mice, which was associated with a significantly reduced expression of miR-155 and its relative inflammatory cytokine genes in the aortic arch and in macrophages. Conclusion KLF2-mediated suppression of miR-155 reduced the inflammatory response of macrophages. PMID:26406238

  7. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    SciTech Connect

    Gardner, Carol R.; Hankey, Pamela; Mishin, Vladimir; Francis, Mary; Yu, Shan; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup ?/?} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup ?/?} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup ?/?} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup ?/?} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-?, interleukin (IL)-1?, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNF?, IL-1?, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup ?/?} mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity. -- Highlights: ? STK regulates alternative macrophage activation after acetaminophen intoxication. ? Loss of STK results in increased sensitivity to acetaminophen. ? Increased toxicity involves oxidative stress and decreases in repair macrophages.

  8. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  9. THE MACROPHAGE CHEMOTACTIC ACTIVITY OF STREPTOCOCCUS AGALACTIAE AND STREPTOCOCCUS INIAE EXTRACELLULAR PRODUCTS (ECP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of Streptococcus agalactiae and Streptococcus iniae to attract macrophages of Nile tilapia (Oreochromis niloticus) was investigated. The extracellular products (ECP) from S. agalactiae and S. iniae were tested for macrophage chemotaxis using in vitro blind well chambers. The macrophage...

  10. Macrophage polarization and activation in response to implant debris: influence by "particle disease" and "ion disease".

    PubMed

    Konttinen, Yrjo T; Pajarinen, Jukka; Takakubo, Yuya; Gallo, Jiri; Nich, Christophe; Takagi, Michiaki; Goodman, Stuart B

    2014-01-01

    Macrophages derive from human embryonic and fetal stem cells and from human bone marrow-derived blood monocytes. They play a major homeostatic role in tissue remodeling and maintenance facilitated by apoptotic "eat me" opsonins like CRP, serum amyloid P, C1q, C3b, IgM, ficolin, and surfactant proteins. Three subsets of monocytes, classic, intermediate, and nonclassic, are mobilized and transmigrate to tissues. Implant-derived wear particles opsonized by danger signals regulate macrophage priming, polarization (M1, M2, M17, and Mreg), and activation. CD14(+) monocytes in healthy controls and CD16(+) monocytes in inflammation differentiate/polarize to foreign body giant cells/osteoclasts or inflammatory dendritic cells (infDC). These danger signal opsonins can be pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), but in aseptic loosening, usually are damage-associated molecular patterns (DAMPs). Danger signal-opsonized particles elicit "particle disease" and aseptic loosening. They provide soluble and cell membrane-bound co-stimulatory signals that can lead to cell-mediated immune reactions to metal ions. Metal-on-metal implant failure has disclosed that quite like Ni(2+), its neighbor in the periodic table Co(2+) can directly activate toll-like receptor 4 (TLR4) as a lipopolysaccharide-mimic. "Ion disease" concept needs to be incorporated into the "particle disease" concept, due to the toxic, immune, and inflammatory potential of metal ions. PMID:25747030

  11. Xanthine oxidoreductase regulates macrophage IL1? secretion upon NLRP3 inflammasome activation.

    PubMed

    Ives, Annette; Nomura, Johji; Martinon, Fabio; Roger, Thierry; LeRoy, Didier; Miner, Jeffrey N; Simon, Gregoire; Busso, Nathalie; So, Alexander

    2015-01-01

    Activation of the NLRP3 inflammasome by microbial ligands or tissue damage requires intracellular generation of reactive oxygen species (ROS). We present evidence that macrophage secretion of IL1? upon stimulation with ATP, crystals or LPS is mediated by a rapid increase in the activity of xanthine oxidase (XO), the oxidized form of xanthine dehydrogenase, resulting in the formation of uric acid as well as ROS. We show that XO-derived ROS, but not uric acid, is the trigger for IL1? release and that XO blockade results in impaired IL1? and caspase1 secretion. XO is localized to both cytoplasmic and mitochondrial compartments and acts upstream to the PI3K-AKT signalling pathway that results in mitochondrial ROS generation. This pathway represents a mechanism for regulating NLRP3 inflammasome activation that may have therapeutic implications in inflammatory diseases. PMID:25800347

  12. Differential Regulation of Proinflammatory Cytokine Expression by Mitogen-Activated Protein Kinases in Macrophages in Response to Intestinal Parasite Infection

    PubMed Central

    Lim, Mei Xing; Png, Chin Wen; Tay, Crispina Yan Bing; Teo, Joshua Ding Wei; Jiao, Huipeng; Lehming, Norbert

    2014-01-01

    Blastocystis is a common enteric protistan parasite that can cause acute, as well as chronic, infection and is associated with irritable bowel syndrome (IBS). However, the pathogenic status of Blastocystis infection remains unclear. In this study, we found that Blastocystis antigens induced abundant expression of proinflammatory cytokines, including interleukin 1? (IL-1?), IL-6, and tumor necrosis factor alpha (TNF-?), in mouse intestinal explants, in mouse colitis colon, and in macrophages. Further investigation utilizing RAW264.7 murine macrophages showed that Blastocystis treatment in RAW264.7 macrophages induced the activation of ERK, JNK, and p38, the three major groups of mammalian mitogen-activated protein (MAP) kinases that play essential roles in the expression of proinflammatory cytokines. ERK inhibition in macrophages significantly suppressed both mRNA and protein expression of IL-6 and TNF-? and mRNA expression of IL-1?. On the other hand, JNK inhibition resulted in reductions in both c-Jun and ERK activation and significant suppression of all three proinflammatory cytokines at both the mRNA and protein levels. Inhibition of p38 suppressed only IL-6 protein expression with no effect on the expression of IL-1? and TNF-?. Furthermore, we found that serine proteases produced by Blastocystis play an important role in the induction of ERK activation and proinflammatory cytokine expression by macrophages. Our study thus demonstrated for the first time that Blastocystis could induce the expression of various proinflammatory cytokines via the activation of MAP kinases and that infection with Blastocystis may contribute to the pathogenesis of inflammatory intestinal diseases through the activation of inflammatory pathways in host immune cells, such as macrophages. PMID:25156742

  13. Plasminogen activator activity in lung and alveolar macrophages of rats exposed to graded single doses of. gamma. rays to the right hemithorax

    SciTech Connect

    Ts'ao, C.; Ward, W.F.

    1985-09-01

    Male rats were sacrificed 2 or 6 months after a single dose of 0-30 Gy of /sup 60/Co ..gamma.. rays to the right hemithorax. At autopsy, macrophages were lavaged from the right lung, counted, and frozen. The right (irradiated) and the left (shielded) lungs were frozen, then assayed for plasminogen activator (PLA) activity by the fibrin plate lysis method. Freeze-thawed macrophages were assayed for both PLA activity (/sup 125/I-fibrin clot lysis method) and fibrinolytic inhibitor activity (inhibition of urokinase-induced fibrin lysis). There was a linear, dose-dependent decrease in right lung PLA activity over the dose range of 10-30 Gy at 2 and 6 months postirradiation, reductions of 3.1 and 2.6% per Gy, respectively. PLA activity at all radiation doses was 10-15% higher at 6 months than at 2 months indicative of a partial recovery of this endothelial function in the irradiated lung. PLA activity per 10/sup 6/ macrophages decreased with increasing radiation dose at both autopsy times, closely paralleling lung PLA activity. This radiation-induced decrease in macrophage PLA activity was not due to increased fibrinolytic inhibitor activity in the irradiated macrophages. These data quantitate the dose response and time course of radiation-induced fibrinolytic defects in rat lung and suggest that information obtained from a minimally invasive procedure such as bronchoalveolar lavage may serve as an index of the degree of pulmonary fibrinolytic dysfunction after irradiation.

  14. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro

    PubMed Central

    Bancos, Simona; Stevens, David L; Tyner, Katherine M

    2015-01-01

    The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity. PMID:25565813

  15. Interferon Regulatory Factor (IRF)-1 Is a Master Regulator of the Cross Talk between Macrophages and L929 Fibrosarcoma Cells for Nitric Oxide Dependent Tumoricidal Activity

    PubMed Central

    Nascimento, Flavia R. F.; Gomes, Eliane A.; Russo, Momtchilo; Lepique, Ana P.

    2015-01-01

    Macrophage tumoricidal activity relies, mainly, on the release of Tumor Necrosis Factor alpha (TNF?) and/or on reactive oxygen or nitrogen intermediates. In the present work, we investigated the cytotoxic activity of resident peritoneal macrophages against L929 fibrosarcoma cell line in vitro and in vivo. Resident macrophages lysed L929 cells in a mechanism independent of TNF? and cell-to-cell contact. The cytotoxic activity was largely dependent on nitric oxide (NO) release since treatment with L-NAME (NOS inhibitor) inhibited L929 cells killing. Macrophages from mice with targeted deletion of inducible NO synthase (iNOS) together with L929 cells produced less NO and displayed lower, but still significant, tumoricidal activity. Notably, NO production and tumor lysis were abolished in co-cultures with macrophages deficient in Interferon Regulatory Factor, IRF-1. Importantly, the in vitro findings were reproduced in vivo as IRF-1 deficient animals inoculated i.p with L929 cells were extremely susceptible to tumor growth and their macrophages did not produce NO, while WT mice killed L929 tumor cells and their macrophages produced high levels of NO. Our results indicate that IRF-1 is a master regulator of bi-directional interaction between macrophages and tumor cells. Overall, IRF-1 was essential for NO production by co-cultures and macrophage tumoricidal activity in vitro as well as for the control of tumor growth in vivo. PMID:25659093

  16. Activated macrophages in HIV encephalitis and a macaque model show increased [3H](R)-PK11195 binding in a PI3-kinase dependent manner

    PubMed Central

    Venneti, Sriram; Wang, Guoji; Wiley., Clayton A.

    2007-01-01

    HIV encephalitis (HIVE) is a neurodegenerative disease seen in approximately one in four terminally infected patients. Macaques infected with the simian immunodeficiency virus develop encephalitis (SIVE) very similar to the human disease. Neurodegeneration in both these conditions occurs from the effects of toxic viral proteins and neurotoxins derived from activated brain macrophages. Activated macrophages in the brain of macaques with SIVE can be labeled in vivo using positron emission tomography (PET) using PK11195, a ligand that binds the peripheral benzodiazepine receptor (PBR). However, the functional significance and mechanisms mediating increased PK11195 binding in activated brain macrophages are not known. Using post mortem tissues from macaques with SIVE and macrophages cell cultures activated with lipopolysaccaride (LPS), we show that [3H](R)-PK11195 binding is increased in activated macrophages. Increased [3H](R)-PK11195 binding in LPS activated macrophages was reversed by pharmacologically inhibiting class III phosphatidylinositol-3 kinase (PI3-kinase), but was not altered by inhibiting the mitogen-activated protein kinase (MAP-kinase) pathway. Our results suggest that activated macrophages in lentiviral encephalitis show increased [3H](R)-PK11195 binding in a PI3-kinase dependent fashion which may help elucidate the function of PBR in activated brain macrophages in HIVE and other neuroinflammatory diseases. PMID:17888571

  17. Enterococcus faecalis Infection Activates Phosphatidylinositol 3-Kinase Signaling To Block Apoptotic Cell Death in Macrophages

    PubMed Central

    Zou, Jun

    2014-01-01

    Apoptosis is an intrinsic immune defense mechanism in the host response to microbial infection. Not surprisingly, many pathogens have evolved various strategies to manipulate this important pathway to benefit their own survival and dissemination in the host during infection. To our knowledge, no attempts have been made to explore the host cell survival signals modulated by the bacterium Enterococcus faecalis. Here, we show for the first time that during early stages of infection, internalized enterococci can prevent host cell (RAW264.7 cells, primary macrophages, and mouse embryonic fibroblasts [MEFs]) apoptosis induced by a wide spectrum of proapoptotic stimuli. Activation of caspase 3 and cleavage of the caspase 3 substrate poly(ADP-ribose) polymerase were inhibited in E. faecalis-infected cells, indicating that E. faecalis protects macrophages from apoptosis by inhibiting caspase 3 activation. This antiapoptotic activity in E. faecalis-infected cells was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which resulted in the increased expression of the antiapoptotic factor Bcl-2 and decreased expression of the proapoptotic factor Bax. Further analysis revealed that active E. faecalis physiology was important for inhibition of host cell apoptosis, and this feature seemed to be a strain-independent trait among E. faecalis isolates. Employing a mouse peritonitis model, we also determined that cells collected from the peritoneal lavage fluid of E. faecalis-infected mice showed reduced levels of apoptosis compared to cells from uninfected mice. These results show early modulation of apoptosis during infection and have important implications for enterococcal pathogenesis. PMID:25267834

  18. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    SciTech Connect

    Pi Jingbo Zhang Qiang; Woods, Courtney G.; Wong, Victoria; Collins, Sheila; Andersen, Melvin E.

    2008-02-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage.

  19. Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing interleukin-10 in mice.

    PubMed

    Leung, Audrey; Gregory, Nicholas S; Allen, Lee-Ann H; Sluka, Kathleen A

    2016-01-01

    Regular physical activity in healthy individuals prevents development of chronic musculoskeletal pain; however, the mechanisms underlying this exercise-induced analgesia are not well understood. Interleukin-10 (IL-10), an antiinflammatory cytokine that can reduce nociceptor sensitization, increases during regular physical activity. Since macrophages play a major role in cytokine production and are present in muscle tissue, we propose that physical activity alters macrophage phenotype to increase IL-10 and prevent chronic pain. Physical activity was induced by allowing C57BL/6J mice free access to running wheels for 8 weeks and compared to sedentary mice with no running wheels. Using immunohistochemical staining of the gastrocnemius muscle to label regulatory (M2, secretes antiinflammatory cytokines) and classical (M1, secretes proinflammatory cytokines) macrophages, the percentage of M2-macrophages increased significantly in physically active mice (68.5% ± 4.6% of total) compared with sedentary mice (45.8% ± 7.1% of total). Repeated acid injections into the muscle enhanced mechanical sensitivity of the muscle and paw in sedentary animals, which does not occur in physically active mice; no sex differences occur in either sedentary or physically active mice. Blockade of IL-10 systemically or locally prevented the analgesia in physically active mice, ie, mice developed hyperalgesia. Conversely, sedentary mice pretreated systemically or locally with IL-10 had reduced hyperalgesia after repeated acid injections. Thus, these results suggest that regular physical activity increases the percentage of regulatory macrophages in muscle and that IL-10 is an essential mediator in the analgesia produced by regular physical activity. PMID:26230740

  20. Immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophage-activating factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Nakazato, Hiroaki; Yamamoto, Nobuyuki; Koga, Yoshihiko

    2008-07-01

    Serum vitamin D binding protein (Gc protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of colorectal cancer patients was lost or reduced because Gc protein is deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Deglycosylated Gc protein cannot be converted to MAF, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage-activating factor (GcMAF) ever discovered, but it produces no side effect in humans. Macrophages treated with GcMAF (100 microg/ml) develop an enormous variation of receptors and are highly tumoricidal to a variety of cancers indiscriminately. Administration of 100 nanogram (ng)/ human maximally activates systemic macrophages that can kill cancerous cells. Since the half-life of the activated macrophages is approximately 6 days, 100 ng GcMAF was administered weekly to eight nonanemic colorectal cancer patients who had previously received tumor-resection but still carried significant amounts of metastatic tumor cells. As GcMAF therapy progressed, the MAF precursor activities of all patients increased and conversely their serum Nagalase activities decreased. Since serum Nagalase is proportional to tumor burden, serum Nagalase activity was used as a prognostic index for time course analysis of GcMAF therapy. After 32-50 weekly administrations of 100 ng GcMAF, all colorectal cancer patients exhibited healthy control levels of the serum Nagalase activity, indicating eradication of metastatic tumor cells. During 7 years after the completion of GcMAF therapy, their serum Nagalase activity did not increase, indicating no recurrence of cancer, which was also supported by the annual CT scans of these patients. PMID:18058096

  1. Activation of murine peritoneal macrophages by water-soluble extracts of Bursaphelenchus xylophilus, a pine wood nematode.

    PubMed

    Kaji, Hiroaki; Tai, Akihiro; Matsushita, Kazufumi; Kanzaki, Hiroshi; Yamamoto, Itaru

    2006-01-01

    In our previous study, water-soluble extracts from Bursaphelenchus xylophilus (B. xylophilus), a pine wood nematode, were shown to enhance interleukin (IL)-4 plus lipopolysaccharide-induced polyclonal immunoglobulin (Ig) E production in vitro in mice and to increase serum levels of an antigen-nonspecific IgE in vivo. Here we examined whether the nematode extracts stimulate immunofunctions of murine peritoneal macrophages. In both resident and inflammatory macrophages, Fcgamma receptor-mediated phagocytosis was markedly activated by B. xylophilus extracts, while non-specific phagocytosis was not. The enhancement of specific phagocytosis was accompanied by an increase in the formation of IgG-Fcgamma receptor rosettes. B. xylophilus extracts also stimulated IL-1beta production in both types of macrophages, and enhanced NO production and mRNA expression of inflammatory cytokines in inflammatory macrophages. These results indicate that the extracts of B. xylophilus contain an activating substance(s) for immunofunctions in macrophages, besides an enhancing factor for polyclonal IgE production. PMID:16428838

  2. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages

    PubMed Central

    Rosati, Alessandra; Basile, Anna; D'Auria, Raffaella; d'Avenia, Morena; De Marco, Margot; Falco, Antonia; Festa, Michelina; Guerriero, Luana; Iorio, Vittoria; Parente, Roberto; Pascale, Maria; Marzullo, Liberato; Franco, Renato; Arra, Claudio; Barbieri, Antonio; Rea, Domenica; Menichini, Giulio; Hahne, Michael; Bijlsma, Maarten; Barcaroli, Daniela; Sala, Gianluca; di Mola, Fabio Francesco; di Sebastiano, Pierluigi; Todoric, Jelena; Antonucci, Laura; Corvest, Vincent; Jawhari, Anass; Firpo, Matthew A; Tuveson, David A; Capunzo, Mario; Karin, Michael; De Laurenzi, Vincenzo; Turco, Maria Caterina

    2015-01-01

    The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, inducing their activation and the secretion of PDAC supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3 antibody results in reduced tumour growth and prevents metastasis formation in three different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential. PMID:26522614

  3. Supplementary immunocytochemistry of hepatocyte growth factor production in activated macrophages early in muscle regeneration.

    PubMed

    Sawano, Shoko; Suzuki, Takahiro; Do, Mai-Khoi Q; Ohtsubo, Hideaki; Mizunoya, Wataru; Ikeuchi, Yoshihide; Tatsumi, Ryuichi

    2014-12-01

    Regenerative intramuscular motor-innervation is thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies showed that resident myogenic stem cells, satellite cells, up-regulate a secreted neural-chemorepellent semaphorin 3A (Sema3A) during the early-differentiation period, in response to hepatocyte growth factor (HGF) elevated in injured muscle. However, a paracrine source of the HGF release is still unknown. Very recently, we proposed a possible contribution of anti-inflammatory macrophages (CD206-positive M2) by showing that M2 cells infiltrate predominantly at the early-differentiation phase (3-5 days post-injury) and produce/secrete large amounts of HGF. However, in understanding this concept there still remains a critical need to examine if phagocytotic pro-inflammatory macrophages (CD86-positive M1), another activated-phenotype still present at the early-differentiation phase concerned, produce HGF upon muscle injury. The current immunocytochemical study demonstrated that the HGF expression is negative for M1 prepared from cardiotoxin-injured Tibialis anterior muscle at day 5, in contrast to the intense fluorescent-signal of M2 served as a positive control. This supplementary result advances our understanding of a spatiotemporal burst of HGF secretion from M2 populations (not M1) to impact Sema3A expression, which ensures a coordinated delay in attachment of motoneuron terminals onto damaged and generating fibers during the early phase of muscle regeneration. PMID:25185534

  4. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells

    SciTech Connect

    Kim, Yong Chan; Song, Seok Bean; Lee, Mi Hee; Kang, Kwang Il; Lee, Hayyoung; Paik, Sang-Gi; Kim, Kyoon Eon; Kim, Young Sang . E-mail: young@cnu.ac.kr

    2006-01-20

    Macrophages participate in several inflammatory pathologies such as sepsis and arthritis. We examined the effect of simvastatin on the LPS-induced proinflammatory macrophage RAW264.7 cells. Co-treatment of LPS and a non-toxic dose of simvastatin induced cell death in RAW264.7 cells. The cell death was accompanied by disruption of mitochondrial membrane potential (MMP), genomic DNA fragmentation, and caspase-3 activation. Surprisingly, despite caspase-dependent apoptotic cascade being completely blocked by Z-VAD-fmk, a pan-caspase inhibitor, the cell death was only partially repressed. In the presence of Z-VAD-fmk, DNA fragmentation was blocked, but DNA condensation, disruption of MMP, and nuclear translocation of apoptosis inducing factor were obvious. The cell death by simvastatin and LPS was effectively decreased by both the FPP and GGPP treatments as well as mevalonate. Our findings indicate that simvastatin triggers the cell death of LPS-treated RAW264.7 cells through both caspase-dependent and -independent apoptotic pathways, suggesting a novel mechanism of statins for the severe inflammatory disease therapy.

  5. MicroRNA-365 in macrophages regulates Mycobacterium tuberculosis-induced active pulmonary tuberculosis via interleukin-6

    PubMed Central

    Song, Qingzhang; Li, Hui; Shao, Hua; Li, Chunling; Lu, Xiao

    2015-01-01

    The present study is to investigate the relationship between microRNA (miR)-365 expression and the levels of interleukin (IL)-6 mRNA and protein in patients with active tuberculosis. From June 2011 to June 2014, 48 patients with active pulmonary tuberculosis induced by Mycobacterium tuberculosis were included in the study. In addition, 23 healthy subjects were enrolled as control. Macrophages were collected by pulmonary alveolus lavage. In addition, serum and mononuclear cells were isolated from peripheral blood. The levels of miR-365 and IL-6 in macrophages, mononuclear cells and serum were determined using quantitative real-time polymerase chain reaction. The protein expression of IL-6 in macrophages and mononuclear cells was measured using Western blotting, while that in serum was detected by enzyme-linked immunoabsorbent assay. Expression of IL-6 mRNA and protein was significantly enhanced in patients with active pulmonary tuberculosis. Increase of IL-6 protein concentration in serum was probably due to the release of IL-6 protein from mononuclear cells in the blood. In addition, miR-365 levels were significantly lowered in patients with active pulmonary tuberculosis. Up-regulated IL-6 expression in macrophages, mononuclear cells and serum in patients with active pulmonary tuberculosis is related to the down-regulation of miR-365, suggesting that miR-365 may regulate the occurrence and immune responses of active pulmonary tuberculosis via IL-6.

  6. Characterization of onion lectin (Allium cepa agglutinin) as an immunomodulatory protein inducing Th1-type immune response in vitro.

    PubMed

    Prasanna, Vaddi K; Venkatesh, Yeldur P

    2015-06-01

    Onion (Allium cepa), a bulb crop of economic importance, is known to have many health benefits. The major objective of the present study is to address the immunomodulatory properties of onion lectin (A. cepa agglutinin; ACA). ACA was purified from onion extract by D-mannose-agarose chromatography (yield: ~1 mg/kg). ACA is non-glycosylated and showed a molecular mass of ~12 kDa under reducing/non-reducing SDS-PAGE; glutaraldehyde cross-linking indicated that ACA is a non-covalent tetramer of ~12 kDa subunits. Its N-terminal sequence (RNVLLNNEGL; UniProt KB Accn. C0HJM8) showed 70-90% homology to mannose-specific Allium agglutinins. ACA showed specific hemagglutination activity of 8200 units/mg and is stable in the pH range 6-10 and up to 45° C. The immunomodulatory activity of ACA was assessed using the macrophage cell line, RAW264.7 and rat peritoneal macrophages; at 0.1 ?g/well, it showed a significant increase (6-8-fold vs. control) in the production of nitric oxide at 24h, and significantly stimulated (2-4-fold vs. control) the production of pro-inflammatory cytokines (TNF-? and IL-12) at 24h. ACA (0.1 ?g/well) enhanced the proliferation of murine thymocytes by ~4 fold (vs. control) at 24h; however, ACA does not proliferate B cell-enriched rat splenocytes. Further, it significantly elevated the expression levels of cytokines (IFN-? and IL-2) over the control in murine thymocytes. Taken together, purified ACA induces a Th1-type immune response in vitro. Though present in low amounts, ACA may contribute to the immune-boosting potential of the popular spice onion since considerable amounts are consumed on a daily basis universally. PMID:25887266

  7. Transmembrane protein 106a activates mouse peritoneal macrophages via the MAPK and NF-?B signaling pathways

    PubMed Central

    Dai, Hui; Xu, Dong; Su, Jing; Jang, Jingyuan; Chen, Yingyu

    2015-01-01

    The M1 and M2 states of macrophage are the two extremes of a physiologic/phenotypic continuum that is dynamically influenced by environmental signals. Molecular mechanism analysis indicated that they gain M1 and M2-related functions after encountering specific ligands in the tissue environment. Here, we first characterized the previously unknown immunobiological functions of mouse Tmem106a. This protein is abundantly expressed on the surface of mouse macrophages. Activation of Tmem106a by stimulation with anti-Tmem106a upregulated the expression of CD80, CD86, CD69 and MHC II on macrophage, and induced the release of TNF-?, IL-1?, IL-6, CCL2 and NO, but not IL-10. These effects were largely abrogated by pretreatment with siRNA against Tmem106a. Notably, anti-Tmem106a significantly increased iNOS production and phosphorylation of STAT1, and had no effect on the ARGINASE-1 or p-STAT6 level, indicating that anti-Tmem106a activated macrophages and polarized them into M1-like macrophages. Further analysis found that anti-Tmem106a stimulation increased phosphorylation of ERK-1/2, JNK, p38 MAPK, NF-?B p65 and IKK?/?, and promoted nuclear translocation of the cytosolic NF-?B p65 subunit. Collectively, these data suggest that mouse Tmem106a might be a new trigger of macrophage activation and have some influence toward the M1 state through the activation of the MAPKs and NF-?B pathway. PMID:26215746

  8. Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation.

    PubMed

    Palmieri, Erika M; Spera, Iolanda; Menga, Alessio; Infantino, Vittoria; Porcelli, Vito; Iacobazzi, Vito; Pierri, Ciro L; Hooper, Douglas C; Palmieri, Ferdinando; Castegna, Alessandra

    2015-08-01

    The mitochondrial citrate-malate exchanger (CIC), a known target of acetylation, is up-regulated in activated immune cells and plays a key role in the production of inflammatory mediators. However, the role of acetylation in CIC activity is elusive. We show that CIC is acetylated in activated primary human macrophages and U937 cells and the level of acetylation is higher in glucose-deprived compared to normal glucose medium. Acetylation enhances CIC transport activity, leading to a higher citrate efflux from mitochondria in exchange with malate. Cytosolic citrate levels do not increase upon activation of cells grown in deprived compared to normal glucose media, indicating that citrate, transported from mitochondria at higher rates from acetylated CIC, is consumed at higher rates. Malate levels in the cytosol are lower in activated cells grown in glucose-deprived compared to normal glucose medium, indicating that this TCA intermediate is rapidly recycled back into the cytosol where it is used by the malic enzyme. Additionally, in activated cells CIC inhibition increases the NADP+/NADPH ratio in glucose-deprived cells; this ratio is unchanged in glucose-rich grown cells due to the activity of the pentose phosphate pathway. Consistently, the NADPH-producing isocitrate dehydrogenase level is higher in activated glucose-deprived as compared to glucose rich cells. These results demonstrate that, in the absence of glucose, activated macrophages increase CIC acetylation to enhance citrate efflux from mitochondria not only to produce inflammatory mediators but also to meet the NADPH demand through the actions of isocitrate dehydrogenase and malic enzyme. PMID:25917893

  9. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis.

    PubMed

    Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2013-12-01

    PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-? by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-? secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties. PMID:24106104

  10. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation

    PubMed Central

    Liepelt, Anke; Mossanen, Jana C.; Denecke, Bernd; Heymann, Felix; De Santis, Rebecca; Tacke, Frank; Marx, Gernot; Ostareck, Dirk H.; Ostareck-Lederer, Antje

    2014-01-01

    Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous nuclear ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating hematopoietic cells, was studied in noninduced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed several mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor-?-activated kinase 1 (TAK1) a central player in TLR4 signaling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3? UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis or stability but enhances TAK1 mRNA translation, resulting in elevated TNF-?, IL-1?, and IL-10 mRNA expression. Our data suggest that the hnRNP K-3? UTR complex inhibits TAK1 mRNA translation in noninduced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesized TAK1 boosts macrophage inflammatory response. PMID:24751651

  11. Sustained Inflammasome Activity in Macrophages Impairs Wound Healing in Type 2 Diabetic Humans and Mice

    PubMed Central

    Mirza, Rita E.; Fang, Milie M.; Weinheimer-Haus, Eileen M.; Ennis, William J.; Koh, Timothy J.

    2014-01-01

    The hypothesis of this study was that sustained activity of the Nod-like receptor protein (NLRP)-3 inflammasome in wounds of diabetic humans and mice contributes to the persistent inflammatory response and impaired healing characteristic of these wounds. Macrophages (Mp) isolated from wounds on diabetic humans and db/db mice exhibited sustained inflammasome activity associated with low level of expression of endogenous inflammasome inhibitors. Soluble factors in the biochemical milieu of these wounds are sufficient to activate the inflammasome, as wound-conditioned medium activates caspase-1 and induces release of interleukin (IL)-1? and IL-18 in cultured Mp via a reactive oxygen species–mediated pathway. Importantly, inhibiting inflammasome activity in wounds of db/db mice using topical application of pharmacological inhibitors improved healing of these wounds, induced a switch from proinflammatory to healing-associated Mp phenotypes, and increased levels of prohealing growth factors. Furthermore, data generated from bone marrow–transfer experiments from NLRP-3 or caspase-1 knockout to db/db mice indicated that blocking inflammasome activity in bone marrow cells is sufficient to improve healing. Our findings indicate that sustained inflammasome activity in wound Mp contributes to impaired early healing responses of diabetic wounds and that the inflammasome may represent a new therapeutic target for improving healing in diabetic individuals. PMID:24194505

  12. Diesel exhaust particulate--exposed macrophages cause marked endothelial cell activation.

    PubMed

    Shaw, Catherine A; Robertson, Sarah; Miller, Mark R; Duffin, Rodger; Tabor, Caroline M; Donaldson, Ken; Newby, David E; Hadoke, Patrick W F

    2011-06-01

    Exposure to air pollution containing diesel exhaust particulate (DEP) is linked to adverse cardiovascular events. This study tested the hypothesis that DEP not only causes direct endothelial cell injury, but also induces indirect endothelial cell activation via the release of soluble proinflammatory cytokines from macrophages. Human umbilical vein endothelial cells (HUVECs) and monocyte-derived macrophages (MDMs) were incubated with DEP (1-100 ?g/ml; 24 h). Supernatants were analyzed for monocyte chemotactic protein (MCP)-1, IL6, IL8, and TNF-?. Indirect actions of DEP were investigated by incubating HUVECs with conditioned media from DEP-exposed MDMs in the presence and absence of the TNF-? inhibitor, etanercept. A modified Boyden chamber assay was used to determine whether HUVECs treated in this manner induced monocyte chemotaxis. Direct incubation with DEP induced a modest increase in MCP-1 concentration, but had no effect on IL-6 or IL-8 release from HUVECs. In contrast, direct treatment of MDMs with DEP had no effect on MCP-1, but elevated IL-8 and TNF-? concentrations. Incubation with conditioned media from DEP-exposed MDMs caused a dramatic amplification in MCP-1 and IL-6, but not IL-8, release from HUVECs. The potentiation of HUVEC activation was suppressed by TNF-? inhibition. MCP-1- and IL-6-containing HUVEC supernatants caused increased monocyte chemotaxis that was not inhibited by anti-MCP-1 antibodies. We conclude that DEP has only modest direct endothelial effects. In contrast, proinflammatory cytokines released from particle-laden MDMs appear to exacerbate endothelial activation after DEP exposure. PMID:20693402

  13. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    PubMed Central

    Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Tsutsumi, Yasuo

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-? (TNF-?) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ?10??m in diameter provoked a greater inflammatory response than soil dust samples containing particles >10??m. In addition, Asian dust particles-induced TNF-? production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-?B and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages. PMID:24987712

  14. Omega-3 Free Fatty Acids Suppress Macrophage Inflammasome Activation by Inhibiting NF-?B Activation and Enhancing Autophagy

    PubMed Central

    Williams-Bey, Yolanda; Boularan, Cedric; Vural, Ali; Huang, Ning-Na; Hwang, Il-Young; Shan-Shi, Chong; Kehrl, John H.

    2014-01-01

    The omega-3 (?3) fatty acid docosahexaenoic acid (DHA) can suppress inflammation, specifically IL-1? production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1? production by limiting inflammasome activation. Exposure to DHA reduced IL-1? production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR) 4 (also known as GPR120), a G-protein coupled receptor (GPR) known to bind DHA. The exposure of cells to DHA recruited the adapter protein ?-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-?B. DHA also reduced IL-1? levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity. PMID:24911523

  15. Cooperative and alternate functions for STIM1 and STIM2 in macrophage activation and in the context of inflammation.

    PubMed

    Sogkas, Georgios; Stegner, David; Syed, Shahzad N; Vögtle, Timo; Rau, Eduard; Gewecke, Britta; Schmidt, Reinhold E; Nieswandt, Bernhard; Gessner, Johannes Engelbert

    2015-09-01

    Calcium (Ca(2+)) signaling in immune cells, including macrophages, controls a wide range of effector functions that are critical for host defense and contribute to inflammation and autoimmune diseases. However, receptor-mediated Ca(2+) responses consist of complex mechanisms that make it difficult to identify the pathogenesis and develop therapy. Previous studies have revealed the importance of the Ca(2+) sensor STIM1 and store-operated Ca(2+)-entry (SOCE) for Fc?-receptor activation and IgG-induced inflammation. Here, we identify the closely related STIM2 as mediator of cell migration and cytokine production downstream of GPCR and TLR4 activation in macrophages and show that mice lacking STIM2 are partially resistant to inflammatory responses in peritonitis and LPS-induced inflammation. Interestingly, STIM2 modulates the migratory behavior of macrophages independent from STIM1 and without a strict requirement for Ca(2+) influx. While STIM2 also contributes in part to Fc?R activation, the C5a-induced amplification of IgG-mediated phagocytosis is mainly dependent on STIM1. Blockade of STIM-related functions limits mortality in experimental models of AIHA and LPS-sepsis in normal mice. These results suggest benefits of Ca(2+)-inhibition for suppression of exacerbated immune reactions and illustrate the significance of alternate functions of STIM proteins in macrophage activation and in the context of innate immune inflammation. PMID:26417434

  16. Cooperative and alternate functions for STIM1 and STIM2 in macrophage activation and in the context of inflammation

    PubMed Central

    Sogkas, Georgios; Stegner, David; Syed, Shahzad N; Vögtle, Timo; Rau, Eduard; Gewecke, Britta; Schmidt, Reinhold E; Nieswandt, Bernhard; Gessner, Johannes Engelbert

    2015-01-01

    Calcium (Ca2+) signaling in immune cells, including macrophages, controls a wide range of effector functions that are critical for host defense and contribute to inflammation and autoimmune diseases. However, receptor-mediated Ca2+ responses consist of complex mechanisms that make it difficult to identify the pathogenesis and develop therapy. Previous studies have revealed the importance of the Ca2+ sensor STIM1 and store-operated Ca2+-entry (SOCE) for Fc?-receptor activation and IgG-induced inflammation. Here, we identify the closely related STIM2 as mediator of cell migration and cytokine production downstream of GPCR and TLR4 activation in macrophages and show that mice lacking STIM2 are partially resistant to inflammatory responses in peritonitis and LPS-induced inflammation. Interestingly, STIM2 modulates the migratory behavior of macrophages independent from STIM1 and without a strict requirement for Ca2+ influx. While STIM2 also contributes in part to Fc?R activation, the C5a-induced amplification of IgG-mediated phagocytosis is mainly dependent on STIM1. Blockade of STIM-related functions limits mortality in experimental models of AIHA and LPS-sepsis in normal mice. These results suggest benefits of Ca2+-inhibition for suppression of exacerbated immune reactions and illustrate the significance of alternate functions of STIM proteins in macrophage activation and in the context of innate immune inflammation. PMID:26417434

  17. PPE2 protein of Mycobacterium tuberculosis may inhibit nitric oxide in activated macrophages.

    PubMed

    Bhat, Khalid Hussain; Das, Arghya; Srikantam, Aparna; Mukhopadhyay, Sangita

    2013-04-01

    Although the pathophysiological role of PE/PPE proteins of Mycobacterium tuberculosis is yet to be fully understood, recent evidence shows that these proteins play important roles in antigenic diversity, as well as in host-pathogen interactions and mycobacterial pathogenesis. Most of the PE/PPE proteins are highly expressed in pathogenic bacteria, pointing to their role in the pathogenesis of mycobacteria. Here, we provide an overview of our work in progress on a specific PPE protein, PPE2 (Rv0256c), which may inhibit nitric oxide (NO) production in activated macrophages. As NO and its by-products are considered to be toxic to bacilli, it is possible that the bacilli recruit Rv0256c in order to inhibit higher production of NO during infection. PMID:23448669

  18. Fasciola hepatica Fatty Acid Binding Protein Induces the Alternative Activation of Human Macrophages

    PubMed Central

    Figueroa-Santiago, Olgary

    2014-01-01

    The liver fluke Fasciola hepatica is a highly evolved parasite that uses sophisticated mechanisms to evade the host immune response. The immunosuppressive capabilities of the parasite have been associated with antigens secreted through the parasite's tegument, called excretory-secretory products (ESPs). Proteomic studies have identified the fatty acid binding protein (FABP) as one of molecules present in the parasite ESPs. Although FABP has been investigated for potential use in the development of vaccines against fascioliasis, its direct interaction with cells of immune system has not been studied. In this study, FABP was purified in native form from soluble extracts of F. hepatica adult flukes using a combination of molecular sieving chromatography and preparative isoelectric focusing. The immunological effect of the purified protein, termed Fh12, was assayed in vitro using monocyte-derived macrophages (MDM) obtained from healthy human donors. Results from the assay indicate that Fh12 produced a significantly increased arginase expression and activity and induced the expression of chitinase-3-like protein (CHI3L1). The assay also showed that Fh12 downregulated the production of nitric oxide (NO) and the expression of nitric oxide synthase (NOS2). This indicates that Fh12 induced the production of alternatively activated macrophages (AAM?). The results also demonstrated the ability of Fh12 to downregulate the secretion of the proinflammatory and inflammatory cytokines tumor necrosis factor alpha (TNF-?), interleukin-12 (IL-12), and IL-1?B, even after stimulation with lipopolysaccharide (LPS), as well as its ability to stimulate the overexpression of IL-10. These results suggest a potent anti-inflammatory role for Fh12, which could occur via targeting of Toll-like receptor 4 (TLR4). PMID:25225247

  19. Immunomodulatory Effects of Dioscoreae Rhizome Against Inflammation through Suppressed Production of Cytokines Via Inhibition of the NF-?B Pathway

    PubMed Central

    Kim, Seulah; Shin, Seulmee; Hyun, Bobae; Kong, Hyunseok; Han, Shinha; Lee, Aeri; Lee, Seungjeong

    2012-01-01

    Dioscoreae Rhizome (DR) has been used in traditional medicine to treat numerous diseases and is reported to have anti-diabetes and anti-tumor activities. To identify a bioactive traditional medicine with anti-inflammatory activity of a water extract of DR (EDR), we determined the mRNA and protein levels of proinflammatory cytokines in macrophages through RT-PCR and western blot analysis and performed a FACS analysis for measuring surface molecules. EDR dose-dependently decreased the production of NO and pro-inflammatory cytokines such as IL-1?, IL-6, TNF-?, and PGE2, as well as mRNA levels of iNOS, COX-2, and pro-inflammatory cytokines, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as B7-1 and B7-2 was also reduced by EDR. Furthermore, activation of the nuclear transcription factor, NF-?B, but not that of IL-4 and IL-10, in macrophages was inhibited by EDR. These results show that EDR decreased pro-inflammatory cytokines via inhibition of NF-?B-dependent inflammatory protein level, suggesting that EDR could be a useful immunomodulatory agent for treating immunological diseases. PMID:23213311

  20. Strain- and host species-specific inflammasome activation, IL-1? release, and cell death in macrophages infected with uropathogenic Escherichia coli.

    PubMed

    Schaale, K; Peters, K M; Murthy, A M; Fritzsche, A K; Phan, M-D; Totsika, M; Robertson, A A B; Nichols, K B; Cooper, M A; Stacey, K J; Ulett, G C; Schroder, K; Schembri, M A; Sweet, M J

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infections (UTIs). Little is known about interactions between UPEC and the inflammasome, a key innate immune pathway. Here we show that UPEC strains CFT073 and UTI89 trigger inflammasome activation and lytic cell death in human macrophages. Several other UPEC strains, including two multidrug-resistant ST131 isolates, did not kill macrophages. In mouse macrophages, UTI89 triggered cell death only at a high multiplicity of infection, and CFT073-mediated inflammasome responses were completely NLRP3-dependent. Surprisingly, CFT073- and UTI89-mediated responses only partially depended on NLRP3 in human macrophages. In these cells, NLRP3 was required for interleukin-1? (IL-1?) maturation, but contributed only marginally to cell death. Similarly, caspase-1 inhibition did not block cell death in human macrophages. In keeping with such differences, the pore-forming toxin ?-hemolysin mediated a substantial proportion of CFT073-triggered IL-1? secretion in mouse but not human macrophages. There was also a more substantial ?-hemolysin-independent cell death response in human vs. mouse macrophages. Thus, in mouse macrophages, CFT073-triggered inflammasome responses are completely NLRP3-dependent, and largely ?-hemolysin-dependent. In contrast, UPEC activates an NLRP3-independent cell death pathway and an ?-hemolysin-independent IL-1? secretion pathway in human macrophages. This has important implications for understanding UTI in humans. PMID:25993444

  1. Protumoral TSP50 Regulates Macrophage Activities and Polarization via Production of TNF-? and IL-1?, and Activation of the NF-?B Signaling Pathway

    PubMed Central

    Yang, Cheng; Zhang, Dong-Mei; Song, Zhen-Bo; Hou, Ya-Qin; Bao, Yong-Li; Sun, Lu-Guo; Yu, Chun-Lei; Li, Yu-Xin

    2015-01-01

    Testes-specific protease 50 (TSP50) is abnormally overexpressed in many kinds of cancers and promotes cell proliferation and migration. However, whether TSP50 can influence the tumor microenvironment, especially the function of immune cells in the microenvironment, remains largely unknown. We demonstrated that exposure to the conditioned medium from TSP50-overexpressing cells, or co-culture with TSP50-overexpressing cells, enhanced the cytokine production and phagocytic activities of macrophages, and induced M2b polarization. Further investigation showed that production of TNF-? and IL-1? was strongly induced by TSP50 in TSP50-overexpressing cells. TSP50-induced TNF-? and IL-1? were main factors that mediated the effects of TSP50-overexpressing cells on macrophages. The NF-?B pathway could be activated in macrophages upon the treatment of conditioned medium of TSP50-overexpressing cells and its activation is necessary for the observed effects on macrophages. Taken together, our results suggested that oncogenic TSP50 expressed in cells could activate surrounding macrophages and induce M2b polarization, partly through inducing TNF-?/ IL-1? secretion and subsequent NF-?B pathway activation. This implies a potential mechanism by which oncogene TSP50 regulates tumor microenvironment to support tumor development. PMID:26684869

  2. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  3. Photodynamic Quenched Cathepsin Activity Based Probes for Cancer Detection and Macrophage Targeted Therapy

    PubMed Central

    Ben-Nun, Yael; Merquiol, Emmanuelle; Brandis, Alexander; Turk, Boris; Scherz, Avigdor; Blum, Galia

    2015-01-01

    Elevated cathepsins levels and activities are found in several types of human cancer, making them valuable biomarkers for detection and targeting therapeutics. We designed small molecule quenched activity-based probes (qABPs) that fluoresce upon activity-dependent covalent modification, yielding cell killing by Photodynamic Therapy (PDT). These novel molecules are highly selective theranostic probes that enable both detection and treatment of cancer with minimal side effects. Our qABPs carry a photosensitizer (PS), which is activated by light, resulting in oxidative stress and subsequent cell ablation, and a quencher that when removed by active cathepsins allow the PS to fluoresce and demonstrate PD properties. Our most powerful and stable PS-qABP, YBN14, consists of a selective cathepsin recognition sequence, a QC-1 quencher and a new bacteriochlorin derivative as a PS. YBN14 allowed rapid and selective non-invasive in vivo imaging of subcutaneous tumors and induced specific tumor macrophage apoptosis by light treatment, resulting in a substantial tumor shrinkage in an aggressive breast cancer mouse model. These results demonstrate for the first time that the PS-qABPs technology offers a functional theranostic tool, which can be applied to numerous tumor types and other inflammation-associated diseases. PMID:26000057

  4. In vitro evaluation of inhibitory effect of nuclear factor-kappaB activity by small interfering RNA on pro-tumor characteristics of M2-like macrophages.

    PubMed

    Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2014-01-01

    Tumor-associated macrophages (TAMs) have an alternatively activated macrophage phenotype (M2) and promote cancer cell proliferation, angiogenesis and metastasis. Nuclear factor-kappaB (NF-?B) is one of the master regulators of macrophage polarization. Here, we investigated the effect of inhibition of NF-?B activity by small interfering RNA (siRNA) on the pro-tumor response of macrophages located in the tumor microenvironment in vitro. We used mouse peritoneal macrophages cultured in conditioned medium from colon-26 cancer cells as an in vitro TAM model (M2-like macrophages). Transfection of NF-?B (p50) siRNA into M2-like macrophages resulted in a significant decrease in the secretion of interleukin (IL)-10 (a T helper 2 (Th2) cytokine) and a significant increase of T helper 1 (Th1) cytokine production (IL-12, tumor necrosis factor-?, and IL-6). Furthermore, vascular endothelial growth factor production and matrix metalloproteinase-9 mRNA expression in M2-like macrophages were suppressed by inhibition of NF-?B expression with NF-?B (p50) siRNA. In addition, there was a reduction of arginase mRNA expression and increase in nitric oxide production. The cytokine secretion profiles of macrophages cultured in conditioned medium from either B16BL6 or PAN-02 cancer cells were also converted from M2 to classically activated (M1) macrophages by transfection of NF-?B (p50) siRNA. These results suggest that inhibition of NF-?B activity in M2-like macrophages alters their phenotype toward M1. PMID:24141263

  5. Involvement of Notch Signaling Pathway in Regulating IL-12 Expression via c-Rel in Activated Macrophages

    PubMed Central

    Boonyatecha, Natt; Sangpetch, Naunpun; Wongchana, Wipawee; Kueanjinda, Pathipak; Palaga, Tanapat

    2012-01-01

    Macrophages play an important role both in innate and adaptive immune responses. Treatment with interferon (IFN) ? together with lipopolysaccharide (LPS) activates pro-inflammatory macrophages which secrete various pro-inflammatory cytokines including IL-12. IL-12 promotes a Th1 type immune response by directly controlling the differentiation of CD4+ T helper 1 cells. Activation of Notch signaling pathway was reported in activated macrophages but the involvement of this signaling pathway in IL-12 expression has not been documented. In this study, we investigated the role of Notch signaling in regulating expression of the IL-12/IL-23 subunit, IL-12p40. Using a gamma-secretase inhibitor (GSI) to inhibit Notch signaling, we observed a profound decrease in il12p40 mRNA levels and IL-12p70 secretion upon IFN?/LPS stimulation. On the other hand, overexpression of activated form of Notch1 in activated RAW264.7 macrophage-like cell lines significantly increased the level of il12p40 mRNA. GSI treatment did not affect the expression of irf5, a master regulator of il12p40 transcription in macrophages. Detailed analysis of the signaling cascades that were affected by this inhibition showed that c-Rel nuclear translocation was inhibited and Erk1/2 activation was compromised by GSI treatment. Addition of exogenous tumor necrosis factor (TNF) ? only partially rescued the expression of il12p40 in the presence of GSI. Unexpectedly, inhibition of Notch signaling using a dominant negative (DN) Mastermind-like (MAML) transcription co-activator, did not affect c-Rel nuclear localization upon activation or il12p40 mRNA levels, suggesting that the transcriptional activity of Notch signaling is dispensable for the activation of c-Rel. These results strongly suggest that Notch signaling in activated macrophages is involved in regulating the expression of il12p40 directly via c-Rel and indirectly via TNF? production. PMID:22463790

  6. Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages.

    PubMed

    Benoit, Marie; Barbarat, Bernadette; Bernard, Alain; Olive, Daniel; Mege, Jean-Louis

    2008-04-01

    Coxiella burnetii is an obligate intracellular bacterium, responsible for Q fever, which survives in macrophages by interfering with their microbicidal competence. As functional polarization of macrophages is critical for their microbicidal activity, we studied the activation program of monocyte-derived macrophages (MDM) stimulated with C. burnetii. This program was markedly distinct from that induced by lipopolysaccharides (LPS), a canonical inducer of M1 polarization. Indeed, C. burnetii up-regulated the expression of genes associated with M2 polarization, including TGF-beta1, IL-1 receptor antagonist (IL-1ra), CCL18, the mannose receptor and arginase-1, and only up-regulated the expression of two genes associated with M1 polarization, namely IL-6 and CXCL8. In contrast, C. burnetii down-regulated the expression of genes associated with M1 polarization such as TNF, CD80, CCR7 and TLR-2. Functional analyses showed that C. burnetii-stimulated MDM produced high levels of TGF-beta1 and CCL18, and expressed the mannose receptor and arginase-1, the latter being associated with the prevention of nitric oxide production by MDM. Finally, C. burnetii induced the release of IL-6 and CXCL8 at a lower level than LPS-stimulated MDM. Our results suggest that C. burnetii stimulated an atypical M2 activation program that may account for the persistence of C. burnetii in macrophages. PMID:18350541

  7. Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage

    PubMed Central

    Ali, Syed Raza; Timmer, Anjuli M.; Bilgrami, Sameera; Park, Eek Joong; Eckmann, Lars; Nizet, Victor; Karin, Michael

    2012-01-01

    Detection of microbial constituents by membrane associated and cytoplasmic pattern recognition receptors is the essence of innate immunity, leading to activation of protective host responses. However, it is still unclear how immune cells specifically respond to pathogenic bacteria. Using virulent and non-virulent strains of Bacillus anthracis, we have shown that secretion of ATP by infected macrophages and the sequential activation of the P2X7 purinergic receptor and nucleotide binding oligomerization domain (NOD)- like receptors are critical for IL-1-dependent host protection from virulent B. anthracis. Importantly, lethal toxin produced by virulent B. anthracis blocked activation of protein kinases, p38 MAPK and AKT, resulting in opening of a connexin ATP release channel and induction of macrophage death. Prevention of cell death or ATP release through constitutive p38 or AKT activation interfered with inflammasome activation and IL-1? production, thereby compromising anti-microbial immunity. PMID:21683629

  8. 0014-2980/00/0909-2669$17.50+.50/0 WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000 Alternatively activated macrophages induced

    E-print Network

    regulatory) cells are macrophages "classically activated" by Th1 cytokines (such as IFN- + ). By the release and Population Biology, University of Edinburgh, Edinburgh, GB The cytokine microenvironment is thought to play with Th2 cytokines and hyporesponsive T cells. Here we show that IL-4-dependent macrophages recruited

  9. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    PubMed Central

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum ?-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized ?-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  10. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity

    PubMed Central

    Liu, Daofeng; Song, Liping; Wei, Jie; Courtney, Amy N.; Gao, Xiuhua; Marinova, Ekaterina; Guo, Linjie; Heczey, Andras; Asgharzadeh, Shahab; Kim, Eugene; Dotti, Gianpietro; Metelitsa, Leonid S.

    2012-01-01

    V?24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-? (mbTNF-?). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-?B signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15–transduced NKT cells. PMID:22565311

  11. MAP-Kinase Activated Protein Kinase 2 Links Endothelial Activation and Monocyte/macrophage Recruitment in Arteriogenesis

    PubMed Central

    Jagavelu, Kumaravelu; Krishnasamy, Kashyap; Napp, L. Christian; Kapopara, Piyushkumar R.; Gaestel, Matthias; Schieffer, Bernhard; Bauersachs, Johann; Limbourg, Florian P.; Bavendiek, Udo

    2015-01-01

    Arteriogenesis, the growth of natural bypass arteries, is triggered by hemodynamic forces within vessels and requires a balanced inflammatory response, involving induction of the chemokine MCP-1 and recruitment of leukocytes. However, little is known how these processes are coordinated. The MAP-kinase-activated-proteinkinase-2 (MK2) is a critical regulator of inflammatory processes and might represent an important link between cytokine production and cell recruitment during postnatal arteriogenesis. Therefore, the present study investigated the functional role of MK2 during postnatal arteriogenesis. In a mouse model of hindlimb ischemia (HLI) MK2-deficiency (MK2KO) significantly impaired ischemic blood flow recovery and growth of collateral arteries as well as perivascular recruitment of mononuclear cells and macrophages. This was accompanied by induction of endothelial MCP-1 expression in wildtype (WT) but not in MK2KO collateral arteries. Following HLI, MK2 activation rapidly occured in the endothelium of growing WT arteries in vivo. In vitro, inflammatory cytokines and cyclic stretch activated MK2 in endothelial cells, which was required for stretch- and cytokine-induced release of MCP-1. In addition, a monocyte cell autonomous function of MK2 was uncovered potentially regulating MCP-1-dependent monocyte recruitment to vessels: MCP-1 stimulation of WT monocytes induced MK2 activation and monocyte migration in vitro. The latter was reduced in MK2KO monocytes, while in vivo MK2 was activated in monocytes recruited to collateral arteries. In conclusion, MK2 regulates postnatal arteriogenesis by controlling vascular recruitment of monocytes/macrophages in a dual manner: regulation of endothelial MCP-1 expression in response to hemodynamic and inflammatory forces as well as MCP-1 dependent monocyte migration. PMID:26431421

  12. Cholera toxin B induced activation of murine macrophages exposed to a fixed bacterial immunogen

    PubMed Central

    Wiedinger, Kari; Romlein, Heather; Bitsaktsis, Constantine

    2015-01-01

    Objectives: Previous studies have demonstrated that intranasal administration of inactivated (fixed) Francisella tularensis (iFt) live vaccine strain (LVS) in conjunction with the mucosal adjuvant, cholera toxin B (CTB), provides full protection against subsequent lethal challenge with Ft LVS and partial protection against the more virulent Ft SchuS4 strain. Understanding the mechanisms of CTB-induced immune stimulation that confer protection against Ft will be valuable to the development of an effective vaccine against this highly virulent fatal pathogen. In this study, an in vitro system was utilized to further elucidate the immunologic adjuvant effect of CTB when administered with the fixed bacterial immunogen iFt. Methods: The murine macrophage cell line (RAW264.7) was treated with combinations of iFt and CTB. The treated RAW264.7 cells and their supernatants were collected and assessed for cell surface marker expression and cytokine secretion. In addition, the ability of RAW264.7 cells to present bacterial antigens (iFt or LVS) to an Ft-specific T-cell hybridoma cell line, following exposure to CTB, was analyzed. Results: We found that RAW264.7 cells responded to treatment with iFt + CTB by an increased secretion of the proinflammatory cytokines interleukin 6 and tumor necrosis factor ? and upregulation of the surface expression of toll-like receptor 4 and the costimulatory molecules CD80 and CD86. Furthermore, the experimental vaccine treatment iFt + CTB enhanced the ability of macrophages to present iFt antigens to an FT-specific T-cell hybridoma cell line, although they failed to do so with LVS. Conclusion: The adjuvant CTB administered in conjunction with iFt showed evidence of enhancing an antigen-specific proinflammatory response in vitro. These observations allow us to define, in part, the mechanisms of immune activation conferred by mucosal administration of iFt + CTB against lethal F. tularensis challenge.

  13. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response.

    PubMed

    De Marzi, Mauricio C; Todone, Marcos; Ganem, María B; Wang, Qian; Mariuzza, Roy A; Fernández, Marisa M; Malchiodi, Emilio L

    2015-07-01

    Peptidoglycan recognition proteins (PGRP) are pattern recognition receptors that can bind or hydrolyse peptidoglycan (PGN). Four human PGRP have been described: PGRP-S, PGRP-L, PGRP-I? and PGRP-I?. Mammalian PGRP-S has been implicated in intracellular destruction of bacteria by polymorphonuclear cells, PGRP-I? and PGRP-I? have been found in keratinocytes and epithelial cells, and PGRP-L is a serum protein that hydrolyses PGN. We have expressed recombinant human PGRP and observed that PGRP-S and PGRP-I? exist as monomer and disulphide dimer proteins. The PGRP dimers maintain their biological functions. We detected the PGRP-S dimer in human serum and polymorphonuclear cells, from where it is secreted after degranulation; these cells being a possible source of serum PGRP-S. Recombinant PGRP do not act as bactericidal or bacteriostatic agents in the assayed conditions; however, PGRP-S and PGRP-I? cause slight damage in the bacterial membrane. Monocytes/macrophages increase Staphylococcus aureus phagocytosis in the presence of PGRP-S, PGRP-I? and PGRP-I?. All PGRP bind to monocyte/macrophage membranes and are endocytosed by them. In addition, all PGRP protect cells from PGN-induced apoptosis. PGRP increase THP-1 cell proliferation and enhance activation by PGN. PGRP-S-PGN complexes increase the membrane expression of CD14, CD80 and CD86, and enhance secretion of interleukin-8, interleukin-12 and tumour necrosis factor-?, but reduce interleukin-10, clearly inducing an inflammatory profile. PMID:25752767

  14. Alternatively activated macrophages are associated with metastasis and poor prognosis in prostate adenocarcinoma

    PubMed Central

    HU, WENXUE; QIAN, YUNJUAN; YU, FENG; LIU, WEI; WU, YANHUA; FANG, XIAOWU; HAO, WENKE

    2015-01-01

    Recent studies have revealed that alternatively activated macrophages (AAMs) are involved in tumor progression. However, the effect of AAMs on the metastasis of prostate cancer is poorly understood. In the present study, the prostate tissues of 42 patients with prostate adenocarcinoma (PCa) were used in the analysis of tumor associated macrophages (TAMs) and AAMs by immunofluorescence. The patients were followed up for 5 years. The associations of TAMs and AAMs with the clinicopathological features and outcome in these cases were evaluated. Immunofluorescent analysis indicated that the mean number of TAMs (CD68-positive cells) in the prostate tissues of PCa patients with metastasis [45.29±7.25 cells/high-power field (HPF)] was significantly higher compared with that of PCa patients without metastasis (33.57±5.25 cells/HPF; P<0.01). The mean numbers of AAMs (CD68- and CD206-positive cells) in the tissues of PCa patients with and without metastasis were 29.43±5.68 and 9.14±5.29 cells/HPF, respectively. In addition, the percentage of AAMs (number of AAMs/number of TAMs) was 65.11±9.68 and 27.32±7.85% in patients with and without metastasis, respectively. The differences in the number and percentage of AAMs between the two groups were statistically significant (P<0.01). The number and percentage of AAMs was positively correlated with tumor grade and serum prostate-specific antigen (PSA) level. Univariate analysis indicated that the level of PSA, Gleason score, metastatic status, T grade, number of TAMs, number of AAMs and percentage of AAMs were predictors of the overall survival. Furthermore, multivariate analyses revealed that Gleason score, level of PSA and number of TAMs were predictors for overall survival rate. These results indicate that TAMs and AAMs may be important in the metastasis of PCa, and that TAMs and AAMs may be used as potential biomarkers of poor prognosis in late-stage PCa patients.

  15. Tim-3 induces Th2-biased immunity and alternative macrophage activation during Schistosoma japonicum infection.

    PubMed

    Hou, Nan; Piao, Xianyu; Liu, Shuai; Wu, Chuang; Chen, Qijun

    2015-08-01

    T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected with Schistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response against S. japonicum infection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4(+) and CD8(+) T cells, NK1.1(+) cells, and CD11b(+) cells from the livers of S. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8(+) T cells or CD11b(+) cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbers in vitro and in vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b(+) cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection. PMID:25987707

  16. Immunotherapy of metastatic breast cancer patients with vitamin D-binding protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki; Ushijima, Naofumi

    2008-01-15

    Serum vitamin D3-binding protein (Gc protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of breast cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Patient serum Nagalase activity is proportional to tumor burden. The deglycosylated Gc protein cannot be converted to MAF, resulting in no macrophage activation and immunosuppression. Stepwise incubation of purified Gc protein with immobilized beta-galactosidase and sialidase generated probably the most potent macrophage activating factor (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages treated in vitro with GcMAF (100 pg/ml) are highly tumoricidal to mammary adenocarcinomas. Efficacy of GcMAF for treatment of metastatic breast cancer was investigated with 16 nonanemic patients who received weekly administration of GcMAF (100 ng). As GcMAF therapy progresses, the MAF precursor activity of patient Gc protein increased with a concomitant decrease in serum Nagalase. Because of proportionality of serum Nagalase activity to tumor burden, the time course progress of GcMAF therapy was assessed by serum Nagalase activity as a prognostic index. These patients had the initial Nagalase activities ranging from 2.32 to 6.28 nmole/min/mg protein. After about 16-22 administrations (approximately 3.5-5 months) of GcMAF, these patients had insignificantly low serum enzyme levels equivalent to healthy control enzyme levels, ranging from 0.38 to 0.63 nmole/min/mg protein, indicating eradication of the tumors. This therapeutic procedure resulted in no recurrence for more than 4 years. PMID:17935130

  17. Hypoxia-Mediated Impairment of the Mitochondrial Respiratory Chain Inhibits the Bactericidal Activity of Macrophages

    PubMed Central

    Wiese, Melanie; Gerlach, Roman G.; Popp, Isabel; Matuszak, Jasmin; Mahapatro, Mousumi; Castiglione, Kirstin; Chakravortty, Dipshikha; Willam, Carsten; Hensel, Michael; Bogdan, Christian

    2012-01-01

    In infected tissues oxygen tensions are low. As innate immune cells have to operate under these conditions, we analyzed the ability of macrophages (M?) to kill Escherichia coli or Staphylococcus aureus in a hypoxic microenvironment. Oxygen restriction did not promote intracellular bacterial growth but did impair the bactericidal activity of the host cells against both pathogens. This correlated with a decreased production of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates. Experiments with phagocyte NADPH oxidase (PHOX) and inducible NO synthase (NOS2) double-deficient M? revealed that in E. coli- or S. aureus-infected cells the reduced antibacterial activity during hypoxia was either entirely or partially independent of the diminished PHOX and NOS2 activity. Hypoxia impaired the mitochondrial activity of infected M?. Inhibition of the mitochondrial respiratory chain activity during normoxia (using rotenone or antimycin A) completely or partially mimicked the defective antibacterial activity observed in hypoxic E. coli- or S. aureus-infected wild-type M?, respectively. Accordingly, inhibition of the respiratory chain of S. aureus-infected, normoxic PHOX?/? NOS2?/? M? further raised the bacterial burden of the cells, which reached the level measured in hypoxic PHOX?/? NOS2?/? M? cultures. Our data demonstrate that the reduced killing of S. aureus or E. coli during hypoxia is not simply due to a lack of PHOX and NOS2 activity but partially or completely results from an impaired mitochondrial antibacterial effector function. Since pharmacological inhibition of the respiratory chain raised the generation of ROI but nevertheless phenocopied the effect of hypoxia, ROI can be excluded as the mechanism underlying the antimicrobial activity of mitochondria. PMID:22252868

  18. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI

    PubMed Central

    Kadayakkara, Deepak K; Ranganathan, Sarangarajan; Young, Won-Bin; Ahrens, Eric T

    2012-01-01

    Macrophages have an important role in the pathogenesis of most chronic inflammatory diseases. A means of non-invasively quantifying macrophage migration would contribute significantly towards our understanding of chronic inflammatory processes and aid the evaluation of novel therapeutic strategies. We describe the use of a perfluorocarbon tracer reagent and in vivo 19F magnetic resonance imaging (MRI) to quantify macrophage burden longitudinally. We apply these methods to evaluate the severity and three-dimensional distribution of macrophages in a murine model of inflammatory bowel disease (IBD). MRI results were validated by histological analysis, immunofluorescence and quantitative real-time polymerase chain reaction. Selective depletion of macrophages in vivo was also performed, further validating that macrophage accumulation of perfluorocarbon tracers was the basis of 19F MRI signals observed in the bowel. We tested the effects of two common clinical drugs, dexamethasone and cyclosporine A, on IBD progression. Whereas cyclosporine A provided mild therapeutic effect, unexpectedly dexamethasone enhanced colon inflammation, especially in the descending colon. Overall, 19F MRI can be used to evaluate early-stage inflammation in IBD and is suitable for evaluating putative therapeutics. Due to its high macrophage specificity and quantitative ability, we envisage 19F MRI having an important role in evaluating a wide range of chronic inflammatory conditions mediated by macrophages. PMID:22330343

  19. Evaluation of antitumor, immunomodulatory and free radical scavenging effects of a new herbal prescription seaweed complex preparation

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Shao, Changlun; Kong, Wenwen; Fang, Yuchun; Wang, Changyun

    2013-09-01

    Seaweed Complex Preparation (SCP) is a clinical traditional Chinese medicine preparation which is composed of seven traditional Chinese herbs, and it has been used for treatment of lung cancer, liver cancer and digestive cancer. However, little information is available about the pharmacodynamic basis. The antitumor, immunomodulatory and free radical scavenging effects of SCP were evaluated in this study. Transplanted tumor in vivo method was used to determine the antitumor effect. The effects on splenocyte proliferation and phagocytosis of macrophages in tumor-bearing mice were measured by the MTT method and the phagocytizing cock red blood cell (CRBC) method respectively. The scavenging activities of SCP on DPPH and hydroxyl radicals in vitro were investigated. It was found that the medium-dose and high-dose of SCP could significantly inhibit the growth of transplanted hepatic tumor of murine hepatocarcinoma cell line H22, and promote proliferation of splenocytes and phagocytosis of macrophages. SCP possessed noticeable scavenging activities on DPPH and hydroxyl radicals. The antitumor effects of SCP might be achieved by improving immune system and scavenging free radicals, which is in accordance with the viewpoint of traditional Chinese medicine in promoting the body resistance and eliminating pathogenic factors for cancer treatment.

  20. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages

    PubMed Central

    Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry

    2015-01-01

    AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor ? (PPAR?) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPAR? in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPK?1 catalytic subunit, followed by microarray expression analysis after treatment with the PPAR? agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPAR? increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPK?1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPAR?- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload. PMID:26098914

  1. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-?B ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-?B activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  2. Shaping the Murine Macrophage Phenotype: IL-4 and cAMP Synergistically Activate the Arginase I Promoter

    PubMed Central

    Sheldon, Kathryn E.; Shandilya, Harish; Kepka-Lenhart, Diane; Poljakovic, Mirjana; Ghosh, Arundhati; Morris, Sidney M.

    2013-01-01

    Arginase I is a marker of murine M2 macrophages and is highly expressed in many inflammatory diseases. The basis for high arginase I expression in macrophages in vivo is incompletely understood but likely reflects integrated responses to combinations of stimuli. Our objective was to elucidate mechanisms involved in modulating arginase I induction by IL-4, the prototypical activator of M2 macrophages. IL-4 and 8-bromo-cAMP (8-Br-cAMP) individually induce arginase I, but together they rapidly and synergistically induce arginase I mRNA, protein, and promoter activity in murine macrophage cells. Arginase I induction by IL-4 requires binding of the transcription factors STAT6 and C/EBP? to the IL-4 response element of the arginase I gene. Chromatin immunoprecipitation (ChIP) showed that the synergistic response involves binding of both transcription factors to the IL-4 response element at levels significantly greater than in response to IL-4 alone. The results suggest that C/EBP? is a limiting factor for the level of STAT6 bound to the IL-4 response element. The enhanced binding in the synergistic response was not due to increased expression of either STAT6 or C/EBP? but correlated primarily with increased nuclear abundance of C/EBP?. Our findings also suggest that induction of arginase I expression is stochastic; i.e., differences in induction reflect differences in probability of transcriptional activation and not simply differences in rate of transcription. Results of the present study also may be useful for understanding mechanisms underlying regulated expression of other genes in macrophages and other myeloid-derived cells in health and disease. PMID:23913966

  3. Alveolar Epithelial Type II Cells Activate Alveolar Macrophages and Mitigate P. Aeruginosa Infection

    PubMed Central

    Kannan, Shibichakravarthy; Huang, Huang; Seeger, Drew; Audet, Aaron; Chen, Yaoyu; Huang, Canhua; Gao, Hongwei; Li, Shaoguang; Wu, Min

    2009-01-01

    Although alveolar epithelial type II cells (AECII) perform substantial roles in the maintenance of alveolar integrity, the extent of their contributions to immune defense is poorly understood. Here, we demonstrate that AECII activates alveolar macrophages (AM) functions, such as phagocytosis using a conditioned medium from AECII infected by P. aeruginosa. AECII-derived chemokine MCP-1, a monocyte chemoattractant protein, was identified as a main factor in enhancing AM function. We proposed that the enhanced immune potency of AECII may play a critical role in alleviation of bacterial propagation and pneumonia. The ability of phagocytosis and superoxide release by AM was reduced by MCP-1 neutralizing antibodies. Furthermore, MCP-1?/? mice showed an increased bacterial burden under PAO1 and PAK infection vs. wt littermates. AM from MCP-1?/? mice also demonstrated less superoxide and impaired phagocytosis over the controls. In addition, AECII conditioned medium increased the host defense of airway in MCP-1?/? mice through the activation of AM function. Mechanistically, we found that Lyn mediated NF?B activation led to increased gene expression and secretion of MCP-1. Consequently Lyn?/? mice had reduced MCP-1 secretion and resulted in a decrease in superoxide and phagocytosis by AM. Collectively, our data indicate that AECII may serve as an immune booster for fighting bacterial infections, particularly in severe immunocompromised conditions. PMID:19305493

  4. An exopolysaccharide isolated from a coral-associated fungus and its sulfated derivative activates macrophages.

    PubMed

    Sun, Kunlai; Chen, Yin; Niu, Qingfeng; Zhu, Weiming; Wang, Bin; Li, Peipei; Ge, Xuejun

    2016-01-01

    A coral-associated fungus Penicillium sp.gxwz446 that produced exopolysaccharde was isolated from the coral Echinogorgia flora in South China. Two neutral exopolysaccharides GX1-1 and GX2-1 were obtained from the fermented broth of the fungus and purified by anion-exchange and gel-permeation chromatography. Chemical and spectroscopic analyses showed that GX1-1 was a glucan, primarily composed of glucose, with a molecular weight of 5.0kDa. GX1-1 mainly consists of (1?4)-linked ?-d-glucopyranose units as the backbone, substituted at C-2 with a single ?-d-glucopyranose on every sixth sugar residues. GX2-1 was a galactofuranose-containing mannogalactoglucan with a molecular weight of 9.5kDa. The main linkages were composed of (1?4)-?-d-Glcp, (1?5)-?-d-Galf, (1?3,5)-?-d-Galf, (1?6)-?-d-Manp and (1?2, 6)-?-d-Manp. GX1-1 showed RAW264.7 macrophage activation activity. After subjecting GX1-1 to sulfated modification, there was about one sulfate substitution on every sugar ring, primarily at O-6. The sulfated derivative of GX1-1 exhibited a more significant ability to promote the pinocytic activity of RAW264.7 cells and induce the production of NO. PMID:26546867

  5. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway.

    PubMed

    Moon, H-G; Cao, Y; Yang, J; Lee, J H; Choi, H S; Jin, Y

    2015-01-01

    Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release 'messenger' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial 'apoptotic bodies', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50-120?nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after hyperoxia exposure. These circulating EVs also activated systemic macrophages other than the alveolar ones. Collectively, the results show that hyperoxia-induced, lung epithelial cell-derived and caspase-3 enriched EVs activate macrophages and mediate the inflammatory lung responses involved in lung injury. PMID:26658190

  6. Identification of a macrophage activation factor (MAF) distinct from gamma interferon (. gamma. IF) which induces macrophage cytotoxicity

    SciTech Connect

    Kern, D.E.; Schreiber, R.D.; Paetkau, V.; Cheever, M.; Greenberg, P.D.

    1986-03-05

    Supernatants (sups) from PHA-stimulated sublines derived from the T cell line LBRM-33 were screened for MAF activity (assessed by the activation of thioglycollate-induced PEC's to lyse /sup 125/I-IUDR labeled FBL target cells). A subline produced sups with high levels of MAF activity but lacking detectable anti-viral activity. ..gamma..IF, which also exhibits anti-viral activity, is the only well-defined MAF. Therefore, further studies were initiated to determine if LBRM MAF activity was distinct from ..gamma..IF. Examination of LBRM sups for ..gamma..IF, in an ELISA capable of detecting 10 units/ml by binding to a monoclonal antibody, detected no ..gamma..IF. By contrast, sups from Con A-stimulated spleen cells or media containing r..gamma..IF which exhibited similar MAF activity to the LBRM sups, contained 315 and 376 units/ml of ..gamma..IF in the ELISA, respectively. The extent to which ..gamma..IF potentially contributes to the MAF activity of LBRM sups is being further assessed. The presence of ..gamma..IF message in LBRM cells is being examined by blot analysis utilizing a probe for murine ..gamma..IF mRNA. The ability of a monoclonal anti-..gamma..IF, which inhibits the in vitro MAF activity of murine ..gamma..IF, to diminish LBRM-derived MAF activity is being determined. Further studies will attempt to isolate and characterize the lymphokine responsible for the LBRM-derived MAF activity.

  7. Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives

    SciTech Connect

    Maul, J.R.; Ransijn, A.; Buchmueller-Rouiller, Y. )

    1991-01-01

    The experiments described in this report were aimed at determining whether L-arginine (L-arg)-derived nitrogen oxidation products (nitric oxide, nitrous acid, nitrites) are involved in the intracellular killing of Leishmania parasites by activated murine macrophages in vitro. Peritoneal or bone marrow-derived macrophages were infected with L. enriettii or L. major, then activated by exposure to recombinant murine interferon-gamma or to macrophage activating factor (MAF)-rich media in the presence of lipopolysaccharide. Activation of macrophages in regular (i.e., arginine-containing) culture medium led to complete destruction of the microorganisms within 24 h (L. enriettii) or 48 h (L. major), concomitant with accumulation of nitrites (NO2-) in the culture fluids. When macrophage activation was carried out in L-arg-free medium, however, neither parasite killing nor NO2- production was obtained. A similar inhibition of macrophage leishmanicidal activity and of NO2- release was observed using media treated with arginase (which converts L-arg to urea and ornithine), or supplemented with NG-monomethyl-L-arg or guanidine (which inhibit the conversion of L-arg to nitrogen oxidation products). In all these situations, an excellent correlation between the levels of NO2- production by macrophages and intracellular killing of Leishmania was observed, whereas no strict correlation was detectable between leishmanicidal activity and superoxide production. Intracellular parasite killing by activated macrophages could be prevented by addition of iron salts to the incubation fluids. Incubation of free parasites with NaNO2 at acid pH led to immobilisation, multiplication arrest, and morphological degeneration of the microorganisms. Similarly, exposure of infected cells to NaNO2 led to killing of the intracellular parasite without affecting macrophage viability.

  8. Alternatively activated macrophages actively inhibit proliferation of peripheral blood lymphocytes and CD4+ T cells in vitro.

    PubMed Central

    Schebesch, C; Kodelja, V; Müller, C; Hakij, N; Bisson, S; Orfanos, C E; Goerdt, S

    1997-01-01

    We compared the immunological functions of interferon-gamma (IFN-gamma)-induced, classically activated macrophages (caM phi) and of interleukin-4 (IL-4)- and glucocorticoid-induced, alternatively activated macrophages (aaM phi) in a human co-culture system in vitro. Proliferation of peripheral blood leucocytes (PBL) or CD4+ T cells mediated by optimal doses of phytohaemagglutinin (PHA) or concanavalin A (Con A) was only marginally influenced by caM phi, but was strongly inhibited by aaM phi. The degree of lymphocyte proliferation sustained in the presence of caM phi was gradually reduced in a dose-dependent fashion by the addition of aaM phi. Flow cytometric analysis revealed that expression of costimulatory molecules such as CD11a, CD40, CD54, CD58, CD80 and CD86 did not vary significantly between caM phi and aaM phi and was low for CD58, CD80 and CD86. As shown by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, IL-10 was expressed in caM phi, aaM phi and control macrophages; the level of expression of IL-10 was slightly enhanced in aaM phi. Neither neutralizing anti-IL-10 antibodies, indomethacin nor NG-monomethyl-L-arginine (NMMLA) was able to reverse aaM phi-mediated inhibition of lymphocyte proliferation. Of several agents interfering with various second messenger pathways, cAMP and the Ca(2+)-ionophore A23187 inhibited differentiation of cultured human monocytes into phenotypically mature aaM phi expressing MS-1 high molecular weight protein (MS-1-HMWP) and RM 3/1 antigen, and prevented the suppressive action of aaM phi on lymphocyte proliferation. In conclusion, these results who that aaM phi actively inhibit mitogen-mediated proliferation of PBL and CD4+ T cells independently of the expression of costimulatory molecules and of IL-10, NO or prostaglandin synthesis, and that inhibition of phenotypic differentiation of aaM phi is paralleled by a lack of functional maturation. Thus, fully matured aaM phi may be functional in down-regulating CD4+ T-cell-mediated immune reactions by an as yet unknown mechanism. PMID:9497489

  9. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    SciTech Connect

    Russe, Otto Quintus Möser, Christine V. Kynast, Katharina L. King, Tanya S. Olbrich, Katrin Grösch, Sabine Geisslinger, Gerd Niederberger, Ellen

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  10. Dynamic changes in macrophage activation and proliferation during the development and resolution of intestinal inflammation.

    PubMed

    Little, Matthew C; Hurst, Rebecca J M; Else, Kathryn J

    2014-11-01

    Macrophages (M?s) accumulate at sites of inflammation, and, because they can assume several functionally distinct states of activation, they can either drive or restrain inflammatory responses. Once believed to depend on the recruitment of blood monocytes, it is now clear that the accumulation of M?s in some tissues can result from the proliferation of resident M?s in situ. However, little is known about the proliferation and activation state of M? subsets in the gut during the development and resolution of intestinal inflammation. We show that inflammatory M?s accumulate in the large intestine of mice during the local inflammatory response to infection with the gastrointestinal nematode parasite Trichuris muris. Classically activated M?s predominate initially (as the inflammation develops) and then, following worm expulsion (as the inflammation resolves), both the resident and inflammatory populations of M?s become alternatively activated. A small but significant increase in the proliferation of inflammatory M?s is seen but only during the resolution phase of the inflammatory response following both worm expulsion and the peak in M? accumulation. In contrast to recent studies in the pleural and peritoneal cavities, the proliferation of resident and alternatively activated M?s does not increase during the inflammatory response. Furthermore, in CCR2(-/-) mice, monocyte recruitment to the gut is impeded, and the accumulation of alternatively activated M?s is greatly reduced. In conclusion, the recruitment of blood monocytes is the principle mechanism of M? accumulation in the large intestine. This study provides a novel insight into the phenotype and behavior of intestinal M? during infection-driven inflammation. PMID:25261482

  11. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    PubMed Central

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T.; Muriach, Borja; Sánchez-Villarejo, María V.; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J.; Barcia, Jorge M.; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-?B), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-?B is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-?B activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-?B activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction. PMID:26283916

  12. Immunomodulatory therapies for acute pancreatitis

    PubMed Central

    Li, Jing; Yang, Wen-Juan; Huang, Lu-Ming; Tang, Cheng-Wei

    2014-01-01

    It is currently difficult for conventional treatments of acute pancreatitis (AP), which primarily consist of anti-inflammatory therapies, to prevent the progression of AP or to improve its outcome. This may be because the occurrence and progression of AP, which involves various inflammatory cells and cytokines, includes a series of complex immune events. Considering the complex immune system alterations during the course of AP, it is necessary to monitor the indicators related to immune cells and inflammatory mediators and to develop more individualized interventions for AP patients using immunomodulatory therapy. This review discusses the recent advances in immunomodulatory therapies. It has been suggested that overactive inflammatory responses should be inhibited and excessive immunosuppression should be avoided in the early stages of AP. The optimal duration of anti-inflammatory therapy may be shorter than previously expected (< 24 h), and appropriate immunostimulatory therapies should be administered during the period from the 3rd d to the 14th d in the course of AP. A combination therapy of anti-inflammatory and immune-stimulating drugs would hopefully constitute an alternative to anti-inflammatory drug monotherapy. Additionally, the detection of the genotypes of critical inflammatory mediators may be useful for screening populations of AP patients at high risk of severe infections to enable the administration of early interventions to improve their prognosis. PMID:25493006

  13. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa).

    PubMed

    Kumar, V Prasanna; Prashanth, K V Harish; Venkatesh, Y P

    2015-03-01

    Onion (Allium cepa) is an immune-boosting food rich in fructans. The major aim of this study is to characterize and investigate the immunomodulatory properties of onion fructo-oligosaccharides (FOS). FOS was isolated from onion bulbs by hot 80% ethanol extraction (yield: ?4.5 g/100 g fw) followed by gel permeation chromatography. NMR of onion FOS revealed unusual ?-D-Glc terminal residue at the non-reducing end. TLC and ESI-MS analyses showed that onion FOS ranged from trisaccharides to hexasaccharides. Onion FOS (50 ?g/mL) significantly increased (?3-fold) the proliferation of mouse splenocytes/thymocytes vs. control. Further, onion FOS enhanced (?2.5-fold) the production of nitric oxide by peritoneal exudates cells (PECs) from Wistar rats; intracellular free radicals production and phagocytic activity of isolated murine PECs were also augmented. Our structural and in vitro results indicate that onion FOS comprising of tri- to hexasaccharide units belongs to inulin-type fructans, and possess immunostimulatory activities towards murine lymphocytes and macrophages. PMID:25498616

  14. Krüppel-like factor 4 synergizes with CREB to increase the activity of apolipoprotein E gene promoter in macrophages.

    PubMed

    Stavri, Simona; Simionescu, Maya; Kardassis, Dimitris; Gafencu, Anca V

    2015-12-01

    Krüppel-like factor 4 (KLF4) is a critical regulator of monocyte differentiation and macrophage polarization, and it also plays an important role in several vascular diseases, including atherosclerosis. Apolipoprotein E (apoE) is an essential anti-atherosclerotic glycoprotein involved in lipid metabolism, expressed by the liver, macrophages and other cell types. We hypothesized that KLF4 is involved in apoE gene regulation in macrophages. Our experiments showed that differentiation of THP-1 monocytes to macrophages using PMA was associated with a robust induction of both KLF4 and apoE genes. KLF4 bound to the apoE promoter, as revealed by chromatin immunoprecipitation and DNA pull-down (DNAP) assays, and transactivated the apoE promoter in a dose-dependent manner. Using a series of apoE promoter deletion mutants we revealed the biological activity of multiple KLF4 binding sites located in the [-500/-100] region of apoE promoter. Moreover, overexpression of cAMP-response-element-binding protein (CREB) further increased KLF4 up-regulatory effect on apoE promoter. Despite the fact that no putative CREB binding sites were predicted in silico, we found that in macrophages CREB bound to apoE proximal promoter in the region -200/+4 and even more strongly on -350/-274 region. In similar DNAP experiments using cell extracts obtained from monocytes (lacking KLF4), a very weak binding of CREB was detected, indicating that interaction of CREB with apoE promoter takes place indirectly. In conclusion our results show: (i) a robust synchronized induction of KLF4 and apoE expression during differentiation of monocytes to macrophages; (ii) KLF4 up-regulates apoE gene in a dose-dependent manner; (iii) biologically active KLF4 binding sites are present on apoE promoter and (iv) the interaction of KLF4 with CREB results in an enhanced up-regulatory effect of KLF4 on apoE promoter. Taken together these data provide novel knowledge on apoE gene regulation mechanism in macrophages, and offer insight into the therapeutic potential of KLF4 in atherosclerosis. PMID:26546821

  15. Repeated TLR9 stimulation results in macrophage activation syndrome–like disease in mice

    PubMed Central

    Behrens, Edward M.; Canna, Scott W.; Slade, Katharine; Rao, Sheila; Kreiger, Portia A.; Paessler, Michele; Kambayashi, Taku; Koretzky, Gary A.

    2011-01-01

    Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are 2 similar diseases characterized by a cytokine storm, overwhelming inflammation, multiorgan dysfunction, and death. Animal models of HLH suggest that disease is driven by IFN-? produced by CD8+ lymphocytes stimulated by persistent antigen exposure. In these models and patients with “primary” HLH, the antigen persists due to genetic defects, resulting in ineffective cytotoxic responses by CD8+ T cells and poor pathogen clearance. However, infectious triggers are often not identified in patients with MAS, and some patients with HLH or MAS lack defects in cytotoxic T cell killing. Herein, we show that repeated stimulation of TLR9 produced an HLH/MAS-like syndrome on a normal genetic background, without exogenous antigen. Like previous HLH models, TLR9-induced MAS was IFN-? dependent; however, unlike other models, disease did not require lymphocytes. We further showed that IL-10 played a protective role in this model and that blocking IL-10 signaling led to the development of hemophagocytosis. IL-10 may therefore be an important target for the development of effective therapeutics for MAS. Our data provide insight into MAS-like syndromes in patients with inflammatory diseases in which there is chronic innate immune activation but no genetic defects in cytotoxic cell function. PMID:21576823

  16. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages.

    PubMed

    De Santa, Francesca; Narang, Vipin; Yap, Zhei Hwee; Tusi, Betsabeh Khoramian; Burgold, Thomas; Austenaa, Liv; Bucci, Gabriele; Caganova, Marieta; Notarbartolo, Samuele; Casola, Stefano; Testa, Giuseppe; Sung, Wing-Kin; Wei, Chia-Lin; Natoli, Gioacchino

    2009-11-01

    Jmjd3, a JmjC family histone demethylase, is induced by the transcription factor NF-kB in response to microbial stimuli. Jmjd3 erases H3K27me3, a histone mark associated with transcriptional repression and involved in lineage determination. However, the specific contribution of Jmjd3 induction and H3K27me3 demethylation to inflammatory gene expression remains unknown. Using chromatin immunoprecipitation-sequencing we found that Jmjd3 is preferentially recruited to transcription start sites characterized by high levels of H3K4me3, a marker of gene activity, and RNA polymerase II (Pol_II). Moreover, 70% of lipopolysaccharide (LPS)-inducible genes were found to be Jmjd3 targets. Although most Jmjd3 target genes were unaffected by its deletion, a few hundred genes, including inducible inflammatory genes, showed moderately impaired Pol_II recruitment and transcription. Importantly, most Jmjd3 target genes were not associated with detectable levels of H3K27me3, and transcriptional effects of Jmjd3 absence in the window of time analysed were uncoupled from measurable effects on this histone mark. These data show that Jmjd3 fine-tunes the transcriptional output of LPS-activated macrophages in an H3K27 demethylation-independent manner. PMID:19779457

  17. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages

    PubMed Central

    De Santa, Francesca; Narang, Vipin; Yap, Zhei Hwee; Tusi, Betsabeh Khoramian; Burgold, Thomas; Austenaa, Liv; Bucci, Gabriele; Caganova, Marieta; Notarbartolo, Samuele; Casola, Stefano; Testa, Giuseppe; Sung, Wing-Kin; Wei, Chia-Lin; Natoli, Gioacchino

    2009-01-01

    Jmjd3, a JmjC family histone demethylase, is induced by the transcription factor NF-kB in response to microbial stimuli. Jmjd3 erases H3K27me3, a histone mark associated with transcriptional repression and involved in lineage determination. However, the specific contribution of Jmjd3 induction and H3K27me3 demethylation to inflammatory gene expression remains unknown. Using chromatin immunoprecipitation-sequencing we found that Jmjd3 is preferentially recruited to transcription start sites characterized by high levels of H3K4me3, a marker of gene activity, and RNA polymerase II (Pol_II). Moreover, 70% of lipopolysaccharide (LPS)-inducible genes were found to be Jmjd3 targets. Although most Jmjd3 target genes were unaffected by its deletion, a few hundred genes, including inducible inflammatory genes, showed moderately impaired Pol_II recruitment and transcription. Importantly, most Jmjd3 target genes were not associated with detectable levels of H3K27me3, and transcriptional effects of Jmjd3 absence in the window of time analysed were uncoupled from measurable effects on this histone mark. These data show that Jmjd3 fine-tunes the transcriptional output of LPS-activated macrophages in an H3K27 demethylation-independent manner. PMID:19779457

  18. Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis

    PubMed Central

    Griseri, Thibault; Arnold, Isabelle C.; Pearson, Claire; Krausgruber, Thomas; Schiering, Chris; Franchini, Fanny; Schulthess, Julie; McKenzie, Brent S.; Crocker, Paul R.; Powrie, Fiona

    2015-01-01

    Summary The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target. PMID:26200014

  19. Interleukin-18 for predicting the development of macrophage activation syndrome in systemic juvenile idiopathic arthritis.

    PubMed

    Shimizu, Masaki; Nakagishi, Yasuo; Inoue, Natsumi; Mizuta, Mao; Ko, Giyo; Saikawa, Yutaka; Kubota, Tomohiro; Yamasaki, Yuichi; Takei, Syuji; Yachie, Akihiro

    2015-10-01

    To assess the role of IL-6/IL-18 in the pathogenesis of systemic juvenile idiopathic arthritis (s-JIA) and to investigate the clinical significance of serum IL-18 levels for predicting macrophage activation syndrome (MAS) development, we measured the serum IL-6/IL-18 levels in 76s-JIA patients, including 15 with MAS, and compared them with the clinical features. We identified 2 distinct subsets on the basis of serum IL-6/IL-18 levels. The IL-18-dominant subset had more patients who developed MAS. Serum IL-18 levels during active phase in patients with MAS were significantly higher than those without MAS. The cutoff value of serum IL-18 levels for predicting MAS development was 47750pg/ml. The patients with IL-18 dominant subset at their disease onset were significantly more likely to develop MAS after TCZ therapy started. IL-18 might have a key role in the pathogenesis of MAS. Serum IL-18 levels >47750pg/ml might be useful to predict MAS development. PMID:26101092

  20. The Suppressive Effect of Quercetin on Toll-Like Receptor 7-Mediated Activation in Alveolar Macrophages.

    PubMed

    Yasui, Masahiro; Matsushima, Miyoko; Omura, Aya; Mori, Kanae; Ogasawara, Nanako; Kodera, Yuka; Shiga, Marika; Ito, Komei; Kojima, Seiji; Kawabe, Tsutomu

    2015-11-01

    Respiratory viral infections that cause chronic airway and lung disease can result in the activation of the innate immune response. Alveolar macrophages (AMs), one of the first lines of defense in the lung, are abundantly located in alveoli and the respiratory tract. Flavonoids found in fruits and vegetables exhibit cytoprotective effects on various cell types. In this study, we investigated the effect of quercetin on activation of AMs that had been exposed to imiquimod, a ligand of Toll-like receptor (TLR) 7. In both a mouse AM cell line (AMJ2-C11 cells) and mouse bronchoalveolar fluid cells, we demonstrated that quercetin attenuated TLR7-induced the expression of TNF-? and IL-6. In AMJ2-C11 cells, quercetin also attenuated the TLR7-induced CD40 expression; attenuated the translocation of p65; induced translocation of Nrf2 from cytosol to nucleus; and induced heme oxygenase (HO)-1 expression. Notably, tin protoporphyrin IX (SnPP), an inhibitor of HO-1, also attenuated TLR7-induced transcription of the TNF-? and IL-6 genes, suggesting that the effect of quercetin is mediated by HO-1. These results suggest that dietary supplementation with quercetin may have efficacy in the treatment of respiratory viral infection. PMID:26329008

  1. Diphenyl diselenide improves the antioxidant response via activation of the Nrf-2 pathway in macrophage cells.

    PubMed

    Mancini, Gianni; Raniel Straliotto, Marcos; da Rocha, João Batista Texeira; de Bem, Andreza Fabro

    2014-10-01

    Diphenyl diselenide [(PhSe)2] is an organoselenium compound that can mimic endogenous antioxidant enzymes, such as glutathione peroxidase (GPx), or be metabolized by thioredoxin reductase to form selenol intermediate, which can copy the function of the antioxidant selenoenzymes. This compound has shown potential role in preventing atherosclerosis and other oxidative stress-related diseases. The understanding of the underlying mechanism by which (PhSe)2 modulates the glutathione-related antioxidant defenses is a relevant question. Therefore, we tested its ability to promote the nuclear translocation of the nuclear factor (erythroid 2-like)-related factor 2 (Nrf-2), increasing the expression of enzymes related to the antioxidant system, such as heme oxygenase 1 (HO-1) and peroxiredoxin 1 (Prx-1), in addition to the main enzyme in the glutathione synthesis - gamma glutamylcysteine synthetase (?-GCS) - in murine J774 macrophage cells. (PhSe)2 (1µM) was able to promote nuclear translocation and increased the expression of the Nrf-2 factor in the nucleus in a time-dependent manner (1-24hours). In addition, this compound significantly increased the expression of HO-1 and Prx-1 at 24hours and GPx-1 after the first hour. Furthermore, (PhSe)2 was able to enhance GSH levels in a time-dependent manner, as well as GPx and GGCS activities. The increase in GPx and GGCS activities was dependent on the activation of PI3K, JNK, and p38MAPKs signaling pathways that may activate the Nrf2 factor. Altogether, these results show that (PhSe)2 improved the antioxidant defense by increasing the expression of HO-1 and Prx-1 and the synthesis of GSH as a consequence of the activation and nuclear translocation of Nrf-2 factor. PMID:26461369

  2. Anti-vascular endothelial growth factor acts on retinal microglia/macrophage activation in a rat model of ocular inflammation

    PubMed Central

    Couturier, Aude; Bousquet, Elodie; Zhao, Min; Naud, Marie-Christine; Klein, Christophe; Jonet, Laurent; Tadayoni, Ramin; de Kozak, Yvonne

    2014-01-01

    Purpose To evaluate whether anti-vascular endothelial growth factor (VEGF) neutralizing antibodies injected in the vitreous of rat eyes influence retinal microglia and macrophage activation. To dissociate the effect of anti-VEGF on microglia and macrophages subsequent to its antiangiogenic effect, we chose a model of acute intraocular inflammation. Methods Lewis rats were challenged with systemic lipopolysaccharide (LPS) injection and concomitantly received 5 µl of rat anti-VEGF-neutralizing antibody (1.5 mg/ml) in the vitreous. Rat immunoglobulin G (IgG) isotype was used as the control. The effect of anti-VEGF was evaluated at 24 and 48 h clinically (uveitis scores), biologically (cytokine multiplex analysis in ocular media), and histologically (inflammatory cell counts on eye sections). Microglia and macrophages were immunodetected with ionized calcium-binding adaptor molecule 1 (IBA1) staining and counted based on their differential shapes (round amoeboid or ramified dendritiform) on sections and flatmounted retinas using confocal imaging and automatic quantification. Activation of microglia was also evaluated with inducible nitric oxide synthase (iNOS) and IBA1 coimmunostaining. Coimmunolocalization of VEGF receptor 1 and 2 (VEGF-R1 and R2) with IBA1 was performed on eye sections with or without anti-VEGF treatment. Results Neutralizing rat anti-VEGF antibodies significantly decreased ocular VEGF levels but did not decrease the endotoxin-induced uveitis (EIU) clinical score or the number of infiltrating cells and cytokines in ocular media (interleukin [IL]-1?, IL-6, tumor necrosis factor [TNF]-?, and monocyte chemoattractant protein [MCP]-1). Eyes treated with anti-VEGF showed a significantly decreased number of activated microglia and macrophages in the retina and the choroid and decreased iNOS-positive microglia. IBA1-positive cells expressed VEGF-R1 and R2 in the inflamed retina. Conclusions Microglia and macrophages expressed VEGF receptors, and intravitreous anti-VEGF influenced the microglia and macrophage activation state. Taking into account that anti-VEGF drugs are repeatedly injected in the vitreous of patients with retinal diseases, part of their effects could result from unsuspected modulation of the microglia activation state. This should be further studied in other ocular pathogenic conditions and human pathology. PMID:24966662

  3. Skewed balance in basal expression and regulation of activating v inhibitory Fc? receptors in macrophages of collagen induced arthritis sensitive mice

    PubMed Central

    Blom, A; van Lent, P L E M; Holthuysen, A; Jacobs, C; van den Berg, W B

    2003-01-01

    Background: Recently, it has been found that collagen type II arthritis susceptible mouse strains are hyperreactive to immune complexes (ICs), locally deposited into their knee joints. Objective: To investigate whether this strain specific knee joint hyperreactivity is related to a disturbed regulation of activatory and inhibitory Fc?R on their macrophages before and after stimulation with ICs. Methods: Macrophages from collagen induced arthritis susceptible strains (DBA/1 and B10.RIII) and non-susceptible strains (C57BL/6 and BALB/c) were compared. Fc?R levels on macrophages were detected at protein level by flow cytometric analysis and at mRNA level by reverse transcriptase-polymerase chain reaction. Macrophages were stimulated with ICs, and production of cytokines and enzymes was measured at different times. Results: On synovial and peritoneal macrophages of DBA/1 mice a higher basal Fc?RII and III expression was found, which was skewed towards the activating Fc?RIII. In B10.RIII macrophages, however, Fc?RIII levels were much lower. Regulation of Fc?R mRNA levels in macrophages was tested after stimulation with ICs for one and three days. DBA/1 and B10.RIII macrophages showed a prolonged up regulation of activating Fc?RI and III, whereas the inhibiting Fc?RII was significantly down regulated compared with non-susceptible strains. In line with this, DBA/1 and B10.RIII macrophages showed a higher interleukin 1 (IL1) and matrix metalloproteinase (MMP) production after IC exposure, whereas IL6 production was significantly reduced. Conclusions: This study indicates that macrophages derived from collagen type II arthritis susceptible mice show a disregulated Fc?R expression before, and even more clearly, after activation by ICs involved in inflammation and cartilage degradation, resulting in prolonged expression of activatory Fc?RI and III, down regulation of inhibitory Fc?RII and increased release of IL1 and MMP. PMID:12695162

  4. Desialylation of dying cells with catalytically active antibodies possessing sialidase activity facilitate their clearance by human macrophages.

    PubMed

    Tomin, A; Dumych, T; Tolstyak, Y; Kril, I; Mahorivska, I; Bila, E; Stoika, R; Herrmann, M; Kit, Y; Bilyy, R

    2015-01-01

    Recently we reported the first known incidence of antibodies possessing catalytic sialidase activity (sialidase abzymes) in the serum of patients with multiple myeloma and systemic lupus erythematosus (SLE). These antibodies desialylate biomolecules, such as glycoproteins, gangliosides and red blood cells. Desialylation of dying cells was demonstrated to facilitate apoptotic cell clearance. In this study we assessed the possibility to facilitate dying cell clearance with the use of F(ab)2 fragments of sialidase abzymes. Two sources of sialidase abzymes were used: (i) those isolated from sera of patients with SLE after preliminary screening of a cohort of patients for sialidase activity; and (ii) by creating an induced sialidase abzyme through immunization of a rabbit with synthetic hapten consisting of a non-hydrolysable analogue of sialidase reaction conjugated with bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Antibodies were purified by ammonium sulphate precipitation, protein-G affinity chromatography and size exclusion-high performance liquid chromatography (HPLC-SEC). Effect of desialylation on efferocytosis was studied using human polymorphonuclear leucocytes (PMN), both viable and aged, as prey, and human monocyte-derived macrophages (MoMa). Treatment of apoptotic and viable prey with both disease-associated (purified from blood serum of SLE patients) and immunization-induced (obtained by immunization of rabbits) sialidase abzymes, its F(ab)2 fragment and bacterial neuraminidase (as positive control) have significantly enhanced the clearance of prey by macrophages. We conclude that sialidase abzyme can serve as a protective agent in autoimmune patients and that artificial abzymes may be of potential therapeutic value. PMID:24580640

  5. Isorhamnetin Attenuates Atherosclerosis by Inhibiting Macrophage Apoptosis via PI3K/AKT Activation and HO-1 Induction

    PubMed Central

    Luo, Yun; Sun, Guibo; Dong, Xi; Wang, Min; Qin, Meng; Yu, Yingli; Sun, Xiaobo

    2015-01-01

    Background and Purpose Isorhamnetin (Iso) is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L. Previous studies have revealed its anti-cancer, anti-inflammatory, and anti-oxidant activities. This study investigated the ability of Iso to inhibit oxidized low-density lipoprotein (ox-LDL)-induced cell apoptosis in THP-1-derived macrophages. The effects of Iso on atherosclerosis in vivo were also evaluated in apolipoprotein E knockout (ApoE-/-) mice fed a high fat diet. Methods and Results Iso showed significant inhibitory effects on ox-LDL-induced THP-1-derived macrophage injuries via decreasing reactive oxygen species levels, lipid deposition, and caspase-3 activation, restoring mitochondrial membrane potential, reducing the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells, and regulating apoptosis-related proteins. We also determined the protective effects of Iso by PI3K/AKT activation and HO-1 induction. Iso reduced the atherosclerotic plaque size in vivo in ApoE-/- mice as assessed by oil red O, Sudan IV staining, and CD68-positive cells, and reduced macrophage apoptosis as assessed by caspase-3 and TUNEL assays in lesions. Conclusion In conclusion, our results show that Iso inhibited atherosclerotic plaque development in ApoE-/- mice by PI3K/AKT activation and HO-1 induction. PMID:25799286

  6. Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury.

    PubMed

    Wu, Jianbo; Yan, Zhibo; Schwartz, David E; Yu, Jingui; Malik, Asrar B; Hu, Guochang

    2013-04-01

    Mechanical ventilation of lungs is capable of activating the innate immune system and inducing sterile inflammatory response. The proinflammatory cytokine IL-1? is among the definitive markers for accurately identifying ventilator-induced lung inflammation. However, mechanisms of IL-1? release during mechanical ventilation are unknown. In this study, we show that cyclic stretch activates the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasomes and induces the release of IL-1? in mouse alveolar macrophages via caspase-1- and TLR4-dependent mechanisms. We also observed that NADPH oxidase subunit gp91(phox) was dispensable for stretch-induced cytokine production, whereas mitochondrial generation of reactive oxygen species was required for stretch-induced NLRP3 inflammasome activation and IL-1? release. Further, mechanical ventilation activated the NLRP3 inflammasomes in mouse alveolar macrophages and increased the production of IL-1? in vivo. IL-1? neutralization significantly reduced mechanical ventilation-induced inflammatory lung injury. These findings suggest that the alveolar macrophage NLRP3 inflammasome may sense lung alveolar stretch to induce the release of IL-1? and hence may contribute to the mechanism of lung inflammatory injury during mechanical ventilation. PMID:23436933

  7. Statistical modelling of masked gene regulatory pathway changes across microarray studies of interferon gamma activated macrophages 

    E-print Network

    Forster, Thorsten

    2014-06-28

    Interferon gamma (IFN-?) regulation of macrophages plays an essential role in innate immunity and pathogenicity of viral infections by directing large and small genome-wide changes in the transcriptional program of ...

  8. Air pollution impact on phagocytic capacity of peripheral blood macrophages and antioxidant activity of plasma among school children

    SciTech Connect

    Ruiz, F.; Videla, L.A.; Vargas, N.; Parra, M.A.; Trier, A.; Silva, C.

    1988-07-01

    Peripheral blood macrophages of school children from downtown Santiago, Chile--a highly polluted city--exhibited a lower phagocytic index with higher percentage of killing than those of the rural village of Maria Pinto. These findings were observed concomitantly with a lower antioxidant activity of plasma in Santiago students. No differences were observed in serum immunoglobulins (IgA, IgG, and IgM), secretory IgA in saliva, and complement component C3. White blood cell count was higher in Maria Pinto residents than in Santiago students, including those cells with phagocytic capacity. It is suggested that particulate air pollution may enhance macrophage activity with impairment of the antioxidant capacity of plasma.

  9. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination

    PubMed Central

    Hamilton, Raymond F.; Buford, Mary; Xiang, Chengcheng; Wu, Nianqiang; Holian, Andrij

    2014-01-01

    Multi-walled carbon nanotubes (MWCNT) have been reported to cause lung pathologies in multiple studies. However, the mechanism responsible for the bioactivity has not been determined. This study used nine different well-characterized MWCNT and examined the outcomes in vitro and in vivo. MWCNT, from a variety of sources that differed primarily in overall purity and metal contaminants, were examined for their effects in vitro (toxicity and NLRP3 inflammasome activation using primary alveolar macrophages isolated from C57Bl/6 mice). In addition, in vivo exposures were conducted to determine the inflammatory and pathogenic potency. The particles produced a differential magnitude of responses, both in vivo and in vitro, that was associated most strongly with nickel contamination on the particle. Furthermore, the mechanism of action for the Ni-contaminated particles was in their ability to disrupt macrophage phagolysosomes, which resulted in NLRP3 activation and subsequent cytokine release associated with prolonged inflammation and lung pathology. PMID:23216160

  10. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NF?B Activity in Macrophages

    PubMed Central

    Hamers, Anouk A. J.; van Dam, Laura; Teixeira Duarte, José M.; Vos, Mariska; Marinkovi?, Goran; van Tiel, Claudia M.; Meijer, Sybren L.; van Stalborch, Anne-Marieke; Huveneers, Stephan; te Velde, Anje A.

    2015-01-01

    Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn’s disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNF? and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNF?, MIF-1 and MCP-1 mRNA expression through NF?B repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1? and TNF? in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases. PMID:26241646

  11. Microparticles from apoptotic RAW 264.7 macrophage cells carry tumour necrosis factor-? functionally active on cardiomyocytes from adult mice

    PubMed Central

    Milbank, Edward; Soleti, Raffaella; Martinez, Emilie; Lahouel, Badreddine; Hilairet, Grégory; Martinez, M. Carmen; Andriantsitohaina, Ramaroson; Noireaud, Jacques

    2015-01-01

    After ischaemic injury and in patients with atherosclerosis, the pool of inflammatory macrophages is enlarged in the heart and in atherosclerotic plaques. Monocyte/macrophage-derived microparticles (MPs) are part of the pathological process of unstable atherosclerotic plaques. The present study focused on effects of MPs, produced by apoptotic murine RAW 264.7 macrophage cell line, in adult murine cardiomyocytes. Flow cytometry and western blot analysis showed that these MPs contained the soluble form of tumour necrosis factor alpha (TNF-?). Cardiomyocyte sarcomere shortening amplitudes and kinetics were reduced within 5 min of exposure to these MPs. Conversely, Ca2+ transient amplitude and kinetics were not modified. The contractile effects of MPs were completely prevented after pretreatment with nitric oxide synthase, guanylate cyclase or TNF-? inhibitors as well as blocking TNF-? receptor 1 with neutralizing antibody. Microscopy showed that, after 1 h, MPs were clearly surrounding rod-shaped cardiomyocytes, and after 2 h they were internalized into cardiomyocytes undergoing apoptosis. After 4 h of treatment with MPs, cardiomyocytes expressed increased caspase-3, caspase-8, Bax and cytochrome C. Thus, MPs from apoptotic macrophages induced a negative inotropic effect and slowing of both contraction and relaxation, similar to that observed in the presence of TNF-?. The use of specific inhibitors strongly suggests that TNF-? receptors and the guanylate cyclase/cGMP/PKG pathway were involved in the functional responses to these MPs and that the mitochondrial intrinsic pathway was implicated in their proapoptotic effects. These data suggest that MPs issued from activated macrophages carrying TNF-? could contribute to propagation of inflammatory signals leading to myocardial infarction. PMID:26498917

  12. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NF?B Activity in Macrophages.

    PubMed

    Hamers, Anouk A J; van Dam, Laura; Teixeira Duarte, José M; Vos, Mariska; Marinkovi?, Goran; van Tiel, Claudia M; Meijer, Sybren L; van Stalborch, Anne-Marieke; Huveneers, Stephan; Te Velde, Anje A; de Jonge, Wouter J; de Vries, Carlie J M

    2015-01-01

    Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn's disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNF? and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNF?, MIF-1 and MCP-1 mRNA expression through NF?B repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1? and TNF? in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases. PMID:26241646

  13. Canine leishmaniasis in Southern Italy: a role for nitric oxide released from activated macrophages in asymptomatic infection?

    PubMed Central

    Panaro, Maria A; Brandonisio, Olga; de Caprariis, Donato; Cavallo, Pasqua; Cianciulli, Antonia; Mitolo, Vincenzo; Otranto, Domenico

    2008-01-01

    Background Human and canine leishmaniasis (CanL) by Leishmania infantum is endemic in Italy, with a high percentage of infected asymptomatic animals. However, the immune response mechanisms underlying the clinical presentation of CanL have not been fully investigated. Among leishmanicidal molecules produced by activated macrophages, nitric oxide (NO) produced by an inducible NO synthase seems to play an important protective role, but no conclusive data are available. Therefore, NO released by cultured macrophages from dogs with natural Leishmania infection living in an endemic area for CanL was evaluated. Methods On the basis of one year's clinical and laboratory follow-up, 22 dogs infected by Leishmania infantum were identified and grouped as: asymptomatic dogs (n = 13) and dogs with symptoms of leishmaniasis (n = 9). Each animal was bled twice at 4-month intervals and macrophage and lymphocyte cultures were obtained from peripheral blood mononuclear cells. Supernatants of L. infantum-infected macrophage cultures, with or without addition of autologous lymphocytes, were assayed for NO production by Griess reaction for nitrites. Results In the first months of the infection the levels of NO in supernatants of Leishmania-infected macrophages were higher in symptomatic than in asymptomatic dogs, but they were significantly increased in the latter group eight months after the diagnosis of infection. Furthermore, NO release significantly decreased in the presence of autologous lymphocytes in both groups of animals. Conclusion These results suggest that NO may be involved in the long-term protection of dogs against natural Leishmania infection and in the clinical presentation of canine leishmaniasis in the Mediterranean area. PMID:18471289

  14. The Majority of In Vitro Macrophage Activation Exhibited by Extracts of Some Immune Enhancing Botanicals is Due to Bacterial Lipoproteins and Lipopolysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified potent monocyte/macrophage activating bacterial lipoproteins within commonly used immune enhancing botanicals such as Echinacea, American ginseng and alfalfa sprouts. These bacterial lipoproteins, along with lipopolysaccharides, were substantially more potent than other bacteriall...

  15. Subtoxic Doses of Cadmium Modulate Inflammatory Properties of Murine RAW 264.7 Macrophages

    PubMed Central

    Riemschneider, Sina; Herzberg, Martin; Lehmann, Jörg

    2015-01-01

    Cadmium (Cd) is a toxic heavy metal that exhibits various adverse effects in the human and animal organism. Its resemblance to essential metals such as calcium, iron, and zinc leads to an unintended uptake in cells after intake through inhalation and ingestion. In this study we investigated the toxicity and the immunomodulatory potential of Cd in nonactivated and activated murine macrophages (i.e., cell line RAW 264.7). Cadmium alone caused a dose-dependent decreased viability of exposed cells. Subtoxic Cd concentrations delayed cell death in macrophages, resulting from cytotoxic storm, producing reactive oxygen species (ROS) and nitric oxide (NO), in response to their stimulation by bacterial antigens via pattern-recognition receptors (PRRs). In addition, production of selected pro- and anti-inflammatory cytokines, the chemokine CXCL1 (KC), and NO was determined. We observed that proinflammatory IL-1? and also CXCL1 were highly upregulated whereas anti-inflammatory or regulatory cytokines IL-6 and IL-10 were suppressed by 10?µM Cd. Also production of antibacterial NO was significantly reduced through exposure to 10?µM Cd, maybe explaining better survival of macrophages. Additionally, we could show by analysis via ICP-MS that different effects of Cd in nonactivated and activated macrophages definitely did not result from different Cd uptake rates. PMID:26339604

  16. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages.

    PubMed

    Shahraz, Anahita; Kopatz, Jens; Mathy, Rene; Kappler, Joachim; Winter, Dominic; Kapoor, Shoba; Schütza, Vlad; Scheper, Thomas; Gieselmann, Volkmar; Neumann, Harald

    2015-01-01

    Oligosialic and polysialic acid (oligoSia and polySia) of the glycocalyx of neural and immune cells are linear chains, in which the sialic acid monomers are ?2.8-glycosidically linked. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a primate-lineage specific receptor of human tissue macrophages and microglia that binds to ?2.8-linked oligoSia. Here, we show that soluble low molecular weight polySia with an average degree of polymerization 20 (avDP20) interacts with SIGLEC-11 and acts anti-inflammatory on human THP1 macrophages involving the SIGLEC-11 receptor. Soluble polySia avDP20 inhibited the lipopolysaccharide (LPS)-induced gene transcription and protein expression of tumor necrosis factor-? (Tumor Necrosis Factor Superfamily Member 2, TNFSF2). In addition, polySia avDP20 neutralized the LPS-triggered increase in macrophage phagocytosis, but did not affect basal phagocytosis or endocytosis. Moreover, polySia avDP20 prevented the oxidative burst of human macrophages triggered by neural debris or fibrillary amyloid-?1-42. In a human macrophage-neuron co-culture system, polySia avDP20 also reduced loss of neurites triggered by fibrillary amyloid-?1-42. Thus, treatment with polySia avDP20 might be a new anti-inflammatory therapeutic strategy that also prevents the oxidative burst of macrophages. PMID:26582367

  17. Respiratory burst activity of intestinal macrophages in normal and inflammatory bowel disease.

    PubMed Central

    Mahida, Y R; Wu, K C; Jewell, D P

    1989-01-01

    Macrophages isolated from normal mucosa (greater than 5 cm from tumour) and inflamed mucosa (from patients with inflammatory bowel disease) of colon and ileum were studied for their ability to undergo a respiratory burst as assessed by reduction of nitroblue tetrazolium to formazan. Using phorbol myristate acetate (PMA) and opsonised zymosan as triggers, only a minority (median: 8% for zymosan and 9% for PMA) of macrophages isolated from normal colonic mucosa demonstrated release of oxygen radicals. In contrast, a significantly greater (median: 17% for zymosan and 45% for PMA) proportion of macrophages isolated from inflamed colonic mucosa were able to undergo respiratory burst. Studies with normal and inflamed ileum showed similar results. Stimulation of macrophages isolated from normal colon with interferon-gamma produced only a small increase in the proportion of cells showing release of oxygen radicals. We conclude that the respiratory burst capacity of majority of macrophages isolated from normal colon and ileum is downregulated and a greater proportion of macrophages isolated from inflamed colon and ileum are able to undergo a respiratory burst. Images Fig. 2 PMID:2511088

  18. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages

    PubMed Central

    Shahraz, Anahita; Kopatz, Jens; Mathy, Rene; Kappler, Joachim; Winter, Dominic; Kapoor, Shoba; Schütza, Vlad; Scheper, Thomas; Gieselmann, Volkmar; Neumann, Harald

    2015-01-01

    Oligosialic and polysialic acid (oligoSia and polySia) of the glycocalyx of neural and immune cells are linear chains, in which the sialic acid monomers are ?2.8-glycosidically linked. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a primate-lineage specific receptor of human tissue macrophages and microglia that binds to ?2.8-linked oligoSia. Here, we show that soluble low molecular weight polySia with an average degree of polymerization 20 (avDP20) interacts with SIGLEC-11 and acts anti-inflammatory on human THP1 macrophages involving the SIGLEC-11 receptor. Soluble polySia avDP20 inhibited the lipopolysaccharide (LPS)-induced gene transcription and protein expression of tumor necrosis factor-? (Tumor Necrosis Factor Superfamily Member 2, TNFSF2). In addition, polySia avDP20 neutralized the LPS-triggered increase in macrophage phagocytosis, but did not affect basal phagocytosis or endocytosis. Moreover, polySia avDP20 prevented the oxidative burst of human macrophages triggered by neural debris or fibrillary amyloid-?1–42. In a human macrophage-neuron co-culture system, polySia avDP20 also reduced loss of neurites triggered by fibrillary amyloid-?1–42. Thus, treatment with polySia avDP20 might be a new anti-inflammatory therapeutic strategy that also prevents the oxidative burst of macrophages. PMID:26582367

  19. Toll-like Receptor 4 Deficiency Promotes the Alternative Activation of Adipose Tissue Macrophages

    PubMed Central

    Orr, Jeb S.; Puglisi, Michael J.; Ellacott, Kate L.J.; Lumeng, Carey N.; Wasserman, David H.; Hasty, Alyssa H.

    2012-01-01

    Obesity is characterized by adipose tissue (AT) macrophage (ATM) accumulation, which promotes AT inflammation and dysfunction. Toll-like receptor 4 (TLR4) deficiency attenuates AT inflammation in obesity but does not impede the accumulation of ATMs. The purpose of the current study was to determine whether TLR4 deficiency alters ATM polarization. TLR4?/? and wild-type mice were fed a low-fat, high-monounsaturated fat (HFMUFA), or a high-saturated fat (HFSFA) diet for 16 weeks. Further, we used a bone marrow transplant model to determine the influence of hematopoietic cell TLR4 signaling. The metabolic and inflammatory responses to high-fat feeding and ATM phenotype were assessed. Global and hematopoietic cell TLR4 deficiency, irrespective of recipient genotype, produced a shift in ATM phenotype toward an alternatively activated state, which was accompanied by reduced AT inflammation. Despite the observed shift in ATM phenotype, neither global nor hematopoietic cell TLR4 deficiency influenced systemic insulin sensitivity after high-fat feeding. Results of the current study suggest that TLR4 directly influences ATM polarization but question the relevance of TLR4 signaling to systemic glucose homeostasis in obesity. PMID:22751700

  20. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  1. Intestinal macrophages arising from CCR2+ monocytes control pathogen infection by activating innate lymphoid cells

    PubMed Central

    Seo, Sang-Uk; Kuffa, Peter; Kitamoto, Sho; Nagao-Kitamoto, Hiroko; Rousseau, Jenna; Kim, Yun-Gi; Núñez, Gabriel; Kamada, Nobuhiko

    2015-01-01

    Monocytes play a crucial role in antimicrobial host defence, but the mechanisms by which they protect the host during intestinal infection remains poorly understood. Here we show that depletion of CCR2+ monocytes results in impaired clearance of the intestinal pathogen Citrobacter rodentium. After infection, the de novo recruited CCR2+ monocytes give rise to CD11c+CD11b+F4/80+CD103? intestinal macrophages (MPs) within the lamina propria. Unlike resident intestinal MPs, de novo differentiated MPs are phenotypically pro-inflammatory and produce robust amounts of IL-1? (interleukin-1?) through the non-canonical caspase-11 inflammasome. Intestinal MPs from infected mice elicit the activation of ROR?t+ group 3 innate lymphoid cells (ILC3) in an IL-1?-dependent manner. Deletion of IL-1? in blood monocytes blunts the production of IL-22 by ILC3 and increases the susceptibility to infection. Collectively, these studies highlight a critical role of de novo differentiated monocyte-derived intestinal MPs in ILC3-mediated host defence against intestinal infection. PMID:26269452

  2. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds.

    PubMed

    Becker, Kathrin; Schroecksnadel, Sebastian; Gostner, Johanna; Zaknun, Cathrine; Schennach, Harald; Uberall, Florian; Fuchs, Dietmar

    2014-01-15

    Oxidative stress is considered to be critically involved in the normal aging process but also in the development and progression of various human pathologies like cardiovascular and neurodegenerative diseases, as well as of infections and malignant tumors. These pathological conditions involve an overwhelming production of reactive oxygen species (ROS), which are released as part of an anti-proliferative strategy during pro-inflammatory immune responses. Moreover, ROS themselves are autocrine forward regulators of the immune response. Most of the beneficial effects of antioxidants are considered to derive from their influence on the immune system. Due to their antioxidant and/or radical scavenging nature, phytochemicals, botanicals and herbal preparations can be of great importance to prevent oxidation processes and to counteract the activation of redox-regulated signaling pathways. Antioxidants can antagonize the activation of T-cells and macrophages during the immune response and this anti-inflammatory activity could be of utmost importance for the treatment of above-mentioned disorders and for the development of immunotolerance. Herein, we provide an overview of in vitro assays for the measurement of antioxidant and anti-inflammatory activities of plant-derived substances and extracts, by discussing possibilities and limitations of these methods. To determine the capacity of antioxidants, the oxygen radical absorbance capacity (ORAC) assay and the cell-based antioxidant activity (CAA) assay are widely applied. To examine the influence of compounds on the human immune response more closely, the model of mitogen stimulated human peripheral blood mononuclear (PBMC) cells can be applied, and the production of the inflammatory marker neopterin as well as the breakdown of the amino acid tryptophan in culture supernatants can be used as readout to indicate an immunomodulatory potential of the tested compound. These two biomarkers of immune system activation are robust and correlate with the course of cardiovascular, neurodegenerative and malignant tumor diseases, but also with the normal aging process, and they are strongly predictive. Thus, while the simpler ORAC and CAA assays provide insight into one peculiar chemical aspect, namely the neutralization of peroxyl radicals, the more complex PBMC assay is closer to the in vivo conditions as the assay comprehensively enlights several properties of immunomodulatory test compounds. PMID:24041614

  3. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    SciTech Connect

    Bouhlel, Mohamed Amine; Inserm U545, F-59000 Lille; UDSL, F-59000 Lille; Institut Pasteur de Lille, F-59019 Lille ; Brozek, John; Derudas, Bruno; Inserm U545, F-59000 Lille; UDSL, F-59000 Lille; Institut Pasteur de Lille, F-59019 Lille ; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Inserm U545, F-59000 Lille; UDSL, F-59000 Lille; Institut Pasteur de Lille, F-59019 Lille ; Chinetti-Gbaguidi, Giulia; Inserm U545, F-59000 Lille; UDSL, F-59000 Lille; Institut Pasteur de Lille, F-59019 Lille

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.

  4. Activity testing of alveolar macrophages and changes in surfactant phospholipids after irradiation in bronchoalveolar lavage: Experimental and clinical data

    SciTech Connect

    Steinberg, F.; Rehn, B.; Kraus, R.; Quabeck, K.; Bruch, J.; Beelen, D.W.; Schaefer, U.W.; Streffer, C. )

    1992-07-01

    This study presents results of bronchoalveolar lavage (BAL) after irradiation to the lungs in mice as well as clinical data. The number of BAL cells, mainly macrophages, lymphocytes, and granulocytes, changed in a time-dependent manner. The phagocytic activity of the macrophages measured as the phagocytosis of microbeads and measured as the esterase activity also showed a strong time-dependent increase during the acute phase up to 21 days after irradiation. The contents of surfactant phospholipids (SF) and sphingomyelin (SPH; as a parameter for cell death) were quantified by HPLC. Both were significantly changed between day 2 and 21 after irradiation. Three BALs of a patient with idiopathic interstitial pneumonitis, who had received an allogenic bone marrow graft after total body irradiation with 10 Gy, showed similar effects in the cellular and surfactant parameters. These data indicate that there are positive interactions between the number of different BAL cells, macrophage activity, and SF and SPH content in the preclinical model of the mouse as well as in the clinical situation after lung irradiation. 30 refs., 7 figs., 3 tabs.

  5. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    PubMed Central

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-? mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-?-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-? mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  6. Suppression of growth factor-mediated MAP kinase activation by v-raf in macrophages: a putative role for the MKP-1 phosphatase.

    PubMed

    Krautwald, S; Büscher, D; Dent, P; Ruthenberg, K; Baccarini, M

    1995-03-16

    Many tyrosine kinase growth factor receptors activate the MAP Kinase (MAPK) pathway by stimulating the activity of the RAF kinase. In some, but not all cell types, the expression of activated RAF is sufficient to induce constitutive MAPK activation. In BAC-1.2F5 macrophages the expression of virally activated RAF does not correlate with constitutive MAPK activation; on the contrary, growth factor-mediated stimulation of MAPK activity is suppressed in these cells. Suppression correlates with v-RAF expression, as MAPK activation is normal in a revertant cell line that stopped expressing v-RAF. Inhibition of MAPK activation is associated with lack of ERK-2 tyrosine phosphorylation, and is not due to the suppression of CSF-1-mediated MEK activation. Pretreatment with vanadate restores growth factor-stimulated activation and tyrosine phosphorylation of MAPK in v-RAF-expressing macrophages, indicating the involvement of a tyrosine phosphatase. Interestingly, v-RAF-expressing macrophages contain low constitutive levels of MKP-1 mRNA, an immediate early gene that encodes a MAPK-specific phosphatase and is induced in the parental cell line by CSF-1 treatment. The restoration of MAPK activation by vanadate pretreatment and the presence of MKP-1 mRNA in v-RAF-expressing macrophages raise the intriguing possibility that in macrophages RAF may be feeding back on the MAPK pathway by participating in the control of MKP-1 expression. PMID:7700643

  7. Mannose-Binding Activity of Escherichia coli: a Determinant of Attachment and Ingestion of the Bacteria by Macrophages

    PubMed Central

    Bar-Shavit, Zvi; Goldman, Rachel; Ofek, Itzhak; Sharon, Nathan; Mirelman, David

    1980-01-01

    Recently, it was suggested that a mannose-specific lectin on the bacterial cell surface is responsible for the recognition by phagocytic cells of certain nonopsonized Escherichia coli strains. In this study we assessed the interaction of two strains of E. coli at different phases of growth with a monolayer of mouse peritoneal macrophages and developed a direct method with [14C]mannan to quantitate the bacterial mannose-binding activity. Normal-sized bacteria were obtained from logarithmic and stationary phases of growth. Nonseptated filamentous cells were formed by growing the organisms in the presence of cephalexin or at a restrictive temperature. Attachment to macrophages of all bacterial forms was inhibited by methyl ?-d-mannoside and mannan but not by other sugars tested. The attachment of stationary phase and filamentous bacteria to macrophages, as well as their mannose-binding activity, was similar, whereas in the exponential-phase bacteria they were markedly reduced. The results show a linear relation between the two parameters (R = 0.98, P < 0.001). The internalization of the filamentous cells attached to macrophages during 45 min of incubation was much less efficient (20%) compared to that of exponential-phase, stationary-phase, or antibody-coated filamentous bacteria (90%). The results indicate that the mannose-binding activity of E. coli determines the recognition of the organisms by phagocytes. They further suggest that administration of ?-lactam antibiotics may impair elimination of certain pathogenic bacteria by inducing the formation of filaments which are inefficiently internalized by the host's phagocytic cells. PMID:7011977

  8. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages

    PubMed Central

    2014-01-01

    Background Artemisia nilagirica (Asteraceae) and Murraya koenigii (Rutaceae) are widely distributed in eastern region of India. Leaves of Artemisia nilagirica plant are used to treat cold and cough by the local tribal population in east India. Murraya koenigii is an edible plant previously reported to have an antibacterial activity. Pathogenic strains of mycobacteria are resistant to most of the conventional antibiotics. Therefore, it is imperative to identify novel antimycobacterial molecules to treat mycobacterial infection. Methods In this study, ethanol, petroleum ether and water extracts of Artemisia nilagirica and Murraya koenigii were tested for antibacterial activity against Mycobacterium smegmatis and Mycobacterium bovis BCG in synergy with first line anti-tuberculosis (TB) drugs, and for cytotoxic activities on mouse macrophage RAW264.7 cells. Antibacterial activity was determined by colony forming unit (CFU) assay. Intracellular survival assay was performed by infecting RAW264.7 cells with M. smegmatis before and after treatment with plant extracts. Cytotoxity was checked by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay. Genotoxicity was studied by DAPI staining and COMET assay using mouse macrophage RAW264.7 cell line. Cell apoptosis was checked by Annexin-V/FITC dual staining method. Reactive oxygen species and nitric oxide production was checked by DCFH staining and Griess reagent, respectively. Results Ethanol extracts of A. nilagirica (IC50 300 ?g/ml) and M. koenigii (IC50 400 ?g/ml) were found to be more effective against Mycobacterium smegmatis as compared to petroleum ether and water extracts. M. koenigii extract showed maximum activity against M. bovis BCG in combination with a first line anti-TB drug rifampicin. M. koenigii leaf extract also exerted more cytototoxic (IC50 20 ?g/ml), genotoxic and apoptosis in mouse macrophage RAW 264.7 cell line. Treatment of mouse macrophages with A. nilagirica extract increased intracellular killing of M. smegmatis by inducing production of reactive oxygen species and nitric oxide. Conclusions Ethanol extracts of A. nilagirica and M. koenigii were found to be more effective against mycobacteria. As compared to A. nilagirica, M. koenigii ethanol extract exhibited significant synergistic antibacterial activity against M. smegmatis and M. bovis BCG in combination with anti-tuberculosis drug rifampicin, and also showed increased cytotoxicity, DNA damage and apoptosis in mouse macrophages. PMID:24597853

  9. A role for APPL1 in TLR3/4-dependent TBK1 and IKK? activation in macrophages.

    PubMed

    Chau, Tieu-Lan; Göktuna, Serkan Ismail; Rammal, Ayman; Casanova, Tomás; Duong, Hong-Quan; Gatot, Jean-Stéphane; Close, Pierre; Dejardin, Emmanuel; Desmecht, Daniel; Shostak, Kateryna; Chariot, Alain

    2015-04-15

    Endosomes have important roles in intracellular signal transduction as a sorting platform. Signaling cascades from TLR engagement to IRF3-dependent gene transcription rely on endosomes, yet the proteins that specifically recruit IRF3-activating molecules to them are poorly defined. We show that adaptor protein containing a pleckstrin-homology domain, a phosphotyrosine-binding domain, and a leucine zipper motif (APPL)1, an early endosomal protein, is required for both TRIF- and retinoic acid-inducible gene 1-dependent signaling cascades to induce IRF3 activation. APPL1, but not early endosome Ag 1, deficiency impairs IRF3 target gene expression upon engagement of both TLR3 and TLR4 pathways, as well as in H1N1-infected macrophages. The IRF3-phosphorylating kinases TBK1 and IKK? are recruited to APPL1 endosomes in LPS-stimulated macrophages. Interestingly, APPL1 undergoes proteasome-mediated degradation through ERK1/2 to turn off signaling. APPL1 degradation is blocked when signaling through the endosome is inhibited by chloroquine or dynasore. Therefore, APPL1 endosomes are critical for IRF3-dependent gene expression in response to some viral and bacterial infections in macrophages. Those signaling pathways involve the signal-induced degradation of APPL1 to prevent aberrant IRF3-dependent gene expression linked to immune diseases. PMID:25780039

  10. Induction of Hypergammaglobulinemia and Macrophage Activation by Silicone Gels and Oils in Female A.SW Mice

    PubMed Central

    Naim, J. O.; Satoh, M.; Buehner, N. A.; Ippolito, K. M. L.; Yoshida, H.; Nusz, D.; Kurtelawicz, L.; Cramer, S. F.; Reeves, W. H.

    2000-01-01

    Although most published epidemiological studies have found little evidence of systemic autoimmune disease associated with silicone breast implants, there still remains a question of whether silicones can cause local and/or systemic immune dysfunction. This study further investigates the effects of silicones on autoantibody and immunoglobulin production and macrophage activation in female A.SW mice. Sixty mice were divided among four treatment groups receiving a 0.5-ml intraperitoneal injection of either phosphate-buffered saline (PBS), pristane, silicone gel, or silicone oil. Test bleeds were taken periodically for 6 months. In contrast to pristane, neither silicone gel nor silicone oil induced lupus-associated antinuclear autoantibodies (immunoglobulin G [IgG] anti-nRNP/Sm, Su, and ribosomal P) or lupus nephritis. However, serum IgM became elevated persistently within 1 month of silicone gel or silicone oil administration. Also, the level of IgG3 was clearly elevate