Science.gov

Sample records for macrophages rapid killing

  1. Kinetics of killing Listeria monocytogenes by macrophages: rapid killing accompanying phagocytosis

    SciTech Connect

    Davies, W.A.

    1983-08-01

    The kinetics of bactericidal activity of activated macrophages can be precisely described by a mathematical model in which phagocytosis, killing, digestion, and release of degraded bacterial material are considered to occur continuously. To gain a better understanding of these events, I have determined the period of time between first contact of bacteria with macrophages and the onset of killing. Activated rat peritoneal macrophages were incubated for various times up to 15 min with Listeria monocytogenes previously labeled with /sup 3/H-thymidine and the unassociated bacteria removed by two centrifugations through a density interface. Both cell-associated radioactivity and cell-associated viable bacteria, determined as colony forming units after sonication of the cell pellet, increased with time of incubation. However, the specific viability of these bacteria, expressed as the ratio of number of viable bacteria per unit radioactivity declined with time, as an approximate inverse exponential, after a lag period of 2.9 +/- 0.8 min. Evidence is given that other possible causes for this decline in specific viability, other than death of the bacteria, such as preferential ingestion of dead Listeria, clumping of bacteria, variations in autolytic activity, or release of Listericidins are unlikely. I conclude therefore that activated macrophages kill Listeria approximately 3 min after the cell and the bacterium first make contact.

  2. Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages

    PubMed Central

    Jubrail, Jamil; Morris, Paul; Bewley, Martin A.; Stoneham, Simon; Johnston, Simon A.; Foster, Simon J.; Peden, Andrew A.; Read, Robert C.; Marriott, Helen M.

    2015-01-01

    Summary Macrophages are critical effectors of the early innate response to bacteria in tissues. Phagocytosis and killing of bacteria are interrelated functions essential for bacterial clearance but the rate‐limiting step when macrophages are challenged with large numbers of the major medical pathogen Staphylococcus aureus is unknown. We show that macrophages have a finite capacity for intracellular killing and fail to match sustained phagocytosis with sustained microbial killing when exposed to large inocula of S. aureus (Newman, SH1000 and USA300 strains). S. aureus ingestion by macrophages is associated with a rapid decline in bacterial viability immediately after phagocytosis. However, not all bacteria are killed in the phagolysosome, and we demonstrate reduced acidification of the phagolysosome, associated with failure of phagolysosomal maturation and reduced activation of cathepsin D. This results in accumulation of viable intracellular bacteria in macrophages. We show macrophages fail to engage apoptosis‐associated bacterial killing. Ultittop mately macrophages with viable bacteria undergo cell lysis, and viable bacteria are released and can be internalized by other macrophages. We show that cycles of lysis and reuptake maintain a pool of viable intracellular bacteria over time when killing is overwhelmed and demonstrate intracellular persistence in alveolar macrophages in the lungs in a murine model. PMID:26248337

  3. Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages.

    PubMed

    Jubrail, Jamil; Morris, Paul; Bewley, Martin A; Stoneham, Simon; Johnston, Simon A; Foster, Simon J; Peden, Andrew A; Read, Robert C; Marriott, Helen M; Dockrell, David H

    2016-01-01

    Macrophages are critical effectors of the early innate response to bacteria in tissues. Phagocytosis and killing of bacteria are interrelated functions essential for bacterial clearance but the rate-limiting step when macrophages are challenged with large numbers of the major medical pathogen Staphylococcus aureus is unknown. We show that macrophages have a finite capacity for intracellular killing and fail to match sustained phagocytosis with sustained microbial killing when exposed to large inocula of S. aureus (Newman, SH1000 and USA300 strains). S. aureus ingestion by macrophages is associated with a rapid decline in bacterial viability immediately after phagocytosis. However, not all bacteria are killed in the phagolysosome, and we demonstrate reduced acidification of the phagolysosome, associated with failure of phagolysosomal maturation and reduced activation of cathepsin D. This results in accumulation of viable intracellular bacteria in macrophages. We show macrophages fail to engage apoptosis-associated bacterial killing. Ultittop mately macrophages with viable bacteria undergo cell lysis, and viable bacteria are released and can be internalized by other macrophages. We show that cycles of lysis and reuptake maintain a pool of viable intracellular bacteria over time when killing is overwhelmed and demonstrate intracellular persistence in alveolar macrophages in the lungs in a murine model. PMID:26248337

  4. Ultrastructural studies of the killing of schistosomula of Schistosoma mansoni by activated macrophages in vitro.

    PubMed

    McLaren, D J; James, S L

    1985-05-01

    Immunologically activated murine macrophages have been shown elsewhere to kill skin stage schistosomula of Schistosoma mansoni in vitro, in a manner analogous to the extracellular killing of tumour cell targets. In this study, the kinetics of the interaction between activated macrophages and larval targets and the resultant ultrastructural changes in parasite morphology that culminated in death have been analysed in detail. Unlike granulocyte-mediated schistosomular killing, macrophage-mediated cytotoxicity did not appear to be directed against the surface tissues of the parasite. Macrophages adhered only transiently following initiation of the cultures, yet changes in the subtegumental mitochondria and muscle cells of the larva were detected within the first hour of incubation. Progressive internal disorganisation followed rapidly, but the tegument and tegumental outer membrane remained intact, to form a 'shell' that maintained the general shape of the parasite. Such changes were recognised irrespective of whether the effector cell population comprised peritoneal macrophages activated by lymphokine treatment in vitro, or by infection with Mycobacterium bovis (strain BCG), or S. mansoni in vivo. That macrophages rather than contaminating granulocytes or lymphocytes, had mediated the observed damage was demonstrated by the use of a lymphokine treated macrophage cell line, IC-21. The observation that macrophage cytotoxicity is directed against internal organelles rather than the tegumental outer membrane of this multicellular target, may help to elucidate the general mechanism of extracellular killing by these cells. PMID:3892433

  5. The killing of macrophages by Corynebacterium ulcerans.

    PubMed

    Hacker, Elena; Ott, Lisa; Schulze-Luehrmann, Jan; Lührmann, Anja; Wiesmann, Veit; Wittenberg, Thomas; Burkovski, Andreas

    2016-01-01

    Corynebacterium ulcerans is an emerging pathogen transmitted by a zoonotic pathway with a very broad host spectrum to humans. Despite rising numbers of infections and potentially fatal outcomes, data on the molecular basis of pathogenicity are scarce. In this study, the interaction of 2 C. ulcerans isolates - one from an asymptomatic dog, one from a fatal case of human infection - with human macrophages was investigated. C. ulcerans strains were able to survive in macrophages for at least 20 hours. Uptake led to delay of phagolysosome maturation and detrimental effects on the macrophages as deduced from cytotoxicity measurements and FACS analyses. The data presented here indicate a high infectious potential of this emerging pathogen. PMID:26632348

  6. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  7. The Tuberculosis Necrotizing Toxin kills macrophages by hydrolyzing NAD

    PubMed Central

    Sun, Jim; Siroy, Axel; Lokareddy, Ravi K.; Speer, Alexander; Doornbos, Kathryn S.; Cingolani, Gino; Niederweis, Michael

    2015-01-01

    Mycobacterium tuberculosis (Mtb) induces necrosis of infected cells to evade immune responses. Recently, we found that Mtb utilizes the protein CpnT to kill human macrophages by secreting its C-terminal domain, named tuberculosis necrotizing toxin (TNT) that induces necrosis by an unknown mechanism. Here we show that TNT gains access to the cytosol of Mtb-infected macrophages, where it hydrolyzes the essential co-enzyme nicotinamide adenine dinucleotide (NAD+). Expression or injection of a non-catalytic TNT mutant showed no cytotoxicity in macrophages or zebrafish zygotes, respectively, demonstrating that the NAD+-glycohydrolase activity is required for TNT-induced cell death. To prevent self-poisoning, Mtb produces an immunity factor for TNT (IFT) that binds TNT and inhibits its activity. The crystal structure of the TNT-IFT complex revealed a novel NAD+-glycohydrolase fold of TNT, which constitutes the founding member of a toxin family wide-spread in pathogenic microorganisms. PMID:26237511

  8. The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD.

    PubMed

    Sun, Jim; Siroy, Axel; Lokareddy, Ravi K; Speer, Alexander; Doornbos, Kathryn S; Cingolani, Gino; Niederweis, Michael

    2015-09-01

    Mycobacterium tuberculosis (Mtb) induces necrosis of infected cells to evade immune responses. Recently, we found that Mtb uses the protein CpnT to kill human macrophages by secreting its C-terminal domain, named tuberculosis necrotizing toxin (TNT), which induces necrosis by an unknown mechanism. Here we show that TNT gains access to the cytosol of Mtb-infected macrophages, where it hydrolyzes the essential coenzyme NAD(+). Expression or injection of a noncatalytic TNT mutant showed no cytotoxicity in macrophages or in zebrafish zygotes, respectively, thus demonstrating that the NAD(+) glycohydrolase activity is required for TNT-induced cell death. To prevent self-poisoning, Mtb produces an immunity factor for TNT (IFT) that binds TNT and inhibits its activity. The crystal structure of the TNT-IFT complex revealed a new NAD(+) glycohydrolase fold of TNT, the founding member of a toxin family widespread in pathogenic microorganisms. PMID:26237511

  9. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  10. Reactive-Oxygen-Species-Mediated P. aeruginosa Killing Is Functional in Human Cystic Fibrosis Macrophages

    PubMed Central

    Cifani, Noemi; Pompili, Barbara; Anile, Marco; Patella, Miriam; Diso, Daniele; Venuta, Federico; Cimino, Giuseppe; Quattrucci, Serena; Di Domenico, Enea Gino; Ascenzioni, Fiorentina; Porto, Paola Del

    2013-01-01

    Pseudomonas aeruginosa is the most common pathogen for chronic lung infection in cystic fibrosis (CF) patients. About 80% of adult CF patients have chronic P. aeruginosa infection, which accounts for much of the morbidity and most of the mortality. Both bacterial genetic adaptations and defective innate immune responses contribute to the bacteria persistence. It is well accepted that CF transmembrane conductance regulator (CFTR) dysfunction impairs the airways-epithelium-mediated lung defence; however, other innate immune cells also appear to be affected, such as neutrophils and macrophages, which thus contribute to this infectious pathology in the CF lung. In macrophages, the absence of CFTR has been linked to defective P. aeruginosa killing, increased pro-inflammatory cytokine secretion, and reduced reactive oxygen species (ROS) production. To learn more about macrophage dysfunction in CF patients, we investigated the generation of the oxidative burst and its impact on bacterial killing in CF macrophages isolated from peripheral blood or lung parenchyma of CF patients, after P. aeruginosa infection. Our data demonstrate that CF macrophages show an oxidative response of similar intensity to that of non-CF macrophages. Intracellular ROS are recognized as one of the earliest microbicidal mechanisms against engulfed pathogens that are activated by macrophages. Accordingly, NADPH inhibition resulted in a significant increase in the intracellular bacteria survival in CF and non-CF macrophages, both as monocyte-derived macrophages and as lung macrophages. These data strongly suggest that the contribution of ROS to P. aeruginosa killing is not affected by CFTR mutations. PMID:23977124

  11. Effects of inhibitors of tumoricidal activity upon schistosomulum killing by activated macrophages.

    PubMed

    James, S L; Glaven, J A

    1987-12-01

    Larvae of the helminth parasite Schistosoma mansoni are efficiently killed in vitro by lymphokine-activated macrophages, leading to the hypothesis that these cells may participate in the effector mechanism of protective immunity against schistosomiasis. Larvacidal activity has also been demonstrated in the IC-21 macrophage cell line in the absence of a demonstrable respiratory burst, indicating that macrophages possess nonoxidative mechanisms of schistosomulum killing. In this study, we demonstrated that IC-21 larval killing was most effective when contact was allowed between cells and target. Nonoxidative larvacidal activity was prevented by protein synthesis inhibitors, by the inhibition of microtubule polymerization, and by tosyllysylchloromethylketone but not by other inhibitors or substrates of tryptic or chymotryptic protease activity. The addition of excess iron to the culture also prevented IC-21-mediated larval killing, suggesting that the production of an iron-binding molecule may be involved. In contrast, the addition of excess thymidine or arginine did not reverse macrophage larvacidal activity, nor did lysosomotropic agents that depress the activity of acid hydrolases. Under appropriate conditions of activation and surface membrane stimulation, IC-21 cells could be induced to release soluble cytotoxic factors retaining larvacidal activity. These observations provide insight into the mechanism of macrophage-mediated schistosome killing, in comparison to the cytotoxic mechanisms described in the better-studied tumoricidal models, and supply a basis for further biochemical investigation of macrophage function against a multicellular target. PMID:3119500

  12. Effects of inhibitors of tumoricidal activity upon schistosomulum killing by activated macrophages.

    PubMed Central

    James, S L; Glaven, J A

    1987-01-01

    Larvae of the helminth parasite Schistosoma mansoni are efficiently killed in vitro by lymphokine-activated macrophages, leading to the hypothesis that these cells may participate in the effector mechanism of protective immunity against schistosomiasis. Larvacidal activity has also been demonstrated in the IC-21 macrophage cell line in the absence of a demonstrable respiratory burst, indicating that macrophages possess nonoxidative mechanisms of schistosomulum killing. In this study, we demonstrated that IC-21 larval killing was most effective when contact was allowed between cells and target. Nonoxidative larvacidal activity was prevented by protein synthesis inhibitors, by the inhibition of microtubule polymerization, and by tosyllysylchloromethylketone but not by other inhibitors or substrates of tryptic or chymotryptic protease activity. The addition of excess iron to the culture also prevented IC-21-mediated larval killing, suggesting that the production of an iron-binding molecule may be involved. In contrast, the addition of excess thymidine or arginine did not reverse macrophage larvacidal activity, nor did lysosomotropic agents that depress the activity of acid hydrolases. Under appropriate conditions of activation and surface membrane stimulation, IC-21 cells could be induced to release soluble cytotoxic factors retaining larvacidal activity. These observations provide insight into the mechanism of macrophage-mediated schistosome killing, in comparison to the cytotoxic mechanisms described in the better-studied tumoricidal models, and supply a basis for further biochemical investigation of macrophage function against a multicellular target. PMID:3119500

  13. Pseudomonas aeruginosa Triggers Macrophage Autophagy To Escape Intracellular Killing by Activation of the NLRP3 Inflammasome

    PubMed Central

    Deng, Qiuchan; Wang, Yi; Zhang, Yuanqing; Li, Meiyu; Li, Dandan; Huang, Xi; Wu, Yongjian; Pu, Jieying

    2015-01-01

    Assembly of the inflammasome has recently been identified to be a critical event in the initiation of inflammation. However, its role in bacterial killing remains unclear. Our study demonstrates that Pseudomonas aeruginosa infection induces the assembly of the NLRP3 inflammasome and the sequential secretion of caspase1 and interleukin-1β (IL-1β) in human macrophages. More importantly, activation of the NLRP3 inflammasome reduces the killing of P. aeruginosa in human macrophages, without affecting the generation of antimicrobial peptides, reactive oxygen species, and nitric oxide. In addition, our results demonstrate that P. aeruginosa infection increases the amount of the LC3-II protein and triggers the formation of autophagosomes in human macrophages. The P. aeruginosa-induced autophagy was enhanced by overexpression of NLRP3, ASC, or caspase1 but was reduced by knockdown of these core molecules of the NLRP3 inflammasome. Treatment with IL-1β enhanced autophagy in human macrophages. More importantly, IL-1β decreased the macrophage-mediated killing of P. aeruginosa, whereas knockdown of ATG7 or Beclin1 restored the IL-1β-mediated suppression of bacterial killing. Collectively, our study explores a novel mechanism employed by P. aeruginosa to escape from phagocyte killing and may provide a better understanding of the interaction between P. aeruginosa and host immune cells, including macrophages. PMID:26467446

  14. The role of macrophages in the cytotoxic killing of tumour cells in vitro

    PubMed Central

    Zembala, M.; Ptak, W.; Hanczakowska, Maria

    1973-01-01

    Lymph node and spleen cells from normal mice were cultured for 3 days with polyoma virus-induced tumour, Ehrlich's ascites tumour or leukaemia L 1210 cells. This resulted in in vitro immunization of the lymphocytes, which were then transferred to irradiated target cells labelled with 51Cr. Normal, i.e. non-immune thioglycollate-stimulated peritoneal macrophages were also added to some tubes. Non-immune macrophages mixed with immunized lymphocytes showed a significantly increased ability to destroy tumour cells as compared with macrophages in the absence of immunized lymphocytes. The immunized lymphocytes were almost entirely inactive alone. When the number of macrophages was kept constant the cytotoxicity was dependent on the number of viable immunized lymphocytes placed on the target cells. Immunized lymphocytes, in the presence of macrophages, only exhibited strong killing of the target cells against which they had been immunized; some lysis of `bystander' cells was, however, seen provided specific target cells were present. Macrophage monolayers exposed to immunized lymphocytes upon contact with specific antigen became `armed' and showed a significant cytotoxicity for specific target cells. When immunized lymphocytes and normal macrophages were treated with actinomycin D and puromycin, cytotoxicity was inhibited in the immunized lymphocytes but not in the macrophages. The possible mechanism of normal macrophage cooperation with immunized lymphocytes in the cytotoxic killing reaction is discussed. Results presented in this paper favour the view that immunologically specific cytophilic factor (presumptive cytophilic antibody) is involved in the macrophage-mediated cytotoxicity in the system studied. PMID:4356674

  15. Macrophages sense and kill bacteria through carbon monoxide–dependent inflammasome activation

    PubMed Central

    Wegiel, Barbara; Larsen, Rasmus; Gallo, David; Chin, Beek Yoke; Harris, Clair; Mannam, Praveen; Kaczmarek, Elzbieta; Lee, Patty J.; Zuckerbraun, Brian S.; Flavell, Richard; Soares, Miguel P.; Otterbein, Leo E.

    2014-01-01

    Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1–deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1–deficient mice. IL-1β cleavage and secretion were impaired in HO-1–deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes. PMID:25295542

  16. Killing Is Not Enough: How Apoptosis Hijacks Tumor-Associated Macrophages to Promote Cancer Progression.

    PubMed

    Weigert, Andreas; Mora, Javier; Sekar, Divya; Syed, Shahzad; Brüne, Bernhard

    2016-01-01

    Macrophages are a group of heterogeneous cells of the innate immune system that are crucial to the initiation, progression, and resolution of inflammation. Moreover, they control tissue homeostasis in healthy tissue and command a broad sensory arsenal to detect disturbances in tissue integrity. Macrophages possess a remarkable functional plasticity to respond to irregularities and to initiate programs that allow overcoming them in order to return back to normal. Thus, macrophages kill malignant or transformed cells, rearrange extracellular matrix, take up and recycle cellular as well as molecular debris, initiate cellular growth cascades, and favor directed migration of cells. As an example, apoptotic death of bystander cells is sensed by macrophages, initiating functional responses that support all hallmarks of cancer. In this chapter, we describe how tumor cell apoptosis hijacks tumor-associated macrophages to promote tumor growth. We propose that tumor therapy should not only kill malignant cells but also target the interaction of the host with apoptotic cancer cells, as this might be efficient to limit the protumor action of apoptotic cells and boost the antitumor potential of macrophages. Leaving the apoptotic cell/macrophage interaction untouched might also limit the benefit of conventional tumor cell apoptosis-focused therapy since surviving tumor cells might receive overwhelming support by the wound healing response that apoptotic tumor cells will trigger in local macrophages, thereby enhancing tumor recurrence. PMID:27558823

  17. Rapid effects of androgens in macrophages.

    PubMed

    Benten, W Peter M; Guo, Z; Krücken, J; Wunderlich, F

    2004-08-01

    We investigated the existence of membrane receptors for testosterone (mAR) in mouse macrophages of the cell lines IC-21 and RAW 264.7 as well as their roles in nongenomic pathways, gene expression and cell functioning. Both cell lines lack intracellular androgen receptors (iARs) and respond to testosterone with rapid rises in [Ca2+]i. These rises in [Ca2+]i can neither be inhibited by iAR- nor by iER blockers, but are rather mediated through mAR. Pharmacological approaches suggest that the mAR belongs to the class of membrane receptors which are coupled to phospholipase C via pertussis toxin (PTX) sensitive G-proteins. The mAR can be localized as specific surface binding sites for testosterone-BSA-FITC by confocal laser scanning microscopy (CLSM)and flow cytometry, and are characterized by their agonist-sequestrability. In order to examine a possible role of the testosterone-induced rise in [Ca2+]i on gene expression, a c-fos promoter reporter gene construct was transfected into RAW 264.7 macrophages. The increase in [Ca2+]i induced by testosterone cannot significantly activate the c-fos promoter directly. Also, no significant activation of ERK1/2, JNK/SAPK and p38 can be observed following testosterone-stimulation alone. However, testosterone-induced rises in [Ca2+]i do have specific effects on gene expression in context with lipopolysaccharide (LPS)-induced genotropic signaling: testosterone specifically down-regulates LPS-induced activation of c-fos promoter, p38 MAPK and NO production. In fetal calf serum (FCS)-induced genotropic signaling, the situation is reversed, i.e. testosterone augments the activation of c-fos promoter and ERK1/2. Our studies demonstrate a cross-talk between the testosterone-induced nongenomic Ca2+ signaling and the genotropic signaling induced by LPS and FCS in macrophages. PMID:15288774

  18. Mannosylated Lipoarabinomannans from Mycobacterium Avium Subsp. Paratuberculosis Alters the Inflammatory Response by Bovine Macrophages and Suppresses Killing of Mycobacterium Avium Subsp. Avium Organisms

    PubMed Central

    Souza, Cleverson; Davis, William C.; Eckstein, Torsten M.; Sreevatsan, Srinand; Weiss, Douglas J.

    2013-01-01

    Analysis of the mechanisms through which pathogenic mycobacteria interfere with macrophage activation and phagosome maturation have shown that engagement of specific membrane receptors with bacterial ligands is the initiating event. Mannosylated lipoarabinomannan (Man-LAM) has been identified as one of the ligands that modulates macrophage function. We evaluated the effects of Man-LAM derived from Mycobacterium avium subsp. paratuberculosis (MAP) on bovine macrophages. Man-LAM induced a rapid and prolonged expression of IL-10 message as well as transient expression of TNF-α. Preincubation with Man-LAM for up to 16 h did not suppress expression of IL-12 in response to interferon-γ. Evaluation of the effect of Man-LAM on phagosome acidification, phagosome maturation, and killing of Mycobacterium avium subsp. avium (MAA) showed that preincubation of macrophages with Man-LAM before addition of MAA inhibited phagosome acidification, phagolysosome fusion, and reduced killing. Analysis of signaling pathways provided indirect evidence that inhibition of killing was associated with activation of the MAPK-p38 signaling pathway but not the pathway involved in regulation of expression of IL-10. These results support the hypothesis that MAP Man-LAM is one of the virulence factors facilitating survival of MAP in macrophages. PMID:24098744

  19. Viscoelastic Muds---Top-Kill in Rapidly Flowing Wells

    NASA Astrophysics Data System (ADS)

    Katz, Jonathan

    2011-04-01

    The attempted ``top-kill'' of the blown out Macondo (Deepwater Horizon) oil well by pumping a dense drilling ``mud'', i.e., a slurry of dense minerals, from above failed. This failure may be attributed to a Kelvin-Helmholtz instability in the gravity driven counterflow between the descending ``mud'' and the rapidly upwelling crude oil. The instability produced turbulence that dispersed the denser fluid into small packets (if miscible with the oil) or droplets (if immiscible). Estimates from turbulence theory imply that the packets or droplets are so small (sub-mm) that their settling speed in the oil is less than the upwelling speed, with the consequence that the ``mud'' is spat out of the well, as observed, rather than descending to fill the bottom of the well bore and providing the hdyrodstatic head required to ``kill'' the well. The addition of a shear-thickening or viscoelastic polymer to the ``mud'' may suppress the turbulence and prevent its dispersal. Laboratory experiments with viscoelastic surrogate ``muds'' show complete turbulence suppression at the relevant speeds, with the viscoelastic fluid descending as a coherent slug. These experiments find several new phenomena. At high flow rates there is a viscoelastic analogue of the viscous buckling instability. At low flow rates suppression of the Plateau-Rayleigh instability combined with the dependence of viscous flow rate on diameter leads to the formation of globules on a looping filament. I thank LLNL, where the experimental work was done, for hospitality.

  20. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy.

    PubMed

    Co, Elizabeth C; Gormley, Matthew; Kapidzic, Mirhan; Rosen, David B; Scott, Marvin A; Stolp, Haley A R; McMaster, Michael; Lanier, Lewis L; Bárcena, Alicia; Fisher, Susan J

    2013-06-01

    Human pregnancy is an immunological paradox. Semiallogeneic (fetal) placental cells (extravillous cytotrophoblasts [CTBs]) invade the uterine lining (decidua), which contains a unique decidual natural killer (dNK) cell population, identified by the cell surface phenotype CD56(bright) CD16(-) CD3(-) and CD14(+) CD206(+) macrophages (dMac). Previous reports suggested that human dNK cells are not a threat to the fetoplacental unit because they are anergic. In contrast, here we showed that purified and exogenously stimulated dNK cells are capable killers of cellular targets, including semiallogeneic CTBs. However, dMacs in the decidual leukocyte (DL) population restrained dNK killing through a transforming growth factor beta1 (TGF-beta1)-dependent mechanism. Our findings support a new model whereby dNK cells, capable of killing CTBs, are prevented from doing so by neighboring macrophages, thus protecting the fetal cells from NK cell attack. We speculate that this mechanism would inhibit dNK cell-mediated killing, even under conditions where high levels of cytokines may stimulate dNK cells, which could pose a threat to the developing placenta. PMID:23553431

  1. P2X7 receptor-mediated killing of an intracellular parasite, Toxoplasma gondii, by human and murine macrophages1

    PubMed Central

    Lees, Michael P.; Fuller, Stephen J.; McLeod, Rima; Boulter, Nicola R.; Miller, Catherine M.; Zakrzewski, Alana M.; Mui, Ernest J.; Witola, William H.; Coyne, Jessica J.; Hargrave, Aubrey C.; Jamieson, Sarra E.; Blackwell, Jenefer M.; Wiley, James S.; Smith, Nicholas C.

    2010-01-01

    The P2X7 receptor (P2X7R)4 is highly expressed on the macrophage cell surface and activation of infected cells by extracellular ATP has been shown to kill intracellular bacteria and parasites. Furthermore, single nucleotide polymorphisms (SNPs) that decrease receptor function reduce the ability of human macrophages to kill Mycobacterium tuberculosis and are associated with extrapulmonary tuberculosis. In this paper we show that macrophages from people with the 1513C (rs3751143) loss-of-function P2X7R SNP are less effective in killing intracellular Toxoplasma gondii after exposure to ATP compared with macrophages from people with the 1513A wild-type allele. Supporting a P2X7R-specific effect on T. gondii, macrophages from P2X7R knock-out mice (P2X7R−/−) are unable to kill T. gondii as effectively as macrophages from wild-type mice. We show that P2X7R-mediated T. gondii killing occurs in parallel with host cell apoptosis and is independent of NO production. PMID:20488797

  2. Post lung-stage schistosomula of Schistosoma mansoni exhibit transient susceptibility to macrophage-mediated cytotoxicity in vitro that may relate to late phase killing in vivo.

    PubMed

    Pearce, E J; James, S L

    1986-09-01

    Studies of protective immunity against Schistosoma mansoni in immunized mice suggest that a proportion of challenge parasites may be eliminated after they have passed through the lungs of the host several days after infection; however, no potential immune effector mechanism of resistance against this stage of the parasite has yet been identified, since schistosomes have been shown to rapidly become resistant to antibody-dependent killing mechanisms. In this study, different development stages of S. mansoni were examined for their susceptibility to in vitro cytotoxicity by lymphokine-activated macrophages. As previously shown, newly transformed larvae were readily killed by lymphokine-treated peritoneal macrophages or the macrophage cell line IC-21 (80% mortality over 48 h in vitro), whereas 7 and 10 day old lung-stage parasites had become refractory to macrophage effects. However, after 2 to 2 1/2 weeks of development in vivo, juvenile parasites recovered from the liver were again susceptible to activated macrophage-mediated cytotoxicity (25-65% mortality). Ultrastructural studies of 2 1/2 week old parasites co-cultured with activated IC-21 cells revealed that damage was largely restricted to the areas beneath the parasite surface and gut syncitia; surface membrane disruption was not evident. This late stage of susceptibility was transient and by 4 to 6 weeks liver-stage worms had again become refractory to macrophage killing. The interaction of post lung-stage parasites with activated macrophages was antibody independent. Furthermore, schistosomes isolated from the portal circulation 2 1/2 weeks after infection showed no evidence of surface-bound immunoglobulin in a quantitative immunofluorescence assay, nor did antisera from chronically infected mice (CIS) or mice vaccinated with irradiated cercariae (VS) react with the surface of these parasites in vitro, making the possibility of direct antibody-dependent killing mechanisms unlikely. However, both CIS and VS

  3. Wnt3a suppresses Pseudomonas aeruginosa-induced inflammation and promotes bacterial killing in macrophages

    PubMed Central

    CHEN, KANG; FU, QIANG; LI, DANDAN; WU, YONGJIAN; SUN, SHIJUN; ZHANG, XIUMIN

    2016-01-01

    Pseudomonas aeruginosa (PA) is a common Gram-negative bacterium and can cause serious infections, including hospital-acquired pneumonia, suppurative bacterial keratitis and acute burn wound infection. The pathogenesis of PA infections is closely associated with excessive inflammatory responses and bacterial virulence factors. Wingless-type MMTV integration site family, member 3A (Wnt3a), an upstream mediator in the canonical Wnt signaling pathway, has been implicated as a regulator of inflammation. However, its role in PA-induced inflammation and bacterial clearance remains unknown. In the present study, the efficacy of Wnt3a conditioned media (Wnt3a-CM) was assessed using western blotting and immunofluorescence, which showed that β-catenin, a downstream molecule of Wnt3a, was upregulated and translocated to the nucleus following exposure to 50% Wnt3a-CM for 6 h. To explore the role of Wnt3a in PA-induced inflammation, the mRNA levels of pro-inflammatory cytokines and apoptosis in macrophages were measured using reverse transcription-quantitative polymerase chain reaction and flow cytometry, respectively. This indicated that Wnt3a suppressed inflammation by reducing the production of pro-inflammatory cytokines and by promoting apoptosis in macrophages. Furthermore, the mechanism of macrophage-mediated bacterial killing was investigated, and the results indicated that Wnt3a enhanced macrophage-mediated intracellular bacterial killing via the induction of the production of cathelicidin-related antimicrobial peptide and β-defensins 1. Taken together, the current study explored the role of Wnt3a in inflammation and bacterial invasion, which may provide an improved understanding of host resistance to PA infection. PMID:26846714

  4. Concanavalin A enhances phagocytosis and killing of Candida albicans by mice peritoneal neutrophils and macrophages.

    PubMed

    Loyola, Wagner; Gaziri, Daniel Augusto; Gaziri, Luis Carlos Jabur; Felipe, Ionice

    2002-07-12

    In this study we tested the hypothesis that after administration of a single intraperitoneal dose of concanavalin A (Con-A) to mice, the proportion of neutrophils and macrophages in the peritoneal exudate and their phagocytic and candidacidal activities should change with time. The number of neutrophils in the peritoneal exudate was greatly increased 6 h after administration of Con-A, and those cells were able to kill both intracellular and extracellular yeast and germ tube forms of Candida albicans. Addition of catalase to the culture medium reduced the killing of C. albicans, suggesting that the candidacidal activity depended on the myeloperoxidase system. The survival of mice pretreated with Con-A and submitted to an inoculum of C. albicans 6 h afterwards was twice higher than that of controls, which suggests that neutrophils were able to clear the experimental infection. One day after the treatment, the population of neutrophils in the exudate was about 45%, but after 2 days it was reduced to only 5% and the candidacidal activity was also reduced. After 4 days the exudate contained over 95% of macrophages, the candidacidal activity reached a maximum, and the phagocytosis mediated by both complement receptors and mannose receptors was increased. Uptake of FITC-mannose-BSA by macrophages was maximal on about the 4th day and was inhibited by mannan, suggesting that treatment with Con-A increased the activity of mannose receptors. These results support the hypothesis that activation of cellular immunity by Con-A occurred in two phases, one dominated by neutrophils, and the other by macrophages expressing increased activity of mannose receptors. PMID:12110482

  5. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria.

    PubMed Central

    Tomita, T; Blumenstock, E; Kanegasaki, S

    1981-01-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria. Images PMID:6788707

  6. An Isoniazid Analogue Promotes Mycobacterium tuberculosis-Nanoparticle Interactions and Enhances Bacterial Killing by Macrophages

    PubMed Central

    de Faria, Tatiany J.; Roman, Mariane; de Souza, Nicole M.; De Vecchi, Rodrigo; de Assis, João Vitor; dos Santos, Ana Lúcia Gomes; Bechtold, Ivan H.; Winter, Nathalie; Soares, Maurilio José; Silva, Luciano Paulino; De Almeida, Mauro V.

    2012-01-01

    Nanoenabled drug delivery systems against tuberculosis (TB) are thought to control pathogen replication by targeting antibiotics to infected tissues and phagocytes. However, whether nanoparticle (NP)-based carriers directly interact with Mycobacterium tuberculosis and how such drug delivery systems induce intracellular bacterial killing by macrophages is not defined. In the present study, we demonstrated that a highly hydrophobic citral-derived isoniazid analogue, termed JVA, significantly increases nanoencapsulation and inhibits M. tuberculosis growth by enhancing intracellular drug bioavailability. Importantly, confocal and atomic force microscopy analyses revealed that JVA-NPs associate with both intracellular M. tuberculosis and cell-free bacteria, indicating that NPs directly interact with the bacterium. Taken together, these data reveal a nanotechnology-based strategy that promotes antibiotic targeting into replicating extra- and intracellular mycobacteria, which could actively enhance chemotherapy during active TB. PMID:22330919

  7. Autophagy-Related Proteins Target Ubiquitin-Free Mycobacterial Compartment to Promote Killing in Macrophages

    PubMed Central

    Bah, Aïcha; Lacarrière, Camille; Vergne, Isabelle

    2016-01-01

    Autophagy is a lysosomal degradative process that plays essential functions in innate immunity, particularly, in the clearance of intracellular bacteria such as Mycobacterium tuberculosis. The molecular mechanisms involved in autophagy activation and targeting of mycobacteria, in innate immune responses of macrophages, are only partially characterized. Autophagy targets pathogenic M. tuberculosis via a cytosolic DNA recognition- and an ubiquitin-dependent pathway. In this report, we show that non-pathogenic M. smegmatis induces a robust autophagic response in THP-1 macrophages with an up regulation of several autophagy-related genes. Autophagy activation relies in part on recognition of mycobacteria by Toll-like receptor 2 (TLR2). Notably, LC3 targeting of M. smegmatis does not rely on membrane damage, ubiquitination, or autophagy receptor recruitment. Lastly, M. smegmatis promotes recruitment of several autophagy proteins, which are required for mycobacterial killing. In conclusion, our study uncovered an alternative autophagic pathway triggered by mycobacteria which involves cell surface recognition but not bacterial ubiquitination. PMID:27242971

  8. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages

    PubMed Central

    Song, Liping; Asgharzadeh, Shahab; Salo, Jill; Engell, Kelly; Wu, Hong-wei; Sposto, Richard; Ara, Tasnim; Silverman, Ayaka M.; DeClerck, Yves A.; Seeger, Robert C.; Metelitsa, Leonid S.

    2009-01-01

    Tumor infiltration with Vα24-invariant NKT cells (NKTs) associates with favorable outcome in neuroblastoma and other cancers. Although NKTs can be directly cytotoxic against CD1d+ cells, the majority of human tumors are CD1d–. Therefore, the role of NKTs in cancer remains largely unknown. Here, we demonstrate that CD68+ tumor-associated monocytes/macrophages (TAMs) represented the majority of CD1d-expressing cells in primary human neuroblastomas. TAMs stimulated neuroblastoma growth in human cell lines and their xenografts in NOD/SCID mice via IL-6 production. Indeed, TAMs produced IL-6 in primary tumors and in the BM of patients with metastatic neuroblastoma. Gene expression analysis using TaqMan low-density arrays of 129 primary human neuroblastomas without MYCN amplification revealed that high-level expression of TAM-specific genes (CD14, CD16, IL6, IL6R, and TGFB1) was associated with poor 5-year event-free survival. While NKTs were not cytotoxic against neuroblastoma cells, they effectively killed monocytes pulsed with tumor cell lysate. The killing of monocytes was CD1d restricted because it was inhibited by a CD1d-specific mAb. Cotransfer of human monocytes and NKTs to tumor-bearing NOD/SCID mice decreased monocyte number at the tumor site and suppressed tumor growth compared with mice transferred with monocytes alone. Thus, killing of TAMs reveals what we believe to be a novel mechanism of NKT antitumor activity that relates to the disease outcome. PMID:19411762

  9. Killing of Staphylococcus aureus in murine macrophages by chloroquine used alone and in combination with ciprofloxacin or azithromycin

    PubMed Central

    Dey, Somrita; Bishayi, Biswadev

    2015-01-01

    This study aimed to determine any alteration in the killing of Staphylococcus aureus in murine peritoneal macrophages when chloroquine (CQ) is used alone compared with when it is used in combination with ciprofloxacin (CIP) or azithromycin (AZM). The study also aimed to find out the implication of reactive oxygen species (ROS) production and cytokine release in the intracellular killing of S. aureus in macrophages. We present here data obtained with a model of S. aureus-infected mouse peritoneal macrophages in which the intracellular growth of the bacteria and the influence of antibiotics was monitored for 30, 60, and 90 minutes in the presence or absence of CQ along with the production of ROS and alteration in levels of antioxidant enzymes and cytokines. It was observed that S. aureus-triggered cytokine response was regulated when macrophages were co-cultured with CQ and AZM as compared with CQ stimulation only. It can be suggested that action of AZM in mediating bacterial killing is enhanced by the presence of CQ, indicating enhanced uptake of AZM during early infection that may be essential for bacteria killing by AZM. Reduction of oxidative stress burden on the S. aureus-infected macrophages may pave the way for better killing of internalized S. aureus by CQ plus ciprofloxacin (CIP) or CQ plus AZM. Based on these observations, one may speculate that in an inflammatory milieu, CQ loaded with AZM elicits a stronger proinflammatory response by increasing the intracellular uptake of AZM or CIP, thus enabling the immune system to mount a more robust and prolonged response against intracellular pathogens. PMID:25653549

  10. The respiratory burst is not required for killing of intracellular and extracellular parasites by a lymphokine-activated macrophage cell line.

    PubMed

    Scott, P; James, S; Sher, A

    1985-06-01

    The macrophage cell line, IC-21, was found to be incapable of producing the oxygen products associated with the respiratory burst. However, IC-21 cells were activated by lymphokine (LK) to kill intracellular (Leishmania donovani amastigotes) and extracellular (Schistosoma mansoni larvae) parasites, as well as tumor cells. In each case, the cytotoxicity exhibited by activated IC-21 cells and activated peritoneal macrophages was indistinguishable. However, nonactivated IC-21 cells were unable to kill L. donovani log-growth phase promastigotes, while nonactivated peritoneal macrophages destroyed greater than 90% of the initial infection. These results indicate that amastigotes and schistosome larvae are susceptible to killing by nonoxidative cytotoxic mechanism induced by lymphokine activation but, on the other hand, support the concept that the killing of log-growth phase promastigotes by nonactivated cells is dependent upon the respiratory burst. We propose that the IC-21 cell line may be a useful model for studying nonoxidative killing functions of activated macrophages. PMID:2988973

  11. Killing of Brucella antigen-sensitized macrophages by T lymphocytes in bovine brucellosis.

    PubMed

    Wyckoff, John H; Potts, Richard D

    2007-12-15

    The present study was an investigation into the role of T lymphocytes in the killing of antigen-sensitized macrophages (M Phi) in bovine brucellosis. Following confirmation of bovine T lymphocyte cell lines derived from Brucella abortus Strain 19 vaccinated steers as antigen-specific in proliferation studies using various antigens, we adapted an apoptosis assay for evaluation of cytotoxicity by these bovine T cells against autologous monocyte-derived macrophages (MDM Phi) as target cells. Various B. abortus antigen preparations were tested including whole gamma-irradiated B. abortus bacteria (gamma BA), a soluble cytosolic protein fraction and a membrane-associated protein fraction. Both polyclonal and cloned T lymphocyte cell lines exhibited cytotoxicity against MDM Phi targets in an antigen-specific fashion. Polyclonal and cloned T lymphocyte cell lines demonstrated cytotoxic responses to varying degrees against B. abortus antigens regardless of whether the antigen used was whole nonviable bacteria, a soluble protein extract or a membrane-associated fraction of extracted bacteria. To further develop correlation of these responses to an in vivo host defense mechanism, cytotoxicity was evaluated using target cells that had been infected with live B. abortus S19 or B. abortus Strain 2308. Cytotoxic responses were also demonstrated consistently against infected targets with either strain of B. abortus although in most cases, cytotoxicity was higher against target cells sensitized with gamma BA compared to those infected with live bacteria. Cloned T lymphocyte cell lines were all CD4+, CD8(-) cells indicating that the observed cytotoxic responses were most likely due to an inflammatory Th1 response and may represent an important host defense mechanism induced by vaccination with live attenuated strains of B. abortus in cattle. PMID:17904229

  12. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis

    PubMed Central

    Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  13. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    PubMed

    Machado, Diana; Pires, David; Perdigão, João; Couto, Isabel; Portugal, Isabel; Martins, Marta; Amaral, Leonard; Anes, Elsa; Viveiros, Miguel

    2016-01-01

    Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their

  14. Short term exposure to NO sup 2 decreases intrapulmonary killing of Mycoplasma pulmonis by damaging alveolar macrophages

    SciTech Connect

    Davis, J.K.; Davidson, M.K.; Schoeb, T.R.; Lindsey, J.R. Veteran Administration Medical Center, Birmingham, AL )

    1991-03-11

    Previous studies have shown that exposure of pathogen free C57BL/6N mice to 5 or 10 ppm of NO{sub 2} increased severity of murine respiratory mycoplasmosis and that this effect was associated with decreased intrapulmonary killing (IPK) of Mycoplasma pulmonis (MP). The purposes of the present studies were to titrate the NO{sub 2} effect and to determine if the changes in IPK were due to the effects of NO{sub 2} on alveolar macrophages. Exposure to less than 5 ppm NO{sub 2} had no effect on IPK of MP. Bronchoalveolar lavage (BAL) cells killed MP in vitro only if they were allowed to associate with mycoplasmas in vivo. Prior exposure to NO{sub 2} abrogated killing in this in vivo-in vitro model. Exposure to NO{sub 2} did not increase the protein content of BAL within 24 hours. Greater than 95% of the BAL cells were macrophages, and greater than 98% of the cell-associated mycoplasmas were on or in alveolar macrophages. Immediately after exposure, viability of alveolar macrophages, as measured by trypan blue exclusion and fluorescein diacetate uptake, was 89 {plus minus} 4% and 88 {plus minus} 4% in the control group, respectively; 56 {plus minus} 19% and 64 {plus minus} 11% in the group receiving MP alone; 23 {plus minus} 7% and 48 {plus minus} 9% in the group receiving 10 ppm NO{sub 2}; and 16 {plus minus} 6% and 25 {plus minus} 6% in the group receiving both MP and NO{sub 2} exposures. Viability was significantly decreased following exposure to 5 or 10 ppm NO{sub 2}, but not following exposure to 2 ppm. Viability did not return to normal until 7 days after exposure to NO{sub 2}, at which time IPK also returned to normal. The cellular target of NO{sub 2} exposure in relation to IPK of MP appears to be the alveolar macrophage.

  15. Rapid kill-novel endodontic sealer and Enterococcus faecalis.

    PubMed

    Beyth, Nurit; Kesler Shvero, Dana; Zaltsman, Nathan; Houri-Haddad, Yael; Abramovitz, Itzhak; Davidi, Michael Perez; Weiss, Ervin I

    2013-01-01

    With growing concern over bacterial resistance, the identification of new antimicrobial means is paramount. In the oral cavity microorganisms are essential to the development of periradicular diseases and are the major causative factors associated with endodontic treatment failure. As quaternary ammonium compounds have the ability to kill a wide array of bacteria through electrostatic interactions with multiple anionic targets on the bacterial surface, it is likely that they can overcome bacterial resistance. Melding these ideas, we investigated the potency of a novel endodontic sealer in limiting Enterococcus faecalis growth. We used a polyethyleneimine scaffold to synthesize nano-sized particles, optimized for incorporation into an epoxy-based endodontic sealer. The novel endodontic sealer was tested for its antimicrobial efficacy and evaluated for biocompatibility and physical eligibility. Our results show that the novel sealer foundation affixes the nanoparticles, achieving surface bactericidal properties, but at the same time impeding nanoparticle penetration into eukaryotic cells and thereby mitigating a possible toxic effect. Moreover, adequate physical properties are maintained. The nanosized quaternary amine particles interact within minutes with bacteria, triggering cell death across wide pH values. Throughout this study we demonstrate a new antibacterial perspective for endodontic sealers; a novel antibacterial, effective and safe antimicrobial means. PMID:24223159

  16. MICROWAVE IRRADIATION FOR RAPID KILLING AND FIXING OF PLANT TISSUE

    EPA Science Inventory

    Irradiation by microwaves allow for rapid billing and fixing of plant tissue, with excellent cellular integrity for histological examination. One or two exposures to microwaves for three seconds in formalin/acetic acid/alcohol gave good preservation of nuclei, chloroplasts and ot...

  17. Antibodies against invasive phenotype-specific antigens increase Mycobacterium avium subspecies paratuberculosis translocation across a polarized epithelial cell model and enhance killing by bovine macrophages

    PubMed Central

    Everman, Jamie L.; Bermudez, Luiz E.

    2015-01-01

    Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a severe chronic enteritis which affects large populations of ruminants globally. Prevention strategies to combat the spread of Johne's disease among cattle herds involve adhering to strict calving practices to ensure young susceptible animals do not come in contact with MAP-contaminated colostrum, milk, or fecal material. Unfortunately, the current vaccination options available are associated with high cost and suboptimal efficacy. To more successfully combat the spread of Johne's disease to young calves, an efficient method of protection is needed. In this study, we examined passive immunization as a mode of introducing protective antibodies against MAP to prevent the passage of the bacterium to young animals via colostrum and milk. Utilizing the infectious MAP phenotype developed after bacterial exposure to milk, we demonstrate that in vitro opsonization with serum from Johne's-positive cattle results in enhanced translocation across a bovine MDBK polarized epithelial cell monolayer. Furthermore, immune serum opsonization of MAP results in a rapid host cell-mediated killing by bovine macrophages in an oxidative-, nitrosative-, and extracellular DNA trap-independent manner. This study illustrates that antibody opsonization of MAP expressing an infectious phenotype leads to the killing of the bacterium during the initial stage of macrophage infection. PMID:26301206

  18. Antibodies against invasive phenotype-specific antigens increase Mycobacterium avium subspecies paratuberculosis translocation across a polarized epithelial cell model and enhance killing by bovine macrophages.

    PubMed

    Everman, Jamie L; Bermudez, Luiz E

    2015-01-01

    Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a severe chronic enteritis which affects large populations of ruminants globally. Prevention strategies to combat the spread of Johne's disease among cattle herds involve adhering to strict calving practices to ensure young susceptible animals do not come in contact with MAP-contaminated colostrum, milk, or fecal material. Unfortunately, the current vaccination options available are associated with high cost and suboptimal efficacy. To more successfully combat the spread of Johne's disease to young calves, an efficient method of protection is needed. In this study, we examined passive immunization as a mode of introducing protective antibodies against MAP to prevent the passage of the bacterium to young animals via colostrum and milk. Utilizing the infectious MAP phenotype developed after bacterial exposure to milk, we demonstrate that in vitro opsonization with serum from Johne's-positive cattle results in enhanced translocation across a bovine MDBK polarized epithelial cell monolayer. Furthermore, immune serum opsonization of MAP results in a rapid host cell-mediated killing by bovine macrophages in an oxidative-, nitrosative-, and extracellular DNA trap-independent manner. This study illustrates that antibody opsonization of MAP expressing an infectious phenotype leads to the killing of the bacterium during the initial stage of macrophage infection. PMID:26301206

  19. Radiometric macrophage culture assay for rapid evaluation of antileprosy activity of rifampin

    SciTech Connect

    Mittal, A.; Seshadri, P.S.; Prasad, H.K.; Sathish, M.; Nath, I.

    1983-10-01

    The antileprosy effect of rifampin was evaluated by a newly developed rapid in vitro assay wherein 31 human-derived strains and 1 armadillo-derived strain of Mycobacterium leprae were maintained for 2 and 3 weeks, respectively, in murine and human macrophages in the presence of (3H)thymidine. Of these strains, 27 showed significant incorporation of the radiolabel in cultures of live bacilli as compared with control cultures of heat-killed bacilli of the same strain. Consistent and significant inhibition of (3H)thymidine uptake was observed in M. leprae resident cultures with 3 to 200 ng of rifampin per ml as compared with similar cultures without the drug. In general, an increase in percent inhibition was seen from 3 to 20 ng/ml, with marginal increases at 40, 50, and 100 ng/ml. M. leprae strains appear to be remarkably susceptible to this drug in the in vitro assay.

  20. Hypercapnia Inhibits Autophagy and Bacterial Killing in Human Macrophages by Increasing Expression of Bcl-2 and Bcl-xL

    PubMed Central

    Casalino-Matsuda, S. Marina; Nair, Aisha; Beitel, Greg J.; Gates, Khalilah L.; Sporn, Peter H. S.

    2015-01-01

    Hypercapnia, the elevation of CO2 in blood and tissue, commonly develops in patients with advanced lung disease and severe pulmonary infections, and is associated with high mortality. We previously reported that hypercapnia alters expression of host defense genes, inhibits phagocytosis, and increases the mortality of Pseudomonas pneumonia in mice. However, the effect of hypercapnia on autophagy, a conserved process by which cells sequester and degrade proteins and damaged organelles that also plays a key role in antimicrobial host defense and pathogen clearance, has not previously been examined. In the present study we show that hypercapnia inhibits autophagy induced by starvation, rapamycin, LPS, heat-killed and live bacteria in the human macrophage. Inhibition of autophagy by elevated CO2 was not attributable to acidosis. Hypercapnia also reduced macrophage killing of Pseudomonas aeruginosa. Moreover, elevated CO2 induced the expression of Bcl-2 and Bcl-xL, anti-apoptotic factors that negatively regulate autophagy by blocking Beclin 1, an essential component of the autophagy initiation complex. Furthermore, siRNA targeting Bcl-2 and Bcl-xL and the small molecule Z36, which blocks Bcl-2 and Bcl-xL binding to Beclin 1, prevented hypercapnic inhibition of autophagy and bacterial killing. These results suggest that targeting the Bcl-2/Bcl-xL-Beclin 1 interaction may hold promise for ameliorating hypercapnia-induced immunosuppression and improving resistance to infection in patients with advanced lung disease and hypercapnia. PMID:25895534

  1. Bactericidal activity of juvenile chinook salmon macrophages against Aeromonas salmonicida after exposure to live or heat-killed Renibacterium salmoninarum or to soluble proteins produced by R. salmoninarum

    USGS Publications Warehouse

    Siegel, D.C.; Congleton, J.L.

    1997-01-01

    Macrophages isolated from the anterior kidney of juvenile chinook salmon Oncorhynchus tshawytscha in 96-well microtiter plates were exposed for 72 h to 0, 105, or 106 live or heat-killed Renibacterium salmoninarum cells per well or to 0, 0.1, 1.0, or 10 ??g/mL of R. salmoninarum soluble proteins. After treatment, the bactericidal activity of the macrophages against Aerornonas salmonicida was determined by a colorimetric assay based on the reduction of the tetrazolium dye MTT to formazan by viable bacteria. The MTT assay was modified to allow estimation of the percentage of bacteria killed by reference to a standard curve relating the number of bacteria added to microtiter wells to absorbance by formazan at 600 nm. The live and heat-killed R. salmoninarum treatments significantly (P < 0.001) increased killing of A. salmonicida by chinook salmon macrophages. In each of the five trials, significantly (P < 0.05) greater increases in killing occurred after exposure to 105 R. salmoninarum cells than to 106 R. salmoninarum cells per well. In contrast, treatment of macrophages with 10 ??g/mL R. salmoninarum soluble proteins significantly (P < 0.001) decreased killing of A. salmonicida, but treatment with lower doses did not. These results show that the bactericidal activity of chinook salmon macrophages is stimulated by exposure to R. salmoninarum cells at lower dose levels but inhibited by exposure to R. salmoninarum cells or soluble proteins at higher dose levels.

  2. Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives

    SciTech Connect

    Maul, J.R.; Ransijn, A.; Buchmueller-Rouiller, Y. )

    1991-01-01

    The experiments described in this report were aimed at determining whether L-arginine (L-arg)-derived nitrogen oxidation products (nitric oxide, nitrous acid, nitrites) are involved in the intracellular killing of Leishmania parasites by activated murine macrophages in vitro. Peritoneal or bone marrow-derived macrophages were infected with L. enriettii or L. major, then activated by exposure to recombinant murine interferon-gamma or to macrophage activating factor (MAF)-rich media in the presence of lipopolysaccharide. Activation of macrophages in regular (i.e., arginine-containing) culture medium led to complete destruction of the microorganisms within 24 h (L. enriettii) or 48 h (L. major), concomitant with accumulation of nitrites (NO2-) in the culture fluids. When macrophage activation was carried out in L-arg-free medium, however, neither parasite killing nor NO2- production was obtained. A similar inhibition of macrophage leishmanicidal activity and of NO2- release was observed using media treated with arginase (which converts L-arg to urea and ornithine), or supplemented with NG-monomethyl-L-arg or guanidine (which inhibit the conversion of L-arg to nitrogen oxidation products). In all these situations, an excellent correlation between the levels of NO2- production by macrophages and intracellular killing of Leishmania was observed, whereas no strict correlation was detectable between leishmanicidal activity and superoxide production. Intracellular parasite killing by activated macrophages could be prevented by addition of iron salts to the incubation fluids. Incubation of free parasites with NaNO2 at acid pH led to immobilisation, multiplication arrest, and morphological degeneration of the microorganisms. Similarly, exposure of infected cells to NaNO2 led to killing of the intracellular parasite without affecting macrophage viability.

  3. Killing of Escherichia coli by Crohn's Disease Monocyte-derived Macrophages and Its Enhancement by Hydroxychloroquine and Vitamin D

    PubMed Central

    Flanagan, Paul K.; Chiewchengchol, Direkrit; Wright, Helen L.; Edwards, Steven W.; Alswied, Abdullah; Satsangi, Jack; Subramanian, Sreedhar; Rhodes, Jonathan M.

    2015-01-01

    Background: Crohn's disease (CD) is associated with defective innate immunity, including impaired neutrophil chemotaxis, and mucosal invasion by bacteria, particularly adherent and invasive Escherichia coli that replicate inside macrophage phagolysosomes. We compared CD and healthy control (HC) macrophages for their abilities to kill E. coli and generate neutrophil chemoattractants and also assessed the effects of hydroxychloroquine (HCQ) and vitamin D on killing of phagocytosed E. coli. Methods: Peripheral blood monocyte-derived macrophages from CD and HC were compared for bacterial killing and generation of neutrophil chemoattractants in response to CD-derived E. coli. Escherichia coli replication was also assessed in the presence and absence of HCQ, alone and with antibiotics, and vitamin D. Results: Monocyte-derived macrophages from patients with CD were similar to HC in allowing replication of phagocytosed CD-derived E. coli: HM605 {CD: N = 10, mean fold replication in 3 hr = 1.08 (95% confidence interval [CI], 0.39–1.78); HC: N = 9, 1.50 (95% CI, 1.02–1.97); P = 0.15} and also in generation of neutrophil chemoattractants in response to E. coli (mean fold chemotaxis relative to control: CD = 2.55 [95% CI, 2.31–2.80]; HC = 2.65 [95% CI, 2.46–2.85], P = 0.42). HCQ and 1,25 OH2-vitamin D3 both caused dose-dependent inhibition of intramacrophage E. coli replication 3-hour postinfection; HCQ: 73.9% inhibition (P < 0.001) at 1 μg/mL, accompanied by raised intraphagosomal pH, and 1,25 OH2-vitamin D3: 80.7% inhibition (P < 0.05) at 80 nM. HCQ had synergistic effects with doxycycline and ciprofloxacin. Conclusions: CD and HC macrophages perform similarly in allowing replication of phagocytosed E. coli and generating neutrophil chemoattractants. Replication of phagocytosed E. coli was substantially decreased by HCQ and vitamin D. These warrant further therapeutic trials in CD in combination with relevant antibiotics. PMID:25839777

  4. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcγ receptors on macrophages.

    PubMed

    Shi, Yun; Fan, Xuejun; Deng, Hui; Brezski, Randall J; Rycyzyn, Michael; Jordan, Robert E; Strohl, William R; Zou, Quanming; Zhang, Ningyan; An, Zhiqiang

    2015-05-01

    Trastuzumab has been used for the treatment of HER2-overexpressing breast cancer for more than a decade, but the mechanisms of action for the therapy are still being actively investigated. Ab-dependent cell-mediated cytotoxicity mediated by NK cells is well recognized as one of the key mechanisms of action for trastuzumab, but trastuzumab-mediated Ab-dependent cellular phagocytosis (ADCP) has not been established. In this study, we demonstrate that macrophages, by way of phagocytic engulfment, can mediate ADCP and cancer cell killing in the presence of trastuzumab. Increased infiltration of macrophages in the tumor tissue was associated with enhanced efficacy of trastuzumab whereas depletion of macrophages resulted in reduced antitumor efficacy in mouse xenograft tumor models. Among the four mouse FcγRs, FcγRIV exhibits the strongest binding affinity to trastuzumab. Knockdown of FcγRIV in mouse macrophages reduced cancer cell killing and ADCP activity triggered by trastuzumab. Consistently, an upregulation of FcγRIV expression by IFN-γ triggered an increased ADCP activity by trastuzumab. In an analogous fashion, IFN-γ priming of human macrophages increased the expression of FcγRIII, the ortholog of murine FcγRIV, and increased trastuzumab-mediated cancer cell killing. Thus, in two independent systems, the results indicated that activation of macrophages in combination with trastuzumab can serve as a therapeutic strategy for treating high HER2 breast cancer by boosting ADCP killing of cancer cells. PMID:25795760

  5. Live and Heat-Killed Lactobacillus rhamnosus ATCC 7469 May Induce Modulatory Cytokines Profiles on Macrophages RAW 264.7

    PubMed Central

    Jorjão, Adeline Lacerda; de Oliveira, Felipe Eduardo; Leão, Mariella Vieira Pereira; Carvalho, Cláudio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2015-01-01

    This study aimed to evaluate the capacity of Lactobacillus rhamnosus and/or its products to induce the synthesis of cytokines (TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-12) by mouse macrophages (RAW 264.7). Three microorganism preparations were used: live L. rhamnosus (LLR) suspension, heat-killed L. rhamnosus (HKLR) suspension, and the supernatant of a heat-killed L. rhamnosus (SHKLR) suspension, which were cultured with macrophages (37°C, 5% CO2) for 2 h and 30 min. After that, cells were cultured for 16 h. The supernatants were used for the quantitation of cytokines, by ELISA. The results were compared with the synthesis induced by lipopolysaccharide (LPS) and analysed, using ANOVA and Tukey test, 5%. LLR and HKLR groups were able to significantly increase the production of TNF-α, IL-6, and IL-10 (P < 0.05). SHKLR also significantly increased the production of TNF-α and IL-10 (P < 0.05) but not IL-6 (P > 0.05). All the L. rhamnosus suspensions were not able to produce detectable levels of IL-1β or significant levels of IL-4 and IL-12 (P > 0.05). In conclusion, live and heat-killed L. rhamnosus suspensions were able to induce the synthesis of different cytokines with proinflammatory (TNF-α and IL-6) or regulatory (IL-10) functions, suggesting the role of strain L. rhamnosus ATCC 7469 in the modulation or in the stimulation of immune responses. PMID:26649329

  6. Intracellular killing of bacteria: is Dictyostelium a model macrophage or an alien?

    PubMed Central

    Cosson, Pierre; Lima, Wanessa C

    2014-01-01

    Predation of bacteria by phagocytic cells was first developed during evolution by environmental amoebae. Many of the core mechanisms used by amoebae to sense, ingest and kill bacteria have also been conserved in specialized phagocytic cells in mammalian organisms. Here we focus on recent results revealing how Dictyostelium discoideum senses and kills non-pathogenic bacteria. In this model, genetic analysis of intracellular killing of bacteria has revealed a surprisingly complex array of specialized mechanisms. These results raise new questions on these processes, and challenge current models based largely on studies in mammalian phagocytes. In addition, recent studies suggest one additional level on complexity by revealing how Dictyostelium recognizes specifically various bacterial species and strains, and adapts its metabolism to process them. It remains to be seen to what extent mechanisms uncovered in Dictyostelium are also used in mammalian phagocytic cells. PMID:24628900

  7. Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification

    PubMed Central

    Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer

    2016-01-01

    Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448

  8. Innate Immune Memory: Activation of Macrophage Killing Ability by Developmental Duties.

    PubMed

    Schneider, David; Tate, Ann Thomas

    2016-06-20

    Innate immune systems in many taxa exhibit hallmarks of memory in response to previous microbial exposure. A new study demonstrates that innate immune memory in Drosophila embryonic macrophages can also be induced by the successful engulfment of apoptotic cells, highlighting the importance of early exposure events for developing responsive immune systems. PMID:27326712

  9. Macrophage response to oncolytic paramyxoviruses potentiates virus-mediated tumor cell killing.

    PubMed

    Tan, Darren Qiancheng; Zhang, LiFeng; Ohba, Kenji; Ye, Min; Ichiyama, Koji; Yamamoto, Naoki

    2016-04-01

    Tumor-associated macrophages (TAMs) are known to regulate tumor response to many anti-cancer therapies, including oncolytic virotherapy. Oncolytic virotherapy employing oncolytic paramyxoviruses, such as attenuated measles (MeV) and mumps (MuV) viruses, has demonstrated therapeutic potential against various malignancies. However, the response of TAMs to oncolytic paramyxoviruses and the consequent effect on virotherapeutic efficacy remains to be characterized. Here, we demonstrate that the presence of human monocyte-derived macrophages (MDMs), irrespective of initial polarization state, enhances the virotherapeutic effect of MeV and MuV on breast cancer cells. Notably, our finding contrasts those of several studies involving other oncolytic viruses, which suggest that TAMs negatively impact virotherapeutic efficacy by impeding virus replication and dissemination. We found that the enhanced virotherapeutic effect in the presence of MDMs was due to slightly delayed proliferation and significantly elevated cell death that was not a result of increased virus replication. Instead, we found that the enhanced virotherapeutic effect involved several macrophage-associated anti-tumor mediators, and was associated with the modulation of MDMs towards an anti-tumor phenotype. Our findings present an alternative view on the role of TAMs in oncolytic virotherapy, and highlight the immunotherapeutic potential of oncolytic paramyxoviruses; possibly contributing towards the overall efficacy of oncolytic virotherapy. PMID:26763072

  10. Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing.

    PubMed

    Csóka, Balázs; Németh, Zoltán H; Törő, Gábor; Idzko, Marco; Zech, Andreas; Koscsó, Balázs; Spolarics, Zoltán; Antonioli, Luca; Cseri, Karolina; Erdélyi, Katalin; Pacher, Pál; Haskó, György

    2015-09-01

    Extracellular ATP binds to and signals through P2X7 receptors (P2X7Rs) to modulate immune function in both inflammasome-dependent and -independent manners. In this study, P2X7(-/-) mice, the pharmacological agonists ATP-magnesium salt (Mg-ATP; 100 mg/kg, EC50 ≈ 1.32 mM) and benzoylbenzoyl-ATP (Bz-ATP; 10 mg/kg, EC50 ≈ 285 μM), and antagonist oxidized ATP (oxi-ATP; 40 mg/kg, IC50 ≈ 100 μM) were used to show that P2X7R activation is crucial for the control of mortality, bacterial dissemination, and inflammation in cecal ligation and puncture-induced polymicrobial sepsis in mice. Our results with P2X7(-/-) bone marrow chimeric mice, adoptive transfer of peritoneal macrophages, and myeloid-specific P2X7(-/-) mice indicate that P2X7R signaling on macrophages is essential for the protective effect of P2X7Rs. P2X7R signaling protects through enhancing bacterial killing by macrophages, which is independent of the inflammasome. By using the connexin (Cx) channel inhibitor Gap27 (0.1 mg/kg, IC50 ≈ 0.25 μM) and pannexin channel inhibitor probenecid (10 mg/kg, IC50 ≈ 11.7 μM), we showed that ATP release through Cx is important for inhibiting inflammation and bacterial burden. In summary, targeting P2X7Rs provides a new opportunity for harnessing an endogenous protective immune mechanism in the treatment of sepsis. PMID:26060214

  11. A Cardinal Role for Cathepsin D in Co-Ordinating the Host-Mediated Apoptosis of Macrophages and Killing of Pneumococci

    PubMed Central

    Bewley, Martin A.; Marriott, Helen M.; Tulone, Calogero; Francis, Sheila E.; Mitchell, Timothy J.; Read, Robert C.; Chain, Benny; Kroemer, Guido; Whyte, Moira K. B.; Dockrell, David H.

    2011-01-01

    The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D−/− hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function. PMID:21298030

  12. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors.

    PubMed Central

    Maródi, L; Schreiber, S; Anderson, D C; MacDermott, R P; Korchak, H M; Johnston, R B

    1993-01-01

    In contrast to its macrophage-activating capacity, IFN-gamma downregulates expression of the macrophage mannose receptor (MMR), which mediates uptake of Candida and other microorganisms. We found that IFN-gamma induced a concentration-dependent increase in the capacity of human monocyte-derived macrophages to ingest and kill both opsonized and unopsonized Candida albicans and to release superoxide anion upon stimulation with Candida. Mannan or mannosylated albumin inhibited this activated uptake of unopsonized Candida, but glucan did not. Addition of mAb to complement receptor (CR) 3 did not inhibit ingestion; macrophages that lacked CR3 (leukocyte adhesion defect) showed normal upregulation of ingestion by IFN-gamma. The increased candidacidal activity of IFN-gamma-activated macrophages was associated with reduced expression of MMR by a mean of 79% and decreased pinocytic uptake of 125I-mannosylated BSA by 73%; K(uptake) of pinocytosis was not changed. Exposure of resident macrophages to unopsonized Candida did not elicit a transient increase in intracellular free Ca2+ ([Ca2+]i); macrophages activated by IFN-gamma expressed a brisk increase in [Ca2+]i on exposure to Candida. These data suggest that macrophage activation by IFN-gamma can enhance resistance to C. albicans infection in spite of downregulation of the MMR, perhaps through enhanced coupling of the MMR to microbicidal functions. PMID:8390485

  13. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment.

    PubMed

    Marcil, A; Harcus, D; Thomas, D Y; Whiteway, M

    2002-11-01

    Phagocytic cells such as neutrophils and macrophages are potential components of the immune defense that protects mammals against Candida albicans infection. We have tested the interaction between the mouse macrophage cell line RAW 264.7 and a variety of mutant strains of C. albicans. We used an end point dilution assay to monitor the killing of C. albicans at low multiplicities of infection (MOIs). Several mutants that show reduced virulence in mouse systemic-infection models show reduced colony formation in the presence of macrophage cells. To permit analysis of the macrophage-Candida interaction at higher MOIs, we introduced a luciferase reporter gene into wild-type and mutant Candida cells and used loss of the luminescence signal to quantify proliferation. This assay gave results similar to those for the end point dilution assay. Activation of the macrophages with mouse gamma interferon did not enhance anti-Candida activity. Continued coculture of the Candida and macrophage cells eventually led to death of the macrophages, but for the RAW 264.7 cell line this was not due to apoptotic pathways involving caspase-8 or -9 activation. In general Candida cells defective in the formation of hyphae were both less virulent in animal models and more sensitive to macrophage engulfment and growth inhibition. However the nonvirulent, hypha-defective cla4 mutant line was considerably more resistant to macrophage-mediated inhibition than the wild-type strain. Thus although mutants sensitive to engulfment are typically less virulent in systemic-infection models, sensitivity to phagocytic macrophage cells is not the unique determinant of C. albicans virulence. PMID:12379711

  14. Extracellular killing of inhaled pneumococci in rats

    SciTech Connect

    Coonrod, J.D.; Marple, S.; Holmes, G.P.; Rehm, S.R.

    1987-12-01

    Early clearance of inhaled Staphylococcus aureus is believed to be caused by phagocytosis by alveolar macrophages. In murine models inhaled pneumococci are cleared even more rapidly than S. aureus. Conventional opsonins appear to play no role in this clearance, and recently it has been shown that murine alveolar lining material contains free fatty acids and other soluble factors that are directly bactericidal for pneumococci. To determine whether non-phagocytic factors are involved in pneumococcal clearance, we compared the site of killing of inhaled pneumococci and S. aureus in rats using histologic methods and bronchoalveolar lavage. Spontaneous lysis of pneumococci was prevented by use of autolysin-defective pneumococci or by substitution of ethanolamine for choline in the cell wall. Histologic studies showed that the percent of inhaled staphylococci associated with alveolar macrophages always exceeded the percent of staphylococci cleared, whereas there was little association of pneumococci with macrophages during clearance. Analysis of the intracellular or extracellular location of iron 59 in bronchoalveolar lavage fluid of rats that had inhaled aerosols of /sup 59/Fe-labeled bacteria suggested that staphylococci were killed predominantly in macrophages and pneumococci in the extracellular space. When /sup 59/Fe-labeled pneumococci or staphylococci were ingested and killed by macrophages in vitro, the /sup 59/Fe remained with the macrophages, suggesting that the extracellular location of /sup 59/Fe during pneumococcal killing in vivo was not caused by rapid turnover of /sup 59/Fe in macrophages. Studies of the site of killing of inhaled type 25 pneumococci labeled exclusively in the cell wall with carbon 14-ethanolamine confirmed the results obtained with /sup 59/Fe-labeled pneumococci. Thus, early killing of inhaled pneumococci, unlike staphylococci, appears to take place outside of macrophages.

  15. A Reservoir of Mature Cavity Macrophages that Can Rapidly Invade Visceral Organs to Affect Tissue Repair.

    PubMed

    Wang, Jing; Kubes, Paul

    2016-04-21

    A key feature of inflammation is the timely recruitment of leukocytes, including monocytes, from blood into tissues, the latter maturing into macrophages over a period of 2-3 days. Using multi-channel spinning disk microscopy, we identified a rapid pathway of macrophage recruitment into an injured organ via a non-vascular route requiring no maturation from monocytes. In response to a sterile injury in liver, a reservoir of fully mature F4/80(hi)GATA6(+) peritoneal cavity macrophages rapidly invaded into afflicted tissue via direct recruitment across the mesothelium. The invasion was dependent on CD44 and DAMP molecule ATP and resulted in rapid replication and switching of macrophage toward an alternatively activated phenotype. These macrophages dismantled the nuclei of necrotic cells releasing DNA and forming a cover across the injury site. Rapid invasion of mature macrophages from body cavity with capacity for induction of reparative phenotype may impact altered tissues ranging from trauma to infections to cancer. VIDEO ABSTRACT. PMID:27062926

  16. Kinetics of killing Listeria monocytogenes by macrophages: correlation of /sup 3/H-DNA release from labeled bacteria and changes in numbers of viable organisms by mathematical model

    SciTech Connect

    Davies, W.A.

    1982-12-01

    Conventional methods of assessing antibacterial activities of macrophages by viable counting are limited by the precision of the statistics and are difficult to interpret quantitatively because of unrestrained extracellular growth of bacteria. An alternative technique based on the release of radioactive DNA from labeled bacteria has been offered as overcoming these drawbacks. To assess it for use with macrophages I have made a correlation with the conventional viable counting method using a mathematical model. Opsonized Listeria monocytogenes labeled with /sup 3/H-thymidine were exposed to rat macrophages for periods up to 4 hr. Numbers of viable bacteria determined after sonication increased exponentially in the absence of live cells and this growth rate was progressively inhibited by increasing numbers of macrophages. After a lag period of 30-60 min soluble /sup 3/H appeared in the supernatant, the amount increasing with time and numbers of macrophages. To correlate these data I developed a mathematical model that considered that changes in numbers of viable organisms were due to the difference between rates of 1) growth of extracellular bacteria and 2) killing within the macrophage. On the basis of this model curves of best fit to the viable counts data were used to predict the release of radioactivity, assuming that death of a bacterium led to the total release of its label. These predictions and the experimental data agreed well, the lag period of 30-60 min between death of the bacterium and release of radioactivity being consistent with intracellular digestion. Release of soluble radioactivity appears to be an accurate reflection of the number of bacteria killed within the macrophage.

  17. Gold Nanopopcorn Attached Single-Walled Carbon Nanotube Hybrid for Rapid Detection and Killing of Bacteria

    PubMed Central

    Ondera, Thomas. J.

    2014-01-01

    We report a strategy to fabricate a rapid and stable surface-enhanced Raman scattering (SERS)-based hybrid nanomaterial using gold nanopopcorns attached single-walled carbon nanotubes (AuNP@f3-SWCNTs) for label-free detection and photothermal killing of bacteria. Herein, previously ester-functionalized single-walled carbon nanotubes (f1-SWCNTs) undergo 1,3-dipolar cycloaddition reaction with in-situ generated nitrile imine under Microwave (MW) irradiation to form a doubly ester terminated SWCNTs cycloadduct (f2-SWCNTs). The ester terminals are further modified with 4-aminothiophenol (4-ATP) under MW-irradiation to form thiol-terminated SWCNTs templates (f3-SWCNTs) that allow gold nanopopcorns (AuNPs) to covalently and uniformly attach at a minimum inter-particle distance thus yielding a hybrid nanomaterial (AuNP@f3-SWCNT) with good aqueous stability and abundant ‘hotspots’. Consequently, monoclonal E. coli antibody-conjugated bioassays fabricated with our AuNP@f3-SWCNT substrates (mAb-AuNP@f3-SWCNT) rapidly detect E. coli in water with good selectivity and impressive SERS sensitivity. The detection limit of E. coli 49979, selected as a model to establish proof of principle, was found to be 1.0×102 CFU/mL. Furthermore, the AuNP@f3-SWCNT hybrid nanomaterial offers impressive photothermal pathogen killing effects. The synergy-type enhancement effect arising from the inherent noble properties of the respective components of the hybrid nanomaterial indicate that our AuNP@f3-SWCNT has the potential for further application in multiplex detection in samples. PMID:25414794

  18. Inflammatory Stimuli Reprogram Macrophage Phagocytosis to Macropinocytosis for the Rapid Elimination of Pathogens

    PubMed Central

    BoseDasgupta, Somdeb; Pieters, Jean

    2014-01-01

    Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated phagocytosis to macropinocytosis, allowing the rapid transfer of internalized cargo to lysosomes in a receptor-independent manner. Reprogramming occurred through protein kinase C-mediated phosphorylation of the macrophage protein coronin 1, thereby activating phosphoinositol (PI)-3-kinase activity necessary for macropinocytic uptake. Expression of a phosphomimetic form of coronin 1 was sufficient to induce PI3-kinase activation and macropinocytosis even in the absence of inflammatory stimuli. Together these results suggest a hitherto unknown mechanism to regulate the internalization and degradation of infectious material during inflammation. PMID:24497827

  19. Macrophage activation for intracellular killing as induced by a Ca2+ ionophore. Dependence on L-arginine-derived nitrogen oxidation products.

    PubMed Central

    Buchmüller-Rouiller, Y; Corradin, S B; Mauël, J

    1992-01-01

    Mouse macrophages activated by interferon-gamma kill intracellular Leishmania by a process that depends on the generation of L-arginine-derived nitrogen oxidation products. Interferon-induced intracellular killing can be mimicked by exposure of macrophages to the Ca2+ ionophore A23187 in the presence of lipopolysaccharide. The mechanisms of this effect were therefore investigated. Destruction of the parasite was accompanied by accumulation of nitrite in the macrophage culture fluids. Leishmanicidal activity and nitrite production in cultures stimulated with ionophore A23187 and lipopolysaccharide were abrogated when cells were activated in medium containing arginase or the L-arginine analogues L-canavanine, guanidine or NG-monomethyl-L-arginine. L-Arginine was required during the lipopolysaccharide-induced triggering phase only. Indeed, macrophage priming with ionophore A23187 in L-arginine-depleted medium led to full microbicidal activity and nitrite generation provided that L-arginine was present during subsequent triggering by lipopolysaccharide. Addition of NG-monomethyl-L-arginine to ionophore-activated macrophages increased O2- production on phorbol myristate stimulation, while inhibiting glucose oxidation through the hexose monophosphate shunt pathway. Leishmanicidal activity and nitrite production were also inhibited when ionophore-treated cultures were incubated with excess iron, implying a role for iron as a defence mechanism against the toxicity of nitrogen derivatives. These results indicate that the ionophore-induced leishmanicidal activity occurs through a process similar to that evoked by interferon-gamma, i.e. the production of L-arginine-derived nitrogen oxidation products. PMID:1599422

  20. Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages.

    PubMed Central

    Madan, T; Eggleton, P; Kishore, U; Strong, P; Aggrawal, S S; Sarma, P U; Reid, K B

    1997-01-01

    To determine whether the lung surfactant proteins A (SP-A) and D (SP-D) are involved in the initial protective immunity against opportunistic pulmonary fungal infections caused by Aspergillus fumigatus, we performed a series of in vitro functional studies to see if SP-A and SP-D enhanced binding, phagocytosis, activation, and killing of A. fumigatus conidia by human alveolar macrophages and circulating neutrophils. Both SP-A and SP-D bound to carbohydrate structures on A. fumigatus conidia in a calcium-dependent manner. SP-A and SP-D were also chemoattractant and significantly enhanced agglutination and binding of conidia to alveolar macrophages and neutrophils. Furthermore, in the presence of SP-A and SP-D, the phagocytosis, oxidative burst, and killing of A. fumigatus conidia by neutrophils were significantly increased. These findings indicate that SP-A and SP-D may have an important immunological role in the early antifungal defense responses in the lung, through inhibiting infectivity of conidia by agglutination and by enhancing uptake and killing of A. fumigatus by phagocytic cells. PMID:9234771

  1. Inoculation of killed Leishmania major into immune mice rapidly disrupts immunity to a secondary challenge via IL-10-mediated process

    PubMed Central

    Okwor, Ifeoma; Liu, Dong; Beverley, Stephen M.; Uzonna, Jude E.

    2009-01-01

    Recovery from natural or experimental Leishmania major infection, the causative agent of cutaneous leishmaniasis, results in development of durable immunity in mice and humans that is manifested as rapid control of parasite replication and resolution of cutaneous lesion after secondary challenge. This form of “infection-induced” immunity is thought to occur naturally in endemic areas and is generally considered the gold standard for any effective vaccine against cutaneous leishmaniasis. To determine factors that might heighten or abrogate infection-induced immunity, we investigated the impact of inoculating dead antigen in the form of killed Leishmania parasites to healed mice. We show that inoculation of killed parasites into mice that resolved their primary virulent L. major infection results in rapid and relatively sustained loss of infection-induced immunity. This loss of immunity was not due to the inability of killed parasites to induce inflammatory responses (such as delayed type hypersensitivity), but it was related to their failure to induce robust IFN-γ response. Furthermore, inoculation of killed Leishmania parasites into healed mice led to rapid expansion of IL-10-producing CD4+CD25+Foxp3+ T cells in lymph nodes draining the primary infection site. Treatment with anti-CD25 or anti-IL-10R mAb abolished killed parasite-induced loss of immunity. Our study suggests that vaccination with killed parasites could predispose naturally immune individuals to become susceptible to new infections and/or disease reactivation. This may account for the lack of efficacy of such vaccines in field trials in endemic regions. These findings have important implications for vaccine design and vaccination strategies against human cutaneous leishmaniasis. PMID:19666482

  2. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages.

    PubMed

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-06-23

    HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages. PMID:26056317

  3. Evaluation of methods of rapid mass killing of segregated early weaned piglets

    PubMed Central

    Whiting, Terry L.; Steele, Gregory G.; Wamnes, Steinar; Green, Chris

    2011-01-01

    The operational logistics of mass killing of healthy, surplus piglets by manual blunt force trauma, controlled blunt force trauma, intraperitoneal injection of barbiturate, and free bullet were recorded. Objective performance variables evaluated were, speed of application, human resource and input cost, animal restraint required, and failure rate. Subjective evaluation of esthetics and difficulty of application indicated manual blunt force trauma is an unacceptable technique. Under field conditions, physical methods of killing were superior to intraperitoneal injection of concentrated pentobarbital. Considering animal welfare metrics in isolation, controlled blunt force trauma was superior to all other techniques attempted. PMID:22210939

  4. Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing.

    PubMed

    Mi, Hongfei; Wang, Dai; Xue, Yunxin; Zhang, Zhi; Niu, Jianjun; Hong, Yuzhi; Drlica, Karl; Zhao, Xilin

    2016-08-01

    The contribution of reactive oxygen species (ROS) to antimicrobial lethality was examined by treating Escherichia coli with dimethyl sulfoxide (DMSO), an antioxidant solvent frequently used in antimicrobial studies. DMSO inhibited killing by ampicillin, kanamycin, and two quinolones and had little effect on MICs. DMSO-mediated protection correlated with decreased ROS accumulation and provided evidence for ROS-mediated programmed cell death. These data support the contribution of ROS to antimicrobial lethality and suggest caution when using DMSO-dissolved antimicrobials for short-time killing assays. PMID:27246776

  5. Peroxide-inducible catalase in Aeromonas salmonicida subsp. salmonicida protects against exogenous hydrogen peroxide and killing by activated rainbow trout, Oncorhynchus mykiss L., macrophages.

    PubMed

    Barnes, A C; Bowden, T J; Horne, M T; Ellis, A E

    1999-03-01

    Aeromonas salmonicida subsp. salmonicida expresses a single cytoplasmically located catalase which was found to be inducible by exposure to 20 microM hydrogen peroxide in mid-exponential phase resulting in a 4 fold increase in activity. Subsequent exposure to 2 mM peroxide in late-exponential/early-stationary phase resulted in further induction of catalase activity which increased to 20 fold higher levels than those found in uninduced cultures. Exponentially induced cultures were protected against subsequent exposure to 10 mM peroxide which was lethal to non-induced cultures. Bacteria subjected to induction in mid-exponential and early-stationary phase were resistant to 100 mM peroxide, although viability was greatly reduced. Growth of the bacterium under iron-restricted conditions had no effect on the peroxide induction of catalase. As current evidence indicates, the latter is an iron-co-factored heme catalase, this result suggests that catalase induction has a high priority in the metabolism of iron. Furthermore, exposure to peroxide also induces expression of periplasmic MnSOD. A. salmonicida MT423 was resistant to normal rainbow trout macrophages, but was susceptible to killing by activated macrophages. However, if catalase was induced by prior exposure to 20 microM peroxide during mid-exponential phase, A. salmonicida was resistant to killing by activated macrophages. The ability of A. salmonicida to upregulate periplasmic MnSOD and cytoplasmic catalase production under iron restricted conditions and low level peroxide (conditions expected to exist during the early stages of an infection) may be vital for its ability to withstand attack by phagocytic cells in vivo. PMID:10089155

  6. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing.

    PubMed

    Descamps, Delphyne; Le Gars, Mathieu; Balloy, Viviane; Barbier, Diane; Maschalidi, Sophia; Tohme, Mira; Chignard, Michel; Ramphal, Reuben; Manoury, Bénédicte; Sallenave, Jean-Michel

    2012-01-31

    A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5(-/-) AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1(-/-) and AEP(-/-) mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation. PMID:22307620

  7. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing

    PubMed Central

    Descamps, Delphyne; Le Gars, Mathieu; Balloy, Viviane; Barbier, Diane; Maschalidi, Sophia; Tohme, Mira; Chignard, Michel; Ramphal, Reuben; Manoury, Bénédicte; Sallenave, Jean-Michel

    2012-01-01

    A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5−/− AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1−/− and AEP−/− mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation. PMID:22307620

  8. Cellular immunity of mice to Leishmania donovani in vitro: lymphokine-mediated killing of intracellular parasites in macrophages.

    PubMed Central

    Chang, K P; Chiao, J W

    1981-01-01

    Leishmania donovani, an intracellular protozoan, causes kala-azar by parasitizing the macrophages of its mammalian host. Outbred NCS and CD-1 mice develop immunity to this parasite. This immunity was demonstrable when supernatant fluids from cultured splenic lymphocytes were added to infected macrophages. Only the lymphokine preparations from infected mice showed significant leishmanicidal activity. Mice receiving multiple inocula were more potent producers of leishmanicidal lymphokines than were those receiving single inocula. The expression of leishmanicidal activity in our system required continuous presence of the lymphokine preparation and was independent of trypsin- or neuraminidase-sensitive receptors of the macrophages. Light and electron microscopy revealed that, in the presence of lymphokines, macrophages appeared to be "activated," and intracellular leishmanias developed specific subcellular lesions in the kinetoplast-mitochondria. A time-course study showed that cultivation of the lymphocytes for 1 1/2 days completed the release of their leishmanicidal lymphokines which were heat-labile molecules larger than 50,000 daltons. Images PMID:6947274

  9. An Attenuated Strain of Edwardsiella ictaluri is Killed by Channel Catfish (Ictalurus punctatus) Macrophages and Confers Protection in Few Days

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Edwardsiella ictaluri is able to survive inside macrophages. Several studies have demonstrated that in channel catfish protective immunity against E. ictaluri is mediated by a cellular immune response. Methods: A virulent strain and an attenuated strain (used as a modified live vaccine) ...

  10. Rhodococcus equi-Infected Macrophages Are Recognized and Killed by CD8+ T Lymphocytes in a Major Histocompatibility Complex Class I-Unrestricted Fashion

    PubMed Central

    Patton, Kristin M.; McGuire, Travis C.; Fraser, Darrilyn G.; Hines, Stephen A.

    2004-01-01

    The goal of this research was to examine the role of cytotoxic T lymphocytes (CTL) in the control of Rhodococcus equi and specifically to determine if R. equi-specific CD8+ CTL occurred in the blood of immune horses. Equine peripheral blood mononuclear cells stimulated with antigen-presenting cells either infected with R. equi or exposed to soluble R. equi antigen lysed R. equi-infected target cells. Lysis was decreased to background by depletion of either CD2+ or CD3+ cells, indicating that the effector cell had a T-lymphocyte, but not NK cell, phenotype. Stimulation induced an increased percentage of CD8+ T cells in the effector population, and depletion of CD8+ T cells resulted in significantly decreased lysis of infected targets. Killing of R. equi-infected macrophages by effector cells was equally effective against autologous and equine leukocyte antigen A (classical major histocompatibility complex [MHC] class I) mismatched targets. To evaluate potential target antigens, target cells were infected with either virulent (80.6-kb plasmid-containing) or avirulent (plasmid-cured) R. equi. The degree of lysis was not altered by the presence of the plasmid, providing evidence that the virulence plasmid, which is required for survival within macrophages, was not necessary for recognition and killing of R. equi-infected cells. These data indicate that immunocompetent adult horses develop R. equi-specific CD8+ CTL, which may play a role in immunity to R. equi. The apparent lack of restriction via classical MHC class I molecules suggests a novel or nonclassical method of antigen processing and presentation, such as presentation by CD1 or other nonclassical MHC molecules. PMID:15557631

  11. Rapid Temporal Dynamics of Transcription, Protein Synthesis, and Secretion during Macrophage Activation*

    PubMed Central

    Eichelbaum, Katrin; Krijgsveld, Jeroen

    2014-01-01

    Macrophages provide the first line of host defense with their capacity to react to an array of cytokines and bacterial components requiring tight regulation of protein expression and secretion to invoke a properly tuned innate immune response. To capture the dynamics of this system, we introduce a novel method combining pulsed stable isotope labeling with amino acids in cell culture (SILAC) with pulse labeling using the methionine analog azidohomoalanine that allows the enrichment of newly synthesized proteins via click-chemistry followed by their identification and quantification by mass spectrometry. We show that this permits the analysis of proteome changes on a rapid time scale, as evidenced by the detection of 4852 newly synthesized proteins after only a 20-min SILAC pulse. We have applied this methodology to study proteome response during macrophage activation in a time-course manner. We have combined this with full proteome, transcriptome, and secretome analyses, producing an integrative analysis of the first 3 h of lipopolysaccharide-induced macrophage activation. We observed the rapid induction of multiple processes well known to TLR4 signaling, as well as anti-inflammatory proteins and proteins not previously associated with immune response. By correlating transcriptional, translational, and secretory events, we derived novel mechanistic principles of processes specifically induced by lipopolysaccharides, including ectodomain shedding and proteolytic processing of transmembrane and extracellular proteins and protein secretion independent of transcription. In conclusion, we demonstrate that the combination of pulsed azidohomoalanine and pulsed SILAC permits the detailed characterization of proteomic events on a rapid time scale. We anticipate that this approach will be very useful in probing the immediate effects of cellular stimuli and will provide mechanistic insight into cellular perturbation in multiple biological systems. The data have been deposited

  12. Intracellular survival of wild-type Salmonella typhimurium and macrophage-sensitive mutants in diverse populations of macrophages.

    PubMed

    Buchmeier, N A; Heffron, F

    1989-01-01

    Salmonella typhimurium survives within macrophages and causes a fatal infection in susceptible strains of mice. A number of S. typhimurium mutants that contain Tn10 insertions in genes which are necessary for survival within the macrophage have been isolated. To demonstrate the importance of each gene in intracellular survival, the mutations were transduced into a smooth-strain background and the ability to survive intracellularly was assayed in five different populations of macrophages. The majority of the original macrophage-sensitive mutants retained the macrophage-sensitive phenotype in the smooth-strain background. The ability to survive or grow within macrophages varied with both the source of macrophages and the individual mutants. S. typhimurium grew best in the macrophage-like cell line J774, survived at moderate levels in splenic and bone marrow-derived macrophages, and was killed most efficiently in peritoneal macrophages. Macrophage-sensitive mutants transduced into a smooth background were also less virulent than the parent, with a 50% lethal dose of 2 to 5 logs greater than that of the parental strain. These experiments demonstrate that survival of S. typhimurium within macrophages varies with the source of cells, with a distinct ability to survive in macrophages from mouse spleens, where S. typhimurium grows rapidly. These experiments also demonstrate the heterogeneity in intracellular survival among the various macrophage-sensitive mutants, which may reflect the relative importance of the individual mutated genes in survival within macrophages. PMID:2642463

  13. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette-Guérin.

    PubMed

    Yoshida, Aya; Matumoto, Makoto; Hshizume, Hiroyuki; Oba, Yoshiro; Tomishige, Tatuo; Inagawa, Hiroyuki; Kohchi, Chie; Hino, Mami; Ito, Fuminori; Tomoda, Keishiro; Nakajima, Takehisa; Makino, Kimiko; Terada, Hiroshi; Hori, Hitoshi; Soma, Gen-Ichiro

    2006-08-01

    Macrophages and their phagocytotic abilities play a dominant role for defense against infected organisms. However, Mycobacterium tuberculosis can survive in the phagosomes of macrophages. In this study, the effective delivery of a drug and the killing effect of tubercle bacilli within macrophages were investigated utilizing the phagocytotic uptake of rifampicin (RFP) that had been incorporated into poly(DL-lactic-co-glycolic) acid (PLGA) microspheres. The microspheres were composed of PLGA that had a monomer ratio (lactic acid/glycolic acid) of either 50/50 or 75/25. They had molecular weights from 5000 to 20,000, and diameters of 1.5, 3.5, 6.2 and 8.9 microm. The most significant factor for phagocytotic activity of macrophages was the diameter of the microspheres. By contrast, molecular weight and monomer ratio of PLGA did not influence phagocytosis. The amount of RFP delivered into cells was also investigated. RFP-PLGA microspheres composed of PLGA with a molecular weight of 20,000 and monomer ratio of 75/25 showed the highest amount of delivery (4 microg/1 x 10(6) cells). Fourteen days after infection, the survival rate of treated intracellular bacilli was 1% when compared with untreated cells. There was almost no killing effect of free RFP (4 or 15 microg/ml) on intracellular bacilli. In vivo efficacy of RFP-PLGA was also examined in rats infected with M. tuberculosis Kurono. Intratracheal administration of RFP-PLGA microspheres was shown to be superior to free RFP for killing of intracellular bacilli and preventing granuloma formation in some lobes. These results suggest that phagocytotic activity could be part of a new drug delivery system that selectively targeted macrophages. PMID:16879999

  14. Control of Rhagoletis indifferents using Thiamethoxam and Spinosad baits under external fly pressure and its relation to rapidity of kill and residual bait activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of western cherry fruit fly (Rhagoletis indifferens Curran) using thiamethoxam in sucrose bait and spinosad bait in cherry orchards under external fly pressure and its relation to rapidity of kill and residual bait activity were studied in Washington and Utah in 2010 and 2011. Thiamethoxam ...

  15. Simultaneous Addition of Shikonin and Its Derivatives with Lipopolysaccharide Induces Rapid Macrophage Death.

    PubMed

    Koike, Atsushi; Shibano, Makio; Mori, Hideya; Kohama, Kiyoko; Fujimori, Ko; Amano, Fumio

    2016-01-01

    Macrophages play pivotal roles in inflammatory responses. Previous studies showed that various natural products exert antiinflammatory effects by regulating macrophage activation. Recent studies have shown that shikonin (SHK) and its derivatives (β-hydroxyisovalerylshikonin, acetylshikonin, and isobutylshikonin), which are 1,4-naphthoquinone pigments extracted from the roots of Lithospermum erythrorhizon, have various pharmacological, including antiinflammatory and antitumor, effects. Even though there have been many studies on the antiinflammatory activities of SHK derivatives, only a few have described their direct effects on macrophages. We investigated the effects of SHK derivatives on lipopolysaccharide (LPS)-treated macrophages. Low doses of SHK derivatives induced significant macrophage cytotoxicity (mouse macrophage-like J774.1/JA-4 cells and mouse peritoneal macrophages) in the presence of LPS. SHK activated caspases-3 and -7, which led to DNA fragmentation, but this cytotoxicity was prevented through a pan-caspase inhibitor in LPS-treated JA-4 cells. Maximal cytotoxic effects were achieved when SHK was added immediately before LPS addition. These results indicate that SHK derivatives induce caspase-dependent apoptotic cell death of LPS-treated macrophages and suggest that SHK acts during an early stage of LPS signaling. PMID:27251498

  16. Pattern of cytokine and chemokine production by THP-1 derived macrophages in response to live or heat-killed Mycobacterium bovis bacillus Calmette-Guérin Moreau strain

    PubMed Central

    Sousa-Vasconcelos, Periela da Silva; Seguins, Wellington da Silva; Luz, Eduardo de Souza; de Pinho, Rosa Teixeira

    2015-01-01

    Tuberculosis has great public health impact with high rates of mortality and the only prophylactic measure for it is the Mycobacterium bovisbacillus Calmette-Guérin (BCG) vaccine. The present study evaluated the release of cytokines [interleukin (IL)-1, tumour necrosis factor and IL-6] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-1β] by THP-1 derived macrophages infected with BCG vaccine obtained by growing mycobacteria in Viscondessa de Moraes Institute medium medium (oral) or Sauton medium (intradermic) to compare the effects of live and heat-killed (HK) mycobacteria. Because BCG has been reported to lose viability during the lyophilisation process and during storage, we examined whether exposing BCG to different temperatures also triggers differences in the expression of some important cytokines and chemokines of the immune response. Interestingly, we observed that HK mycobacteria stimulated cytokine and chemokine production in a different pattern from that observed with live mycobacteria. PMID:26517663

  17. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    SciTech Connect

    Majumdar, S.; Basu, S.K. )

    1991-01-01

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections.

  18. Uncoupling protein-2 accumulates rapidly in the inner mitochondrial membrane during mitochondrial reactive oxygen stress in macrophages.

    PubMed

    Giardina, Tindaro M; Steer, James H; Lo, Susan Z Y; Joyce, David A

    2008-02-01

    Uncoupling protein-2 (UCP2) is a member of the inner mitochondrial membrane anion-carrier superfamily. Although mRNA for UCP2 is widely expressed, protein expression is detected in only a few cell types, including macrophages. UCP2 functions by an incompletely defined mechanism, to reduce reactive oxygen species production during mitochondrial electron transport. We observed that the abundance of UCP2 in macrophages increased rapidly in response to treatments (rotenone, antimycin A and diethyldithiocarbamate) that increased mitochondrial superoxide production, but not in response to superoxide produced outside the mitochondria or in response to H2O2. Increased UCP2 protein was not accompanied by increases in ucp2 gene expression or mRNA abundance, but was due to enhanced translational efficiency and possibly stabilization of UCP2 protein in the inner mitochondrial membrane. This was not dependent on mitochondrial membrane potential. These findings extend our understanding of the homeostatic function of UCP2 in regulating mitochondrial reactive oxygen production by identifying a feedback loop that senses mitochondrial reactive oxygen production and increases inner mitochondrial membrane UCP2 abundance and activity. Reactive oxygen species-induction of UCP2 may facilitate survival of macrophages and retention of function in widely variable tissue environments. PMID:18082129

  19. Induction of Rapid Cell Death by an Environmental Isolate of Legionella pneumophila in Mouse Macrophages

    PubMed Central

    Tao, Lili; Zhu, Wenhan; Hu, Bi-Jie

    2013-01-01

    Legionella pneumophila, the etiological agent for Legionnaires' disease, is ubiquitous in the aqueous environment, where it replicates as an intracellular parasite of free-living protozoa. Our understanding of L. pneumophila pathogenicity is obtained mostly from study of derivatives of several clinical isolates, which employ almost identical virulent determinants to exploit host functions. To determine whether environmental L. pneumophila isolates interact similarly with the model host systems, we analyzed intracellular replication of several recently isolated such strains and found that these strains cannot productively grow in bone marrow-derived macrophages of A/J mice, which are permissive for all examined laboratory strains. By focusing on one strain called LPE509, we found that its deficiency in intracellular replication in primary A/J macrophages is not caused by the lack of important pathogenic determinants because this strain replicates proficiently in two protozoan hosts and the human macrophage U937 cell. We also found that in the early phase of infection, the trafficking of this strain in A/J macrophages is similar to that of JR32, a derivative of strain Philadelphia 1. Furthermore, infection of these cells by LPE509 caused extensive cell death in a process that requires the Dot/Icm type IV secretion system. Finally, we showed that the cell death is caused neither by the activation of the NAIP5/NLRC4 inflammasome nor by the recently described caspase 11-dependent pathway. Our results revealed that some environmental L. pneumophila strains are unable to overcome the defense conferred by primary macrophages from mice known to be permissive for laboratory L. pneumophila strains. These results also suggest the existence of a host immune surveillance mechanism differing from those currently known in responding to L. pneumophila infection. PMID:23753633

  20. Beyond killing

    PubMed Central

    Vale, Pedro F.; McNally, Luke; Doeschl-Wilson, Andrea; King, Kayla C.; Popat, Roman; Domingo-Sananes, Maria R.; Allen, Judith E.; Soares, Miguel P.; Kümmerli, Rolf

    2016-01-01

    The antibiotic pipeline is running dry and infectious disease remains a major threat to public health. An efficient strategy to stay ahead of rapidly adapting pathogens should include approaches that replace, complement or enhance the effect of both current and novel antimicrobial compounds. In recent years, a number of innovative approaches to manage disease without the aid of traditional antibiotics and without eliminating the pathogens directly have emerged. These include disabling pathogen virulence-factors, increasing host tissue damage control or altering the microbiota to provide colonization resistance, immune resistance or disease tolerance against pathogens. We discuss the therapeutic potential of these approaches and examine their possible consequences for pathogen evolution. To guarantee a longer half-life of these alternatives to directly killing pathogens, and to gain a full understanding of their population-level consequences, we encourage future work to incorporate evolutionary perspectives into the development of these treatments. PMID:27016341

  1. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing.

    PubMed

    Lawlor, Ciaran; O'Connor, Gemma; O'Leary, Seonadh; Gallagher, Paul J; Cryan, Sally-Ann; Keane, Joseph; O'Sullivan, Mary P

    2016-01-01

    The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such "added value" could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments. PMID:26894562

  2. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing

    PubMed Central

    Lawlor, Ciaran; O’Connor, Gemma; O’Leary, Seonadh; Gallagher, Paul J.

    2016-01-01

    The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such “added value” could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments. PMID:26894562

  3. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  4. The oxidoreductase DsbA plays a key role in the ability of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing.

    PubMed

    Bringer, Marie-Agnès; Rolhion, Nathalie; Glasser, Anne-Lise; Darfeuille-Michaud, Arlette

    2007-07-01

    Adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease patients is able to adhere to and invade intestinal epithelial cells and to replicate in mature phagolysosomes within macrophages. Here, we show that the dsbA gene, encoding a periplasmic oxidoreductase, was required for AIEC strain LF82 to adhere to intestinal epithelial cells and to survive within macrophages. The LF82-DeltadsbA mutant did not express flagella and, probably as a consequence of this, did not express type 1 pili. The role of DsbA in adhesion is restricted to the loss of flagella and type 1 pili, as forced contact between bacteria and cells and induced expression of type 1 pili restored the wild-type phenotype. In contrast, the dsbA gene is essential for AIEC LF82 bacteria to survive within macrophages, irrespective of the loss of flagella and type 1 pilus expression, and the survival ability of LF82-DeltadsbA was as low as that of the nonpathogenic E. coli K-12, which was efficiently killed by macrophages. We also provide evidence that the dsbA gene is needed for LF82 bacteria to grow and survive in an acidic and nutrient-poor medium that partly mimics the harsh environment of the phagocytic vacuole. In addition, under such stress conditions dsbA transcription is highly up-regulated. Finally, the CpxRA signaling pathway does not play a role in regulation of dsbA expression in AIEC LF82 bacteria under conditions similar to those of mature phagolysosomes. PMID:17449627

  5. A Highly Conserved Toxo1 Haplotype Directs Resistance to Toxoplasmosis and Its Associated Caspase-1 Dependent Killing of Parasite and Host Macrophage

    PubMed Central

    Bisanz, Cordelia; Lagrange, Dominique; Pilloux, Ludovic; Massera, Céline; Cristinelli, Sara; Jublot, Delphine; Bastien, Olivier; Loeuillet, Corinne; Aldebert, Delphine; Touquet, Bastien; Fournié, Gilbert J.; Cesbron-Delauw, Marie France

    2014-01-01

    Natural immunity or resistance to pathogens most often relies on the genetic make-up of the host. In a LEW rat model of refractoriness to toxoplasmosis, we previously identified on chromosome 10 the Toxo1 locus that directs toxoplasmosis outcome and controls parasite spreading by a macrophage-dependent mechanism. Now, we narrowed down Toxo1 to a 891 kb interval containing 29 genes syntenic to human 17p13 region. Strikingly, Toxo1 is included in a haplotype block strictly conserved among all refractory rat strains. The sequencing of Toxo1 in nine rat strains (5 refractory and 4 susceptible) revealed resistant-restricted conserved polymorphisms displaying a distribution gradient that peaks at the bottom border of Toxo1, and highlighting the NOD-like receptor, Nlrp1a, as a major candidate. The Nlrp1 inflammasome is known to trigger, upon pathogen intracellular sensing, pyroptosis programmed-cell death involving caspase-1 activation and cleavage of IL-1β. Functional studies demonstrated that the Toxo1-dependent refractoriness in vivo correlated with both the ability of macrophages to restrict T. gondii growth and a T. gondii-induced death of intracellular parasites and its host macrophages. The parasite-induced cell death of infected macrophages bearing the LEW-Toxo1 alleles was found to exhibit pyroptosis-like features with ROS production, the activation of caspase-1 and IL1-β secretion. The pharmacological inactivation of caspase-1 using YVAD and Z-VAD inhibitors prevented the death of both intravacuolar parasites and host non-permissive macrophages but failed to restore parasite proliferation. These findings demonstrated that the Toxo1-dependent response of rat macrophages to T. gondii infection may trigger two pathways leading to the control of parasite proliferation and the death of parasites and host macrophages. The NOD-like receptor NLRP1a/Caspase-1 pathway is the best candidate to mediate the parasite-induced cell death. These data represent new insights

  6. A highly conserved Toxo1 haplotype directs resistance to toxoplasmosis and its associated caspase-1 dependent killing of parasite and host macrophage.

    PubMed

    Cavailles, Pierre; Flori, Pierre; Papapietro, Olivier; Bisanz, Cordelia; Lagrange, Dominique; Pilloux, Ludovic; Massera, Céline; Cristinelli, Sara; Jublot, Delphine; Bastien, Olivier; Loeuillet, Corinne; Aldebert, Delphine; Touquet, Bastien; Fournié, Gilbert J; Cesbron-Delauw, Marie France

    2014-04-01

    Natural immunity or resistance to pathogens most often relies on the genetic make-up of the host. In a LEW rat model of refractoriness to toxoplasmosis, we previously identified on chromosome 10 the Toxo1 locus that directs toxoplasmosis outcome and controls parasite spreading by a macrophage-dependent mechanism. Now, we narrowed down Toxo1 to a 891 kb interval containing 29 genes syntenic to human 17p13 region. Strikingly, Toxo1 is included in a haplotype block strictly conserved among all refractory rat strains. The sequencing of Toxo1 in nine rat strains (5 refractory and 4 susceptible) revealed resistant-restricted conserved polymorphisms displaying a distribution gradient that peaks at the bottom border of Toxo1, and highlighting the NOD-like receptor, Nlrp1a, as a major candidate. The Nlrp1 inflammasome is known to trigger, upon pathogen intracellular sensing, pyroptosis programmed-cell death involving caspase-1 activation and cleavage of IL-1β. Functional studies demonstrated that the Toxo1-dependent refractoriness in vivo correlated with both the ability of macrophages to restrict T. gondii growth and a T. gondii-induced death of intracellular parasites and its host macrophages. The parasite-induced cell death of infected macrophages bearing the LEW-Toxo1 alleles was found to exhibit pyroptosis-like features with ROS production, the activation of caspase-1 and IL1-β secretion. The pharmacological inactivation of caspase-1 using YVAD and Z-VAD inhibitors prevented the death of both intravacuolar parasites and host non-permissive macrophages but failed to restore parasite proliferation. These findings demonstrated that the Toxo1-dependent response of rat macrophages to T. gondii infection may trigger two pathways leading to the control of parasite proliferation and the death of parasites and host macrophages. The NOD-like receptor NLRP1a/Caspase-1 pathway is the best candidate to mediate the parasite-induced cell death. These data represent new insights

  7. Type I IFN Induces IL-10 Production in an IL-27–Independent Manner and Blocks Responsiveness to IFN-γ for Production of IL-12 and Bacterial Killing in Mycobacterium tuberculosis–Infected Macrophages

    PubMed Central

    Ewbank, John; Howes, Ashleigh; Moreira-Teixeira, Lucia; Martirosyan, Anna; Ghilardi, Nico; Saraiva, Margarida; O’Garra, Anne

    2014-01-01

    Tuberculosis, caused by the intracellular bacterium Mycobacterium tuberculosis, currently causes ∼1.4 million deaths per year, and it therefore remains a leading global health problem. The immune response during tuberculosis remains incompletely understood, particularly regarding immune factors that are harmful rather than protective to the host. Overproduction of the type I IFN family of cytokines is associated with exacerbated tuberculosis in both mouse models and in humans, although the mechanisms by which type I IFN promotes disease are not well understood. We have investigated the effect of type I IFN on M. tuberculosis–infected macrophages and found that production of host-protective cytokines such as TNF-α, IL-12, and IL-1β is inhibited by exogenous type I IFN, whereas production of immunosuppressive IL-10 is promoted in an IL-27–independent manner. Furthermore, much of the ability of type I IFN to inhibit cytokine production was mediated by IL-10. Additionally, type I IFN compromised macrophage activation by the lymphoid immune response through severely disrupting responsiveness to IFN-γ, including M. tuberculosis killing. These findings describe important mechanisms by which type I IFN inhibits the immune response during tuberculosis. PMID:25187652

  8. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages.

    PubMed

    McNab, Finlay W; Ewbank, John; Howes, Ashleigh; Moreira-Teixeira, Lucia; Martirosyan, Anna; Ghilardi, Nico; Saraiva, Margarida; O'Garra, Anne

    2014-10-01

    Tuberculosis, caused by the intracellular bacterium Mycobacterium tuberculosis, currently causes ∼1.4 million deaths per year, and it therefore remains a leading global health problem. The immune response during tuberculosis remains incompletely understood, particularly regarding immune factors that are harmful rather than protective to the host. Overproduction of the type I IFN family of cytokines is associated with exacerbated tuberculosis in both mouse models and in humans, although the mechanisms by which type I IFN promotes disease are not well understood. We have investigated the effect of type I IFN on M. tuberculosis-infected macrophages and found that production of host-protective cytokines such as TNF-α, IL-12, and IL-1β is inhibited by exogenous type I IFN, whereas production of immunosuppressive IL-10 is promoted in an IL-27-independent manner. Furthermore, much of the ability of type I IFN to inhibit cytokine production was mediated by IL-10. Additionally, type I IFN compromised macrophage activation by the lymphoid immune response through severely disrupting responsiveness to IFN-γ, including M. tuberculosis killing. These findings describe important mechanisms by which type I IFN inhibits the immune response during tuberculosis. PMID:25187652

  9. Killing and conformal Killing tensors

    NASA Astrophysics Data System (ADS)

    Heil, Konstantin; Moroianu, Andrei; Semmelmann, Uwe

    2016-08-01

    We introduce an appropriate formalism in order to study conformal Killing (symmetric) tensors on Riemannian manifolds. We reprove in a simple way some known results in the field and obtain several new results, like the classification of conformal Killing 2-tensors on Riemannian products of compact manifolds, Weitzenböck formulas leading to non-existence results, and construct various examples of manifolds with conformal Killing tensors.

  10. Killing Coyotes.

    ERIC Educational Resources Information Center

    Beasley, Conger, Jr.

    1993-01-01

    Presents different viewpoints concerning the federal government's Animal Damage Control (ADC) Program cited as responsible for killing millions of predators. Critics provide evidence of outdated and inhumane methods exemplified in the coyote killings. The ADC emphasizes new, nonlethal methods of controlling animals cited as "noxious." (MCO)

  11. Prostate tumor cells with cancer progenitor properties have high telomerase activity and are rapidly killed by telomerase interference

    PubMed Central

    Xu, Tong; He, Kaijie; Wang, Lina; Goldkorn, Amir

    2011-01-01

    Background Cancer progenitor cells (CPC) have been postulated to promote treatment resistance and disease progression in prostate and other malignancies. We investigated whether the enzyme telomerase, which is active in cancer cells and in normal stem cells, plays an important role in CPC which can be exploited to neutralize these cells. Methods We used flow cytometry and assays of gene expression, clonogenicity and invasiveness to isolate and characterize a putative CPC subpopulation from freshly-resected human prostatectomy specimens. Telomerase activity was measured by qPCR-based Telomeric Repeat Amplification Protocol (TRAP). Telomerase interference was achieved by ectopic expression of a mutated telomerase RNA construct which reprograms telomerase to generate “toxic” uncapped telomeres. Treated cells were assayed for apoptosis, proliferation in culture, and xenograft tumor formation. Results CPC in prostate tumors expressed elevated levels of genes associated with a progenitor phenotype and were highly clonogenic and invasive. Significantly, CPC telomerase activity was 20 to 200-fold higher than in non-CPC from the same tumors, and CPC were exquisitely sensitive to telomerase interference which induced rapid apoptosis and growth inhibition. Similarly, induction of telomerase interference in highly-tumorigenic CPC isolated from a prostate cancer cell line abrogated their ability to form tumor xenografts. Conclusions Human prostate tumors contain a CPC subpopulation with markedly elevated telomerase activity which renders them acutely susceptible to telomerase interference. These findings offer the first tumor-derived and in vivo evidence that telomerase may constitute a CPC “Achilles heel” which may ultimately form the basis for more effective new CPC-targeting therapies. PMID:21321978

  12. Macrophage proliferation, provenance, and plasticity in macroparasite infection

    PubMed Central

    Rückerl, Dominik; Allen, Judith E

    2014-01-01

    Summary: Macrophages have long been center stage in the host response to microbial infection, but only in the past 10–15 years has there been a growing appreciation for their role in helminth infection and the associated type 2 response. Through the actions of the IL-4 receptor α (IL-4Rα), type 2 cytokines result in the accumulation of macrophages with a distinctive activation phenotype. Although our knowledge of IL-4Rα-induced genes is growing rapidly, the specific functions of these macrophages have yet to be established in most disease settings. Understanding the interplay between IL-4Rα-activated macrophages and the other cellular players is confounded by the enormous transcriptional heterogeneity within the macrophage population and by their highly plastic nature. Another level of complexity is added by the new knowledge that tissue macrophages can be derived either from a resident prenatal population or from blood monocyte recruitment and that IL-4 can increase macrophage numbers through proliferative expansion. Here, we review current knowledge on the contribution of macrophages to helminth killing and wound repair, with specific attention paid to distinct cellular origins and plasticity potential. PMID:25319331

  13. The contribution of both oxygen and nitrogen intermediates to the intracellular killing mechanisms of C1q-opsonized Listeria monocytogenes by the macrophage-like IC-21 cell line.

    PubMed

    Alvarez-Domínguez, C; Carrasco-Marín, E; López-Mato, P; Leyva-Cobián, F

    2000-09-01

    Listeria monocytogenes is a facultative intracellular pathogen which is internalized by host mammalian cells upon binding to their surface. Further listerial growth occurs in the cytosol after escape from the phagosomal-endosomal compartment. We have previously reported that C1q is able to potentiate L. monocytogenes phagocytosis upon bacterial opsonization by ingestion through C1q-binding structures. In this report, we analysed the post-phagocytic events upon internalization of C1q-opsonized L. monocytogenes and found an induction of macrophage (Mphi)-like IC-21 cell bactericidal mechanisms displayed by the production of oxygen and nitrogen metabolites. Both types of molecules are effective in L. monocytogenes killing. Further analysis of the cellular responses promoted by interaction of C1q with its surface binding structures, leads us to consider C1q as a collaborative molecule involved in Mphi activation. Upon interaction with surface binding structures, C1q was able to trigger and/or amplify the production of reactive oxygen and nitrogen intermediates induced by stimuli such as interferon-gamma and L. monocytogenes phagocytosis. PMID:11012757

  14. The contribution of both oxygen and nitrogen intermediates to the intracellular killing mechanisms of C1q-opsonized Listeria monocytogenes by the macrophage-like IC-21 cell line

    PubMed Central

    Álvarez-Domínguez, C; Carrasco-Marín, E; López-Mato, P; Leyva-Cobián, F

    2000-01-01

    Listeria monocytogenes is a facultative intracellular pathogen which is internalized by host mammalian cells upon binding to their surface. Further listerial growth occurs in the cytosol after escape from the phagosomal–endosomal compartment. We have previously reported that C1q is able to potentiate L. monocytogenes phagocytosis upon bacterial opsonization by ingestion through C1q-binding structures. In this report, we analysed the post-phagocytic events upon internalization of C1q-opsonized L. monocytogenes and found an induction of macrophage (Mφ)-like IC-21 cell bactericidal mechanisms displayed by the production of oxygen and nitrogen metabolites. Both types of molecules are effective in L. monocytogenes killing. Further analysis of the cellular responses promoted by interaction of C1q with its surface binding structures, leads us to consider C1q as a collaborative molecule involved in Mφ activation. Upon interaction with surface binding structures, C1q was able to trigger and/or amplify the production of reactive oxygen and nitrogen intermediates induced by stimuli such as interferon-γ and L. monocytogenes phagocytosis. PMID:11012757

  15. Killing Range

    PubMed Central

    Asal, Victor; Rethemeyer, R. Karl; Horgan, John

    2015-01-01

    This paper presents an analysis of the Provisional Irish Republican Army's (PIRA) brigade level behavior during the Northern Ireland Conflict (1970-1998) and identifies the organizational factors that impact a brigade's lethality as measured via terrorist attacks. Key independent variables include levels of technical expertise, cadre age, counter-terrorism policies experienced, brigade size, and IED components and delivery methods. We find that technical expertise within a brigade allows for careful IED usage, which significantly minimizes civilian casualties (a specific strategic goal of PIRA) while increasing the ability to kill more high value targets with IEDs. Lethal counter-terrorism events also significantly affect a brigade's likelihood of killing both civilians and high-value targets but in different ways. Killing PIRA members significantly decreases IED fatalities but also significantly decreases the possibility of zero civilian IED-related deaths in a given year. Killing innocent Catholics in a Brigade's county significantly increases total and civilian IED fatalities. Together the results suggest the necessity to analyze dynamic situational variables that impact terrorist group behavior at the sub-unit level. PMID:25838603

  16. Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins.

    PubMed

    Jadus, Martin R; Chen, Yijun; Boldaji, Mehrdokht Tarbiyat; Delgado, Christina; Sanchez, Ramon; Douglass, Thomas; Al-Atar, Usama; Schulz, William; Lloyd, Cheri; Wepsic, H Terry

    2003-05-01

    Human U251MG glioma cells retrovirally transduced with the human gene for the membrane form of macrophage colony-stimulating factor (mM-CSF) were investigated. The clones, MG-2F11 and MG-2C4, that expressed the most mM-CSF, but not the viral vector or the parental U251MG cells, were killed by both murine and human monocyte/macrophages in cytotoxicity assays. MG-2F11 cells failed to form subcutaneous tumors in either nude or NIH-bg-nu-xidBR mice, while mice inoculated with the U251MG viral vector (MG-VV) cells developed tumors. Electron microscopy studies showed that 4 hours after subcutaneous injection, the mM-CSF-transduced cells began dying of a process that resembled paraptosis. The dying tumor cells were swollen and had extensive vacuolization of their mitochondria and endoplasm reticulum. This killing process was complete within 24 hours. Macrophage-like cells were immediately adjacent to the killed MG-2F11 cells. Immunohistological staining for the heat shock proteins HSP60, HSP70 and GRP94 (gp96) showed that 18 hours after inoculation into nude mice, the MG-2F11 injection site was two to four times more intensely stained than the MG-VV cells. This study shows that human gliomas transduced with mM-CSF have the potential to be used as a safe live tumor cell vaccine. PMID:12719711

  17. How microglia kill neurons.

    PubMed

    Brown, Guy C; Vilalta, Anna

    2015-12-01

    Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection. PMID:26341532

  18. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential

    PubMed Central

    Antoine, Thomas; Fisher, Nicholas; Amewu, Richard; O'Neill, Paul M.; Ward, Stephen A.; Biagini, Giancarlo A.

    2014-01-01

    Objectives Artemisinin and artemisinin semi-synthetic derivatives (collectively known as endoperoxides) are first-line antimalarials for the treatment of uncomplicated and severe malaria. Endoperoxides display very fast killing rates and are generally recalcitrant to parasite resistance development. These key pharmacodynamic features are a result of a complex mechanism of action, the details of which lack consensus. Here, we report on the primary physiological events leading to parasite death. Methods Parasite mitochondrial (ΔΨm) and plasma membrane (ΔΨp) electrochemical potentials were measured using real-time single-cell imaging following exposure to pharmacologically relevant concentrations of endoperoxides (artemisinin, dihydroartemisinin, artesunate and the synthetic tetraoxane RKA182). In addition, mitochondrial electron transport chain components NADH:quinone oxidoreductase (alternative complex I), bc1 (complex III) and cytochrome oxidase (complex IV) were investigated to determine their functional sensitivity to the various endoperoxides. Results Parasite exposure to endoperoxides resulted in rapid depolarization of parasite ΔΨm and ΔΨp. The rate of depolarization was decreased in the presence of a reactive oxygen species (ROS) scavenger and Fe3+ chelators. Depolarization of ΔΨm by endoperoxides is not believed to be through the inhibition of mitochondrial electron transport chain components, owing to the lack of significant inhibition when assayed directly. Conclusions The depolarization of ΔΨm and ΔΨp is shown to be mediated via the generation of ROS that are initiated by iron bioactivation of endoperoxides and/or catalysed by iron-dependent oxidative stress. These data are discussed in the context of current hypotheses concerning the mode of action of endoperoxides. PMID:24335485

  19. Effects of lipopolysaccharide on the catabolic activity of macrophages

    SciTech Connect

    Cluff, C.; Ziegler, H.K.

    1986-03-05

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of /sup 125/-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses.

  20. Selective Killing of Nonreplicating Mycobacteria

    PubMed Central

    Bryk, Ruslana; Gold, Benjamin; Venugopal, Aditya; Singh, Jasbir; Samy, Raghu; Pupek, Krzysztof; Cao, Hua; Popescu, Carmen; Gurney, Mark; Hotha, Srinivas; Cherian, Joseph; Rhee, Kyu; Ly, Lan; Converse, Paul J.; Ehrt, Sabine; Vandal, Omar; Jiang, Xiuju; Schneider, Jean; Lin, Gang; Nathan, Carl

    2008-01-01

    SUMMARY Antibiotics are typically more effective against replicating rather than nonreplicating bacteria. However, a major need in global health is to eradicate persistent or nonreplicating subpopulations of bacteria such as Mycobacterium tuberculosis (Mtb). Hence, identifying chemical inhibitors that selectively kill bacteria that are not replicating is of practical importance. To address this, we screened for inhibitors of dihydrolipoamide acyltransferase (DlaT), an enzyme required by Mtb to cause tuberculosis in guinea pigs and used by the bacterium to resist nitric oxide-derived reactive nitrogen intermediates, a stress encountered in the host. Chemical screening for inhibitors of Mtb DlaT identified select rhodanines as compounds that almost exclusively kill nonreplicating mycobacteria in synergy with products of host immunity, such as nitric oxide and hypoxia, and are effective on bacteria within macrophages, a cellular reservoir for latent Mtb. Compounds that kill nonreplicating pathogens in cooperation with host immunity could complement the conventional chemotherapy of infectious disease. PMID:18329613

  1. Why is particulate matter produced by wildfires toxic to lung macrophages?

    SciTech Connect

    Franzi, Lisa M.; Bratt, Jennifer M.; Williams, Keisha M.; Last, Jerold A.

    2011-12-15

    The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM is about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfire PM in vitro. Our data implicate NF-{kappa}B signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and 'normal' PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we cannot rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin. -- Highlights: Black-Right-Pointing-Pointer Wildfire coarse PM kills macrophages at lower doses than coarse. Black-Right-Pointing-Pointer Wildfire coarse PM activates the NF-kB pathway at lower doses than ambient. Black-Right-Pointing-Pointer Wildfire coarse PM in vitro and in vivo kill macrophages by oxidative stress.

  2. M1 and M2 Macrophages: The Chicken and the Egg of Immunity

    PubMed Central

    Mills, Charles D.; Ley, Klaus

    2015-01-01

    The purpose of this perspective is to describe a critical advance in understanding how immune responses work. Macrophages are required for all animal life: ‘Inhibit’ type macrophages in all animals (called M1) can rapidly kill pathogens, and are thus the primary host defense, and ‘Heal’ type macrophages (M2) routinely repair and maintain tissue integrity. Macrophages perform these activities in all animals without T cells, and also in T cell-deficient vertebrates. Although adaptive immunity can amplify macrophage polarization, the long-held notion that macrophages need to be ‘activated’ or ‘alternatively activated’ by T cells is incorrect; indeed, immunology has had it backward. M1/M2-type macrophages necessarily direct T cells toward Th1- or Th2-like activities, respectively. That such macrophage-innate activities are the central directing element in immune responses is a dramatic change in understanding how immune systems operate. Most important, this revelation is opening up whole new approaches to immunotherapy. For example, many modern diseases, such as cancer and atherosclerosis, may not display ‘foreign’ antigens. However, there are clear imbalances in M1/M2-type responses. Correcting such innate imbalances can result in better health. Macrophages are the chicken and the egg of immunity. PMID:25138714

  3. A Lys49-PLA2 myotoxin of Bothrops asper triggers a rapid death of macrophages that involves autocrine purinergic receptor signaling.

    PubMed

    Tonello, F; Simonato, M; Aita, A; Pizzo, P; Fernández, J; Lomonte, B; Gutiérrez, J M; Montecucco, C

    2012-01-01

    Lys49-PLA(2) myotoxins, an important component of various viperid snake venoms, are a class of PLA(2)-homolog proteins deprived of catalytic activity. Similar to enzymatically active PLA(2) (Asp49) and to other classes of myotoxins, they cause severe myonecrosis. Moreover, these toxins are used as tools to study skeletal muscle repair and regeneration, a process that can be very limited after snakebites. In this work, the cytotoxic effect of different myotoxins, Bothrops asper Lys49 and Asp49-PLA(2), Notechis scutatus notexin and Naja mossambica cardiotoxin, was evaluated on macrophages, cells that have a key role in muscle regeneration. Only the Lys49-myotoxin was found to trigger a rapid asynchronous death of mouse peritoneal macrophages and macrophagic cell lines through a process that involves ATP release, ATP-induced ATP release and that is inhibited by various purinergic receptor antagonists. ATP leakage is induced also at sublytical doses of the Lys49-myotoxin, it involves Ca(2+) release from intracellular stores, and is reduced by inhibitors of VSOR and the maxi-anion channel. The toxin-induced cell death is different from that caused by high concentration of ATP and appears to be linked to localized purinergic signaling. Based on present findings, a mechanism of cell death is proposed that can be extended to other cytolytic proteins and peptides. PMID:22764102

  4. Infection with Mycobacterium avium subsp. paratuberculosis Results in Rapid Interleukin-1β Release and Macrophage Transepithelial Migration

    PubMed Central

    Lamont, Elise A.; O'Grady, Scott M.; Davis, William C.; Eckstein, Torsten

    2012-01-01

    Pathogen processing by the intestinal epithelium involves a dynamic innate immune response initiated by pathogen-epithelial cell cross talk. Interactions between epithelium and Mycobacterium avium subsp. paratuberculosis have not been intensively studied, and it is currently unknown how the bacterium-epithelial cell cross talk contributes to the course of infection. We hypothesized that M. avium subsp. paratuberculosis harnesses host responses to recruit macrophages to the site of infection to ensure its survival and dissemination. We investigated macrophage recruitment in response to M. avium subsp. paratuberculosis using a MAC-T bovine macrophage coculture system. We show that M. avium subsp. paratuberculosis infection led to phagosome acidification within bovine epithelial (MAC-T) cells as early as 10 min, which resulted in upregulation of interleukin-1β (IL-1β) at transcript and protein levels. Within 10 min of infection, macrophages were recruited to the apical side of MAC-T cells. Inhibition of phagosome acidification or IL-1β abrogated this response, while MCP-1/CCL-2 blocking had no effect. IL-1β processing was dependent upon Ca2+ uptake from the extracellular medium and intracellular Ca2+ oscillations, as determined by EGTA and BAPTA-AM [1,2-bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid tetrakis (acetoxymethyl ester)] treatments. Thus, M. avium subsp. paratuberculosis is an opportunist that takes advantage of extracellular Ca2+-dependent phagosome acidification and IL-1β processing in order to efficiently transverse the epithelium and enter its niche—the macrophage. PMID:22778093

  5. CD4 Depletion in SIV-Infected Macaques Results in Macrophage and Microglia Infection with Rapid Turnover of Infected Cells

    PubMed Central

    Ortiz, Alexandra M.; Ryan, Emily S.; McGary, Colleen S.; Deleage, Claire; McAtee, Brigitte B.; He, Tianyu; Apetrei, Cristian; Easley, Kirk; Pahwa, Savita; Collman, Ronald G.; Derdeyn, Cynthia A.; Davenport, Miles P.; Estes, Jacob D.; Silvestri, Guido; Lackner, Andrew A.; Paiardini, Mirko

    2014-01-01

    In rhesus macaques (RMs), experimental depletion of CD4+ T-cells prior to SIV infection results in higher viremia and emergence of CD4-independent SIV-envelopes. In this study we used the rhesus recombinant anti-CD4 antibody CD4R1 to deplete RM CD4+ T-cells prior to SIVmac251 infection and investigate the sources of the increased viral burden and the lifespan of productively infected cells. CD4-depleted animals showed (i) set-point viral load two-logs higher than controls; (ii) macrophages constituting 80% of all SIV vRNA+ cells in lymph node and mucosal tissues; (iii) substantial expansion of pro-inflammatory monocytes; (iv) aberrant activation and infection of microglial cells; and (v) lifespan of productively infected cells significantly longer in comparison to controls, but markedly shorter than previously estimated for macrophages. The net effect of CD4+ T-cell depletion is an inability to control SIV replication and a shift in the tropism of infected cells to macrophages, microglia, and, potentially, other CD4-low cells which all appear to have a shortened in vivo lifespan. We believe these findings have important implications for HIV eradication studies. PMID:25356757

  6. Ribonucleic acid synthesis in normal and immune macrophages after antigenic stimulus.

    PubMed

    Soderberg, L S; Tewari, R P; Solotorovsky, M

    1976-06-01

    Macrophage ribonucleic acid (RNA) synthesis is an important metabolic process intimately related to the function of these cells. Mouse peritoneal macrophage RNA was extracted with phenol in the presence of bentonite and electrophoresed on composite agarose-polyacrylamide gels. The pulse-chase technique was used to follow the precursor relationships in macrophage ribosomal RNA (rRNA) maturation. The rRNA species at 18S and 28S appeared at 15 and 45 min, respectively, after RNA synthesis was halted. Their appearance corresponded closely to decreases in the rRNA precursors at 45S, 36S, and 34S. Studies of RNA methylation aided in confirming the identity of these ribosomal species. Unmethylated RNA species appeared as messenger RNA between 5S and 15S, and at about 55S probably represented heterodisperse nuclear RNA. When normal macrophages were incubated with heat-killed Salmonella enteritidis, an acceleration in the maturation of RNA was observed. The accelerated maturation was indicated by the earlier appearance of 28S rRNA and the more rapid development of an equilibrium state, where further labeling did not change the RNA profile. In macrophage RNA from mice immunized with S. enteritidis, rRNA species appeared rapidly but did not accumulate to the same extent as observed for normal macrophages. Precursor rRNA and other RNA species developed as usual, suggesting specific degradation of mature rRNA. Such rRNA wastage could indicate a mechanism controlling ribosome assembly in the non-proliferating activated macrophage. The pattern of RNA synthesis in immune macrophages was essentially unchanged by the presence of heat-killed S. enteritidis in vitro. PMID:971940

  7. The macrophages in rheumatic diseases

    PubMed Central

    Laria, Antonella; Lurati, Alfredomaria; Marrazza, Mariagrazia; Mazzocchi, Daniela; Re, Katia Angela; Scarpellini, Magda

    2016-01-01

    Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated) and M2 (alternatively activated). M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. PMID:26929657

  8. Rapid decrease of CD16 (FcγRIII) expression on heat-shocked neutrophils and their recognition by macrophages.

    PubMed

    Bzowska, Małgorzata; Hamczyk, Magda; Skalniak, Anna; Guzik, Krzysztof

    2011-01-01

    Accumulation of neutrophils in the site of inflammation is a typical mechanism of innate immunity. The accumulated neutrophils are exposed to stressogenic factors usually associated with inflammation. Here, we studied response of human peripheral blood neutrophils subjected to short, febrile-range heat stress. We show that 90 min heat stress slowed down the spontaneous apoptosis of neutrophils. In the absence of typical markers of apoptosis the heat-shocked neutrophils induced antiinflammatory effect in human monocyte-derived macrophages (hMDMs), yet without being engulfed. Importantly, the expression of FcγRIII (CD16) was sharply reduced. Surprisingly, concentration of the soluble CD16 did not change in heat-shocked neutrophil supernates indicating that the reduction of the cell surface CD16 was achieved mainly by inhibition of fresh CD16 delivery. Inhibitors of 90 kDa heat shock protein (HSP90), a molecular chaperone found in membrane platforms together with CD16 and CD11b, significantly increased the observed effects caused by heat shock. The presented data suggest a novel systemic aspect of increased temperature which relies on immediate modification by heat of a neutrophil molecular pattern. This effect precedes cell death and may be beneficial in the initial phase of inflammation providing a nonphlogistic signal to macrophages before it comes from apoptotic cells. PMID:21541219

  9. Rapid Decrease of CD16 (FcγRIII) Expression on Heat-Shocked Neutrophils and Their Recognition by Macrophages

    PubMed Central

    Bzowska, Małgorzata; Hamczyk, Magda; Skalniak, Anna; Guzik, Krzysztof

    2011-01-01

    Accumulation of neutrophils in the site of inflammation is a typical mechanism of innate immunity. The accumulated neutrophils are exposed to stressogenic factors usually associated with inflammation. Here, we studied response of human peripheral blood neutrophils subjected to short, febrile-range heat stress. We show that 90 min heat stress slowed down the spontaneous apoptosis of neutrophils. In the absence of typical markers of apoptosis the heat-shocked neutrophils induced antiinflammatory effect in human monocyte-derived macrophages (hMDMs), yet without being engulfed. Importantly, the expression of FcγRIII (CD16) was sharply reduced. Surprisingly, concentration of the soluble CD16 did not change in heat-shocked neutrophil supernates indicating that the reduction of the cell surface CD16 was achieved mainly by inhibition of fresh CD16 delivery. Inhibitors of 90 kDa heat shock protein (HSP90), a molecular chaperone found in membrane platforms together with CD16 and CD11b, significantly increased the observed effects caused by heat shock. The presented data suggest a novel systemic aspect of increased temperature which relies on immediate modification by heat of a neutrophil molecular pattern. This effect precedes cell death and may be beneficial in the initial phase of inflammation providing a nonphlogistic signal to macrophages before it comes from apoptotic cells. PMID:21541219

  10. Rapid proteasomal elimination of 3-hydroxy-3-methylglutaryl-CoA reductase by interferon-γ in primary macrophages requires endogenous 25-hydroxycholesterol synthesis

    PubMed Central

    Lu, Hongjin; Talbot, Simon; Robertson, Kevin A.; Watterson, Steven; Forster, Thorsten; Roy, Douglas; Ghazal, Peter

    2015-01-01

    Interferons (IFNs) play a central role in immunity and emerging evidence suggests that IFN-signalling coordinately regulates sterol biosynthesis in macrophages, via Sterol Regulatory Element-Binding Protein (SREBP) dependent and independent pathways. However, the precise mechanisms and kinetic steps by which IFN controls sterol biosynthesis are as yet not fully understood. Here, we elucidate the molecular circuitry governing how IFN controls the first regulated step in the mevalonate-sterol pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), through the synthesis of 25-Hydroxycholesterol (25-HC) from cholesterol by the IFN-inducible Cholesterol-25-Hydroxylase (CH25H). We show for the first 30-min of IFN stimulation of macrophages the rate of de novo synthesis of the Ch25h transcript is markedly increased but by 120-min becomes transcriptionally curtailed, coincident with induction of the Activating Transcription Factor 3 (ATF3) repressor. We demonstrate ATF3 induction by Toll-like receptors is strictly dependent on IFN-signalling. While the SREBP-pathway dependent rates of de novo transcription of Hmgcr are relatively unchanged in the first 90-min of IFN treatment, we find HMGCR enzyme levels undergo a rapid proteasomal-mediated degradation, defining a previously unappreciated SREBP-independent mechanism for IFN-action. These events precede a sustained marked reduction in Hmgcr RNA levels involving SREBP-dependent mechanisms. We demonstrate that HMGCR proteasomal-degradation by IFN strictly requires the synthesis of endogenous 25-HC and functionally couples HMGCR to CH25H to coordinately suppress sterol biosynthesis. In conclusion, we quantitatively delineate proteomic and transcriptional levels of IFN-mediated control of HMGCR, the primary enzymatic step of the mevalonate-sterol biosynthesis pathway, providing a foundational framework for mathematically modelling the therapeutic outcome of immune-metabolic pathways. PMID:25759117

  11. Effect of aflatoxins on rat peritoneal macrophages.

    PubMed Central

    Cusumano, V; Costa, G B; Seminara, S

    1990-01-01

    Phagocytosis, intracellular killing of Candida albicans, and superoxide production by rat peritoneal macrophages exposed to aflatoxins B1, B2, G1, G2, B2a, and M1 at several times and concentrations were analyzed to evaluate the intensity of a depressive effect for each mycotoxin. All aflatoxins used at very low concentrations had a depressive effect on the functions of macrophages. The biggest impairment of phagocytosis, intracellular killing, and spontaneous superoxide production was observed in macrophages exposed to aflatoxins B1 and M1. PMID:2176448

  12. Wormhole Travel for Macrophages.

    PubMed

    Okabe, Yasutaka; Medzhitov, Ruslan

    2016-04-21

    Leukocyte recruitment is generally achieved by rapid migration of inflammatory cells out of circulation, through modified blood vessels, and into affected tissues. Now, Wang and Kubes show that macrophages can be rapidly recruited from body cavities to the liver, via a non-vascular route, where they help to coordinate tissue repair. PMID:27104973

  13. Planning a dynamic kill

    SciTech Connect

    Abel, L.W.

    1996-05-01

    This article discusses the methodology, design philosophy, and guidelines for planning a dynamic-kill operation for a wild well. The topics covered are two methods of computer analysis for designing dynamic-kill requirements, the design process, determining the pumping spread, and the pitfalls that a designer faces in planning a dynamic kill.

  14. Metabolic events mediating early killing of host cells infected by Shigella flexneri.

    PubMed

    Sansonetti, P J; Mounier, J

    1987-07-01

    J774, a continuous macrophage cell-line, was infected by M90T, an invasive isolate of Shigella flexneri serotype 5 and BS176, its non invasive derivative--which does not harbor the 220 kbase virulence plasmid pWR100. Killing of host cells by intracellular M90T, commenced one hour after infection and was completed by 4 hours. Intracellular BS176 did not kill cells during the same period. Cell protein biosynthesis was totally inhibited by both strains within 2 hours of infection thus indicating that shiga-like toxin 1 (SLT1) could not account for early killing. On the other hand a sharp decrease in intracellular ATP was observed after 1 hour in cells infected with M90T. No significant increase in ATPase activity could be detected. A sharp increase in pyruvate production starting immediately after infection indicated impairement in mitochondrial respiration, which accounts for most ATP produced intracellularly. In addition, fermentation appeared to be totally blocked thus leaving no chance of the infected cells regenerating NAD. Concurrent increase in cAMP concentration within the first hour of infection may contribute to the rapid and efficient cell killing. Cells infected by BS176 always showed an intermediate phenotype (i.e. ATP depletion, pyruvate increase, lactate decrease). Early lysis of the phagocytic vacuole by M90T may account for this difference by allowing toxic products of the bacteria to diffuse more efficiently within the cytosol. PMID:2848171

  15. Human monocyte-derived macrophages infected with virulent Shigella flexneri in vitro undergo a rapid cytolytic event similar to oncosis but not apoptosis.

    PubMed Central

    Fernandez-Prada, C M; Hoover, D L; Tall, B D; Venkatesan, M M

    1997-01-01

    Infection of human monocyte-derived macrophages in vitro with virulent Shigella flexneri resulted in cell death which involved rupture of the plasma membrane, cell swelling, disintegration of ultrastructure, and generalized karyolysis. These features bore resemblance to oncosis and are in striking contrast to previously described observations of mouse macrophages, where a similar infection by virulent Shigella resulted in cell death by apoptosis. Cell death by oncosis in human macrophages was confirmed by lactate dehydrogenase release, light microscopy, electron microscopy, terminal deoxynucleotidyltransferase end labeling of DNA ends, DNA fragmentation assays, and fluorescence-activated cell sorter analysis of propidium-labeled nuclei. Thus, the phenomena of cell death induced by virulent Shigella in human and mouse macrophages reflect different biochemical pathways. Interleukin-1beta (IL-1beta) was released in culture supernatants of human macrophages infected with virulent bacteria. Inhibition with IL-1beta-converting enzyme inhibitors indicated, however, that this release occurred as a passive event of cell lysis. The patterns of intracellular survival of Shigella strains within human and mouse macrophages reflect differences that exist not only between Shigella serotypes but also between the two different macrophage cell types. PMID:9119491

  16. In vivo analysis of impaired macrophage bactericidal capacity during experimental African trypanosomiasis.

    PubMed Central

    Glick, D L; Jones, J F

    1984-01-01

    Since innate resistance of mice to Salmonella typhimurium depends on an intact macrophage system, we have used this bacterium to investigate the effect of Trypanosoma brucei subsp. rhodesiense infection on macrophage phagocytic and cytolytic function. CBA/CaJ mice infected with T. brucei subsp. rhodesiense have decreased resistance to S. typhimurium, since doubly infected mice rapidly succumb to sublethal doses of S. typhimurium. Although trypanosomiasis is known to suppress antibody formation, such a suppression of antibody does not seem to play a role in trypanosome-induced sensitivity to S. typhimurium. A trypanosome-induced blockade of the reticuloendothelial system also does not occur, since parasitized and control mice clear S. typhimurium from the blood equally well. Early killing (0 to 48 h) of S. typhimurium in the liver and spleen is mainly macrophage mediated, and mice infected with trypanosomes kill S. typhimurium in the liver and spleen very poorly. Apparently trypanosomiasis inhibits macrophage bactericidal activity, but has no effect on phagocytosis. PMID:6389356

  17. Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function

    PubMed Central

    Yang, Zhiping; Chiou, Terry Ting-Yu; Stossel, Thomas P.

    2015-01-01

    Plasma gelsolin (pGSN) functions as part of the “extracellular actin-scavenging system,” but its potential to improve host defense against infection has not been studied. In a mouse model of primary pneumococcal pneumonia, recombinant human pGSN (rhu-pGSN) caused enhanced bacterial clearance, reduced acute inflammation, and improved survival. In vitro, rhu-pGSN rapidly improved lung macrophage uptake and killing of bacteria (Streptococcus pneumoniae, Escherichia coli, and Francisella tularensis). pGSN triggers activating phosphorylation (Ser1177) of macrophage nitric oxide synthase type III (NOS3), an enzyme with important bactericidal functions in lung macrophages. rhu-pGSN failed to enhance bacterial killing by NOS3−/− macrophages in vitro or bacterial clearance in NOS3−/− mice in vivo. Prophylaxis with immunomodulators may be especially relevant for patients at risk for secondary bacterial pneumonia, e.g., after influenza. Treatment of mice with pGSN challenged with pneumococci on postinfluenza day 7 (the peak of enhanced susceptibility to secondary infection) caused a ∼15-fold improvement in bacterial clearance, reduced acute neutrophilic inflammation, and markedly improved survival, even without antibiotic therapy. pGSN is a potential immunomodulator for improving lung host defense against primary and secondary bacterial pneumonia. PMID:25957291

  18. Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function.

    PubMed

    Yang, Zhiping; Chiou, Terry Ting-Yu; Stossel, Thomas P; Kobzik, Lester

    2015-07-01

    Plasma gelsolin (pGSN) functions as part of the "extracellular actin-scavenging system," but its potential to improve host defense against infection has not been studied. In a mouse model of primary pneumococcal pneumonia, recombinant human pGSN (rhu-pGSN) caused enhanced bacterial clearance, reduced acute inflammation, and improved survival. In vitro, rhu-pGSN rapidly improved lung macrophage uptake and killing of bacteria (Streptococcus pneumoniae, Escherichia coli, and Francisella tularensis). pGSN triggers activating phosphorylation (Ser(1177)) of macrophage nitric oxide synthase type III (NOS3), an enzyme with important bactericidal functions in lung macrophages. rhu-pGSN failed to enhance bacterial killing by NOS3(-/-) macrophages in vitro or bacterial clearance in NOS3(-/-) mice in vivo. Prophylaxis with immunomodulators may be especially relevant for patients at risk for secondary bacterial pneumonia, e.g., after influenza. Treatment of mice with pGSN challenged with pneumococci on postinfluenza day 7 (the peak of enhanced susceptibility to secondary infection) caused a ∼15-fold improvement in bacterial clearance, reduced acute neutrophilic inflammation, and markedly improved survival, even without antibiotic therapy. pGSN is a potential immunomodulator for improving lung host defense against primary and secondary bacterial pneumonia. PMID:25957291

  19. DETC Induces Leishmania Parasite Killing in Human In Vitro and Murine In Vivo Models: A Promising Therapeutic Alternative in Leishmaniasis

    PubMed Central

    Khouri, Ricardo; Novais, Fernanda; Santana, Gisélia; de Oliveira, Camila Indiani; Vannier dos Santos, Marcos André; Barral, Aldina; Barral-Netto, Manoel; Van Weyenbergh, Johan

    2010-01-01

    Background Chemotherapy remains the primary tool for treatment and control of human leishmaniasis. However, currently available drugs present serious problems regarding side-effects, variable efficacy, and cost. Affordable and less toxic drugs are urgently needed for leishmaniasis. Methodology/Principal Findings We demonstrate, by microscopy and viability assays, that superoxide dismutase inhibitor diethyldithiocarbamate (DETC) dose-dependently induces parasite killing (p<0.001) and is able to “sterilize” Leishmania amazonensis infection at 2 mM in human macrophages in vitro. We also show that DETC-induced superoxide production (p<0.001) and parasite destruction (p<0.05) were reverted by the addition of the antioxidant N-acetylcysteine, indicating that DETC-induced killing occurs through oxidative damage. Furthermore, ultrastructural analysis by electron microscopy demonstrates a rapid and highly selective destruction of amastigotes in the phagosome upon DETC treatment, without any apparent damage to the host cell, including its mitochondria. In addition, DETC significantly induced parasite killing in Leishmania promastigotes in axenic culture. In murine macrophages infected with Leishmania braziliensis, DETC significantly induced in vitro superoxide production (p = 0.0049) and parasite killing (p = 0.0043). In vivo treatment with DETC in BALB/C mice infected with Leishmania braziliensis caused a significant decrease in lesion size (p<0.0001), paralleled by a 100-fold decrease (p = 0.0087) in parasite burden. Conclusions/Significance Due to its strong leishmanicidal effect in human macrophages in vitro, its in vivo effectiveness in a murine model, and its previously demonstrated in vivo safety profile in HIV treatment, DETC treatment might be considered as a valuable therapeutic option in human leishmaniasis, including HIV/Leishmania co-infection. PMID:21200432

  20. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  1. Cloning, killing, and identity.

    PubMed Central

    McMahan, J

    1999-01-01

    One potentially valuable use of cloning is to provide a source of tissues or organs for transplantation. The most important objection to this use of cloning is that a human clone would be the sort of entity that it would be seriously wrong to kill. I argue that entities of the sort that you and I essentially are do not begin to exist until around the seventh month of fetal gestation. Therefore to kill a clone prior to that would not be to kill someone like you or me but would be only to prevent one of us from existing. And even after one of us begins to exist, the objections to killing it remain comparatively weak until its psychological capacities reach a certain level of maturation. These claims support the permissibility of killing a clone during the early stages of its development in order to use its organs for transplantation. PMID:10226909

  2. Macrophage Inflammatory Assay

    PubMed Central

    Ylostalo, Joni H.

    2016-01-01

    Macrophages represent a widely distributed and functionally diverse population of innate myeloid cells involved in inflammatory response to pathogens, tissue homeostasis and tissue repair (Murray and Wynn, 2011). Macrophages can be broadly grouped into two subpopulations with opposing activites: M1 or pro-inflammatory macrophages that promote T-helper type 1 (Th1) cell immunity and tissue damage, and M2 or anti-inflammatory/alternatively activated macrophages implicated in Th2 response and resolution of inflammation. Here we describe a rapid assay we used previously to monitor changes in pro-inflammatory and anti-inflammatory cytokine production by lipopolysaccharide (LPS)-activated macrophages in response to therapeutic paracrine factors produced by adult stem cells (Bartosh et al., 2010; Ylostalo et al., 2012; Bartosh et al., 2013). The assay can be adapted appropriately to test macrophage response to other agents as well that will be referred to herein as ‘test reagents’ or ‘test compounds’. In this protocol, the mouse macrophage cell line J774A.1 is expanded as an adherent monolayer on petri dishes allowing for the cells to be harvested easily without enzymes or cell scrapers that can damage the cells. The macropahges are then stimulated in suspension with LPS and seeded into 12-well cell culture plates containing the test reagents. After 16–18 h, the medium conditioned by the macrophages is harvested and the cytokine profile in the medium determined with enzyme-linked immunosorbent assays (ELISA). We routinely measure levels of the pro-inflammtory cytokine TNF-alpha and the anti-inflammatory cytokine interleukin-10 (IL-10).

  3. Evolution of coalitionary killing.

    PubMed

    Wrangham, R W

    1999-01-01

    Warfare has traditionally been considered unique to humans. It has, therefore, often been explained as deriving from features that are unique to humans, such as the possession of weapons or the adoption of a patriarchal ideology. Mounting evidence suggests, however, that coalitional killing of adults in neighboring groups also occurs regularly in other species, including wolves and chimpanzees. This implies that selection can favor components of intergroup aggression important to human warfare, including lethal raiding. Here I present the principal adaptive hypothesis for explaining the species distribution of intergroup coalitional killing. This is the "imbalance-of-power hypothesis," which suggests that coalitional killing is the expression of a drive for dominance over neighbors. Two conditions are proposed to be both necessary and sufficient to account for coalitional killing of neighbors: (1) a state of intergroup hostility; (2) sufficient imbalances of power between parties that one party can attack the other with impunity. Under these conditions, it is suggested, selection favors the tendency to hunt and kill rivals when the costs are sufficiently low. The imbalance-of-power hypothesis has been criticized on a variety of empirical and theoretical grounds which are discussed. To be further tested, studies of the proximate determinants of aggression are needed. However, current evidence supports the hypothesis that selection has favored a hunt-and-kill propensity in chimpanzees and humans, and that coalitional killing has a long history in the evolution of both species. PMID:10601982

  4. How neutrophils kill fungi.

    PubMed

    Gazendam, Roel P; van de Geer, Annemarie; Roos, Dirk; van den Berg, Timo K; Kuijpers, Taco W

    2016-09-01

    Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human 'knock-out' neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus. PMID:27558342

  5. FISH KILLS, NORTH CAROLINA

    EPA Science Inventory

    Data related to fish kills in North Carolina are collected and stored in tables on the Web at the North Carolina Department of Environment and Natural Resources. http://www.esb.enr.state.nc.us/Fishkill/fishkill00.htm

  6. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation

    PubMed Central

    Tang, Jun; Lobatto, Mark E.; Hassing, Laurien; van der Staay, Susanne; van Rijs, Sarian M.; Calcagno, Claudia; Braza, Mounia S.; Baxter, Samantha; Fay, Francois; Sanchez-Gaytan, Brenda L.; Duivenvoorden, Raphaël; Sager, Hendrik B.; Astudillo, Yaritzy M.; Leong, Wei; Ramachandran, Sarayu; Storm, Gert; Pérez-Medina, Carlos; Reiner, Thomas; Cormode, David P.; Strijkers, Gustav J.; Stroes, Erik S. G.; Swirski, Filip K.; Nahrendorf, Matthias; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2015-01-01

    Inflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration. Because macrophage proliferation was recently shown to dominate macrophage accumulation in advanced plaques, locally inhibiting macrophage proliferation may reduce plaque inflammation and produce long-term therapeutic benefits. To test this hypothesis, we used nanoparticle-based delivery of simvastatin to inhibit plaque macrophage proliferation in apolipoprotein E–deficient mice (Apoe−/−) with advanced atherosclerotic plaques. This resulted in the rapid reduction of plaque inflammation and favorable phenotype remodeling. We then combined this short-term nanoparticle intervention with an 8-week oral statin treatment, and this regimen rapidly reduced and continuously suppressed plaque inflammation. Our results demonstrate that pharmacologically inhibiting local macrophage proliferation can effectively treat inflammation in atherosclerosis. PMID:26295063

  7. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage.

    PubMed

    Wang, Naizhen; Gates, Khalilah L; Trejo, Humberto; Favoreto, Silvio; Schleimer, Robert P; Sznajder, Jacob I; Beitel, Greg J; Sporn, Peter H S

    2010-07-01

    Elevated blood and tissue CO(2), or hypercapnia, is common in severe lung disease. Patients with hypercapnia often develop lung infections and have an increased risk of death following pneumonia. To explore whether hypercapnia interferes with host defense, we studied the effects of elevated P(CO2) on macrophage innate immune responses. In differentiated human THP-1 macrophages and human and mouse alveolar macrophages stimulated with lipopolysaccharide (LPS) and other Toll-like receptor ligands, hypercapnia inhibited expression of tumor necrosis factor and interleukin (IL)-6, nuclear factor (NF)-kappaB-dependent cytokines critical for antimicrobial host defense. Inhibition of IL-6 expression by hypercapnia was concentration dependent, rapid, reversible, and independent of extracellular and intracellular acidosis. In contrast, hypercapnia did not down-regulate IL-10 or interferon-beta, which do not require NF-kappaB. Notably, hypercapnia did not affect LPS-induced degradation of IkappaB alpha, nuclear translocation of RelA/p65, or activation of mitogen-activated protein kinases, but it did block IL-6 promoter-driven luciferase activity in mouse RAW 264.7 macrophages. Elevated P(CO2) also decreased phagocytosis of opsonized polystyrene beads and heat-killed bacteria in THP-1 and human alveolar macrophages. By interfering with essential innate immune functions in the macrophage, hypercapnia may cause a previously unrecognized defect in resistance to pulmonary infection in patients with advanced lung disease. PMID:20181940

  8. Passive transfer of leishmania lipopolysaccharide confers parasite survival in macrophages

    SciTech Connect

    Handman, E.; Schnur, L.F.; Spithill, T.W.; Mitchell, G.F.

    1986-12-01

    Infection of macrophages by the intracellular protozoan parasite Leishmania involves specific attachment to the host membrane, followed by phagocytosis and intracellular survival and growth. Two parasite molecules have been implicated in the attachment event: Leishmania lipopolysaccharide (L-LPS) and a glycoprotein (gp63). This study was designed to clarify the role of L-LPS in infection and the stage in the process of infection at which it operates. The authors have recently identified a Leishmania major strain (LRC-L119) which lacks the L-LPS molecule and is not infective for hamsters or mice. This parasite was isolated from a gerbil in Kenya and was identified phenotypically as L. major by isoenzyme and fatty acid analysis. In this study they have confirmed at the genotype level that LRC-L119 is L. major by analyzing and comparing the organization of cloned DNA sequences in the genome of different strains of L. major. Here they show that LRC-L119 promastigotes are phagocytosed rapidly by macrophages in vitro, but in contrast to virulent strains of L. major, they are then killed over a period of 18 hr. In addition, they show that transfer of purified L-LPS from a virulent clone of L. major (V121) into LRC-L119 promastigotes confers on them the ability to survive in macrophages in vitro.

  9. Mannheimia haemolytica and Its Leukotoxin Cause Macrophage Extracellular Trap Formation by Bovine Macrophages

    PubMed Central

    Aulik, Nicole A.; Hellenbrand, Katrina M.

    2012-01-01

    Human and bovine neutrophils release neutrophil extracellular traps (NETs), which are protein-studded DNA matrices capable of extracellular trapping and killing of pathogens. Recently, we reported that bovine neutrophils release NETs in response to the important respiratory pathogen Mannheimia haemolytica and its leukotoxin (LKT). Here, we demonstrate macrophage extracellular trap (MET) formation by bovine monocyte-derived macrophages exposed to M. haemolytica or its LKT. Both native fully active LKT and noncytolytic pro-LKT (produced by an lktC mutant of M. haemolytica) stimulated MET formation. Confocal and scanning electron microscopy revealed a network of DNA fibrils with colocalized histones in extracellular traps released from bovine macrophages. Formation of METs required NADPH oxidase activity, as previously demonstrated for NET formation. METs formed in response to LKT trapped and killed a portion of the M. haemolytica cells. Bovine alveolar macrophages, but not peripheral blood monocytes, also formed METs in response to M. haemolytica cells. MET formation was not restricted to bovine macrophages. We also observed MET formation by the mouse macrophage cell line RAW 264.7 and by human THP-1 cell-derived macrophages, in response to Escherichia coli hemolysin. The latter is a member of the repeats-in-toxin (RTX) toxin family related to the M. haemolytica leukotoxin. This study demonstrates that macrophages, like neutrophils, can form extracellular traps in response to bacterial pathogens and their exotoxins. PMID:22354029

  10. Why is Particulate Matter Produced by Wildfires Toxic To Lung Macrophages?

    PubMed Central

    Franzi, Lisa M.; Bratt, Jennifer M.; Williams, Keisha M.; Last, Jerold A.

    2011-01-01

    The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM are about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfire PM in vitro. Our data implicate NF-kB signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and “normal” PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we can not rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin. PMID:21945489

  11. Why is particulate matter produced by wildfires toxic to lung macrophages?

    PubMed

    Franzi, Lisa M; Bratt, Jennifer M; Williams, Keisha M; Last, Jerold A

    2011-12-01

    The mechanistic basis of the high toxicity to lung macrophages of coarse PM from the California wildfires of 2008 was examined in cell culture experiments with mouse macrophages. Wildfire PM directly killed macrophages very rapidly in cell culture at relatively low doses. The wildfire coarse PM is about four times more toxic to macrophages on an equal weight basis than the same sized PM collected from normal ambient air (no wildfires) from the same region and season. There was a good correlation between the extent of cytotoxicity and the amount of oxidative stress observed at a given dose of wildfire PM in vitro. Our data implicate NF-κB signaling in the response of macrophages to wildfire PM, and suggest that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. The relative ratio of toxicity and of expression of biomarkers of oxidant stress between wildfire PM and "normal" PM collected from ambient air is consistent with our previous results in mice in vivo, also suggesting that most, if not all, of the cytotoxicity of wildfire PM to lung macrophages is the result of oxidative stress. Our findings from this and earlier studies suggest that the active components of coarse PM from the wildfire are heat-labile organic compounds. While we cannot rule out a minor role for endotoxin in coarse PM preparations from the collected wildfire PM in our observed results both in vitro and in vivo, based on experiments using the inhibitor Polymyxin B most of the oxidant stress and pro-inflammatory activity observed was not due to endotoxin. PMID:21945489

  12. Killing acanthamoebae with polyaminopropyl biguanide: quantitation and kinetics.

    PubMed Central

    Burger, R M; Franco, R J; Drlica, K

    1994-01-01

    The two Acanthamoeba species most often implicated in corneal keratitis, A. castellanii and A. polyphaga, were exposed as cysts to polyaminopropyl biguanide (PAPB), a commonly used antimicrobial agent. Killing of amoeba cysts was rapid and extensive, with fewer than 2% of either species surviving 30 s of exposure to > or = 45 ppm of PAPB. Killing kinetics were biphasic, and further exposures of 15 min to 1 h killed greater than 90% of those surviving initial killing. This potency of PAPB, together with its low toxicity to humans when ingested or applied topically, underscores the potential of PAPB as an antiamoebic agent. PMID:8031066

  13. Porins facilitate nitric oxide-mediated killing of mycobacteria.

    PubMed

    Fabrino, Daniela Leite; Bleck, Christopher K E; Anes, Elsa; Hasilik, Andrej; Melo, Rossana C N; Niederweis, Michael; Griffiths, Gareth; Gutierrez, Maximiliano Gabriel

    2009-09-01

    Non-pathogenic mycobacteria such us Mycobacterium smegmatis reside in macrophages within phagosomes that fuse with late endocytic/lysosomal compartments. This sequential fusion process is required for the killing of non-pathogenic mycobacteria by macrophages. Porins are proteins that allow the influx of hydrophilic molecules across the mycobacterial outer membrane. Deletion of the porins MspA, MspC and MspD significantly increased survival of M. smegmatis in J774 macrophages. However, the mechanism underlying this observation is unknown. Internalization of wild-type M. smegmatis (SMR5) and the porin triple mutant (ML16) by macrophages was identical indicating that the viability of the porin mutant in vivo was enhanced. This was not due to effects on phagosome trafficking since fusion of phagosomes containing the mutant with late endocytic compartments was unaffected. Moreover, in ML16-infected macrophages, the generation of nitric oxide (NO) was similar to the wild type-infected cells. However, ML16 was significantly more resistant to the effects of NO in vitro compared to SMR5. Our data provide evidence that porins render mycobacteria vulnerable to killing by reactive nitrogen intermediates within phagosomes probably by facilitating uptake of NO across the mycobacterial outer membrane. PMID:19460455

  14. Children Who Kill.

    ERIC Educational Resources Information Center

    Natale, Jo Anna

    1999-01-01

    Two recent books, "When Good Kids Kill," by Michael D. Kelleher, and "Lost Boys," by James Garbarino, explore how children become killers and suggest ways to reduce our high-pressure society's epidemic levels of youth violence. Physically or psychologically distant parents and unaffirmative media messages are negative influences. (MLH)

  15. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  16. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  17. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  18. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype

    PubMed Central

    Campbell, Gillian M.; Nicol, Marlynne Q.; Dransfield, Ian; Shaw, Darren J.; Nash, Anthony A.

    2015-01-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection. PMID:26297234

  19. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    PubMed

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection. PMID:26297234

  20. Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants.

    PubMed

    Taniyama, T; Holden, H T

    1980-07-15

    Previous studies have shown that macrophage cell lines retained the ability to phagocytize, to secrete lysosomal enzymes, and to function as effector cells in antibody-dependent cellular cytoxicity. In this paper, the cytolytic activity of murine macrophage cell lines against tumor target cells was assessed using an 18-h 51Cr release assay. Of the macrophage cell lines tested, RAW 264, PU5-1.8 and IC-21 had intermediate to high levels of spontaneous cytolytic activity, P388D, and J774 had low to intermediate levels, while /WEHI-3 showed little or no cytolytic activity against RBL-5, MBL-2 and TU-5 target cells. Tumor-cell killing by macrophage cell lines could be augmented by the addition of macrophage stimulants, such as bacterial lipopolysaccharide and poly I:C, indicating that the activation of macrophages by these stimulants does not require the participation of other cell types. Treatment with interferon also augmented the tumor-cell killing by macrophage cell lines. Although the mechanism by which these cell lines exert their spontaneous or boosted cytotoxic activity is not clear, it does not appear to be due to depletion of nutrients since cell lines with high metabolic and proliferative activities, such as WEHI-3 and RBL-5, showed little or no cytotoxicity and supernatants from the macrophage cell lines did not exert any cytotoxic effects in their essay. Thus, it appears that the different macrophage cell lines represent different levels of activation and/or differentiation and may be useful for studying the development of these processes as well as providing a useful tool for analyzing the mechanisms of macrophage-mediated cytolysis. PMID:6165690

  1. Generation and Characterization of Mouse Regulatory Macrophages.

    PubMed

    Carretero-Iglesia, Laura; Hill, Marcelo; Cuturi, Maria Cristina

    2016-01-01

    In the last years, cell therapy has become a promising approach to therapeutically manipulate immune responses in autoimmunity, cancer, and transplantation. Several types of lymphoid and myeloid cells origin have been generated in vitro and tested in animal models. Their efficacy to decrease pharmacological treatment has successfully been established. Macrophages play an important role in physiological and pathological processes. They represent an interesting cell population due to their high plasticity in vivo and in vitro. Here, we describe a protocol to differentiate murine regulatory macrophages in vitro from bone marrow precursors. We also describe several methods to assess macrophage classical functions, as their bacterial killing capacity and antigen endocytosis and degradation. Importantly, regulatory macrophages also display suppressive characteristics, which are addressed by the study of their hypostimulatory T lymphocyte capacity and polyclonal T lymphocyte activation suppression. PMID:26530796

  2. Vitamin D and the Human Antimicrobial Peptide LL-37 Enhance Group A Streptococcus Resistance to Killing by Human Cells

    PubMed Central

    Love, John F.; Tran-Winkler, Hien J.; Wessels, Michael R.

    2012-01-01

    ABSTRACT The CsrRS two-component regulatory system of group A Streptococcus (GAS; Streptococcus pyogenes) responds to subinhibitory concentrations of the human antimicrobial peptide LL-37. LL-37 signaling through CsrRS results in upregulation of genes that direct synthesis of virulence factors, including the hyaluronic acid capsule and streptolysin O (SLO). Here, we demonstrate that a consequence of this response is augmented GAS resistance to killing by human oropharyngeal keratinocytes, neutrophils, and macrophages. LL-37-induced upregulation of SLO and hyaluronic acid capsule significantly reduced internalization of GAS by keratinocytes and phagocytic killing by neutrophils and macrophages. Because vitamin D induces LL-37 production by macrophages, we tested its effect on macrophage killing of GAS. In contrast to the reported enhancement of macrophage function in relation to other pathogens, treatment of macrophages with 1α,25-dihydroxy-vitamin D3 paradoxically reduced the ability of macrophages to control GAS infection. These observations demonstrate that LL-37 signals through CsrRS to induce a virulence phenotype in GAS characterized by heightened resistance to ingestion and killing by both epithelial cells and phagocytes. By inducing LL-37 production in macrophages, vitamin D may contribute to this paradoxical exacerbation of GAS infection. PMID:23093388

  3. Peripheral blood mononuclear cell supernatants from asymptomatic dogs immunized and experimentally challenged with Leishmania chagasi can stimulate canine macrophages to reduce infection in vitro.

    PubMed

    Rodrigues, Cleusa Alves Theodoro; Batista, Luís Fábio da Silva; Teixeira, Márcia Cristina Aquino; Pereira, Andréa Mendes; Santos, Patrícia Oliveira Meira; de Sá Oliveira, Geraldo Gileno; de Freitas, Luiz Antônio Rodrigues; Veras, Patrícia Sampaio Tavares

    2007-02-28

    Leishmania chagasi is the causative agent of visceral leishmaniasis in both humans and dogs in the New World. The dog is the main domestic reservoir and its infection displays different clinical presentations, from asymptomatic to severe disease. Macrophages play an important role in the control of Leishmania infection. Although it is not an area of intense study, some data suggest a role for canine macrophages in parasite killing by a NO-dependent mechanism. It has been proposed that control of human disease could be possible with the development of an effective vaccine against canine visceral leishmaniasis. Development of a rapid in vitro test to predict animal responses to Leishmania infection or vaccination should be helpful. In this study, an in vitro model was established to test whether peripheral blood mononuclear cell (PBMC) supernatants from dogs immunized with promastigote lysates and infected with L. chagasi promastigotes could stimulate macrophages from healthy dogs in order to control parasite infection. PBMC from a majority of the immunized and experimentally infected dogs expressed IFN-gamma mRNA and secreted IFN-gamma when stimulated with soluble L. chagasi antigen (SLA) in vitro. Additionally, the supernatants from stimulated PBMC were able to reduce the percentage of infected donor macrophages. The results also indicate that parasite killing in this system is dependent on NO, since aminoguanidine (AMG) reversed this effect. This in vitro test appears to be useful for screening animal responses to parasite inoculation as well as studying the lymphocyte effector mechanisms involved in pathogen killing by canine macrophages. PMID:17045743

  4. Antagonism of miR-328 Increases the Antimicrobial Function of Macrophages and Neutrophils and Rapid Clearance of Non-typeable Haemophilus Influenzae (NTHi) from Infected Lung

    PubMed Central

    Tay, Hock L.; Kaiko, Gerard E.; Plank, Maximilian; Li, JingJing; Maltby, Steven; Essilfie, Ama-Tawiah; Jarnicki, Andrew; Yang, Ming; Mattes, Joerg; Hansbro, Philip M.; Foster, Paul S.

    2015-01-01

    Pathogenic bacterial infections of the lung are life threatening and underpin chronic lung diseases. Current treatments are often ineffective potentially due to increasing antibiotic resistance and impairment of innate immunity by disease processes and steroid therapy. Manipulation miRNA directly regulating anti-microbial machinery of the innate immune system may boost host defence responses. Here we demonstrate that miR-328 is a key element of the host response to pulmonary infection with non-typeable haemophilus influenzae and pharmacological inhibition in mouse and human macrophages augments phagocytosis, the production of reactive oxygen species, and microbicidal activity. Moreover, inhibition of miR-328 in respiratory models of infection, steroid-induced immunosuppression, and smoke-induced emphysema enhances bacterial clearance. Thus, miRNA pathways can be targeted in the lung to enhance host defence against a clinically relevant microbial infection and offer a potential new anti-microbial approach for the treatment of respiratory diseases. PMID:25894560

  5. Antimicrobial proteins of murine macrophages.

    PubMed Central

    Hiemstra, P S; Eisenhauer, P B; Harwig, S S; van den Barselaar, M T; van Furth, R; Lehrer, R I

    1993-01-01

    Three murine microbicidal proteins (MUMPs) were purified from cells of the murine macrophage cell line RAW264.7 that had been activated by gamma interferon. Similar proteins were also present in nonactivated RAW264.7 cells, in cells of the murine macrophage cell line J774A.1, and in resident and activated murine peritoneal macrophages. MUMP-1, MUMP-2, and MUMP-3 killed Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Mycobacterium fortuitum, and Cryptococcus neoformans in vitro. MUMP-1 resembled an H1 histone but was unusual because its N-terminal residue (serine) was not N acetylated. Although MUMP-2 was N terminally blocked, its high lysine/arginine ratio and its reactivity with an antibody to H1 histones suggested that it also belonged to the H1 histone family. MUMP-3 was identical to histone H2B in 30 of 30 amino-terminal residues. Although the antimicrobial properties of histones have been recognized for decades, this is the first evidence that such proteins may endow the lysosomal apparatus of macrophages with nonoxidative antimicrobial potential. Other MUMPs, including some with a more restricted antimicrobial spectrum and one that appeared to be induced in RAW264.7 cells after gamma interferon stimulation, were noted but remain to be characterized. Images PMID:8514411

  6. Targeting Macrophages Sensitizes Chronic Lymphocytic Leukemia to Apoptosis and Inhibits Disease Progression.

    PubMed

    Galletti, Giovanni; Scielzo, Cristina; Barbaglio, Federica; Rodriguez, Tania Véliz; Riba, Michela; Lazarevic, Dejan; Cittaro, Davide; Simonetti, Giorgia; Ranghetti, Pamela; Scarfò, Lydia; Ponzoni, Maurilio; Rocchi, Martina; Corti, Angelo; Anselmo, Achille; van Rooijen, Nico; Klein, Christian; Ries, Carola H; Ghia, Paolo; De Palma, Michele; Caligaris-Cappio, Federico; Bertilaccio, Maria Teresa Sabrina

    2016-02-23

    The role of monocytes/macrophages in the development and progression of chronic lymphocytic leukemia (CLL) is poorly understood. Transcriptomic analyses show that monocytes/macrophages and leukemic cells cross talk during CLL progression. Macrophage depletion impairs CLL engraftment, drastically reduces leukemic growth, and favorably impacts mouse survival. Targeting of macrophages by either CSF1R signaling blockade or clodrolip-mediated cell killing has marked inhibitory effects on established leukemia also. Macrophage killing induces leukemic cell death mainly via the TNF pathway and reprograms the tumor microenvironment toward an antitumoral phenotype. CSF1R inhibition reduces leukemic cell load, especially in the bone marrow, and increases circulating CD20(+) leukemic cells. Accordingly, co-targeting TAMs and CD20-expressing leukemic cells provides a survival benefit in the mice. These results establish the important role of macrophages in CLL and suggest therapeutic strategies based on interfering with leukemia-macrophage interactions. PMID:26876171

  7. Reactive oxygen species-mediated bacterial killing by B lymphocytes.

    PubMed

    Kovács, István; Horváth, Magdolna; Lányi, Árpád; Petheő, Gábor L; Geiszt, Miklós

    2015-06-01

    Regulated production of ROS is mainly attributed to Nox family enzymes. In neutrophil granulocytes and macrophages, Nox2 has a crucial role in bacterial killing, and the absence of phagocytic ROS production leads to the development of CGD. Expression of Nox2 was also described in B lymphocytes, where the role of the enzyme is still poorly understood. Here, we show that peritoneal B cells, which were shown recently to possess phagocytic activity, have a high capacity to produce ROS in a Nox2-dependent manner. In phagocytosing B cells, intense intraphagosomal ROS production is detected. Finally, by studying 2 animal models of CGD, we demonstrate that phagocyte oxidase-deficient B cells have a reduced capacity to kill bacteria. Our observations extend the number of immune cell types that produce ROS to kill pathogens. PMID:25821233

  8. Charged conformal Killing spinors

    SciTech Connect

    Lischewski, Andree

    2015-01-15

    We study the twistor equation on pseudo-Riemannian Spin{sup c}-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space.

  9. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  10. Macrophage Depletion by Free Bisphosphonates and Zoledronate-Loaded Red Blood Cells

    PubMed Central

    Sabatino, Raffaella; Antonelli, Antonella; Battistelli, Serafina; Schwendener, Reto; Magnani, Mauro; Rossi, Luigia

    2014-01-01

    Bisphosphonates, besides being important drugs for the treatment of various bone diseases, could also be used to induce apoptosis in macrophage-like and cancer cells. However, their activity in vivo is limited by a short plasma half-life and rapid uptake within bone. Therefore, several delivery systems have been proposed to modify their pharmacokinetic profile and biodistribution. Among these, red blood cells (RBCs) represent one of the most promising biological carriers. The aim of this study was to select the best performing compound among Clodronate, Pamidronate, Ibandronate and Zoledronate in killing macrophages and to investigate RBCs as innovative carrier system to selectively target bisphosphonates to macrophages. To this end, the encapsulation of the selected bisphosphonates in autologous RBCs as well as the effect on macrophages, both in vitro and in vivo were studied. This work shows that, among the tested bisphosphonates, Zoledronate has proven to be the most active molecule. Human and murine RBCs have been successfully loaded with Zoledronate by a procedure of hypotonic dialysis and isotonic resealing, obtaining a dose-dependent drug entrapment with a maximal loading of 7.96±2.03, 6.95±3.9 and 7.0±1.89 µmoles of Zoledronate/ml of packed RBCs for human, Swiss and Balb/C murine RBCs, respectively. Engineered RBCs were able to detach human and murine macrophages in vitro, leading to a detachment of 66±8%, 67±8% and 60.5±3.5% for human, Swiss and Balb/C RBCs, respectively. The in vivo efficacy of loaded RBCs was tested in Balb/C mice administering 59 µg/mouse of RBC-encapsulated Zoledronate. By a single administration, depletion of 29.0±16.38% hepatic macrophages and of 67.84±5.48% spleen macrophages was obtained, confirming the ability of encapsulated Zoledronate to deplete macrophages in vivo. In conclusion, RBCs loaded with Zoledronate should be considered a suitable system for targeted delivery to macrophages, both in vitro and in vivo. PMID

  11. Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth

    PubMed Central

    Yoon, Yina; Na, Yirang; Kim, Bum-Joon; Seok, Seung Hyeok

    2016-01-01

    Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular traps (METs) in host defense responses against Mycobacterium massiliense (M. mass) has yet to be described. In this study, we show that M. mass, a rapid growing mycobacterium (RGM), also induces the release of METs from PMA-differentiated THP-1 cells. Intriguingly, this process is not dependent on NADPH oxidase activity, which regulates NET formation. Instead, M. mass-induced MET formation partially depends on calcium influx and requires phagocytosis of high bacterial load. The METs consist of a DNA backbone embedded with microbicidal proteins such as histone, MPO and elastase. Released METs entrap M. mass and prevent their dissemination, but do not have bactericidal activity. Instead, they result in enhanced bacterial growth. In this regard, METs were considered to provide interaction of M. mass with cells and an environment for bacterial aggregation, which may facilitate mycobacterial survival and growth. In conclusion, our results demonstrate METs as an innate defense response against M. mass infection, and suggest that extracellular traps play a multifaceted role in the interplay between host and bacteria. PMID:27191593

  12. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages.

    PubMed

    Filardy, A A; He, J; Bennink, J; Yewdell, J; Kelsall, B L

    2016-07-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes and yet produce regulatory cytokines. Activity of the NLRP3 (nucleotide-binding leucine-rich repeat-containing pyrin receptor 3) inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death, must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation owing to a remarkable level of posttranscriptional control of NLRP3 and pro-interleukin-1β (proIL-1β) protein expression, which was also seen for tumor necrosis factor-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein but not mRNA levels in resident cMPs, implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic posttranscriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation, findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases. PMID:26627461

  13. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    SciTech Connect

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72h functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.

  14. It is all about fluidity: Fatty acids and macrophage phagocytosis.

    PubMed

    Schumann, Julia

    2016-08-15

    Phagocytosis is an early and fundamental step for the effective clearance of disease causing agents. The ability to engulf and kill pathogens is considered as a major effector function of macrophages. In their phagocytic role macrophages are part of the first line of innate immune defense. A number of studies investigating fatty acid effects on macrophage phagocytosis have been conducted over many years. In vitro-data consistently report that alterations in macrophage membrane fatty acid composition are linked to an altered phagocytic capacity, i.e. an increase in membrane unsaturated fatty acid content is associated with an increase in engulfment and killing rate. The mode of action of fatty acids seems to be the modulation of the physical nature of the macrophage plasma membrane. It appears that the saturated-to-unsaturated fatty acid ratio of macrophage membrane phospholipids is of importance in determining macrophage phagocytic capacity. Available in vivo-data are less clear. At present, there is a lack of systematic studies elucidating key factors such as fatty acid efficacy, effective dose or dosing intervals. Without this knowledge the targeted modulation of macrophage phagocytosis in vivo by fatty acids is still a distant possibility. PMID:25987422

  15. Kill operation requires thorough analysis

    SciTech Connect

    Abel, L.W.

    1995-05-15

    Full control of a blowout well requires a properly designed post-capping kill operation because failures in regaining well control usually occur during the kill operation, not during capping. Capping (the installation of pressure control or diverter equipment on the wellhead) is generally very reliable in gaining control of a blowout well. The following techniques are some of the viable means of killing blowout wells once the capping assemblies are in place: direct shut in of the flow; bullheading; momentum kill; volumetric control for migration of fluids or lubrication after migration ceases; and dynamic kills (friction-based dynamic kills or mass flow rate kills) The objective of most post-capping operations is to stop the flow and put the well under hydrostatic control. The means of killing a blowout once capping assemblies are in place should be chosen with care to avoid problems such as cratering, equipment failure, and underground blowouts. The particular circumstances and well integrity will dictate which kill method will be the most viable. Each of these five methods are explained.

  16. Effects of murine leukemia virus env gene proteins on macrophage-mediated cytotoxicity in vitro

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    F5b Tumor cells were incubated with concentrated culture supernatants taken from cells resistant (F5m) or sensitive (F5b) to contact-dependent macrophage cytotoxicity. Macrophage cell line B6MP102 and murine peritoneal macrophages killed targets incubated with supernatants taken from sensitive cells but poorly killed cells incubated in supernatants isolated from resistant cells. Membranes from cells resistant to macrophage killing, F5m, were fused into F5b cells. The fused F5b cells were killed significantly less than F5b cells fused with F5b cell membranes or untreated F5b cells. The decreased killing of F5b cells corresponded to increased concentrations of gp70(a) molecules on F5b cells. Affinity purified gp70(a) was added to cytotoxicity assays but failed to inhibit macrophage cytotoxicity. P15E molecules were detectable on both F5b and F5m cells. In addition, a synthetic peptide found to exhibit the inhibitory properties of p15E was added to cytotoxicity assays. P15E synthetic peptide also did not inhibit macrophage cytotoxicity. Therefore, env gene proteins of murine leukemia virus do not appear responsible for inducing tumor cell resistance to activated macrophage contact-dependent cytotoxicity.

  17. Elimination of Leishmania donovani amastigotes by activated macrophages.

    PubMed Central

    Haidaris, C G; Bonventre, P F

    1981-01-01

    Tissue macrophages are the obligatory host cells for Leishmania donovani, the causative agent of visceral leishmaniasis. In this study we sought to determine whether activated macrophages, as defined by the functional criterion of tumor cell cytotoxicity, were also able to exert a microbicidal effect on ingested L. donovani amastigotes. We found that mouse peritoneal macrophages activated by a variety of means exerted a cytotoxic effect on tumor cell targets but were not able to kill L. donovani amastigotes unless the infected macrophages were exposed continually to an activating stimulus. Corynebacterium parvum, Mycobacterium tuberculosis H37Ra, and lymphokine-activated peritoneal macrophages from C57BL/6J mice were cytotoxic for EMT6 tumor cell targets. However, L. donovani Sudan strain 1S amastigotes were not killed by these macrophages unless the activated state was maintained by daily addition of lymphokine to the infected monolayers for several days postinfection. The killing of amastigotes was dependent on the time of exposure to lymphokine, as well as on the concentration of lymphokine added to the culture. Images PMID:7287190

  18. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum.

    PubMed

    Leibovich, S J; Ross, R

    1975-01-01

    The role of the monocyte/macrophage in wound repair has been investigated by studying the healing process in wounds depleted of this cell and/or its phagocytic activity. Hydrocortisone acetate (0.6 mg/g body weight) administered as a subcutaneous depot was used to induce a prolonged monocytopenia in guinea pigs, and antimacrophage serum (AMS) was used for local elimination of tissue macrophages. In vitro, the presence of complement, macrophages are rapidly lysed and used killed by AMS. In the absence of complement, AMS is not cytotoxic but potently inhibits adherence to and phagocytosis of opsonized erythrocytes by macrophages. AMS titers were obtained by observation of adherence and phagocytosis of opsonized erythrocytes in serial dilutions of AMS. Six groups of animals were studied: a) untreated animals, b)animals receiving daily subcutaneous injections of normal rabbit serum (NRS) around each wound, c)animals receiving daily subcutaneous AMS around each wound, d)animals receiving systemic hydrocortisone, e)animals receiving systemic hydrocortisone and daily injections of NRS around each wound, and f)animals receiving systemic hydrocortisone and daily AMS around each wound. Wounds consisted of a series of six linear incisions in the dorsal skin. Subcutaneous AMS alone has no effect on the number of circulating monocytes, nor was there any observable effect on the number or the phagocytic ability of wound macrophages. Fibrosis in these wounds was unaffected. Systemic hydrocortisone induced a prolonged monocytopenia. The macrophage level in the wounds of these monocytopenic animals was reduced to approximately one-third that of controls; the phagocytic activity of the monocytes/macrophages that did appear in these wounds was, however, similar to that of controls. Some inhibition of wound debridement was observed in these wounds, but fibrosis was virtually unaffected. Collagen synthesis, as judged morphometrically, was similar to that of control wounds at all stages

  19. Macrophages in resistance to candidiasis.

    PubMed Central

    Vázquez-Torres, A; Balish, E

    1997-01-01

    Candida albicans, an increasingly common opportunistic pathogenic fungus, frequently causes disease in immunodeficient but not immunocompetent hosts. Clarifying the role of the phagocytic cells that participate in resistance to candidiasis not only is basic to understanding how the host copes with this dimorphic pathogen but also will expedite the development of innovative prophylactic and therapeutic approaches for treating the multiple clinical presentations that candidiasis encompasses. In this review, we present evidence that a diverse population of mononuclear phagocytes, in different states of activation and differentiation and from a variety of host species, can phagocytize C. albicans blastoconidia via an array of opsonic and nonopsonic mechanisms and can kill C. albicans blastoconidia and hyphae by means of oxygen-dependent and -independent mechanisms. Reactive nitrogen intermediates should now be added to the well-established candidacidal reactive oxygen intermediates of macrophages. Furthermore, what were thought to be two independent pathways, i.e., nitric oxide and superoxide anion, have now been shown to combine to form a potent macrophage candidacidal molecule, peroxynitrite. In contrast to monocytes and neutrophils, which are important in resistance to early stages of C. albicans infections, more differentiated macrophages activated by cytokines such as gamma interferon participate in the acquired resistance of hosts with C. albicans-specific, cell-mediated immunity. Evidence presented in this review demonstrates that mononuclear phagocytes, in some instances in the absence of other professional phagocytes such as neutrophils, play an import role in resistance to systemic and mucosal candidiasis. PMID:9184009

  20. Modulating macrophage response to biomaterials

    NASA Astrophysics Data System (ADS)

    Zaveri, Toral

    Zn, parameters which are likely interdependent. Considering the toxicity of ZnO nanorod surface towards macrophages, their role as an antibacterial surface was explored. Antibacterial coating approaches are being investigated to modify implants to reduce bacterial adhesion and viability in order to reduce implant-associated infection. To assess the efficacy of ZnO nanorod surfaces as an anti-bacterial coating, we evaluated bacterial adhesion and viability, compared to sputtered ZnO and glass substrates. Common implant-associated pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis were investigated. ZnO nanorod surface and sputtered ZnO demonstrated a significant bactericidal effect, killing respectively 2.5x and 1.7x times the number of bacteria dead on glass. A similar bactericidal effect of ZnO substrates on S. epidermidis was also evident, with sputtered ZnO and ZnO nanorod substrates killing respectively 22x and 32x times bacteria dead on glass. These data support the further investigation of ZnO nanorod coatings for bacterial adhesion resistance and bactericidal properties.

  1. How electroshock weapons kill!

    NASA Astrophysics Data System (ADS)

    Lundquist, Marjorie

    2010-03-01

    Growing numbers of law enforcement officers now carry an electroshock weapon (ESW). Over 500 U.S. deaths have followed ESW use in the past 26 years; over 450 of these deaths followed use of an electromuscular disruptor in the past 9 years. Most training courses teach that ESWs are safe; that they can kill only by the direct effect of electric current on the heart; and that a death following use of an ESW always has some other cause. All these teachings are false! The last was disproved by Lundquist.^1 Williams^2 ruled out direct electrical effects as a cause of almost all the 213 deaths he studied, leaving disruption of normal physiological processes as the only alternative explanation. Careful study of all such deaths identifies 4 different ways that death has or could have been brought about by the ESW: kidney failure following rhabdomyolysis [rare]; cardiac arrest from hyperkalemia following rhabdomyolysis [undocumented]; lactic acid-induced ventricular fibrillation [conclusive proof impossible]; and [most common] anoxia from so much lactic acid in the circulating blood that it acts as an oxygen scavenger, continuously depleting the blood of oxygen until most of the lactate has been metabolized. ^1M. Lundquist, BAPS 54(1) K1.270(2009). ^2Howard E. Williams, Taser Electronic Control Devices and Sudden In-Custody Death, 2008.

  2. Induction of heme oxygenase-1 contributes to survival of Mycobacterium abscessus in human macrophages-like THP-1 cells

    PubMed Central

    Abdalla, Maher Y.; Ahmad, Iman M.; Switzer, Barbara; Britigan, Bradley E.

    2015-01-01

    Mycobacterium abscessus (M.abs) is a rapidly growing mycobacterial species that infects macrophages, and is an important pathogen in patients with cystic fibrosis. We studied the early stages of M.abs infection of macrophages, with emphasis on the role of heme-oxygenase-1 (HO-1) in this infection. THP-1 cells were activated using TPA into macrophage-like cells and infected with M.abs for different time points. M.abs infection robustly induced HO-1 expression in the THP-1 cells. Production of HO-1 was p38 MAPK-dependent, as p38 inhibitors suppressed HO-1 induction. Pretreatment with HO-1 inhibitors tin-protoporphyrin (SnPP) significantly inhibited M.abs growth inside macrophages. Furthermore, inhibiting HO-1 using HO-1 siRNA or the HO-1 upstream signaling molecule; Nrf2 using Nrf2 siRNA resulted in similar inhibition of M.abs. In contrast, inducing HO-1 did not increase M.abs intracellular growth above control. Products of HO-1 metabolism of heme are bilirubin, biliverdin, carbon monoxide (CO) and iron. The addition of either bilirubin or biliverdin, but not CO, completely restored the SnPP inhibitory effect and partially that with HO-1 siRNA. To understand the mechanisms, we used Syto-62 labeled M.abs to infect macrophages. Interestingly, HO-1 inhibition promoted M.abs-containing phagosome fusion with lysosomes, which should enhance M.abs killing. M.abs infection enhanced THP-1 ROS production as demonstrated by increased DHE, DCF fluorescence, and EPR signal. HO-1 inhibition further increased ROS production in infected macrophages. Our results indicate that HO-1 induction is important for M.abs growth during the early stages of infection, and that the HO-1 products bilirubin and biliverdin, perhaps through modulation of intracellular ROS levels, may be involved. PMID:25638774

  3. Porcine Sialoadhesin (CD169/Siglec-1) Is an Endocytic Receptor that Allows Targeted Delivery of Toxins and Antigens to Macrophages

    PubMed Central

    Favoreel, Herman W.; Hoebeke, Inge; Delrue, Iris; Dewerchin, Hannah; Verdonck, Frank; Verhasselt, Bruno; Cox, Eric; Nauwynck, Hans J.

    2011-01-01

    Sialoadhesin is exclusively expressed on specific subpopulations of macrophages. Since sialoadhesin-positive macrophages are involved in inflammatory autoimmune diseases, such as multiple sclerosis, and potentially in the generation of immune responses, targeted delivery of drugs, toxins or antigens via sialoadhesin-specific immunoconjugates may prove a useful therapeutic strategy. Originally, sialoadhesin was characterized as a lymphocyte adhesion molecule, though recently its involvement in internalization of sialic acid carrying pathogens was shown, suggesting that sialoadhesin is an endocytic receptor. In this report, we show that porcine sialoadhesin-specific antibodies and F(ab')2 fragments trigger sialoadhesin internalization, both in primary porcine macrophages and in cells expressing recombinant porcine sialoadhesin. Using chemical inhibitors, double immunofluorescence stainings and dominant-negative constructs, porcine sialoadhesin internalization was shown to be clathrin- and Eps15-dependent and to result in targeting to early endosomes but not lysosomes. Besides characterizing the sialoadhesin endocytosis mechanism, two sialoadhesin-specific immunoconjugates were evaluated. We observed that porcine sialoadhesin-specific immunotoxins efficiently kill sialoadhesin-expressing macrophages. Furthermore, porcine sialoadhesin-specific albumin immunoconjugates were shown to be internalized in macrophages and immunization with these immunoconjugates resulted in a rapid and robust induction of albumin-specific antibodies, this compared to immunization with albumin alone. Together, these data expand sialoadhesin functionality and show that it can function as an endocytic receptor, a feature that cannot only be misused by sialic acid carrying pathogens, but that may also be used for specific targeting of toxins or antigens to sialoadhesin-expressing macrophages. PMID:21359217

  4. Peroxynitrite, a potent macrophage-derived oxidizing cytotoxin to combat invading pathogens

    PubMed Central

    Prolo, Carolina; Álvarez, María Noel; Radi, Rafael

    2013-01-01

    Macrophages are among the first cellular actors facing the invasion of microorganisms. These cells are able to internalize pathogens and destroy them by means of toxic mediators, many of which are produced enzymatically and have strong oxidizing capacity. Indeed, macrophages count on the NADPH oxidase complex activity, which is triggered during pathogen invasion and leads to the production of superoxide radical inside the phagosome. At the same time, the induction of nitric oxide synthase results in the production of nitric oxide in the cytosol which is able to readily diffuse to the phagocytic vacuole. Superoxide radical and nitric oxide react at diffusion controlled rates with each other inside the phagosome to yield peroxynitrite, a powerful oxidant capable to kill microorganisms. Peroxynitrite toxicity resides on oxidations and nitrations of biomolecules in the target cell. The central role of peroxynitrite as a key effector molecule in the control of infections has been proven in a wide number of models. However, some microorganisms and virulent strains adapt to survive inside the potentially hostile oxidizing microenvironment of the phagosome by either impeding peroxynitrite formation or rapidly detoxifying it once formed. In this context, the outcome of the infection process is a result of the interplay between the macrophage-derived oxidizing cytotoxins such as peroxynitrite and the antioxidant defense machinery of the invading pathogens. PMID:24281946

  5. Protective and pathogenic functions of macrophage subsets.

    PubMed

    Murray, Peter J; Wynn, Thomas A

    2011-11-01

    Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals. They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals. In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis. We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing. Finally, we briefly discuss the characterization of macrophage heterogeneity in humans. PMID:21997792

  6. How Mouse Macrophages Sense What Is Going On

    PubMed Central

    Ley, Klaus; Pramod, Akula Bala; Croft, Michael; Ravichandran, Kodi S.; Ting, Jenny P.

    2016-01-01

    Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines. PMID:27313577

  7. Decreased glycogen synthase kinase 3-beta levels and related physiological changes in Bacillus anthracis lethal toxin-treated macrophages.

    PubMed

    Tucker, Amy E; Salles, Isabelle I; Voth, Daniel E; Ortiz-Leduc, William; Wang, Han; Dozmorov, Igor; Centola, Michael; Ballard, Jimmy D

    2003-08-01

    The lethal factor (LF) component of Bacillus anthracis lethal toxin (LeTx) cleaves mitogen activated protein kinase kinases (MAPKKs) in a variety of different cell types, yet only macrophages are rapidly killed by this toxin. The reason for this selective killing is unclear, but suggests other factors may also be involved in LeTx intoxication. In the current study, DNA membrane arrays were used to identify broad changes in macrophage physiology after treatment with LeTx. Expression of genes regulated by MAPKK activity did not change significantly, yet a series of genes under glycogen synthase kinase-3-beta (GSK-3beta) regulation changed expression following LeTx treatment. Correlating with these transcriptional changes GSK-3beta was found to be below detectable levels in toxin-treated cells and an inhibitor of GSK-3beta, LiCl, sensitized resistant IC-21 macrophages to LeTx. In addition, zebrafish embryos treated with LeTx showed signs of delayed pigmentation and cardiac hypertrophy; both processes are subject to regulation by GSK-3beta. A putative compensatory response to loss of GSK-3beta was indicated by differential expression of three motor proteins following toxin treatment and Kif1C, a motor protein involved in sensitivity to LeTx, increased expression in toxin-sensitive cells yet decreased in resistant cells following toxin treatment. Differential expression of microtubule-associating proteins and a decrease in the level of cellular tubulin were detected in LeTx-treated cells, both of which can result from loss of GSK-3beta activity. These data provide new information on LeTx's overall influence on macrophage physiology and suggest loss of GSK-3beta contributes to cytotoxicity. PMID:12864812

  8. The human alveolar macrophage: isolation, cultivation in vitro, and studies of morphologic and functional characteristics.

    PubMed

    Cohen, A B; Cline, M J

    1971-07-01

    Human alveolar macrophages were lavaged from surgically resected lungs and from lungs of normal subjects. Macrophages that had been purified by glass adherence were maintained in tissue culture for as long as 54 days. After 3-4 wk in vitro they underwent transformation into multinucleated giant cells. These aged cells had more than 30 times the phagocytic capacity that the same group of cells had had after 1 day in vitro. Phagocytosis of heat-killed Candida albicans was inhibited by iodoacetate, sodium fluoride, potassium cyanide, and low partial pressures of oxygen, suggesting that these cells require both oxidative and glycolytic energy sources for maximal particle ingestion. Alveolar macrophages and monocyte-derived macrophages killed Listeria monocytogenes with similar efficiency, but neutrophils were more efficient than either of the other cell types. Bacterial killing is probably not dependent upon myeloperoxidase in the monocyte-derived macrophage or in the alveolar macrophage since histochemical stains for peroxidase do not stain either cell type. C. albicans blastospores, which are killed by neutrophils and monocytes that contain myeloperoxidase, were not killed by human alveolar macrophages during the 4 hr of observation. Large cells with supernormal phagocytic capacity were recovered from patients with postobstructive pheumonia and from one patient with recurrent bacterial pneumonia, indicating that macrophage function can be altered in certain disease states. Human alveolar macrophages are unique human phagocytes in their dependence on an oxygen tension greater than 25 mm HG for maximal phagocytosis. Carbon dioxide tensions as high as 70 mm Hg did not alter phagocytosis when the pH of the medium was held constant. These data suggest that the increased susceptibility to pneumonia of patients with chronic bronchitis or atelectasis may be in part related to suboptimal phagocytosis by macrophages in areas of the lung with depressed oxygen tension. PMID

  9. Notes on super Killing tensors

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Lindström, U.

    2016-03-01

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.

  10. Bacterial Killing by Dry Metallic Copper Surfaces▿

    PubMed Central

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important first steps for revealing the molecular sensitive targets in cells lethally challenged by exposure to copper surfaces and provide a scientific explanation for the use of copper surfaces as antimicrobial agents for supporting public hygiene. PMID:21148701

  11. Macrophage phenotypes in atherosclerosis.

    PubMed

    Colin, Sophie; Chinetti-Gbaguidi, Giulia; Staels, Bart

    2014-11-01

    Initiation and progression of atherosclerosis depend on local inflammation and accumulation of lipids in the vascular wall. Although many cells are involved in the development and progression of atherosclerosis, macrophages are fundamental contributors. For nearly a decade, the phenotypic heterogeneity and plasticity of macrophages has been studied. In atherosclerotic lesions, macrophages are submitted to a large variety of micro-environmental signals, such as oxidized lipids and cytokines, which influence the phenotypic polarization and activation of macrophages resulting in a dynamic plasticity. The macrophage phenotype spectrum is characterized, at the extremes, by the classical M1 macrophages induced by T-helper 1 (Th-1) cytokines and by the alternative M2 macrophages induced by Th-2 cytokines. M2 macrophages can be further classified into M2a, M2b, M2c, and M2d subtypes. More recently, additional plaque-specific macrophage phenotypes have been identified, termed as Mox, Mhem, and M4. Understanding the mechanisms and functional consequences of the phenotypic heterogeneity of macrophages will contribute to determine their potential role in lesion development and plaque stability. Furthermore, research on macrophage plasticity could lead to novel therapeutic approaches to counteract cardiovascular diseases such as atherosclerosis. The present review summarizes our current knowledge on macrophage subsets in atherosclerotic plaques and mechanism behind the modulation of the macrophage phenotype. PMID:25319333

  12. HIV-1 assembly in macrophages

    PubMed Central

    2010-01-01

    The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV) particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport) machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective roles in infected cells

  13. Formation fracturing kills Indonesian blowout

    SciTech Connect

    Wizyodiazjo, S.; Salech, M.; Sumanta, K.

    1982-11-15

    Dynamic killing methods without fracturing could not be applied in killing PT-29 blowout, due to the reservoir rock properties (shaley sand formation). A special fracturing and acidizing technique was required in order to allow the calculated kill rate of 40 bbl/ min. A low injection rate of 0.5 bbl/min with high injection pressure of 1,250 psi occurred due to a degree of formation damage and the mud cake covering the sand face. The calculated formation fracture pressure of 1,393 psi was a reliable value compared to actual fracture pressure of 1,400 psi. The designed killing rate of 40 bbl/ min could not reach the blowout well due to some leak-off of the injected fluid in unexpected directions of the induced fractures. Clearing PT-29 of all debris was very important for immediate well capping. The capping operation was done after the fire was extinguished; although the well was still flowing gas and water, no hazard of explosion was detected. The exact subsurface position of the blowout well of PT-29 was uncertain due to the lack of directional survey data. This problem reduced the effectiveness of the killing operation. A reliable water supply is important to the success of the killing job. Once the fracture had been induced, kill fluid had to be pumped continuously; any interruption might cause the fracture to heal. Deviation and directional survey data on every vertical or directional well are absolutely important for accurate relief well drilling purposes in case it is required.

  14. In Vitro Killing of Mycobacterium ulcerans by Acidified Nitrite

    PubMed Central

    Phillips, R.; Kuijper, S.; Benjamin, N.; Wansbrough-Jones, M.; Wilks, M.; Kolk, A. H. J.

    2004-01-01

    Mycobacterium ulcerans, which causes Buruli ulcer, was exposed to acidified nitrite or to acid alone for 10 or 20 min. Killing was rapid, and viable counts were reduced below detectable limits within 10 min of exposure to 40 mM acidified nitrite. M. ulcerans is highly susceptible to acidified nitrite in vitro. PMID:15273132

  15. Killing, letting die and euthanasia.

    PubMed

    Husak, D N

    1979-12-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible. PMID:541821

  16. Enhanced resistance against Listeria monocytogenes at an early phase of primary infection in pregnant mice: activation of macrophages during pregnancy.

    PubMed Central

    Watanabe, Y; Mitsuyama, M; Sano, M; Nakano, H; Nomoto, K

    1986-01-01

    We investigated the pregnancy-induced changes in macrophage activity which are important in the expression of host defense against infections. Several macrophage functions were examined by using Listeria monocytogenes. In pregnant mice, prolonged survival and enhanced in vivo elimination of bacteria were observed in the early phase of primary infection. Functions of peritoneal macrophages, including in vitro phagocytosis intracellular killing, glucose consumption, generation of superoxide anion, and intracellular beta-glucuronidase activity were shown to be enhanced in pregnant mice. These findings indicate that pregnancy enhances macrophage functions qualitatively. Possible mechanisms for this enhancement and the significance of macrophage activation for pregnant hosts are discussed. PMID:3011673

  17. Electron microscopic study on the interaction between normal guinea pig peritoneal macrophages and Coxiella burnetii.

    PubMed Central

    Kishimoto, R A; Veltri, B J; Canonico, P G; Shirey, F G; Walker, J S

    1976-01-01

    An electron microscopic study was conducted to explore the interaction between normal guinea pig peritoneal macrophages and phase I and II Coxeilla burnetii previously treated with either normal or immune serum. A comparison was made on the efficiency of phagocytosis and subsequent killing of rickettsiae by macrophages. Both phases of rickettsiae previously treated with normal serum multiplied within phagosomes after phagocytosis with resultant destruction of macrophages. In contrast, suspending rickettsiae in immune serum rendered them more susceptible to phagocytosis and potentiated their destruction within macrophages. Images PMID:825466

  18. Proteophosophoglycans Regurgitated by Leishmania-Infected Sand Flies Target the L-Arginine Metabolism of Host Macrophages to Promote Parasite Survival

    PubMed Central

    Rogers, Matthew; Kropf, Pascale; Choi, Beak-San; Dillon, Rod; Podinovskaia, Maria; Bates, Paul; Müller, Ingrid

    2009-01-01

    All natural Leishmania infections start in the skin; however, little is known of the contribution made by the sand fly vector to the earliest events in mammalian infection, especially in inflamed skin that can rapidly kill invading parasites. During transmission sand flies regurgitate a proteophosphoglycan gel synthesized by the parasites inside the fly midgut, termed promastigote secretory gel (PSG). Regurgitated PSG can exacerbate cutaneous leishmaniasis. Here, we show that the amount of Leishmania mexicana PSG regurgitated by Lutzomyia longipalpis sand flies is proportional to the size of its original midgut infection and the number of parasites transmitted. Furthermore, PSG could exacerbate cutaneous L. mexicana infection for a wide range of doses (10–10,000 parasites) and enhance infection by as early as 48 hours in inflamed dermal air pouches. This early exacerbation was attributed to two fundamental properties of PSG: Firstly, PSG powerfully recruited macrophages to the dermal site of infection within 24 hours. Secondly, PSG enhanced alternative activation and arginase activity of host macrophages, thereby increasing L-arginine catabolism and the synthesis of polyamines essential for intracellular parasite growth. The increase in arginase activity promoted the intracellular growth of L. mexicana within classically activated macrophages, and inhibition of macrophage arginase completely ablated the early exacerbatory properties of PSG in vitro and in vivo. Thus, PSG is an essential component of the infectious sand fly bite for the early establishment of Leishmania in skin, which should be considered when designing and screening therapies against leishmaniasis. PMID:19696894

  19. Killing symmetries as Hamiltonian constraints

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca

    2016-02-01

    The existence of a Killing symmetry in a gauge theory is equivalent to the addition of extra Hamiltonian constraints in its phase space formulation, which imply restrictions both on the Dirac observables (the gauge invariant physical degrees of freedom) and on the gauge freedom. When there is a time-like Killing vector field only pure gauge electromagnetic fields survive in Maxwell theory in Minkowski space-time, while in ADM canonical gravity in asymptotically Minkowskian space-times only inertial effects without gravitational waves survive.

  20. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1)...

  1. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1)...

  2. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1)...

  3. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1)...

  4. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1)...

  5. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression

    PubMed Central

    Cunningham-Bussel, Amy; Zhang, Tuo; Nathan, Carl F.

    2013-01-01

    In high enough concentrations, such as produced by inducible nitric oxide synthase (iNOS), reactive nitrogen species (RNS) can kill Mycobacterium tuberculosis (Mtb). Lesional macrophages in macaques and humans with tuberculosis express iNOS, and mice need iNOS to avoid succumbing rapidly to tuberculosis. However, Mtb’s own ability to produce RNS is rarely considered, perhaps because nitrate reduction to nitrite is only prominent in axenic Mtb cultures at oxygen tensions ≤1%. Here we found that cultures of Mtb-infected human macrophages cultured at physiologic oxygen tensions produced copious nitrite. Surprisingly, the nitrite arose from the Mtb, not the macrophages. Mtb responded to nitrite by ceasing growth; elevating levels of ATP through reduced consumption; and altering the expression of 120 genes associated with adaptation to acid, hypoxia, nitric oxide, oxidative stress, and iron deprivation. The transcriptomic effect of endogenous nitrite was distinct from that of nitric oxide. Thus, whether or not Mtb is hypoxic, the host expresses iNOS, or hypoxia impairs the action of iNOS, Mtb in vivo is likely to encounter RNS by producing nitrite. Endogenous nitrite may slow Mtb’s growth and prepare it to resist host stresses while the pathogen waits for immunopathology to promote its transmission. PMID:24145454

  6. The Many Alternative Faces of Macrophage Activation.

    PubMed

    Hume, David A

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce "activated macrophages" that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as "classical" and "alternative" or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases that provide

  7. Farm Education at Stony Kill.

    ERIC Educational Resources Information Center

    Parisio, Richard

    1986-01-01

    Describes typical winter farm lessons for students visiting Stony Kill Farm Environmental Education Center located 70 miles north of New York City: butter and corncake making, soil erosion experiments, dissecting and growing seeds. Emphasizes major theme of conservation of farmland from destructive farming practices and careless development. (NEC)

  8. Does Assessment Kill Student Creativity?

    ERIC Educational Resources Information Center

    Beghetto, Ronald A.

    2005-01-01

    Does assessment kill creativity? In this article, creativity is defined and discussed and an overview of creativity and motivational research is provided to describe how assessment practices can influence students' creativity. Recommendations for protecting creativity when assessing students also are provided.

  9. O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages.

    PubMed

    Xisto, Mariana I D S; Bittencourt, Vera C B; Liporagi-Lopes, Livia Cristina; Haido, Rosa M T; Mendonça, Morena S A; Sassaki, Guilherme; Figueiredo, Rodrigo T; Romanos, Maria Teresa V; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  10. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    PubMed Central

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  11. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells

    PubMed Central

    Hall, Brandon M.; Balan, Vitaly; Gleiberman, Anatoli S.; Strom, Evguenia; Krasnov, Peter; Virtuoso, Lauren P.; Rydkina, Elena; Vujcic, Slavoljub; Balan, Karina; Gitlin, Ilya; Leonova, Katerina; Polinsky, Alexander; Chernova, Olga B.; Gudkov, Andrei V.

    2016-01-01

    Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and β-galactosidase activity at pH6.0 (β-galpH6), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/β-galpH6-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/β-galpH6-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/β-galpH6-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/β-galpH6-positive cells and reconsideration of potential cellular target for anti-aging treatment. PMID:27391570

  12. Defects in the oxidative killing of microorganisms by phagocytic leukocytes.

    PubMed

    Roos, D; Weening, R S

    One of the most important mechanisms of phagocytic killing of ingested microorganisms by leukocytes is the generation of toxic oxygen products. During phagocytosis, neutrophils, as well as monocytes and macrophages, display a strongly increased cell respiration. Quantitatively the most important product of this reaction is hydrogen peroxide. Superoxide is also generated in large amounts, probably as an intermediate in the formation of hydrogen peroxide. Indications exist that singlet oxygen and hydroxyl radicals are also formed in this process. Some of these oxygen products have microbicidal properties by themselves. The effect of hydrogen peroxide is greatly enhanced by the enzyme myeloperoxidase. Several dysfunctions of this sytem are known. In chronic granulomatous disease the enzyme system that produces superoxide is not operative. Thus, no superoxide or hydrogen peroxide is generated, leading to a severely decreased bacterial killing capacity. The exact molecular defects in the X-linked and the autosomal form are as yet undefined. Two variants are also known: lipochrome histiocytosis, with different clinical and histological manifestations, and a 'triggering defect' where only strongly opsonized particles trigger the respiratory burst. Myeloperoxidase deficiency leads to slightly decreased killing capacity, especially for yeasts. In glucose-6-phosphate dehydrogenase deficiency no oxygen radicals or hydrogen peroxide are produced because no equivalents for oxygen reduction can be generated in the hexose-monophosphate shunt. Deficiencies in the glutathione redox system also result in impaired phagocyte function, probably because the cells have to be protected against their own toxic oxygen products. PMID:225141

  13. The killing efficiency of soft iron shot

    USGS Publications Warehouse

    Andrews, R.; Longcore, J.R.

    1969-01-01

    A cooperative research effort between the ammunition industry and the Bureau of Sport Fisheries and Wildlife is aimed at finding a suitable non-toxic substitute for lead shot. A contract study by an independent research organization evaluated ways of coating or detoxifying lead shot or replacing it with another metal. As a result of that study, the only promising candidate is soft iron. Previous tests of hard iron shot had suggested that its killing effectiveness was poor at longer ranges due to the lower density. In addition, its hardness caused excessive damage to shotgun barrels. A unique, automated shooting facility was constructed at the Patuxent Wildlife Research Center to test the killing effectiveness of soft iron shot under controlled conditions. Tethered game-farm mallards were transported across a shooting point in a manner simulating free flight. A microswitch triggered a mounted shotgun so that each shot was 'perfect.' A soft iron shot, in Number 4 size, was produced by the ammunition industry and loaded in 12-gauge shells to give optimum ballistic performance. Commercial loads of lead shot in both Number 4 and Number 6 size were used for comparison. A total of 2,010 ducks were shot at ranges of 30 to 65 yards and at broadside and head-on angles in a statistically designed procedure. The following data were recorded for each duck: time until death, broken wing or leg bones, and number of embedded shot. Those ducks not killed outright were held for 10 days. From these data, ducks were categorized as 'probably bagged,' 'probably lost cripples,' or survivors. The test revealed that the killing effectiveness of this soft iron shot was superior to its anticipated performance and close to that obtained with commercial lead loads containing an equal number of pellets. Bagging a duck, in terms of rapid death or broken wing, was primarily dependent on the probability of a shot striking that vital area, and therefore a function of range. There was no indication

  14. Suppression of developmental anomalies by maternal macrophages in mice

    SciTech Connect

    Nomura, T.; Hata, S.; Kusafuka, T. )

    1990-11-01

    We tested whether nonspecific tumoricidal immune cells can suppress congenital malformations by killing precursor cells destined to cause such defects. Pretreatment of pregnant ICR mice with synthetic (Pyran copolymer) and biological (Bacillus Calmette-Guerin) agents significantly suppressed radiation- and chemical-induced congenital malformations (cleft palate, digit anomalies, tail anomalies, etc.). Such suppressive effects were associated with the activation of maternal macrophages by these agents, but were lost either after the disruption of activated macrophages by supersonic waves or by inhibition of their lysosomal enzyme activity with trypan blue. These results indicate that a live activated macrophage with active lysosomal enzymes can be an effector cell to suppress maldevelopment. A similar reduction by activated macrophages was observed in strain CL/Fr, which has a high spontaneous frequency of cleft lips and palates. Furthermore, Pyran-activated maternal macrophages could pass through the placenta, and enhanced urethane-induced cell killing (but not somatic mutation) in the embryo. It is likely that a maternal immunosurveillance system eliminating preteratogenic cells allows for the replacement with normal totipotent blast cells during the pregnancy to protect abnormal development.

  15. Anatomy of a Discovery: M1 and M2 Macrophages

    PubMed Central

    Mills, Charles Dudley

    2015-01-01

    M1 and M2 macrophage-type responses kill or repair in vivo. The unique ability of macrophages to make these polar opposite type of responses provides primary host protection and maintains tissue homeostasis throughout the animal kingdom. In humans and other higher animals, M1 and M2-type macrophage responses also initiate and direct T cells/adaptive immunity to provide additional protection such as Th1 (cytotoxic) or Th2 (antibody-mediated) type responses. Hence, macrophages were renamed M1 and M2 to indicate the central role of macrophages/innate immunity in immune systems. These findings indicate that the long held notion that adaptive immunity controls innate immunity was backward: a sea change in understanding how immune responses occur. The clinical impact of M1/kill and M2/repair responses is immense playing pivotal roles in curing (or causing) many diseases including infections, cancer, autoimmunity, and atherosclerosis. How M1/M2 came to be is an interesting story that, like life, involved Direction, Determination, Discouragement, and Discovery. PMID:25999950

  16. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  17. Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans

    PubMed Central

    Coelho, Carolina; Souza, Ana Camila Oliveira; Derengowski, Lorena da Silveira; de Leon-Rodriguez, Carlos; Wang, Bo; Leon-Rivera, Rosiris; Bocca, Anamelia Lorenzetti; Gonçalves, Teresa; Casadevall, Arturo

    2015-01-01

    Human infection with Cryptococcus neoformans (Cn), a common fungal pathogen follows deposition of yeast spores in the lung alveoli. The subsequent host-pathogen interaction can result in either eradication, latency or extra-pulmonary dissemination. Successful control of Cn infection is dependent on host macrophages but macrophages display little ability to kill Cn in vitro. Recently, we reported that ingestion of Cn by mouse macrophages induces early cell cycle progression followed by mitotic arrest, an event that almost certainly reflects host cell damage. The goal of the present work was to understand macrophage pathways affected by Cn toxicity. Infection of macrophages by Cn was associated with alterations in protein translation rate and activation of several stress pathways such as Hypoxia Inducing Factor-1α (HIF-1α), Receptor-interacting Protein 1 (RIP1) and Apoptosis Inducing Factor (AIF). Concomitantly we observed mitochondrial depolarization in infected macrophages, an observation that was replicated in vivo. We also observed differences in the stress pathways activated depending on macrophage cell type, consistent with the non-specific nature of Cn virulence known to infect phylogenetically distant hosts. Our results indicate that Cn infection impairs multiple host cellular functions and undermines the health of these critical phagocytic cells, which can potentially interfere with their ability to clear this fungal pathogen. PMID:25646306

  18. System xc- regulates microglia and macrophage glutamate excitotoxicity in vivo

    PubMed Central

    Kigerl, Kristina A.; Ankeny, Daniel P.; Garg, Sanjay K.; Wei, Ping; Guan, Zhen; Lai, Wenmin; McTigue, Dana M.; Banerjee, Ruma; Popovich, Phillip G.

    2011-01-01

    It is widely believed that microglia and monocyte-derived macrophages (collectively referred to as central nervous system (CNS) macrophages) cause excitotoxicity in the diseased or injured CNS. This view has evolved mostly from in vitro studies showing that neurotoxic concentrations of glutamate are released from CNS macrophages stimulated with lipopolysaccharide (LPS), a potent inflammogen. We hypothesized that excitotoxic killing by CNS macrophages is more rigorously controlled in vivo, requiring both the activation of the glutamate/cystine antiporter (system xc-) and an increase in extracellular cystine, the substrate that drives glutamate release. Here, we show that non-traumatic microinjection of low-dose LPS into spinal cord gray matter activates CNS macrophages but without causing overt neuropathology. In contrast, neurotoxic inflammation occurs when LPS and cystine are co-injected. Simultaneous injection of NBQX, an antagonist of AMPA glutamate receptors, reduces the neurotoxic effects of LPS+cystine, implicating glutamate as a mediator of neuronal cell death in this model. Surprisingly, neither LPS nor LPS+cystine adversely affects survival of oligodendrocytes or oligodendrocyte progenitor cells. Ex vivo analyses show that redox balance in microglia and macrophages is controlled by induction of system xc- and that high GSH:GSSG ratios predict the neurotoxic potential of these cells. Together, these data indicate that modulation of redox balance in CNS macrophages, perhaps through regulating system xc-, could be a novel approach for attenuating injurious neuroinflammatory cascades. PMID:22079587

  19. Host and Bacterial Factors Involved in the Innate Ability of Mouse Macrophages To Eliminate Internalized Unopsonized Escherichia coli

    PubMed Central

    Hamrick, Terri S.; Havell, Edward A.; Horton, John R.; Orndorff, Paul E.

    2000-01-01

    In an effort to better understand genetic and cellular factors that influence innate immunity, we examined host and bacterial factors involved in the nonopsonic phagocytosis and killing of Escherichia coli K-12 by mouse macrophages. Unelicited (resident) peritoneal macrophages from five different mouse strains, BALB/c, C57BL/6, CD-1, C3H/HeJ, and C3H/HeN, were employed. Additional macrophage populations were obtained from CD-1 mice (bone marrow-derived macrophages). Also, for BALB/c and C57BL/6 mice, peritoneal macrophages elicited with either thioglycolate or proteose peptone, bone marrow-derived macrophages, and macrophage-like cell lines derived from the two strains were employed. Two E. coli K-12 strains that differed specifically in their abilities to produce type 1 pili containing the adhesive protein FimH were examined. The parameters used to assess macrophage bacteriocidal activity were (i) the killing of internalized (gentamicin-protected) E. coli during the approximately 4-h assay and (ii) the initial rate at which internalized E. coli were eliminated. Data on these parameters allowed the following conclusions: (i) unelicited or proteose peptone-elicited peritoneal macrophages were significantly better at eliminating internalized bacteria than thioglycolate-elicited peritoneal macrophages, bone marrow-derived macrophages, or macrophage cell lines; (ii) the host genetic background had no significant effect upon the ability of unelicited peritoneal macrophages to kill E. coli (even though the mouse strains differ widely in their in vivo susceptibilities to bacterial infection); and (iii) the FimH phenotype had no significant effect upon E. coli survival once the bacterium was inside a macrophage. Additionally, there was no correlation between the bacteriocidal effectiveness of a macrophage population and the number of bacteria bound per macrophage. However, macrophage populations that were the least bacteriocidal tended to bind higher ratios of FimH+ to Fim

  20. Binding and killing of bacteria by bismuth subsalicylate.

    PubMed Central

    Sox, T E; Olson, C A

    1989-01-01

    Bismuth subsalicylate (BSS) is a compound without significant aqueous solubility that is widely used for the treatment of gastrointestinal disorders. BSS was able to bind bacteria of diverse species, and these bound bacteria were subsequently killed. A 4-log10 reduction of viable bacteria occurred within 4 h after a 10 mM aqueous suspension of BSS was inoculated with 2 x 10(6) Escherichia coli cells per ml. Binding and killing were dependent on the levels of inoculated bacteria, and significant binding but little killing of the exposed bacteria occurred at an inoculum level of 2 x 10(9) E. coli per ml. Intracellular ATP decreased rapidly after exposure of E. coli to 10 mM BSS and, after 30 min, was only 1% of the original level. Extracellular ATP increased after exposure to BSS, but the accumulation of extracellular ATP was not sufficient to account for the loss of intracellular ATP. The killing of bacteria exposed to BSS may have been due to cessation of ATP synthesis or a loss of membrane integrity. Bactericidal activity of BSS was also investigated in a simulated gastric juice at pH 3. Killing of E. coli at this pH was much more rapid than at pH 7 and was apparently due to salicylate released by the conversion of BSS to bismuth oxychloride. It is proposed that the binding and killing observed for BSS contribute to the efficacy of this compound against gastrointestinal infections such as traveler's diarrhea. PMID:2694949

  1. Purinergic Signaling to Terminate TLR Responses in Macrophages

    PubMed Central

    Hamidzadeh, Kajal; Mosser, David M.

    2016-01-01

    Macrophages undergo profound physiological alterations when they encounter pathogen-associated molecular patterns (PAMPs). These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active downregulation of innate responses induced by the very PAMPs that initiated them. Here, we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR-stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the downregulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ-treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response. PMID:26973651

  2. Purinergic Signaling to Terminate TLR Responses in Macrophages.

    PubMed

    Hamidzadeh, Kajal; Mosser, David M

    2016-01-01

    Macrophages undergo profound physiological alterations when they encounter pathogen-associated molecular patterns (PAMPs). These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active downregulation of innate responses induced by the very PAMPs that initiated them. Here, we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR-stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the downregulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ-treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response. PMID:26973651

  3. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans.

    PubMed

    Urso, Katia; Charles, Julia F; Shull, Gary E; Aliprantis, Antonios O; Balestrieri, Barbara

    2016-01-01

    Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated. PMID:27391897

  4. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans

    PubMed Central

    Urso, Katia; Charles, Julia F.; Shull, Gary E.; Aliprantis, Antonios O.; Balestrieri, Barbara

    2016-01-01

    Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated. PMID:27391897

  5. Monocyte and Macrophage Dynamics during Atherogenesis

    PubMed Central

    Ley, Klaus; Miller, Yury I.; Hedrick, Catherine C.

    2011-01-01

    Vascular inflammation is associated with and in large part driven by changes in the leukocyte compartment of the vessel wall. Here, we focus on monocyte influx during atherosclerosis, the most common form of vascular inflammation. Although the arterial wall contains a large number of resident macrophages and some resident dendritic cells, atherosclerosis drives a rapid influx of inflammatory monocytes (Ly-6C+ in mice) and other monocytes (Ly-6C− in mice, also known as patrolling monocytes). Once in the vessel wall, Ly-6C+ monocytes differentiate to a phenotype consistent with inflammatory macrophages and inflammatory dendritic cells. The phenotype of these cells is modulated by lipid uptake, Toll-like receptor ligands, hematopoietic growth factors, cytokines and chemokines. In addition to newly recruited macrophages, it is likely that resident macrophages also change their phenotype. Monocyte-derived inflammatory macrophages have a short half-life. After undergoing apoptosis, they may be taken up by surrounding macrophages or, if the phagocytic capacity is overwhelmed, can undergo secondary necrosis, a key event in forming the necrotic core of atherosclerotic lesions. In this review, we discuss these and other processes associated with monocytic cell dynamics in the vascular wall and their role in the initiation and progression of atherosclerosis. PMID:21677293

  6. Post-transcriptional control of NLRP3 inflammasome activation in colonic macrophages

    PubMed Central

    Filardy, Alessandra A.; He, Jianping; Bennink, Jack; Yewdell, Jonathan; Kelsall, Brian L.

    2016-01-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes yet produce regulatory cytokines. Activity of the NLRP3 inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation due to a remarkable level of post-transcriptional control of NLRP3 and proIL-1β protein expression, which was also seen for TNF-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein, but not mRNA levels in resident cMPs implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic post-transcriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation; findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases. PMID:26627461

  7. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2013-05-29

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  8. Beetle Kill Wall at NREL

    SciTech Connect

    2010-01-01

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  9. Blood Clots That Kill: Preventing DVT

    MedlinePlus

    ... on. Feature: Deep Vein Thrombosis Blood Clots That Kill: Preventing DVT Past Issues / Spring 2011 Table of ... More "Deep Vein Thrombosis" Articles Blood Clots That Kill: Preventing DVT / Skater Tara Lipinski Speaks Out About ...

  10. The Many Alternative Faces of Macrophage Activation

    PubMed Central

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases

  11. Listeria species escape from the phagosomes of interleukin-4-deactivated human macrophages independent of listeriolysin.

    PubMed

    Neumann, Katja; Eppler, Elisabeth; Filgueira, Luis; Groscurth, Peter; Gasal, Eduard; Schaffner, Andreas; Schoedon, Gabriele; Schneemann, Markus

    2003-12-01

    Listeria monocytogenes is the causative agent of infections like sepsis and meningitis, especially in immunocompromised hosts. Human macrophages are able to phagocytose and digest L. monocytogenes but IL-4 prevents human macrophages from killing the bacteria, the mechanisms of which are unknown. In the present study, we examined various listeria species and strains including wild-type and deletion mutants in human macrophages pretreated with IL-4. To analyse the IL-4-mediated deactivation process, we combined quantitative infection assays with various morphologic methods. IL-4 facilitates survival and escape of the pathogenic L. monocytogenes wild-type strain 10403S from the macrophage phagosomes. In untreated macrophages, the isogenic listeriolysin deletion mutant strain DP-L2161 was killed and did not escape from the phagolysosomes. However, after macrophage deactivation with IL-4 DP-L2161 survived and escaped from the phagosomes. This was also the case, but to a lesser extent, even for the naturally avirulent L. innocua. As detected by confocal laser-scanning fluorescence microscopy and electron microscopy, IL-4 permitted the escape of all listeria species tested, including DP-L2161 and L. innocua from the phagosomal compartment of the macrophages. We conclude that escape from the phagosome and survival of the listeria species tested in IL-4-deactivated human macrophages is independent of the virulence factor listeriolysin. PMID:14636240

  12. 33 CFR 117.702 - Arthur Kill.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Arthur Kill. 117.702 Section 117.702 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.702 Arthur Kill. (a) The draw of the Arthur Kill (AK) Railroad Bridge shall be...

  13. Macrophage Autophagy in Atherosclerosis

    PubMed Central

    Maiuri, Maria Chiara; Grassia, Gianluca; Platt, Andrew M.; Carnuccio, Rosa; Ialenti, Armando; Maffia, Pasquale

    2013-01-01

    Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP) in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation. AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility. PMID:23401644

  14. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  15. Bacillus cereus immune escape: a journey within macrophages.

    PubMed

    Tran, Seav-Ly; Ramarao, Nalini

    2013-10-01

    During bacterial infection, professional phagocytes are attracted to the site of infection, where they constitute a first line of host cell defense. Their function is to engulf and destroy the pathogens. Thus, bacteria must withstand the bactericidal activity of professional phagocytes, including macrophages to counteract the host immune system. Bacillus cereus infections are characterized by bacteremia despite the accumulation of inflammatory cells at the site of infection. This implies that the bacteria have developed means of resisting the host immune system. Bacillus cereus spores survive, germinate, and multiply in contact with macrophages, eventually producing toxins that kill these cells. However, the exact mechanism by which B. cereus evades immune attack remains unclear. This review addresses the interaction between B. cereus and macrophages, highlighting, in particular, the ways in which the bacteria escape the microbicidal activities of professional phagocytes. PMID:23827020

  16. Glutamine Modulates Macrophage Lipotoxicity

    PubMed Central

    He, Li; Weber, Kassandra J.; Schilling, Joel D.

    2016-01-01

    Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs), activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli. PMID:27077881

  17. Fish kill from underwater explosions

    USGS Publications Warehouse

    Stuart, David J.

    1962-01-01

    The U.S. Geological Survey has used 23 different shotpoints during two seasons of field work in our seismic study of crustal structure in western United States. Without exception, it has been found that under-water shotpoints result in a more efficient conversion of explosive energy into seismic energy than do drilled-hole shotpoints. This experience, together with elimination of drilling costs, has led to the use of underwater shotpoints wherever possible. Three of the 23 shotpoints were in the Pacific Ocean, and for these we have no detailed information on the fish kill. Another six shotpoints were located in inland bodies of water. These are: * Soda Lake near Fallon, Nevada * Mono Lake near Lee Vining, California * Lake Mead near Boulder City, Nevada * Shasta Lake near Redding, California * C.J. Strike Reservoir near Bruneau, Idaho * Lucky Peak Reservoir near Boise, Idaho The 22 high-explosive charges, weighing a total of 95,100 pounds, that were fired in lakes containing fish life resulted in the known death of 2,413 game fish with a total weight of 759 pounds. The average mortality was 110 game fish or 34.5 pounds of game fish killed per average shot of 4,325 pounds of high-explosives.

  18. Biodegradation of carbon nanohorns in macrophage cells

    NASA Astrophysics Data System (ADS)

    Zhang, Minfang; Yang, Mei; Bussy, Cyrill; Iijima, Sumio; Kostarelos, Kostas; Yudasaka, Masako

    2015-02-01

    With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction.With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the

  19. Receptor-Mediated Drug Delivery to Macrophages in Chemotherapy of Leishmaniasis

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Amitabha; Chaudhuri, Gautam; Arora, Sunil K.; Sehgal, Shobha; Basu, Sandip K.

    1989-05-01

    Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the ``scavenger'' receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.

  20. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets.

    PubMed

    Burke, B; Sumner, S; Maitland, N; Lewis, C E

    2002-09-01

    The appearance and activation of macrophages are thought to be rapid events in the development of many pathological lesions, including malignant tumors, atherosclerotic plaques, and arthritic joints. This has prompted recent attempts to use macrophages as novel cellular vehicles for gene therapy, in which macrophages are genetically modified ex vivo and then reintroduced into the body with the hope that a proportion will then home to the diseased site. Here, we critically review the efficacy of various gene transfer methods (viral, bacterial, protozoan, and various chemical and physical methods) in transfecting macrophages in vitro, and the results obtained when transfected macrophages are used as gene delivery vehicles. Finally, we discuss the use of various viral and nonviral methods to transfer genes to macrophages in vivo. As will be seen, definitive evidence for the use of macrophages as gene transfer vehicles has yet to be provided and awaits detailed trafficking studies in vivo. Moreover, although methods for transfecting macrophages have improved considerably in efficiency in recent years, targeting of gene transfer specifically to macrophages in vivo remains a problem. However, possible solutions to this include placing transgenes under the control of macrophage-specific promoters to limit expression to macrophages or stably transfecting CD34(+) precursors of monocytes/macrophages and then differentiating these cells into monocytes/macrophages ex vivo. The latter approach could conceivably lead to the bone marrow precursor cells of patients with inherited genetic disorders being permanently fortified or even replaced with genetically modified cells. PMID:12223508

  1. β-glucans from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages.

    PubMed

    Shi, Shao-Hua; Yang, Wen-Tao; Huang, Ke-Yan; Jiang, Yan-Long; Yang, Gui-Lian; Wang, Chun-Feng; Li, Yu

    2016-05-01

    The effects of β-glucans from Coriolus versicolor (CVP), which are extracted from a well-known immune stimulator C. versicolor, have been demonstrated extensively in vitro and in vivo. However, until now, the phagocytic activity has not been elucidated. Hence, the objective of the present study was to identify the antibacterial activity of CVP or CVP-treated macrophages by an analysis of cell cytotoxicity, phagocytic activity, intracellular bacterial survival, macrophage activation, production of nitric oxide (NO) and expression of inducible nitric oxide synthase (iNOS) in CVP-treated macrophages using flow cytometry, RT-PCR, a gentamicin protection assay, a Nitric oxide assay and an iNOS enzymatic activity assay. The results indicate that CVP-treated macrophages can phagocytize and kill bacteria, probably due to the production of NO and iNOS. More importantly, CVP-treated macrophages are effective at protecting mice against the challenge of Salmonella typhimurium. The results of this study suggest that the antibacterial effects of CVP are probably caused by the activation of innate immune cells, especially macrophages, because the activated macrophage produces NO, which kills bacteria. These phenomena indicate the possibility of CVP as a potential alternative for antibiotics against resistant bacteria. PMID:26802244

  2. Aspergillus vertebral osteomyelitis in a child with a primary monocyte killing defect: response to GM-CSF therapy.

    PubMed

    Abu Jawdeh, L; Haidar, R; Bitar, F; Mroueh, S; Akel, S; Nuwayri-Salti, N; Dbaibo, G S

    2000-07-01

    We report the first case of vertebral aspergillosis in a child with a primary defect in monocyte killing, an extremely rare immunodeficiency The diagnosis of defective monocyte killing was made by an in vitro assay that showed normal killing of Staphylococcus aureus by the patient's neutrophils but impaired killing by his monocytes. Importantly, the extensive granulomatous infection that involved the vertebral column, posterior mediastinum, pleura, and lung was not responsive to aggressive treatment with a combination of liposomal amphotericin B. intralesional amphotericin B. itraconazole, and granulocyte transfusions. Dramatic clinical and radiological improvement was only seen after the addition of granulocyte macrophage-colony stimulating factor (GM-CSF) to his treatment regimen. The use of GM-CSF in the treatment of invasive aspergillosis in immunocompromised patients requires further evaluation. PMID:11041713

  3. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation.

    PubMed

    Su, Xiaodi; Yu, Yingpu; Zhong, Yi; Giannopoulou, Eugenia G; Hu, Xiaoyu; Liu, Hui; Cross, Justin R; Rätsch, Gunnar; Rice, Charles M; Ivashkiv, Lionel B

    2015-08-01

    Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation. PMID:26147685

  4. IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans.

    PubMed

    Tran, Vuvi G; Cho, Hong R; Kwon, Byungsuk

    2014-08-01

    IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms. PMID:25177252

  5. Supplementation of host response by targeting nitric oxide to the macrophage cytosol is efficacious in the hamster model of visceral leishmaniasis and adds to efficacy of amphotericin B.

    PubMed

    Pandya, Sanketkumar; Verma, Rahul Kumar; Khare, Prashant; Tiwari, Brajendra; Srinivasarao, Dadi A; Dube, Anuradha; Goyal, Neena; Misra, Amit

    2016-08-01

    We investigated efficacy of nitric oxide (NO) against Leishmania donovani. NO is a mediator of host response to infection, with direct parasiticidal activity in addition to its role in signalling to evoke innate macrophage responses. However, it is short-lived and volatile, and is therefore difficult to introduce into infected cells and maintain inracellular concentrations for meaningful periods of time. We incorporated diethylenetriamine NO adduct (DETA/NO), a prodrug, into poly(lactide-co-glycolide) particles of ∼200 nm, with or without amphotericin B (AMB). These particles sustained NO levels in mouse macrophage culture supernatants, generating an area under curve (AUC0.08-24h) of 591.2 ± 95.1 mM × h. Free DETA/NO resulted in NO peaking at 3 h and declining rapidly to yield an AUC of 462.5 ± 193.4. Particles containing AMB and DETA/NO were able to kill ∼98% of promastigotes and ∼76% of amastigotes in 12 h when tested in vitro. Promastigotes and amastigotes were killed less efficiently by particles containing a single drug- either DETA/NO (∼42%, 35%) or AMB (∼90%, 50%) alone, or by equivalent concentrations of drugs in solution. In a pre-clinical efficacy study of power >0.95 in the hamster model, DETA/NO particles were non-inferior to Fungizone® but not Ambisome®, resulting in significant (∼73%) reduction in spleen parasites in 7 days. Particles containing both DETA/NO and AMB were superior (∼93% reduction) to Ambisome®. We conclude that NO delivered to the cytosol of macrophages infected with Leishmania possesses intrinsic activity and adds significantly to the efficacy of AMB. PMID:27183429

  6. The Elusive Antifibrotic Macrophage.

    PubMed

    Adhyatmika, Adhyatmika; Putri, Kurnia S S; Beljaars, Leonie; Melgert, Barbro N

    2015-01-01

    Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs, account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM) proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e., antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behavior-stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behavior in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review, we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behavior. PMID:26618160

  7. Macrophage polarization in pathology.

    PubMed

    Sica, Antonio; Erreni, Marco; Allavena, Paola; Porta, Chiara

    2015-11-01

    Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies. PMID:26210152

  8. Pulmonary Macrophage Transplantation Therapy

    PubMed Central

    Suzuki, Takuji; Arumugam, Paritha; Sakagami, Takuro; Lachmann, Nico; Chalk, Claudia; Sallese, Anthony; Abe, Shuichi; Trapnell, Cole; Carey, Brenna; Moritz, Thomas; Malik, Punam; Lutzko, Carolyn; Wood, Robert E.; Trapnell, Bruce C.

    2014-01-01

    SUMMARY Bone marrow transplantation is an effective cell therapy but requires myeloablation, which increases infection-risk and mortality. Recent lineage-tracing studies documenting that resident macrophage populations self-maintain independent of hematologic progenitors prompted us to consider organ-targeted, cell-specific therapy. Here, using GM-CSF receptor-β deficient (Csf2rb−/−) mice that develop a myeloid cell disorder identical to hereditary pulmonary alveolar proteinosis (hPAP) in children with CSF2RA/CSF2RB mutations, we show that pulmonary macrophage transplantation (PMT) of either wild-type or Csf2rb-gene-corrected macrophages without myeloablation was safe, well-tolerated, and that one administration corrected the lung disease, secondary systemic manifestations, normalized disease-related biomarkers, and prevented disease-specific mortality. PMT-derived alveolar macrophages persisted for at least one year as did therapeutic effects. Results identify mechanisms regulating alveolar macrophage population size in health and disease, indicate that GM-CSF is required for phenotypic determination of alveolar macrophages, and support translation of PMT as the first specific therapy for children with hPAP. PMID:25274301

  9. The Elusive Antifibrotic Macrophage

    PubMed Central

    Adhyatmika, Adhyatmika; Putri, Kurnia S. S.; Beljaars, Leonie; Melgert, Barbro N.

    2015-01-01

    Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs, account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM) proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e., antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behavior-stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behavior in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review, we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behavior. PMID:26618160

  10. A kill curve for Phanerozoic marine species

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    A kill curve for Phanerozoic species is developed from an analysis of the stratigraphic ranges of 17,621 genera, as compiled by Sepkoski. The kill curve shows that a typical species' risk of extinction varies greatly, with most time intervals being characterized by very low risk. The mean extinction rate of 0.25/m.y. is thus a mixture of long periods of negligible extinction and occasional pulses of much higher rate. Because the kill curve is merely a description of the fossil record, it does not speak directly to the causes of extinction. The kill curve may be useful, however, to li inverted question markmit choices of extinction mechanisms.

  11. Timelike Killing spinors in seven dimensions

    SciTech Connect

    Cariglia, Marco; Conamhna, Oisin A.P. Mac

    2004-12-15

    We employ the G-structure formalism to study supersymmetric solutions of minimal and SU(2) gauged supergravities in seven dimensions admitting Killing spinors with an associated timelike Killing vector. The most general such Killing spinor defines a SU(3) structure. We deduce necessary and sufficient conditions for the existence of a timelike Killing spinor on the bosonic fields of the theories, and find that such configurations generically preserve one out of 16 supersymmetries. Using our general supersymmetric ansatz we obtain numerous new solutions, including squashed or deformed anti-de Sitter solutions of the gauged theory, and a large class of Goedel-like solutions with closed timelike curves.

  12. The interaction between CD8+ cytotoxic T cells and Leishmania-infected macrophages

    PubMed Central

    1991-01-01

    Leishmania is resident within the macrophages of its vertebrate host. In any intramacrophage infection, where the pathogen is present in a form capable of mediating cell to cell transmission, the contribution of a cytotoxic T cell response to protective immunity is questionable. This study presents data from an in vitro model designed to elucidate the outcome of an interaction between CD8+, cytotoxic T cells and infected macrophages. Experiments were conducted with an H-2d- restricted, cytotoxic CD8+ T cell clone and Leishmania parasites present in mixed macrophage cultures, with the parasites confined to either histocompatible BALB/c macrophages, or incompatible CBA macrophages. Initial experiments indicated that the viability of Leishmania was unaffected by the lysis of its host macrophage by cytotoxic T cells. However, extended experiments showed that the parasites were killed between 24 and 72 h. The same results were obtained regardless of whether the parasites were resident in the target, BALB/c, macrophages or the bystander, CBA, macrophages. Addition of neutralizing, anti-IFN-g antibody to the cultures ablated most of the leishmanicidal behavior, indicating that parasite death was attributable to macrophage activation, resulting from cytokine secretion from the T cells following the initial recognition event. PMID:1908507

  13. Macrophage activation-induced thymosin beta 4 production: a tissue repair mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages play significant role in immunity which not only kill pathogens, produce cytokines but also clear dead tissues at the site of inflammation and stimulate wound healing. Much less is known how these cells contribute to tissue repair process. In course of our studies comparing the peptide...

  14. Does complement kill E. coli by producing transmural pores?

    PubMed Central

    Born, J; Bhakdi, S

    1986-01-01

    Three lines of evidence are presented to indicate that C5b-9 kills serum-sensitive E. coli K 12 cells by generating functional pores across the outer and inner bacterial membrane. First, viable cells carrying C5b-8 complexes are impermeable to o-nitrophenyl-beta-D-galactoside (ONPG), but lose viability and become permeable to this marker upon post-treatment with purified C9 in the absence of lysozyme. Cells killed with colicin E1 or gentamicin are also impermeable to ONPG but take up the marker if they are post-treated with lysozyme-free serum. Second, killing by C5b-9 is highly effective, deposition of only a small number of complexes being lethal. This has been demonstrated in experiments where viable cells carrying 2000-4000 C5b-7 complexes per CFU were permitted to multiply in broth culture, and the daughter generations subsequently treated with purified C8 and C9. Fifty percent killing was observed in the fifth to sixth generation, corresponding to a dilution of C5b-7 complexes to 50-100 molecules/CFU. In the presence of 2 mM EDTA, further dilution of C5b-7 down to 8-30 complexes/CFU still caused 50% killing of daughter cells. Third, treatment of C5b-7 cells with purified CC8 and C9 results in the release of intracellular K+, which commences immediately after addition of C8/C9. This was shown in experiments where C5b-7 cells were packed to high density in saline, post-treated with C8 + C9, and K+ directly measured in the cell supernatants. Based on these results, we propose that C5b-9 pores deposited in the outer bacterial membrane periodically fuse with the inner membrane, the transmural pores thus generated permitting rapid K+ efflux, with cell death ensuing through the collapse of membrane potential. PMID:3530981

  15. Macrophage Polarization in Inflammatory Diseases

    PubMed Central

    Liu, Yan-Cun; Zou, Xian-Biao; Chai, Yan-Fen; Yao, Yong-Ming

    2014-01-01

    Diversity and plasticity are two hallmarks of macrophages. M1 macrophages (classically activated macrophages) are pro-inflammatory and have a central role in host defense against infection, while M2 macrophages (alternatively activated macrophages) are associated with responses to anti-inflammatory reactions and tissue remodeling, and they represent two terminals of the full spectrum of macrophage activation. Transformation of different phenotypes of macrophages regulates the initiation, development, and cessation of inflammatory diseases. Here we reviewed the characters and functions of macrophage polarization in infection, atherosclerosis, obesity, tumor, asthma, and sepsis, and proposed that targeting macrophage polarization and skewing their phenotype to adapt to the microenvironment might hold great promise for the treatment of inflammatory diseases. PMID:24910531

  16. Yersinia pestis Requires Host Rab1b for Survival in Macrophages.

    PubMed

    Connor, Michael G; Pulsifer, Amanda R; Price, Christopher T; Abu Kwaik, Yousef; Lawrenz, Matthew B

    2015-10-01

    Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH. PMID:26495854

  17. Escherichia coli and Candida albicans Induced Macrophage Extracellular Trap-Like Structures with Limited Microbicidal Activity

    PubMed Central

    Liao, Chengshui; Liu, Xiaolei; Du, Jing; Shi, Haining; Wang, Xuelin; Bai, Xue; Peng, Peng; Yu, Lu; Wang, Feng; Zhao, Ying; Liu, Mingyuan

    2014-01-01

    The formation of extracellular traps (ETs) has recently been recognized as a novel defense mechanism in several types of innate immune cells. It has been suggested that these structures are toxic to microbes and contribute significantly to killing several pathogens. However, the role of ETs formed by macrophages (METs) in defense against microbes remains little known. In this study, we demonstrated that a subset of murine J774A.1 macrophage cell line (8% to 17%) and peritoneal macrophages (8.5% to 15%) form METs-like structures (METs-LS) in response to Escherichia coli and Candida albicans challenge. We found only a portion of murine METs-LS, which are released by dying macrophages, showed detectable killing effects on trapped E. coli but not C. albicans. Fluorescence and scanning electron microscopy analyses revealed that, in vitro, both microorganisms were entrapped in J774A.1 METs-LS composed of DNA and microbicidal proteins such as histone, myeloperoxidase and lysozyme. DNA components of both nucleus and mitochondrion origins were detectable in these structures. Additionally, METs-LS formation occurred independently of ROS produced by NADPH oxidase, and this process did not result in cell lysis. In summary, our results emphasized that microbes induced METs-LS in murine macrophage cells and that the microbicidal activity of these METs-LS differs greatly. We propose the function of METs-LS is to contain invading microbes at the infection site, thereby preventing the systemic diffusion of them, rather than significantly killing them. PMID:24587206

  18. Tumour necrosis factor (TNF) as a mediator of macrophage helminthotoxic activity.

    PubMed

    James, S L; Glaven, J; Goldenberg, S; Meltzer, M S; Pearce, E

    1990-01-01

    Lymphokine-activated macrophages are cytotoxic for larvae of the helminth parasite Schistosoma mansoni. That soluble secreted factors may mediate this cytotoxicity was suggested by the observation that culture supernatant fluids from stimulated macrophages also exhibited larvacidal activity. These fluids contain the monokine tumour necrosis factor (TNF). Several observations indicated that TNF is directly toxic to schistosome larvae. Cytotoxic sera taken from BCG- or S. mansoni-immunized mice after endotoxin challenge killed schistosomula in vitro, and upon gel filtration the larvacidal factor(s) in the sera co-eluted with the tumoricidal activity defined as TNF. Recombinant-derived TNF exhibited direct toxicity to schistosomula at high concentrations, or at lower concentrations in the presence of IFN gamma. The larvacidal activity of macrophage supernatant fluids was abrogated by addition of either anti-TNF antisera or Zn+2, which has been shown to inhibit TNF-induced damage of tumour cells. Anti-TNF and Zn+2 likewise suppressed schistosomulum killing by lymphokine-activated peritoneal macrophages or the IC-21 macrophage line, indicating that TNF also plays a role in the effector mechanism of larval killing by whole cells. PMID:2314921

  19. Yersinia pestis Requires Host Rab1b for Survival in Macrophages

    PubMed Central

    Connor, Michael G.; Pulsifer, Amanda R.; Price, Christopher T.; Abu Kwaik, Yousef; Lawrenz, Matthew B.

    2015-01-01

    Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH. PMID:26495854

  20. Boromycin Kills Mycobacterial Persisters without Detectable Resistance.

    PubMed

    Moreira, Wilfried; Aziz, Dinah B; Dick, Thomas

    2016-01-01

    Boromycin is a boron-containing polyether macrolide antibiotic isolated from Streptomyces antibioticus. It was shown to be active against Gram positive bacteria and to act as an ionophore for potassium ions. The antibiotic is ineffective against Gram negative bacteria where the outer membrane appears to block access of the molecule to the cytoplasmic membrane. Here we asked whether boromycin is active against Mycobacterium tuberculosis which, similar to Gram negative bacteria, possesses an outer membrane. The results show that boromycin is a potent inhibitor of mycobacterial growth (MIC50 = 80 nM) with strong bactericidal activity against growing and non-growing drug tolerant persister bacilli. Exposure to boromycin resulted in a rapid loss of membrane potential, reduction of the intracellular ATP level and leakage of cytoplasmic protein. Consistent with boromycin acting as a potassium ionophore, addition of KCl to the medium blocked its antimycobacterial activity. In contrast to the potent antimycobacterial activities of the polyether macrolide, its cytotoxicity and haemolytic activity were low (CC50 = 30 μM, HC50 = 40 μM) with a selectivity index of more than 300. Spontaneous resistant mutants could not be isolated suggesting a mutation frequency of less than 10(-9)/CFU. Taken together, the results suggests that targeting mycobacterial transmembrane ion gradients may be an attractive chemotherapeutic intervention level to kill otherwise drug tolerant persister bacilli, and to slow down the development of genetic antibiotic resistance. PMID:26941723

  1. Boromycin Kills Mycobacterial Persisters without Detectable Resistance

    PubMed Central

    Moreira, Wilfried; Aziz, Dinah B.; Dick, Thomas

    2016-01-01

    Boromycin is a boron-containing polyether macrolide antibiotic isolated from Streptomyces antibioticus. It was shown to be active against Gram positive bacteria and to act as an ionophore for potassium ions. The antibiotic is ineffective against Gram negative bacteria where the outer membrane appears to block access of the molecule to the cytoplasmic membrane. Here we asked whether boromycin is active against Mycobacterium tuberculosis which, similar to Gram negative bacteria, possesses an outer membrane. The results show that boromycin is a potent inhibitor of mycobacterial growth (MIC50 = 80 nM) with strong bactericidal activity against growing and non-growing drug tolerant persister bacilli. Exposure to boromycin resulted in a rapid loss of membrane potential, reduction of the intracellular ATP level and leakage of cytoplasmic protein. Consistent with boromycin acting as a potassium ionophore, addition of KCl to the medium blocked its antimycobacterial activity. In contrast to the potent antimycobacterial activities of the polyether macrolide, its cytotoxicity and haemolytic activity were low (CC50 = 30 μM, HC50 = 40 μM) with a selectivity index of more than 300. Spontaneous resistant mutants could not be isolated suggesting a mutation frequency of less than 10-9/CFU. Taken together, the results suggests that targeting mycobacterial transmembrane ion gradients may be an attractive chemotherapeutic intervention level to kill otherwise drug tolerant persister bacilli, and to slow down the development of genetic antibiotic resistance. PMID:26941723

  2. Enhancement of the immune response against Salmonella infection of mice by heat-killed multispecies combinations of lactic acid bacteria.

    PubMed

    Chen, Chih-Yuan; Tsen, Hau-Yang; Lin, Chun-Li; Lin, Chien-Ku; Chuang, Li-Tsen; Chen, Chin-Shuh; Chiang, Yu-Cheng

    2013-11-01

    Heat-killed lactic acid bacteria (LAB) has advantages over live LAB in that it has a long shelf-life and is therefore easy to store and transport. From four LAB strains selected by immunomodulatory activity and adherent properties, we prepared the heat-killed multispecies combination of LAB (MLAB) and the cell walls from MLAB under two conditions (100 °C for 30 min and 121 °C for 15 min). Different effects on the adherent properties of these four LAB strains were observed, depending on the heating conditions. With mouse macrophage cells, the two heat-killed MLABs (HMLABs) showed significantly higher induction activities on the production of interleukin 12 (IL-12) than their individual strains did. Heat-killed MLABs and cell-wall preparations were able to reduce the Salmonella invasion of Caco-2 and mouse macrophage cells. Feeding mice with HMLAB could inhibit the Salmonella invasion of mice significantly. For these mice, the expression level of pro-inflammatory cytokines, such as TNF-α and IL-6, in mouse serum was reduced while that of the anti-inflammatory cytokine, i.e. IL-10, was enhanced. The HMLABs developed in this study showed higher protective effect against Salmonella invasion either of Caco-2 cells or of mice, relative to the heat-killed lactobacilli, which consisted of Lactobacillus acidophilus strains selected at random. In conclusion, the HMLABs were potentially useful for the protection of mice against Salmonella infection and the induced inflammation. PMID:24000228

  3. Human macrophage hemoglobin-iron metabolism in vitro

    SciTech Connect

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of /sup 59/Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of /sup 59/Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in /sup 59/Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models.

  4. Macrophage Apoptosis Triggered by IpaD from Shigella flexneri.

    PubMed

    Arizmendi, Olivia; Picking, William D; Picking, Wendy L

    2016-06-01

    Shigellosis, a potentially severe bacillary dysentery, is an infectious gastrointestinal disease caused by Shigella spp. Shigella invades the human colonic epithelium and avoids clearance by promoting apoptosis of resident immune cells in the gut. This process is dependent on the Shigella type III secretion system (T3SS), which injects effector proteins into target cells to alter their normal cellular functions. Invasion plasmid antigen D (IpaD) is a structural component that forms a complex at the tip of the T3SS apparatus needle. Recently, IpaD has also been shown to indirectly induce apoptosis in B lymphocytes. In this study, we explored the cytotoxicity profile during macrophage infection by Shigella and discovered that the pathogen induces macrophage cell death independent of caspase-1. Our results demonstrate that IpaD triggers apoptosis in macrophages through activation of host caspases accompanied by mitochondrial disruption. Additionally, we found that the IpaD N-terminal domain is necessary for macrophage killing and SipD, a structural homologue from Salmonella, was found to promote similar cytotoxicity. Together, these findings indicate that IpaD is a contributing factor to macrophage cell death during Shigella infection. PMID:27068089

  5. Bull heading to kill live gas wells

    SciTech Connect

    Oudeman, P.; Avest, D. ter; Grodal, E.O.; Asheim, H.A.; Meissner, R.J.H.

    1994-12-31

    To kill a live closed-in gas well by bull heading down the tubing, the selected pump rate should be high enough to ensure efficient displacement of the gas into the formation (i.e., to avoid the kill fluid bypassing the gas). On the other hand, the pressures that develop during bull heading at high rate must not exceed wellhead pressure rating, tubing or casing burst pressures or the formation breakdown gradient, since this will lead, at best, to a very inefficient kill job. Given these constraints, the optimum kill rate, requited hydraulic horsepower, density and type of kill fluids have to be selected. For this purpose a numerical simulator has been developed, which predicts the sequence of events during bull heading. Pressures and flow rates in the well during the kill job are calculated, taking to account slip between the gas and kill fluid, hydrostatic and friction pressure drop, wellbore gas compression and leak-off to the formation. Comparison with the results of a dedicated field test demonstrates that these parameters can be estimated accurately. Example calculations will be presented to show how the simulator can be used to identify an optimum kill scenario.

  6. Momentum kill procedure can quickly control blowouts

    SciTech Connect

    Watson, W.D. ); Moore, P. )

    1993-08-30

    The momentum kill method can help in quickly regaining control of a blowing well, providing the blowing well rate and fluid properties can be estimated reasonably. The momentum of the kill fluid counteracts and overcomes the flowing momentum of formation fluids. In other words, sufficient mud density pumped at a sufficient rate is directed into the flow stream to force the escaping fluid column back into the well bore. Sufficient kill fluid hydrostatic pressure must be stacked'' in the hole so that the well remains dead after the operation. The momentum kill is not a panacea for all blowouts. An assessment must be made of the potential problems unique to this method, and certain requirements must be met if the technique is to be successful. The paper discusses some of the considerations for evaluating the use of the momentum kill method.

  7. Mount Unzen kills three volcanologists

    NASA Astrophysics Data System (ADS)

    DeVito, M. Catherine

    Three AGU members were among 37 people killed June 3 when Mount Unzen, a volcano in Nagasaki prefecture, Japan, erupted. Unzen last erupted in 1792. The first signs of renewed activity appeared in mid-1990, with increases in seismicity and the first volcanic tremor since observations began in 1966. The three volcanologists, Harry Glicken and Maurice and Katia Krafft, had traveled to Mount Unzen to monitor the increased seismic activity. Glicken, 33, was a visiting scientist at Tokyo Metropolitan University and an assistant researcher in geological sciences at the University of California, Santa Barbara. He worked for the U.S. Geological Survey until 1989, and narrowly escaped death in the 1980 eruption of Mount St. Helens in Washington.Glicken had been an AGU member since 1980 and was known for his work in debris avalanches. Maurice, 45, and Katia Krafft, 44, of Cernay, France, were professional volcanologists known for their extensive work in publishing books and films on volcanology for the general public. Both Kraffts joined AGU in 1975.

  8. The Efficacy of Pneumococcal Capsular Polysaccharide-specific Antibodies to Serotype 3 Streptococcus pneumoniae requires Macrophages

    PubMed Central

    Fabrizio, Kevin; Manix, Catherine; Tian, Haijun; van Rooijen, Nico; Pirofski, Liise-anne

    2010-01-01

    The efficacy of antibody immunity against Streptococcus pneumoniae stems from the ability of opsonic, serotype (ST)-specific antibodies to pneumococcal capsular polysaccharide (PPS) to facilitate killing of the homologous ST by host phagocytes. However, PPS-specific antibodies have been identified that are protective in mice, but do not promote opsonic killing in vitro, raising the question of how they mediate protection in vivo. To probe this question, we investigated the dependence of antibody efficacy against lethal systemic (intraperitoneal, i.p.) infection with Streptococcus pneumoniae serotype 3 (ST3) on macrophages and neutrophils for the following PPS3-specific monoclonal antibodies (MAbs) in survival experiments in mice using a non-opsonic human IgM (A7), a non-opsonic mouse IgG1 (1E2) and an opsonic mouse IgG1 (5F6). The survival of A7- and PPS3-specific and isotype control-MAb-treated neutrophil-depleted and neutrophil-sufficient and macrophage-depleted and macrophage-sufficient mice were determined after i.p. challenge with ST3 strains 6303 and WU2. Neutrophils were dispensable for A7 and the mouse MAbs to mediate protection in this model, but macrophages were required for the efficacy of A7 and optimal mouse MAb-mediated protection. For A7-treated mice, macrophage-depleted mice had higher blood CFU, cytokines and peripheral neutrophil levels than macrophage-sufficient mice, and macrophage-sufficient mice had lower tissue bacterial burdens than control MAb-treated mice. These findings demonstrate that macrophages contribute to opsonic and non-opsonic PPS3-specific MAb-mediated protection against ST3 infection by enhancing bacterial clearance and suggest that neutrophils do not compensate for the absence of macrophages in the model used in this study. PMID:20800700

  9. Magnetometry of ingested particles in pulmonary macrophages.

    PubMed

    Valberg, P A

    1984-05-01

    Sensitive magnetometry has shown that, after inhalation of airborne magnetic dust by humans or animals, particles retained within the lungs rotate. A number of mechanisms for this rotation have been proposed, including motions of breathing, particle thermal energy, cardiac pulsations, surface fluid flows, and macrophage cytoplasmic movements. In this study the cellular mechanism was examined by magnetometry and videomicroscopy of pulmonary macrophages removed from hamster lungs 1 day after inhalation of a maghemite (gamma-Fe2O3) aerosol. The field remaining after magnetization was measured in adherent cells and was found to decay rapidly to 30 percent of its initial magnitude within 12 minutes. The remanent-field decay rate was slowed by inhibitors of cytoplasmic motion. Videomicroscopy of pulmonary macrophages with phagocytized gamma-Fe2O3 showed amoeboid motions that rotated the particles away from their original direction of magnetization. The results confirm that macrophage cytoplasmic movement is a primary cause of remanent-field decay in lungs and that magnetometry can be used to quantify intracellular contractile activity. PMID:6710153

  10. Perforin-2 restricts growth of Chlamydia trachomatis in macrophages.

    PubMed

    Fields, K A; McCormack, R; de Armas, L R; Podack, E R

    2013-08-01

    Chlamydia trachomatis is a Gram-negative obligate intracellular bacterium that preferentially infects epithelial cells. Professional phagocytes provide C. trachomatis only a limited ability to survive and are proficient killers of chlamydiae. We present evidence herein that identifies a novel host defense protein, perforin-2, that plays a significant role in the eradication of C. trachomatis during the infection of macrophages. Knockdown of perforin-2 in macrophages did not alter the invasion of host cells but did result in chlamydial growth that closely mirrored that detected in HeLa cells. C trachomatis L2, serovar B, and serovar D and C. muridarum were all equally susceptible to perforin-2-mediated killing. Interestingly, induction of perforin-2 expression in epithelial cells is blocked during productive chlamydial growth, thereby protecting chlamydiae from bactericidal attack. Ectopic expression of perforin-2 in HeLa cells, however, does result in killing. Overall, our data implicate a new innate resistance protein in the control of chlamydial infection and may help explain why the macrophage environment is hostile to chlamydial growth. PMID:23753625