Science.gov

Sample records for magmatism isotopic evidence

  1. Isotopic evidence of magmatism and a sedimentary carbon source at the Endeavour hydrothermal system

    SciTech Connect

    Brown, T A; Proskurowski, G; Lilley, M D

    2004-01-07

    Stable and radiocarbon isotope measurements made on CO{sub 2} from high temperature hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge indicate both magmatic and sedimentary sources of carbon to the hydrothermal system. The Endeavour segment is devoid of overlying sediments and has shown no observable signs of surficial magmatic activity during the {approx}20 years of ongoing studies. The appearance of isotopically heavy, radiocarbon dead CO{sub 2} after a 1999 earthquake swarm requires that this earthquake event was magmatic in origin. Evidence for a sedimentary organic carbon source suggests the presence of buried sediments at the ridge axis. These findings, which represent the first temporally coherent set of radiocarbon measurements from hydrothermal vent fluids, demonstrate the utility of radiocarbon analysis in hydrothermal studies. The existence of a sediment source at Endeavour and the occurrence of magmatic episodes illustrate the extremely complex and evolving nature of the Endeavour hydrothermal system.

  2. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  3. Initial Isotopic Heterogeneities in ZAGAMI: Evidence of a Complex Magmatic History

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.

    2006-01-01

    Interpretations of Zagami s magmatic history range from complex [1,2] to relatively simple [3]. Discordant radiometric ages led to a suggestion that the ages had been reset [4]. In an attempt to identify the mechanism, Rb-Sr isochrons were individually determined for both fine-grained and coarse-grained Zagami [5]. Ages of approx.180 Ma were obtained from both lithologies, but the initial Sr-87/Sr-86 (ISr) of the fine-grained lithology was higher by 8.6+/-0.4 e-units. Recently, a much older age of approx.4 Ga has been advocated [6]. Here, we extend our earlier investigation [5]. Rb-Sr Data: In [5] we applied identical, simplified, procedures to both lithologies to test whether a grain-size dependent process such as thermally-driven subsolidus isotopic reequilibration had caused age-resetting. Minerals were separated only by density. In the present experiment, purer mineral separates were analysed with improved techniques. Combined Rb-Sr results give ages (T) = 166+/-12 Ma and 177+/-9 Ma and I(subSr) = 0.72174+/-9 and 0.72227+/-7 for the coarse-grained and fine-grained lithologies, respectively. ISr in the fine-grained sample is thus higher than in the coarse-grained sample by 7.3+/-1.6 e-units. The results for the coarse-grained lithology are in close agreement with T = 166+/-6 Ma, ISr = 0.72157+/-8 for an adjacent sample [7] and T = 178+/-4 Ma, ISr = 0.72151+/-5 [4, adjusted] for a separate sample. Thus, fine-grained Zagami appears on average to be less typical of the bulk than coarse-grained Zagami.

  4. Geochemical and isotopic evidences of magmatic inputs in the hydrothermal reservoir feeding the fumarolic discharges of Tacora volcano (northern Chile)

    NASA Astrophysics Data System (ADS)

    Capaccioni, B.; Aguilera, F.; Tassi, F.; Darrah, T.; Poreda, R. J.; Vaselli, O.

    2011-12-01

    Tacora volcano is a nearly unknown and understudied 5980 m high volcano located on the northernmost border between Chile and Peru. Tacora is characterized by intense fumarolic activity with extensive, white-colored, hydrothermal areas along the NW and W flanks of the volcanic structure. The chemical and isotopic features of gas emissions indicate that the hydrothermal reservoir is significantly affected by contributions from magmatic degassing, despite relatively low outlet temperatures (82-93 °C). Water and gas isotopic signatures stem from degassing of andesitic magmas produced from the sediment-poor subducting slab. Isotopic data suggests CH 4-CO 2 isotopic equilibration occurs at ~ 400 °C, likely in the deepest portion of the hydrothermal-magmatic fluid reservoir. The H 2-H 2O, CO-CO 2, H 2-Ar, CH 4-CO 2 and C 2-C 3 alkenes/alkanes pairs tend to approach a chemical equilibrium at temperatures between 200 and 320 °C when redox conditions are more oxidizing than those determined by the typical FeO/FeO 1.5 rock buffer system. Boiling occurs at shallow depth at 85 °C within a discontinuous, thin aquifer, enough as thermal buffer but not able to scrub the uprising magmatic-related acidic gases.

  5. Paleoproterozoic gabbro-diorite-granite magmatism of the Batomga Rise (NE Aldan Shield): Sm-Nd isotope geochemical evidence

    NASA Astrophysics Data System (ADS)

    Kuzmin, V. K.; Bogomolov, E. S.; Glebovitskii, V. A.

    2016-02-01

    The geochemical similarity and almost simultaneous (2055-2060 Ma) formation of Utakachan gabbro-amphibolite, Jagdakin granodiorite-diorite, Khoyunda granitoid, and Tygymyt leucogranite complexes, which inruded metamorphic formations of the Batomga Group are evidence of their formaton from unified magmatic source. All this makes it possibble to combine aforementioned complexes into the unified Early Proterozoic diferentiated gabbro-diorite-granite complex.

  6. Stable-isotope evidence for a magmatic component in fumarole condensates from Augustine Volcano, Cook Inlet, Alaska, U.S.A.

    USGS Publications Warehouse

    Viglino, J.A.; Harmon, R.S.; Borthwick, J.; Nehring, N.L.; Motyka, R.J.; White, L.D.; Johnston, D.A.

    1985-01-01

    D/H and 18O 16O ratios have been determined for fumarole condensates from Augustine Volcano, an active calc-alkaline stratovolcano in Lower Cook Inlet, Alaska. The isotopic data for the condensates form a linear ?? D-?? 18O array from low-temperature fluids (450??C) fluids collected at the volcano summit which are enriched in both D and 18O (?? D {reversed tilde equals} -35???, ?? 18O {reversed tilde equals} +3.5???). Several lines of evidence suggest that the D-and 18O-rich condensates likely are "magmatic" fluids released into the hydrothermal system during and immediately after the 1976 eruption. Prior to 1976, the Augustine hydrothermal system was dominated completely by local meteoric waters. Between 1976 and 1982, fumarole condensates were observed to be variable mixtures of the "magmatic" fluid and meteoric water, with the proportion of the former systematically decreasing as the hydrothermal system cooled following the 1976 eruption. ?? 1985.

  7. Tritium and stable isotopes of magmatic waters

    NASA Astrophysics Data System (ADS)

    Goff, F.; McMurtry, G. M.

    2000-04-01

    To investigate the isotopic composition and age of water in volcanic gases and magmas, we analyzed samples from 11 active volcanoes ranging in composition from tholeiitic basalt to rhyolite: Mount St. Helens (USA), Kilauea (USA), Pacaya (Guatemala), Galeras (Colombia), Satsuma Iwo-Jima (Japan), Sierra Negra and Alcedo (Ecuador), Vulcano (Italy), Parı´cutin (Mexico), Kudryavy (Russia), and White Island (New Zealand). Tritium at relatively low levels (0.1-5 T.U.) is found in most emissions from high-temperature volcanic fumaroles sampled, even at discharge temperatures >700°C. Although magmatic fluids sampled from these emissions usually contain high CO 2, S total, HCl, HF, B, Br, 3He R/ RA, and low contents of air components, stable isotope and tritium relations of nearly all such fluids show mixing of magmatic volatiles with relatively young meteoric water (model ages≤75 y). Linear δD/ δ18O and 3H/ δ18O mixing trends of these two end-members are invariably detected at arc volcanoes. Tritium is also detected in fumarole condensates at hot spot basalt volcanoes, but collecting samples approaching the composition of end-member magmatic fluid is exceedingly difficult. In situ production of 3H, mostly from spontaneous fission of 238U in magmas is calculated to be <0.001 T.U., except for the most evolved compositions (high U, Th, and Li and low H 2O contents). These values are below the detection limit of 3H by conventional analytical techniques (about 0.01 T.U. at best). We found no conclusive evidence that natural fusion in the Earth produces anomalous amounts of detectable 3H (>0.05 T.U.).

  8. Geochemical and Isotopic Evidences of the Magmatic Sources in the Eastern Sector of the Trans-Mexican Volcanic Belt: Xihuingo-Chichicuautla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Valadez, S.; Martinez-serrano, R.; Juarez-Lopez, K.; Solis-Pichardo, G.; Perez-Arvizu, O.

    2011-12-01

    derived from the subduction processes. These magmas probably suffered fractional crystallization and minor assimilation in the continental crust. Sr, Nd isotopic compositions for this first group display the most radiogenic values (87Sr/86Sr from 0.7046 to 0.7047 and ɛNd from 2.2 to 2.8). The second source for the basaltic-andesite and basalt could be associated with an enriched mantle. These rocks present a minor LILE enrichment with respect to HSFE, and Sr and Nd isotopic values less radiogenic than the felsic rocks of the first group (87Sr/86Sr from 0.7040 to 0.7045 and ɛNd from 3.1 to 4.8). According to these evidences we can establish that the magmas emplaced in the study area were produced from a heterogeneous mantle source with complex magmatic processes combined with different interaction degrees between the magmas and continental crust.

  9. Hydrogen isotope composition of magmatic water

    SciTech Connect

    Taylor, B.E. )

    1992-01-01

    Isotopic tracing of H[sub 2]O degassing in both small and very large rhyolitic magmas in continental tectonic settings (USA and New Zealand), and isotopic studies of high-temperature fumaroles (USA, Japan, and elsewhere) indicate that the hydrogen isotope compositions of magmatic waters vary primarily with the composition of source material and tectonic setting. Water from felsic magmas in volcanic arc settings has a mean [delta]D value off [minus]25 [+-] 5 permil, whereas water from volcanic and plutonic magmas in continental settings has a slightly lower mean [delta]D of [minus]40 [+-] 10 permil. These differences reflect the variation in composition of source materials: hydrated oceanic crust and marine sediments for the arc volcanoes, and largely metamorphic crust for magmas in continental settings. The isotopic record in certain ore deposits associated with felsic magmas (e.g., W skarns, Sn-W veins) and geothermal systems records the influx at critical times of magmatic water with a [delta]D value of [minus]35 to [minus]45 permil. This is best documented where isotopic contrast between magmatic and meteoric waters is large. The [delta]D of MORB H[sub 2]O presumably lies between the mean [delta]D for MORB glass ([minus]75 permil), the [delta]D of H[sub 2]O in equilibrium with this glass ([delta]D ca. [minus]35; assuming closed-system degassing).

  10. Stages of late Paleozoic to early Mesozoic magmatism in the Song Ma belt, NW Vietnam: evidence from zircon U-Pb geochronology and Hf isotope composition

    NASA Astrophysics Data System (ADS)

    Hieu, Pham Trung; Li, Shuang-Qing; Yu, Yang; Thanh, Ngo Xuan; Dung, Le Tien; Tu, Vu Le; Siebel, Wolfgang; Chen, Fukun

    2016-05-01

    The Song Ma zone in NW Vietnam bears important tectonic implications as a potential subduction corridor between the Indochina and South China blocks. On the basis of U-Pb ages, the Hf isotopic characteristics of zircons and the geochemical composition of granitoids, a two-stage magmatic evolution process of the Song Ma zone at ~290-260 and ~245-230 Ma can be proposed. Isotopic analyses indicate magmatic contributions from Neoproterozoic oceanic island basalt, Proterozoic continental crust, and depleted mantle or juvenile lithosphere. By combining geochronological and geochemical data from the granitoid rocks, we suggest that the staged magmatic processes of Song Ma zone may be related to a long-lasting period of ocean subduction (ca. 290-260 Ma) and subsequent syn-/post-collisional evolution (ca. 245-230 Ma).

  11. Involvement of magmatic fluids at the Laloki and Federal Flag massive sulfide Cu-Zn-Au-Ag deposits, Astrolabe mineral district, Papua New Guinea: sulfur isotope evidence

    NASA Astrophysics Data System (ADS)

    Noku, Shadrach K.; Espi, Joseph O.; Matsueda, Hiroharu

    2015-01-01

    We present the first sulfur (S) isotope data of sulfides, sulfates, pyrite in host mudstone, and bulk sulfur of gabbroic rocks from the Laloki and Federal Flag massive Cu-Zn-Au-Ag deposits in the Astrolabe mineral district, Papua New Guinea. Early-stage pyrite-marcasite, chalcopyrite, and sphalerite from Laloki display wide range of δ34S values from -4.5 to +7.0 ‰ ( n = 16). Late-stage pyrite, chalcopyrite, and sphalerite have restricted δ34S values of -1.9 to +4.7 ‰ ( n = 16). The mineralizing stage these correspond to had moderately saline (5.9-8.4 NaCl eq. wt%) mineralizing fluids of possible magmatic origin. A single analysis of late-stage barite has a value of δ34S +17.9 ‰, which is likely similar to coexisting seawater sulfate. Pyrite from the foot-wall mudstone at Laloki has very light δ34S values of -36.1 to -33.8 ‰ ( n = 2), which suggest an organic source for S. Pyrite-marcasite and chalcopyrite from Federal Flag show δ34S values of -2.4 to -1.9 ‰ ( n = 2), consistent with a magmatic origin, either leached from intrusive magmatic rocks or derived from magmatic-hydrothermal fluids. The very narrow range and near-zero δ34S values (-1.0 to +0.6 ‰) of bulk gabbroic samples is consistent with mantle-derived magmatic S. Sulfur isotope characteristics of sulfides and sulfates are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and sedimented mid-ocean ridges. The most reasonable interpretation is that the range of the sulfide and sulfate δ34S values from both Laloki and Federal Flag massive sulfide deposits is indicative of the complex interaction of magmatic fluids, seawater, gabbroic rocks, and mudstone.

  12. Hydrogen Isotope Evidence for Giant Meteoric-Hydrothermal Systems Associated with Extension and Magmatism in the Southern Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    Holk, G. J.; McCarthy, A.

    2014-12-01

    Over 400 published mineral and fluid inclusion δD values from the southern Canadian Cordillera and our new data from the Eocene Penticton Group Volcanics and Coryell Intrusive Suite of the Southern Omineca Belt and the Western Metamorphic Belt of the Central Coast Orogen are compiled using GIS. δDH2O is estimated using published D/H fractionation factors at 400°C; the error is ±20‰, small enough to distinguish deep magmatic/metamorphic fluids from meteoric-hydrothermal fluids. Histogram plots of δDH2O values estimated from minerals reveal peaks at δD = -60‰ (deep fluid) and ­-110‰ (Early Cenozoic meteoric-hydrothermal fluid); this provides a clear distinction between the two kinds of fluid. Our analysis reveals that syn-extensional meteoric-hydrothermal systems (δDH2O < -80‰) affected the eastern margin of the Coast Ranges Batholith between latitude 49° and 55° and the Omineca Belt between latitude 49° and 52°45'; both regions were affected by detachment faulting during late stages of magmatism in the Early Cenozoic (e.g., Parrish et al., 1988; Crawford et al., 2009). Zones that escaped the effects of meteoric-hydrothermal systems, preserving the D/H signature of deep fluids (δD > -80‰), include the Western Metamorphic Belt, the Western and Central Coast Ranges Batholith, the belt of Jurassic metamorphism that extends from the Cariboo Mountains to the Purcell Mountains, and the deepest structural levels of the Shuswap Metamorphic Core Complex; most of these samples have quartz-feldspar 18O/16O fractionations indicative of magmatic temperatures. High δDH2O values (> -50‰) suggest seawater alteration of the plutons of Vancouver Island (Magaritz and Taylor, 1986). Histogram plots of vein quartz fluid inclusion δD values (Nesbitt and Muehlenbachs, 1995) reveal three peaks that include the two produced by the mineral δD values, but these data are dominated by a large peak at δD = -150, a value similar to modern meteoric waters in the region

  13. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system.

    PubMed

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ(7)Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ(7)Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R(2) = 0.98; 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ(7)Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ(7)Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ(7)Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  14. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-09-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R2 = 0.98 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ7Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process.

  15. Rapid Rejuvenation of the Source of a Backarc Sheeted Magmatic Complex (Torres del Paine, Patagonia): Evidence From Hf isotopes in Zircon

    NASA Astrophysics Data System (ADS)

    Ewing, T. A.; Muntener, O.; Leuthold, J.; Chiaradia, M.; Baumgartner, L. P.; Putlitz, B.

    2014-12-01

    The Miocene Torres del Paine intrusive complex (TPIC) in Patagonia is a spectacularly exposed example of a bimodal shallow crustal laccolith, made up of a sill complex and a subvertical feeder system. The TPIC was emplaced in a back-arc setting, but slightly older arc-related intrusive units in this area testify to an earlier shift from an arc to a backarc setting. The entire ~88 km3 main complex was emplaced over short time scales of 162 ± 11 ka between ~12.4 and 12.6 Ma, with mafic units from the feeder zone found to be older than mafic units from the sill complex1,2. We aim to assess whether successive pulses of mafic magmatism can tap different geochemical reservoirs in sheeted magmatic complexes emplaced on such short timescales. Hf isotope compositions of individual zircons from mafic units from both the feeder zone and the sill complex were determined by solution MC-ICPMS. Zircons from all units have Hf isotope compositions that indicate a slightly enriched mantle source. Zircons from the mafic sill complex units have higher (more juvenile) initial ɛHf than zircons from feeder zone mafic units. The shift towards more depleted Hf isotope compositions in the sill complex units, which are younger, demonstrates the rapid input of new juvenile material into the source region between ~12.6 Ma and ~12.5 Ma. A similar shift is also seen in bulk rock Nd and Sr isotope data for related samples3. The Hf isotope data demonstrate that significant variability in source geochemistry is possible for sheeted magmatic complexes built up on very short timescales. Analysis of zircons from a range of dikes and intrusive bodies external to the main Torres del Paine complex, with ages that span ~12-29 Ma, will provide a more complete picture in time and space of the geochemical evolution of this magmatic system as it switches between an arc and backarc setting. 1Leuthold et al., 2012, EPSL, 325: 85-92 2Michel et al., 2008, Geology, 36: 459-462 3Leuthold et al., 2013, JPET, 54

  16. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system

    PubMed Central

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = –8.9382 × (1000/T) + 22.22(R2 = 0.98; 175 °C–340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from −0.7‰ to +18.4‰ at temperatures of 175–340 °C. This δ7Li range, together with Li–O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  17. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    USGS Publications Warehouse

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  18. Enhanced recycling of organic matter and Os-isotopic evidence for multiple magmatic or meteoritic inputs to the Late Permian Panthalassic Ocean, Opal Creek, Canada

    NASA Astrophysics Data System (ADS)

    Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Henderson, Charles M.; Algeo, Thomas J.

    2015-02-01

    The geochemical record for the Permian-Triassic boundary in northern latitudes is essential to evaluation of global changes associated with the most profound extinction of life on Earth. We present inorganic and organic geochemical data, and Re-Os isotope systematics in a critical stratigraphic interval of pre- and post-extinction Upper Permian-Lower Triassic sediments from Opal Creek, western Canada (paleolatitude of ∼30°N). We document significant and long-lived changes in Panthalassa seawater chemistry that were initiated during the first of four magmatic or meteoritic inputs to Late Permian seawater, evidenced by notable decreases of Os isotopic ratios upsection. Geochemical signals indicate establishment of anoxic bottom waters shortly after regional transgression reinitiated sedimentation in the Late Permian. Euxinic signals are most prominent in the Upper Permian sediments with low organic carbon and high sulfur contents, and gradually wane in the Lower Triassic. The observed features may have been generated in a strongly euxinic ocean in which high bacterioplankton productivity sustained prolific microbial sulfate reduction in the sediment and/or water column, providing hydrogen sulfide to form pyrite. This scenario requires nearly complete anaerobic decomposition of predominantly labile marine organic matter (OM) without the necessity for a complete collapse of primary marine productivity. Similar geochemical variations could have been achieved by widespread oxidation of methane by sulfate reducers after a methanogenic burst in the Late Permian. Both scenarios could have provided similar kill mechanisms for the latest Permian mass extinction. Despite the moderate thermal maturity of the section, OM in all studied samples is dominantly terrestrial and/or continentally derived, recycled and refractory ancient OM. We argue that, as such, the quantity of the OM in the section mainly reflects changes in terrestrial vegetation and/or weathering, and not in

  19. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zhen; Helz, Rosalind T.; Moynier, Frédéric

    2013-05-01

    The zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰<δ66Zn<0.36‰; δ66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe-Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰<δ66Zn<0.33‰), however, the degree of fractionation caused by magmatic differentiation is less significant (only 0.07‰) and no correlation between isotope composition and degree of differentiation is seen. We conclude that high temperature magmatic differentiation can cause Zn isotope fractionation that is resolvable at current levels of precision, but only in compositionally-evolved lithologies. With regards to primitive (ultramafic and basaltic) material, this signifies that the terrestrial mantle is essentially homogeneous with respect to Zn isotopes. Utilizing basaltic and ultramafic sample analyses, from different geologic settings, we estimate that the average Zn isotopic composition of Bulk Silicate Earth is δ66Zn=0.28

  20. The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile: petrologic, fluid inclusion and stable isotope evidence for an origin from magmatic fluids

    NASA Astrophysics Data System (ADS)

    Skewes, M. Alexandra; Holmgren, Carmen; Stern, Charles R.

    2003-01-01

    The copper-rich, tourmaline-bearing Donoso breccia pipe is one among more than 15 different mineralized breccias in the giant (>50 million metric tonnes of copper) Miocene and Pliocene Río Blanco-Los Bronces copper deposit in the high Andes of central Chile. This breccia pipe, bracketed in age between 5.2 and 4.9 Ma, has dimensions of 500 by 700 m at the current surface 3,670 m above sea level. Its roots have yet to be encountered, and it is >300 m in diameter at the depth of the deepest drill holes. The Donoso breccia is, for the most part, monolithic, containing clasts of the equigranular quartz monzonite pluton which hosts the pipe. It is matrix supported, with between 5 and 25% of the total rock volume consisting of breccia-matrix minerals, which include tourmaline, quartz, chalcopyrite, pyrite, specularite, and lesser amounts of bornite and anhydrite. An open pit mine, centered on this breccia pipe, has a current production of 50,000 tonnes of ore per day at an average grade of 1.2% copper, and copper grade in the breccia matrix is significantly higher. Measured δ18O for tourmaline and quartz from the matrix of the Donoso breccia at different levels of the pipe range from +6.9 to +12.0‰, and measured δD in tourmaline ranges from -73 to -95‰. Temperatures of crystallization of these minerals, as determined by the highest homogenization temperatures of highly saline fluid inclusions, range from 400 to >690°C. When corrected for these temperatures, the stable isotope data indicate that fluids from which these breccia-matrix minerals precipitated were magmatic, with δ18O between +5.6 to +9.1‰ and δD between -51 to -80‰. These isotopic data preclude participation of a significant amount of meteoric water in the formation of the Donoso breccia. They support a model in which brecciation is caused by expansion of magmatic fluids exsolved from a cooling pluton, and breccia-matrix minerals, including copper sulfides, precipitated from the same magmatic

  1. Oxygen isotope systematics in magmatic and subsolidus epidote

    NASA Astrophysics Data System (ADS)

    Morrison, J.; Anderson, J. L.

    2003-04-01

    770^oC. Temperatures inferred from ΔQt-Ep values are ˜450^oC. The data are interpreted to indicate that published high temperature fractionation factors involving epidote may be in error, yielding temperatures that are too low by as much as ˜200^oC. A number of lines of evidence suggest that measured ΔQt-Ep values from the quenched lithologies provide a more reliable empirical calibration of the Qt-Ep system than the published calibration. Using this "empirical calibration", the data are interpreted to indicate that oxygen isotope systematics in slowly cooled plutonic rocks have in some cases preserved magmatic fractionations, but more often document variable post-crystallization exchange due to 1) solid state diffusion during slow cooling and 2) fluid-hosted isotope exchange associated with mineralogic alteration.

  2. Evidence for a magmatic origin for Carlin-type gold deposits: isotopic composition of sulfur in the Betze-Post-Screamer Deposit, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Kesler, Stephen E.; Riciputi, Lee C.; Ye, Zaojun

    2005-03-01

    We report here new sulfur isotope analyses from the Betze-Post-Screamer deposit, the largest Carlin-type gold deposit in the world. Carlin-type deposits contain high concentrations of arsenic, antimony, mercury, tellurium and other elements of environmental interest, and are surrounded by large volumes of crust in which these elements are also enriched. Uncertainty about the source of sulfur and metals in and around Carlin-type deposits has hampered formulation of models for their origin, which are needed for improved mineral exploration and environmental assessment. Previous studies have concluded that most Carlin-type deposits formed from sulfide sulfur that is largely of sedimentary origin. Most of these studies are based on analyses of mineral separates consisting of pre-ore diagenetic pyrite with thin overgrowths of ore-related arsenian pyrite rather than pure, ore-related pyrite. Our SIMS spot analyses of ore-related pyrite overgrowths in the Screamer zone of the Betze-Post-Screamer deposit yield δ34S values of about -1 to 4‰ with one value of about 7‰. Conventional analyses of realgar and orpiment separates from throughout the deposit yield δ34S values of about 5-7‰ with one value of 10‰ in the Screamer zone. These results, along with results from an earlier SIMS study in the Post zone of the deposit and phase equilibrium constraints, indicate that early arsenian pyrite were formed from fluids of magmatic origin with variable contamination from sulfur in Paleozoic sedimentary rocks. Later arsenic sulfides were formed from solutions to which sulfur of sedimentary origin had been added. The presence of Paleozoic sedimentary sulfur in Carlin-type deposits does not require direct involvement of hydrothermal solutions of sedimentary origin. Instead, it could have been added by magmatic assimilation of Paleozoic sedimentary rocks or by hydrothermal leaching of sulfur from wall rocks to the deposit. Thus, the dominant process delivering sulfur, arsenic

  3. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Sun, De-You; Ren, Yun-Sheng; Liu, Yong-Jiang; Zhang, Shu-Yi; Fu, Chang-Liang; Wang, Tian-Hao; Wu, Peng-Fei; Liu, Xiao-Ming

    2013-05-01

    U-Pb dating and Hf isotopic analyses of zircons from various granitoids, combined with major and trace element analyses, were undertaken to determine the petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China. The Neoproterozoic granitoids are mainly biotite monzogranites with zircon U-Pb ages of 894 ± 13 Ma and 880 ± 10 Ma, and they are characterised by enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, K) and light rare earth elements (LREEs), depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Ti) and heavy rare earth elements (HREEs). The Late Devonian granitoids are dominantly syenogranites and mylonitised syenogranites with zircon U-Pb ages of 360 ± 4 Ma, and they form a bimodal magmatic association with subordinate gabbroic rocks of the same age. The Late Devonian syenogranites have A-type characteristics including high total alkalis, Zr, Nb, Ce and Y contents, and high FeOt/MgO, Ga/Al and Rb/Sr ratios. The Carboniferous granitoids are mainly tonalites, granodiorites and monzogranites with U-Pb ages varying from 319 to 306 Ma, and they show very strong adakitic characteristics such as high La/Yb and Sr/Y ratios but low Y and Yb contents. The Late Permian granitoids are dominated by monzogranites and syenogranites with zircon U-Pb ages ranging between 257 and 251 Ma. Isotopically, the ɛHf(t) values of the Neoproterozoic granitoids range from +4.3 to +8.3, and the two-stage model ages (TDM2) from 1.2 to 1.5 Ga. The Late Devonian granitoids are less radiogenic [ɛHf(t) from +12.0 to +12.8 and TDM2 from 545 to 598 Ma] than the Carboniferous [ɛHf(t) from +6.8 to +9.5 and TDM2 from 722 to 894 Ma] and Late Permian granitoids [ɛHf(t) from +6.1 to +9.4 and TDM2 in the range of 680-895 Ma]. These data indicate (1) the Neoproterozoic granitoids may have been generated by melting of a juvenile crust extracted from the mantle during the Mesoproterozoic

  4. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng District, east-central China

    NASA Astrophysics Data System (ADS)

    Wang, Changming; Zhang, Da; Wu, Ganguo; Santosh, M.; Zhang, Jing; Xu, Yigan; Zhang, Yaoyao

    2014-08-01

    The Lengshuikeng ore district in east-central China has an ore reserve of ˜43 Mt with an average grade of 204.53 g/t Ag and 4.63 % Pb + Zn. Based on contrasting geological characteristics, the mineralization in the Lengshuikeng ore district can be divided into porphyry-hosted and stratabound types. The porphyry-hosted mineralization is distributed in and around the Lengshuikeng granite porphyry and shows a distinct alteration zoning including minor chloritization and sericitization in the proximal zone; sericitization, silicification, and carbonatization in the peripheral zone; and sericitization and carbonatization in the distal zone. The stratabound mineralization occurs in volcano-sedimentary rocks at ˜100-400 m depth without obvious zoning of alterations and ore minerals. Porphyry-hosted and stratabound mineralization are both characterized by early-stage pyrite-chalcopyrite-sphalerite, middle-stage acanthite-native silver-galena-sphalerite, and late-stage pyrite-quartz-calcite. The δ34S values of pyrite, sphalerite, and galena in the ores range from -3.8 to +6.9‰ with an average of +2.0‰. The C-O isotope values of siderite, calcite, and dolomite range from -7.2 to -1.5‰ with an average of -4.4‰ (V-PDB) and from +10.9 to +19.5‰ with an average of +14.8‰ (V-SMOW), respectively. Hydrogen, oxygen, and carbon isotopes indicate that the hydrothermal fluids were derived mainly from meteoric water, with addition of minor amounts of magmatic water. Geochronology employing LA-ICP-MS analyses of zircons from a quartz syenite porphyry yielded a weighted mean 206Pb/238U age of 136.3 ± 0.8 Ma considered as the emplacement age of the porphyry. Rb-Sr dating of sphalerite from the main ore stage yielded an age of 126.9 ± 7.1 Ma, marking the time of mineralization. The Lengshuikeng mineralization classifies as an epithermal Ag-Pb-Zn deposit.

  5. New Geochemical and Isotopic Evidence for Igneous Activity at the Triassic-Jurassic Boundary: the Effects of Volcanism in the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.; Coe, A. L.

    2001-12-01

    Although the Triassic-Jurassic (T-J) boundary marks one of the `big five' extinction events of the Phanerozoic, the processes driving global change at that time remain obscure. The main contenders include substantial volcanic activity, large meteorite impacts, and major tectonic realignment. Recent results from high-precision Ar-Ar and U-Pb dating suggest that a major phase of volcanic activity, associated with the breakup of Pangea, started ~200 Ma ago in the so-called Central Atlantic magmatic province (Marzoli et al., Science 284, p. 616, 1999). However, it is often hard to accurately assess the global impact of this volcanic activity because of the difficulties in correlating igneous ages with the changes in the sedimentary successions which in practice define the position of the T-J boundary, and because of the difficulties in estimating the volume and extent of volcanic activity. In this study, we have adopted a new approach by determining the Mo, Re and platinum group element (PGE) abundances, and Os isotope compositions, of a suite of fully marine organic-rich mudrocks from three T-J boundary sections in the U.K. One of these sections (St. Audrie's Bay, Somerset) has been proposed as a candidate GSSP for the T-J boundary. The underlying rationale is that organic-rich mudrocks concentrate these elements from seawater, and reflect the particular geochemical and isotopic characteristics of seawater on a global scale at the time of mudrock deposition. Because the Re and PGE signatures of chondritic meteorites and terrestrial volcanism are distinctive, as are the signatures they impart to seawater, the patterns of these elements in well-preserved mudrock samples should help to define both the timing and nature of environmental change at the T-J boundary. Our new results show that Os abundances in marine mudrocks increased more than five-fold in the latest Triassic; Re abundances started to rise at the same time and had increased by up to 2 orders of magnitude in

  6. The Glória quartz-monzodiorite: isotopic and chemical evidence of arc-related magmatism in the central part of the Paleoproterozoic Mineiro belt, Minas Gerais State, Brazil.

    PubMed

    Avila, Ciro A; Teixeira, Wilson; Cordani, Umberto G; Barrueto, Héctor R; Pereira, Ronaldo M; Martins, Veridiana T S; Dunyi, Liu

    2006-09-01

    The Glória quartz-monzodiorite, one of the mafic plutons of the Paleoproterozoic Mineiro belt, is intrusive into banded gneisses, amphibolites, schists and phyllites of the Rio das Mortes greenstone belt, in the southern portion of the São Francisco Craton, State of Minas Gerais, Brazil. The Glória quartz-monzodiorite yields a SHRIMP U-Pb zircon age of 2188 +/- 29 Ma, suggesting a tectonic relationship with the pre-collisional phase of the Mineiro belt. According to the Nd isotopic evidence (epsilonNd(T) = -3.4; T DM = 2.68 Ga) the original magmas was formed by a mixture among Archean crustal material and Paleoproterozoic juvenile magma. The Glória quartz-monzodiorite shows metaluminous and calc-alkaline tendency with intermediate K content, comparable to that of volcanic-arc rocks. The primary mineralogical assemblage was partly modified by metamorphism, dated between 2131-2121 Ma in nearby coeval plutons. Such metamorphism is significantly older than the reported metamorphic episodes of the Mineiro belt in the Quadrilátero Ferrífero region (2059-2041 Ma) in the eastern portion of the study area. This evidence, together with chemical and isotopic data from other mafic and felsic plutons coeval with the Glória quartz-monzodiorite, indicate a tectonic and magmatic migration within the Mineiro belt from west to east. PMID:16936942

  7. Isotope-geochemical Nd-Sr evidence of Palaeoproterozoic plume magmatism in Fennoscandia and mantle-crust interaction on stages of layered intrusions formation

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Kunakkuzin, Evgeniy; Steshenko, Ekaterina

    2016-04-01

    Palaeoproterozoic Fennoscandian layered intrusions belong to the pyroxenite-gabbronorite-anorthosite formation and spread on a vast area within the Baltic Shield. Based on isotope U-Pb, Sm-Nd, Rb-Sr and Re-Os data the duration of this formation can be to 100-130 Ma (2.53-2.40 Ga) [Serov et. al., 2008; Bayanova et. al., 2009]. We have studied rocks of layered PGE-bearing Fedorovo-Pansky, Monchetundra, Burakovsky, Olanga group intrusions and Penikat intrusion. According to recent and new complex Nd-Sr-REE data magma source of the vast majority of these intrusions was a mantle reservoir with unusual characteristics: negative values of ɛNd (from 0 to -4) and ISr = 0.702-0.706, flat spectra of REE (value of (La/Yb)N ~ 1.0-5.8) with positive Eu-anomalies [Bayanova et. al., 2009; Bayanova et. al., 2014]. However, the distribution of REE for ore-bearing gabbronorite intrusions Penikat (Sm-Nd age is 2426 ± 38 Ma [Ekimova et. al., 2011]) has a negative Eu-anomalies. This may be due to the formation of plagioclase and its removal from the magma chamber. One of the aims of isotope geochemical investigations is to establish the contribution of mantle components in the formation of layered intrusions rocks and the degrees of contamination of the magma source by crustal material. To calculate the proportion of mantle component model binary mixture was used [Jahn et. al., 2000]. As the mantle components we used data for CHUR: ɛNd = 0, [Nd] = 1.324 [Palm, O'Neil, 2003] and for crustal components were used host-rocks Nd-data. The proportion of mantle component for the studied intrusions was 77-99%. Also, data were obtained for the Monchetundra dike complex and amphibolized gabbro, for which the proportion of mantle material was 20-40%. For these rocks a significant crustal contamination is most likely. This process resulted in low values of ɛNd, a direct relationship between ɛNd and Nd concentration, and significant differences between the U-Pb and Sm-Nd model ages. A

  8. Isotope fractionation related to kimberlite magmatism and diamond formation

    SciTech Connect

    Galimov, E.M. )

    1991-06-01

    This paper deals with a model of carbon isotope fractionation presumed to accompany the movement of mantle fluids. In the first part of the article, the experimental data and the relationships revealed are generalized and discussed; the remainder of the paper describes the model. The isotope compositions of different forms of carbon related to kimberlite magmatism vary widely. In diamonds, {delta}{sup 13}C values range from {minus}34.5 to +2.8{per thousand}. Carbonate-bearing autholiths in kimberlites occur enriched in {sup 13}C up to +35{per thousand}. Organic matter, including that occurring in fluid inclusions of magmatic minerals of kimberlites, is depleted in {sup 13}C down to {minus}30{per thousand}. It is concluded that the {delta}{sup 13}C-distribution for diamonds is specific for a particular occurrence. Principal differences in isotopic distribution patterns for diamonds of ultrabasic and basic paragenesis exist. Isotopically light diamonds are related only to the latter. The intention of the model is to explain the observed variations of carbon isotope composition of diamond and other carbonaceous substances related to kimberlite magmatism. The model is based on the interaction of reduced sub-asthenospehric fluid with a relatively oxidized lithosphere. It is suggested that diamonds of ultrabasic paragenesis are produced during interaction of the fluid with sheared garnet lbherzolite which is considered to be primitive mantle rock. During contact with the more oxidized mantle, reduced carbon (CH{sub 4}) may partially be converted to CO{sub 2}. Isotope exchange in CO{sub 2}-CH{sub 4} system, conbined with Rayleigh distillation, may provide a significant isotope fractionation. Diamonds of the basic (eclogitic) paragenesis are considered to be realted to this fractionated carbon. Also, occurrence of carbonate material highly enriched in {sup 13}C is explained by the model.

  9. Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: Integration of geological, stable-isotope, and fluid-inclusion evidence

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Stoffregen, R.E.; Vikre, P.G.

    2005-01-01

    quartz associated with mineralization, as well as in the deep stockwork veins, suggests that brines originating deep in the system transported the metals. The ??34S values of sulfides in magnetite (-2.3???) and of sulfate in apatite (5.4???) in unaltered quartz latite indicate that ??34S???S was near 0???. The ??34S values of coexisting alteration alunite and pyrite are 18.2??? to 24.5??? and -8.1??? to -2.2???, respectively. Deep in the system, most of the change in ??34S values occurs in the sulfates, indicating that the fluids were initially H2S-dominant, their redox state buffered at depth by equilibration with igneous rocks. However, in the main alteration zone, most of the change in ??34S values occurs in pyrite, indicating that the fluids moved off the rock buffer and became SO42- -dominant as pyrite precipitated and SO2 disproportionation produced the sulfuric acid requisite for acid leaching. The ??34S values of the late-stage barite and sulfides indicate that the system returned to high H2S/SO42- ratios typical of the original rock-buffered fluid. The ??DH2O of alunite parent fluids was near -45??? and their ??18O ranged from 7??? to -1???, depending on the degree of exchange in the alteration zone at low water-rock ratio, or mixing with unexchanged meteoric water. The low ??D values of some alunite samples are interpreted to result from postdepositional exchange with later ore fluids. Fluid exsolved fr om the magma at depth had ??DH2O and ??18OH2O values near -70??? and 10???, respectively. During and following migration to the top of the magma chamber, the fluid underwent isotopic exchange with the partially crystallized magma and its solid and cooler, but still plastic, carapace just below the transition from a lithostatic to hydrostatic pressure regime. These evolved magmatic fluids had ??DH2O and ??18OH2O values close to -40??? and 5???, respectively, prior to release into the superjacent hydrostatically pressured fracture zone, wherein the fluids separat

  10. Anorogenic nature of magmatism in the Northern Baikal volcanic belt: Evidence from geochemical, geochronological (U-Pb), and isotopic (Pb, Nd) data

    USGS Publications Warehouse

    Neymark, L.A.; Larin, A.M.; Nemchin, A.A.; Ovchinnikova, G.V.; Rytsk, E. Yu

    1998-01-01

    The Northern Baikal volcanic belt has an age of 1.82-1.87 Ga and extends along the boundary between the Siberian Platform and the Baikal foldbelt. The volcanic belt is composed of volcanics of the Akitkan Group and granitic rocks of the Irel and Primorsk complexes. The geochemistry of the rocks points to the intraplate anorogenic nature of the belt. U-Pb zircon dating of the Chuya granitoids revealed that they are older (2020-2060 Ma) than the Northern Baikal volcanic belt and, thus, cannot be regarded as its component. Data on the Pb isotopic system of feldspars from the granitoids confirm the contemporaneity of all volcanic rocks of the belt except the volcanics of the upper portion of the Akitkan Group (Chaya Formation). Our data suggest its possibly younger (???1.3 Ga) age. The isotopic Nd and Pb compositions of the acid volcanic rocks provide evidence of the heterogeneity of their crustal protoliths. The volcanics of the Malaya Kosa Formation have ??Nd(T) = -6.1, ??2 = 9.36, and were most probably produced with the participation of the U-depleted lower continental crust of Archean age. Other rocks of the complex show ??Nd(T) from -0.1 to -2.4, ??2 = 9.78, and could have been formed by the recycling of the juvenile crust. The depletion of the Malaya Kosa volcanics in most LILEs and HFSEs compared with other acid igneous rocks of the belt possibly reflects compositional differences between the Late Archean and Early Proterozoic crustal sources. The basaltic rocks of the Malaya Kosa Formation (??Nd varies from -4.6 to -5.4) were produced by either the melting of the enriched lithospheric mantle or the contamination of derivatives of the depleted mantle by Early Archean lower crustal rocks, which are not exposed within the area. Copyright ?? 1998 by MAEe Cyrillic signK Hay??a/Interperiodica Publishing.

  11. New boron isotopic evidence for sedimentary and magmatic fluid influence in the shallow hydrothermal vent system of Milos Island (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Wu, Shein-Fu; You, Chen-Feng; Lin, Yen-Po; Valsami-Jones, Eugenia; Baltatzis, Emmanuel

    2016-01-01

    Magmatic sources may contribute a significant amount of volatiles in geothermal springs; however, their role is poorly understood in submarine hydrothermal systems worldwide. In this study, new results of B and δ11B in 41 hydrothermal vent waters collected from the shallow hydrothermal system of Milos island in the Aegean Sea were combined with previously published data from other tectonic settings and laboratory experiments to quantify the effects of phase separation, fluid/sediment interaction and magmatic contribution. Two Cl-extreme solutions were identified, high-Cl waters (Cl as high as 2000 mM) and low-Cl waters (Cl < 80 mM). Both sets of waters were characterized by high B/Cl (~ 1.2-5.3 × 10- 3 mol/mol) and extremely low δ11B (1.4-6.3‰), except for the waters with Mg content of near the seawater value and δ11B = 10.3-17.4‰. These high-Cl waters with high B/Cl and low δ11B plot close to the vent waters in sediment-hosted hydrothermal system (i.e., Okinawa Trough) or fumarole condensates from on-land volcanoes, implying B addition from sediment or magmatic fluids plays an important role. This is in agreement with fluid/sediment interactions resulting in the observed B and δ11B, as well as previously reported Br/I/Cl ratios, supporting a scenario of slab-derived fluid addition with elevated B, 11B-rich, and low Br/Cl and I/Cl, which is derived from the dehydration of subducted-sediments. The slab fluid becomes subsequently mixed with the parent magma of Milos. The deep brine reservoir is partially affected by injections of magmatic fluid/gases during degassing. The results presented here are crucial for deciphering the evolution of the brine reservoirs involved in phase separation, fluid/sediment interaction and magmatic contribution in the deep reaction zone of the Milos hydrothermal system; they also have implications in the understanding of the formation of metallic vein mineralization.

  12. Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Li, Wang-Ye; Teng, Fang-Zhen; Halama, Ralf; Keller, Jörg; Klaudius, Jurgis

    2016-06-01

    To investigate the behaviour of Mg isotopes during carbonatite magmatism, we analyzed Mg isotopic compositions of natrocarbonatites and peralkaline silicate rocks from Oldoinyo Lengai, Tanzania. The olivine melilitites from the vicinity of Oldoinyo Lengai have homogeneous and mantle-like Mg isotopic compositions (δ26Mg of -0.30 to -0.26‰), indicating limited Mg isotope fractionation during mantle melting. The highly evolved peralkaline silicate rocks not related to silicate-carbonatite liquid immiscibility, including phonolites from the unit Lengai I, combeite-wollastonite nephelinites (CWNs) from the unit Lengai II A and carbonated combeite-wollastonite-melilite nephelinites (carbCWMNs), have δ26Mg values (from -0.25 to -0.10‰) clustered around the mantle value. By contrast, the CWNs from the unit Lengai II B, which evolved from the silicate melts that were presumably generated by silicate-carbonatite liquid immiscibility, have heavier Mg isotopes (δ26Mg of -0.06 to +0.09‰). Such a difference suggests Mg isotope fractionation during liquid immiscibility and implies, based on mass-balance calculations, that the original carbonatite melts at Lengai were isotopically light. The variable and positive δ26Mg values of natrocarbonatites (from +0.13 to +0.37‰) hence require a change of their Mg isotopic compositions subsequent to liquid immiscibility. The negative correlations between δ26Mg values and contents of alkali and alkaline earth metals of natrocarbonatites suggest Mg isotope fractionation during fractional crystallization of carbonatite melts, with heavy Mg isotopes enriched in the residual melts relative to fractionated carbonate minerals. Collectively, significant Mg isotope fractionation may occur during both silicate-carbonatite liquid immiscibility and fractional crystallization of carbonatite melts, making Mg isotopes a potentially useful tracer of these processes relevant to carbonatite petrogenesis.

  13. Low-Sulfide PGE ores in paleoproterozoic Monchegorsk pluton and massifs of its southern framing, Kola Peninsula, Russia: Geological characteristic and isotopic geochronological evidence of polychronous ore-magmatic systems

    NASA Astrophysics Data System (ADS)

    Chashchin, V. V.; Bayanova, T. B.; Mitrofanov, F. P.; Serov, P. A.

    2016-01-01

    New U-Pb and Sm-Nd isotopic geochronological data are reported for rocks of the Monchegorsk pluton and massifs of its southern framing, which contain low-sulfide PGE ores. U-Pb zircon ages have been determined for orthopyroxenite (2506 ± 3 Ma) and mineralized norite (2503 ± 8 Ma) from critical units of Monchepluton at the Nyud-II deposit, metaplagioclasite (2496 ± 4 Ma) from PGE-bearing reef at the Vurechuaivench deposit, and host metagabbronorite (2504.3 ± 2.2. Ma); the latter is the youngest in Monchepluton. In the southern framing of Monchepluton, the following new datings are now available: U-Pb zircon ages of mineralized metanorite from the lower marginal zone (2504 ± 1 Ma) and metagabbro from the upper zone (2478 ± 20 Ma) of the South Sopcha PGE deposit, as well as metanorite from the Lake Moroshkovoe massif (2463.1 ± 2.7 Ma). The Sm-Nd isochron (rock-forming minerals, sulfides, whole-rock samples) age of orthopyroxenite from the Nyud-II deposit (2497 ± 36 Ma) is close to results obtained using the U-Pb method. The age of harzburgite from PGE-bearing 330 horizon reef of the Sopcha massif related to Monchepluton is 2451 ± 64 Ma at initial ɛNd =-6.0. The latter value agrees with geological data indicating that this reef was formed due to the injection of an additional portion of high-temperature ultramafic magma, which experienced significant crustal contamination. The results of Sm-Nd isotopic geochronological study of ore-bearing metaplagioclasite from PGE reef of the Vurechuaivench deposit (2410 ± 58 Ma at ɛNd =-2.4) provide evidence for the appreciable effect of metamorphic and hydrothermal metasomatic alterations on PGE ore formation. The Sm-Nd age of mineralized norite from the Nyud-II deposit is 1940 ± 32 Ma at initial ɛNd =-7.8. This estimate reflects the influence of the Svecofennian metamorphism on the Monchepluton ore-magmatic system, which resulted in the rearrangement of the Sm-Nd system and its incomplete closure. Thus, the new

  14. Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (southern Italy)

    NASA Astrophysics Data System (ADS)

    Tonarini, Sonia; D'Antonio, Massimo; Di Vito, Mauro Antonio; Orsi, Giovanni; Carandente, Antonio

    2009-02-01

    The Astroni volcano was built through seven eruptions that generated pyroclastic deposits and lava domes within the Campi Flegrei caldera (southern Italy) 4.1-3.8 ka BP. Whole-rock geochemical and B-Sr-Nd isotopic investigations were carried out on representative samples of all seven eruptions. The products vary from tephriphonolites to phonolites, and from latites to trachytes. They show textural, mineralogical and isotopic evidence of disequilibrium, including distinct clinopyroxene populations, rounded and/or resorbed plagioclase and alkali-feldspar, and reverse-zoned phenocrysts of all these mineral phases. The Sr, Nd and B isotopic composition of whole rocks is variable and correlated with the degree of chemical evolution, suggesting open-system processes in addition to fractional crystallisation. Moreover, significant Sr-isotopic disequilibrium between the phenocrysts and glass has been documented for one sample. The chemostratigraphy of the products indicates that Astroni eruptions 1 through 5 were fed by magmas of trachytic to phonolitic composition that were less enriched in radiogenic Sr and 11B up-section. This variability has been interpreted as the result of mingling between at least two distinct magmatic end-members, one more evolved and the other less evolved. Another heterogeneous batch of magma, resulting from almost complete mixing between the same two end-members, was drained during eruptions 6 and 7. The more evolved end-member, characterised by 87Sr/ 86Sr ≥ 0.7075, 143Nd/ 144Nd ≤ 0.51247 and δ11B ≥ - 8‰, was very similar to the magma that fed the final phases of the Agnano-Monte Spina eruption, which occurred a few centuries earlier in the Astroni vent area. The less evolved end-member had 87Sr/ 86Sr ≤ 0.70726, 143Nd/ 144Nd ≥ 0.51251 and δ11B ≤ 10‰, and was likely derived by fractional crystallisation of a mantle-derived magma. An abrupt decrease in both the Sr isotope ratio and the Th content, detected at the transition

  15. Variations in the Pb isotope composition in polyformational magmatic rocks of the Ketkap-Yuna igneous province of the Aldan Shield: Evidence for mantle-crust interaction

    NASA Astrophysics Data System (ADS)

    Polin, V. F.; Dril, S. I.; Khanchuk, A. I.; Velivetskaya, T. A.; Vladimirova, T. A.; Il'ina, N. N.

    2016-06-01

    The Pb isotope composition of polyformational Mesozoic igneous rocks of the Ketkap-Yuna igneous province (KYIP) and lower crustal metamorphic rocks of the Batomga granite-greenstone area (the complex of the KYIP basement) of the Aldan Shield was studied for the first time. Based on the data obtained, several types of material sources participating in petrogenetic processes were distinguished. The mantle source identified as PREMA is registered in most of the igneous formations and predominates in mafic alkaline rocks. According to the isotope characteristics, the upper crustal source corresponds to a source of the "Orogen" type by the model of "plumbotectonics" or to the average composition of the continental crust by the Stacey-Kramers model. The lower crust is the third material source; however, the type of lower crustal protolith involved in the igneous process is still not defined, which makes difficult to estimate its role in the petrogenetic processes.

  16. Geochemical and Sr-Nd isotope evidences of the suprasubduction nature of mesozoic magmatism in the Mongol-Okhotsk Sector of the Pacific Fold Belt

    NASA Astrophysics Data System (ADS)

    Derbeko, I. M.; Chugaev, A. V.; Oleinikova, T. I.; Bortnikov, N. S.

    2016-02-01

    In this article we present geochemical and isotope characteristics of rocks of the Unerikan, Selitkan and Aezop-Yamalin volcano-plutonic zones of the eastern termination of the Mongol-Okhotsk Orogenic Belt. The obtained data demonstrate that the Mesozoic igneous rocks of the Mongol-Okhotsk sector of the Pacific Folded Belt were formed due to the melting of the continental crust in a tectonic setting corresponding to a suprasubduction one.

  17. Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Ortega-Obregón, C.; Solari, L.; Gómez-Tuena, A.; Elías-Herrera, M.; Ortega-Gutiérrez, F.; Macías-Romo, C.

    2014-07-01

    Undeformed felsic to mafic igneous rocks, dated by U-Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive ɛHf values (+3.8-+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) ( T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative ɛHf values (-1 to -14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous-Permian magmatic arc that extended from southern North America to Central America.

  18. Fluid inclusion and stable isotope evidence for mixing of magmatically related fluids with ground waters during Keweenawan Cu-Ag fissure-vein mineralization, Mamainse Point, Ontario

    SciTech Connect

    Richards, J.P.; Spooner, E.T.C.

    1985-01-01

    Primary chalcocite (Cc) mineralization at the Coppercorp mine occurs with vuggy Qz and minor calcite (Ct) in hydrothermal breccia veins following normal faults which cut Keweenawan plateau basalts and interflow sediments. Cc is the last and predominant sulfide in a paragenetic sequence of Py-Cp-Bn-Cc-Cu/sup 0/. Hematite (Hm) is found in equilibrium with all sulfides except Py. Fluid inclusion studies of vein Qz reveal a simple mixing trend between high temperature, high salinity brines, and lower temperature, more dilute hybrid fluids. The high end-member fluid temperatures strongly suggest a magmatic association, while the low salinity fluids are probably meteoric ground waters. delta/sup 13/C/sub pdb/ and delta/sup 18/O/sub smow/ values for ten Ct samples associated with sulfides average -4.0 per thousands (s=0.7) and 13.3 per thousands (s=2.1) respectively. These results suggest that the Coppercorp high-temperature ore-fluids were in equilibrium with an intrusion similar to the Jogran porphyry at depth, and that mixing with ground waters at higher levels in fissure veins resulted in sulfide precipitation by cooling, dilution and neutralization. Oxidation of this primary fluid at Coopercorp is also reflected by the ubiquitous presence of Hm with sulfide ores; negative delta/sup 34/S ratios from ten samples of Py, Cp or Cc and positive ratios from two rare baryte samples support this interpretation. Two samples of Py from Jogran give ratios typical of porphyry deposits, and may therefore represent the original undisturbed values of the ore-fluid.

  19. Magmatism in the Carolina terrane: Isotopic evidence for a Grenville-age source for Late Proterozoic volcanics and a mantle source for Silurian Concord syenite

    SciTech Connect

    Kozuch, M.; Heatherington, A.L.; Mueller, P.A. . Dept. of Geology); Offield, T.W.; Koeppen, R.P.; Klein, T.L. )

    1992-01-01

    Rhyolitic to andesitic volcanic rocks from the central portion of the Carolina slate belt in North Carolina were analyzed for Sr and Nd isotopic composition and dated by U-Pb zircon geochronology. Samples were from the greenschist-facies Late Proterozoic Albemarle Group, Uwharrie Formation, and the informal Virginia sequence. A rhyolite from the Cid Formation of the Albemarle Group dated by U-Pb zircon geochronology yielded a Pb-207/Pb-206 age of 575 [+-] 7.6 Ma, consistent with its position below strata containing the Late Proterozoic trace fossil Pteridinium and above rocks previously dated at 586 [+-] 10 Ma. Rb-Sr isotopic analyses of late Proterozoic rocks showed average initial Sr-87/Sr-86 ratios of approximately 0.704, indicating a moderately depleted source for these samples. E[sub ND] values at 600 Ma are moderately positive (+0.7 [minus] +2.3) and T(DM) values range from 1.19--1.04 Ga. These isotopic data, along with major and trace element data, suggest that andesites and rhyolites of the Carolina slate belt may have formed by partial melting of attenuated, Grenville-aged continental lithosphere during a 600 Ma episode of arc volcanism. In contrast, Sr and Nd data for the younger ([approximately]400 Ma) Concord pluton indicate it was derived from a depleted mantle source (Sr-87/Sr-86 = 0.7021 and E[sub ND] = +0.4 at 400 Ma) without significant involvement of older lithosphere (T(DM) = 370 Ma).

  20. He, Ar, N and C isotope compositions in Tatun Volcanic Group (TVG), Taiwan: Evidence for an important contribution of pelagic carbonates in the magmatic source

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Sano, Yuji; Takahata, Naoto; Yang, Frank T.; Takahashi, Hiroshi A.

    2015-09-01

    The Tatun Volcanic Group (TVG), Northeastern Taiwan, is considered to be the extension of the Ryukyu arc, and belongs to the post-collisional collapse Okinawa Trough. Strong hydrothermal activity is concentrated along the Chinshan fault, and Da-you-keng (DYK) represents the main fumarolic area where the most primitive isotopic and chemical composition is observed. In this study, we present chemical and He, Ar, C and N isotopic compositions of fumaroles, bubbling gas and water from hot springs sampled in 2012 and 2013. High 3He/4He ratios from DYK fumaroles (≈ 6.5 Ra) show a typical arc-like setting, whereas other sampling areas show a strong dependence of 3He/4He and CH4/3He ratios with the distance from the main active hydrothermal area (DYK). This could mean strong crustal contamination and thermal decomposition of organic matter from local sediments. Carbon isotope compositions of DYK range from - 6.67‰ to - 5.85‰, and indicate that carbon contribution comes mainly from pelagic carbonates from the slab (limestone, mantle and sediment contributions are 63%, 19% and 18%, respectively). This is consistent with the negative δ15N values (- 1.4 ± 0.5‰) observed for DYK, implying a strong nitrogen-mantle contribution, and an absence of contribution from nitrogen-pelagic carbonates. These results have important consequences related to the Ryukyu subducted slab. In fact, the Ryukyu margin presents little in off scraping the sedimentary cover to the subducting plate that does not permit any nitrogen contribution in magma from TVG.

  1. Source and mode of the Permian Panjal Trap magmatism: Evidence from zircon U-Pb and Hf isotopes and trace element data from the Himalayan ultrahigh-pressure rocks

    NASA Astrophysics Data System (ADS)

    Rehman, Hafiz Ur; Lee, Hao-Yang; Chung, Sun-Lin; Khan, Tahseenullah; O'Brien, Patrick J.; Yamamoto, Hiroshi

    2016-09-01

    We present an integrated study of LA-ICP-MS U-Pb age, Hf isotopes, and trace element geochemistry of zircons from the Himalayan eclogites (mafic rocks) and their host gneisses (felsic rocks) from the Kaghan Valley in Pakistan in order to understand the source and mode of their magmatic protoliths and the effect of metamorphism. Zircons from the so-called Group I (high-pressure) eclogites yielded U-Pb mean ages of 259 ± 10 Ma (MSWD = 0.74), whereas those of Group II (ultrahigh-pressure) eclogites yielded 48 ± 3 Ma (MSWD = 0.71). In felsic gneisses the central or core domains of zircons yielded ages similar to those from Group I eclogites but zircon overgrowth domains yielded 47 ± 1 Ma (MSWD = 1.9). Trace element data suggest a magmatic origin for Group I-derived (having Th/U ratios: > 0.5) and metamorphic origin for Group II-derived (Th/U < 0.07) zircons, respectively. Zircon Hf isotope data, obtained from the same dated spots, show positive initial 176Hf/177Hf isotopic ratios referred to as "ƐHf(t)" of around + 10 in Group I eclogites; + 7 in Group II eclogites; and + 8 in felsic gneisses zircons, respectively, thus indicate a juvenile mantle source for the protolith rocks (Panjal Traps) with almost no contribution from the ancient crustal material. The similar ƐHf(t) values, identical protolith ages and trace element compositions of zircons in felsic (granites or rhyolites) and mafic (basalt and dolerite) rocks attest to a bimodal magmatism accounting for the Panjal Traps during the Permian. Later, during India-Asia collision in Eocene times, both the felsic and mafic lithologies were subducted to mantle-depths (> 90 km: coesite-stable) and experienced ultrahigh-pressure metamorphism before their final exhumation.

  2. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  3. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake

    USGS Publications Warehouse

    Teng, F.-Z.; Dauphas, N.; Helz, R.T.

    2008-01-01

    Magmatic differentiation helps produce the chemical and petrographic diversity of terrestrial rocks. The extent to which magmatic differentiation fractionates nonradiogenic isotopes is uncertain for some elements. We report analyses of iron isotopes in basalts from Kilauea Iki lava lake, Hawaii. The iron isotopic compositions (56Fe/54Fe) of late-stage melt veins are 0.2 per mil (???) greater than values for olivine cumulates. Olivine phenocrysts are up to 1.2??? lighter than those of whole rocks. These results demonstrate that iron isotopes fractionate during magmatic differentiation at both whole-rock and crystal scales. This characteristic of iron relative to the characteristics of magnesium and lithium, for which no fractionation has been found, may be related to its complex redox chemistry in magmatic systems and makes iron a potential tool for studying planetary differentiation.

  4. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  5. On the isotopic composition of magmatic carbon in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Grady, M. M.; Pillinger, C. T.

    1992-01-01

    SNC meteorites are thought, from many lines of evidence, to come from Mars. A line of investigation which has been pursued in our laboratory over the years involves measurement of the stable isotopic composition of carbon, in its various forms, in SNC meteorites. In order to establish a firm basis for studying the isotopic systematics of carbon in the martian surface environment, it is first necessary to try and constrain the delta C-13 of bulk Mars. Taking all of the available information, it would seem that the delta C-13 of the Earth's mantle lies somewhere in the range of -5 to -7 percent. Preliminary assessment of magnetic carbon in SNC meteorites, would tend to suggest a delta C-13 of 20 to 30 percent, which is conspicuously different from that of the terrestrial mantle. It is not obvious why there should be such a difference between the two planets, although many explanations are possible. One of these possibilities, that previous delta C-13 measurements for magnetic carbon in SNC meteorites are in error to some degree, is being actively investigated. The most recent results seem to constrain the theta C-13 of the magnetic carbon in SNC meteorites to about -20 percent, which is not at odds with previous estimates. As such, it is considered that a detailed investigation of the carbon isotopic systematics of martian surface materials does have the necessary information with which to proceed.

  6. In-situ chemical, U-Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): Evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Simonetti, Antonio; Neal, Clive R.

    2010-06-01

    Previous investigations of pipe-like intrusions of alnöite within northern Malaita (Solomon Islands) have detailed the chemical and isotopic nature of the alnöite and entrained megacrysts/xenoliths. Alnöite emplacement is poorly constrained since available ages include an Ar-Ar date of 34 Ma (phlogopite) from a mantle xenolith, and a 206Pb/238U date of 33.9 Ma for a zircon megacryst. Hence, we report chemical data, in-situ U-Pb age determinations and Hf isotope compositions for megacrystic zircons recovered from alnöite-derived, ilmenite-rich gravels in the Auluta, Kwainale, and Faufaumela rivers of Malaita. The Zr/Hf ratio (39 to 50) is variable for zircons from Auluta and Faufaumela, whereas it is relatively uniform (40 to 42) in most zircons from Kwainale. Chemical imaging reveals the homogeneous nature for all of the 16 grains analyzed. Trace element compositions obtained by LA-ICP-MS indicate parallel chondrite-normalized REE patterns at variable levels of enrichment; these patterns combined with their low abundances (< 1 to 10 ppm) of U, Th, and Pb confirm their mantle origin. In-situ U-Pb dating conducted by LA-ICP-MS (n = 94 analyses) define a total range in weighted mean (WM) 206Pb/238U ages between ∼ 35 and ∼ 52 Ma. The zircons from Auluta define a range of WM 206Pb/238U ages between 34.9 ± 2.0 Ma and 45.1 ± 2.5 Ma (2σ) that correlate negatively with Zr/Hf ratios and total REE contents. Conversely, the chemically homogeneous zircons from Kwainale define a uniform age spectrum yielding a WM 206Pb/238U age of 36.7 ± 0.5 Ma (2σ). In-situ Hf isotope analyses (n = 30) are uniform and define a WM 176Hf/177Hf value of 0.282933 ± 0.000013 (2σ), which is identical to the previously reported whole rock value for the Malaitan alnöite (0.282939 ± 0.000007). Correlations between ages and chemical compositions (i.e., Auluta zircons), and the uniform Hf isotope compositions are consistent with zircon formation from a common Ontong Java Plateau (OJP

  7. Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation

    NASA Astrophysics Data System (ADS)

    Zambardi, Thomas; Lundstrom, Craig C.; Li, Xiaoxiao; McCurry, Michael

    2014-11-01

    This study presents the stable isotopic variations of both Si and Fe recorded in a single well-characterized magmatic suite from Cedar Butte volcano (ID, USA), as well as a sill with progressive compositional change within Finland granophyre (Duluth Complex, MN, USA). Both isotopic systems show a significant enrichment in heavy isotopes in the more differentiated materials, in agreement with previous studies. In addition, the Finland granophyre sill shows a strong dependence between the isotopic composition and the sampling depth, suggesting the isotopic compositions follow a temperature gradient in which the cold part systematically enriches in heavy isotopes. From these results it appears that at Cedar Butte, neither crystal fractionation, nor crustal contamination, nor late stage fluid exsolution can likely explain the isotopic variations we observe for both Fe and Si. We rather attribute these isotopic fractionations to a thermal migration process involving a top-down sill injection during which the isotopic distribution mostly follows a vertical temperature gradient.

  8. Zircon Hf isotopic constraints on the magmatic evolution in Iran: Implications of the Phanerozoic continental growth

    NASA Astrophysics Data System (ADS)

    Chiu, H.; Chung, S.; Zarrinkoub, M. H.; Lee, H.; Pang, K.; Mohammadi, S. S.; Khatib, M. M.

    2013-12-01

    Combined LA-ICPMS analyses of zircon U-Pb and Hf isotope compositions for magmatic rocks from major domains of Iran allow us to better understand the magmatic evolution regarding the development of the Tethys oceans in the regions. In addition to 79 igneous rocks from Iran, 12 others were also collected from Armenia for isotopic studies. Two major episodes of magmatism were identified in the late Neoproterozoic to Cambrian and the Late Triassic. While the former represents the depleted mantle-derived magma and has associated with the magmatic events that produced the peri-Gondwanan terranes and the Arabian-Nubian Shield, the latter shows the continental crust-type zircon Hf isotopic characteristic and is attributed to the subduction and closing of the Paleotethys ocean. The Neotethyan subduction-related magmatism started from the Jurassic period as granitoids that now exposed along the Sanandaj-Sirjan structural zone (SSZ) and in the central part of the Urumieh-Dokhtar magmatic arc (UDMA), and exhibit heterogeneous isotopic affinities of variable zircon ɛHf(T) values between +12 and -5. The igneous activities migrated inland in the southeastern segment of the UDMA from which the Late Cretaceous granitoids occurred in the Jiroft and Bazman areas with zircon ɛHf(T) values from +15 to +11 and from +5 to -9, respectively, implying the remarkable involvement of crustal material in the Bazman magma. Then, the most widespread magmatic activities which took place during the Eocene to Miocene in the UDMA, Armenia, the SSZ and the Alborz yielded mainly positive zircon ɛHf(T) values from +17 to -1. However, the Eocene intrusive rocks from the Central Iran, in the Saghand area have less radiogenic zircon Hf isotopes of ɛHf(T) values between +6 and -7. Magmatic zircons with juvenile signatures, ɛHf(T) values from +17 to 0, were also found during the Oligocene to Quaternary in the southern Sistan suture zone and the Makran region. Significantly, the positive ɛHf(T) values

  9. Iron isotope fractionation in sulfides: constraints on mechanisms of sulfide formations in hydrothermal and magmatic systems.

    NASA Astrophysics Data System (ADS)

    Polyakov, Veniamin; Soultanov, Dilshod

    2010-05-01

    Data on non-traditional stable isotope fractionations (e.g., Fe, Cu) provide further insight into mechanisms of sulfide mineralization. Correct interpretation of these data is impossible without knowledge on equilibrium isotopic fractionation factors of sulfides. We present data on iron isotope fractionation factors (β-factors) of chalcopyrite (CuFeS2) and mackinawite (FeS). Iron β-factors for chalcopyrite were derived from synchrotron experimental data on inelastic nuclear resonant x-ray scattering (INRXS) [1] using the method described elsewhere [2,3]. The β-factors for mackinawite were found from the Moessbauer second-order Doppler shift data [4] by the method presented in [5]. The temperature dependence of the iron β-factors are fitted by following third-order polynomials: 103lnβcpy = 0.82560x - 0.01298x2 + 0.0005246x3 103lnβmcw = 0.2542x - 0.0001847x2 + 2.072×103x3 where x=106/T2 Using these data along with β-factors for pyrite and troilite [3,6], we compared iron isotope fractionation between pyrite and chalcopyrite in hydrothermal and magmatic conditions. Rouxel et al. [7] studied iron isotope of seafloor of hydrothermal vents in detail. They found that pyrite is enriched in light iron isotope relative to chalcopyrite in the case of black smoker Bio 9. This result evidences absence of iron isotope equilibrium between pyrite and chalcopyrite, because in equilibrium pyrite is enriched in heavy iron isotope (βpy > βcpy). Quantitatively, iron isotope fractionation between chalcolpyrite and pyrite is very close to equilibrium iron isotope fractionation between chalcolpyrite and FeS phase (mackinawite or troilite). This agrees the mechanism of pyrite formation through intermidient FeS phase if to assume isotopic equilibrium between the FeS phase and dissolved iron and no isotopic effect in the final stage of conversion FeS to FeS2 (pyrite). Another iron isotope fractionation was observed between pyrite and chalcopyrite in the case of the Cu-Au porphyry

  10. Insights into collisional magmatism from isotopic fingerprints of melting reactions.

    PubMed

    Knesel, Kurt M; Davidson, Jon P

    2002-06-21

    Piston-cylinder experiments in the granite system demonstrate that a variety of isotopically distinct melts can arise from progressive melting of a single source. The relation between the isotopic composition of Sr and the stoichiometry of the observed melting reactions suggests that isotopic signatures of anatectic magmas can be used to infer melting reactions in natural systems. Our results also indicate that distinct episodes of dehydration and fluid-fluxed melting of a single, metapelitic source region may have contributed to the bimodal geochemistry of crustally derived leucogranites of the Himalayan orogen. PMID:12077413

  11. Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence

    NASA Astrophysics Data System (ADS)

    White, J. D. L.; Valentine, G. A.

    2015-12-01

    What are the fragmentation processes in volcanic eruptions? At meetings like this sessions ask "what can pyroclasts tell us?" and the answer is mostly "the properties of the magma at the point of solidification." The only place a pyroclast can preserve a fragmentation signature is at its surface, as the fracture or interface that made it a fragment. Commonly contrasted are "phreatomagmatic" and "magmatic" fragmentation in eruptions. Strictly, the latter means only fragmentation of magma without external water, but it often carries the connotation of disruption by bubbles of magmatic gas. Phreatomagmatic fragmentation implies a role for external water in fragmenting the magma, including vaporization and expansion of water as steam with rapid cooling/quenching of the magma. Magma is necessarily involved in phreatomagmatic fragmentation, and a common approach to assessing whether a pyroclast formed by magmatic or phreatomagmatic fragmentation is to make a stepwise assessment. This often uses particle vesicularity (high=magmatic), shape of particles (blocky=phreatomagmatic), degree of quenching (high=phreatomagmatic), or a glassy fluidal exterior film on particles (present=magmatic). It is widely known that no single one of these criteria is entirely diagnostic and other criteria are often considered, such as welding (=magmatic), particle aggregation (=phreatomagmatic), lithic-fragment abundance (high=phreatomagmatic), and proportion of fines (high=phreatomagmatic). Magmatic fragmentation varies, and even without water can yield anything from rhyolite pumice to obsidian to basaltic achneliths or carbonatitic globules. This makes direct argument for magmatic fragmentation difficult, and many papers have taken an alternative approach: they have "tested" for phreatomagmatism using the fingerprints listed above, and if the fingerprint is lacking a magmatic fragmentation process is considered to be "proven". In other words, absence of evidence for phreatomagmatic

  12. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon.

    PubMed

    Kemp, A I S; Hawkesworth, C J; Foster, G L; Paterson, B A; Woodhead, J D; Hergt, J M; Gray, C M; Whitehouse, M J

    2007-02-16

    Granitic plutonism is the principal agent of crustal differentiation, but linking granite emplacement to crust formation requires knowledge of the magmatic evolution, which is notoriously difficult to reconstruct from bulk rock compositions. We unlocked the plutonic archive through hafnium (Hf) and oxygen (O) isotope analysis of zoned zircon crystals from the classic hornblende-bearing (I-type) granites of eastern Australia. This granite type forms by the reworking of sedimentary materials by mantle-like magmas instead of by remelting ancient metamorphosed igneous rocks as widely believed. I-type magmatism thus drives the coupled growth and differentiation of continental crust. PMID:17303751

  13. Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Siebert, Christopher; Barling, Jane; Savage, Paul; Liang, Yu-Hsuan; Halliday, Alex N.

    2015-08-01

    This study investigates the behaviour of molybdenum (Mo) isotopes during magmatic differentiation. Molybdenum isotope compositions, as well as concentrations of rare earth elements and a selection of trace elements, have been determined for a well characterised sequence of lavas from Hekla volcano, Iceland, covering a compositional range from basalt to rhyolite (46-72 wt.% SiO2), and thought to have developed by differentiation and mixing of melts derived from a cogenetic source. All samples have identical Mo isotopic compositions with an average δ98Mo of -0.15 ± 0.05‰ (2 s.d.; n = 23). There is therefore no resolvable Mo isotope fractionation during magmatic differentiation at Hekla. This finding is supported by the fact that Mo remains highly incompatible in Hekla lavas, increasing from 1.3 to 4.6 μg/g from basalt to rhyolite, indicating that the crystallising phases are extracting only limited amounts of Mo from the magma and therefore that significant fractionation of Mo isotopes is unlikely. It has previously been proposed that cerium (Ce) and Mo have similar bulk distribution coefficients and are equally incompatible during mantle melting. While both Ce and Mo remain incompatible in Hekla lavas, the Ce/Mo ratio decreases from 50 to 36 during magmatic differentiation indicating that Mo is more incompatible than Ce. Comparison of Mo with other incompatible trace elements indicates that Mo is as incompatible as La and slightly less incompatible than K. Sulphur (S) decreases strongly from ∼200 to as low as ∼2 μg/g from basalt to andesite and more evolved compositions, yet this has no effect on the Mo isotopes. Therefore, Mo does not exhibit significant chalcophile behaviour in Hekla magmas. The Mo isotopic signature therefore may be used as an indicator of parent magma composition and a potential discriminant of assimilation processes.

  14. Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center

    SciTech Connect

    Bullen, T.D.; Clynne, M.A. )

    1990-11-10

    Magmatic evolution at the Lassen volcanic center (LVC) is characterized by a transition from predominantly andesitic to predominantly silicic volcanism with time. Magmas of the adesitic, or Brokeoff phase of volcanism range in composition from basaltic andesite to dacite, whereas those of silicic, or Lassen phase range in composition from basaltic andesite to rhyolite. The distinctive mixing-dominated arrays for each volcanic phase manifest the generation and evolution of two physically distinct, but genetically related magma systems. The LVC magmas have Sr, Nd, and Pb isotope characteristics that approximate two-component mixing arrays. One isotopic component is similar in composition to that of NE Pacific Ocean ridge and seamount basalts (MORB component), the other to mafic Mesozoic granitoids sampled from the neighboring Klamath and Sierra Nevada provinces (KSN component). The lack of a correlation between the major element and isotopic compositions of LVC magmas seriously limits any model for magmatic evolution that relies on assimilation of old middle to upper crust by isotopically homogeneous mafic magmas during their ascent through the crust. Alternatively, the isotopic and geochemical uniformity of the most silicic magmas of the Brokeoff and Lassen phases suggests that they are well-homogenized partial melts. The likely source region for these silicic melts is the lower crust, which the authors envision to consist primarily of mafic igneous rocks that are similar in geochemical and isotopic diversity to the regional mafic lavas.

  15. Crustal recycling through intraplate magmatism: Evidence from the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    He, Xiao-Fang; Santosh, M.

    2014-12-01

    The North China Craton (NCC) preserves the history of crustal growth and craton formation during the early Precambrian followed by extensive lithospheric thinning and craton destruction in the Mesozoic. Here we present evidence for magma mixing and mingling associated with the Mesozoic tectonic processes from the Central NCC, along the Trans-North China Orogen, a paleo suture along which the Eastern and Western Blocks were amalgamated at end of Paleoproterozoic. Our investigations focus on two granitoids - the Chiwawu and the Mapeng plutons. Typical signatures for the interaction of mafic and felsic magmas are observed in these plutons such as: (1) the presence of diorite enclaves; (2) flow structures; (3) schlierens; (4) varying degrees of hybridization; and (5) macro-, and micro-textures. Porphyritic feldspar crystals show numerous mineral inclusions as well as rapakivi and anti-rapakivi textures. We present bulk chemistry, zircon U-Pb geochronology and REE data, and Lu-Hf isotopes on the granitoids, diorite enclaves, and surrounding basement rocks to constrain the timing of intraplate magmatism and processes of interaction between felsic and mafic magmas. Our LA-ICP-MS zircon U-Pb data show that the pophyritic granodiorite was emplaced at 129.7 ± 1.0 Ma. The diorite enclaves within this granodiorite show identical ages (128.2 ± 1.5 Ma). The basement TTG (tonalite-trondhjemite-granodiorite) gneisses formed at ca. 2.5 Ga coinciding with the major period of crustal accretion in the NCC. The 1.85 Ga age from zircons in the gabbro with positive Hf isotope signature may be related to mantle magmatism during post-collisional extension following the assembly of the Western and Eastern Blocks of the NCC along the Trans-North China Orogen. Our Hf isotope data indicate that the Neoarchean-Paleoproterozoic basement rocks were derived from complex sources of both juvenile magmas and reworked ancient crust, whereas the magma source for the Mesozoic units are dominantly

  16. Geochronology and isotopic-geochemical characteristics of magmatic complexes of gold-silver ore-magmatic structures in the Chukotka sector of the Russian Arctic coast

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Grigoriev, N. V.; Kurashko, V. V.

    2016-05-01

    The first results of SHRIMP dating of magmatic complexes and associated gold-silver deposits and ore occurrences (Kupol, Dvoinoe, Moroshka, and others) in the Chukotka sector of the Russian Arctic coast are discussed. The petrological and isotopic-geochronological data are used for reconstructing their formation conditions.

  17. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    NASA Astrophysics Data System (ADS)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  18. Os and U-Th isotope signatures of arc magmatism near Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Ankney, Meagan E.; Shirey, Steven B.; Hart, Garret L.; Bacon, Charles R.; Johnson, Clark M.

    2016-03-01

    Interaction of mantle melts with the continental crust can have significant effects on the composition of the resulting melts as well as on the crust itself, and tracing this interaction is key to our understanding of arc magmatism. Lava flows and pyroclastic deposits erupted from ∼50 to 7.7 ka at Mt. Mazama (Crater Lake, Oregon) were analyzed for their Re/Os and U-Th isotopic compositions. Mafic lavas from monogenetic vents around Mt. Mazama that erupted during the buildup to its climactic eruption have lower 187Os/188Os ratios (0.1394 to 0.1956) and high 230Th excess ((230Th/238U)0 of 1.180 to 1.302), whereas dacites and rhyodacites tend to have higher 187Os/188Os ratios (0.2292 to 0.2788) and significant 238U excess ((230Th/238U)0 of 0.975 to 0.989). The less radiogenic Os isotope compositions of the mafic lavas can be modeled by assimilation of young (∼2.5 to 7 Ma), mafic lower crust that was modified during regional extension, whereas the more radiogenic Os isotope compositions of the dacites and rhyodacites can be attributed to assimilation of older (∼10 to 16 Ma), mid to upper crust that acquired its composition during an earlier period of Cascade magmatism. Production of Th excesses in the lower crust requires very young garnet formation accompanying dehydration melting in the lower crust at less than a few 100 ka by heat from recent basaltic magma injection. The results from this study suggest that the combination of Os and Th isotopes may be used to provide insights into the timescales of evolution of the continental crust in arc settings, as well as the influence of the crust on erupted magmas, and suggest a link between the age and composition of the lower and upper crust to regional tectonic extension and/or earlier Cascade magmatism.

  19. Characterization of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-steam alunite

    USGS Publications Warehouse

    Landis, G.P.; Rye, R.O.

    2005-01-01

    Chemical and isotope data were obtained for the active gas and noble gas of inclusion fluids in coarse-grained samples of magmatic-hydrothermal and magmatic-steam alunite from well-studied deposits (Marysvale, Utah; Tambo, Chile; Tapajo??s, Brazil; Cactus, California; Pierina, Peru), most of which are discussed in this Volume. Primary fluid inclusions in the alunite typically are less than 0.2 ??m but range up to several micrometers. Analyses of the active-gas composition of these alunite-hosted inclusion fluids released in vacuo by both crushing and heating indicate consistent differences in the compositions of magmatic-hydrothermal and magmatic-steam fluids. The compositions of fluids released by crushing were influenced by contributions from significant populations of secondary inclusions that trapped largely postdepositional hydrothermal fluids. Thermally released fluids gave the best representation of the fluids that formed primary alunite. The data are consistent with current models for the evolution of magmatic-hydrothermal and magmatic-steam fluids. Magmatic-steam fluids are vapor-dominant, average about 49 mol% H2O, and contain N2, H2, CH4, CO, Ar, He, HF, and HCl, with SO2 the dominant sulfur gas (average SO2/ H2S=202). In contrast, magmatic-hydrothermal fluids are liquid-dominant, average about 88 mol% H2O, and N2, H2, CO2, and HF, with H2S about as abundant as SO2 (average SO2/H2 S=0.7). The low SO2/H2S and N2/Ar ratios, and the near-absence of He in magmatic-hydrothermal fluids, are consistent with their derivation from degassed condensed magmatic fluids whose evolution from reduced-to-oxidized aqueous sulfur species was governed first by rock and then by fluid buffers. The high SO2/H2S and N2/Ar with significant concentrations of He in magmatic-steam fluids are consistent with derivation directly from a magma. None of the data supports the entrainment of atmospheric gases or mixing of air-saturated gases in meteoric water in either magmatic

  20. Zircon Lu-Hf isotopes and granite geochemistry of the Murchison Domain of the Yilgarn Craton: Evidence for reworking of Eoarchean crust during Meso-Neoarchean plume-driven magmatism

    NASA Astrophysics Data System (ADS)

    Ivanic, Timothy J.; Van Kranendonk, Martin J.; Kirkland, Christopher L.; Wyche, Stephen; Wingate, Michael T. D.; Belousova, Elena A.

    2012-09-01

    New in situ Lu-Hf data on zircons from GSWA geochronology samples has provided a unique isotopic dataset with a high temporal resolution for the Murchison Domain of the Yilgarn Craton in Western Australia. These data identify extended periods of juvenile mantle input (positive ɛHf values) into the crust firstly at c. 2980 Ma and then from c. 2820 Ma to c. 2640 Ma with significant pulses of crustal recycling at c. 2750 Ma and c. 2620 Ma (highly negative ɛHf values). Geochemical data from well-characterised granitic suites of the Murchison Domain provide additional constraints on the crustal evolution of the area and indicate a prolonged period of crustal melting and remelting at progressively shallower depths from c. 2750 to c. 2600 Ma. At c. 2760-2753 Ma, widespread calc-alkaline, intermediate to silicic volcanic rocks of the Polelle Group were erupted, accompanied by intrusion of felsic to intermediate melts derived from a variety of crustal sources that likely formed by partial mixing with basaltic melts. The intrusive rocks include a wide geochemical array of rocks in the Cullculli and Eelya suites that were sourced over a wide range of crustal depths. At this time a major departure to negative ɛHf values (<-5) occurred, indicating sampling of c. 3.80 Ga model aged source rocks as well as continued juvenile input. Post-volcanic granitic rocks emplaced between c. 2710 and c. 2600 Ma show geochemical evidence for progressive fractionation through time and derivation from an evolving crustal source. We interpret the driving force for this protracted history of mantle and crustal melting to be two mantle plumes at 2.81 and 2.72 Ga. These data document the process of cratonization through progressive melt depletion of the lower crust, progressively fractionating and shallower melts, culminating with a final phase of crustal recycling (ɛHf < - 5) and the cessation of juvenile input at c. 2630-2600 Ma during intrusion of the Bald Rock Supersuite, resulting in

  1. Zircon U-Pb and Hf Isotopes Provide Insights into Triassic Magmatism in the Chinese Pamir

    NASA Astrophysics Data System (ADS)

    Imrecke, D. B.; Robinson, A. C.

    2015-12-01

    Recent research has improved understanding of Triassic magmatism and sedimentation in the Songpan-Ganzi/Hoh-Xil Terranes of Tibet and the implications for the closure of the Paleotethys ocean (Pullen et al., 2008; Ding et al,. 2013; Zhang et al., 2014). However, our knowledge of the age of magmatism in the laterally equivalent Karakul-Mazar Terrane in the Northern Pamir is limited. While previous investigations indicate Karakul-Mazar igneous bodies have generally documented crystallization ages 225-245 Ma, detrital zircon studies of Late Triassic/Early Jurassic strata within the Northern Pamir and the Tarim Basin record a significant quantity of <220 Ma zircons (Bershaw et al., 2011) sourced from the Pamir. 6 granite samples were analyzed for zircon U-Pb and Hf isotopes, representing plutons distributed across the Chinese Pamir, to determine the distribution of crystallization ages and chemical maturity of the magma source. Analyses yielded 204 Ma and 212-214 Ma zircon U-Pb crystallization ages. The dated samples yield ɛHf(t) values ranging from -6.7 to 9.6. Results show that a large volume of magmatic rocks in the Northern Pamir intruded in the Late Triassic prior to closure of the Paleotethys Ocean at ~200 Ma (Angiolini et al., 2013). Weakly positive and negative ɛHf(t) values indicate a primitive source for the dated magmatic bodies. Additionally, compliation of previously published data with these results suggests two pulses of magmatism, ~210 Ma and 230-245 Ma respectively. Finally, Triassic igneous bodies in the Pamir show similar crystallization ages and chemical signatures compared to plutons in the Songpan-Ganzi/Hoh-Xil Terranes to the east, suggesting lateral continuity of geodynamic processes across the terrane in the Mesozoic.

  2. Mantle source of the 2.44-2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hong; Hanski, Eero; Li, Chao; Maier, Wolfgang D.; Huhma, Hannu; Mokrushin, Artem V.; Latypov, Rais; Lahaye, Yann; O'Brien, Hugh; Qu, Wen-Jun

    2016-08-01

    Significant PGE and Cr mineralization occurs in a number of 2.44-2.50-Ga mafic layered intrusions located across the Karelian and Kola cratons. The intrusions have been interpreted to be related to mantle plume activity. Most of the intrusions have negative ɛNd values of about -1 to -2 and slightly radiogenic initial Sr isotope compositions of about 0.702 to 0.703. One potential explanation is crustal contamination of a magma derived from a mantle plume, but another possibility is that the magma was derived from metasomatized sub-continental lithospheric mantle. Samples from the upper chromitite layers of the Kemi intrusion and most samples from the previously studied Koitelainen and Akanvaara intrusions have supra-chondritic γOs values indicating some crustal contamination, which may have contributed to the formation of chromitites in these intrusions. Chromite separates from the main ore zone of the Kemi and Monchepluton intrusions show nearly chondritic γOs, similar to the coeval Vetreny belt komatiites. We suggest that the Os isotope composition of the primitive magma was not significantly changed by crustal contamination due to a high Os content of the magma and a low Os content of the contaminant. Modeling suggests that the Os and Nd isotope compositions of the Monchepluton and Kemi intrusions cannot be explained by assuming a magma source in the sub-continental lithospheric mantle with sub-chondritic γOs. A better match for the isotope data would be a plume mantle source with chondritic Re/Os and Os isotope composition, followed by crustal contamination.

  3. Iron Stable Isotopes, Magmatic Differentiation and the Oxidation State of Mariana Arc Magmas

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Prytulak, J.; Plank, T. A.; Kelley, K. A.

    2014-12-01

    Arc magmas are widely considered to be oxidized, with elevated ferric iron contents (Fe3+/ΣFe) relative to mid-ocean ridge lavas (1, 2). However, it is unclear whether the oxidized nature of arc basalts is a primary feature, inherited from the sub-arc mantle, or the product of magmatic differentiation and/or post eruptive alteration processes (3). Iron stable isotopes can be used to trace the distribution of Fe during melting and magmatic differentiation processes (4, 5). Here we present Fe isotope data for well-characterized samples (6-8) from islands of the Central Volcanic Zone (CVZ) of the intra-oceanic Mariana Arc to explore the effect of magmatic differentiation processes on Fe isotope systematics. The overall variation in the Fe isotope compositions (δ57Fe) of samples from the CVZ islands ranges from -0.10 ±0.04 to 0.29 ± 0.01 ‰. Lavas from Anatahan are displaced to lower overall δ57Fe values (range -0.10 ±0.04 to 0.18 ±0.01 ‰) relative to other CVZ samples. Fe isotopes in the Anatahan suite (range -0.10 ±0.04 to 0.18 ±0.01 ‰) are positively correlated with SiO2 and negatively correlated with Ca, Fe2O3(t), Cr and V and are displaced to lower overall δ57Fe values relative to other CVZ samples. These correlations can be interpreted in terms of clinopyroxene and magnetite fractionation, with magnetite saturation throughout the differentiation sequence. Magnetite saturation is further supported by negative correlations between V, Fe2O3(t), Cr and MgO (for MgO <3.5 wt%). The early saturation of magnetite in the Anatahan and CVZ lavas is likely to be a function of high melt water content (9, 10) and potentially elevated melt oxidation state. Future work will focus on determining the relationships between mineral Fe isotope partitioning effects and melt composition and oxidation state. 1. R. Arculus, Lithos (1994). 2. K. A. Kelley et al., Science (2009). 3. C.-T. A. Lee et al., J. Pet. (2005). 4. N. Dauphas et al., EPSL (2014). 5. P. A. Sossi et al

  4. New evidence for a magmatic origin of some gases in the Geysers geothermal reservoir

    SciTech Connect

    Truesdell, A.H.; Kennedy, B.M.; Walters, M.A.; D'Amore, F.

    1994-01-20

    The Geysers vapor-dominated geothermal reservoir is known to have a wide range of gas concentrations in steam (<100 to >75,000 ppmw), but the variations in gas compositions and the origin of the gases have been little studied. Low gas concentrations and steam isotopes similar to meteoric waters are found in the SE Geysers, but steam high in gas and HCI from a high temperature reservoir (HTR) in the NW Geysers has been thought to be related to metamorphic or magmatic brine. New analyses of noble gas isotopes show that the highest gas steam from the HTR has high {sup 3}He/{sup 4}He (8.3 Ra), and very low {sup 36}Ar and radiogenic {sup 40}Ar/{sup 4}He, indicating a strong magmatic component and essentially no atmospheric or crustal noble gases. Other samples from the HTR show various amounts of atmospheric dilution of the magmatic gas and lower HCI and total gas contents. The occurrence of steam in the NW Geysers highly enriched in heavy isotopes of oxygen and hydrogen supports the indications of remnant magmatic fluid: The existence of this fluid strongly suggests that the HTR was formed by rapid heating and catastrophic boiling resulting from injection of magma.

  5. Trace element and isotopic constraints on magmatic evolution at Lassen Volcanic Center

    NASA Astrophysics Data System (ADS)

    Bullen, Thomas D.; Clynne, Michael A.

    1990-11-01

    Magmatic evolution at the Lassen volcanic center (LVC) is characterized by a transition from predominantly andesitic to predominantly silicic volcanism with time. Magmas of the andesitic, or "Brokeoff phase" of volcanism range in composition from basaltic andesite io dacite, whereas those of silicic, or "Lassen phase" range in composition from basaltic andesite to rhyolite. The compositions of magmas from each phase define well organized but distinct variation trends. Compared with Brokeoff-phase magmas of similar SiO2 content, most Lassen-phase magmas contain lower concentrations of most incompatible minor and trace elements. Based on the behavior of both incompatible and compatible trace elements, the geochemical trends defined by the Brokeoff-phase magmas cannot be ascribed merely to fractional crystallization from a single or multiple mafic parental magmas, Moreover, the Lassen-phase magmas cannot be derived from the Brokeoff-phase magmas by fractional crystallization. Rather, the geochemical trends that characterize each volcanic phase define arrays that primarily indicate mixing between well-homogenized silicic and heterogeneous mafic magmas. The distinctive mixing-dominated arrays for each volcanic phase manifest the generation and evolution of two physically distinct, but genetically related magma systems. The LVC magmas have Sr, Nd, and Pb isotopic characteristics that approximate two-component mixing arrays. One isotopic component is similar in composition to that of NE Pacific Ocean ridge and seamount basalts ("MORB" component), the other to mafic Mesozoic granitoids sampled from the neighboring KSamath and Sierra Nevada provinces ("KSN" component). The isotopic compositions of the most silicic LVC magmas lie within the ranges defined by the more mafic LVC magmas, which in turn lie within broad ranges defined by primitive mafic lavas sampled from the Lassen region. The lack of a correlation between the major element and isotopic compositions of LVC

  6. Combined Whole-Rock to Nano-Scale Investigations Reveal Contrasting Response of Pt-Os and Re-Os Isotope Systematics During Magmatic and Post-Magmatic Processes

    NASA Astrophysics Data System (ADS)

    Coggon, J. A.; Luguet, A.; Lorand, J. P.; Fonseca, R.; Wainwright, A.; Appel, P.; Hoffmann, J. E.; Nowell, G. M.

    2015-12-01

    Advances in single-grain and micro- and nano-analytical techniques in recent years have been particularly important to the study of highly siderophile elements (HSE) and have contributed significantly to our knowledge and understanding of their host phases and behaviour. Furthermore, whole-rock- to nano-scale studies provide new perspectives for investigation of HSE isotope systematics. Recent multi-scale 187Re-187Os and 190Pt-186Os studies facilitate comparison, to a previously unattainable degree, of the differing responses of these two decay systems to magmatic and post-magmatic processes. It is well established that mafic-ultramafic melts are sensitive to disturbance of their Re-Os isotope systematics by crustal assimilation, due to the incompatibility and resulting enrichment of Re in crustal lithologies. In contrast the very long half-life and extremely low atomic abundance of 190Pt, combined with relatively low Pt concentrations in crustal rocks, generally render the Pt-Os isotope system insensitive to modification during assimilation. However, using new single chromite grain data (Coggon et al., 2015) from the >3.811 Ga Ujaragssuit nunât layered ultramafic body, Greenland, we show that it is possible to distinguish two distinct episodes of 187Os/188Os modification; Country rock contamination of the parent melt was followed by later metamorphic disturbance of the isotope system. The Pt-Os data (Coggon et al., 2013) from the same samples show no evidence of crustal assimilation, but preserve signatures of mantle melting at ~4.1 Ga as well as disturbance during metamorphism. Macro- to micro-petrographic study clearly demonstrates that Pt, Re and Os are hosted by different mineral phases, of different origins, in these samples. This, together with the physical parameters of the decay systems reported above, leads to the dissimilar behaviour and response of the 187Re-187Os and 190Pt-186Os isotope systems during both magmatic and post-magmatic processes and

  7. Evidence of prolonged felsic magmatism within the Karoo large igneous province

    NASA Astrophysics Data System (ADS)

    Kurhila, Matti; Romu, Ilona; Mänttäri, Irmeli; Andersen, Tom; Luttinen, Arto

    2015-04-01

    The Karoo large igneous province (LIP) extends from southern Africa to East Antarctica, and marks the onset of rifting of these two continents. The main stage of volcanic activity occurred ~182180 Ma ago, and was mostly mafic in composition. We report new thermal ionization (TIMS) and secondary ion (SIMS) mass spectrometric U-Pb ages on zircon from felsic lavas in Lebombo monocline, southern Mozambique and from granitoid intrusions in Vestfjella, Dronning Maud Land, Antarctica. Utpostane granite in southern Vestfjella yields a TIMS age of 180.7±1.5 Ma, complying with the main stage of magmatism in the Karoo LIP. Three rhyolitic beds intercalating mafic volcanic layers of the Lebombo monocline give SIMS ages of 182±3 Ma, 178±3 Ma, and 172±2 Ma, respectively. The zircon in the oldest of these can be divided in two groups: (a) internally homogeneous, low U and Pb zircon and (b) oscillatorily zoned, relatively high U and Pb zircon. The ages of these groups are ~179 Ma and ~184 Ma, respectively, but they overlap within error limits, and thus a combined age for this sample is preferred. Finally, an alkali feldspar granite xenolith from a lamproite dike in Vestfjella has a SIMS age of 165±1 Ma. Lu-Hf isotopes were analyzed from zircons in the 172 Ma rhyolite sample. They show fairly homogeneous Hf isotope composition, with initial ɛHf values between +4 and +10. The corresponding crustal residence ages for the zircons vary between ~300 and ~500 Ma, implying source recycling. In light of the new data it is thus evident that, while most of the Karoo LIP may have emplaced within a short time frame, igneous activity continued for at least ~15 Ma.

  8. Emission rate, isotopic composition and origin(s) of magmatic carbon dioxide at Merapi volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Allard, P.

    2012-12-01

    (iii) other Javanese volcanoes whose lavas do not contain calc-silicate xenoliths emit CO2 with identical δ13C values of -4‰. Based on the above observations and on typical arc-type isotopic ratios for water, sulphur and nitrogen in Merapi magmatic gases [2], I rather propose that 80% of CO2 emitted by the volcano ultimately derives from a subducted sediment contribution, in agreement with Sr-Nd-Pb isotope data for bulk lavas [9]. The CO2/HCl ratio of Merapi magmatic gases, normalized to the bulk mass fraction of outgassed Cl inferred from analysis of melt inclusions in clinopyroxene and the matrix glasses, points to a maximum CO2 content of ~1 wt% in the undegassed magma [3], 0.8 wt% of which derived from subducted carbon. [1] Allard, 1980, C.R. Acad Sciences Paris; [2] Allard, 1986, Ph.D thesis, Paris 7 Univ.; [3] Allard et al., 1995, and submitted (JVGR, 2012); [4] Toutain et al., Bull. Volcanol. 2009; [5] Clocchiatti et al., 1982, C.R. Acad. Sciences Paris; [6] Chadwick et al., 2007, J. Petrol.; [7] Deegan et al., 2010, J. Petrol.; [8] Troll et al., 2012, Geophys. Res. Lett.; [9] Gertisser and Keller, 2003, J. Petrol..

  9. Zinc isotopic evidence for the origin of the Moon.

    PubMed

    Paniello, Randal C; Day, James M D; Moynier, Frédéric

    2012-10-18

    Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon. PMID:23075987

  10. Zinc isotopic evidence for the origin of the Moon

    NASA Astrophysics Data System (ADS)

    Paniello, Randal C.; Day, James M. D.; Moynier, Frédéric

    2012-10-01

    Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.

  11. Geodynamics of magmatic Cu-Ni-PGE sulfide deposits: new insights from the Re-Os isotope system

    USGS Publications Warehouse

    Lambert, D.D.; Foster, J.G.; Frick, L.R.; Ripley, E.M.; Zientek, M.L.

    1998-01-01

    In this study, we reassess crustal contamination and sulfide ore-forming processes in some of the largest magmatic ore deposits, using published Re-Os isotope data and a modeling methodology that incorporates the R factor, defined as the effective mass of silicate magma with which a given mass of sulfide magma has equilibrated, in an Re-Os isotope mixing equation. We show that there is less disparity between conclusions based on Re-Os isotope data compared to other isotopic systems if the R factor is considered, Komatiite-associated Ni sulfide ore systems typically have high Os concentrations, low Re/Os ratios, and near-chondritic initial Os isotope compositions. For magmatic sulfide ores that are interpreted to have experienced relatively low R factors (2,000). Sulfide saturation in these ore systems may, therefore, have been achieved via changes in intensive parameters of the komatiite lavas (cooling or decompression) or changes in compositional parameters transparent to the Re-Os isotope system (e.g., fo2/fs2/fH2O)- Basalt-gabbro-associated Cu-Ni sulfide ore systems at Duluth, Sudbury, and Stillwater are quite distinct from those at Kambalda by having comparatively low Os concentrations, high Re/Os ratios, and high initial Os isotope compositions, These chemical and isotopic characteristics are indicative of significant interactions between their parental basaltic magmas and old crust because there are no known mantle reservoirs with such extreme geocheinical characteristics. Our modeling suggests that for Cu-Ni sulfide ores at Duluth, Sudbury, and Stillwater to maintain the observed high initial Os isotope compositions inherited from a crustal contaminant, R factors for these systems must have been low (< 10,000), consistent with their low metal concentrations. Thus, we interpret this style of base metal sulfide mineralization to be derived from crustally contaminated but less dynamic magmatic systems that did not permit extensive equilibration of sulfide magma

  12. Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record

    NASA Astrophysics Data System (ADS)

    Carley, Tamara L.; Miller, Calvin F.; Wooden, Joseph L.; Padilla, Abraham J.; Schmitt, Axel K.; Economos, Rita C.; Bindeman, Ilya N.; Jordan, Brennan T.

    2014-11-01

    Tangible evidence of Earth's earliest (Hadean; >4.0 Ga) crust, and the processes and materials that contributed to its formation, exists almost entirely in a record of detrital zircon from Jack Hills, Western Australia, and a few other locations. Iceland, with its thick, juvenile, basaltic crust and relatively abundant silicic rocks, is considered a potential modern analog for the Hadean magmatic environment where >4 Ga zircon formed. We present the first extensive dataset for Icelandic zircon, with trace element and oxygen isotope compositions from samples that span the island's history and full range of tectonic settings. This statistically robust zircon-based comparison between Iceland and the early Earth reveals distinctions in chemistry that suggest fundamental differences in magmatic environments. Whereas the δ18O signature of Hadean zircons generally exceed that of zircons equilibrated with mantle-derived magma (85%≥5.3‰; median 6‰), almost all Icelandic zircons are characterized by a “light” oxygen signature (98%≤5.3‰; median 3‰). Deviations from “juvenile” oxygen values indicate that many Hadean zircons and almost all Icelandic zircons grew from magmas with substantial contributions from materials that had interacted with surface waters. In the Hadean case, the interaction occurred at low temperatures, while in Iceland, it was a high-temperature interaction. Icelandic and Hadean zircons are also distinct in their Ti concentrations (Icelandic median concentration 12 ppm, Hadean median 5 ppm). Titanium in zircon correlates positively with temperature of crystallization, and this difference in median Ti concentration suggests a temperature difference of at least 50 °C. Other differences in trace elements compositions are consistent with the interpretation that Icelandic and Hadean zircons grew in magmas with very different origins and histories (e.g., the heavy rare earth element Yb is almost an order of magnitude higher in Icelandic

  13. Geochronology, geochemistry and isotope tracing of the Oligocene magmatism of the Buchim-Damjan-Borov Dol ore district: Implications for timing, duration and source of the magmatism

    NASA Astrophysics Data System (ADS)

    Lehmann, St.; Barcikowski, J.; von Quadt, A.; Gallhofer, D.; Peytcheva, I.; Heinrich, C. A.; Serafimovski, T.

    2013-11-01

    Timing, source and magmatic evolution of the intrusions in the Buchim-Damjan-Borov Dol ore district of the Former Yugoslav Republic of Macedonia (F.Y.R.O.M.) have been studied. They intrude the Circum Rhodope Unit close to the contact with the Vardar Zone and are a part of the Late Eocene-Oligocene Macedonian Rhodope-North Aegean belt. The magmatism at Buchim-Damjan-Borov Dol occurred between 24.04 ± 0.77 and 24.51 ± 0.89 Ma, as indicated by chemical-annealing (CA)-LA ICP-MS zircon dating. Major element, trace and rare earth element analyses have been performed on the various intrusive rocks. All ore bearing magmas were classified as trachyandesitic, except the youngest intrusion which is not associated with mineralization; the Black Hill locality (24.04 ± 0.77 Ma) shows a trachytic composition. The distribution of the trace elements, enrichment of large ion lithophile elements (LILE) and depletion in high field strength elements (HFSE), indicates subduction-related magmatism; most of the magmas follow a calc-alkaline fractionation trend with shoshonitic affinities; additionally, Sr/Y (10 to 90) and La/Yb values show some similarities to adakite-like magmas. Sr and Nd isotope ratios (Sri = 0.70658 to 0.70740 and Ndi = 0.512425-0.512497) show that the magmatic products were slightly contaminated by continental crust material, e.g., the Variscan/Cadomian basement. In the Late Eocene-Oligocene belt the magmatism between 29 and 35 Ma is dominated by crustal melting with an increase in the mantle contribution between 20 and 27 Ma. We suggest the following scenario for the magmatic history of the Buchim-Damjan-Borov Dol ore district: a slab rollback of an oceanic slab located further to the SW which led to extensional and compressional features in upper levels of the continental crust. In the middle to upper crust three consecutive crystallization stages occurred at variable depths as indicated by amphibole zonation. Mixing of newly formed crust with mantle

  14. Isotopic Constraints on Magmatic Sources at Nyiragongo and Nyamulagira Volcanoes, Virunga Volcanic Province, DR Congo

    NASA Astrophysics Data System (ADS)

    Phillips, E. H. W.; Sims, K. W. W.; Tedesco, D.; Blichert-Toft, J.; Scott, S. R.; Reagan, M. K.

    2015-12-01

    The active volcanoes Nyiragongo and Nyamulagira in the DR Congo have very different physical and geochemical characteristics, despite being situated a mere 15 km apart. Nyiragongo's foiditic lavas are some of the most silica-undersaturated on earth, whereas the highly effusive Nyamulagira erupts primarily basanites and tephrites. To determine the extent and scale of mantle heterogeneities and gain insight into the magmatic sources beneath this portion of the East African Rift, we have measured Hf and Pb isotope compositions for 43 samples from Nyiragongo and Nyamulagira. The Nd and Sr isotope data for the same sample dissolutions are forthcoming. Nyiragongo lavas are clearly distinct from Nyamulagira lavas in terms of their Hf and Pb isotope compositions, suggesting that a long-lived and small-scale heterogeneous mantle source exists beneath these two volcanoes. Nyiragongo lavas have ɛHf ranging from +1.8 to +5.5 with an average of +2.9 (n=29) and 206Pb/204Pb ranging from 19.4049 to 19.7252 with an average of 19.6329 (n=29). Nyamulagira lavas have ɛHf ranging from -0.5 to +1.5 with an average of +0.5 (n=14) and 206Pb/204Pb ranging from 19.2518 to 19.2828 with an average of 19.2663 (n=13). Nyiragongo lavas erupted in 2002 or later have amongst the highest 206Pb/204Pb within this suite of samples. We note that Chakrabarti et al. (2009, Chem Geol 259) measured bulk silicate earth-like Nd and Sr isotope compositions for Nyiragongo lavas and proposed a primitive mantle/bulk-earth plume source for this volcano. Our new Hf isotope compositions for Nyiragongo, however, are higher than bulk silicate earth, suggesting a more depleted source for these highly alkaline lavas. We also note that the He isotope compositions of olivine and clinopyroxene from Nyiragongo lavas (R/Ra = 6.7-8.5; Pik et al., 2006, Chem Geol 226; Tedesco et al., 2010, J Geophys Res 115) are inconsistent with a long-term bulk silicate earth-like source.

  15. Timing of Magmatism and Metamorphism in the Lower Crust Beneath the Colorado Plateau From Coupled U-Pb and Lu-Hf Isotopic Analysis of Zircon From Xenoliths

    NASA Astrophysics Data System (ADS)

    Crowley, J. L.; Schmitz, M. D.; Bowring, S. A.; Williams, M. L.; Karlstrom, K. E.

    2003-12-01

    A major uncertainty in models for Proterozoic evolution of the southwestern U.S. is whether lower crust that formed and accreted at 1.8-1.6 Ga was substantially modified ca. 1.4 Ga by mafic underplating that produced voluminous granitic magmatism and associated low P - high T metamorphism (0.35-0.6 GPa, 500-700 C) preserved in middle and upper crustal basement rocks. A regionally extensive high-velocity (7.xx) lower crust has been interpreted as evidence of underplated magmas. We undertook a U-Pb and Lu-Hf isotopic study of zircons from lower crustal xenoliths to constrain the timing of magmatism and metamorphism beneath the Colorado Plateau. Xenoliths of mafic and felsic granulite from the Navajo volcanic field are interpreted as lower crustal samples based on the primary mineralogy of Cpx-Grt-Pl +/- Qtz and P-T estimates of ca. 1.3 GPa and 800 C. CL imaging of the internal zoning in zircon guided our attempts to isolate homogeneous, moderate sized (50-100 microns) domains through grain fragmentation and air-abrasion. Fragments of grains from eight xenoliths were dated by the ID-TIMS U-Pb method and the solutions from many of these fragments were analyzed for Lu-Hf isotopes by MC-ICPMS. Weak, curved, and sector zoning that is typical of metamorphic zircon is prominent in the mafic xenoliths yet sparse in the felsic ones. Fragments from these zoned domains yielded U-Pb dates that define groups at 1420-1414, 1410-1395 (most prevalent dates), 1385, and 1360 Ma. There is substantial variability in the initial Hf isotope compositions of these grains (Epsilon Hf = -0.7 to +13.6; TDM = 1.8-1.3 Ga), from the same xenolith as well as between xenoliths. This dispersion suggests growth of metamorphic zircon from a variety of introduced fluid compositions or from protolith minerals with diverse time-integrated Lu/Hf ratios. Many of the felsic and mafic xenoliths have zircon cores or whole grains with zoning that may indicate magmatic crystallization. Four felsic granulites

  16. Rhenium-osmium isotope systematics in meteorites I: Magmatic iron meteorite groups IIAB and IIIAB

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.; Grossman, J.N.

    1992-01-01

    Using resonance ionization mass spectrometry (RIMS), Re and Os abundances were determined by isotope dilution (ID) and 187Os 186Os ratios measured in nineteen iron meteorites: eight from group IIAB, ten from group IIIAB, and Treysa (IIIB anomalous). Abundances range from 1.4 to 4800 ppb Re, and from 13 to 65000 ppb Os, and generally agree well with previous ID and neutron activation (NAA) results. The Re and Os data suggest that abundance trends in these iron groups may be entirely explained by fractional crystallization. Addition of late-formed metal to produce ReOs variation in the B subgroups is not essential but cannot be excluded. Whole-rock isochrons for the IIAB and IIIAB groups are statistically indistinguishable. Pooled data yield an initial 187Os 186Os of 0.794 ?? 0.010, with a slope of (7.92 ?? 0.20) ?? 10-2 corresponding to a magmatic iron meteorite age of 4.65 ?? 0.11 Ga (using a decay constant of 1.64 ?? 10-11 a-1). Given the errors in the slope and half life, this age does not differ significantly from the canonical chondrite age of 4.56 Ga, but could be as young as 4.46 Ga. ?? 1992.

  17. Formation and exposure history of non-magmatic iron meteorites and winonaites: Clues from Sm and W isotopes

    NASA Astrophysics Data System (ADS)

    Schulz, T.; Upadhyay, D.; Münker, C.; Mezger, K.

    2012-05-01

    New W and Sm isotope measurements for metals and silicates of non-magmatic iron meteorite groups and winonaites are presented and compiled with literature data to assess their exposure history and parent body formation. We report high-precision 182W data for eight IAB metals supplemented by literature data and introduce a method to calculate their zero-exposure values. Our estimate reveals a common radiogenic 182W signature of -2.83 ± 0.03 ɛ-units for the IAB iron meteorite complex. This suggests metal separation at 5.06 +0.42/-0.41 Ma after solar system formation. The refined age estimate for core formation agrees remarkably well with previously published 182Hf-182W ages for silicate melting (4.6 +0.7/-0.6 Ma; Schulz et al., 2009) and the formation of winonaites (4.8 +3.1/-2.6 Ma; Schulz et al., 2010), which are assumed to be derived from the same parent body. If interpreted in favour of an asteroid-wide (and therefore most likely internal) heat source, these ages correspond to an accretion age for the IAB/winonaite parent body of ˜2 Ma after solar system formation. However, metals from ungrouped IAB specimen segregated at significantly different times. Separation of Mundrabilla metals at ˜13 Ma after solar system formation can best be explained via impact triggered melt pool formation, a process that could also be responsible for metamorphism of IAB silicates and winonaites between ˜11 and ˜14 Ma (Schulz et al., 2009, 2010). 149Sm and 150Sm compositions, indicative of cosmic ray effects, for five IAB silicates reveal a correlation with exposure ages obtained from metal phases and, together with data on three winonaites, provide no compelling evidence for exposure of silicates within near surface regions of the IAB/winonaite parent asteroid. Tungsten isotope compositions of metals from six IIE iron meteorites, measured in this study and reported in the literature, reveal three consecutive metal segregation events at ˜3, ˜13 and ˜28 Ma after formation of

  18. Arabian Shield magmatic cycles and their relationship with Gondwana assembly: Insights from zircon U-Pb and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Robinson, F. A.; Foden, J. D.; Collins, A. S.; Payne, J. L.

    2014-12-01

    The Arabian Shield preserves a protracted magmatic record of amalgamated juvenile terranes that host a diverse range of early Neoproterozoic to Cambrian granitoids intruding volcanosedimentary basin assemblages that have corollaries in other parts of the East African Orogen. New zircon U-Pb geochronology of 19 granitoids intruding eight Arabian Shield terranes, define four discrete magmatic events: island arc (∼845 Ma), syncollisional (∼710 Ma), post-tectonic (∼620 Ma) and anorogenic (∼525 Ma). Zircon Lu-Hf isotopic analyses indicate that all studied granitoids are juvenile with typical εHf values of >+5 to +10 and Stenian-Tonian (∼1100-900 Ma) model ages, regardless of their precise intrusive ages or spatial relationship. Subtle changes in isotopic signatures between ∼850 and 600 Ma, suggest the result from changes in granite source materials brought about by; basaltic underplating, limited crustal interaction with Palaeoproterozoic basement and a change to lithospheric delamination/subduction roll-back processes driving juvenile ANS crustal growth. The cycle of granite intrusion reflects accretionary cycles initiated during Mozambique Ocean closure and during Gondwana amalgamation and final assembly. Post-tectonic magmatism is divided into a ∼636-600 Ma phase and post 600 Ma event that reflects first subduction and then within-plate related processes. The identification of magmatism at ∼525 Ma is now the youngest granitoid identified so far in the Saudi Arabian Shield and may change the identified age of the regional, basal Palaeozoic unconformity. This late magmatism may be generated by the Najd Fault reactivation correlating with the Malagasy/Kunnga Orogeny that marked the final stages of Gondwana assembly.

  19. High D/H ratios of water in magmatic amphiboles in Chassigny: Possible constraints on the isotopic composition of magmatic water on Mars

    NASA Technical Reports Server (NTRS)

    Watson, L. L.; Hutcheon, I. D.; Epstein, S.; Stolper, E. M.

    1993-01-01

    The D/H ratios of kaersutitic amphiboles contained in magmatic inclusions in the Shergottites Nakhlites Chassignites (SNC) meteorite Chassigny using the ion microprobe were measured. A lower limit on the delta(D(sub SMOW)) of the amphiboles is +1420 +/- 47 percent. Assuming Chassigny comes from Mars and the amphiboles have not been subject to alteration after their crystallization, this result implies either that recycling of D-enriched Martian atmosphere-derived waters into the planetary interior has taken place, or that the primordial hydrogen isotopic composition of the interior of Mars differs significantly from that of the Earth (delta(D(sub SMOW)) approximately 0 percent). In addition, the measurements indicate that the amphiboles contain less than 0.3 wt. percent water. This is much lower than published estimates, and indicates a less-hydrous Chassigny parent magma than previously suggested.

  20. Re Os isotopic systematics of the Voisey's Bay Ni Cu Co magmatic ore system, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Lambert, D. D.; Foster, J. G.; Frick, L. R.; Li, C.; Naldrett, A. J.

    1999-06-01

    .1 Ga Grenville orogeny. Re-Os isotopic modelling suggests that a reasonable fit to the ore data may be obtained via bulk crustal contamination of magmas parental to the Nain Plutonic Suite (NPS) with either Tasiuyak (2% contamination) or Nain (16% contamination) gneiss, followed by an R-factor process (200 to 1000) which improved the tenor of the sulphide liquid during transport in active magma conduits or after deposition in an active/replenished Voisey's Bay intrusion magma chamber. However, the dominance of plagioclase-rich (high Al 2O 3) magmas in the mafic members of the NPS (troctolites and anorthosites) may indicate that other (deeper) forms of lithospheric interaction, potentially involving mafic lower crust, may be crucial to understanding this style of magmatic sulphide ore system.

  1. Fluid inclusion and isotopic systematics of an evolving magmatic-hydrothermal system

    SciTech Connect

    Moore, J.N.; Gunderson, R.P.

    1995-10-01

    The Geysers, California, is the site of a long-lived hydrothermal system that initially developed 1.5-2 m.y. ago in response to the intrusion of a hypabyssal granitic pluton. Although wells drilled into The Geysers produce only dry steam, fluid inclusion, isotopic, and mineralogic data demonstrate that the present vapor-dominated regime evolved from an earlier and more extensive, liquid-dominated hydrothermal system. Circulation of these early fluids produced veins characterized by tourmaline {+-} biotite {+-} actinolite {+-} clinopyroxene within the pluton and adjacent biotite-rich hornfels, actinolite {+-} ferroaxinite {+-} epidote and epidote {+-} chlorite within the intermediate parts of the thermal system and calcite in the outer parts. Potassium feldspar and quartz are present in all assemblages. Pressure-corrected homogenization temperatures and apparent salinities of fluid inclusions trapped in vein minerals range from 440{degrees}C and 44 wt% NaCl equivalent within the hornfels (<600 m from the pluton) to 325{degrees}C and 5 wt% NaCl equivalent at distances of approximately 1500 m from the intrusion. We suggest that the shallow, moderate salinity fluids are connate waters modified by water-rock interactions while the high-salinity fluids are interpreted as magmatic brines. Halite-dissolution temperatures of inclusions in the hornfels and pluton indicate that the magnetic fluids were trapped at lithostatic pressures (300-900 bars). In contrast, homogenization temperatures of the connate fluids suggest trapping under hydrostatic pressures of less than several hundred bars. Whole-rock {delta}{sup 18}O values of samples from The Geysers display systematic variations with respect to depth, location within the field, and grade of alteration. At depths below +610 m relative to mean sea level, the {delta}{sup 18}O values are strongly zoned around a northwest-southeast trending low located near the center of the steam reservoir. 77 refs., 15 figs., 2 tabs.

  2. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2015-04-01

    In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the

  3. Timing and origin of midcontinent rift alkaline magmatism, North America: evidence from the Coldwell Complex

    NASA Astrophysics Data System (ADS)

    Heaman, L. M.; Machado, N.

    1992-04-01

    The Coldwell Complex represents the largest alkaline intrusion associated with the Midcontinent Rift System in North America. This complex contains a plethora of rock types that have previously been subdivided into three intrusive centers. A detailed U-Pb zircon/baddeleyite age study of five samples indicates that the majority of the complex was emplaced into “cold” Archean crust at 1108±1 Ma and likely experienced a rapid cooling history. These data, combined with published U-Pb zircon/baddeleyite results for other rift related igneous activity, document the contemporaneous production and emplacement of tholeiitic and alkaline magmas at the onset of rifting. The Sr-Nd-Pb isotopic compositions of selected minerals from different phases of the complex display considerable scatter that is best explained by the presence of magmas with different initial isotopic compositions. The initial Sr and Nd isotopic compositions for clinopyroxene and plagioclase from one of the earliest gabbro phases (ɛNd=+0.5 to +1.6; ɛSr=+2.4 to +3.1) are identical to published data for primitive olivine tholeiites from the rift and indicate that the majority of magmas, both tholeiitic and alkaline, have a uniform, nearly chondritic isotopic composition. This very reproducible isotopic composition for rift magmatism can be explained by the dominance of a well-mixed mantle plume signature in magma genesis. The shift in isotopic compositions observed for the more evolved granite and syenite samples (ɛNd=-4.6 to -6.4; ɛSr=+10.2 to +13.8) combined with a less radiogenic Pb isotopic signature is consistent with derivation of these magmas from or interaction with an older granulite facies lower crust. The chondritic isotopic signature typical of most MRS volcanic and plutonic rocks is quite distinct from published results on associated carbonatites (ɛNd=+2.1 to +4.5; ɛSr=-8.0 to 2212;11.5) indicating the presence of at least two distinct subcontinental mantle isotopic reservoirs in this

  4. Magmatic Enclaves

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.

    2011-12-01

    erupt on its own or be exposed at the ground surface. They are thus invaluable in characterizing the accessible range of coeval magmas. Compositional hybridization (mixing) and crystal exchange with host or other magma prior to enclave formation are common. Although enclave compositions preserve aspects of elemental and isotopic contrasts with host rocks, post-entrapment diffusive or fluid exchange can affect plutonic examples. How enclaves form is clear in composite dikes cored by mafic rock that grades into pillows in aplite and in synplutonic dikes that project into enclave trains in hosts that must have been high-crystallinity magma. Other proposed mechanisms include forcible injection, convective stirring at the two-magma interface, or buoyant rise of vesiculated mafic magma into resident host. Enclaves in lava or subpopulations of mafic clasts in pyroclastic deposits are frequently cited as evidence for recharge-induced eruption, though enclave magma could be drawn up into a host during flow in a conduit. Magmatic enclaves have been embraced by petrologists, geochemists, and volcanologists such that they are sought, rather than ignored, and, where present, are essential ingredients in any modern study.

  5. Zircon U-Pb ages, geochemical and Sr-Nd-Pb-Hf isotopic constraints on petrogenesis of the Tarom-Olya pluton, Alborz magmatic belt, NW Iran

    NASA Astrophysics Data System (ADS)

    Nabatian, Ghasem; Jiang, Shao-Yong; Honarmand, Maryam; Neubauer, Franz

    2016-02-01

    A petrological, geochemical and Sr-Nd-Pb isotopic study was carried out on the Tarom-Olya pluton, Iran, in the central part of the Alpine-Himalayan orogenic belt. The pluton is composed of diorite, monzonite, quartz-monzonite and monzogranite, which form part of the Western Alborz magmatic belt. LA-ICP-MS analyses of zircons yield ages from 35.7 ± 0.8 Ma to 37.7 ± 0.5 Ma, interpreted as the ages of crystallization of magmas. Rocks from the pluton have SiO2 contents ranging from 57.0 to 69.9 wt.%, high K2O + Na2O (5.5 to 10.3 wt.%) and K2O/Na2O ratio of 0.9 to 2.0. Geochemical discrimination criteria show I-type and shoshonitic features for the studied rocks. All investigated rocks are enriched in light rare earth elements (LREEs), large ion lithophile elements (LILEs), depleted in high-field strength elements (HFSEs), and show weak or insignificant Eu anomalies (Eu/Eu* = 0.57-1.02) in chondrite-normalized trace element patterns. The Tarom-Olya pluton samples also show depletions in Nb, Ta and Ti typical of subduction-related arc magmatic signatures. The samples have relatively low ISr (0.7047-0.7051) and positive εNd(36 Ma) (+ 0.39 to + 2.10) values. The Pb isotopic ratios show a (206Pb/204Pb)i ratio of 18.49-18.67, (207Pb/204Pb)i ratio of 15.58-15.61 and (208Pb/204Pb)i ratio of 38.33-38.77. The εHf(t) values of the Tarom-Olya pluton zircons vary from - 5.9 to + 8.4, with a peak at + 2 to + 4. The depleted mantle Hf model ages for the Tarom-Olya samples are close to 600 Ma. These isotope evidences indicate contribution of juvenile sources in petrogenesis of the Tarom-Olya pluton. Geochemical and isotopic data suggest that the parental magma of the Tarom-Olya pluton was mainly derived from a sub-continental lithospheric mantle source, which was metasomatized by fluids and melts from the subducted Neotethyan slab with a minor crustal contribution. Subsequent hot asthenospheric upwelling and lithospheric extension caused decompression melting in the final stage of

  6. The riftward migration of focused magmatism in Central Ethiopia: Geochemical evidence of magmatic processes within the Galema Ridge

    NASA Astrophysics Data System (ADS)

    Denny, A. C.; Chiasera, B.; Rooney, T. O.; Mohr, P.; Zimbelman, J. R.; Ramsey, M.; Grosfils, E. B.; Yirgu, G.

    2012-12-01

    The Main Ethiopian Rift (MER) connects the East African Rift system to the Red Sea and Gulf of Aden, and is pivotal for an understanding of the geologic processes active in a continental rift at the initiation of ocean spreading. The Galema Ridge is superimposed on the eastern plateau rim of the northern MER. It was built up through an en-echelon dike swarm and associated cinder cones and lavas. This 70 km-long, ~2 Ma-old magmatic belt is now paralleled by the recent and ongoing intrusive-volcanic activity focused along the Wonji Fault Belt in the eastern floor of the MER. An understanding of the magmatic plumbing system of the Galema Ridge can reveal the cause for step-wise migration of magmatic activity across the MER. The Galema dikes comprise a bimodal suite of hawaiitic basalts and peralkaline rhyolites. The mafic rocks have trace element patterns resembling those of the Wonji basalts, suggesting similar parental magmas. However, major element oxides ratios, and in particular CaO/Al2O3, place the Galema mafics closer to the basalts of the Silti-Debre Zeyit Fault Zone on the western floor of the MER. The ratio data suggest that augite was a more important phase than plagioclase during mafic fractional crystallization under Galema, and that fractional crystallization operated at depths similar to those inferred for the Silti-Debre Zeyit Fault Zone, substantially deeper than beneath the intervening Wonji Fault Belt. Continued fractionation at Galema ended with production of peralkaline rhyolite magmas with ~66% SiO2, marked by a transition for K and Ba from incompatible to compatible, expressing the observed dominance of anorthositic feldspar in the fractionating assemblage. The rhyolitic dikes and lavas exhibit depletion in heavy rare earth elements (REEs) and especially middle REEs. The absence of this pattern from the mafic rocks suggests that amphibole played a significant role in controlling trace element variations in the peralkaline magmas, consistent with

  7. Hf isotope compositions and chronology of magmatic zircons from Tarim continental flood basalts: implications for magmatic evolution of the Early Permian Tarim Large Igneous Province in NW China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, Z.; Yu, X.; Langmuir, C. H.; Yang, S.; Chen, H.

    2013-12-01

    The Early Permian Tarim Large Igneous Province (TLIP) in the Tarim cratonic block of northwestern China has been largely regarded to be genetically linked with a mantle plume. Recently, some euhedral zircon crystals with magmatic growth zoning have been obtained from the Tarim continental flood basalts (TCFB) for detailed U-Pb chronological and genetic study. The zircons have the concordant 206Pb/238U ages of 297~283 Ma, coinciding with the previously reported whole-rock 40K/39Ar and 40Ar/39Ar ages (292~283 Ma) of their host basalts. In-situ LA-MC-ICPMS Lu-Hf isotopic analyses of Early Permian zircons from the Keping area of the TCFB reveal that the zircons from two basalt sub-groups (Groups 1a, 1b) have a narrow range of 176Hf/177Hf ratios between 0.282422 and 0.282568. Their corresponding ɛHf(t) (t = 290 Ma) values (-6.8~-1.4) are generally lower than their host basalts (-2.3~2.1), and distinctively different from the intrusive rocks (3.0~7.1) and their zircons (4.9~8.8) from the TLIP and the Precambrian crustal rocks (<-18) in the Tarim block. Combined with their embayed margins produced by magmatic corrosion, these zircons may have crystallized in a concealed pluton shortly prior to the extrusion of basalts and been captured as xenocrysts by the rapidly erupted basaltic lavas. Almost the same ɛHf(t) values between the corroded and uncorroded zircons suggest that the zircons have preserved the initial Hf isotopic compositions from their original source region. Moreover, the very close but relatively higher ɛHf(t) values from the zircons than the inferred sub-continental lithospheric mantle (SCLM) beneath Tarim in the Early Permian [ɛHf(t) = -8.7~-5.2; t = 290 Ma] indicate that the zircons were probably originated from the SCLM with minor addition of depleted mantle magmas during the mantle source partial melting. Both the zircons and their host basalts have almost the same formation ages (~290 Ma) and Hf TDM model ages (ca. 1300~1000 Ma), suggesting that

  8. The origin of the mineralizing fluids in different type mineralizations associated with the Upper Cretaceous Elazig Magmatic Complex, Turkey; an isotopic approach

    NASA Astrophysics Data System (ADS)

    Akgul, Muharrem

    2016-04-01

    This study examined the origin and properties of mineralized fluids by using C, O and S isotopes in different type mineralizations associated with the Upper Cretaceous Elazig Magmatic Complex. The isotopic compositions of vein type mineralizations show that the thrust zone affects the formation of the Karakas iron mineralization by meteoric and magmatic hydrothermal solution mixtures due to the average δ18OH2O value 6.40‰. The calculated δ18OH2O composition values is 5.20‰ in biotite from the Kızıldag vein type Cu-Pb-Zn mineralizations, which is consistent with a magmatic origin of the fluids. The calculated δ18OH2O composition is 4.30‰ that indicates a medium and low temperature magmatic hydrothermal fluid effect. The skarn type mineralizations isotopic compositions indicate that the calculated δ13CCO2 values are between -12.70‰ and -36.39‰ that could be late magmatic fluids that were modified by interaction with the host meta-sedimentary rocks and with meteoric water at the Birvan and Asvan iron mineralizations. Also the δ18OH2Ovalues in quartz of the Meseli iron mineralization are between 0.70‰ and 1.30‰. The lower δ18OH2O oxygen isotope composition compared to magmatic origins must be hydrothermal solutions mixing with meteoric waters. In the massive sulfide type Kavallı and Derince pyrite samples, δ34SH2S values are between 17.73‰ and 20.63‰. These values clearly indicate the volcano-sedimentary effect on hydrothermal solutions, which form the mineralization. The first findings of this study present information that all of the measured isotopic composition was modified by mixing metamorphic, magmatic and meteoric waters in the final stages of the hydrothermal solutions circulation.

  9. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles

    NASA Astrophysics Data System (ADS)

    Zhang, Qiao; Wu, Shiguo; Dong, Dongdong

    2016-06-01

    Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene-Mid Miocene) and after cessation of seafloor spreading (Mid Miocene-Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean-continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to

  10. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles

    NASA Astrophysics Data System (ADS)

    Zhang, Qiao; Wu, Shiguo; Dong, Dongdong

    2016-03-01

    Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene-Mid Miocene) and after cessation of seafloor spreading (Mid Miocene-Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean-continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to

  11. The French Guyana doleritic dykes: geochemical evidence of three populations and new data for the Jurassic Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Nomade, S.; Pouclet, A.; Chen, Y.

    2002-12-01

    A petrographic and geochemical study of 15 Early Jurassic and 7 Proterozoic dolerites of French Guyana, and of one Jurassic dolerite from Ivory-Coast were carried out. The Early Jurassic SSW-NNE trending dykes have doleritic aphyric or gabbroic phyric texture. Their chemical compositions, slightly under-saturated to over-saturated, show moderate to low Mg-ratios (63-36), high TiO 2 contents (1.85-3.56 wt.%), weak rare earth element fractionation [1.8<(La/Yb) n <4.6], negative Sr-anomalies (0.41isotopic data of Bertrand et al. [Bertrand, H., Liegeois, J.P., Deckart, K., Féraud, G., 1999. High-Ti tholeiites in Guinea and Their Connection with the Central Atlantic CFB Province: Elemental and Nd-Sr-Pb Isotopic Evidence for Preferential Zone of Mantle Upwelling in Cause of Rifting. AGU spring meeting (Abst. p 317)] suggest that their magmatic source is different from that of the other basalts of the Central Atlantic Magmatic Province (CAMP). Such signatures are restricted to a central zone coinciding with the Panafrican Rokelides suture. We propose a model of sub-lithospheric preferential channelling of an asthenospheric ascent in this zone. Two other groups of dykes were identified in French Guyana. Compared to the Jurassic ones the Proterozoic dykes have NNW-SSE and E-W trending direction, more important LILE enrichment, low TiO 2 contents (<2 wt%) and Nb-Ta negative anomalies. Their calc-alkaline signature could be the result of a previous subduction and may be related to the 1800 Ma Venturi-Tapajós event, which contaminated the mantle source.

  12. Evidence for Magmatic Intrusion at Mount Spurr Volcano, Alaska, from GPS measurements.

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.; Coombs, M. L.; Freymueller, J. T.; McGee, K. A.

    2005-12-01

    Mount Spurr is a 3400-m high ice- and snow-covered andesitic stratovolcano located ~105 km east of Anchorage, Alaska, USA. Two historical eruptions (1953 and 1992) have occurred. Both were sub-Plinian (VEI 4), the eruption columns reaching ~20 km above sea level, and both deposited several mm of ash over south-central Alaska. In July, 2004, the micro-seismicity rate at Mount Spurr rose markedly. At about the same time, a melt pit appeared at Spurr's summit. Airborne gas measurements, begun in August 2004, showed abnormally high CO2 flux (~1000 tonnes/day). A plausible interpretation of this unrest is the intrusion of magma at some depth beneath Mount Spurr. As volatiles began to exsolve from the intrusion, they rose into the edifice, raising pore fluid pressure and triggering the increased seismicity. The rising volatiles carried heat convectively to the surface, melting the ice and snow at the summit. In an effort to image the hypothesized magmatic intrusion, three telemetered, continuous Global Positioning System (GPS) receivers were deployed on the flanks of Mount Spurr in September, 2004. Four campaign monuments were also established and then re-occupied in June, 2005. For terrain and logistical reasons, the stations are located predominantly to the south of the summit, though one campaign station does lie slightly to the northwest. Benchmark instability is a concern in this region of alpine permafrost. One station in particular shows evidence of seasonal down-slope creep. We calculated station velocities from the GPS measurements, correcting for obvious benchmark instability where possible. The velocity field stands out prominently from the background regional signal. The southern stations, including all three continuous instruments, show a radial pattern of motion, with the center roughly coincident with Spurr's summit, with a maximum horizontal velocity of 3 to 4 cm/yr. However, the northwest campaign station shows little or no motion, making it inconsistent

  13. The development of extension and magmatism during continent-ocean transition: evidence from Ethiopia

    NASA Astrophysics Data System (ADS)

    Bastow, Ian; Keir, Derek; Booth, Adam; Corti, Giacomo; Magee, Craig; Jackson, Christopher; Wilkinson, Jason

    2016-04-01

    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate and timing of extension. Preexisting plate architecture and/or the evolving kinematics of extension during breakup may also influence magmatism strongly. The Ethiopian and Afar Rift systems provide an excellent opportunity to address these issues since they expose, along strike, several sectors of ongoing, asynchronous rift development from embryonic continental rifting in the south to incipient oceanic spreading in the north. A consensus has now emerged from a variety of disciplines in Ethiopia that a considerable proportion of extension in Ethiopia is accommodated by focused dyke intrusion in narrow axial zones, without marked crustal (and plate?) thinning. These "magmatic segments" may mark the final breakup boundary and location of an incipient oceanic spreading centre. However, observations of markedly thinned crust and a pulse in Quaternary-Recent basaltic volcanism within the Danakil Depression have recently been cited as evidence that an abrupt, late stage of localised plate stretching may instead mark the final stages of continent-ocean transition (Bastow & Keir, 2011). We explore this hypothesis using recently-acquired seismic reflection data and accompanying borehole geological constraints from Danakil. Thick sequences of evaporites have been deposited in an asymmetric basin, whose subsidence has been controlled primarily by a major, east dipping normal fault. Surprisingly, no significant magmatism is observed in the upper ~1000m. Age constraints on a potash-bearing sequence presently being mined in the basin point towards rapid basin infill in the last several tens-to-hundreds of thousands of years. Basin formation cannot be easily attributed to the effects of magmata intrusion. Instead, an abrupt, localised, late-stage, plate

  14. Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center

    USGS Publications Warehouse

    Bullen, T.D.; Clynne, M.A.

    1990-01-01

    Magmatic evolution at the Lassen volcanic center (LVC) is characterized by a transition from predominantly andesitic to predominantly silicic volcanism with time. Magmas of the andesitic, or "Brokeoff phase' of volcanism range in composition from basaltic andesite to dacite, whereas those of silicic, or "Lassen phase' range in composition from basaltic andesite to rhyolite. The compositions of magmas from each phase define well organized but distinct variation trends. Magmatic evolution at LVC can be viewed in terms of a series of mantle melting events that subsequently stimulated melting in a progressively increasing volume of the lower crust. -from Authors

  15. Uplift and submarine formation of some Melanesian porphyry copper deposits: Stable isotope evidence

    USGS Publications Warehouse

    Chivas, A.R.; O'Neil, J.R.; Katchan, G.

    1984-01-01

    Hydrogen and oxygen isotope analyses of sericites and kaolinites from four young porphyry copper deposits (Ok Tedi (1.2 Ma) and Yandera (6.5 Ma), Papua New Guinea; Koloula (1.5 Ma), Solomon Islands; and Waisoi (<5 Ma), Fiji) indicate that the fluids from which these minerals precipitated were of mixed magmatic and non-magmatic sources. The non-magmatic component of the fluid from the island arc deposits (Koloula, Waisoi) was ocean water. For Ok Tedi, the non-magmatic component was a meteoric water with an isotopic composition different from that of the present meteoric water in the region. The isotopic signature of the former meteoric water is consistent with a surface elevation of 200 m a.s.l. or less at the time of mineralization. The deposit was later exposed and supergene kaolinitization commenced at approximately 1200 m a.s.l. Uplift and erosion has continued to the present at which time the elevation of the exposed deposit is 1800 m a.s.l. This rate of uplift is consistent with that known from other geological evidence. If the rate of uplift were approximately constant during the last 1.2 Ma, the age of supergene enrichment can be dated at approximately 0.4 Ma B.P. Similarly, influx of meteoric water at Yandera occurred when the ground surface above the deposit was at an elevation of approximately 600 m a.s.l. The deposit's present elevation is 1600 m a.s.l. In this case a total uplift of approximately 2.2 km is indicated, with removal of 1.2 km of overburden by erosion. ?? 1984.

  16. The development of magmatism along the Cameroon Volcanic Line: Evidence from seismicity and seismic anisotropy

    NASA Astrophysics Data System (ADS)

    De Plaen, R. S. M.; Bastow, I. D.; Chambers, E. L.; Keir, D.; Gallacher, R. J.; Keane, J.

    2014-05-01

    The Cameroon Volcanic Line (CVL) straddles the continent-ocean boundary in West Africa but exhibits no clear age progression. This renders it difficult to explain by traditional plume/plate motion hypotheses; thus, there remains no consensus on the processes responsible for its development. To understand better the nature of asthenospheric flow beneath the CVL, and the effects of hotspot tectonism on the overlying lithosphere, we analyze mantle seismic anisotropy and seismicity. Cameroon is relatively aseismic compared to hotspots elsewhere, with little evidence for magmatism-related crustal deformation away from Mount Cameroon, which last erupted in 2000. Low crustal Vp/Vs ratios (˜1.74) and a lack of evidence for seismically anisotropic aligned melt within the lithosphere both point toward a poorly developed magmatic plumbing system beneath the CVL. Null SKS splitting observations dominate the western continental portion of the CVL; elsewhere, anisotropic fast polarization directions parallel the strike of the Precambrian Central African Shear Zone (CASZ). The nulls may imply that the convecting upper mantle beneath the CVL is isotropic, or characterized by a vertically oriented olivine lattice preferred orientation fabric, perhaps due to a mantle plume or the upward limb of a small-scale convection cell. Precambrian CASZ fossil lithospheric fabrics along the CVL may have been thermomechanically eroded during Gondwana breakup ˜130 Ma, with an isotropic lower lithosphere subsequently reforming due to cooling of the slow-moving African plate. Small-scale lithospheric delamination during the 30 Ma recent development of the line may also have contributed to the erosion of the CASZ lithospheric fossil anisotropy, at the same time as generating the low-volume alkaline basaltic volcanism along the CVL.

  17. Evidence of Middle Jurassic magmatism within the Seychelles microcontinent: Implications for the breakup of Gondwana

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. G.; Lee, T.-Y.; Chiu, H.-Y.; Lee, Y.-H.; Wong, J.

    2015-12-01

    The breakup of East and West Gondwana occurred during the Jurassic, but the exact timing is uncertain due to the limited exposure of rocks suitable for radioisotopic dating. Trachytic rocks from Silhouette Island, Seychelles, yielded a range of zircon ages from Paleoproterozoic to Cenozoic. The 206Pb/238U age of the trachyte is 64.9 ± 1.6 Ma (Danian) but the majority of zircons yielded an age of 163.8 ± 1.8 Ma (Callovian) with a small subset yielding an age of 147.7 ± 4.5 Ma (Tithonian). The Hf isotopes of the Callovian (ɛHf(t) = +4.1 to +13.4) and Danian (ɛHf(t) = +1.9 to +7.1) zircons indicate that they were derived from moderately depleted mantle sources whereas the Tithonian zircons (ɛHf(t) = -7.0 to -7.3) were derived from an enriched source. The identification of middle Jurassic zircons indicates that rifting and magmatism were likely contemporaneous during the initial separation of East and West Gondwana.

  18. Using Oxygen Isotopes of Zircon to Evaluate Magmatic Evolution and Crustal Contamination in the Halifax Pluton, Nova Scotia

    NASA Astrophysics Data System (ADS)

    Murray, K. E.; Lackey, J.; Valley, J. W.; Nowak, R.

    2007-12-01

    Oxygen isotope analysis of zircon (Zrc) is well suited for parsing out the magmatic history in granitoids. The Halifax pluton is the largest pluton (1060 km2) in the peraluminous South Mountain batholith. The Halifax pluton is mapped as a concentrically zoned body, with outer units comprising granodiorite, monzogranite and a mafic porphyry; these units are locally rich in metasedimentary xenoliths and magmatic enclaves. The exterior units surround a more felsic core of leucogranite [1]. Previous oxygen isotope studies of the pluton report high whole rock δ18O values that range from 10.7-11.7‰ [2], and indicate a significant supracrustal component in the source of the pluton. We report the first δ18O(Zrc) values from the Peggy's Cove monzogranite and an associated mafic porphyry. Samples were collected across 30 km of discontinuous exposures of the monzogranite. Values of δ18O(Zrc) vary from 7.71-8.26‰ (average = 8.15±±0.32‰(2 S.D.); n = 10). Small but systematic E-W regional variation in δ18O(Zrc) values suggests heterogeneous magmatic contamination within the monzogranite. Meter-scale magmatic enclaves, observed in close association with pods of diverse xenoliths and smaller enclaves at the western Cranberry Head locality, are slightly enriched in δ18O relative to the host monzogranite. These data combined support a model of magma mingling and heterogeneous mixing at the rim of the pluton, with contamination by high-δ18O rocks. Additional high-δ18O(Zrc) data from granodiorites on the northern margin of the Halifax pluton concur with these observations [3]. Typically, closed magmatic systems show increasing δ18O with SiO2 because more felsic magmas have a greater percentage of high-δ18O minerals such as quartz and feldspar. Thus, the Halifax pluton appears to exhibit an enrichment trend opposite of what would be expected of a closed evolving system. Emplacement mechanisms for the Halifax pluton proposed by previous workers suggest that the outer

  19. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece

    NASA Astrophysics Data System (ADS)

    Fu, Bin; Bröcker, Michael; Ireland, Trevor; Holden, Peter; Kinsley, Leslie P. J.

    2015-01-01

    Compared to the well-documented Cenozoic magmatic and metamorphic rocks of the Cyclades, Aegean Sea, Greece, the geodynamic context of older meta-igneous rocks occurring in the marble-schist sequences and mélanges of the Cycladic Blueschist Unit is as yet not fully understood. Here, we report O-Hf isotopic compositions of zircons ranging in age from ca. 320 Ma to ca. 80 Ma from metamorphic rocks exposed on the islands of Andros, Ios, Sifnos, and Syros with special emphasis on Triassic source rocks. Ion microprobe (SHRIMP II) single spot oxygen isotope analysis of pre-Cretaceous zircons from various felsic gneisses and meta-gabbros representing both the marble-schist sequences and the mélanges of the study area yielded a large range in δ18O values, varying from 2.7 ‰ to 10.1 ‰ VSMOW, with one outlier at -0.4 %. Initial ɛHf values (-12.5 to +15.7) suggest diverse sources for melts formed between Late Carboniferous to Late Cretaceous time that record derivation from mantle and reworked older continental crust. In particular, variable δ18O and ɛHf( t) values for Triassic igneous zircons suggest that magmatism of this age is more likely rift- than subduction-related. The significant crustal component in 160 Ma meta-gabbros from Andros implies that some Jurassic gabbroic rocks of the Hellenides are not part of SSZ-type (supra-subduction zone) ophiolites that are common elsewhere along the margin of the Pelagonian zone.

  20. New evidence for a magmatic influence on the origin of Valles Marineris, Mars

    USGS Publications Warehouse

    Dohm, J.M.; Williams, J.-P.; Anderson, R.C.; Ruiz, J.; McGuire, P.C.; Komatsu, G.; Davila, A.F.; Ferris, J.C.; Schulze-Makuch, D.; Baker, V.R.; Boynton, W.V.; Fairen, A.G.; Hare, T.M.; Miyamoto, H.; Tanaka, K.L.; Wheelock, S.J.

    2009-01-01

    In this paper, we show that the complex geological evolution of Valles Marineris, Mars, has been highly influenced by the manifestation of magmatism (e.g., possible plume activity). This is based on a diversity of evidence, reported here, for the central part, Melas Chasma, and nearby regions, including uplift, loss of huge volumes of material, flexure, volcanism, and possible hydrothermal and endogenic-induced outflow channel activity. Observations include: (1) the identification of a new > 50??km-diameter caldera/vent-like feature on the southwest flank of Melas, which is spatially associated with a previously identified center of tectonic activity using Viking data; (2) a prominent topographic rise at the central part of Valles Marineris, which includes Melas Chasma, interpreted to mark an uplift, consistent with faults that are radial and concentric about it; (3) HiRISE-identified landforms along the floor of the southeast part of Melas Chasma that are interpreted to reveal a volcanic field; (4) CRISM identification of sulfate-rich outcrops, which could be indicative of hydrothermal deposits; (5) GRS K/Th signature interpreted as water-magma interactions and/or variations in rock composition; and (6) geophysical evidence that may indicate partial compensation of the canyon and/or higher density intrusives beneath it. Long-term magma, tectonic, and water interactions (Late Noachian into the Amazonian), albeit intermittent, point to an elevated life potential, and thus Valles Marineris is considered a prime target for future life detection missions. ?? 2008 Elsevier B.V.

  1. Zircon and baddeleyite U-Pb geochronology and Hf isotopes from the Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Davies, Joshua; Marzoli, Andrea; Bertrand, Herve; Youbi, Nasrrddine; Schaltegger, Urs

    2016-04-01

    Large Igneous Provinces (LIPs) are anomalously large volumes of dominantly mafic magma that erupted and intruded into the upper crust over short time scales. The origin of these volcanic provinces is very likely specific for each case, partly explained by plate tectonic processes or mantle plumes. Despite an ambivalent plate tectonic connection, there is a striking temporal correlation between the timing of LIPs and periods of mass extinction on Earth. However, establishing the relationship between these two is quite complicated since mass extinctions are typically recognised in the marine record, and LIPs are usually terrestrially emplaced. High precision geochronology of LIPs is essential to (i) establish the synchrony and infer the causal relationship with mass extinctions, and (ii) to understand how LIPs form. In this study, we apply high-precision zircon and baddeleyite U-Pb geochronology to rocks from the ~200 Ma Central Atlantic Magmatic Province (CAMP), in an attempt to reconstruct the overall timing of the event, its spatial distribution in time, and determine its relationship with the end-Triassic mass extinction. We also present Hf isotope data from the separated zircon and baddeleyite to both elucidate the origin of the LIP and also to determine if the magmas all originate from the same source. Our data suggest that the majority of the CAMP magmas were emplaced over a 0.5 Ma period from ~201.5 Ma to ~201.0 Ma with a possible small secondary event occurring much later at ~199 Ma. Spatially, it appears that CAMP magmatism occurred roughly simultaneously over the entire province (i.e. ~8000 Km North to South). However, the Hf isotopic composition varies over this length with the highest values (~5.5 ɛHf) occurring in a small area to the south of the province in Brazil and Sierra Leone. Towards the north, the ɛHf values become negative, indicating the presence of an older or more enriched component in the magmas. Our geochronology also indicates that CAMP

  2. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes

    NASA Astrophysics Data System (ADS)

    Saunders, James A.; Mathur, Ryan; Kamenov, George D.; Shimizu, Toru; Brueseke, Matthew E.

    2016-01-01

    New Cu, S, and Pb isotope data provide evidence for a magmatic source of metal(loid)s and sulfur in epithermal Au-Ag deposits even though their ore-forming solutions are composed primarily of heated meteoric (ground) waters. The apparent isotopic discrepancy between ore metals and ore-forming solutions, and even between the ore and associated gangue minerals, indicates two different sources of epithermal ore-forming constituents: (1) a shallow geothermal system that not only provides the bulk of water for the ore-forming solutions but also major chemical constituents leached from host rocks (silica, aluminum, potassium, sodium, calcium) to make gangue minerals and (2) metals and metalloids (As, Te, Sb, etc.) and sulfur (±Se) derived from deeper magma bodies. Isotopic data are consistent with either vapor-phase transport of metal(loids) and sulfur and their subsequent absorption by shallow geothermal waters or formation of metallic (Au, Ag, Cu phases) nanoparticles at depth from magmatic fluids prior to encountering the geothermal system. The latter is most consistent with ore textures that indicate physical transport and aggregation of nanoparticles were significant ore-forming processes. The recognition that epithermal Au-Ag ores form in tectonic settings that produce magmas capable of releasing metal-rich fluids necessary to form these deposits can refine exploration strategies that previously often have focused on locating fossil geothermal systems.

  3. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Brown, R. J.; Civetta, L.; Arienzo, I.; D'Antonio, M.; Moretti, R.; Orsi, G.; Tomlinson, E. L.; Albert, P. G.; Menzies, M. A.

    2014-09-01

    New geochemical and isotopic data on volcanic rocks spanning the period ~75-50 ka BP on Ischia volcano, Italy, shed light on the evolution of the magmatic system before and after the catastrophic, caldera-forming Monte Epomeo Green Tuff (MEGT) eruption. Volcanic activity during this period was influenced by a large, composite and differentiating magmatic system, replenished several times with isotopically distinct magmas of deep provenance. Chemical and isotopic variations highlight that the pre-MEGT eruptions were fed by trachytic/phonolitic magmas from an isotopically zoned reservoir that were poorly enriched in radiogenic Sr and became progressively less radiogenic with time. Just prior to the MEGT eruption, the magmatic system was recharged by an isotopically distinct magma, relatively more enriched in radiogenic Sr with respect to the previously erupted magmas. This second magma initially fed several SubPlinian explosive eruptions and later supplied the climactic, phonolitic-to-trachytic MEGT eruption(s). Isotopic data, together with erupted volume estimations obtained for MEGT eruption(s), indicate that >5-10 km3 of this relatively enriched magma had accumulated in the Ischia plumbing system. Geochemical modelling indicates that it accumulated at shallow depths (4-6 km), over a period of ca. 20 ka. After the MEGT eruption, volcanic activity was fed by a new batch of less differentiated (trachyte-latite) magma that was slightly less enriched in radiogenic Sr. The geochemical and Sr-Nd-isotopic variations through time reflect the upward flux of isotopically distinct magma batches, variably contaminated by Hercynian crust at 8-12 km depth. The deep-sourced latitic to trachytic magmas stalled at shallow depths (4-6 km depth), differentiated to phonolite through crystal fractionation and assimilation of a feldspar-rich mush, or ascended directly to the surface and erupted.

  4. The Dynamics of the Post-Caldera Magmatic System at Yellowstone: Insights from Age, Trace Element, and Isotopic Data of Zircon and Sanidine

    NASA Astrophysics Data System (ADS)

    Stelten, M. E.; Cooper, K. M.; Vazquez, J. A.; Calvert, A. T.; Glessner, J. J.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Yellowstone hosts a voluminous magmatic system that produced three silicic caldera-forming eruptions over the past 2.1 My. Following the most recent of these (the Lava Creek Tuff at 639 ka), the magma system at Yellowstone underwent two episodes of intracaldera eruptions, the latest of which produced the Central Plateau Member (CPM) rhyolites. The CPM rhyolites erupted intermittently from ca. 170 ka to ca. 70 ka and can be viewed as snapshots of the magma system through time, which provides a unique opportunity to study the dynamics of an evolving caldera system. To constrain the nature and timescales of magmatic processes at Yellowstone we examine four CPM rhyolites that erupted from ca. 116 ka to ca. 74 ka and present a comprehensive data set that integrates (1) 238U-230Th ages, trace-elements, and Hf isotope compositions of the surfaces and interiors of single zircons, (2) bulk 238U-230Th ages and in situ Ba and Pb isotope compositions of sanidines, (3) sanidine 40Ar-39Ar ages, and (4) trace-element and isotopic compositions of the CPM glasses. Zircon 238U-230Th ages and Hf isotope data demonstrate that isotopically juvenile magmas, derived from Yellowstone basalts, were added to the Yellowstone magma reservoir over time and were fundamental to its post-caldera isotopic evolution. We use zircon Hf isotope data along with new Hf isotope data (and existing O isotope data) for the Yellowstone basalts (whole-rocks), older Yellowstone rhyolites (glasses), and local crustal sources to quantify the role of isotopically juvenile magma in the evolution of the magmatic system. Additionally, linking age, trace-element, and isotopic data from zircon and sanidine demonstrates that eruptible CPM rhyolites were generated by extracting melt and antecrystic zircon from a long-lived (>200 ky) crystal mush, while sanidine remained trapped in the crystal network. The extracted melts amalgamated and then crystallized new sanidines and rims on the antecrystic zircons that were in

  5. Geochronology, geochemistry and Hf isotope of Late Triassic magmatic rocks of Qingchengzi district in Liaodong peninsula, Northeast China

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoxia; Zeng, Qingdong; Yang, Jinhui; Liu, Jianming; Wang, Yongbin; Zhou, Lingli

    2014-09-01

    The initiation timing and mechanism of lithospheric thinning of the North China Craton (NCC) was still controversial. Late Triassic igneous rocks especially mantle derived mafic rocks would provide constrains on Early Mesozoic lithospheric mantle geodynamics and initiation of lithospheric thinning. This paper reports Late Triassic magmatic rocks, including lamprophyre, diorite dykes and biotite monzogranite cropped out in Qingchengzi district of Liaodong peninsula, northeastern NCC. LA-ICPMS zircon U-Pb dating yield ages of 210-227 Ma and 224 Ma for lamprophyres and biotite monzogranite respectively. Lamprophyre is ultrapotassic, strongly enriched in REE and LILEs, depleted in HFSEs, and negative Hf isotopes, which are discriminating signatures of crustal source, but distinguishingly high compatible element contents indicate the primary magma originated from mantle source-a fertile one. Lamprophyre derived from partial melting of an enriched lithospheric mantle, which was modified by slab-derived hydrous fluids/melts associated with deep subduction between the Yangtze Craton and the NCC. The diorite displays distinct features with relatively enriched Nb, Ta, HREE and depleted Th, U, which suggest it derived from a relatively depleted source. The depletion was caused by break-off of the Yangtze slab during deep subduction introducing asthenospheric mantle into the source. The biotite monzogranite shows adakitic affinity, and originated from partial melting of the thickened lower crust with addition of small proportion of mantle material. The recognition of Late Triassic magmatism implies extensional tectonic settings in Liaodong peninsula and suggests initiation of lithospheric thinning of North China Craton in eastern segment might begin early in Late Triassic.

  6. Zircon Hf isotopic constraints on the mantle source of felsic magmatic rocks in the Phan Si Pan uplift and Tu Le basin, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Usuki, T.; Lan, C.; Tran, T.; Pham, T.; Wang, K.

    2013-12-01

    Permian plume-related rocks, such as picrites, flood basalts and silicic volcanic rocks occur in northern Vietnam. This area was displaced 600 km southeastward along the Ailao Shan-Red River fault during mid-Tertiary in response to the India-Eurasia collision. The original location of the area was situated at the central Emeishan Large Igneous Province (ELIP) in SW China before Tertiary. The picrites and flood basalts in northern Vietnam have been investigated by many authors and are comparable with the ELIP. While, felsic magmatisms in northern Vietnam has been poorly studied. Zircon U-Pb age and Hf isotopic data are useful to compare the felsic magmatism in northern Vietnam with that in the ELIP, because the magmatisms of the ELIP had a characteristic time period (260-250 Ma) and the Hf isotopes show a remarkable mantle signature. Therefore, this study carried out in-situ U-Pb ages and Hf isotopic compositions for 300 zircon grains in eighteen granitoids and rhyolites in Phan Si Pan uplift and Tu Le basin in northern Vietnam. Zircons from the granitoids and rhyolites occasionally show development of {101} pyramid and {100} prism crystal facies, suggesting typical zircons crystallized from high temperature alkaline granite. 206Pb/238U ages of granitoid and rhyolite yield consistently in a narrow range of 260 to 250 Ma, which coincides with those from peralkaline to metaluminous granites in the ELIP. ɛHf(t) values of zircons in rhyolites and granites of this study dominate in the range of +5 to +10, which is consistent with those from the ELIP. U-Pb ages and Hf isotopic compositions of zircons indicate that felsic magmatic rocks in the Phan Si Pan uplift and Tu La basin have been derived from the same mantle source with the ELIP.

  7. Seismic evidence of spatially variable magmatic crustal accretion during the opening of the Tyrrhenian back-arc basin

    NASA Astrophysics Data System (ADS)

    Prada, Manel; Sallarès, Valentí; Ranero, César R.; Vendrell, Montserrat G.; Grevemeyer, Ingo; Zitellini, Nevio; de Franco, Roberto

    2015-04-01

    The Tyrrhenian back-arc basin formed as a result of the migration of subduction fronts towards the East and Southeast during the Neogene time. The complex evolution of this subduction system caused differences concerning the degree of back-arc extension from North to South; while rifting affected the northern region, continental break-up occurred in the central and southern regions. Recent results obtained from integration of geological and modern geophysical data revealed the presence of a magmatically-modified crust beneath the Cornaglia and Campania Terraces followed by mantle exhumation beneath the Magnaghi and Vavilov basins, implying abrupt variations of magmatic crustal accretion in few kilometres. Here we present more evidences of this heterogeneous magmatic activity by analysing the crustal and uppermost mantle structure beneath the Cornaglia Terrace along three geophyisical cross-sections of the basin. Crustal structure and Moho geometry along each transect are constrained by a 2D P-wave velocity model obtained by joint refraction and reflection travel-time tomography, a coincident Multichannel Seismic image and the corresponding P-wave velocity-derived gravity modelling. From North to South of the Cornaglia Terrace, mean lower crustal velocity increases from the northern region (6.4-6.7 km/s) to the central part (6.8-6.9 km/s), and drastically decreases southwards (5.9-6.1 km/s). Along-axis lower crustal velocity variations are in accordance with variations in the degree of crustal extension. While in the northern and southern regions the crust thins up to 7-8 km thick, in the central part extension leads to crustal break up and later mantle exhumation. Based on these results and on an exhaustive velocity analysis, we suggest that these variations reveal a different degree of magmatism along the terrace axis. The highest magmatic activity is focused beneath the central and most extended region of the terrace, whereas it is less important in the northern

  8. Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan

    PubMed

    Kersting; Arculus; Gust

    1996-06-01

    Major chemical exchange between the crust and mantle occurs in subduction zone environments, profoundly affecting the chemical evolution of Earth. The relative contributions of the subducting slab, mantle wedge, and arc lithosphere to the generation of island arc magmas, and ultimately new continental crust, are controversial. Isotopic data for lavas from a transect of volcanoes in a single arc segment of northern Honshu, Japan, have distinct variations coincident with changes in crustal lithology. These data imply that the relatively thin crustal lithosphere is an active geochemical filter for all traversing magmas and is responsible for significant modification of primary mantle melts. PMID:8662469

  9. Tectonic controls on magmatism in the Geysers-Clear Lake region: Evidence from new geophysical models

    USGS Publications Warehouse

    Stanley, W.D.; Benz, H.M.; Walters, M.A.; Villasenor, A.; Rodriguez, B.D.

    1998-01-01

    In order to study magmatism and geothermal systems in The Geysers-Clear Lake region, we developed a detailed three-dimensional tomographic velocity model based on local earthquakes. This high-resolution model resolves the velocity structure of the crust in the region to depths of approximately 12 km. The most significant velocity contrasts in The Geysers-Clear Lake region occur in the steam production area, where high velocities are associated with a Quaternary granitic pluton, and in the Mount Hannah region, where low velocities occur in a 5-km-thick section of Mesozoic argillites. In addition, a more regional tomographic model was developed using traveltimes from earthquakes covering most of northern California. This regional model sampled the whole crust, but at a lower resolution than the local model. The regional model outlines low velocities at depths of 8-12 km in The Geysers-Clear Lake area, which extend eastward to the Coast Range thrust. These low velocities are inferred to be related to unmetamorphosed Mesozoic sedimentary rocks. In addition, the regional velocity model indicates high velocities in the lower crust beneath the Clear Lake volcanic field, which we interpret to be associated with mafic underplating. No large silicic magma chamber is noted in either the local or regional tomographic models. A three-dimensional gravity model also has been developed in the area of the tomographic imaging. Our gravity model demonstrates that all density contrasts can be accounted for in the upper 5-7 km of the crust. Two-dimensional magnetotelluric models of data from a regional, east-west profile indicate high resistivities associated with the granitic pluton in The Geysers production area and low resistivities in the low-velocity section of Mesozoic argillites near Mount Hannah. No indication of midcrustal magma bodies is present in the magnetotelluric data. On the basis of heat flow and geologic evidence, Holocene intrusive activity is thought to have

  10. Major and trace element and Sr and Nd isotopic results from mantle diapirs in the Oman ophiolite: Implications for off-axis magmatic processes

    NASA Astrophysics Data System (ADS)

    Nicolle, Marie; Jousselin, David; Reisberg, Laurie; Bosch, Delphine; Stephant, Aurore

    2016-03-01

    The Oman ophiolite includes both a fossil fast spreading axis, defined by five mantle diapirs, and an off-axis mantle diapir emplaced 30 km from the axis, providing a natural laboratory for the study of off-axis magmatic processes. We compare field and petrological observations coupled with geochemical and isotopic analyses of samples from the off-axis diapir with those of the nearest on-axis diapir, with a particular focus on the Moho Transition Zone (MTZ). Both diapirs are defined by the presence of steeply plunging lineations, but in the on-axis case, these lineations rotate gradually into parallelism with the horizontal magmatic lineations of the overlying crust, while in the off-axis case, a shear zone separates the steeply plunging lineations from the horizontal lineations of the surrounding mantle. In the on-axis diapir, the MTZ is 50 to 500 m thick and composed of dunite with layered gabbro lenses whereas in the off-axis diapir, the MTZ is thicker and composed of dunite with massive (∼20% of MTZ) clinopyroxenite lenses and a notable absence of plagioclase. Moreover, the off-axis diapir is associated with amphibole-bearing intrusions, consisting of Mg-rich gabbroic sills in the mantle peripheral to the diapir, and microgabbroic lenses of broadly basaltic composition in the overlying crust. The εNd values of the pyroxenites in the MTZ of the off-axis diapir fully overlap with those of the intrusions in the surrounding mantle and crust, suggesting that they are genetically related. Calculated rare earth element (REE) abundances of liquids in equilibrium with clinopyroxene imply that the magmas that traversed the MTZ of the off-axis diapir were more depleted in highly incompatible elements than their counterparts in the MTZ of the on-axis diapir. On the other hand, Nd isotopic compositions of the off-axis samples (ε Nd = 6.2- 7.9 in 18 of 19 samples) indicate derivation of their parental magmas from a less depleted source than that which produced the magma

  11. Rhenium-osmium isotope systematics in meteorites. I - Magmatic iron meteorite groups IIAB and IIIAB

    NASA Technical Reports Server (NTRS)

    Morgan, John W.; Walker, Richard J.; Grossman, Jeffery N.

    1992-01-01

    Resonance ionization mass spectrometry is used to determine the Re and Os abundances by isotope dilution (ID) and to measure Os-187/Os-186 ratios from 19 iron meteorites. Abundances range from 1.4 to 4800 ppb Re, and from 13 to 65,000 ppb Os, and generally agree well with previous ID and neutron activation results. The Re and Os data suggest that abundance trends in these iron groups may be entirely explained by fractional crystallization. Whole-rock isochrons for the IIAB and IIIAB groups are statistically indistinguishable. Pooled data yield an initial Os-187/Os-186 of 0.794 +/- 0.010 Ga. Given the errors in the slope and half life, this age does not differ significantly from the canonical chondrite age of 4.56 Ga, but could be as young as 4.46 Ga.

  12. Magmatic processes at Popocatepetl volcano, Mexico: petrology, geochemistry and Sr-Nd-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Schaaf, P.; Stimac, J.; Siebe, C.; Mac¡as, J.

    2003-12-01

    Popocatepetl volcano is one of the most famous and most active stratovolcanoes of the Trans-Mexican Volcanic Belt (TMVB). It is located 60 km south-east of Mexico-City and 40 km west of the city of Puebla, both cities have more than 30 million inhabitants. In this contribution we present a study of Late Pleistocene to Recent products of Popocatépetl (Popo) volcano and surrounding scoria cones to better establish their genetic relationship and magmatic history. Popo and flanking vents are located within the central portion of the Trans Mexican Volcanic Belt, which is related to oblique subduction of young oceanic lithosphere. Current activity of Popo can be understood in the context of its past eruptions and those from surrounding scoria cones. The latest cycle of eruption began Dec. 21, 1994 with continuous to pulsating emission of phreatic ash. The last important event happened on July 19, 2003, covering Mexico-City with a thin ash-layer. Both Popo and surrounding scoria cones produced moderate-K, calc-alkaline rocks, with the two groups differing mainly in degree of differentiation, water content, and oxidation state. Some vent samples on the immediate flanks of Popo and have phenocryst assemblages and compositions transitional between typical flanking vent and stratovolcano samples. Monogenetic vents produced mainly basaltic andesites to andesites, primarily by crystal fractionation of Ol (Fo80-90)+chromite, 2PyxñOl, and 2PyxñPlagñHb assemblages, with minor assimilation of crustal debris. The andesitic to dacitic rocks of Popo are dominated by Plag-2Pyx-2OxideñHbl assemblages, with variable amounts of Ol (Fo70-90)+chromite xenocrysts. A few Popo samples contain locally abundant xenolithic debris of cognate-granitoid intrusions and their metasedimentary wallrocks. The two suites share parental Mg-rich basaltic andesite magmas, with the Popo magmas reflecting longer residence in the crust, and enhanced hydration and oxidation due to the resulting processes of

  13. ­Characterization of Reduced Magmatic C-O-H-N Volatiles By Isotopic Labeling

    NASA Astrophysics Data System (ADS)

    Falksen, E.; Armstrong, L. S.; Hirschmann, M. M.

    2014-12-01

    Characterization of COHN species in silicate melts [1-10] is required to understand the role of reduced volatiles in planetary and early Earth processes, including partitioning between planetary cores, mantles, and atmospheres during early differentiation. Vibrational spectroscopy has been used to examine volatile speciation, but for a number of absorptions there is uncertainty as to whether they relate to species containing N, C, or both [1,3]. In particular, an IR band at 3370 cm-1 is commonly attributed to N-H stretching [1,4,5,7], but associated Raman bands near 3280 cm-1 have also been attributed to alkyne (C-H) bonds [8-10]. The 3370 cm-1 IR band appears even in nominally N-free experiments owing to trapped air and is accompanied by a feature at 1615 cm-1 which could be caused by C=O or N-H bonds [1,3,8]. We sought to determine whether N and C were responsible for various IR bands by dissolving different isotopes of N and C in basaltic melts at high pressure and temperature and observing the shift in position of the resulting absorptions. Experiments were conducted at 1.2 GPa and 1400 oC and volatiles were added to a basaltic oxide mix in the form of unlabeled, 13C labeled, and 15N labeled urea [(NH2)2CO]. The resulting glasses were analyzed using FTIR and the theoretical band shifts were predicted based on a classical approximation of a diatomic molecule. Relative to isotopically normal glasses, bands at both 3370 cm-1 and 1615 cm-1 decrease by 4-8 wavenumbers for 15N and not at all for 13C, consistent with origination by N-H bonds in amines or metal-ammine complexes. [1] Stanley et al. (2014) GCA 129, 54-76. [2] Wetzel et al. (2013) PNAS 110, 8010-8013. [3] Armstrong et al. (in prep). [4] Kadik et al. (2011) Geochem. Int. 49, 429-438. [5] Kadik et al. (2013) PEPI 214, 14-24. [6]Mysen (2013) Chem. Geo. 346, 113-124. [7] Mysen et al. (2008) Am. Min. 93, 1760-1770. [8] Mysen et al. (2009) GCA 73, 1696-1710. [9] Dasgupta et al. (2013) GCA 102, 191-212. [10] Chi

  14. Stable Isotope Evidence for Planetary Differentiation

    NASA Astrophysics Data System (ADS)

    Shahar, A.; Mao, W. L.; Schauble, E. A.; Caracas, R.; Reagan, M. M.; Gleason, A. E.

    2015-12-01

    Planetary differentiation occurred at high temperature and varying oxygen fugacity, on bodies with varying compositions and internal pressures. The specific conditions at which bodies differentiated and the chemical fingerprints left by differentiation can be investigated by measuring stable isotope ratios in natural samples. Much can be learned by combining those data with experiments that systematically investigate the chemical and physical conditions within differentiating bodies. In this talk we focus on one variable in particular that has not been well defined with respect to stable isotope fractionation: pressure. We will present new iron isotope data on how pressure affects isotope fractionation factors for a number of iron compounds relative to silicate. The processes governing iron isotope fractionation in igneous rocks have been debated extensively over the past decade. Analyses of natural samples show that iron isotopes are fractionated at both the whole rock and mineral scales. This fractionation has been interpreted to be a result of several processes including a possible signature of high pressure core formation. We have collected new high pressure synchrotron nuclear resonant inelastic x-ray scattering data from Sector 16-ID-D at the Advanced Photon Source on 57Fe enriched Fe, FeO, FeHx and Fe3C. Our data show clear trends with pressure implying that not only does pressure have an effect on the iron isotope beta factors but also a fractionation amongst the alloys. This suggests that depending on the light element in the core, there will be a different resulting signature in the iron isotope record. We will discuss the likelihood of different light elements in the core based on these results, as well as the theoretical predictions for the same phases. Finally, we will present the fractionation expected between metal and silicate at high pressure and high temperature in order to determine if core formation would indeed leave an isotopic signature in

  15. Late-magmatic immiscibility during batholith formation: assessment of B isotopes and trace elements in tourmaline from the Land's End granite, SW England

    NASA Astrophysics Data System (ADS)

    Drivenes, Kristian; Larsen, Rune B.; Müller, Axel; Sørensen, Bjørn E.; Wiedenbeck, Michael; Raanes, Morten P.

    2015-06-01

    Quartz-tourmaline orbicules are unevenly distributed in the roof segment of the Land's End granite, SW England. This study shows that the orbicules formed from an immiscible hydrous borosilicate melt produced during the late stages of crystallization, and differentiates tourmaline formed by dominantly magmatic and dominantly hydrothermal processes. Trace elements and boron isotope fractionation can be tracked in tourmaline, and create a timeline for crystallization. Tourmaline from the granite matrix has higher V, Cr and Mg content and is isotopically heavier than the later crystallizing inner orbicule tourmaline. Overgrowths of blue tourmaline, occurring together with quartz showing hydrothermal cathodoluminescence textures, crystallized from an aqueous fluid during the very last crystallization, and are significantly higher in Sr and Sn, and isotopically heavier. Tourmaline associated with Sn mineralization is also high in Sr and Sn, but has boron isotopic compositions close to that of the magmatic tourmaline, and is not formed by the same fluids responsible for the blue overgrowths. The ore-forming fluids precipitating tourmaline and cassiterite are likely derived from the same magma source as the granite, but exsolved deeper in the magma chamber, and at a later stage than orbicule formation. Tourmaline from massive quartz-tourmaline rocks is concentrically zoned, with major and trace element compositions indicating crystallization from a similar melt as for the orbicules, but shows a more evolved signature.

  16. The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc

    NASA Astrophysics Data System (ADS)

    Andonaegui, Pilar; Arenas, Ricardo; Albert, Richard; Sánchez Martínez, Sonia; Díez Fernández, Rubén; Gerdes, Axel

    2016-06-01

    The upper allochthonous units of NW Iberian Massif contain an extensive Cambrian magmatism (c. 500 Ma), covering felsic to mafic compositions. The magmatic activity generated large massifs of granitoids and gabbros, with calc-alkaline and tholeiitic compositions respectively. Petrological and geochemical features of these massifs are characteristic of volcanic arc. The plutons intruded siliciclastic sedimentary series deposited in the periphery of the West Africa Craton. U-Pb/Hf isotopic compositions of detrital zircon in the siliciclastic host series, indicate continental arc activity between c. 750 Ma and c. 500 Ma. It was characterized by a large variety of isotopic sources, including from very old continental input, even Archean, to the addition of a significant amount of juvenile mafic material. These isotopic sources experienced an extensive mixing that explains the composition and isotopic features (εHft from - 50 until + 15) of the represented Cambrian plutons. The Cambrian igneous rocks of the upper units of NW Iberia are related to the latest activity of the Avalonian-Cadomian arc. From the Middle Cambrian arc activity in the periphery of Gondwana was replaced by pronounced extension associated with the development of continental rifting, which finally led to separation of the microcontinent Avalonia. Subsequent drifting of Avalonia to the North caused progressive opening one of the main Paleozoic ocean, the Rheic Ocean.

  17. Evidence for extreme partitioning of copper into a magmatic vapor phase

    SciTech Connect

    Lowenstern, J.B.; Mahood, G.A. ); Rivers, M.L.; Sutton, S.R. )

    1991-06-07

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits.

  18. Evidence for extreme partitioning of copper into a magmatic vapor phase.

    PubMed

    Lowenstern, J B; Mahood, G A; Rivers, M L; Sutton, S R

    1991-06-01

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits. PMID:17772911

  19. Geology and geochemistry of the Mammoth breccia pipe, Copper Creek mining district, southeastern Arizona: Evidence for a magmatic-hydrothermal origin

    USGS Publications Warehouse

    Anderson, E.D.; Atkinson, W.W., Jr.; Marsh, T.; Iriondo, A.

    2009-01-01

    The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead-silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/ 39Ar dates suggest a minimum age of 61.5??0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0??0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1-2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4-35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375??C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469??25??C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2??? to 13.4??? and -60??? to -39???, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe. ?? Springer-Verlag 2008.

  20. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    SciTech Connect

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas.

  1. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  2. Trace element and Sr-Nd-Pb isotope geochemistry of Rungwe Volcanic Province, Tanzania: Implications for a superplume source for East Africa Rift magmatism

    NASA Astrophysics Data System (ADS)

    Castillo, Paterno; Hilton, David; Halldórsson, Sæmundur

    2014-09-01

    The recently discovered high, plume-like 3He/4He ratios at Rungwe Volcanic Province (RVP) in southern Tanzania, similar to those at the Main Ethiopian Rift in Ethiopia, strongly suggest that magmatism associated with continental rifting along the entire East African Rift System (EARS) has a deep mantle contribution (Hilton et al., 2011). New trace element and Sr-Nd-Pb isotopic data for high 3He/4He lavas and tephras from RVP can be explained by binary mixing relationships involving Early Proterozoic (+/- Archaean) lithospheric mantle, present beneath the southern EARS, and a volatile-rich carbonatitic plume with a limited range of compositions and best represented by recent Nyiragongo lavas from the Virunga Volcanic Province also in the Western Rift. Other lavas from the Western Rift and from the southern Kenya Rift can also be explained through mixing between the same endmember components. In contrast, lavas from the northern Kenya and Main Ethiopian rifts can be explained through variable mixing between the same mantle plume material and the Middle to Late Proterozoic lithospheric mantle, present beneath the northern EARS. Thus, we propose that the bulk of EARS magmatism is sourced from mixing among three endmember sources: Early Proterozoic (+/- Archaean) lithospheric mantle, Middle to Late Proterozoic lithospheric mantle and a volatile-rich carbonatitic plume with a limited range of compositions. We propose further that the African Superplume, a large, seismically anomalous feature originating in the lower mantle beneath southern Africa, influences magmatism throughout eastern Africa with magmatism at RVP and Main Ethiopian Rift representing two different heads of a single mantle plume source. This is consistent with a single mantle plume origin of the coupled He-Ne isotopic signatures of mantle-derived xenoliths and/or lavas from all segments of the EARS (Halldorsson et al., 2014).

  3. Tectonic setting of the Jurassic bimodal magmatism in the Sakarya Zone (Central and Western Pontides), Northern Turkey: A geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Genç, Ş. Can; Tüysüz, Okan

    2010-07-01

    The Lower to Middle Jurassic Mudurnu formation of the Sakarya Zone (Northern Turkey) was deposited in an extensional basin. This unit crops out along the southern Pontide range and consists of marine sedimentary rocks including debris flows, lignite-bearing clastic rocks and Ammonitico Rosso horizons alternating with mafic and felsic volcanic and volcaniclastic rocks. Magmatic rocks of the Mudurnu formation comprise two compositionally different groups; 1) a mafic group including diabase-microgabbro-basaltic lavas and their pyroclastic equivalents, and 2) a felsic group including granite porphyries and felsic pyroclastic rocks. All the magmatic members of the Mudurnu formation are subalkaline and display a calc-alkaline affinity. They are bimodal, with a significant silica gap between the mafic and felsic members with the exception of a few samples. These magmatic rocks display enrichment in LILE and depletion in Nb, Ta, P and Ti, implying a subduction-related magmatic signature. Melting modelling for the mafic rocks indicates that they originated possibly from subcontinental lithospheric mantle (SCLM) composed of spinel lherzolite. ɛNd(i) values (+ 1.5 to + 4.3) imply that the mafic volcanic and hypabyssal rocks were possibly derived from a time-integrated LREE-depleted mantle source. The initial Sr and Nd isotope values, and ɛNd(i) of the felsic hypabyssal rocks are comparable to the mafic ones. The isotope data point to a genetic relationship between the felsic and mafic members. Results obtained from the geochemical modelling of incompatible versus compatible trace elements show that the felsic rocks were derived from the mafic melts by fractional crystallization (FC) process. In the light of their regional geological setting and these geochemical characteristics, we propose that the magmatic rocks of the Mudurnu formation formed in an extensional basin situated on an active and/or just ended subduction zone during the Jurassic period. The Mudurnu formation

  4. Sources of granite magmatism in the Embu Terrane (Ribeira Belt, Brazil): Neoproterozoic crust recycling constrained by elemental and isotope (Sr-Nd-Pb) geochemistry

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Janasi, Valdecir de Assis; Campos Neto, Mario da Costa

    2016-07-01

    Whole rock elemental and Sr-Nd isotope geochemistry and in situ K-feldspar Pb isotope geochemistry were used to identify the sources involved in the genesis of Neoproterozoic granites from the Embu Terrane, Ribeira Belt, SE Brazil. Granite magmatism spanned over 200 Ma (810-580 Ma), and is dominated by crust-derived relatively low-T (850-750 °C, zircon saturation) biotite granites to biotite-muscovite granites. Two Cryogenian plutons show the least negative εNdt (-8 to -10) and highest mg# (30-40) of the whole set. Their compositions are strongly contrasted, implying distinct sources for the peraluminous (ASI ∼ 1.2) ∼660 Ma Serra do Quebra-Cangalha batholith (metasedimentary rocks from relatively young upper crust with high Rb/Sr and low Th/U) and the metaluminous (ASI = 0.96-1.00) ∼ 630 Ma Santa Catarina Granite. Although not typical, the geochemical signature of these granites may reflect a continental margin arc environment, and they could be products of a prolonged period of oceanic plate consumption started at ∼810 Ma. The predominant Ediacaran (595-580 Ma) plutons have a spread of compositions from biotite granites with SiO2 as low as ∼65% (e.g., Itapeti, Mauá, Sabaúna and Lagoinha granites) to fractionated muscovite granites (Mogi das Cruzes, Santa Branca and Guacuri granites; up to ∼75% SiO2). εNdT are characteristically negative (-12 to -18), with corresponding Nd TDM indicating sources with Paleoproterozoic mean crustal ages (2.0-2.5 Ga). The Guacuri and Santa Branca muscovite granites have the more negative εNdt, highest 87Sr/86Srt (0.714-0.717) and lowest 208Pb/206Pb and 207Pb/206Pb, consistent with an old metasedimentary source with low time-integrated Rb/Sr. However, a positive Nd-Sr isotope correlation is suggested by data from the other granites, and would be consistent with mixing between an older source predominant in the Mauá granite and a younger, high Rb/Sr source that is more abundant in the Lagoinha granite sample. The

  5. Isotopic evidence of early hominin diets

    NASA Astrophysics Data System (ADS)

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Kyalo Manthi, Fredrick; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-06-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  6. Isotopic evidence of early hominin diets

    PubMed Central

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Manthi, Fredrick Kyalo; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-01-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  7. The barents sea magmatic province: Geological-geophysical evidence and new 40Ar/39Ar dates

    NASA Astrophysics Data System (ADS)

    Shipilov, E. V.; Karyakin, Yu. V.

    2011-07-01

    Resulting from study of the geological structure of the Franz Josef Land and Svalbard archipelagoes, this work presents new 17 40Ar/39Ar age datings for basalts taken during coastal expeditions in 2006-2010. Radiological age determination for intrusive units (sills) located in the western part of Nordensciold Land (Spitzbergen Island) has been made for the first time. In relation to use of the interpretation results of marine geological-geophysical data, the distribution peculiarities and time ranges for Jurassic-Cretaceous basic magmatism within the studied regions of the Barents Sea continental margin and within the Arctic as a whole are discussed.

  8. Re-Os isotopic evidence for a lower crustal origin of massif-type anorthosites

    PubMed

    Schiellerup; Lambert; Prestvik; Robins; McBride; Larsen

    2000-06-15

    Massif-type anorthosites are large igneous complexes of Proterozoic age. They are almost monomineralic, representing vast accumulations of plagioclase with subordinate pyroxene or olivine and Fe-Ti oxides--the 930-Myr-old Rogaland anorthosite province in southwest Norway represents one of the youngest known expressions of such magmatism. The source of the magma and geodynamic setting of massif-type anorthosites remain long-standing controversies in Precambrian geology, with no consensus existing as to the nature of the parental magmas or whether these magmas primarily originate in the Earth's mantle or crust. At present, massif-type anorthosites are believed to have crystallized from either crustally contaminated mantle-derived melts that have fractionated olivine and pyroxenes at depth or primary aluminous gabbroic to jotunitic melts derived from the lower continental crust. Here we report rhenium and osmium isotopic data from the Rogaland anorthosite province that strongly support a lower crustal source for the parental magmas. There is no evidence of significantly older crust in southwest Scandinavia and models invoking crustal contamination of mantle-derived magmas fail to account for the isotopic data from the Rogaland province. Initial osmium and neodymium isotopic values testify to the melting of mafic source rocks in the lower crust with an age of 1,400-1,550 Myr. PMID:10866196

  9. Geochemical and Nd-Sr-Pb-O isotopic constrains on Permo-Triassic magmatism in eastern Qaidam Basin, northern Qinghai-Tibetan plateau: Implications for the evolution of the Paleo-Tethys

    NASA Astrophysics Data System (ADS)

    Chen, Xuanhua; Gehrels, George; Yin, An; Zhou, Qi; Huang, Penghui

    2015-12-01

    Eastern Qaidam Basin of the northern Qinghai-Tibetan plateau is located in a transitional zone between the Permo-Triassic Paleo-Tethyan orogenic belt in the south and the early Paleozoic Qilian orogenic belt in the north. Here we present geochemical and Sr-Nd-Pb-O isotopic data for the Permo-Triassic plutons in eastern Qaidam Basin. Bulk-rock geochemical data and regional geological studies indicate that these plutons consist mainly of subduction-related high-K calc-alkaline metaluminous, I-type granitoids, which occurred during the northward subduction of the Paleo-Tethyan oceanic lithosphere below the southern continental margin of the Kunlun-Qaidam terrane. The εNd(t) values of these Permo-Triassic granitoids are between -9.4 and -3.0, and εSr(t) values are from -20.33 to +168.20. Nd isotopic compositions indicate that the granitoids can come from a pre-existed materials formerly originated from an enriched mantle (EM II) source. The TDM2 model ages of 1.28-1.78 Ga implies that the arc-induced Triassic granitoids were derived melts of Meso-Proterozoic basement rocks of the Kunlun-Qaidam terrane that is bounded by the early Paleozoic Qilian suture zone to the north and the Triassic Kunlun suture zone in the south. The Permo-Triassic granitoids yield initial ratios of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values from 18.295 to 19.096, 15.617 to 15.692, and 37.960 to 38.531, respectively. The Pb isotope composition of the granitoids is very similar to that of the Mesozoic granitoids from the western segment of the east of the study area. Geochemical analyses of the plutons, integrated with previous LA ICP-MS U-Pb zircon dating, reveal two series of Permo-Triassic arc magmatisms in eastern Qaidam Basin. Both the series of magmatism display reversed trends with the classic Bowen's reaction series. The new geochemical evidence suggest that the arc magmatism in eastern Qaidam Basin was induced by fluid-fluxing melting of an enriched lithospheric mantle and rock

  10. Chlorine Stable Isotopes to reveal contribution of magmatic chlorine in subduction zones: the case of the Kamchatka-Kuril and the Lesser Antilles Volcanic Arcs

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Shilobreeva, Svetlana; Bardoux, Gerard; Michel, Agnes; Maximov, Alexandr; Kalatcheva, Elena; Ryabinin, Gennady; Bonifacie, Magali

    2015-04-01

    By using the stable isotopes of chlorine (δ 37Cl), we have shown that magmatic chlorine (δ 37Cl ≤ -0.6 ‰ [1]) is different from surface chlorine (δ 37Cl ≈ 0 ‰ [1]) in hydrothermal system of Soufrière and Montagne Pelé from the young arc volcanic system of Lesser Antilles. First measurements on condensed chlorides from volcanic gases (e.g. [2], [3]) did not permitted to get sensible δ 37Cl values on degassed chlorine likely because chlorine isotopes are fractionated during the HClgas - chloride equilibrium in the fumaroles or during sampling artifacts. Therefore we have developed an alternative strategy based on the analysis of chloride in thermal springs, streams, sout{f}lowing on the flanks of the volcanoes. Due to the highly hydrophilic behavior of Cl, we hypothesize that thermal springs incorporate chlorine without fractionation of chlorine isotopes and might reflect the chlorine isotopic composition degassed by magmas [1]. Indeed Thermal spring with low δ 37Cl chlorides (≤ -0.6 perthousand{}) are linked with magmatic volatiles characters (3He ratio at 5 Ra at and δ 13C CO2 quad ≈ -3 perthousand{}). To go further in the potentiality of using the Chlorine isotopes to reveal contribution of magmatic chlorine in volcanic systems, we have started the survey of thermal springs and wells waters in the Kamchatka-Kuril volcanic mature Arc (on sites Mutnovsky, Paratunka, Nalychevsky, Khodutkinsky, Paramushir Island, identified by Taran, 2009 [4] for concentrations of chloride). Preliminary results show δ 37Cl values ranging from 0.5 to -0.2 ‰ and generally higher chloride concentrations. The δ 37Cl values are higher than the value recorded for the young arc volcanic system of lesser Antilles. At present moment very few negative δ 37Cl have been measured in the Kamchatka-Kuril volcanic mature Arc. [1] Li et al., 2015 EPSL in press. [2] Sharp et al. 2010 GCA. [3] Rizzo et al., 2013, EPSL, 371, 134. [4] Taran, 2009, GCA, 73, 1067

  11. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    SciTech Connect

    Wallace, P.J. ); Gerlach, T.M. )

    1994-07-22

    Sulfur dioxide (SO[sub 2]) released by the explosive eruption of Mount Pinatubo of 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO[sub 2] released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO[sub 2] is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO[sub 2]-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO[sub 2] that is released during many volcanic eruptions.

  12. Magmatic vapor source for sulfur dioxide released during volcanic eruptions: Evidence from Mount Pinatubo

    USGS Publications Warehouse

    Wallace, P.J.; Gerlach, T.M.

    1994-01-01

    Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.

  13. Deep earthquakes beneath Mount St. Helens: Evidence for magmatic gas transport?

    USGS Publications Warehouse

    Weaver, C.S.; Zollweg, J.E.; Malone, S.D.

    1983-01-01

    Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir.

  14. Deep earthquakes beneath mount st. Helens: evidence for magmatic gas transport?

    PubMed

    Weaver, C S; Zollweg, J E; Malone, S D

    1983-09-30

    Small-magnitude earthquakes began beneath Mount St. Helens 40 days before the eruption of 20 March 1982. Unlike earlier preeruption seismicity for this volcano, which had been limited to shallow events (less than 3 kilometers), many of these earthquakes were deep (between 5 and 11 kilometers). The location of these preeruptive events at such depth indicates that a larger volume of the volcanic system was affected prior to the 20 March eruption than prior to any of the earlier dome-building eruptions. The depth-time relation between the deep earthquakes and the explosive onset of the eruption is compatible with the upward migration of magmatic gas released from a separate deep reservoir. PMID:17759013

  15. Evidence for slab material under Greenland and links to Cretaceous High Arctic magmatism

    NASA Astrophysics Data System (ADS)

    Shephard, G. E.; Trønnes, R. G.; Spakman, W.; Panet, I.; Gaina, C.

    2016-04-01

    Understanding the evolution of extinct ocean basins through time and space demands the integration of surface kinematics and mantle dynamics. We explore the existence, origin, and implications of a proposed oceanic slab burial ground under Greenland through a comparison of seismic tomography, slab sinking rates, regional plate reconstructions, and satellite-derived gravity gradients. Our preferred interpretation stipulates that anomalous, fast seismic velocities at 1000-1600 km depth imaged in independent global tomographic models, coupled with gravity gradient perturbations, represent paleo-Arctic oceanic slabs that subducted in the Mesozoic. We suggest a novel connection between slab-related arc mantle and geochemical signatures in some of the tholeiitic and mildly alkaline magmas of the Cretaceous High Arctic Large Igneous Province in the Sverdrup Basin. However, continental crustal contributions are noted in these evolved basaltic rocks. The integration of independent, yet complementary, data sets provides insight into present-day mantle structure, magmatic events, and relict oceans.

  16. The mechanics of sill inception, propagation and growth: Experimental evidence for rapid reduction in magmatic overpressure

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. L.; Boutelier, D.; Cruden, A. R.

    2015-07-01

    A model of magma propagation in the crust is presented using a series of analogue experiments, where dyed water is injected at a constant flux into layers of solidified gelatine. The gelatine layers are transparent and, when intruded, deform in an almost ideal-elastic manner under the experimental conditions (low gelatine concentration: 2.5 or 3 wt%, and low temperature: 5-10 °C). The upper gelatine layer was 1.0 to 1.5 times stiffer than the lower layer, with either a 'weak' or 'strong' interface strength between the gelatine layers. The gelatine is seeded with 20- 50 μm-diameter PMMA-RhB neutrally buoyant particles that are fluoresced by a pulsed, vertical laser sheet centred on the injection point. Digital image correlation (DIC) is used to calculate incremental strain and finite strain in the deforming host material as it is intruded. This is mapped in 2D for the developing experimental volcanic plumbing system that comprises a feeder dyke and sill. Since the gelatine deforms elastically, strain measurements correlate with stress. Our results indicate that, for constant magma flux, the moment of sill inception is characterised by a significant magmatic pressure decrease of up to ∼ 60%. This is evidenced by the rapid contraction of the feeder dyke at the moment the sill forms. Sill propagation is then controlled by the fracture properties of the weak interface, with fluid from the feeder dyke extracted to help grow the sill. Pressure drops during sill inception and growth are likely to be important in volcanic systems, where destabilisation of the magmatic plumbing system could trigger an eruption.

  17. Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.; Agostini, S.; Cannaò, E.

    2012-12-01

    Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle M. Scambelluri (1), S. Tonarini (2), S. Agostini (2), E. Cannaò (1) (1) Dipartimento di Scienze della Terra, Ambiente e vita, University of Genova, Italy (2) Istituto di Geoscienze e Georisorse-CNR, Pisa, Italy In subduction zones, fluid-mediated chemical exchange between slabs and mantle dictates volatile and incompatible element cycles and influences arc magmatism. Outstanding issues concern the sources of water for arc magmas and its slab-to-mantle wedge transport. Does it occur by slab dehydration beneath arc fronts, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? So far, the deep slab dehydration hypothesis had strong support, but the hydrated mantle wedge idea is advancing supported by studies of fluid-mobile elements in serpentinized wedge peridotites and their subducted high-pressure (HP) equivalents. Serpentinites are volatile and fluid-mobile element reservoirs for subduction: their dehydration causes large fluid and element flux to the mantle.However, direct evidence for their key role in arc magmatism and identification of dehydration environments has been elusive and boron isotopes can trace the process. Until recently, the altered oceanic crust (AOC) was considered the 11B reservoir for arcs, which largely display positive δ11B. However, shallow slab dehydration transfers 11B to the fore-arc mantle and leaves the residual AOC very depleted in 11B below arcs. Here we present high positive δ11B of HP serpentinized peridotites from Erro Tobbio (Ligurian Alps), recording subduction metamorphism from hydration at low-grade to eclogite-facies dehydration. We show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. The dataset is completed by B isotope data on other HP Alpine serpentinites from Liguria and Lanzo Massif. In general, the δ11B of these rocks is heavy (16 to + 30 permil

  18. The thermal evolution of a episodic, convergent-margin, magmatic center: Evidence from the Tatoosh Magmatic Complex, Mount Rainier National Park, southern Washington Cascades

    SciTech Connect

    Murphy, M.T. )

    1992-01-01

    Use of Mount Rainier as an IAVCEI Decade Volcano requires an assessment of long-term, magmatic activity cycles. Recent activity could represent either a waxing or waning step, relative to the main cone. The Tertiary record at Mount Rainier, represented by the Tatoosh complex, suggests evolution into larger and more energetic systems. This sequence included bimodal dikes and sills (Chinook Pass episode), through dacitic dome and pyroclastic eruptions (Sourdough Mountains episode), shallow monzonitic plutons, culminating in large granodiorite plutons (White River episode). Limited geochronology, geochemistry and field relations support this conceptual model. Simple thermal modeling of this hypothesis suggests that for the first two episodes, transport was insufficient to support a magma chamber. This is consistent with field relations. Repeated magmatism could have perturbed the geotherm, allowing a magma chamber during White River time. This suggests a potential 3 million-year-long, volcanic source for dacitic clasts of the Ellensburg Formation. Uplifts from such a thermal load would be consistent with independent estimates of Miocene deformation in the Washington Cascades. A 7 million year cycle for magmatism at Mount Rainier is consistent with the rock record and the cooling of a 0.5-km accumulation zone of melt at the mid crust. This suggests that any current activity at Mount Rainier could relate to the 0.7-Ma stratovolcano or the Lily Creek Formation (3 Ma). These results indicate the detailed petrologic and geochronological work in the Tatoosh complex necessary to Decade Volcano studies at Mount Rainier.

  19. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Chuan-Zhou; Tappe, Sebastian; Kostrovitsky, Sergey I.; Wu, Fu-Yuan; Yakovlev, Dmitry; Yang, Yue-Heng; Yang, Jin-Hui

    2014-10-01

    We report combined U-Pb ages and Sr-Nd isotope compositions of perovskites from 50 kimberlite occurrences, sampled from 9 fields across the Yakutian kimberlite province on the Siberian craton. The new U-Pb ages, together with previously reported geochronological constraints, suggest that kimberlite magmas formed repeatedly during at least 4 episodes: Late Silurian-Early Devonian (419-410 Ma), Late Devonian-Early Carboniferous (376-347 Ma), Late Triassic (231-215 Ma), and Middle/Late Jurassic (171-156 Ma). Recurrent kimberlite melt production beneath the Siberian craton - before and after flood basalt volcanism at 250 Ma - provides a unique opportunity to test existing models for the origin of global kimberlite magmatism. The internally consistent Sr and Nd isotope dataset for perovskites reveals that the Paleozoic and Mesozoic kimberlites of Yakutia have distinctly different initial radiogenic isotope compositions. There exists a notable increase in the initial 143Nd/144Nd ratios through time, with an apparent isotopic evolution that is intermediate between that of Bulk Earth and Depleted MORB Mantle. While the Paleozoic samples range between initial 87Sr/86Sr of 0.7028-0.7034 and 143Nd/144Nd of 0.51229-0.51241, the Mesozoic samples show values between 0.7032-0.7038 and 0.51245-0.51271, respectively. Importantly, perovskites from all studied Yakutian kimberlite fields and age groups have moderately depleted initial εNd values that fall within a relatively narrow range between +1.8 and +5.5. The perovskite isotope systematics of the Yakutian kimberlites are interpreted to reflect magma derivation from the convecting upper mantle, which appears to have a record of continuous melt depletion and crustal recycling throughout the Phanerozoic. The analyzed perovskites neither record highly depleted nor highly enriched isotopic components, which had been previously identified in likely plume-related Siberian Trap basalts. The Siberian craton has frequently been suggested

  20. Late Devonian-Early Carboniferous magmatism in the Lhasa terrane and its tectonic implications: Evidences from detrital zircons in the Nyingchi Complex

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Xu, Wang-Chun; Pan, Fa-Bin

    2016-02-01

    The Late Paleozoic tectonic evolution of the Lhasa terrane remains poorly understood due to the paucity of the Late Paleozoic magmatic rocks exposed at the surface. Detrital zircons in the sedimentary rocks can provide a record of magmatic rocks that have been eroded. Here we report detrital zircon U-Pb ages, trace-element and Hf isotopic data of metasedimentary rocks from the Nyingchi Complex in the eastern Himalayan syntaxis. Detrital zircons from the metasedimentary rocks yield major age populations of 330-364 Ma, 490-800 Ma, 1000-1200 Ma, and 1500-1800 Ma. The weighted mean ages of the youngest three detrital zircons indicate Carboniferous (~ 330 Ma) depositional age for their sedimentary protoliths. Provenance analysis indicates that the sedimentary detritus was sourced from the Lhasa terrane itself. The presence of abundant 330-364 Ma detrital zircons indicates that the Lhasa terrane was characterized by Late Devonian-Early Carboniferous magmatism. The trace-element compositions of the 330-364 Ma detrital zircons indicate that their magmatic host rocks mainly include mafic rocks and granitoids, and minor carbonatite. Some mafic host rocks probably formed in rift-related tectonic setting, and the others formed in arc-related tectonic settings. The granitic host rocks were S-type granites. The 330-391 Ma zircons have negative εHf(t) values (- 19.3 to - 2.5), suggesting that their magmatic host rocks resulted from partial melting of the enriched mantle or ancient crustal materials. Combined with previous studies, we propose that the Late Devonian-Early Carboniferous magmatic rocks in the Lhasa terrane probably formed in an arc-back-arc system which resulted from the southward subduction of the Paleo-Tethys oceanic crust. The back-arc basin developed as the Sumdo Paleo-Tethys ocean, which began to shrink as oceanic crust subducted northwards underneath the North Lhasa terrane during the Late Carboniferous-Permian and finally closed during the Triassic.

  1. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  2. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite.

    PubMed

    McSween, H Y; Grove, T L; Lentz, R C; Dann, J C; Holzheid, A H; Riciputi, L R; Ryan, J G

    2001-01-25

    Observations of martian surface morphology have been used to argue that an ancient ocean once existed on Mars. It has been thought that significant quantities of such water could have been supplied to the martian surface through volcanic outgassing, but this suggestion is contradicted by the low magmatic water content that is generally inferred from chemical analyses of igneous martian meteorites. Here, however, we report the distributions of trace elements within pyroxenes of the Shergotty meteorite--a basalt body ejected 175 million years ago from Mars--as well as hydrous and anhydrous crystallization experiments that, together, imply that water contents of pre-eruptive magma on Mars could have been up to 1.8%. We found that in the Shergotty meteorite, the inner cores of pyroxene minerals (which formed at depth in the martian crust) are enriched in soluble trace elements when compared to the outer rims (which crystallized on or near to the martian surface). This implies that water was present in pyroxenes at depth but was largely lost as pyroxenes were carried to the surface during magma ascent. We conclude that ascending magmas possibly delivered significant quantities of water to the martian surface in recent times, reconciling geologic and petrologic constraints on the outgassing history of Mars. PMID:11206539

  3. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin

    USGS Publications Warehouse

    Kay, Suzanne M.; Burns, W. Matthew; Copeland, Peter; Mancilla, Oscar

    2006-01-01

    Evidence for a Miocene period of transient shallow subduction under the Neuquén Basin in the Andean backarc, and an intermittent Upper Cretaceous to Holocene frontal arc with a relatively stable magma source and arc-to-trench geometry comes from new 40Ar/39Ar, major- and trace-element, and Sr, Pb, and Nd isotopic data on magmatic rocks from a transect at ∼36°–38°S. Older frontal arc magmas include early Paleogene volcanic rocks erupted after a strong Upper Cretaceous contractional deformation and mid-Eocene lavas erupted from arc centers displaced slightly to the east. Following a gap of some 15 m.y., ca. 26–20 Ma mafic to acidic arc-like magmas erupted in the extensional Cura Mallín intra-arc basin, and alkali olivine basalts with intraplate signatures erupted across the backarc. A major change followed as ca. 20–15 Ma basaltic andesite–dacitic magmas with weak arc signatures and 11.7 Ma Cerro Negro andesites with stronger arc signatures erupted in the near to middle backarc. They were followed by ca. 7.2–4.8 Ma high-K basaltic to dacitic hornblende-bearing magmas with arc-like high field strength element depletion that erupted in the Sierra de Chachahuén, some 500 km east of the trench. The chemistry of these Miocene rocks along with the regional deformational pattern support a transient period of shallow subduction that began at ca. 20 Ma and climaxed near 5 Ma. The subsequent widespread eruption of Pliocene to Pleistocene alkaline magmas with an intraplate chemistry in the Payenia large igneous province signaled a thickening mantle wedge above a steepening subduction zone. A pattern of decreasingly arc-like Pliocene to Holocene backarc lavas in the Tromen region culminated with the eruption of a 0.175 ± 0.025 Ma mafic andesite. The northwest-trending Cortaderas lineament, which generally marks the southern limit of Neogene backarc magmatism, is considered to mark the southern boundary of the transient shallow subduction zone.

  4. Geochemical and Sr-Nd Isotopic Compositions of Cenozoic Granitoids in Western Anatolia (Turkey): Spatial and Temporal Evolution of Continental Magmatism and Extension in the Aegean Province

    NASA Astrophysics Data System (ADS)

    Altunkaynak, S.; Genc, C.; Dilek, Y.

    2008-12-01

    Western Anatolia (Turkey) is part of the Aegean extensional province, which is situated in an active collision zone between the African and Eurasian Plates. The Cenozoic magmatism in western Anatolia started after the collision of the Sakarya continent (SC) and Anatolide-Tauride continental blocks (ATP) in the late Paleocene. The collisional front is today marked by the Izmir-Ankara suture zone (IASZ), which includes late Cretaceous Tethyan ophiolites, melanges, and HP/LT blueschist assemblages. Comparison of the isotope geochemistry and the petrogenesis of different plutons on both sides of the IASZ provide important geochronological and geochemical constraints on the nature of the late Cenozoic magmatism associated with crustal extension in the Aegean province. Irrespective of the lithological make-up of the collided blocks, the Oligo-Miocene granitoids that were emplaced into the SB and ATP show similar major and trace element and Sr-Nd isotopic compositions, indicating common melt sources and evolutionary trends. These granitoids are mainly metaluminous, medium to high-K calc-alkaline rocks with their silica contents ranging from 57.0 wt.% to 72.2 wt.%. They display enrichment in LILE and strong negative anomalies in Nb, Ta, P, Ti, and Zr, and they have initial 87Sr/86Sr values of 0.705186 - 0.711437 and 143Nd/ 143Nd values of 0.512615-0.512266. These isotopic signatures and trace element characteristics are considered to reflect the composition of the magmas derived from a metasomatized lithospheric mantle beneath NW Anatolia and from the overlying mafic lower crust. This inferred melt source readily explains the I-type granitoid nature of most Cenozoic plutons in western Anatolia regardless of their temporal and spatial position. The heat and the basaltic material to induce this partial melting were provided by aesthenospheric upwelling caused by partial lithospheric delamination and/or convective thinning. Slab rollback of the Hellenic subduction zone may

  5. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai-Tibet plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaowei; Tang, Qingyan; Li, Chusi; Wang, Yalei; Ripley, Edward M.

    2016-03-01

    The newly discovered Xiarihamu Ni-Cu deposit is located in the Eastern Kunlun orogenic belt in the northern part of the Qinghai-Tibet plateau, western China. It is the largest magmatic Ni-Cu sulfide deposit found thus far in an arc setting worldwide and ranks second in China in terms of total Ni resources. Fe-Ni-Cu sulfide mineralization occurs in a small ultramafic body that is part of a larger mafic-ultramafic complex formed by protracted Silurian-Early Devonian basaltic magmatism. The mineralized ultramafic body is composed predominantly of lherzolite and olivine websterite, with minor dunite, websterite and orthopyroxenite. Here we report new PGE (platinum group element) data and the results of a new, integrated Sr-Nd-Os-S isotope study. The initial concentrations of Rh and Pd in the parental magma are estimated to be 0.014 ppb and 0.24 ppb, respectively, which are more than one order of magnitude lower than those in undepleted mantle-derived magmas such as many continental picrites. The observed PGE depletions in the Xiarihamu parental magma are attributed to sulfide retention in the source mantle, because the degree of partial melting required to generate the Xiarihamu primary magma was not high enough for a magma of that composition to dissolve all sulfides in the source. The (87Sr/86Sr) i ratios and ɛNd (t) of the Xiarihamu host rocks range from 0.7062 to 0.7105 and from -1.97 to -5.74, respectively, indicating 5-30 wt% crustal contamination in the Xiarihamu magma. These data also reveal that the source mantle for the Xiarihamu magma is isotopically (Sr-Nd) more enriched than that for the average Cenozoic arc basalt. The γOs(t) and δ34S values of sulfide ores from the Xiarihamu deposit range from 78 to 1393 and from 2 to 6‰, respectively. These values clearly indicate addition of crustal Os and S to the Xiarihamu parental magma. Metal tenors such as Ni and Rh are inversely correlated with γOs(t) and δ34S values. This indicates that mixing between

  6. Major magmatic events in Mt Meredith, Prince Charles Mountains: First evidence for early Palaeozoic syntectonic granites

    USGS Publications Warehouse

    Gongurov, N.A.; Laiba, A.A.; Beliatsky, B.V.

    2007-01-01

    Precambrian rocks at Mt Meredith underwent granulite-facies metamorphism M1. Zircon isotope dating for two orthogneisses revealed the following age signatures: 1294±3 and 957±4Ma; 1105±5 and 887±2Ma. The oldest ages could reflect the time of orthogneiss protolith crystallization and the latest age determinations date Grenvillian metamorphism. The metamorphic rocks were intruded by two-mica and garnet-biotite granites. The granites and host rocks underwent amphibolite-facies metamorphism M2. Zircon isotope analysis of the two-mica granites showed age estimation within 550-510Ma and zircon dating of the garnet-biotite granites revealed the ages of 1107±5, 953±8, and 551±4Ma. As Pan-African age signatures were obtained from only the granite samples, it is possible to suggest that the granites were formed at the time of 510-550Ma and the zircons with greater age values were captured by granites from the host rocks.

  7. Isotopic and physical evidence for persistently high eruption temperatures for Yellowstone-Snake River Plain rhyolites

    NASA Astrophysics Data System (ADS)

    Loewen, M.; Bindeman, I. N.; Melnik, O. E.

    2015-12-01

    Low crystallinity rhyolite lavas and tuffs from the Yellowstone-Snake River plain system were long-thought to erupt at high 800-900 °C temperatures with evidence derived from experimental work and geothermometry (e.g., QUILF, Ti-in-quartz). Despite this evidence, newer experimental phase equilibria studies as well as a reformulation of zircon saturation temperatures support lower temperature magma eruption conditions. Here we present two independent lines of evidence for 850 °C and greater temperatures. We present high precision oxygen isotope thermometry for coexisting quartz, glass, pyroxene, and magnetite in order make temperature estimates independent of phase equilibria. For all analyzed Snake River Plain-Yellowstone rhyolites, we determine 800-1100 °C temperatures for clinopyroxene and 850-1100 °C temperatures for magnetite. Extremely slow oxygen diffusion in pyroxene will preserve oxygen isotope crystal composition for millions of years stored at magmatic temperatures. Interestingly, oxygen in magnetite will reequilibrate in <1000 years, so systematically higher magnetite-quartz temperatures suggests a short lifespan of magmas from liquidus crystallization to eruption. In an alternative approach, we have modeled the physical emplacement of the large volume (up to 70 km3) rhyolite lavas of the recent Central Plateau Member group. Using simple solutions to gravity-driven viscous fluid flow, we have made first-order estimates for extremely high discharge rates in order to enable effusion of sufficient volume in relatively axisymmetric morphologies—where glacial ice caps or prexisiting topography did not otherwise restrict flow. Using these results and simple conductive cooling models, we show that flows erupted at >800 °C and probably ~850 °C in order to be emplaced before cooling below the melt-glass transition and forming a more dome-like and lobate morphology.

  8. In situ zircon Hf-O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China: Implications for petrogenesis and geodynamic evolution

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Liu, Jianmin; Li, Quanzhong; Xing, Guangfu; Liu, Xiaoqiang; Xie, Jiancheng; Chu, Xiaoqiang; Chen, Zhihong

    2015-06-01

    A combined study of whole-rock major and trace elements, Sr-Nd isotopes, zircon U-Pb dating, and in situ zircon Hf-O isotopes has been carried out for late Mesozoic magmatic rocks in the Lower Yangtze River Belt. The results provide insights into the origin of mantle sources of magma above a subduction zone, and thus into the petrogenesis of high-K calc-alkaline rocks, shoshonites, and A-type granites on continental margins, and the associated tectonic transformation from a continental arc to a back-arc extensional setting. The late Mesozoic magmatism can be subdivided into three stages: high-K calc-alkaline intrusions (148-133 Ma), shoshonitic rocks (133-127 Ma), and A-type granitoids (127-123 Ma). All the rocks have consistent arc-like trace element characteristics with positive anomalies of Rb, Th, U, Pb, and LREE, negative anomalies of Nb, Ta, and Ti, and enriched Sr-Nd-Hf isotopic signatures. The first-stage intrusions in the Tongling area usually host dark enclaves of diorite, have high Sr/Y ratios, and low Y contents, and contain zircons with relatively low εHf(t) values (- 38.6 to - 6.6) and high δ18O values (5.7‰ to 10.1‰). A few inherited zircons with Neoarchean to Paleoproterozoic ages and highly enriched Hf isotopic compositions were detected in both the host intrusive rocks and the enclaves. The second-stage Ningwu volcanics contain zircons with moderate εHf(t) values (- 13.3 to - 3.8) and elevated δ18O values (5.4‰ to 7.6‰). The third-stage intrusions can be divided into A1- and A2-type granitoids, and their zircons have relatively high δ18O values of 6.7‰ to 10.3‰ and high εHf(t) values of 0 to - 7.9. Based on these geochemical data we drew the following conclusions. Before 148 Ma, following metasomatism by slab-derived fluid/melts, partial melting of the lithospheric mantle produced basaltic magma in the context of a subducting paleo-Pacific plate. This basaltic magma mixed with magma derived from the Archean lower crust, and the

  9. Osmium isotope evidence for a large Late Triassic impact event.

    PubMed

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio ((187)Os/(188)Osi) of ~0.477 to unradiogenic values of ~0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous-Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3-7.8 km in diameter) produced a global decrease in seawater (187)Os/(188)Os ratios in the Late Triassic. PMID:24036603

  10. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  11. Paleoclimate and Amerindians: Evidence from stable isotopes and atmospheric circulation

    USGS Publications Warehouse

    Lovvorn, M.B.; Frison, G.C.; Tieszen, L.L.

    2001-01-01

    Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at ???11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills-mountains vs. plains biomes; and from 8,000-5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric "Altithermal" conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C4 plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from ???12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains.

  12. Paleoclimate and Amerindians: Evidence from stable isotopes and atmospheric circulation

    PubMed Central

    Lovvorn, Marjorie Brooks; Frison, George C.; Tieszen, Larry L.

    2001-01-01

    Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at ≈11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills–mountains vs. plains biomes; and from 8,000–5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric “Altithermal” conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C4 plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from ≈12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains. PMID:11226265

  13. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Wen; Zhou, Mei-Fu; Qi, Liang; Gao, Jian-Feng; Wang, Yu-Wang

    2013-12-01

    The Eastern Tianshan Orogenic Belt of the Central Asian Orogenic Belt and the Beishan terrane of the Tarim Block, NW China, host numerous Fe deposits. The Cihai Fe deposit (>90 Mt at 45.6 % Fe) in the Beishan terrane is diabase-hosted and consists of the Cihai, Cinan, and Cixi ore clusters. Ore minerals are dominantly magnetite, pyrite, and pyrrhotite, with minor chalcopyrite, galena, and sphalerite. Gangue minerals include pyroxene, garnet, hornblende and minor plagioclase, biotite, chlorite, epidotite, quartz, and calcite. Pyrite from the Cihai and Cixi ore clusters has similar Re-Os isotope compositions, with ˜14 to 62 ppb Re and ≤10 ppt common Os. Pyrrhotite has ˜5 to 39 ppb Re and ˜0.6 ppb common Os. Pyrite has a mean Re-Os model age of 262.3 ± 5.6 Ma ( n = 13), in agreement with the isochron regression of 187Os vs. 187Re. The Re-Os age (˜262 Ma) for the Cihai Fe deposit is within uncertainty in agreement with a previously reported Rb-Sr age (268 ± 25 Ma) of the hosting diabase, indicating a genetic relationship between magmatism and mineralization. Magnetite from the Cihai deposit has Mg, Al, Ti, V, Cr, Co, Ni, Mn, Zn, Ga, and Sn more elevated than that of typical skarn deposits, but both V and Ti contents lower than that of magmatic Fe-Ti-V deposits. Magnetite from these two ore clusters at Cihai has slightly different trace element concentrations. Magnetite from the Cihai ore cluster has relatively constant trace element compositions. Some magnetite grains from the Cixi ore cluster have higher V, Ti, and Cr than those from the Cihai ore cluster. The compositional variations of magnetite between the ore clusters are possibly due to different formation temperatures. Combined with regional tectonic evolution of the Beishan terrane, the Re-Os age of pyrite and the composition of magnetite indicate that the Cihai Fe deposit may have derived from magmatic-hydrothermal fluids related to mafic magmatism, probably in an extensional rift environment.

  14. Carbon isotope evidence for a magmatic origin for Archaean gold-quartz vein ore deposits

    NASA Technical Reports Server (NTRS)

    Burrows, D. R.; Wood, P. C.; Spooner, E. T. C.

    1986-01-01

    Sediments from three sites in the Santa Barbara Basin were examined with a 160X power light microscope and TEM equipment to characterize the magnetostatic bacteria (MB) in the samples. Both the free magnetite and the crystals in the MB in the samples had lengths from 40-60 nm in length and increased in size from one end to the next. An intact magnetosome was also observed. Scanning the sediments with saturation isothermal remanent magnetization (SIRM) and altering field demagnetization techniques using a SQUID magnetometer yielded coercivity spectra which showed that the primary remanence carrier in the sediments was single domain magnetite. Although it is expected that the predominance of the bacterial magnetite component will decrease with depth in the open ocean basin, single-domain bacteria as old as 50 Myr have been observed in oceanic sediments.

  15. A potential link between magmatic volatiles and mantle source lithology in the Hawaiian Plume: a view from olivine-hosted melt inclusions and osmium isotopes

    NASA Astrophysics Data System (ADS)

    Marske, J. P.; Hauri, E. H.; Garcia, M. O.; Pietruszka, A. J.

    2013-12-01

    Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in lavas from Hawaiian volcanoes reveal important magmatic processes (e.g., melting of a heterogeneous source and magma degassing). Based on variations in ratios of highly incompatible trace elements (e.g., Nb/La) and radiogenic isotopes (e.g., 206Pb/204Pb), shield-stage Hawaiian lavas likely originate from a plume source containing peridotite and ancient recycled oceanic crust (pyroxenite). The source region may also be heterogeneous with respect to volatile concentrations. However, shallow magma degassing makes it difficult to determine if there is a link between mantle source composition and the volatile budget. We analyzed osmium isotopic ratios and volatile contents in olivines and glasses for 34 samples from Koolau, Mauna Kea, Mauna Loa, Hualalai, Kilauea, and Loihi to determine if volatiles in magmas correlate with geochemical tracers of source lithology. For a given volcano, most 187Os/188Os values of olivines (0.127-0.134) are similar to the whole-rock values, yet some Mauna Loa and Loihi olivines display the lower ratios (0.116-0.118) that may reflect partial melts of ancient recycled mantle lithosphere. SIMS analyses of Hawaiian glasses reveal a range in abundances of CO2 (10-250 ppm), H2O (0.2-1.2 wt.%), S (38-2960 ppm), and Cl (39-2960 ppm). However, most samples have low CO2 contents (<100 ppm) indicating that the lavas are degassed. Olivine-hosted melt inclusions from the same Hawaiian samples display a wider range of volatile abundances (i.e. 10-760 ppm CO2) than matrix glasses that may reflect mixing of undegassed to moderately degassed magmas. The average CO2 and H2O/CO2 contents in the least degassed olivine-hosted melt inclusions (with >200 ppm CO2) display a broad correlation with the osmium isotopic compositions of the olivines. This indicates a potential link between pre-eruptive volatile budgets and mantle sources lithology may exist within the

  16. Mesozoic Magmatism and Base-Metal Mineralization in the Fortymile Mining District, Eastern Alaska - Initial Results of Petrographic, Geochemical, and Isotopic Studies in the Mount Veta Area

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Slack, John F.; Aleinikoff, John N.; Mortensen, James K.

    2009-01-01

    We present here the initial results of a petrographic, geochemical, and isotopic study of Mesozoic intrusive rocks and spatially associated Zn-Pb-Ag-Cu-Au prospects in the Fortymile mining district in the southern Eagle quadrangle, Alaska. Analyzed samples include mineralized and unmineralized drill core from 2006 and 2007 exploration by Full Metal Minerals, USA, Inc., at the Little Whiteman (LWM) and Fish prospects, and other mineralized and plutonic samples collected within the mining district is part of the USGS study. Three new ion microprobe U-Pb zircon ages are: 210 +- 3 Ma for quartz diorite from LWM, 187 +- 3 Ma for quartz monzonite from Fish, and 70.5 +- 1.1 Ma for altered rhyolite porphyry from Fish. We also present 11 published and unpublished Mesozoic thermal ionization mass spectrometric U-Pb zircon and titanite ages and whole-rock geochemical data for the Mesozoic plutonic rocks. Late Triassic and Early Jurassic plutons generally have intermediate compositions and are slightly foliated, consistent with synkinematic intrusion. Several Early Jurassic plutons contain magmatic epidote, indicating emplacement of the host plutons at mesozonal crustal depths of greater than 15 km. Trace-element geochemical data indicate an arc origin for the granitoids, with an increase in the crustal component with time. Preliminary study of drill core from the LWM Zn-Pb-Cu-Ag prospect supports a carbonate-replacement model of mineralization. LWM massive sulfides consist of sphalerite, galena, and minor pyrite and chalcopyrite, in a gangue of calcite and lesser quartz; silver resides in Sb-As-Ag sulfosalts and pyrargyrite, and probably in submicroscopic inclusions within galena. Whole-rock analyses of LWM drill cores also show elevated In, an important metal in high-technology products. Hypogene mineralized rocks at Fish, below the secondary Zn-rich zone, are associated with a carbonate host and also may be of replacement origin, or alternatively, may be a magnetite

  17. Lower-crustal xenoliths from Jurassic kimberlite diatremes, upper Michigan (USA): Evidence for Proterozoic orogenesis and plume magmatism in the lower crust of the southern Superior Province

    USGS Publications Warehouse

    Zartman, Robert E.; Kempton, Pamela D.; Paces, James B.; Downes, Hilary; Williams, Ian S.; Dobosi, Gábor; Futa, Kiyoto

    2013-01-01

    Jurassic kimberlites in the southern Superior Province in northern Michigan contain a variety of possible lower-crustal xenoliths, including mafic garnet granulites, rare garnet-free granulites, amphibolites and eclogites. Whole-rock major-element data for the granulites suggest affinities with tholeiitic basalts. P–T estimates for granulites indicate peak temperatures of 690–730°C and pressures of 9–12 kbar, consistent with seismic estimates of crustal thickness in the region. The granulites can be divided into two groups based on trace-element characteristics. Group 1 granulites have trace-element signatures similar to average Archean lower crust; they are light rare earth element (LREE)-enriched, with high La/Nb ratios and positive Pb anomalies. Most plot to the left of the geochron on a 206Pb/€204Pb vs 207Pb/€204Pb diagram, and there was probably widespread incorporation of Proterozoic to Archean components into the magmatic protoliths of these rocks. Although the age of the Group 1 granulites is not well constrained, their protoliths appear to be have been emplaced during the Mesoproterozoic and to be older than those for Group 2 granulites. Group 2 granulites are also LREE-enriched, but have strong positive Nb and Ta anomalies and low La/Nb ratios, suggesting intraplate magmatic affinities. They have trace-element characteristics similar to those of some Mid-Continent Rift (Keweenawan) basalts. They yield a Sm–Nd whole-rock errorchron age of 1046 ± 140 Ma, similar to that of Mid-Continent Rift plume magmatism. These granulites have unusually radiogenic Pb isotope compositions that plot above the 207Pb/€204Pb vs 206Pb/€204Pb growth curve and to the right of the 4·55 Ga geochron, and closely resemble the Pb isotope array defined by Mid-Continent Rift basalts. These Pb isotope data indicate that ancient continental lower crust is not uniformly depleted in U (and Th) relative to Pb. One granulite xenolith, S69-5, contains quartz, and has a

  18. Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U-Pb ages and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Santosh, M.; Yang, Qiong-Yan; Ram Mohan, M.; Tsunogae, T.; Shaji, E.; Satyanarayanan, M.

    2014-11-01

    The Southern Granulite Terrane (SGT) in India preserves the records of the formation and recycling of continental crust from Mesoarchean through Paleoproterozoic to Neoproterozoic and Cambrian, involving multiple subduction-accretion-collision associated with major orogenic cycles. A chain of unmetamorphosed and undeformed alkaline magmatic intrusions occurs along the northern margin of the SGT aligned along paleo-suture zones. Here we investigate two representative plutons from this suite, the Angadimogar syenite (AM) and the Peralimala alkali granite (PM) through field, petrological, geochemical, zircon U-Pb and Lu-Hf studies. Magma mixing and mingling textures and mineral assemblages typical of alkaline rocks are displayed by these plutons. The whole-rock major and trace element data characterize their alkaline nature. In trace element discrimination diagrams, the AM rocks straddle between the VAG (volcanic-arc granites) and WPG (within plate granites) fields with most of the samples confined to the VAG field, whereas the PM rocks are essentially confined to the WPG field. The diversity in some of the geochemical features between the two plutons is interpreted to be the reflection of source heterogeneities. Most zircon grains from the AM and PM plutons display oscillatory zoning typical of magmatic crystallization although some grains, particularly those from the PM pluton, show core-rim structures with dark patchy zoned cores surrounded by irregular thin rims resulting from fluid alteration. The weighted mean 206Pb/238U ages of the magmatic zircons from three samples of the AM syenite are in the range of 781.8 ± 3.8 Ma to 798 ± 3.6 Ma and those from two samples of the PM alkali granite yield ages of 797.5 ± 3.7 Ma and 799 ± 6.2 Ma. A mafic magmatic enclave from the AM pluton shows weighted mean 206Pb/238U age of 795 ± 3.3 Ma. The AM and PM plutons also carry rare xeneocrystic zircons which define upper intercept concordia ages of 3293 ± 13 Ma and 2530

  19. The IIE Iron Meteorite Family Tree: A Study of the Petrography and Oxygen Isotopes of the Non-Magmatic Group

    NASA Astrophysics Data System (ADS)

    McDermott, K. H.; Greenwood, R. C.; Franchi, I. A.; Anand, M.; Scott, E. R. D.

    2012-03-01

    Petrographic and isotopic analysis have shown three distinct relationships exist between the ordinary chondrites and IIE silicates, expanding our concept of the parent body and the thermal history it encountered.

  20. Cretaceous crust-mantle interaction and tectonic evolution of Cathaysia Block in South China: Evidence from pulsed mafic rocks and related magmatism

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong; Zhang, Qian; Zhao, Hai-Xiang; Zhao, Kui-Dong

    2015-10-01

    Cretaceous tectono-magmatic evolution of the Cathaysia Block in South China is important but their mechanism and geodynamics remain highly disputed. In this study we carried out a detailed geochemical study on the recently found Kuokeng mafic dikes in the western Fujian Province (the Interior Cathaysia Block) to reveal the petrogenesis and geodynamics of the Cretaceous magmatism. Kuokeng mafic dikes were emplaced in three principal episodes: ~ 129 Ma (monzogabbro), ~ 107 Ma (monzodiorite), and ~ 97 Ma (gabbro). Geochemical characteristics indicate that the monzogabbros were derived from the unmodified mantle source, while gabbros were likely derived from metasomatized mantle by subducted slab (fluids and sediments). Sr-Nd isotope compositions indicate that the parental magmas of the monzodiorites were generated by mixing of enriched, mantle-derived, mafic magmas and felsic melts produced by partial melting of crustal materials. Until the Early Cretaceous (~ 123 Ma), the dominant ancient Interior Cathaysia lithospheric mantle exhibited insignificant subduction signature, indicating the melting of asthenospheric mantle and the consequent back-arc extension, producing large-scale partial melting of the crustal materials under the forward subduction regime of the paleo-Pacific plate. The monzodiorites and gabbros appear to be associated with northwestward subduction of Pacific plate under an enhanced lithospheric extensional setting, accompanying with mantle modification, which triggered shallower subduction-related metasomatically enriched lithospheric mantle to melt partially. After ca. 110 Ma, the coastal magmatic belts formed due to a retreat and rollback of the subducting Pacific Plate underneath SE China in the continental margin arc system.

  1. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia

    USGS Publications Warehouse

    Sisson, T.W.; Bronto, S.

    1998-01-01

    The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian are which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21-0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at ~1,320 ??C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300-600 ??C hotter than predicted by geodynamic models), combined with the production of nearly H2O- free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-are mantle has taken place. Regional low- potassium and low-H2O (ref. 5) basalts found in the Cascade are indicate that such upwelling-induced melting can be widespread.

  2. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO42--H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments

    USGS Publications Warehouse

    Fifarek, R.H.; Rye, R.O.

    2005-01-01

    The Pierina high-sulfidation Au-Ag deposit formed 14.5 my ago in rhyolite ash flow tuffs that overlie porphyritic andesite and dacite lavas and are adjacent to a crosscutting and interfingering dacite flow dome complex. The distribution of alteration zones indicates that fluid flow in the lavas was largely confined to structures but was dispersed laterally in the tuffs because of a high primary and alteration-induced permeability. The lithologically controlled hydrodynamics created unusual fluid, temperature, and pH conditions that led to complete SO42--H2S isotopic equilibration during the formation of some magmatic-steam and steam-heated alunite, a phenomenon not previously recognized in similar deposits. Isotopic data for early magmatic hydrothermal and main-stage alunite (??34S=8.5??? to 31.7???; ??18 OSO4=4.9??? to 16.5???; ??18 OOH=2.2??? to 14.4???; ??D=-97??? to -39???), sulfides (??34 S=-3.0??? to 4.3???), sulfur (??34S=-1.0??? to 1.1???), and clay minerals (??18O=4.3??? to 12.5???; ??D=-126??? to -81???) are typical of high-sulfidation epithermal deposits. The data imply the following genetic elements for Pierina alteration-mineralization: (1) fluid and vapor exsolution from an I-type magma, (2) wallrock buffering and cooling of slowing rising vapors to generate a reduced (H2S/SO4???6) highly acidic condensate that mixed with meteoric water but retained a magmatic ??34S???S signature of ???1???, (3) SO2 disproportionation to HSO4- and H2S between 320 and 180 ??C, and (4) progressive neutralization of laterally migrating acid fluids to form a vuggy quartz???alunite-quartz??clay???intermediate argillic???propylitic alteration zoning. Magmatic-steam alunite has higher ??34S (8.5??? to 23.2???) and generally lower ??18OSO4 (1.0 to 11.5???), ??18OOH (-3.4 to 5.9???), and ??D (-93 to -77???) values than predicted on the basis of data from similar occurrences. These data and supporting fluid-inclusion gas chemistry imply that the rate of vapor ascent for this

  3. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  4. The boron isotope geochemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: implications for a magmatic-hydrothermal origin

    NASA Astrophysics Data System (ADS)

    Tornos, Fernando; Wiedenbeck, Michael; Velasco, Francisco

    2012-06-01

    Hydrothermal tourmaline is common in the iron oxide-copper-gold (IOCG) deposits of the Coastal Cordillera of Chile where it occurs as large crystals in the groundmass of magmatic-hydrothermal breccias, such as in the Silvita or Tropezón ore bodies, or as small grains in replacive bodies or breccia cement in the ore-bearing andesite, as seen at the Candelaria or Carola deposits. Tourmaline shows strong chemical zoning and has a composition of schorl-dravite with significant povondraite and uvite components. The observed boron isotope composition is fairly variable, between -10.4‰ and +6.0‰ with no major differences among the different deposits, suggesting a common genetic mechanism. The δ11B values are significantly lower than those of seawater or marine evaporites and very similar to those of younger porphyry copper deposits and volcanic rocks in the region, indicating that the boron has a common, likely magmatic, origin. The predominant boron source was ultimately dewatering of the subducting slab with a significant contribution derived from the overlying continental basement. The range of δ11B values is between those of the porphyry copper deposits and the porphyry tin deposits of the Andes, suggesting that the IOCG mineralization might be genetically related to fluids having more crustal contamination than the porphyry copper deposits; such an interpretation is at odds with current models that propose that the Andean IOCG deposits are related to juvenile melts or to the circulation of basinal brines. Furthermore, the obtained δ11B data are markedly different from those of the tourmaline in the Carajás IOCG district (Brazil), suggesting that IOCGs do not form by a unique mechanism involving only one type of fluids.

  5. Ancient recycled crust beneath the Ontong Java Plateau: Isotopic evidence from the garnet clinopyroxenite xenoliths, Malaita, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Ishikawa, Akira; Kuritani, Takeshi; Makishima, Akio; Nakamura, Eizo

    2007-07-01

    We present a Sr, Nd, Hf and Pb isotope investigation of a set of garnet clinopyroxenite xenoliths from Malaita, Solomon Islands in order to constrain crustal recycling in the Pacific mantle. Geological, thermobarometric and petrochemical evidence from previous studies strongly support an origin as a series of high-pressure (> 3 GPa) melting residues of basaltic material incorporated in peridotite, which was derived from Pacific convective mantle related to the Ontong Java Plateau magmatism. The present study reveals isotopic variations in the pyroxenites that are best explained by different extents of chemical reaction with ambient peridotite in the context of a melting of composite source mantle. Isotopic compositions of bimineralic garnet clinopyroxenites affected by ambient peridotite fall within the oceanic basalt array, similar to those of Ontong Java Plateau lavas. In contrast, a quartz-garnet clinopyroxenite, whose major element compositions remain intact, has lower 206Pb/ 204Pb- 143Nd/ 144Nd and higher 87Sr/ 86Sr- 207Pb/ 204Pb ratios than most oceanic basalts. These isotopic signatures show some affinity with proposed recycled sources such as the so-called EM-1 or DUPAL types. Constraints from major and trace element characteristics of the quartz-garnet clinopyroxenite, the large extent of Hf-Nd isotopic decoupling and the good coincidence of Pb isotopes to the Stacey-Kramers curve, all indicate that pollution of southern Pacific mantle occurred by the subduction or delamination of Neoproterozoic granulitic lower crust (0.5-1 Ga). This crustal recycling could have taken place around the suture of Rodinia supercontinent, a part of which resurfaced during mantle upwelling responsible for creating the Cretaceous Ontong Java Plateau.

  6. Multiple sulfur isotope and mineralogical constraints on the genesis of Ni-Cu-PGE magmatic sulfide mineralization of the Monchegorsk Igneous Complex, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Bekker, A.; Grokhovskaya, T. L.; Hiebert, R.; Sharkov, E. V.; Bui, T. H.; Stadnek, K. R.; Chashchin, V. V.; Wing, B. A.

    2015-08-01

    We present the results of a pilot investigation of multiple sulfur isotopes for the Ni-Cu-PGE sulfide mineralization of the ˜2.5 Ga Monchegorsk Igneous Complex (MIC). Base Metal Sulfide (BMS) compositions, Platinum Group Element (PGE) distributions, and Platinum Group Mineral (PGM) assemblages were also studied for different types of Ni-Cu-PGE mineralization. The uniformly low S content of the country rocks for the MIC as well as variable Sm-Nd isotope systematics and low-sulfide, PGE-rich mineralization of the MIC suggest that S saturation was reached via assimilation of silicates rather than assimilation of sulfur-rich lithologies. R-factor modeling suggests that the mixing ratio for silicate-to-sulfide melt was very high, well above 15,000 for the majority of our mineralized samples, as might be expected for the low-sulfide, PGE-rich mineralization of the MIC. Small, negative Δ33S values (from -0.23 to -0.04 ‰) for sulfides in strongly metamorphosed MIC-host rocks indicate that their sulfur underwent mass-independent sulfur isotope fractionation (MIF) in the oxygen-poor Archean atmosphere before it was incorporated into the protoliths of the host paragneisses and homogenized during metamorphism. Ore minerals from the MIC have similar Δ33S values (from -0.21 to -0.06 ‰) consistent with country rock assimilation contributing to sulfide saturation, but, also importantly, our dataset suggests that Δ33S values decrease from the center to the margin of the MIC as well as from early to late magmatic phases, potentially indicating that both local assimilation of host rocks and S homogenization in the central part of the large intrusion took place.

  7. Tomographic, kinematic and gravitational evidence for a slab under Greenland and its potential links to Arctic magmatism.

    NASA Astrophysics Data System (ADS)

    Shephard, Grace; Spakman, Wim; Panet, Isabelle; Gaina, Carmen; Trønnes, Reidar

    2015-04-01

    Seismic tomography and recent satellite gravity data reveal regions of anomalous structure within Earth's present-day mantle. On scales of some tens to hundreds of kilometers in wavelength, individual subducted slabs and mantle plumes can be resolved. When linked with global plate reconstructions and models of mantle convection, subducted slabs of lithosphere can be related to distinct periods of ocean basin closure. Here we explore the origins for a distinct fast seismic feature under present-day Greenland that is apparent across several P and S-wave tomography models. The sub-rounded seismic anomaly of interest is distinct from the more westerly "Farallon" slab, and is located in the mid mantle between ~1000-1600 km depth. We include a discussion of mantle sinking rates, showing that taking 1600 km slab base depth and applying sinking rate of 1.2 cm/yr implies a subduction age of ~133 Ma. We supplement the tomographic evidence for this slab with independent, satellite-derived vertical gravity gradients. Preliminary analysis of the gravity reveals a possible mantle anomaly in the SW Greenland region, complementary in spatial extent to that inferred from tomography. Considering absolute and relative plate reference frames, we suggest that palaeo-Arctic subduction related to the opening of the Amerasia Basin in the Jurassic, may account for this mantle feature. We finally investigate potential geochemical links of this slab feature with high arctic magmatism in the Cretaceous, showing that a time-dependent consideration of surface kinematics and mantle dynamics may reveal new insights into the geodynamic evolution of the Arctic.

  8. Resolving mantle and magmatic processes in basalts from the Cameroon volcanic line using the Re-Os isotope system

    NASA Astrophysics Data System (ADS)

    Gannoun, A.; Burton, K. W.; Barfod, D. N.; Schiano, P.; Vlastélic, I.; Halliday, A. N.

    2015-05-01

    This study presents major-, trace element and Re-Os isotope and elemental data for young alkaline basalts (< 10 Ma) from oceanic (Annobon, S. Tomé, Principe), continental (Manengouba) and continent-oceanic boundary (COB, Mt. Cameroon) sectors of the Cameroon volcanic line (CVL). The CVL is a chain of Tertiary to recent, transitional to strongly alkaline intraplate volcanoes extending from the south Atlantic island of Annobon to the continental interior of West Africa (Biu Plateau). The basalts from the oceanic sector display a range of initial 187Os/188Os ratios between 0.128 and 0.190 and those from the COB and continental sector range between 0.142 and 0.560. The samples with high 206Pb/204Pb (e.g. ratios > 20) possess 187Os/188Os isotope compositions between 0.14 and 0.18 (e.g., basalts from Mt Cameroon and Sao Tomé) which reflect the chemical characteristics that are more likely to be primary features of CVL, and are close to the value of 0.153 attributed to the HIMU end-member (Tubuai-Mangaia). However, most of the lavas from the continental sector show highly radiogenic initial 187Os/188Os ratios (0.36 to 0.56) that are outside the range previously observed for ocean island basalts, with shifts to radiogenic Os isotope compositions accompanied by less radiogenic 206Pb/204Pb and increasing SiO2 contents. The increase in 187Os/188Os is also associated with the decrease of Os, Ni, MgO and phenocryst abundances. These data can be explained by fractional crystallisation and assimilation of continental crust by the ascending magma. The systematic shift to unradiogenic lead isotope compositions from the COB into the oceanic sector is positively correlated with variations in 187Os/188Os isotope composition (from 0.140 to 0.128). At first sight this covariation might be attributed to the mixing of HIMU material with the ambient upper mantle (DMM). However, there is a clear covariation of the Os isotope and elemental composition, best explained with contamination of

  9. Late Neoproterozoic magmatism in South Qinling, Central China: Geochemistry, zircon U-Pb-Lu-Hf isotopes and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Yao, Yuan; Gao, Li'e.; Liu, Chunhua

    2016-06-01

    The Neoproterozoic tectonic evolution of the northern margin of the Yangtze Block in South China remains debated. In this study, we present results from LA-ICP-MS zircon U-Pb geochronology on a suite of intermediate-felsic rocks in South Qinling, Central China which show a mean age of ca. 630 Ma. The zircon εHf(t) values of these rocks mostly range from + 0.44 to + 14.78. Geochemically, the granites and syenite show high total alkali contents, with enrichment in LREE, LILE (Rb, Ba, and K), and HFSE (Th, U, Nb, Ta, Zr, and Hf), and depletion in Sr, P, and Ti, similar to the features of A-type granites. The meta-diorite shows high Na2O, with depletion in Eu, Ti, and LILE (Sr, Rb, Ba, and K), and enrichment in HFSE (Th, U, Nb, Ta, Zr, and Hf). The geochemical features are consistent with formation of the intermediate-felsic suite through fractionation from underplated basaltic magma that originated from sub-continental lithospheric mantle metasomatized by asthenosphere-derived oceanic-island-basalt-like (OIB-like) melts, coupled with minor crustal contamination. We correlate the ca. 630 Ma magmatism with a back-arc rift setting that probably developed in relation to slab tearing during continued slab rollback.

  10. Isotopic evidence from the eastern Canadian shield for geochemical discontinuity in the Proterozoic mantle

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D.; Wooden, J. L.

    1983-01-01

    The Nd and Sr isotopic compositions presently reported for anorthosites and related rocks from the Grenville and Nain Provinces of the eastern Canadian shield indicate that the massifs were delivered from at least two distinct mantle source regions which were established before 1650 Myr ago. These regions were episodically involved in magmatism over about 500 Myr. One reservoir was isotopically similar to the depleted, modern midocean ridge basalt source. The other reservoir was chondritic-to-moderately-enriched, and is most easily identified in the Nain Province, but may have occurred scattered throughout Superior Province, as well.

  11. Late Carboniferous-early Permian events in the Trans-European Suture Zone: Tectonic and acid magmatic evidence from Poland

    NASA Astrophysics Data System (ADS)

    Żelaźniewicz, A.; Oberc-Dziedzic, T.; Fanning, C. M.; Protas, A.; Muszyński, A.

    2016-04-01

    The Trans-European Suture Zone (TESZ) links the East and West European Platforms. It is concealed under Meso-Cenozoic cover. Available seismic data show that the lower crustal layer in the TESZ is an attenuated, ~ 200 km wide, SW margin of Baltica. The attenuation occurred when Rodinia broke-up, which gave rise to evolution of the thinned, thus relatively unstable margin of Baltica. It accommodated accretions during Phanerozoic events. We focus on acid magmatism, specifically granitoid, observed close to the SW border of the TESZ in Poland. This border is defined by the Dolsk Fault Zone (DFZ) and the Kraków-Lubliniec Fault Zone (KLFZ) on which dextral wrenching developed as a result of the Variscan collision between Laurussia and Gondwana. The granitoids at the DFZ and KLFZ were dated at ~ 300 Ma. In the Variscan foreland that overlaps the TESZ, orogenic thickening continued to ~ 307-306 Ma, possibly contributed to melting of the thickened upper continental crust (εNd300 = - 6.0 to - 4.5) and triggered the tectonically controlled magmatism. The wrenching on the TESZ border faults caused tensional openings in the basement, which promoted magmatic centers with extrusions of rhyolites and extensive ignimbrites. The Chrzypsko-Paproć and Małopolska magmatic centers were developed at the DFZ and KLFZ, respectively. The magmatic edifices commenced at ~ 302 Ma with relatively poorly evolved granites, which carried both suprasubduction and anorogenic signatures, then followed by more evolved volcanic rocks (up to 293 Ma). Their geochemistry and inherited zircons suggest that the felsic magmas were mainly derived from upper crustal rocks, with some mantle additions, which included Sveconorwegian and older Baltican components. The complex TESZ, with Baltica basement in the lower crust, was susceptible to transient effects of mantle upwelling that occurred by the end of the Variscan orogeny and resulted in an episode of the "flare-up" magmatism in the North German

  12. Lower crustal earthquake swarms beneath Mammoth Mountain, California - evidence for the magmatic roots to the Mammoth Mountain mafic volcanic field?

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Shelly, D. R.

    2010-12-01

    in the brittle domain to temperatures as high as ~700o C. Above these deep events are two distinct shallower zones of seismicity. The mid-crustal long-period earthquakes between 10 and 20 km are presumably occurring within the silicic crust, but below the rheological transition from brittle to plastic behavior, expected to occur at temperatures of ~350 to 400o C. Above this transition are shallow brittle-failure earthquakes, in the upper 8 kilometers of the silicic crust. These lower crustal brittle-failure earthquakes are similar in depth and tectonic setting to those that occurred beneath the Sierra Nevada crest in the vicinity of Lake Tahoe in late 2003, which Smith et al. (Science, 2004) concluded were associated with a magmatic intrusion in the lower crust. The Mammoth sequences, however, are much shorter in duration (1-2 days compared with several months) and have no detectable accompanying geodetic signal. Thus, there is no clear evidence for a significant intrusion associated with these deep swarms of brittle-failure earthquakes beneath Mammoth Mountain.

  13. Radiogenic isotope evidence for transatlantic atmospheric dust transport

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Abouchami, Wafa; Garrison, Virginia H.; Galer, Stephen J. G.; Andreae, Meinrat O.

    2013-04-01

    Early studies by Prospero and colleagues [1] have shown that African dust reaches all across the Atlantic and into the Caribbean. It may contribute to fertilizing the Amazon rainforest [2,3,4], in addition to enhancing the ocean biological productivity via delivery of iron, a key nutrient element[5]. Radiogenic isotope ratios (Sr, Nd, Pb) are robust tracers of dust sources and can thus provide information on provenance and pathways of dust transport. Here we report Sr, Nd and Pb isotope data on atmospheric aerosols, collected in 2008 on quartz filters, from three different locations in Mali (12.6° N, 8.0° W; 555 m a.s.l.), Tobago (11.3° N, 60.5° W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7° N, 64.6° W; 27 m a.s.l.) to investigate the hypothesis of dust transport across the Atlantic. About 2 cm2 of filter were acid-leached in 0.5 N HBr for selective removal of the anthropogenic labile Pb component (leachate) and possibly the fine soluble particle fraction. The remainder of the filter was subsequently dissolved using a mixture of HF and HNO3 acids, and should be representative of the silicate fraction. Isotopic compositions were measured by TIMS on a ThermoFisher Triton at MPIC, with Pb isotope ratios determined using the triple-spike method. Significant Pb isotope differences between leachates and residues were observed. The variability in Pb isotopic composition among leachates may be attributed to variable and distinct anthropogenic local Pb sources from Africa and South America [6], however, residues are imprinted by filter blank contribution suggesting to avoid the quartz fiber filter for isotopic study of aerosols. The Nd and Sr isotope ratios of aerosol leachates show similar signatures at all three locations investigated. The nearly identical Nd and Sr isotopic compositions in the Mali, Tobago and Virgin islands leachates are comparable to those obtained on samples from the Bodélé depression, Northern Chad [7] and suggest a possible common

  14. Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh

    2016-09-01

    The Southern Oklahoma Aulocogen (SOA) stretches from southern Oklahoma through the Texas panhandle and into Colorado and New Mexico, and contains mafic through silicic magmatism related to the opening of the Iapetus Ocean during the early Cambrian. Cambrian magmatic products are best exposed in the Wichita Mountains (Oklahoma), where they have been extensively studied. However, their ultimate derivation is still somewhat contentious and centers on two very different models: SOA magmatism has been suggested to occur via [1] continental rifting (with or without mantle plume emplacement) or [2] transform-fault related magmatism (e.g., leaky strike-slip faults). Within the SOA, the subsurface in and adjacent to the Arbuckle Mountains in southern Oklahoma contains thick sequences of mafic to intermediate lavas, intrusive bodies, and phreatomagmatic deposits interlayered with thick, extensive rhyolite lavas, thin localized tuffs, and lesser silicic intrusive bodies. These materials were first described in the Arbuckle Mountains region by a 1982 drill test (Hamilton Brothers Turner Falls well) and the best available age constraints from SOA Arbuckle Mountains eruptive products are ~ 535 to 540 Ma. Well cuttings of the mafic through intermediate units were collected from that well and six others and samples from all but the Turner Falls and Morton wells are the focus of this study. Samples analyzed from the wells are dominantly subalkaline, tholeiitic, and range from basalt to andesite. Their overall bulk major and trace element chemistry, normative mineralogy, and Srsbnd Nd isotope ratios are similar to magmas erupted/emplaced in flood basalt provinces. When compared with intrusive mafic rocks that crop out in the Wichita Mountains, the SOA well cuttings are geochemically most similar to the Roosevelt Gabbros. New geochemical and isotope data presented in this study, when coupled with recent geophysical work in the SOA and the coeval relationship with rhyolites, indicates

  15. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.

    2015-11-01

    The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with

  16. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes

    NASA Astrophysics Data System (ADS)

    Freymuth, Heye; Brandmeier, Melanie; Wörner, Gerhard

    2015-06-01

    Volcanism during the Neogene in the Central Volcanic Zone (CVZ) of the Andes produced (1) stratovolcanoes, (2) rhyodacitic to rhyolitic ignimbrites which reach volumes of generally less than 300 km3 and (3) large-volume monotonous dacitic ignimbrites of up to several thousand cubic kilometres. We present models for the origin of these magma types using O and Sr isotopes to constrain crust/mantle proportions for the large-volume ignimbrites and explore the relationship to the evolution of the Andean crust. Oxygen isotope ratios were measured on phenocrysts in order to avoid the effects of secondary alteration. Our results show a complete overlap in the Sr-O isotope compositions of lavas from stratovolcanoes and low-volume rhyolitic ignimbrites as well as older (>9 Ma) large-volume dacitic ignimbrites. This suggests that the mass balance of crustal and mantle components are largely similar. By contrast, younger (<10 Ma) large-volume dacitic ignimbrites from the southern portion of the Central Andes have distinctly more radiogenic Sr and heavier O isotopes and thus contrast with older dacitic ignimbrites in northernmost Chile and southern Peru. Results of assimilation and fractional crystallization (AFC) models show that the largest chemical changes occur in the lower crust where magmas acquire a base-level geochemical signature that is later modified by middle to upper crustal AFC. Using geospatial analysis, we estimated the volume of these ignimbrite deposits throughout the Central Andes during the Neogene and examined the spatiotemporal pattern of so-called ignimbrite flare-ups. We observe a N-S migration of maximum ages of the onset of large-volume "ignimbrite pulses" through time: Major pulses occurred at 19-24 Ma (e.g. Oxaya, Nazca Group), 13-14 Ma (e.g. Huaylillas and Altos de Pica ignimbrites) and <10 Ma (Altiplano and Puna ignimbrites). Such "flare-ups" represent magmatic production rates of 25 to >70 km3 Ma-1 km-1 (assuming plutonic/volcanic ratios of 1

  17. Hard processing vs. episodic underplating of a terrain: isotopic signatures of mantle and crustal magmatic sources from the sub-continental lithosphere

    NASA Astrophysics Data System (ADS)

    Rasskazov, S.; Chuvashova, I.

    2012-04-01

    Hypothesese on origin of sub-continental lithosphere are tested, in this presentation, by isotopic data on magmatic liquids from crustal and mantle sources that might be genetically related or unrelated to each other. A common origin of the components reflects a radical recycling of a terrain resulted in separation of crustal and mantle constituents, characterized by a common inherited isochron of melt portions in U-Pb, Rb-Sr, and other isotope systems. A different origin assumes episodic underplating of growing sub-continental lithosphere that is reflected in contrast compositions of crustal and mantle sources, each of which yields melt potions with specific inherited isochrons. The lithospheric terrain of the former type produced 1) Late Tertiary volcanic rocks in the Shandong Peninsula, China with the inherited Pb-Pb isochron corresponding to the age of the eastern block of the North China craton (~2.57 Ga) (data of Zartman et al. [1991]), 2) Late Tertiary volcanic rocks in the Rungwe Province, Tanzania with the inherited Rb-Sr isochron corresponding to the end of the Pan-African orogeny (~0.46 Ga), and 3) Neoproterozoic (~0.9 Ga) dikes in the Gargan block of Eastern Siberia, Russia with the inherited Pb-Pb isochron corresponding to the age of the block basement (~2.7 Ga). The lithospheric terrain of the latter type yielded Cretaceous-Paleogene volcanic rocks in the Tien Shan, Kyrgyzstan and adjacent China with the inherited crustal and the newly formed mantle Rb-Sr isochrons of ~340 and ~50 Ma, respectively.

  18. GLIMPCE Seismic reflection evidence of deep-crustal and upper-mantle intrusions and magmatic underplating associated with the Midcontinent Rift system of North America

    USGS Publications Warehouse

    Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Trehu, A.; Cannon, W.; Green, A.

    1990-01-01

    Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth. ?? 1990.

  19. A 17 Ma onset for the post-collisional K-rich calc-alkaline magmatism in the Maghrebides: Evidence from Bougaroun (northeastern Algeria) and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Abbassene, Fatiha; Chazot, Gilles; Bellon, Hervé; Bruguier, Olivier; Ouabadi, Aziouz; Maury, René C.; Déverchére, Jacques; Bosch, Delphine; Monié, Patrick

    2016-04-01

    Bougaroun is the largest pluton (~ 200 km2) in the 1200 km-long Neogene magmatic belt located along the Mediterranean coast of Maghreb. New U-Pb dating on zircons and K-Ar ages on whole rocks and separated minerals document its emplacement at 17 Ma within the Lesser Kabylian basement, a continental block that collided with the African margin during the Neogene. This Upper Burdigalian intrusion is therefore the oldest presently identified K-rich calc-alkaline massif in the whole Maghrebides magmatic lineament and marks the onset of its activity. The Bougaroun peraluminous felsic rocks display a very strong crustal imprint. Associated mafic rocks (LREE-enriched gabbros) have preserved the "orogenic" (subduction-related) geochemical signature of their mantle source. Older depleted gabbros cropping out at Cap Bougaroun are devoid of clear subduction-related imprint and yielded Ar-Ar hornblende ages of 27.0 ± 3.0 Ma and 23.3 ± 3.2 Ma. We suggest that they are related to the Upper Oligocene back-arc rifted margin and Early Miocene oceanic crust formation of the nearby Jijel basin, an extension of the Algerian basin developed during the African (Tethyan) slab rollback. The fact that the Bougaroun pluton intrudes exhumed Kabylian lower crustal units, mantle slices and flysch nappes indicates that the Kabylian margin was already stretched and in a post-collisional setting at 17 Ma. We propose a tectono-magmatic model involving an Early Miocene Tethyan slab breakoff combined with delamination of the edges of the African and Kabylian continental lithospheres. At 17 Ma, the asthenospheric thermal flux upwelling through the slab tear induced the thermal erosion of the Kabylian lithospheric mantle metasomatized during the previous subduction event and triggered its partial melting. We attribute the strong trace element and isotopic crustal signature of Bougaroun felsic rocks to extensive interactions between ascending mafic melts and the African crust underthrust beneath the

  20. Linking magmatism with collision in an accretionary orogen

    PubMed Central

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  1. Linking magmatism with collision in an accretionary orogen

    NASA Astrophysics Data System (ADS)

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-05-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen.

  2. Linking magmatism with collision in an accretionary orogen.

    PubMed

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  3. Quantitative assessment of magmatic refill and overpressure in crustal reservoirs by monitoring He isotope composition from volcanic gases: the case of Mt Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Paonita, Antonio; Caracausi, Antonio; Martelli, Mauro; Rizzo, Andrea

    2016-04-01

    There is agreement in recognizing episodes of magma injection into crustal chambers as main triggers of eruptive activity of volcanoes (Caricchi et al., 2014). These events cause in fact a buildup of the internal pressure in magma chamber, which in turn controls outpouring magma amount, possible failure of wall-rocks, dike opening, up to a potential eruption. Assessment of the time-dependent pressurization while occurring in chamber is therefore challenging aim of current volcanological research. Recent advancements in estimating the time-dependent pressurization as long as occurring in chamber come from inverse modeling of ground deformation data, which does not however calculate internal evolution of the magma reservoir (Gregg et al., 2013; Cannavò et al., 2015). On the other hand, the geochemistry of volcanic gases has basically addressed to the pressure(depth) of gas exsolution so far (Caracausi et al., 2003; Aiuppa et al., 2007; Paonita et al., 2012). We developed an pioneering tool that computes the changes of 3He/4He isotope ratio of volcanic gases with respect to a background, as a function of the time-dependent outflow of volatiles from a chamber subjected to evolution of internal pressure through an injection event. Our approach postulates a low-3He/4He gas endmember coming from resident magmas stored in crust, that mixes with a high-3He/4He gas endmember from deep parental magmas refilling the deep chamber. We couple a mass balance between the two gas endmembers to a physical model of the magma chamber. When a deep input pressurizes the chamber, the latter releases large amounts of the high-3He/4He gas endmember, so as to change 3He/4He of discharged volcanic gases. We applied the model to the long-term series of He isotope ratios from geochemical monitoring of some peripheral gas emissions at the base of Mt Etna, fed by magmatic degassing occurring at 200-400 MPa (Paonita et al., 2012). The isotope ratios have in fact displayed phases of increase

  4. Geochemical and Isotopic Data from Micron to Across-Arc Scales in the Andean Central Volcanic Zone: Applications for Resolving Crustal Magmatic Differentiation and Modification Processes

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Wilder, A.; Feeley, T.

    2014-12-01

    Plagioclase crystals from silicic (andesitic to dacitic) lavas and domes at Volcán Uturuncu, a potentially active volcano in the back-arc of the Andean CVZ (22.3°S, 67.2°W), exhibit large variations in An contents, textures, and core to rim 87Sr/86Sr ratios. Many of the isotopic variations can not have existed at magmatic temperatures for more than a few thousand years. The crystals likely derived from different locations in the crustal magmatic system and mixed just prior to eruption. Uturuncu magmas initially assimilated crustal rocks with high 87Sr/86Sr ratios. The magmas were subsequently modified by frequent recharge of more mafic magmas with lower 87Sr/86Sr ratios. A typical Uturuncu silicic magma therefore only attains its final composition just prior to or during eruption. In the Lazufre region of active surface uplift (~25˚14'S; Volcán Lastarria and Cordon del Azufre) closed system differentiation processes are not the only factors influencing silicic magma compositions. 87Sr/86Sr (0.70651-0.70715) and 206Pb/204Pb ratios (18.83-18.88) are highly elevated and143Nd/144Nd ratios (0.512364 -0.512493) are low relative to similar composition rocks from the "southern Cordillera domain." These data, along with major and trace element trends, reflect a multitude of differentiation processes and magma sources including crystallization-differentiation of more mafic magmas, melting and assimilation of older crustal rocks, and magma mixing and mingling. On an arc-wide scale silicic lavas erupted from three well-characterized composite volcanoes between 21oS and 22oS (Aucanquilcha, Ollagüe, and Uturuncu) display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front apparently reflect melting of relatively young, mafic

  5. Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1982-01-01

    Oxygen isotopic analysis of wollastonites from the Willsboro Mine, Adirondack Mountains, New York reveals a 400-ft wide zone of 18O depletion at anorthosite contacts. Values of ??18O vary more sharply with distance and are lower (to -1.3) than any yet reported for a granulite fades terrain. Exchange with circulating hot meteoric water best explains these results and implies that the anorthosite was emplaced at relatively shallow depths, <10 km, in marked contrast to the depth of granulite fades metamorphism (23 km). These 18O depletions offer the first strong evidence for shallow emplacement of anorthosite within the Grenville Province and suggest that regional metamorphism was a later and tectonically distinct event. ?? 1982 Nature Publishing Group.

  6. Sm Nd isotope systematics and REE data for leucotroctolites and their amphibolitized equivalents of the Niquelândia Complex upper layered series, central Brazil: further constraints for the timing of magmatism and high-grade metamorphism

    NASA Astrophysics Data System (ADS)

    Ferreira Filho, C. F.; Pimentel, M. M.

    2000-12-01

    The Barro Alto, Niquelândia, and Cana Brava Complexes are major Proterozoic layered intrusions in central Brazil that were affected by high-grade metamorphism with associated ductile deformation during the Neoproterozoic (770-795 Ma). Recent studies recognized that the Niquelândia Complex comprises two petrologically distinct and tectonically juxtaposed magmatic systems: a younger Upper Layered Series to the west and an older Lower Layered Series to the east. Previous geochronological studies on Lower Series rocks suggested a Paleoproterozoic (ca 2.0 Ga) age for the Lower Series magmatic event. New trace element data matched with Sm-Nd isotope data for Upper Series samples yielded well-constrained and original geochronological information. The 1.35 Ga age of the Upper Series magmatism reported in this paper indicates a much younger age of the Upper Series compared with the Lower Series. The tectonic contact between these two distinct magmatic systems is now raised to the category of a major Paleo-Mesoproterozoic crustal discontinuity.

  7. Role of plate kinematics and plate-slip-vector partitioning in continental magmatic arcs: Evidence from the Cordillera Blanca, Peru

    SciTech Connect

    McNulty, B.A.; Farber, D.L.; Wallace, G.S.; Lopez, R.; Palacios, O.

    1998-09-01

    New structural and geochronological data from the Cordillera Blanca batholith in the Peruvian Andes, coupled with Nazca-South American plate-slip-vector data, indicate that oblique convergence and associated strike-slip partitioning strongly influenced continental magmatic arc evolution. Both the strain field and mode of magmatism (plutonism vs. volcanism) in the late Miocene Peruvian Andes were controlled by the degree to which the arc-parallel component of the plate slip vector was partitioned into the arc. Strong strike-slip partitioning at ca. 8 Ma produced arc-parallel sinistral shear, strike-slip intercordilleran basins and east-west-oriented tension fractures that facilitated emplacement of the Cordillera Blanca batholith (ca. 8.2 {+-} 0.2 Ma). Periods during which the strike-slip component was not partitioned into the arc (ca. 10 and ca. 7 Ma) were associated with roughly arc-normal contraction and ignimbrite volcanism. The data thus support the contention that contraction within continental magmatic arcs favors volcanism, whereas transcurrent shear favors plutonism. The tie between oblique convergence and batholith emplacement in late Miocene Peruvian Andes provides a modern analogue for batholiths emplaced as the result of transcurrent shear in ancient arcs.

  8. Did the San Gabriel Mountains once floor the Los Angeles basin : Evidence from a Late Cenozoic magmatic event

    SciTech Connect

    Hazelton, G.B. . Dept. of Geological Sciences); Nourse, J.A. . Dept. of Geological Sciences)

    1993-04-01

    A series of Late Cenozoic dikes intrude the crystalline basement complex of the San Gabriel Mountains. The dikes range in composition from basalt to rhyolite. Rocks of andesite composition are dominant. Cross-cutting relationships consistently show that the less abundant, high-silica units were emplaced during two or more initial pulses of magmatic activity. This was followed by at least four additional pulses of increasingly quartz-poor magma. The nature of the contacts between the dikes and their host suggest that the dikes were emplaced during progressive unroofing of the San Gabriel Mountains basement complex. In the northeastern corner of the Los Angeles basin, units within the Glendora Volcanics (Shelton, 1955) share many compositional and spatial characteristics with the dikes in the San Gabriel Mountains. The dikes may have served as mid-crustal conduits which fed the overlying Glendora Volcanics during widespread magmatism that accompanied the extensional opening of the Los Angeles basin sphenochasm (Luyendyk, 1991; Wright, 1991). The authors believe that the crystalline basement complex now exposed in the San Gabriel Mountains once floored portions of the Los Angeles basin prior to Miocene extension and magmatism. They feel that unroofing was accomplished by low-angle normal faulting during the opening of the Los Angeles basin.

  9. Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini-geodynamic implications

    USGS Publications Warehouse

    Briqueu, L.; Javoy, M.; Lancelot, J.R.; Tatsumoto, M.

    1986-01-01

    In this comparative study of variations in the isotopic compositions (Sr, Nd, O and Hf) of the calc-alkaline magmas of the largest two volcanoes, Milos and Santorini, of the Aegean arc (eastern Mediterranean) we demonstrate the complexity of the processes governing the evolution of the magmas on the scale both of the arc and of each volcano. On Santorini, the crustal contamination processes have been limited, effecting the magma gradually during its differentiation. The most differentiated lavas (rhyodacite and pumice) are also the most contaminated. On Milos, by contrast, these processes are very extensive. They are expressed in the 143Nd/144Nd vs. 87Sr/86Sr diagram as a continuous mixing curve between a mantle and a crustal end member pole defined by schists and metavolcanic rocks outcropping on these volcanoes. In contrast with Santorini, the least differentiated lavas on Milos are the most contaminated. These isotopic singularities can be correlated with the geodynamic evolution of the Aegean subduction zone, consisting of alternating tectonic phases of distension and compression. The genesis of rhyolitic magmas can be linked to the two phases of distension, and the contamination of the calc-alkaline mantle-derived magmas with the intermediate compressive phase. The isotopic characteristics of uncontaminated calc-alkaline primitive magmas of Milos and Santorini are directly comparable to those of magmas generated in subduction zones for which a contribution of subducted sediments to partial melts from the mantle is suggested, such as in the Aleutian, Sunda, and lesser Antilles island arcs. However, in spite of the importance of the sediment pile in the eastern Mediterranen oceanic crust (6-10 km), the contribution of the subducted terrigenous materials remains of limited amplitude. ?? 1986.

  10. Preliminary evidence for fractionation of stable chlorine isotopes in ore-forming hydrothermal systems

    SciTech Connect

    Eastoe, C.J.; Guilbert, J.M. ); Kaufmann, R.S. )

    1989-03-01

    Chloride from fluid inclusions in hydrothermal minerals is found to have variable and distinctive {delta}{sup 37}Cl values spanning the range -1.1 0/{per thousand} to +0.8 {per thousand}. In Mississippi Valley-type deposits of Tennessee, brines of high (>0{per thousand}) and low (near -1{per thousand}) {delta}{sup 37}Cl are present. High {delta}{sup 37}Cl brines may be saline formation waters, but low {delta}{sup 37}Cl brines remain unexplained. In porphyry copper deposits, both high {delta}{sup 37}Cl (0.8{per thousand}, 0.3{per thousand}) and low {delta}{sup 37}Cl (-1.1{per thousand}, 0.7{per thousand}) hypersaline brines of probable magmatic origin occur. High-salinity magmatic brines with low {delta}{sup 37}Cl values contrast isotopically with high {delta}{sup 37}Cl, less concentrated brines responsible for quartz-sericite-pyrite assemblages.

  11. Magmatic tritium

    SciTech Connect

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.

    1997-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics.

  12. Characterizing Geographic Variability in Magma Composition and Eruptive Style During Voluminous Mid-Tertiary Magmatism in the Northern Great Basin Using Zircon U-Pb Geochronology and Phenocryst O Isotopic Data

    NASA Astrophysics Data System (ADS)

    Colgan, J. P.; Watts, K. E.; Henry, C.; John, D. A.

    2013-12-01

    increasingly numerous calderas to the south and west may have been promoted by a more vigorous magmatic pulse ca. 25 Ma, and permitted by a thinner, overall more mafic crust that was less effective at trapping silicic melts at mid-crustal depths. Additional U-Pb geochronology and radiogenic isotope measurements are currently being collected to evaluate this hypothesis and better characterize geographic variations in the character of mid-Tertiary Great Basin magmatism.

  13. New osmium isotope evidence for intracrustal recycling of crustal domains with discrete ages

    USGS Publications Warehouse

    Hart, G.L.; Johnson, C.M.; Hildreth, W.; Shirey, S.B.

    2003-01-01

    New 187Os/188Os ratios of Quaternary Mount Adams volcanic rocks from the Cascade arc in southern Washington vary by >300% (187Os/188Os = 0.165-0.564) and fall into high (>0.319) and low (0.166 to 0.281) groups of 187Os/188Os ratios that are substantially more radiogenic than mantle values. These Os isotope compositions and groupings are interpreted to reflect recycling of discrete intracrustal domains with high 187Os/188Os ratios but differing ages, thus recording the process of crustal hybridization and homogenization. Os isotope compositions provide new constraints on amounts of intracrustal recycling in young subduction-zone environments that reflect the magmatic history of the arc. Sr, Nd, Hf, and Pb isotope variations in this young, mafic are complex are too small to allow such constraints.

  14. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China - Evidence from geochronology and geochemistry of the Arkarz pluton

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Niu, Yaoling; Hu, Yan; Liu, Jinju; Ye, Lei; Kong, Juanjuan; Duan, Meng

    2016-02-01

    The West Kunlun orogenic belt (WKOB) at the northwest margin of the Greater Tibetan Plateau records seafloor subduction, ocean basin closing and continental collision with abundant syncollisional granitoids in response to the evolution of the Proto- and Paleo-Tethys Oceans from the early-Paleozoic to the Triassic. Here we present a combined study of detailed zircon U-Pb geochronology, whole-rock major and trace elements and Sr-Nd-Hf isotopic geochemistry on the syncollisional Arkarz (AKAZ) pluton with mafic magmatic enclaves (MMEs) exposed north of the Mazha-Kangxiwa suture (MKS) zone. The granitoid host rocks and MMEs of the AKAZ pluton give the same late Triassic age of ~ 225 Ma. The granitoid host rocks are metaluminous granodiorite and monzogranite. They have initial 87Sr/86Sr of 0.70818 to 0.70930, εNd(225 Ma) = - 4.61 to - 3.91 and εHf(225 Ma) = - 3.01 to 0.74. The MMEs are more mafic than the host with varying SiO2 (51.00-63.24 wt.%) and relatively low K2O (1.24-3.02 wt.%), but have similar Sr-Nd-Hf isotope compositions to the host ((87Sr/86Sr)i = 0.70830-0.70955, εNd(225 Ma) = - 4.88 to - 4.29, εHf(225 Ma) = - 2.57 to 0.25). Both the host and MMEs have rare earth element (REE) and trace element patterns resembling those of bulk continental crust (BCC). The MMEs most likely represent cumulate formed from common magmas parental to the granitoid host. The granitoid magmatism is best explained as resulting from melting of amphibolite of MORB protolith during continental collision, which produces andesitic melts with a remarkable compositional similarity to the BCC and the inherited mantle-like isotopic compositions. Simple isotopic mixing calculations suggest that ~ 80% ocean crust and ~ 20% continental materials contribute to the source of the AKAZ pluton. Thus, the hypothesis "continental collision zones as primary sites for net continental crust growth" is applicable in the WKOB as shown by studies in southern Tibet, East Kunlun and Qilian orogens. In

  15. On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids: evidence from the Baojishan pluton in the North Qilian Orogen, China

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Niu, Yaoling; Sun, Wenli; Zhang, Yu; Li, Jiyong; Guo, Pengyuan; Sun, Pu

    2015-10-01

    Mafic magmatic enclaves (MMEs) are abundant in Baojishan syn-collisional granitoids located in the eastern section of the North Qilian Orogen. Zircon U-Pb ages of the host granodiorite (433.7 ± 3.4 Ma) and their MMEs (431.6 ± 2.8 Ma) are the same as the time of the Qilian ocean closing and continental collision at ˜440-420 Ma, indicating that the granitoids represent a magmatic response to the collision between the Qilian-Qaidam block and the Alashan block. The MMEs have the same mineralogy as the host granodiorite except that they are more abundant in mafic phases (e.g., amphibole and biotite) and thus have higher heavy rare earth element (HREE) abundances. Both the host granodiorite and the MMEs have light REE-enriched patterns and relatively flat HREE patterns (i.e., [Dy/Yb]N = 1-1.1). They are enriched in large ion lithophile elements (LILEs; e.g., Rb, K, Pb) and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, Ti) and show a varying Sr anomaly (i.e., Sr/Sr* = 0.9-2.2) for the host and a negative Sr anomaly (i.e., Sr/Sr* = 0.4-0.6) for the MMEs. Both the host granodiorite and the MMEs have overlapping and indistinguishable Sr-Nd-Hf isotopic compositions (87Sr/86Sr(i) = 0.7067-0.7082, ɛNd(t) = -3.9--3.2, ɛHf(t) = 1.0-14.7). The extremely high ɛHf(t) = 14.7 of sample BJS12-06MME likely results from the calculation due to nugget effect of zircons because of the unexpectedly high Hf (3.53 ppm) and too high Zr (128 ppm). All these characteristics are fully consistent with the MMEs being of cumulate origin formed at earlier stages of the same magmatic systems rather than representing mantle melt required by the popular and alleged magma mixing model. The radiogenic Sr and unradiogenic Nd (ɛNd(t) <0) indicate the contribution of mature continental crust, while variably radiogenic Hf (ɛHf(t) > 0) for both the MMEs and their host granodiorite manifest the significant mantle input. The apparent decoupling between Nd and Hf isotopes are likely caused

  16. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands: Strontium, neodymium, lead, and oxygen isotopic evidence

    SciTech Connect

    Cousens, B.L. ); Spera, F.J. ); Dobson, P.F. )

    1993-02-01

    Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from Gran Canaria, Canary Islands, provide evidence for posteruptive mobility of Rb, Sr, and O. Calculated initial [sup 87]Sr/[sup 86]Sr ratios in whole-rock samples from basaltic lavas and feldspar mineral separates from ignimbrites define a magmatic trend in the stratigraphic section, from ratios of 0.70340 at the base of the Mogan Formation to 0.70305 in the lower Fataga Formation. However, calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios in hydrated vitrophyre and devitrified matrix separates range from 0.7035 to 0.7090. [delta][sup 18]O ratios in basalts and feldspars vary little, from +5.7 to +6.1, yet range from +6.5 to +15.0 in the ignimbrite matrices. In contrast to the Sr and O isotope ratios, Pb and Nd isotope ratios are identical within analytical error in feldspars and their silicic ignimbrite matrices. Sequential leaching experiments and the oxygen data suggest that low-temperature, posteruptive interaction with meteoric water, perhaps containing a small seawater component, has modified Rb and Sr concentrations in the matrices, such that calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios are not those of the magmas when they were erupted. Mobilization of Rb and Sr must occur significantly after eurption. Nd and Pb isotope systems appear to be unaffected by this process. Therefore, [sup 87]Sr/[sup 86]Sr ratios determined by whole rock analysis of silicic rocks from hotspot-type oceanic islands are suspect and should not be incorporated into mantle tracer studies, although analysis of phenocrysts may produce useful data. 40 refs., 5 figs., 3 tabs.

  17. Nd isotopic gradients in upper crustal magma chambers: Evidence for in situ magma-wall-rock interaction

    SciTech Connect

    Farmer, G.L.; Tegtmeyer, K.J.

    1990-01-01

    Multiple Nd isotopic analyses were obtained for one metaluminous and two peralkaline Tertiary rhyolitic ash-flow tuffs in the Great Basin to determine whether upper crustal silici magmas chemically evolve under closed- or open-system conditions. All the ash-flow tuffs analyzed show significant internal Nd isotopic variations. The largest variations occur within the peralkaline Double-H Mountains Tuff ({epsilon}{sub Nd} = +2.0 to +6.4) at the McDermitt volcanic field in north-central Nevada, and the smallest within the metaluminous Topopah Spring Tuff ({epsilon}{sub Nd} = {minus}10.6 to {minus}11.7) at the southwestern Nevada volcanic field. In all cases the isotopic variation are correlated with magmatic Nd contents, even though the Nd concentrations decreased roofward for the metaluminous rhyolite and increased for the peralkaline rhyolites. The consistent positive correlation between [Nd] and {epsilon}{sub Nd} provides strong evidence for in situ open-system addition of low {epsilon}{sub Nd} wall-rock material to the silicic magmas during their residence in the upper crust. The proportion of wall-rock Nd required to produce the isotopic zonations is small (1 to 15 mol%) for both the peralkaline and metaluminous rhyolites. All levels of the parental magmas sampled by the ash-flow tuffs, and not just magma occupying the roof zone, were open to wall-rock interaction. These results suggest that upper crustal silicic magma bodies evolve under open-system conditions and the effects of such processes should be addressed in models for their chemical differentiation.

  18. Oxygen isotope geochemistry of the lassen volcanic center, California: Resolving crustal and mantle contributions to continental Arc magmatism

    USGS Publications Warehouse

    Feeley, T.C.; Clynne, M.A.; Winer, G.S.; Grice, W.C.

    2008-01-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates (mainly plagioclase) from basaltic andesitic to rhyolitic composition volcanic rocks erupted from the Lassen Volcanic Center (LVC), northern California. Plagioclase separates from nearly all rocks have ??18O values (6.1-8.4%) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the arc front and back-arc regions of the southernmost Cascades during the late Cenozoic. Most LVC magmas must therefore contain high 18O crustal material. In this regard, the ??18O values of the volcanic rocks show strong spatial patterns, particularly for young rhyodacitic rocks that best represent unmodified partial melts of the continental crust. Rhyodacitic magmas erupted from vents located within 3.5 km of the inferred center of the LVC have consistently lower ??18 O values (average 6.3% ?? 0.1%) at given SiO2 contents relative to rocks erupted from distal vents (>7.0 km; average 7.1% ?? 0.1%). Further, magmas erupted from vents situated at transitional distances have intermediate values and span a larger range (average 6.8% ?? 0.2%). Basaltic andesitic to andesitic composition rocks show similar spatial variations, although as a group the ??18O values of these rocks are more variable and extend to higher values than the rhyodacitic rocks. These features are interpreted to reflect assimilation of heterogeneous lower continental crust by mafic magmas, followed by mixing or mingling with silicic magmas formed by partial melting of initially high 18O continental crust (??? 9.0%) increasingly hybridized by lower ??18O (???6.0%) mantle-derived basaltic magmas toward the center of the system. Mixing calculations using estimated endmember source ??18O values imply that LVC magmas contain on a molar oxygen basis approximately 42 to 4% isotopically heavy continental crust, with proportions declining in a broadly regular fashion toward the

  19. A complex magmatic system beneath the Kissomlyó monogenetic volcano (western Pannonian Basin): evidence from mineral textures, zoning and chemistry

    NASA Astrophysics Data System (ADS)

    Jankovics, M. Éva; Harangi, Szabolcs; Németh, Károly; Kiss, Balázs; Ntaflos, Theodoros

    2015-08-01

    Kissomlyó is a small-volume Pliocene alkaline basaltic eruptive centre located in the monogenetic Little Hungarian Plain Volcanic Field (western Pannonian Basin). It consists of a sequence of pyroclastic and effusive eruptive units: early tuff ring (unit1), pillow and columnar jointed lava (unit2), spatter cone (unit3). The tuff ring sequence is overlain by a unit of lacustrine sediments which suggests a significant time gap in the volcanic activity between the tuff ring formation and the emplacement of the lava flow. High-resolution investigation of mineral textures, zoning and chemistry as well as whole-rock geochemical analyses were performed on stratigraphically controlled samples in order to characterize the magmas represented by the distinct eruptive units and to reveal the evolution of the deep magmatic system. Based on the bulk rock geochemistry, compositionally similar magmas erupted to the surface during the entire volcanic activity. However, olivine crystals show diverse textures, zoning patterns and compositions reflecting various deep-seated magmatic processes. Five different olivine types occur in the samples. Type1 olivines represent the phenocryst sensu stricto phases, i.e., crystallised in situ from the host magma. The other olivine types show evidence for textural and compositional disequilibrium reflecting single crystals consisting of distinct portions having different origins. Type2a and type2b olivines have antecrystic cores which are derived from two distinct primitive magmas based on the different compositions of their spinel inclusions. Type4 olivines show reverse zoning whose low-Fo cores represent antecrysts from more evolved magmas. The cores of type3 and type5 olivines are xenocrysts originated from the subcontinental lithospheric mantle. These xenocrysts are surrounded by high-Fo or low-Fo growth zones suggesting that olivine xenocryst incorporation occurred at different levels and stages of magma evolution. Olivine-hosted spinel

  20. Helium isotope evidence for plume metasomatism of Siberian continental lithosphere

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Howarth, G. H.; Pernet-Fisher, J. F.; Day, J. M.; Taylor, L. A.

    2013-12-01

    activity), large degree partial-melts percolated through the SCLM towards crustal magma chambers. As a result, xenoliths from the younger Obnazhennaya pipe show strong petrological evidence for plume-related basaltic metasomatism, whereas older Udachnaya samples do not [4]. Thus, we interpret the marked He-isotope disparity between ';pre-plume' Udachnaya and ';post-plume' Obnazhennaya xenoliths to be the direct result of metasomatic refertilization associated with the emplacement of the SFB. The lower He concentrations in Obnazhennaya xenoliths may also point to extensive He-loss during the SFB, that may also be coupled with key volatiles that are outgassed into the atmosphere during flood basalt volcanism (e.g.,CO2). Our new results provide compelling evidence that mantle plume impingement can profoundly modify continental regions and that He isotopes are a very sensitive tracer of metasomatism. [1] Basu et al., 1995. Science, 822-825. [2] Day et al., 2012, AGU Abstract V53A-2796. [3] Pearson et al., 1995. GCA, 59, 959-977. [4] Howarth et al., 2013 Lithos, In review.

  1. Isotopic evidence for nitrogen mobility in peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost

    2014-05-01

    Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present evidence for post-depositional mobility of atmogenic N in peat, based on natural-abundance N isotope ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). Isotope signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an isotope mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution

  2. Early Variscan magmatism along the southern margin of Laurasia: geochemical and geochronological evidence from the Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Fırat; Koralay, O. Ersin

    2016-05-01

    Massive, fine-grained metavolcanic rocks of the Çamlıca metamorphic unit exposed in the Biga Peninsula, northwestern Anatolia, have provided new Carboniferous ages and arc-related calc-alkaline petrogenesis constraints, suggesting that the Biga Peninsula was possibly involved in the Variscan orogeny. The metavolcanic rocks are mainly composed of metalava and metatuff and have the composition of andesite. Chondrite-normalized REE patterns from these rocks are fractionated (LaN/YbN ~ 2.2 to 8.9). Europium anomalies are slightly variable (Eu/Eu* = 0.6 to 0.7) and generally negative (average Eu/Eu* = 0.68). The metavolcanic rocks have a distinct negative Nb anomaly and negative Sr, Hf, Ba, and Zr anomalies. These large negative anomalies indicate crustal involvement in their derivation. Tectonic discrimination diagrams show that all metavolcanic rocks formed within a volcanic arc setting. Zircon ages (LA-ICP-MS) of two samples yield 333.5 ± 2.7 and 334.0 ± 4.8 Ma. These ages are interpreted to be the time of protolith crystallization. This volcanic episode in the Biga Peninsula correlates with other Variscan age and style of magmatism and, by association with a collisional event leading to the amalgamation of tectonic units during the Variscan contractional orogenic event. Carboniferous calc-alkaline magmatism in the Sakarya Zone is ascribed to arc-magmatism as a result of northward subduction of Paleo-Tethys under the Laurasian margin. Geochemical and U-Pb zircon data indicate that the Sakarya Zone is strikingly similar to that of the Armorican terranes in central Europe. The Biga Peninsula shows a connection between the Sakarya Zone and the Armorican terranes.

  3. Transition from adakitic to bimodal magmatism induced by the paleo-Pacific plate subduction and slab rollback beneath SE China: Evidence from petrogenesis and tectonic setting of the dike swarms

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Xu, Xisheng; Liu, Lei

    2016-02-01

    The late Mesozoic magmatic record of SE China is dominated by felsic volcanics and intrusions. However, this magmatism mainly occurred in coastal areas at 110-80 Ma, in contrast to poorly researched dike swarms that were emplaced inland at 165-120 Ma. Here, we focus on Early Cretaceous mafic and felsic dike swarms that provide new insights into the tectono-magmatic evolution of SE China. The swarms were intruded into Neoproterozoic plutons and include granodioritic porphyry, granitic porphyry, and diabase dikes. The granodioritic porphyry (128 ± 2 Ma) dikes are geochemically similar to adakitic rocks, suggesting that inland adakitic magmatism occurred between ca. 175 and ca. 130 Ma. The majority of these adakitic rocks are calc-alkaline and have Sr-Nd-Hf-O isotopic compositions that are indicative of derivation from a Neoproterozoic magmatic arc source within the lower crust. The granitic porphyry and diabase dikes were emplaced coevally at ca. 130 Ma, and the former contain high alkali and high field strength element (HFSE; e.g., Zr, Nb, Ce, and Y) concentrations that together with their high Ga/Al and FeOT/(FeOT + MgO) ratios imply an A-type affinity. The widespread ca. 130 Ma magmatism that formed the A-type granites and coeval diabase dikes defines a NE-SW trending inland belt of bimodal magmatism in SE China. The presence of mafic enclaves in some of the A-type granites, and the Sr-Nd-Hf isotopic compositions of the latter are indicative of inadequate mixing between the basement sediment-derived and coeval mantle-derived basaltic melts that define the bimodal magmatism. The transition from adakitic rocks to bimodal magmatism in the inland region of SE China indicates a change in the prevailing tectonic regime. This change was associated with an increase in the dip angle of the northwestward-subducting paleo-Pacific Plate beneath SE China between the Middle Jurassic and the Early Cretaceous. This resulted in a transition from a local intra-plate extensional

  4. Geochemical and Isotopic Evidence for Melting and Erosion of Wyoming Craton Mantle Lithosphere Prior to 48 Ma

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Frost, C. D.

    2010-12-01

    Trace-element geochemistry of Cretaceous-Tertiary Great Plains igneous rocks supports isotopic data that reveal a sequence of digestion of lithospheric mantle followed by intrusion of dominantly asthenospheric magmas. Multiple Archean, Proterozoic, and Phanerozoic subduction events beneath the Wyoming craton concentrated Ba and K within the underlying mantle lithosphere, resulting in earliest Cretaceous-Tertiary lithospheric melts with fingerprints of high K, high Ba/Nb and negative epsilon-Nd, but low U, Th, total REE, and less extreme values of LREE/HREE. Youngest (Eocene-Oligocene) magmas were kimberlite and carbonatite, with high U, Th, LREE, extremely high LREE/HREE, and positive epsilon-Nd, but with high-T xenoliths from depths of only 150 km (Carlson et al., 1999). Importantly, in the entire Wyoming craton, the Homestead kimberlite is the only one of K-T age that has transported a diamond—a single micro-diamond discovered. The shallow low-T to high-T xenolith transition, lack of diamonds, and changing magma geochemistry, suggest that a significant portion of the mantle lithosphere beneath the Wyoming Archean craton must have been consumed prior to the ≤48 Ma kimberlite eruptions. In contrast, the earliest phase of Cretaceous magmatism in Arkansas was explosive diamond-containing lamproite (~102 Ma) with a Proterozoic lithospheric isotopic signature (Lambert et al., 1995). In Arkansas, there was no earlier subalkalic magmatism, and no evidence of slow digestion of the mantle lithosphere, although later magmatism trended toward higher positive epsilon-Nd values (i.e. larger asthenospheric component). Removal by melting of a significant portion of the Wyoming mantle lithosphere during late Cretaceous-early Tertiary magmatism, along with heating, may have helped promote lithospheric “relaxation” related to extension further west between 53 Ma and 49 Ma, followed by more facile penetration by asthenospheric magmas, an idea proposed to explain the time

  5. Lithospheric evolution of the Northern Arabian Shield: Chemical and isotopic evidence from basalts, xenoliths and granites

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1988-01-01

    The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.

  6. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (<10 vol.% vapor) and co-existing low-salinity aqueous vapor (<20 vol.% liquid) inclusions. Results indicate that vapor inclusions have higher concentrations of Cu (typically 1000's of ppm; max. 7277 ppm) compared to brine inclusions (typically 100's of ppm). Brine inclusions also are much higher in Cl (Na), K, Ca, Mn, Zn, and Fe. Only Pb concentrations approach those in the vapor. Metal ratios such as Cu/Fe and Cu/Zn are 2 to 167 times higher in the vapor compared with the brine inclusions. Cu/Pb ratios are 2 to 15 times higher in the vapor than in the brine. PIXE microanalysis for the ~617 Ma 17 Mile Hill deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (<10 vol.%) bubble of carbonic fluid, and adjacent "carbonic" inclusions, which have a thin rim of aqueous liquid (<10 vol.%) wetting the

  7. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  8. Evidence of magnetic isotope effects during thermochemical sulfate reduction

    PubMed Central

    Oduro, Harry; Harms, Brian; Sintim, Herman O.; Kaufman, Alan J.; Cody, George; Farquhar, James

    2011-01-01

    Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13‰ for 33S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed 36S depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant 36S anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples. PMID:21997216

  9. The process of glauconitization: chemical and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Stille, Peter; Clauer, Norbert

    1994-08-01

    Sequential leaching experiments were made on Recent glauconies and clay fractions of the associated mud from off-shore Africa near the estuary of the Congo River. Analyses of major/rare earth elements (REE) and Nd isotopic compositions on the resulting leachate and residue pairs allow identification of at least three important and isotopically distinct components which contributed to the glauconitization process: (1) a detrital component with relatively high 87Sr/86Sr and relatively low 143Nd/144Nd isotopic ratios; (2) a phosphate phase rich in REE and Sr with sea water Sr and Nd isotopic characteristics; (3) a component rich in organic matter and Ca with a sea water Sr isotopic signature, a relatively low Nd isotopic composition and elevated Sm/Nd ratios. This latter component probably represents the suspended organic and carbonate-rich river load. The detrital and the river components were mixed up in the muddy off-shore sediment, ingested by worms, and integrated into faecal pellets. The resulting material has Sr and Nd isotopic signatures intermediate between those of the detrital and river components, and represents the precursor of the glaucony minerals. During the subsequent dissolution-crystallization process, the glauconitic pellets remain isotopically closed to any external supply, but expulsion of Sr and Nd with increasing degree of maturation is observed without any effect on the Sr and Nd isotopic compositions. At a higher maturation stage (K2O>4.5%), the Sr and Nd isotopic compositions tend to decrease and increase, respectively, approximating the isotopic composition values of the phosphate-rich phase. Because the Sr and Nd concentrations decrease, the evolution of the glauconies toward lower Sr and higher Nd isotopic compositions can only be explained by expulsion of Sr and Nd of the detrital component with high Sr and low Nd isotopic signatures. Dissolution of the chemically unstable, wormdigested clay material from mud may be responsible for the

  10. MYCORRHIZAL VS. SAPROTROPHIC STATUS OF FUNGI: THE ISOTOPIC EVIDENCE

    EPA Science Inventory

    Relative abundance of carbon (C) and nitrogen (N) isotopes in fungal sporocarps may prove useful in unraveling fungal roles in ecosystems. Sporocarps of known mycorrhizal or saprotrophic genera were collected from a single site in Oregon and isotopically compared to foliage, litt...

  11. Meteorites and their parent bodies: Evidence from oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.

    1978-01-01

    Isotopic abundance variations among meteorites are used to establish genetic associations between meteorite classes. Oxygen isotope distributions between group II E irons with H-group ordinary chondrites and enstatic meteorites indicate that the parent bodies were formed out of pre-solar material that was not fully mixed at the time condensation occurred within the solar nebula.

  12. Mode and timing of granitoid magmatism in the Västervik area (SE Sweden, Baltic Shield): Sr-Nd isotope and SIMS U-Pb age constraints

    NASA Astrophysics Data System (ADS)

    Kleinhanns, I. C.; Whitehouse, M. J.; Nolte, N.; Baero, W.; Wilsky, F.; Hansen, B. T.; Schoenberg, R.

    2015-01-01

    Observed geochemical and geophysical signatures in the southern Svecofennian domain (SD) and the Transscandinavian Igneous Belt (TIB) are explained through a model of tectonic cycling and episodic south-westward migration of a subduction zone system. The Västervik area is located between these two major tectonic domains and as such has received much attention. Granitoids of the Västervik area were recently re-grouped and classified within the context of this larger regional tectonic model, but a discrepancy between previous relative age estimations and the few available granitoid age determinations was noted. To address this issue, we have dated 13 granitoid samples using a high spatial resolution secondary ion mass spectrometry (SIMS) U-Pb technique. Our new results constrain the intrusion of the majority of granitoids to 1819-1795 Ma, thus placing them into the TIB-1 period. This age range also encompasses our new ages from the central granodiorite belt and the Örö-Hamnö pluton, demonstrating a previous overestimation of older granitoid generations in the Västervik area. Nonetheless, it is shown that Askersund/TIB-0 magmatism, represented by an augen gneiss sample dated to 1846 Ma, is unambiguously present as far south as the Västervik region. The anatectically generated leucogranites reveal TIB-1 ages and, as expected, older inherited zircon derived from the parental metasedimentary Västervik formation. By simple Sr-Nd isotope modeling it is further possible to deduce that most TIB-1 granitoids follow a simple (assimilation-) fractional crystallization petrogenetic trend. The youngest granitoid generation was produced through low-pressure fluid-absent crustal melting. In conclusion, granitoids of the Västervik area fit well into the proposed model for south-westward migration of a subduction zone system active in the Svecofennian domain and represent a new tectonic cycle. It is therefore possible to link the Svecofennian domain and the Transscandinavian

  13. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle

  14. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Wang, Ze-Zhou; Li, Shu-Guang; Huang, Jian; Yang, Wei

    2016-06-01

    A large set of zinc (Zn) stable isotope data for continental basalts from eastern China were reported to investigate the application of Zn isotopes as a new tracer of deep carbonate cycling. All of the basalts with ages of <110 Ma have systematically heavy δ66Zn (relative to JMC 3-0749L) ranging from 0.30‰ to 0.63‰ (n = 44) compared to the mantle (0.28 ± 0.05‰; 2sd) and >120 Ma basalts from eastern China (0.27 ± 0.06‰; 2sd). Given that Zn isotope fractionation during magmatic differentiation is limited (≤0.1‰), the elevated δ66Zn values reflect the involvement of isotopically heavy crustal materials (e.g., carbonates with an average δ66Zn of ∼0.91‰) in the mantle sources. SiO2 contents of the <110 Ma basalts negatively correlate with parameters that are sensitive to the degree of partial melting (e.g., Sm/Yb, Nb/Y, [Nb]) and with the concentration of Zn, which also behaves incompatibly during mantle melting. This is inconsistent with a volatile-poor peridotite source and instead suggests partial melting of carbonated peridotites which, at lower degree of melting, generates more Si-depleted (and more Ca-rich) melts. Zinc isotopic compositions are positively correlated with Sm/Yb, Nb/Y, [Nb] and [Zn], indicating that melts produced by lower degrees of melting have heavier Zn isotopic compositions. Carbonated peridotites have a lower solidus than volatile-poor peridotites and therefore at lower melting extents, contribute more to the melts, which will have heavier Zn isotopic compositions. Together with the positive relationships of δ66Zn with CaO and CaO/Al2O3, we propose that the heavy Zn isotopic compositions of the <110 Ma basalts were generated by incongruent partial melting of carbonated peridotites. Combined with previously reported Mg and Sr isotope data, we suggest that the large-scale Zn isotope anomaly indicates the widespread presence of recycled Mg (Zn)-rich carbonates in the mantle beneath eastern China since the Late Mesozoic

  15. The 87Sr/86Sr and 143Nd/144Nd disequilibrium between Polynesian hot spot lavas and the clinopyroxenes they host: Evidence complementing isotopic disequilibrium in melt inclusions

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew G.; Hart, Stanley R.; Shimizu, Nobumichi; Blusztajn, Jerzy S.

    2009-03-01

    We report 87Sr/86Sr and 143Nd/144Nd data on clinopyroxenes recovered from 10 ocean island lavas from three different hot spots (Samoa, Society, and Cook-Austral island chains). The clinopyroxenes recovered from eight of the 10 lavas analyzed in this study exhibit 87Sr/86Sr disequilibrium with respect to the host lava. The 87Sr/86Sr ratios in clinopyroxene separates are 95-3146 ppm (0.0095-0.31%) different from their respective host whole rocks. Clinopyroxenes in three lavas have 143Nd/144Nd ratios that are 70-160 ppm (0.007-0.016%) different from the host lavas. The 87Sr/86Sr and 143Nd/144Nd disequilibrium in one lava (the oldest lava considered in this study, Mangaia sample MGA-B-47) can be attributed to posteruptive radiogenic ingrowth, but the isotope disequilibrium in the other, younger lavas cannot be explained by this mechanism. In five of the lava samples, two populations of clinopyroxene were isolated (black and green, separated by color). In four out of five of these samples, the 87Sr/86Sr ratios of the two clinopyroxene populations are isotopically different from each other. In addition to 87Sr/86Sr disequilibrium, the two clinopyroxene populations in one of the lavas (Tahaa sample TAA-B-26) have 143Nd/144Nd ratios that are ˜100 ppm different from each other. Given the resilience of clinopyroxene to seawater alteration and the likelihood that the Sr and Nd isotope composition of fresh clinopyroxene separates provides a faithful record of primary magmatic compositions, the clinopyroxene-clinopyroxene isotope disequilibrium in these four lavas provides strong evidence that a mechanism other than seawater alteration has generated the observed isotopic disequilibrium. This study confirms the isotopic diversity in ocean island lavas previously observed in olivine-hosted melt inclusions. For example, the Sr isotopic variability previously observed in olivine-hosted melt inclusions is mirrored by the isotopic diversity in clinopyroxenes isolated from many of

  16. Retrograde fluids in granulites: Stable isotope evidence of fluid migration

    SciTech Connect

    Morrison, J. ); Valley, J.W. )

    1991-07-01

    Widespread retrograde alteration assemblages document the migration of mixed H{sub 2}O-CO{sub 2} fluids into granulite facies rocks in the Adirondack Mountains. Fluid migration is manifest by (1) veins and patchy intergrowths of chlorite {plus minus} sericite {plus minus} calcite, (2) small veins of calcite, many only identifiable by cathodoluminescence, and (3) high-density, CO{sub 2}-rich or mixed H{sub 2}O-CO{sub 2} fluid inclusions. The distinct and varied textural occurrences of the alteration minerals indicate that fluid-rock ratios were low and variable on a local scale. Stable isotope ratios of C, O, and S have been determined in retrograde minerals from samples of the Marcy anorthosite massif and adjacent granitic gneisses (charnockites). Retrograde calcite in the anorthosite has a relatively small range in both {delta}{sup 18}O{sub SMOW} and {delta}{sup 13}C{sub PDB} (8.6 to 14.9% and {minus}4.1 to 0.4%, respectively), probably indicating that the hydrothermal fluids that precipitated the calcite had exchanged with a variety of crustal lithologies including marbles and orthogneisses, and that calcite was precipitated over a relatively narrow temperature interval. Values of {delta}{sup 34}S{sub CDT} that range from 2.8 to 8.3% within the anorthosite can also be interpreted to reflect exchange between orthogneisses and metasediments. The recognition of retrograde fluid migration is particularly significant in granulite facies terranes because the controversy surrounding the origin of granulites arises in part from differing interpretations of fluid inclusion data, specifically, the timing of entrapment of high-density, CO{sub 2}-rich inclusions. Results indicate that retrograde fluid migration, which in some samples may leave only cryptic petrographic evidence, is a process capable of producing high-density, CO{sub 2}-rich fluid inclusions.

  17. Rb-Sr and oxygen isotopic study of alkalic rocks from the Trans-Pecos magmatic province, Texas: Implications for the petrogenesis and hydrothermal alteration of continental alkalic rocks

    SciTech Connect

    Lambert, D.D.; Malek, D.J.; Dahl, D.A. )

    1988-10-01

    Rb-Sr and O isotopic data for mid-Tertiary alkalic rocks from the Trans-Pecos magmatic province of west Texas demonstrate that hydrothermal alteration and fluid/rock (cation exchange) interactions have affected the isotope geochemistry of these rocks. Strontium and O isotopic data for late-stage minerals in an alkali basalt (hawaiite) still record two episodes of fluid/rock interactions. These data suggest that later meteoric fluids introduced Sr with a Cretaceous marine {sup 87}Sr/{sup 86}Sr ratio into minerals with significant cation exchange capacity. Dilute HCl leaching experiments demonstrate the removal of this labile or exchangeable Sr from the alkali basalt. Rb-Sr isotopic data for the leached alkali basalt and handpicked calcite record a crystallization age of 42 Ma, consistent with K-Ar data for an unaltered alkali basalt (hawaiite) dike from the same area (42.6 {plus minus} 1.3 Ma). Leaching experiments on one phonolite suggest the Sr isotopic variability in unleached phonolite and nepheline trachyte samples may be attributed to Sr in secondary calcite and zeolites, which have an upper Cretaceous marine {sup 87}Sr/{sup 86}Sr ratio. Rb-Sr isotopic data for leached phonolite and sanidine separate yield an age of 36.5 {plus minus} 0.8 Ma, within analytical uncertainty of a K-Ar biotite age (36.0 {plus minus} 1.1 Ma) of another phonolite. These leaching experiments demonstrate that the Rb-Sr isotopic systematics of hydrothermally-altered continental alkalic rocks may be significantly improved, providing more reliable geochronologic and isotopic tracer information necessary in constructing precise models of mantle sources.

  18. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    PubMed

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-31

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  19. U-Pb ages and Sr, Pb and Nd isotope data for gneisses near the Kolar Schist Belt: Evidence for the juxtaposition of discrete Archean terranes

    NASA Technical Reports Server (NTRS)

    Krogstad, E. J.; Hanson, G. N.; Rajamani, V.

    1988-01-01

    Uranium-lead ages and Sr, Pb, and Nd isotopic data for gneisses near the Kolar Schist Belt and their interpretation as evidence for the juxtaposition of discrete Archean terranes were presented. The granodioritic Kambha gneiss east of the schist belt has a zircon age of 2532 + or - 3 Ma and mantle-like initial Sr, Pb, and Nd isotopic ratios. Therefore these gneisses are thought to represent new crust added to the craton in the latest Archean. By contrast, more mafic Dod gneisses and leucocratic Dosa gneisses west of the schist belt (2632 + or - 7 and 2610 + or - 10 Ma) show evidence for contamination of their magmatic precursors (LREE-enriched mantle-derived for the Dod gneisses) by older (greater than 3.2 Ga) continental crust. Fragments of this older crust may be present as granitic and tonalitic inclusions in the 2.6-Ga gneisses and in shear zones. The antiquity of these fragments is supported by their Nd, Sr, and Pb isotopic compositions and by 2.8 to greater than 3.2 Ga zircon cores.

  20. Pb isotopic evidence for early Archaean crust in South Greenland

    NASA Astrophysics Data System (ADS)

    Taylor, P. N.; Kalsbeek, F.

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust.

  1. Pb isotopic evidence for early Archaean crust in South Greenland

    NASA Technical Reports Server (NTRS)

    Taylor, P. N.; Kalsbeek, F.

    1986-01-01

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust.

  2. Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: Evidence from the Fuping Complex

    NASA Astrophysics Data System (ADS)

    Tang, Li; Santosh, M.; Tsunogae, Toshiaki; Teng, Xue-Ming

    2016-04-01

    The Fuping, Wutai, and Hengshan Complexes in the North China Craton preserve imprints of widespread late Neoarchean magmatism. Here, we report results from systematic petrology, mineral chemistry, whole-rock major, trace and platinum-group element geochemistry, zircon U-Pb geochronology and Hf-O isotopes from the Yangmuqiao mafic-ultramafic intrusion and coeval tonalite-trondhjemite-granodiorite (TTG) gneiss from the Fuping Complex. The mafic-ultramafic intrusion is composed of pyroxene hornblendites, hornblendites, and minor harzburgites. The salient geochemical features of the mafic-ultramafic intrusion and the Fuping TTG gneiss display subduction-related island arc signature, such as fractionated REE patterns with elevated LREE, enrichment of LILE (K, Rb, and Ba) and LREE (La and Ce), and depletion of HFSE (Nb, Ta, Zr, and Hf) and HREE. The chemistry of the clinopyroxene and chromite in the pyroxene hornblendites shows affinity with Alaskan-type mafic-ultramafic intrusions. Zircons from the pyroxene hornblendite yield weighted mean 207Pb/206Pb age of 2514 ± 15 Ma, and those in the Fuping TTG gneiss show mean age of 2513 ± 13 Ma. Zircon Hf and O isotopic compositions are used as magma source and crustal evolution indicators. Zircon grains in the pyroxene hornblendite display positive εHf(t) values (2.6-6.7), Neoarchean TDM (2570-2723 Ma), and their δ18O values vary from 3.8‰ to 7.0‰ (average 6.2‰). Zircons in the TTG gneiss show εHf(t) values in the range of - 1.8 to 4.9, TDM of 2637-2888 Ma, and δ18O values of 4.1‰-6.7‰ (average of 6.1‰). These results suggest that the parental magma of the late Neoarchean magmatism in the Fuping area was dominantly extracted from the depleted mantle and contaminated to different degrees by crustal components. The pyroxene hornblendites have obviously higher IPGE contents (ΣIPGE = 1.69-2.39 ppb) and lower Pd/Ir ratios (5.97-6.28) than those in the hornblendites (ΣIPGE = 0.56-0.72 ppb, Pd/Ir = 6

  3. Stellar condensates in meteorites - Isotopic evidence from noble gases

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Alaerts, L.; Matsuda, J.-I.; Anders, E.

    1979-01-01

    The Murchison carbonaceous chondrite contains three isotopically anomalous noble-gas components of apparently presolar origin: two kinds of Ne-E, (Ne-20)/(Ne-22) less than 0.6, and s-process Kr + Xe (enriched in the even isotopes 82, 84, 86, 128, 130, 132). Their carriers are tentatively identified as spinel and two carbonaceous phases, the principal high-temperature stellar condensates at low and high C/O ratios, respectively.

  4. Magmatism at different crustal levels in the ancient North Cascades magmatic arc

    NASA Astrophysics Data System (ADS)

    Shea, E. K.; Bowring, S. A.; Miller, R. B.; Miller, J. S.

    2013-12-01

    material, possibly during magma production or transport. The Seven-Fingered Jack intrusive complex, emplaced around 15-20 km, preserves a much more discontinuous record of intrusion than the Black Peak. Our data indicate major magmatism in the complex occurred between ~92.1-91.1 Ma. Inheritance in the Seven-Fingered Jack is common, particularly along contacts between intrusions. The Tenpeak intrusive complex, assembled between ~92 Ma and 89 Ma, represents one of the deepest exhumed complexes in the North Cascades. Our geochronology indicates that plutons comprising the complex were intruded rapidly (<200 ka) and followed by periods of magmatic quiescence. Contact relations between contemporaneous intrusions are often mixed, further supporting rapid assembly. Zircon systematics in the Tenpeak are relatively simple, showing no evidence for inheritance from the surrounding host rock or from earlier intrusions. However, zircon oxygen isotope data indicates many magmas contain significant crustal input. The Black Peak, Seven-Fingered Jack, and Tenpeak intrusions illustrate the complicated nature of magmatism at different crustal levels in the 92-87 Ma North Cascades magmatic arc. Our data support incremental assembly of these complexes, but show that many features, such as style of emplacement, zircon chemical and temporal systematics, and magma composition vary between these intrusions.

  5. Timescales of Magmatic processes in Eastern Sunda Arc: Rindjani and Tambora in light of new geochemical data including short lived U-Th series isotopes

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, Viorel

    2010-05-01

    Tambora and Rindjani are active volcanoes situated on the neighbouring islands of Lombok and Sumbawa in the Eastern Sunda Arc. Both are stratovolcanoes situated about 300 km north of the Java Trench and between 170 and 200 km above the Benioff seismic zone (Hamilton, 1974; Hutchinson, 1976). Rindjani's lavas are calc-alkaline ankaramites, hi-Al basalts to andesites, hi-K andesites and dacites. Tambora's lavas are ne-normative relatively potassium rich trachyandesites and trachybasalts including the intermediate (<57% SiO2) members (Foden, 1979, PhD thesis) which is the main difference to Rindjani's lavas. On a more general scale, Tambora's lavas are intermediate between the Hi-Al basalt-andesite of Rindjani and the highly undersaturated K-rich, leucite bearing lavas of G. Soromundi and G. Sangenges (both extinct volcanoes situated on Sumbawa east and respectively west of Tambora). There are other important differences however. Tambora's lavas remain ne-normative throughout the entire suite, whereas Rindjani's become Q-normative in the more evolved members (>53%SiO2). The concentrations of K2O, Rb, Sr and P2O5 are also very different between the two suites (Foden, 1979). Both volcanoes however show minor U-Th series disequilibrium with either Th or U excess but less than 10%, typical of this sector of the Eastern Sunda Arc. Investigating data across the whole arc, (Turner & Foden, 2001) have interpreted that mantle wedge has had a sediment component added as a melt and slab derived fluids added afterwards could not imprint their Th-U disequilibrium over the high Th signature of the sedimentary material. Evidence from volcanoes where the sediment component does not show as markedly (Iya, Werung) in the form of large U238/Th230 and (Ra226/Th230)0 suggests evolutionary timescales for magmatic processes of less than 8000years. Furthermore, in a 2003 paper, Turner et al., investigate the timescales of magmatic evolution of Sangeang Api, another active volcano just off

  6. Stable isotopes may provide evidence for starvation in reptiles.

    PubMed

    McCue, Marshall D; Pollock, Erik D

    2008-08-01

    Previous studies have attempted to correlate stable isotope signatures of tissues with the nutritional condition of birds, mammals, fishes, and invertebrates. Unfortunately, very little is known about the relationship between food limitation and the isotopic composition of reptiles. We examined the effects that starvation has on delta13C and delta15N signatures in the tissues (excreta, carcass, scales, and claws) of six, distantly related squamate reptiles (gaboon vipers, Bitis gabonica; ball pythons, Python regius; ratsnakes, Elaphe obsoleta; boa constrictors, Boa constrictor; western diamondback rattlesnakes, Crotalus atrox, and savannah monitor lizards, Varanus exanthematicus). Analyses revealed that the isotopic composition of reptile carcasses did not change significantly in response to bouts of starvation lasting up to 168 days. In contrast, the isotopic signatures of reptile excreta became significantly enriched in 15N and depleted in 13C during starvation. The isotopic signatures of reptile scales and lizard claws were less indicative of starvation time than those of excreta. We discuss the physiological mechanisms that might be responsible for the starvation-induced changes in 13C and 15N signatures in the excreta, and present a mixing model to describe the shift in excreted nitrogen source pools (i.e. from a labile source pool to a nonlabile source pool) that apparently occurs during starvation in these animals. The results of this study suggest that naturally occurring stable isotopes might ultimately have some utility for characterizing nitrogen and carbon stress among free-living reptiles. PMID:18613003

  7. Isotope evidence of hexavalent chromium stability in ground water samples.

    PubMed

    Čadková, Eva; Chrastný, Vladislav

    2015-11-01

    Chromium stable isotopes are of interest in many geochemical studies as a tool to identify Cr(VI) reduction and/or dilution in groundwater aquifers. For such studies the short term stability of Cr(VI) in water samples is required before the laboratory analyses can be carried out. Here the short term stability of Cr(VI) in groundwater samples was studied using an isotope approach. Based on commonly available methods for Cr(VI) stabilization, water samples were filtered and the pH value was adjusted to be equal to or greater than 8 before Cr isotope analysis. Based on our Cr isotope data (expressed as δ(53)CrNIST979), Cr(VI) was found to be unstable over short time periods in anthropogenically contaminated groundwater samples regardless of water treatment (e.g., pH adjustment, different storage temperatures). Based on our laboratory experiments, δ(53)CrNIST979 of the Cr(VI) pool was found to be unstable in the presence of dissolved Fe(II), Mn(IV) and/or SO2. Threshold concentrations of Fe(II) causing Cr(VI) reduction range between 10 mg L(-1) and 100 mg L(-1)and less than 1 mg L(-1) for Mn. Hence our isotope data show that water samples containing Cr(VI) should be processed on-site through anion column chemistry to avoid any isotope shifts. PMID:26037819

  8. Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis

    USGS Publications Warehouse

    Seccia, D.; Chiarabba, C.; De Gori, P.; Bianchi, I.; Hill, D.P.

    2011-01-01

    We present a new P wave and S wave velocity model for the upper crust beneath Long Valley Caldera obtained using local earthquake tomography and receiver function analysis. We computed the tomographic model using both a graded inversion scheme and a traditional approach. We complement the tomographic I/P model with a teleseismic receiver function model based on data from broadband seismic stations (MLAC and MKV) located on the SE and SW margins of the resurgent dome inside the caldera. The inversions resolve (1) a shallow, high-velocity P wave anomaly associated with the structural uplift of a resurgent dome; (2) an elongated, WNW striking low-velocity anomaly (8%–10 % reduction in I/P) at a depth of 6 km (4 km below mean sea level) beneath the southern section of the resurgent dome; and (3) a broad, low-velocity volume (–5% reduction in I/P and as much as 40% reduction in I/S) in the depth interval 8–14 km (6–12 km below mean sea level) beneath the central section of the caldera. The two low-velocity volumes partially overlap the geodetically inferred inflation sources that drove uplift of the resurgent dome associated with caldera unrest between 1980 and 2000, and they likely reflect the ascent path for magma or magmatic fluids into the upper crust beneath the caldera.

  9. Evidence from the Farmington pluton for early Devonian subduction-related magmatism in the Carolina zone of central North Carolina

    NASA Astrophysics Data System (ADS)

    Esawi, E. K.

    2004-04-01

    The Concord plutonic suite consists of numerous gabbroic plutons scattered throughout the Carolina terrane with ages that cluster around 400 Ma. The Farmington pluton is located on the northeastern part of the Mocksville complex and consists mostly of gabbronorites and troctolites. Field, geochemical, and P-T studies of the Farmington gabbros suggest that the rocks are genetically related and formed by transitional to calc-alkaline differentiation of mafic magma. The pluton was formed in a moderate-pressure environment (˜6 kbar) and underwent limited differentiation after emplacement. The overall geological and geochemical features of the Farmington pluton are consistent with a transitional to arc origin. The Concord plutonic suite does not fit well in classical tectonothermal models suggested for the evolution of the Appalachian orogen. However, Field and geochemical data in this report and other data reported recently suggest that the origin of the Farmington pluton and possibly the Concord plutonic suite is that the suite represents a continuous to semi-continuous Taconian-Acadian magmatic event(s).

  10. Palladium Isotopic Evidence for Nucleosynthetic and Cosmogenic Isotope Anomalies in IVB Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Wittig, Nadine; Humayun, Munir; Leya, Ingo

    2015-08-01

    The origin of ubiquitous nucleosynthetic isotope anomalies in meteorites may represent spatial and/or temporal heterogeneity in the sources that supplied material to the nascent solar nebula, or enhancement by chemical processing. For elements beyond the Fe peak, deficits in s-process isotopes have been reported in some (e.g., Mo, Ru, W) but not all refractory elements studied (e.g., Os) that, among the iron meteorites, are most pronounced in IVB iron meteorites. Palladium is a non-refractory element in the same mass region as Mo and Ru. In this study, we report the first precise Pd isotopic abundances from IVB irons to test the mechanisms proposed for the origin of isotope anomalies. First, this study determined the existence of a cosmogenic neutron dosimeter from the reaction 103Rh(n, β-)104Pd in the form of excess 104Pd, correlated with excess 192Pt, in IVB irons. Second, all IVB irons show a deficit of the s-process only isotope 104Pd (\\varepsilon 104Pd = -0.48 ± 0.24), an excess of the r-only isotope 110Pd (\\varepsilon 110Pd = +0.46 ± 0.12), and no resolvable anomaly in the p-process 102Pd (\\varepsilon 102Pd = +1 ± 1). The magnitude of the Pd isotope anomaly is about half that predicted from a uniform depletion of the s-process yields from the correlated isotope anomalies of refractory Mo and Ru. The discrepancy is best understood as the result of nebular processing of the less refractory Pd, implying that all the observed nucleosynthetic anomalies in meteorites are likely to be isotopic relicts. The Mo-Ru-Pd isotope systematics do not support enhanced rates of the 22Ne(α,n)25Mg neutron source for the solar system s-process.

  11. Understanding Vesuvius magmatic processes: Evidence from primitive silicate-melt inclusions in medieval scoria clinopyroxenes (Terzigno formation)

    USGS Publications Warehouse

    Lima, A.; Belkin, H.E.; Torok, K.

    1999-01-01

    Microthermometric investigations of silicate-melt inclusions and electron microprobe analyses were conducted on experimentally homogenized silicate-melt inclusions and on the host clinopyroxenes from 4 scoria samples of different layers from the Mt. Somma-Vesuvius medieval eruption (Formazione di Terzigno, 893 A.D.). The temperature of homogenization, considered the minimum trapping temperature, ranges from 1190 to 1260??5 ??C for all clinopyroxene-hosted silicate melt inclusions. The major and minor-element compositional trends shown by Terzigno scoria and matrix glass chemical analysis are largely compatible with fractional crystallization of clinopyroxene and Fe-Ti oxides. Sulfur contents of the homogenized silicate-melt inclusions in clinopyroxene phenocrysts compared with that in the host scoria show that S has been significantly degassed in the erupted products; whereas, Cl has about the same abundance in the inclusions and in host scoria. Fluorine is low (infrequently up to 800 ppm) in the silicate-melt inclusions compared to 2400 ppm in the bulk scoria. Electron microprobe analyses of silicate-melt inclusions show that they have primitive magma compositions (Mg# = 75-91). The composition of the host clinopyroxene phenocrysts varies from typical plinian-related (Mg#???85) to non-plinian related (Mg#???85). The mixed source of the host clinopyroxenes and primitive nature of the silicate-melt inclusions implies that these phenocrysts, in part, may be residual and/or have a polygenetic origin. The similar variation trends of major and minor-elements between homogenized silicate-melt inclusions from the Terzigno scoria, and silicate-melt inclusions in olivine and diopside phenocrysts from plinian eruptions (Marianelli et al., 1995) suggest that the trapped inclusions represent melts similar to those that supplied the plinian and sub-plinian magma chambers. These geochemical characteristics suggest that the Vesuvius magmatic system retained a vestige of the most

  12. Geochemical gradients in the Topopah Spring Member of the Paintbrush Tuff: Evidence for eruption across a magmatic interface

    SciTech Connect

    Schuraytz, B.C.; Vogel, T.A.; Younker, L.W.

    1986-06-01

    The Topopah Spring Member of the Paintbrush Tuff in southern Nevada is a classic example of a compositionally zoned ash-flow sheet that is inferred to have resulted from eruption of a compositionally zoned magma body. Geochemical and petrographic analyses of whole-rock tuff samples indicate that the base of the ash-flow sheet and the dominant volume of erupted material are composed of crystal-poor high-silica rhyolite, with a gradational transition into overlying crystal-rich quartz latite at the top of the sequence. These compositional variations are consistent with a model of progressive eruption of a stratified magma body in which relatively cooler, crystal-poor high-silica rhyolitic magma overlay hotter, crystal-rich quartz latitic magma. Major and trace element chemical analyses of whole glassy pumices and analyses of coexisting ilmenite and magnetite phenocrysts from within the pumices provide closer approximations to the chemical and thermal gradients within the inferred magma body. The magmatic gradients inferred from these data indicate that the transition from high-silica rhyolitic to quartz latitic magma within the chamber was abrupt rather than gradational, with a distinct liquid-liquid interface separating the two contrasting magmas. Throughout the ash-flow sheet, individual pumice lumps with distinct and variable textural characteristics are present within outcrop, hand-sample, and thin-section scale. Within the lower portion of the ash-flow sheet, the individual pumices are all high-silica rhyolites with relatively small variations in trace-element composition and estimated quench temperatures, and thus are chemically similar to their associated whole-rock tuff composites. In contrast, the chemical variability among pumices within the uppermost quartz latite is as great as that of the entire ash-flow sheet.

  13. Combined magnetic fabrics and microstructures: evidence of an early magmatic event in the Paleoproterozoic Teofilandia granitoids (Sao Francisco craton, Brazil)

    NASA Astrophysics Data System (ADS)

    Nascimento, H. S.; Bouchez, J. L.; Nedelec, A.; Sabate, P.

    2003-04-01

    The study area concerns the southern part of the Paleoproterozoic (2.2--2.0 Ga) Itapicuru Greenstone Belt (Serrinha Block), eastern border of the Sao Francisco craton (Brazil). This is a problematic area, occupied by the Teofilandia granitoids (granites, granodiorites, tonalites, gneisses), where the overall N-S map structures rotate to E-W toward the south of the Serrinha Block. A set of 160 sampling stations covering ˜220 km^2 have been subjected to a detailed structural study combining magnetic fabrics AND microstructural characters. Three types of microstructures, corresponding to three successive events, helped to sort the different magnetic fabrics. (1) Purely magmatic microstructures, sometimes slightly overprinted by the following events, characterize preserved sectors that carry N-S trending magnetic lineations. Around these relictual sectors (2) the granitoids display typical high-T orthogneissic microstructures, attesting for their pervasive deformation in the solid-state parallel to E-W (±30^o), as observed in the field and attested by the E-W trending magnetic lineations. Finally (3) low-T/high-stress, sub-mylonitic microstructures under greenschist facies conditions, affect the area with various intensities, and are associated with E-W trending magnetic lineations. We conclude that the Teofilandia granitoids reveal their N-S-directed emplacement at ˜2.1 Ga, probably coeval with the N-S stretch of the whole Rio Itapicuru belt, within the relictual cores of kilometer-thick lenses that were preserved from the following events. The pervasive high-T structures, with foliations dipping to the south and E-W stretching directions, are ascribed to a lateral ramp of the shear event that accompanied the convergence of the Serrinha block with the Salvador Curaca mobile belt. The final, low-T/high stress event is likely coeval with the hydrothermal episode responsible for the gold mineralizations of the Teofilandia area at 2.08 Ga.

  14. Long-Term Uplift in the Altiplano-Puna Neovolcanic Zone: Evidence of an Active Magmatic Diapir?

    NASA Astrophysics Data System (ADS)

    Fialko, Y.; Pearse, J.

    2012-12-01

    We present InSAR observations of a long-term uplift in the Altiplano-Puna neovolcanic zone (central Andes, South America). Previous observations revealed a a massive Ultra Low Velocity Zone (ULVZ) at depth of 17-19 km (Zandt et al., 2003), and surface deformation that was attributed to Uturuncu, a dormant volcano in the middle of the Altiplano-Puna neovolcanic zone (Pritchard and Simons, 2002). Our time series analysis of combined data from different sensors (ERS-1/2 and ENVISAT), satellite tracks, and observation modes (fine beam and ScanSAR) reveals that the central uplift has persisted at a nearly constant rate of ~1 cm/yr over the last two decades, and is surrounded by a broad zone of subsidence. We use the satellite line-of-sight velocities from different look directions to constrain the depth and geometry of the inferred sources of magmatic unrest. Inversions based on elastic half-space models indicate that the inflation source is located well below the brittle-ductile transition, and likely resides at the depth of the seismically imaged ULVZ. We investigated the effects of inelastic deformation in the ambient crust using finite element models. The models incorporated laboratory-derived rheologies of the ambient crust, and geotherms appropriate for an active neo-volcanic zone such as the one in the Altiplano-Puna province. Based on a large number of numerical simulations constrained by the observed surface velocities, we conclude that the ongoing uplift and peripheral subsidence result from a large mid-crustal diapir fed by a partially molten source region in the middle crust. The observed pattern of surface deformation due to the Altiplano-Puna ULVZ is remarkably similar to that due to the Socorro Magma Body (SMB) in central New Mexico, USA (Pearse and Fialko, 2010), suggesting a common process. mosaic of the mean LOS velocity showing uplift and peripheral subsidence due to the inferred mid-crustal diapir.

  15. Zircon U-Pb age, Lu-Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift

    NASA Astrophysics Data System (ADS)

    Renjith, M. L.; Santosh, M.; Li, Tang; Satyanarayanan, M.; Korakoppa, M. M.; Tsunogae, T.; Subba Rao, D. V.; Kesav Krishna, A.; Nirmal Charan, S.

    2016-01-01

    The Sundamalai peralkaline pluton is one among the Cryogenian alkaline plutons occurring in the Dharmapuri Rift Zone (DRZ) of the Salem Block in the Southern Granulite Terrane (SGT) of India. Here we present zircon U-Pb age and Lu-Hf isotopic composition, mineral chemistry and geochemistry of the pluton to explore the petrogenesis and geodynamic implications. Systematic modal variation of orthoclase, Na-plagioclase, Ca-amphibole (ferro-edenite and hastingsite) and quartz developed quartz-monzonite and granite litho units in the Sundamalai pluton. Thermometry based on amphibole-plagioclase pair suggests that the pluton was emplaced and solidified at around 4.6 kbar pressure with crystallization of the major phases between 748 and 661 °C. Estimated saturation temperature of zircon (712-698 °C) is also well within this range. However, apatite saturation occurred at higher temperatures between 835 and 870 °C, in contrast with monazite saturation (718-613 °C) that continued up to the late stage of crystallization. Estimated oxygen fugacity values (log fO2: -14 to -17) indicate high oxidation state for the magma that stabilized titanite and magnetite. The magmatic zircons from Sundamalai pluton yielded a weighted mean 206Pb/238U age of 832.6 ± 3.2 Ma. Geochemically, the Sundamalai rocks are high-K to shoshonitic, persodic (Na2O/K2O ratio > 1), silica-saturated (SiO2:65-72 wt.%), and peralkaline in composition (aluminum saturation index, ASI < 1; Alkalinity index, AI < 0). The initial magma was mildly metaluminous which evolved to strongly peralkaline as result of fractional crystallization (plagioclase effect) controlled differentiation between quartz-monzonite and granite. Both rock types have high content of Na2O (5.1-6.3 wt.%), Ba (350-2589 ppm) and Sr (264-1036 ppm); low content of Y (8.7-17 ppm) and Yb (0.96-1.69 ppm); elevated ratios of La/Yb (11-46) and Sr/Y (46-69) and are depleted in Ti, with a positive Sr anomaly suggesting an adakite-like composition and

  16. New evidence of a magmatic arc in the southern Brasília Belt, Brazil: The Serra da Água Limpa batholith (Socorro-Guaxupé Nappe)

    NASA Astrophysics Data System (ADS)

    Vinagre, Rodrigo; Trouw, Rudolph A. J.; Mendes, Julio Cezar; Duffles, Patrícia; Peternel, Rodrigo; Matos, Gabriel

    2014-10-01

    This paper presents a detailed description of the Neoproterozoic Serra da Água Limpa batholith (SALB) and the interpretation of its genesis. The batholith, located along the border of the states of Minas Gerais and São Paulo, was involved in the Socorro-Guaxupé Nappe, a tectonic unit that integrates the southern Brasília Belt. The tectonic evolution of this nappe is related to the convergence and subsequent collision between the Paranapanema paleocontinent, representing the upper plate, with the São Francisco paleocontinent, resulting in the construction of the southern Brasília Belt. The active margin of the Paranapanema paleocontinent developed during the pre-collisional stage a magmatic arc composed of batholithic igneous bodies. The Socorro-Guaxupé Nappe represents this active margin and SALB is one of those bodies. U-Pb dating (Laser Ablation, LA-ICP-MS) in zircon was performed in five samples of SALB. The results are as follows: sample RDTM 62, 667 ± 10 Ma; RDPA 44, 645 ± 5 Ma; RDPA 46, 630 ± 12 Ma; VAC 10, 631 ± 7 Ma and RDIT 41, 635 ± 8 Ma. These ages indicate that the body crystallized between 670 and 630 Ma, with predominance of ages in the interval 645-630 Ma, demonstrating that the magmatic event that formed the arc lasted at least 40 myr. Younger ages, measured in rims of zircon grains, mainly in the range 625-600 Ma were interpreted as metamorphic ages. The lithogeochemical analyses indicate that the I-type rocks of the Serra da Água Limpa batholith belong to the high K calc-alkaline series, and are metaluminous to slightly peraluminous. Tectonic environment diagrams also indicate that the batholith was produced in a volcanic arc setting which is confirmed by negative anomalies of elements of high ionic potential (HFS) in multi-element diagrams. Whole rock Sm-Nd isotope analyses show highly negative εNd values (-12 to -7), indicating significant crustal contamination or origin of the magma by melting of enriched lower crust.

  17. Isotopic evidence for reduced productivity in the glacial Southern Ocean

    SciTech Connect

    Shemesh, A. ); Macko, S.A. ); Charles, C.D. ); Rau, G.H. )

    1993-10-15

    Records of carbon and nitrogen isotopes in biogenic silica and carbon isotopes in planktonic foraminifera from deep-sea sediment cores from the Southern Ocean reveal that the primary production during the last glacial maximum was lower than Holocene productivity. These observations conflict with the hypothesis that the low atmospheric carbon dioxide concentrations were introduced by an increase in the efficiency of the high-latitude biological pump. Instead, different oceanic sectors may have had high glacial productivity, or alternative mechanisms that do not involve the biological pump must be considered as the primary cause of the low glacial atmospheric carbon dioxide concentrations.

  18. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Teng, Fang-Zhen; Zhang, Hong-Fu; Xiao, Yan; Su, Ben-Xun

    2016-07-01

    High-precision Mg isotopic measurements on diverse mantle pyroxenite xenoliths collected from Hannuoba, North China Craton, revealed multi-stage interactions between the lithospheric mantle and melts of different origins. The garnet-bearing pyroxenites yield variable δ26Mg values from -0.48‰ to -0.10‰, consistent with their origin as reaction products between mantle peridotites and melts from subducted oceanic slab with highly heterogeneous δ26Mg. Most of their constituent olivine, clinopyroxene, and orthopyroxene have indistinguishable δ26Mg ratios around the normal mantle range (-0.25 ± 0.07‰, Teng et al., 2010). The lack of fractionation among these three mineral phases agrees with their similar bonding environments for Mg (6-fold), and hence indicates a general isotopic equilibrium among them. By contrast, garnet has variably lighter δ26Mg values (-0.75‰ to -0.37‰, n = 15), consistent with its higher coordination number for Mg (8-fold), and thus weaker Mg-O bonds. The magnitude of fractionation between garnet and olivine/pyroxene, however, is not correlated with equilibrium temperature, and therefore reflects disequilibrium Mg isotope partitioning. Considering the metasomatic origin of these garnets, the disequilibrium isotopic fractionation is most likely the result of rapid and incomplete metasomatic reaction during which garnets were formed at the expense of isotopically heavier co-existing minerals, particularly spinels. The two garnet-free clinopyroxenites, which display highly enriched light rare earth element (LREE) patterns and very low Ti/Eu ratios, are characterized by extremely light δ26Mg (as low as -1.51‰). Their formation possibly indicates an episode of carbonatite infiltration. In comparison, the three Cr websterites and one Al websterite, as well as an orthopyroxenite, all have mantle-like whole-rock and mineral δ26Mg ratios, with equilibrated clinopyroxene-orthopyroxene pairs. Their presence thus implies different episodes

  19. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California

    USGS Publications Warehouse

    Grove, T.L.; Donnelly-Nolan, J. M.; Housh, T.

    1997-01-01

    Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust.

  20. Paleozoic magmatism and metamorphism in the Central Tianshan block revealed by U-Pb and Lu-Hf isotope studies of detrital zircons from the South Tianshan belt, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoran; Zhao, Guochun; Eizenhöfer, Paul R.; Sun, Min; Han, Yigui; Hou, Wenzhu; Liu, Dongxing; Wang, Bo; Liu, Qian; Xu, Bing

    2015-09-01

    As a major Precambrian microcontinent in the southernmost Central Asian Orogenic Belt (CAOB), the Central Tianshan block (CTS) in the Chinese Tianshan is essential for understanding the final assembly of the southern CAOB. It experienced multistage Paleozoic magmatism and metamorphism, but the detailed processes are still controversial and far from being completely understood. This paper reports coupled U-Pb and Lu-Hf isotopic data of detrital zircons from late Paleozoic (meta-)sedimentary strata in the South Tianshan belt, which can provide new insight into deciphering the Paleozoic evolution of the eastern segment of the CTS block. Characterized by typical oscillatory zoning and high Th/U ratios (> 0.2), detrital zircons in the Permian sedimentary samples yield dominant age populations at ca. 505-490 Ma, 475-440 Ma, 430-400 Ma and 340-250 Ma, pinpointing the development of four episodes of magmatism in the eastern CTS block. Particularly, Ordovician-Silurian (475-440 Ma) zircons, possessing low negative εHf(t) values, predominate in sedimentary strata in and surrounding the CTS block, indicating that the 475-440 Ma magmatic rocks probably constitute the main body of the CTS block. The origin of this (early Paleozoic) episode of magmatism was most likely related to the southward subduction of the Junggar Ocean beneath the CTS block. Carboniferous-Triassic (340-250 Ma) zircons have dominantly positive εHf(t) values, probably derived from the post-collisional juvenile rocks in the CTS block. Combined with previous studies, our data suggest that the single source terrane for the sampled strata was the CTS block, which had been a topographic high providing substantial detritus to the surrounding areas at least since the Early Permian. In the metasedimentary sample, detrital zircons mostly show partially/fully recrystallized internal textures and low Th/U ratios (< 0.2), probably sourced from the amphibolite- to granulite-facies metamorphosed rocks in the eastern CTS

  1. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Donchin, J. H.; Nehring, N. L.; Truesdell, A. H.

    1981-01-01

    Isotopic measurements of individual geothermal hydrocarbons that are, as a group, of higher molecular weight than methane are reported. It is believed in light of this data that the principal source of hydrocarbons in four geothermal areas in western North America is the thermal decomposition of sedimentary or groundwater organic matter.

  2. Runoff generation mechanism at two distinct headwater catchments - isotopic evidence

    NASA Astrophysics Data System (ADS)

    Dohnal, Michal; Votrubová, Jana; Šanda, Martin; Tesař, Miroslav; Vogel, Tomáš; Dušek, Jaromír

    2016-04-01

    Data from two headwater catchments indicate considerably different runoff formation mechanisms. The contributions of different surface and subsurface runoff mechanisms to the catchment discharge formation at these two small forested headwater catchments are studied with help of the natural isotopic signatures of the observed fluxes. The Uhlirska catchment (1.78 sq. km, Jizera Mts., Czech Republic) is situated in headwater area of Cerna Nisa stream. Deluviofluvial granitic sediments in the valley bottom areas (riparian zones/wetlands) are surrounded by gentle hillslopes with shallow soils developed on crystalline bedrock. The Liz catchment (0.99 sq. km, Bohemian Forest, Czech Republic) belongs to hillslope-type catchments without riparian zones situated in headwater area of Volynka River. The soil at Liz is developed on biotite paragneiss bedrock. Autocorrelation analysis of the measured catchment discharge rates reveals different hydrograph characteristics for each of the two catchments. Estimated autocorrelation lengths differ by an order of magnitude. Variations of oxygen-18 isotope concentrations in precipitation, groundwater and streamflow were analyzed. Several significant rainfall-runoff events at each of the two catchments were analyzed in detail. These events exhibit substantial difference in isotopic compositions of event and pre-event water, which facilitates hydrograph separation. Clockwise and counterclockwise hysteretic relationships between the stream discharge and its isotope concentration were identified. Results were confronted with the previously published concepts of the runoff formation at the catchments under study. The research was funded by the Czech Science Foundation, project No. 14-15201J.

  3. Evidence for high-temperature fractionation of lithium isotopes during differentiation of the Moon

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Qiu, Lin; Ash, Richard D.; McDonough, William F.; Teng, Fang-Zhen; Rudnick, Roberta L.; Taylor, Lawrence A.

    2016-04-01

    Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low-Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low-Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high-Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low-Ti mare basalt 15555, the highest concentrations of Li occur in late-stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low- and high-Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low-Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high-Ti: δ7Li >6‰ δ56Fe >0.18‰ δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large-degree, high-temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late-stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile-poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between -2.5‰ and 4

  4. Evidence for high-temperature fractionation of lithium isotopes during differentiation of the Moon

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Qiu, Lin; Ash, Richard D.; McDonough, William F.; Teng, Fang-Zhen; Rudnick, Roberta L.; Taylor, Lawrence A.

    2016-06-01

    Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low-Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low-Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high-Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low-Ti mare basalt 15555, the highest concentrations of Li occur in late-stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low- and high-Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low-Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high-Ti: δ7Li >6‰ δ56Fe >0.18‰ δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large-degree, high-temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late-stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile-poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between -2.5‰ and 4

  5. Isotope evidence for N2-fixation in Sphagnum peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Jackova, Ivana; Buzek, Frantisek; Stepanova, Marketa; Veselovsky, Frantisek; Curik, Jan; Prechova, Eva

    2016-04-01

    Waterlogged organic soils store as much as 30 % of the world's soil carbon (C), and 15 % of the world's soil nitrogen (N). In the era of climate change, wetlands are vulnerable to increasing temperatures and prolonged periods of low rainfall. Higher rates of microbial processes and/or changing availability of oxygen may lead to peat thinning and elevated emissions of greenhouse gases (mostly CO2, but also CH4 and N2O). Biogeochemical cycling of C and N in peat bogs is coupled. Under low levels of pollution by reactive nitrogen (NO3-, NH4+), increasing N inputs may positively affect C storage in peat. Recent studies in North America and Scandinavia have suggested that pristine bogs are characterized by significant rates of microbial N2 fixation that augments C storage in the peat substrate. We present a nitrogen isotope study aimed at corroborating these findings. We conducted an isotope inventory of N fluxes and pools at two Sphagnum-dominated ombrotrophic peat bogs in the Czech Republic (Central Europe). For the first time, we present a time-series of del15N values of atmospheric input at the same locations as del15N values of living Sphagnum and peat. The mean del15N values systematically increased in the order: input NH4+ (-10.0 ‰) < input NO3- (-7.9 ‰) < peat porewater (-5.6 ‰) < Sphagnum (-5.0 ‰) < shallow peat (-4.2 ‰) < deep peat (-2.2 ‰) < runoff (-1.4 ‰) < porewater N2O (1.4 ‰). Importantly, N of Sphagnum was isotopically heavier than N of the atmospheric input (p < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N from atmospheric N2 (del15N N2 = 0 ‰). We conlude that the N isotope systematics at the two Czech sites is consistent with the concept of significant N2 fixation

  6. Spectroscopic mapping of the white horse alunite deposit, Marysvale volcanic field, Utah: Evidence of a magmatic component

    USGS Publications Warehouse

    Rockwell, B.W.; Cunningham, C.G.; Breit, G.N.; Rye, R.O.

    2006-01-01

    using AVIRIS in localized, superimposed conduits within propylitically altered rocks in nearby alteration systems of similar age and genesis that have been eroded to deeper levels. The fracture zones bearing pyrophyllite, illite, dickite, natroalunite, and/or APS minerals indicate a magmatic component in the dominantly steam-heated system. ?? 2006 Society of Economic Geologists, Inc.

  7. Geology, petrology and geochronology of the Lago Grande layered complex: Evidence for a PGE-mineralized magmatic suite in the Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, Antonio Sales; Ferreira Filho, Cesar Fonseca; Giustina, Maria Emilia Schutesky Della; Araújo, Sylvia Maria; da Silva, Heloisa Helena Azevedo Barbosa

    2015-12-01

    ultramafic lithotypes render Nd model ages between 2.94 and 3.56 Ga, with variably negative ɛNd (T = 2.72 Ga) values (-0.32 to -4.25). The crystallization sequence of the intrusion and the composition of cumulus minerals, together with lithogeochemical and Nd isotopic results, are consistent with an original mantle melt contaminated with older continental crust. The contamination of mafic magma with sialic crust is also consistent with intra-plate rifting models proposed in several studies of the CMP. Lithogeochemical and isotopic data from the Lago Grande Complex may also be interpreted as the result of melting an old lithospheric mantle, and alternative models should not be disregarded. PGE mineralizations occur in chromitites and associated with base metal sulfides in the Lago Grande Complex. Chromitite has the highest PGE content (up to 10 ppm) and is characterized by high Pt/Pd ratio (4.3). Mantle-normalized profile of chromitite is highly enriched in PPGE and similar to those from Middle Group (MG) and Upper Group (UG) chromitites from the Bushveld Complex. Platinum group minerals (PGM) occur mainly at the edge of chromite crystals in the Lago Grande chromitite, consisting of arsenides and sulfo-arsenides. Sulfide-bearing harzburgite samples of the Lago Grande complex have PGE content of up to 1 ppm and low Pt/Pd (0.2-0.3) ratios. The 2722 ± 53 Ma U-Pb zircon age determined in this study for the Lago Grande Complex overlaps with the crystallization age of the Luanga Complex. Previous interpretation that the Lago Grande and Luanga layered intrusions are part of a magmatic suite (i.e., Serra Leste Magmatic Suite) is now reinforced by similar fractionation sequences, comparable petrological evolution and overlapped U-Pb zircon ages. The occurrence of the same styles of PGE mineralization in the Lago Grande and Luanga complexes, together with remarkably similar chondrite-normalized PGE profiles and PGE minerals for chromitites of both complexes, support the concept that

  8. Isotopic variations with distance and time in the volcanic islands of the Cameroon line: evidence for a mantle plume origin

    NASA Astrophysics Data System (ADS)

    Lee, Der-Chuen; Halliday, Alex N.; Fitton, J. Godfrey; Poli, Giampero

    1994-05-01

    probably represents ambient upper mantle, entrained with the plume head during ascent. This entrained component is like 'PREMA', but the Nd and Sr isotopic data indicate that it represents variably mixed depleted and enriched components, such as DMM and EMI. The HIMU component is probably representative of a lower mantle source from which the plume head was derived. The long-lived episodic magmatism on Principe provides evidence that the initial melt migration paths from the upper mantle form a hot zone that can be re-activated after long periods (10 7 yr) of apparent quiescence. The progression to HIMU characteristics within each island probably reflects the gradual flattening of the contaminated plume head within this hot zone, near the base of the lithosphere, and the melting of a stem composed of relatively uncontaminated HIMU mantle.

  9. Aleutian lead isotopic data: additional evidence for the evolution of lithospheric plumbing systems

    SciTech Connect

    Myers, J.D.; Marsh, B.D.

    1987-07-01

    Lead isotopic ratios and concentrations have been measured in lavas from the Aleutian volcanic centers of Adak (12) and Atka (12). Lead contents in lavas from Atka increase four-fold over the compositional range of the volcanic suite. In contrast, Adak lavas have concentration levels of 0.6-13 ppm and display no simple correlation with SiO/sub 2/. The lead isotopic data alone can be explained by three different processes. Model 1 assigns lead isotopic differences to original magma source heterogeneity. According to Model 2, the isotopic ratios of a primary, non-radiogenic component from the mantle are elevated by the addition of an isotopically enriched slab-derived component. In contrast, Model 3 assumes a primary radiogenic magma produced by melting of the slab is contaminated by a non-radiogenic lithospheric component during conduit formation. Because these models all adequately explain the lead isotopic data, supplementary geologic, petrographic, geochemical and isotopic data must be used to select the most likely model. Careful consideration of the evidence suggests Model 3 best explains their extensive lead isotopic data as well as other characteristics of Aleutian lavas. The authors study suggests detailed isotopic studies of individual volcanic centers can be extremely useful in understanding the complex processes of magma generation, extraction, ascent and evolution.

  10. Enclaves in Mt. Shasta, CA lavas preserve evidence for fractionation of primitive water-rich magmas through a 35 km deep magmatic conduit

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Krawczynski, M. J.

    2011-12-01

    A suite of 82 quenched magmatic enclaves collected from four different andesite and dacite lava flows/domes on the Mt. Shasta stratocone record the depth, temperature and water contents of primitive and differentiated magmas. The primitive enclaves record crystallization pressures near the base of the crust (0.8 to 1 GPa) with H2O contents up to 10 to 14 wt. % and temperatures of 975 to 1050 degrees C (from Mg-in-amphibole hygrometry). The other members of the enclave suite record polybaric magmatic fractionation and mixing processes that are occurring through the entire depth of the crust from just beneath the volcano down to Moho depths. Petrologic evidence indicates that the magmas become vapor-saturated at the base of the crust and remain water-saturated as they crystallize up to the shallowest depths. Experimental evidence (Grove et al., 2003 CMP 145, 515) suggests that primitive magnesian andesites and basaltic andesites from the Shasta region could be parental melts to evolved andesite and dacite lavas that are erupted at Mt. Shasta. The enclaves represent quenched liquids intermediate in composition between primitive and near-primary magmas that are erupted from satellite vents in the Mt. Shasta region. The enclaves are significantly more magnesian (3-7 wt. % MgO) than the main group Shasta andesites (3-4 wt. % MgO). The compositions of enclaves lie on H2O-saturated liquid lines of descent that link the primitive andesites and basaltic andesites to the Shasta main group andesite and dacite lavas. The enclaves range in size from ~10 to 100 cm in diameter and are remarkable for their uniform, aphanitic textures, with no zoning or heterogeneities visible on the cm scale, in stark contrast to their highly porphyritic host lavas. Quenched-liquid enclaves fall into four distinct textural groups. All are phenocryst-poor and exhibit microcrystalline to glassy, vesicular, and diktytaxitic textures. 1) Amphibole - olivine enclaves are distinguished by rare (<<1

  11. Isotopic equilibrium between mantle peridotite and melt: Evidence from the Corsica ophiolite

    NASA Astrophysics Data System (ADS)

    Rampone, Elisabetta; Hofmann, Albrecht W.; Raczek, Ingrid

    2009-11-01

    A widely used assumption of mantle geochemistry and the theory of partial melting at oceanic settings is the existence of isotopic equilibrium between mantle source and melt. Yet, recent diffusion studies and isotopic investigations of ophiolites, abyssal peridotites and associated MORBs have cast doubts on this assumption, by providing evidence for isotopic disequilibrium between residual peridotites and MORBs. Here we present Sr and Sm-Nd isotope data on mantle peridotites and gabbroic intrusions from the Mt. Maggiore (Alpine Corsica, France) Tethyan ophiolite, which document Nd isotopic homogeneity, implying isotopic equilibrium, on a 1-kilometer scale. The peridotites record multi-stage melt-rock interaction and melt intrusion occurring at different lithospheric depths. Samples studied are residual cpx-poor spinel lherzolites, reactive spinel harzburgites, impregnated plagioclase peridotites and related gabbronoritic veinlets, later gabbroic dykes. Strontium isotopes in peridotites and gabbros are highly variable, due to interaction with sea-water derived fluids, and cannot be used to test melt-residue isotopic equilibrium. In contrast, Nd isotopes are unaffected by sea-water alteration. Peridotites display present-day high 147Sm/ 144Nd (0.49-0.59) and 143Nd/ 144Nd (0.513367-0.513551) ratios, with no appreciable differences between residual and reactive spinel peridotites, and between spinel and plagioclase peridotites. Gabbroic dykes have present-day Nd isotopic compositions typical of MORB ( 143Nd/ 144Nd = 0.513122-0.513138). Internal (plag-whole rock-cpx) Sm-Nd isochrons for olivine gabbro dykes and a gabbronoritic veinlet yield Jurassic ages (162 ± 10 and 159 ± 15 Ma in ol-gabbros, 155 ± 6 Ma in gabbronorite), and initial ɛNd = 8.9-9.7 indicative of a MORB-type source. Sm-Nd isotopic compositions of peridotites conform to the linear array defined by the gabbroic rocks, and yield initial (160 Ma) ɛNd values of 7.6-8.9, again consistent with a MORB

  12. Isotopic Evidence for a Martian Regolith Component in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Sutton, S.

    2009-01-01

    Noble gas measurements in gas-rich impact-melt (GRIM) glasses in EET79001 shergottite showed that their elemental and isotopic composition is similar to that of the Martian atmosphere [1-3]. The GRIM glasses contain large amounts of Martian atmospheric gases. Those measurements further suggested that the Kr isotopic composition of Martian atmosphere is approximately similar to that of solar Kr. The (80)Kr(sub n) - (80)Kr(sub M) mixing ratio in the Martian atmosphere reported here is approximately 3%. These neutron-capture reactions presumably occurred in the glass-precursor regolith materials containing Sm- and Br- bearing mineral phases near the EET79001/ Shergotty sites on Mars. The irradiated materials were mobilized into host rock voids either during shock-melting or possibly by earlier aeolian / fluvial activity.

  13. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons

    USGS Publications Warehouse

    Des Marais, D.J.; Donchin, J.H.; Nehring, N.L.; Truesdell, A.H.

    1981-01-01

    Previous interest in light hydrocarbons from geothermal systems has focused principally on the origin of the methane1 and the estimation of subsurface temperatures from the carbon isotopic content of coexisting methane and carbon dioxide1-3. Higher molecular weight hydrocarbons were first reported in gases from Yellowstone National Park4, and have since been found to occur commonly in geothermal emanations in the western United States5. Isotopic measurements of individual geothermal hydrocarbons are now reported which help to explain the origin of these hydrocarbons. The thermal decomposition of sedimentary or groundwater organic matter is a principal source of hydrocarbons in four geothermal areas in western North America. ?? 1981 Nature Publishing Group.

  14. The origin of epigenetic graphite: evidence from isotopes

    USGS Publications Warehouse

    Weis, P.L.; Friedman, I.; Gleason, J.P.

    1981-01-01

    Stable carbon isotope ratios measured in syngenetic graphite, epigenetic graphite, and graphitic marble suggests that syngenetic graphite forms only by the metamorphism of carbonaceous detritus. Metamorphism of calcareous rocks with carbonaceous detritus is accompanied by an exchange of carbon between the two, which may result in large changes in isotopic composition of the non-carbonate phase but does not affect the relative proportions of the two reactants in the rock. Epigenetic graphite forms only from carbonaceous material or preexisting graphite. The reactions involved are the water gas reaction (C + H2O ??? CO + H2) at 800-900??C, and the Boudouard reaction (2CO ??? C + CO2), which probably takes place at temperatures about 50-100??C lower. ?? 1982.

  15. Isotopic evidence for long term warmth in the Mesozoic

    PubMed Central

    Price, Gregory D.; Twitchett, Richard J.; Wheeley, James R.; Buono, Giuseppe

    2013-01-01

    Atmospheric CO2 concentrations appear to have been considerably higher than modern levels during much of the Phanerozoic and it has hence been proposed that surface temperatures were also higher. Some studies have, however, suggested that Earth's temperature (estimated from the isotopic composition of fossil shells) may have been independent of variations in atmospheric CO2 (e.g. in the Jurassic and Cretaceous). If large changes in atmospheric CO2 did not produce the expected climate responses in the past, predictions of future climate and the case for reducing current fossil-fuel emissions are potentially undermined. Here we evaluate the dataset upon which the Jurassic and Cretaceous assertions are based and present new temperature data, derived from the isotopic composition of fossil brachiopods. Our results are consistent with a warm climate mode for the Jurassic and Cretaceous and hence support the view that changes in atmospheric CO2 concentrations are linked with changes in global temperatures. PMID:23486483

  16. Isotopic evidence for nitrification in the Antarctic winter mixed layer

    NASA Astrophysics Data System (ADS)

    Smart, Sandi M.; Fawcett, Sarah E.; Thomalla, Sandy J.; Weigand, Mira A.; Reason, Chris J. C.; Sigman, Daniel M.

    2015-04-01

    We report wintertime nitrogen and oxygen isotope ratios (δ15N and δ18O) of seawater nitrate in the Southern Ocean south of Africa. Depth profile and underway surface samples collected in July 2012 extend from the subtropics to just beyond the Antarctic winter sea ice edge. We focus here on the Antarctic region (south of 50.3°S), where application of the Rayleigh model to depth profile δ15N data yields estimates for the isotope effect (the degree of isotope discrimination) of nitrate assimilation (1.6-3.3‰) that are significantly lower than commonly observed in the summertime Antarctic (5-8‰). The δ18O data from the same depth profiles and lateral δ15N variations within the mixed layer, however, imply O and N isotope effects that are more similar to those suggested by summertime data. These findings point to active nitrification (i.e., regeneration of organic matter to nitrate) within the Antarctic winter mixed layer. Nitrite removal from samples reveals a low δ15N for nitrite in the winter mixed layer (-40‰ to -20‰), consistent with nitrification, but does not remove the observation of an anomalously low δ15N for nitrate. The winter data, and the nitrification they reveal, explain the previous observation of an anomalously low δ15N for nitrate in the temperature minimum layer (remnant winter mixed layer) of summertime depth profiles. At the same time, the wintertime data require a low δ15N for the combined organic N and ammonium in the autumn mixed layer that is available for wintertime nitrification, pointing to intense N recycling as a pervasive condition of the Antarctic in late summer.

  17. Isotopic evidence for chaotic imprint in upper mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Armienti, Pietro; Gasperini, Daniela

    2010-05-01

    The intrinsic structure of the isotope data set of samples from the Mid-Atlantic Ridge and East Pacific Rise, believed to represent the isotopic composition of their mantle source, reveals a close relationship between sample spatial distribution and their geochemical features. The spatial distribution of their isotopic heterogeneity is self-similar on a scale between 5000 and 6000 km (about 1/6 of Earth's circumference), suggesting a self-organized structure for the underlying mantle. This implies the imprint of chaotic mantle processes, induced by mantle flow and likely related to an early phase of highly dynamic behavior of the Earth's mantle. The size of the identified self-organized region reflects the large length scale of upper mantle chemical variability, and it is likely frozen since the Proterozoic. The geochemical heterogeneity of the asthenosphere along the ridges is believed to record a transition in the thermal conditions of the Earth's mantle and to be reflected in the l = 6 peak expansion of several geophysical observables.

  18. Stable lead isotopes evidence anthropogenic contamination in Alaskan sea otters

    SciTech Connect

    Smith, D.R.; Estes, J.A.; Flegal, A.R. ); Niemeyer, S. )

    1990-10-01

    Lead concentrations and stable isotopic compositions were measured in teeth of preindustrial and contemporary sea otters (Enhydra lutris) from Amchitka Island, AK, to determine if changes had occurred in the magnitude and source of assimilated lead. Although there was no significant difference in lead concentrations between the two groups of otters ({bar x} {plus minus} {sigma}Pb/Ca atomic = 3.6 {plus minus} 2.9 {times} 10{sup {minus}8}), differences in stable lead isotopic compositions revealed a pronounced change in the source of accumulated lead. Lead {bar x} {plus minus} 2{sigma}{sub {bar x}} in the preindustrial otters ({sup 207}Pb/{sup 206}Pb = 0.828 {plus minus} 0.006) was derived from natural deposits in the Aleutian arc, while lead in the contemporary animals ({sup 207}Pb/{sup 206}Pb = 0.856 {plus minus} 0.003) was primarily industrial lead from Asia and western Canada. The isotopic ratios demonstrate anthropogenic perturbations of the lead cycle in present-day coastal food webs and indicate that lead concentration measurements alone are inadequate in assessing the introduction and transport of contaminant lead in the environment.

  19. Within-plate magmatism under condition of abnormally thick sialic crust: Evidence for Proterozoic anorthosite-rapakivi granite complexes of the East-European Craton

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2010-05-01

    Mid-Proterozoic (1.8-1.5 Ga) large bimodal multistage anorthosite-rapakivi granite complexes (ARGCs) are distinct magmatic assemblages in central part of the East European Craton. ARGCs formation commenced after stabilization of the Svecofennian orogen and relics of its abnormally thick (up to 50-60 km now) crust survived here in many places. Such massifs are practically absent at the eastern part of the craton (Kola-Karelian, Volga-Urals, etc. domains) with normal thickness (~40 km) of the crust. The ARGCs formation was accompanied by emplacement of diabase, quartz porphyry and complex dike swarms. Intra-plutonic diabase dikes (Fe-Ti basalts plume-related type), intruding the rapakivi granites, are often crossed in turn by later portions of granites; injections of basaltic melt into granitic magma chambers resulted in magma mingling. It indicates that melted out occurred simultaneously in mantle and crust during ARGC formation. Geochemical peculiarities of the ARGC rocks are enrichment in alkali (especially in K), Ti, Zn, Pb, and Zr, relatively high concentrations of Be, Sn, In, Y, Nb, Rb, F, Cu, W and Mo, and sometimes - Li and U. ɛNd value, ranges from -1.2 to +1.6, and relative high Th and Zn contents, most frequently observable in anorthosites, imply that the mafic magmas were considerably contaminated by crustal components. According to geophysical data, ARGCs represent upper parts of large transcrustal systems, composed by alternation of basic and silicic rocks, which located above rises of the mantle up to 10-20 km high. Such localization of ARGCs, probably evidence that such protuberances were mantle plume heads in time, where melting of their material occurred due to adiabatic decompression. Newly-formed basaltic melts (apparently Fe-Ti basalts, similar in composition to intra-plutonic dike rocks) intruded at different depths into abnormally thick sialic crust of stabilized by then Svecofennian orogen in form of large sills and caused melting of crustal

  20. Re-Os Systematics on Metallic Materials of Meteorites: Evidence for Non-Magmatic Evolution of the Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Hirata, T.; Masuda, A.

    1992-07-01

    The ^187Re-^187Os isotopic pair can offer piercing chemical and chronological information for the early sequences of the solar system [1,2]. Its principal interest over the other chronometer stands not only in siderophilic nature, but also in highly refractory physicochemical characteristics of both Re and Os. Although the progress of Re-Os chronometer has been retarded by the difficulty in Os isotopic analysis, recent developments in a variety of mass spectrometry have enabled us to give easier access to the Os isotopic measurement with high sensitivity. We have analyzed Re and Os abundances in 12 iron meteorites of various groups and 5 stony iron meteorites by stable isotope dilution employing an enhanced sensitivity inductively coupled plasma mass spectrometry [3,4]. In Fig. 1 we show the Re vs. Os abundance plot for the iron and stony iron meteorites obtained. Present Re and Os abundance data indicate some important features that can contribute to the elucidation of the evolutional history of these metallic meteorites. 1. Re and Os abundances in iron and stony iron meteorites have a wide variation covering nearly four orders of magnitude. 2. In contrast, there is no significant change in abundance ratio of Re/Os. The relationship between the Re and Os abundances gives a correlation coefficient of 0.996. 3. The group with the highest Re and Os abundances are the iron meteorites of group IVB [5,6]. 4. Sikhote-Alin (IIB-Anom) has exceptionally low Re and Os abundance values compared with those for other iron meteorites, but fall on the regression line drawn by other meteorites. 5. The Re and Os abundances in pallasite stony iron meteorites (circles on Fig. 1) show extremely low values compared with those for most iron meteorites. 6. The Re and Os abundances in mesosiderite stony iron meteorites (squares on Fig. 1) show values comparable with those observed in most iron meteorites. Fig. 2 shows the abundance relationship between Ir and Os (Ir data were taken from

  1. Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey's Bay Ni Cu Co deposit, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Ripley, Edward M.; Park, Young-Rok; Li, Chusi; Naldrett, Anthony J.

    1999-06-01

    The emplacement of basaltic magma into sulfide-bearing country rocks provides a favorable geologic environment for magmatic sulfide ore formation related either directly to assimilation of country rock sulfur or indirectly to a depression of sulfide solubility caused by assimilation-induced changes in magma composition. Pelitic country rocks of the Proterozoic Tasiuyak Gneiss in the area of the Voisey's Bay Ni-Cu-Co deposit contain sulfidic layers that may have provided sulfur to basaltic magmas during emplacement of the Voisey's Bay intrusion. Sulfur isotopic compositions of the Tasiuyak Gneiss range from -0.9 to -17.0‰, values typical for sulfides produced via bacterial sulfate reduction in an open marine environment. Archean gneisses in the area contain low amounts of sulfide and are less likely to have served as a source of externally-derived sulfur. Sulfur isotopic compositions of the sulfide minerals from the Voisey's Bay deposit show consistent variations, both spatially and with rock types. Disseminated and massive sulfides show a decrease in δ 34S to the west, with values typically between 0 and -2‰ in the Eastern Deeps, Ovoid, and Discovery Hill zone, and between -2 and -4‰ in the Reid Brook zone. δ 34S values of the Mushua intrusion to the north and the Normal Troctolite in the Eastern Deeps are more positive, ranging between -0.5 and 1.8‰. This range is taken to represent the isotopic composition of primary mantle-derived sulfur in the area because the Mushua intrusion and Normal Troctolite show the least geochemical evidence for contamination by country rocks. Sulfur isotopic data from the Reid Brook zone are consistent with up to a 50% sulfur contribution from the Tasiuyak Gneiss. Correspondingly lower proportions are indicated for the eastern portion of the deposit where country rocks are predominantly low-sulfide enderbitic and quartzofeldspathic gneisses. Oxygen isotopic values of gneiss fragments in the Basal Breccia Sequence and Feeder

  2. EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK

    SciTech Connect

    Larsen, Kirsten K.; Trinquier, Anne; Paton, Chad; Schiller, Martin; Wielandt, Daniel; Connelly, James N.; Nordlund, Ake; Krot, Alexander N.; Bizzarro, Martin; Ivanova, Marina A.

    2011-07-10

    With a half-life of 0.73 Myr, the {sup 26}Al-to-{sup 26}Mg decay system is the most widely used short-lived chronometer for understanding the formation and earliest evolution of the solar protoplanetary disk. However, the validity of {sup 26}Al-{sup 26}Mg ages of meteorites and their components relies on the critical assumption that the canonical {sup 26}Al/{sup 27}Al ratio of {approx}5 x 10{sup -5} recorded by the oldest dated solids, calcium-aluminium-rich inclusions (CAIs), represents the initial abundance of {sup 26}Al for the solar system as a whole. Here, we report high-precision Mg-isotope measurements of inner solar system solids, asteroids, and planets demonstrating the existence of widespread heterogeneity in the mass-independent {sup 26}Mg composition ({mu}{sup 26}Mg*) of bulk solar system reservoirs with solar or near-solar Al/Mg ratios. This variability may represent heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk at the time of CAI formation and/or Mg-isotope heterogeneity. By comparing the U-Pb and {sup 26}Al-{sup 26}Mg ages of pristine solar system materials, we infer that the bulk of the {mu}{sup 26}Mg* variability reflects heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk. We conclude that the canonical value of {approx}5 x 10{sup -5} represents the average initial abundance of {sup 26}Al only in the CAI-forming region, and that large-scale heterogeneity-perhaps up to 80% of the canonical value-may have existed throughout the inner solar system. If correct, our interpretation of the Mg-isotope composition of inner solar system objects precludes the use of the {sup 26}Al-{sup 26}Mg system as an accurate early solar system chronometer.

  3. Isotopic Evidence For Chaotic Imprint In The Upper Mantle Heterogeneity

    NASA Astrophysics Data System (ADS)

    Armienti, P.; Gasperini, D.

    2006-12-01

    Heterogeneities of the asthenospheric mantle along mid-ocean ridges have been documented as the ultimate effect of complex processes dominated by temperature, pressure and composition of the shallow mantle, in a convective regime that involves mass transfer from the deep mantle, occasionally disturbed by the occurrence of hot spots (e.g. Graham et al., 2001; Agranier et al., 2005; Debaille et al., 2006). Alternatively, upper mantle heterogeneity is seen as the natural result of basically athermal processes that are intrinsic to plate tectonics, such as delamination and recycling of continental crust and of subducted aseismic ridges (Meibom and Anderson, 2003; Anderson, 2006). Here we discuss whether the theory of chaotic dynamical systems applied to isotopic space series along the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) can delimit the length-scale of upper mantle heterogeneities, then if the model of marble-cake mantle (Allègre and Turcotte, 1986) is consistent with a fractal distribution of such heterogeneity. The correlations between the isotopic (Sr, Nd, Hf, Pb) composition of MORB were parameterized as a function of the ridge length. We found that the distribution of isotopic heterogenity along both the MAR and EPR is self- similar in the range of 7000-9000 km. Self-similarity is the imprint of chaotic mantle processes. The existence of strange attractors in the distribution of isotopic composition of the asthenosphere sampled at ridge crests reveals recursion of the same mantle process(es), endured over long periods of time, up to a stationary state. The occurrence of the same fractal dimension for both the MAR and EPR implies independency of contingent events, suggesting common mantle processes, on a planetary scale. We envisage the cyclic route of "melting, melt extraction and recycling" as the main mantle process which could be able to induce scale invariance. It should have happened for a significant number of times over the Earth

  4. Evidence for an ancient osmium isotopic reservoir in Earth.

    PubMed

    Meibom, Anders; Frei, Robert

    2002-04-19

    Iridosmine grains from placer deposits associated with peridotite-bearing ophiolites in the Klamath mountains have extremely radiogenic 186Os/188Os ratios and old Re-Os minimum ages, from 256 to 2644 million years. This indicates the existence of an ancient platinum group element reservoir with a supra-chondritic Pt/Os ratio. Such a ratio may be produced in the outer core as a result of inner core crystallization that fractionates Os from Pt. However, if the iridosmine Os isotopic compositions are a signature of the outer core, then the inner core must have formed very early, within several hundred million years after the accretion of Earth. PMID:11964475

  5. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.; Czamanske, G.K.

    1990-01-01

    Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5-19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary ??18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), ??18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (???26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (???25 Ma) and Rio Hondo (???21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. ??18O values for

  6. Persistently strong Indonesian Throughflow during marine isotope stage 3: evidence from radiogenic isotopes

    NASA Astrophysics Data System (ADS)

    Stumpf, Roland; Kraft, Steffanie; Frank, Martin; Haley, Brian; Holbourn, Ann; Kuhnt, Wolfgang

    2015-03-01

    The Indonesian Throughflow (ITF) connects the western Pacific Ocean with the eastern Indian Ocean, thus forming one of the major near surface current systems of the global thermohaline circulation. The intensity of the ITF has been found to be sensitive to changes in global ocean circulation, fluctuations in sea level, as well as to the prevailing monsoonal conditions of the Indonesian Archipelago and NW Australia. This study presents the first reconstruction of ITF dynamics combining radiogenic isotope compositions of neodymium (Nd), strontium (Sr), and lead (Pb) of the clay-size detrital fraction to investigate changes in sediment provenance, and paleo seawater Nd signatures extracted from the planktonic foraminifera and authigenic Fe-Mn oxyhydroxide coatings of the marine sediments focussing on marine isotope stage 3 (MIS3). Sediment core MD01-2378 was recovered within the framework of the International Marine Global Change Study (IMAGES) and is located in the area of the ITF outflow in the western Timor Sea (Scott Plateau, 13° 04.95‧ S and 121° 47.27‧ E, 1783 m water depth). In order to produce reliable seawater signatures, several extraction methods were tested against each other. The results of the study show that at this core location the extraction of surface water Nd isotope compositions from planktonic foraminifera is complicated by incomplete removal of contributions from Fe-Mn oxyhydroxides carrying ambient bottom water signatures. The bottom water Nd isotope signatures reliably obtained from the sediment coatings (average ɛNd = -5.0) document an essentially invariable water mass composition similar to today throughout the entire MIS3. The radiogenic Nd, Sr, and Pb isotope records of the clay-sized detrital fraction suggest that the Indonesian Archipelago rather than NW Australia was the main particle source at the location of core MD01-2378, and thus indicating a persistently strong ITF during MIS3. Furthermore, the variations of the detrital

  7. Strontium isotope evidence for landscape use by early hominins.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; de Ruiter, Darryl J; Lee-Thorp, Julia A; Codron, Daryl; le Roux, Petrus J; Grimes, Vaughan; Richards, Michael P

    2011-06-01

    Ranging and residence patterns among early hominins have been indirectly inferred from morphology, stone-tool sourcing, referential models and phylogenetic models. However, the highly uncertain nature of such reconstructions limits our understanding of early hominin ecology, biology, social structure and evolution. We investigated landscape use in Australopithecus africanus and Paranthropus robustus from the Sterkfontein and Swartkrans cave sites in South Africa using strontium isotope analysis, a method that can help to identify the geological substrate on which an animal lived during tooth mineralization. Here we show that a higher proportion of small hominins than large hominins had non-local strontium isotope compositions. Given the relatively high levels of sexual dimorphism in early hominins, the smaller teeth are likely to represent female individuals, thus indicating that females were more likely than males to disperse from their natal groups. This is similar to the dispersal pattern found in chimpanzees, bonobos and many human groups, but dissimilar from that of most gorillas and other primates. The small proportion of demonstrably non-local large hominin individuals could indicate that male australopiths had relatively small home ranges, or that they preferred dolomitic landscapes. PMID:21637256

  8. Multi-Isotopic evidence from West Eifel Xenoliths

    NASA Astrophysics Data System (ADS)

    Thiemens, M. M.; Sprung, P.

    2015-12-01

    Mantle Xenoliths from the West Eifel intraplate volcanic field of Germany provide insights into the nature and evolution of the regional continental lithospheric mantle. Previous isotope studies have suggested a primary Paleoproterozoic depletion age, a second partial melting event in the early Cambrian, and a Variscan metasomatic overprint. Textural and Sr-Nd isotopic observations further suggest two episodes of melt infiltration of early Cretaceous and Quaternary age. We have investigated anhydrous, vein-free lherzolites from this region, focusing on the Dreiser Weiher and Meerfelder Maar localities. Hand separated spinel, olivine, ortho- and clinopryoxene, along with host and bulk rocks were dissolved and purified for Rb-Sr, Sm-Nd, and Lu-Hf analysis on the Cologne/Bonn Neptune MC-ICP-MS. We find an unexpected discontinuity between mineral separates and whole rocks. While the latter have significantly more radiogenic ɛNd and ɛHf, mineral separates imply close-to chondritic compositions. Our Lu-Hf data imply resetting of the Lu-Hf systematic after 200 Ma. Given the vein-free nature of the lherzolites, this appears to date to the second youngest metasomatic episode. We suggest that markedly radiogenic Nd and Hf were introduced during the Quarternary metasomatic episode and most likely reside on grain boundaries.

  9. Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost

    NASA Technical Reports Server (NTRS)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.

  10. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records

    USGS Publications Warehouse

    Klemm, V.; Frank, M.; Levasseur, S.; Halliday, A.N.; Hein, J.R.

    2008-01-01

    Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10??Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10??Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12??Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the No??rdlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum. ?? 2008 Elsevier B.V.

  11. A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars

    NASA Astrophysics Data System (ADS)

    Borg, Lars; Drake, Michael J.

    2005-09-01

    There is widespread photogeological evidence for ubiquitous water flowing on the surface of Mars. However, the age of surface and near-surface water cannot be deduced with high precision from photogeology. While there is clear evidence for old and young fluvial features in the photogeologic record, the uncertainty in the absolute calibration of the Martian crater flux results in uncertainties of +/-1.5 Gyr in the middle period of Martian geologic history. Aqueous alteration of primary igneous minerals produces secondary minerals in Martian meteorites. Here we use the ages of secondary alteration minerals in Martian meteorites to obtain absolute ages when liquid water was at or near the surface of Mars. Aqueous alteration events in Martian meteorites occurred at 3929 +/- 37 Ma (carbonates in ALH84001), 633 +/- 23 Ma (iddingsite in nakhlites), and 0-170 Ma (salts in shergottites). Furthermore, these events appear to be of short duration, suggesting episodic rather than continuous aqueous alteration of the meteorites. The Martian meteorites appear to be contaminated by Martian surface Pb characterized by a 207Pb/206Pb ratio near 1. Lead of this composition could be produced by water-based alteration on the Martian surface. The high 129Xe/132Xe ratio in the Martian atmosphere compared to Martian meteorites indicates fractionation of I from Xe within ~100 Myr after nucleosynthesis of 129I. Such fractionation is difficult to achieve through magmatic processes. However, water very efficiently fractionates I from Xe, raising the intriguing possibility that Mars had a liquid water ocean within its first 100 Myr.1.

  12. Isotopic evidence from the eastern Canadian shield for geochemical discontinuity in the proterozoic mantle

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1983-01-01

    Most workers agree that Proterozoic anorthosite massifs represent the crystallization products of mantle-derived magmas1,2, although the composition of the parental melts is a major unsolved petrological problem 3. As mantle-derived rocks, the massifs can be used as geochemical probes of their late Precambrian upper mantle sources. We report here Nd and Sr isotopic compositions of anorthosites and related rocks from the Grenville and Nain Provinces of the eastern Canadian shield. Here 75% of the Earth's known anorthosite is found in a 1,600-km belt from the Adirondack Mountains of northern New York State to the eastern coast of Labrador4 (Fig. 1). The results indicate that the massifs were derived from at least two distinct mantle source regions which were established before 1,650 Myr ago, and were episodically involved in magmatism over ???500 Myr. One reservoir, below the Grenville Province, and probably below much of the eastern Superior Province, was isotopically similar to the depleted, modern-day mid-ocean ridge basalt (MORB) source. The other reservoir was chondritic to moderately enriched, and is most easily identified in the Nain Province, but may have occurred scattered throughout the Superior Province. ?? 1983 Nature Publishing Group.

  13. Neodymium isotope evidence for a chondritic composition of the Moon.

    PubMed

    Rankenburg, K; Brandon, A D; Neal, C R

    2006-06-01

    Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle. PMID:16741118

  14. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials

    PubMed

    Kennett; Cannariato; Hendy; Behl

    2000-04-01

    Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, several large, brief, negative excursions (up to -6 per mil) coinciding with smaller shifts (up to -3 per mil) in depth-stratified planktonic foraminiferal species indicate massive releases of methane from basin sediments. Gas hydrate stability was modulated by intermediate-water temperature changes induced by switches in thermohaline circulation. These oscillations were likely widespread along the California margin and elsewhere, affecting gas hydrate instability and contributing to millennial-scale atmospheric methane oscillations. PMID:10753115

  15. Thermophysiology of Tyrannosaurus rex: Evidence from Oxygen Isotopes.

    PubMed

    Barrick, R E; Showers, W J

    1994-07-01

    The oxygen isotopic composition of vertebrate bone phosphate (delta(p)) is related to ingested water and to the body temperature at which the bone forms. The delta(p) is in equilibrium with the individual's body water, which is at a physiological steady state throughout the body. Therefore, intrabone temperature variation and the mean interbone temperature differences of well-preserved fossil vertebrates can be determined from the deltap variation. Values of delta(p) from a well-preserved Tyrannosaurus rex suggest that this species maintained homeothermy with less than 4 degrees C of variability in body temperature. Maintenance of homeothermy implies a relatively high metabolic rate that is similar to that of endotherms. PMID:17750663

  16. Zircon from East Antarctica: evidence for Archean intracrustal recycling in the Kaapvaal-Grunehogna Craton from O and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Marschall, H. R.; Hawkesworth, C. J.; Storey, C.; Leat, P. T.; Dhuime, B.

    2010-12-01

    The Grunehogna Craton (GC, East Antarctica) is interpreted as part of the Archean Kaapvaal Craton of southern Africa prior to Gondwana breakup. The basement of the GC is only exposed within a small area comprising the dominantly leucocratic Annandagstoppane (ADT) granite. The granite (and hence the craton) has been dated previously only by Rb-Sr and Pb-Pb mica and whole-rock methods. Here, the crystallisation age of the granite was determined to 3,067 ± 8 Ma by U-Pb dating of zircon. This age is coeval with granitoids and volcanics in the Swaziland and Witwatersrand blocks of the Kaapvaal Craton. Inherited grains in the ADT granite were discovered with ages of up to 3,433 ±7 Ma, and are the first evidence of Palaeoarchean basement in Dronning-Maud Land. The age spectrum of the inherited grains reflects well-known tectono-magmatic events in the Kaapvaal Craton and form important pieces of evidence for the connection of the GC to the Kaapvaal Craton for at least three billion years and probably longer. Whole-rock chemistry and zircon O isotopes demonstrate a supracrustal sedimentary source for the granite, and Hf model ages show that at least two or three different crustal sources were contributing to the magma with model ages of ~3.50, ~3.75 and possibly ~3.90 Ga, respectively. 3.1 Ga granites covering ~60 % of the outcrop area of the Kaapvaal-Grunehogna Craton played a major role in the mechanical stabilisation of the continental crust during the establishment of the craton in the Mesoarchean. Combined zircon Hf-O isotope data and the lack of juvenile additions to the crust in the Mesoarchean strongly suggest that crustal melting and granite formation was caused by the deep burial of clastic sediments and subsequent incubational heating of the crust. Intracrustal recycling of this type may be an important process during cratonisation and the long-term stabilisation of continental crust.

  17. Grenvillian magmatism in the northern Virginia Blue Ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Borduas, E.A.; Dickin, A.P.; McNutt, R.H.; Fanning, C.M.

    2006-01-01

    Grenvillian (1.2 to 1.0 Ga) plutonic rocks in northern Virginia preserve evidence of episodic, mostly granitic magmatism that spanned more than 150 million years (m.y.) of crustal reworking. Crystallization ages determined by sensitive high resolution ion microprobe (SHRIMP) U-Pb isotopic analyses of zircon and monazite, combined with results from previous studies, define three periods of magmatic activity at 1183-1144 Ma (Magmatic Interval I), 1120-1111 Ma (Magmatic Interval II), and 1078-1028 Ma (Magmatic Interval III). Magmatic activity produced dominantly tholeiitic plutons composed of (1) low-silica charnockite, (2) leucogranite, (3) non-leucocratic granitoid (with or without orthopyroxene (opx)), and (4) intermediate biotite-rich granitoid. Field, petrologic, geochemical, and geochronologic data indicate that charnockite and non-charnockitic granitoids were closely associated in both space and time, indicating that presence of opx is related to magmatic conditions, not metamorphic grade. Geochemical and Nd isotopic data, combined with results from experimental studies, indicate that leucogranites (Magmatic Intervals I and III) and non-leucocratic granitoids (Magmatic Intervals I and II) were derived from parental magmas produced by either a high degree of partial melting of isotopically evolved tonalitic sources or less advanced partial melting of dominantly tonalitic sources that also included a more mafic component. Post-orogenic, circa 1050 Ma low-silica charnockite is characterized by A-type compositional affinity including high FeOt/(FeOt + MgO), Ga/Al, Zr, Nb, Y, and Zn, and was derived from parental magmas produced by partial melting of potassic mafic sources in the lower crust. Linear geochemical trends defined by leucogranites, low-silica charnockite, and biotite-rich monzogranite emplaced during Magmatic Interval III reflect differences in source-related characteristics; these features do not represent an igneous fractionation sequence. A

  18. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds

    NASA Astrophysics Data System (ADS)

    Burnham, A. D.; Thomson, A. R.; Bulanova, G. P.; Kohn, S. C.; Smith, C. B.; Walter, M. J.

    2015-12-01

    Sub-lithospheric diamonds from the Juina-5 and Collier-4 kimberlites and the Machado River alluvial deposit in Brazil have carbon isotopic compositions that co-vary with the oxygen isotopic compositions of their inclusions, which implies that they formed by a mixing process. The proposed model for this mixing process, based on interaction of slab-derived carbonate melt with reduced (carbide- or metal-bearing) ambient mantle, explains these isotopic observations. It is also consistent with the observed trace element chemistries of diamond inclusions from these localities and with the experimental phase relations of carbonated subducted crust. The 18O-enriched nature of the inclusions demonstrates that they incorporate material from crustal protoliths that previously interacted with seawater, thus confirming the subduction-related origin of superdeep diamonds. These samples also provide direct evidence of an isotopically anomalous reservoir in the deep (≥350 km) mantle.

  19. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  20. Isotopic evidence for the diets of European Neanderthals and early modern humans

    PubMed Central

    Richards, Michael P.; Trinkaus, Erik

    2009-01-01

    We report here on the direct isotopic evidence for Neanderthal and early modern human diets in Europe. Isotopic methods indicate the sources of dietary protein over many years of life, and show that Neanderthals had a similar diet through time (≈120,000 to ≈37,000 cal BP) and in different regions of Europe. The isotopic evidence indicates that in all cases Neanderthals were top-level carnivores and obtained all, or most, of their dietary protein from large herbivores. In contrast, early modern humans (≈40,000 to ≈27,000 cal BP) exhibited a wider range of isotopic values, and a number of individuals had evidence for the consumption of aquatic (marine and freshwater) resources. This pattern includes Oase 1, the oldest directly dated modern human in Europe (≈40,000 cal BP) with the highest nitrogen isotope value of all of the humans studied, likely because of freshwater fish consumption. As Oase 1 was close in time to the last Neanderthals, these data may indicate a significant dietary shift associated with the changing population dynamics of modern human emergence in Europe. PMID:19706482

  1. Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systematics in an oceanic crustal section: Evidence from the Samial ophiolite

    SciTech Connect

    McCulloch, M.T.; Gregory, R.T.; Wasserburg, G.J.; Taylor, H.P. Jr.

    1981-04-10

    The Sm-Nd, Rb-Sr, and /sup 18/O//sup 16/O isotopic systems have been used to distinguish between the effects of seafloor hydrothermal alteration and primary magmatic isotopic variations. The Sm-Nd isotopic system is essentially unaffected by seawater alteration, while the Rb-Sr and /sup 18/O//sup 16/O systems are sensitive to hydrothermal interactions with seawater. Sm-Nd mineral isochrons from the cumulate gabbros of the Samail ophiolite have an initial /sup 143/Nd//sup 144/Nd ratio of e/sub Nd/ = 7.8 +- 0.3, which clearly substantiates the oceanic affinity of this complex. The initial /sup 143/Nd//sup 144/Nd ratios for the harzburgite, plagiogranite, sheeted diabase dikes, and basalt units have a limited range in e/sub Nd/ of from 7.5 to 8.6, indicating that all the lithologies have distinctive oceanic affinities, although there is also some evidence for small isotopic heterogeneities in the magma reservoirs. The Sm-Nd mineral isochrons give crystallization ages of 128 +- 20 m.y. and 150 +- 40 m.y. from Ibra and 100 +- 20 m.y. from Wadi Fizh, which is approximately 300 km NW of Ibra. These crystallization ages are interpreted as the time of formation of the oceanic crust. The /sup 87/Sr//sup 86/Sr initial ratios on the same rocks have an extremely large range of from 0.7030 to 0.7065 and the d/sup 18/O values vary from 2.6 to 12.7. These large variations clearly demonstrate hydrothermal interaction of oceanic crust with seawater.

  2. Petrogenesis of orbicular ijolites from the Prairie Lake complex, Marathon, Ontario: Textural evidence from rare processes of carbonatitic magmatism

    NASA Astrophysics Data System (ADS)

    Zurevinski, Shannon E.; Mitchell, Roger H.

    2015-12-01

    A unique occurrence of orbicular ijolite is hosted in a matrix of contemporaneous holocrystalline ijolite at the 1.1 Ga Prairie Lake Carbonatite Complex (Marathon, Ontario, Canada), and is the only known occurrence of this textural type in a rock of ijolitic composition. This mineralogical and petrological study of this orbicular ijolite highlights many of the differences from other rare occurrences of orbicular rocks described from carbonatites, granites, diorites and lamprophyres. The orbicules occur along distinct, densely packed bands in equigranular nepheline-rich ijolite and range up to 6 cm in diameter. Macroscopically, the orbicules show variability in the mineralogy of their cores. Detailed imaging of the cores shows evidence of quench textures. Radial outward zoning is common near the cores with concentric banding occurring toward the margins of the orbicules. The mineralogy of the orbicules consists of: nepheline; diopside; calcite; apatite; andradite-melanite garnet; titanite; Fe-rich phlogopite; titaniferous magnetite; perovskite; with secondary natrolite, calcite and cancrinite. The mineralogy of the host ijolite is similar to that of the orbicules. Mineral compositions from the orbicular ijolite and the host ijolite are similar. Within the orbicules, anhedral minerals are found occurring in a 'matrix' of garnet throughout the distinct concentric bands. The textures within the concentric bands of the orbicules are best described as annealing recrystallization textures. The rims of the orbicules form interlocking crystals with the host ijolite resulting in near-indistinguishable boundaries. The orbicules are interpreted to represent interaction of a partially-crystallized quenched ijolitic melt, which was in contact with a second pulse of consanguineous ijolite magma. Immersion in the latter resulted in sub-solidus diffusion and annealing recrystallization. Orbicular textures were produced from previously formed quenched ijolite, which was

  3. Os isotope evidence for a differentiated plume head reservoir for the Ontong Java Nui source

    NASA Astrophysics Data System (ADS)

    Schaefer, B. F.; Hoernle, K.; Parkinson, I. J.; Golowin, R.; Portnyagin, M.; Turner, S.; Werner, R.

    2015-12-01

    Previous Os isotopic investigations of lavas from the Ontong Java Plateau1 observed that geographically widely dispersed samples of differing chemistries preserved an isochron of 123±8 Ma with an initial 187Os/188Os = 0.1289±0.0095. Samples from the Manihiki Plateau, itself a portion of the greater Ontong Java Nui (OJN) magmatic event, preserve a far greater range in Os isotopic signatures than previously reported for the OJP alone. In contrast to the OJP data which points towards a near-chondritic, primitive mantle source for both Kroenke and Kwambaita lavas, the low Ti Manihiki samples preserve 187Os/188Os(i) ranging from 0.1056-0.1714. High Ti Manihiki samples preserve 187Os/188Os(i) = 0.1094-0.1288. Such strongly subchondritic signatures require some component of recycled material in the mantle source, possibly SCLM (TRD low Ti samples ~3.1Ga; and ~2.3-2.6Ga for the high Ti samples). Higher initial Os isotope ratios could indicate the presence of metasomatised lithosphere and/or lower crust. The low Ti samples from Manihiki have been interpreted as the result of a two stage melting process, analogous to boninites2, the depleted source of which has itself been metasomatised by a HIMU component entrained within the plume head. Collectively the Ontong Java and Manihiki samples could conceivably contain mantle sourced from both an undifferentiated, near-chondritic source, as well as ancient, unradiogenic recycled sources. Thus the greater OJN province samples a heterogeneous source containing both primitive and recycled components. It is probable that greater degress of partial melting beneath Ontong Java homogenised these heterogeneities, whereas more complex, multi stage melting processes near the plume margin at Manihiki allowed sampling of the inherent heterogeneities within the plume head. 1: Parkinson et al., 2002, GCA 66(15A) A580. 2: Golowin et al., in prep.

  4. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    PubMed Central

    Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.

    2015-01-01

    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529

  5. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere.

    PubMed

    Pogge von Strandmann, Philip A E; Stüeken, Eva E; Elliott, Tim; Poulton, Simon W; Dehler, Carol M; Canfield, Don E; Catling, David C

    2015-01-01

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including 'snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ(82/76)Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ(82/76)Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ(82/76)Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529

  6. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.

    2015-12-01

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including `snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution.

  7. Stable isotope evidence for the adoption of maize agriculture.

    PubMed

    Schoeninger, Margaret J

    2009-10-01

    Over the past three decades, dozens of studies have produced carbon and nitrogen stable isotope data on early human bones and teeth from North America. Because these data record individual diets, they provide one way to test various hypotheses about the uptake and continued dependence on maize agriculture that is complementary to floral, paleopathological, and demographic approaches to the same problem. The delta13C values in the organic fraction of bone (bone collagen) plotted against those in the mineral fraction of bone (bone apatite) from several regions across North America reveal that not all human groups responded in the same way to maize agriculture. Rather there was variation between and within geographic regions. Similarly, the delta15N values in bone collagen from sites from across the southeastern United States show variation in dependence on maize and on marine foods that cannot be fully explained by geography or technical expertise. In combination, the data emphasize the need to consider social forces, both internal and external, to the group under study as well as environmental and technological constraints. PMID:20642150

  8. Nd-isotopic evidence for the origin of the Sudbury complex by meteoritic impact

    NASA Technical Reports Server (NTRS)

    Faggart, B. E.; Basu, A. R.; Tatsumoto, M.

    1985-01-01

    A Neodymium isotopic investigation was undertaken in order to determine the possibility that the Sudbury geological structure in Ontario, Canada was formed by meteoritic impact. Conclusive evidence points to the melting of crustal rocks by way of meteoritic impact in the forming of the Sudbury structure.

  9. Magmatic epidote and its petrologic significance

    SciTech Connect

    Zen, A.; Hammarstrom, J.M.

    1984-09-01

    Epidote is a major magmatic mineral in tonalite and granodiorite in a belt coextensive with the Mesozoic accreted terranes between northern California and southeastern Alaska. Textural and chemical evidence indicates that epidote crystallized as a relatively late but magmatic mineral that formed through reaction with hornblende in the presence of a melt phase. The observed relations concur with experimental data on crystallization of epidote from synthetic granodiorite at 8 kbar total pressure. Plutonic rocks bearing magmatic epidote must have formed under moderately high pressures, corresponding to lower crustal depths, under fairly oxidizing conditions. 23 references, 3 figures, 1 table.

  10. Geochemical and isotopic (Sr, C, O) data from the alkaline complex of Grønnedal-ĺka (South Greenland): evidence for unmixing and crustal contamination

    NASA Astrophysics Data System (ADS)

    Taubald, H.; Morteani, G.; Satir, M.

    The alkaline intrusion of Grønnedal-ĺka (South Greenland) is the oldest of the ten major rift-related plutonic complexes of southern Greenland that intruded during the Gardar period between 1330 and 1150 Ma into the 2.6-Ga-old gneisses and metasediments of the Ketilidian basement. The Grønnedal-ĺka alkaline intrusion consists of carbonatites, silicocarbonatites, transitional carbonatites and nepheline-bearing syenites. The silicocarbonatites exhibit locally ocellar textures that are typical for immiscibility processes. A 87Sr/86Sr initial ratio of about 0.703184 major and trace element compositions-including REE and C-, and O-isotope data from 15 carbonatite, 12 silicocarbonatite, 10 transitional carbonatite and 8 syenite and samples-provide evidence for minor crustal contamination of the mantle-derived magma that generated by unmixing carbonatites, silicocarbonatites and syenites. A scatter in major and trace element contents and isotope ratios is related to late- to post-magmatic alteration processes. The Grønnedal-ĺka silicocarbonatites are one of the rather rare cases in which unmixing of a highly alkaline mantle-derived magma into an alkalisilicate and a carbonatitic magma-fraction under plutonic conditions is well documented by textural and geochemical data.

  11. "Dirty" subduction during the closure of Tethyan Ocean(s)-evidence from K-rich postcollisional magmatism within Alpine-Himalayan belt

    NASA Astrophysics Data System (ADS)

    Dejan, Prelević

    2014-05-01

    The Alpine-Himalayan accretionary orogen occurs at a diffuse and long lived convergent zone between Eurasia and Gondwana that has been active since Permian-Mesozoic times, resulting in the consumption of major Tethyan ocean(s) along the Alpine-Himalayan system. The convergence involved accretion of small continental slivers, and numerous oceanic island arcs, which eventually resulted in a complex collage enclosing numerous continental crustal blocks intercalated with ophiolitic terrains of various sizes and ages forming superimposed orogenic belts. While the origin and development of the crustal segments of the lithosphere involved in the convergence along the Alpine-Himalayan system is better constrained being more accessible, the "destiny" of the lithospheric mantle beneath this accretionary orogen, the type and the timing of its metasomatic preconditioning is enigmatic. In this contribution I will draw conclusions about the nature of orogenic lithospheric mantle within the Alpine-Himalayan belt by using the geochemical and mineral data of K-rich post-collisional mantle-derived lavas from Spain, Italy, Balkans, Turkey and Iran. The volcanism is activated mostly after subduction ceased. It is diachronous with the most voluminous and widely distributed episode(s) beginning from the late Cretaceous, representing a magmatic response to the post-accretionary orogenesis. These volcanic rocks can be used as geochemical proxies to elucidate mantle geochemistry because they are derived from freshly metasomatized lithospheric mantle that is strongly enriched in radiogenic isotopes and trace elements. The whole rock and mineral chemistry of K-rich postcollisional lavas suggests that the orogenic mantle underwent much more intense and complex material recycling than anticipated only by fluid- or melt- dominated transport. This is based on several fundamental constraints: i) The lavas are strongly incompatible-element enriched with elevated 87Sr/86Sr (both in the whole rock

  12. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  13. Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota

    SciTech Connect

    Nabelek, P.I. Centre National de la Recherche Scientifique, Orleans ); Russ-Nabelek, C.; Haeussler, G.T. )

    1992-01-01

    Oxygen and hydrogen isotope systematics of the Proterozoic Harney Peak Granite were examined in order to constrain its petrogenesis and to examine the role of fluids in a peraluminous granite-pegmatite magmatic system. It is shown that fractional crystallization or subsolidus interaction of the Harney Peak Granite with the magmatic fluid or a fluid derived from the schist cannot explain the difference between the {delta}{sup 18}O values of the core and perimeter granites. Although some oxygen isotope heterogeneity in the granite could be explained by assimilation of the country rocks, assimilation cannot explain all of the difference between the two granite types. Instead, it is proposed that intrusion of the magma which led to the biotite granites in the core of the pluton at the culmination of regional metamorphism initiated melting of the schists at a depth somewhat greater than the present level of erosion. The melts were emplaced into the overlying schist and differentiated into the many tourmaline-rich granite-pegmatite sills and dikes comprising much of the perimeter of the Harney Peak Granite and its satellite plutons. Alternatively, the different melts may have resulted from melting along an isotopically heterogeneous vertical section of the crust in response to the ascent of a thermal pulse.

  14. Lunar tungsten isotopic evidence for the late veneer.

    PubMed

    Kruijer, Thomas S; Kleine, Thorsten; Fischer-Gödde, Mario; Sprung, Peter

    2015-04-23

    According to the most widely accepted theory of lunar origin, a giant impact on the Earth led to the formation of the Moon, and also initiated the final stage of the formation of the Earth's core. Core formation should have removed the highly siderophile elements (HSE) from Earth's primitive mantle (that is, the bulk silicate Earth), yet HSE abundances are higher than expected. One explanation for this overabundance is that a 'late veneer' of primitive material was added to the bulk silicate Earth after the core formed. To test this hypothesis, tungsten isotopes are useful for two reasons: first, because the late veneer material had a different (182)W/(184)W ratio to that of the bulk silicate Earth, and second, proportionally more material was added to the Earth than to the Moon. Thus, if a late veneer did occur, the bulk silicate Earth and the Moon must have different (182)W/(184)W ratios. Moreover, the Moon-forming impact would also have created (182)W differences because the mantle and core material of the impactor with distinct (182)W/(184)W would have mixed with the proto-Earth during the giant impact. However the (182)W/(184)W of the Moon has not been determined precisely enough to identify signatures of a late veneer or the giant impact. Here, using more-precise measurement techniques, we show that the Moon exhibits a (182)W excess of 27 ± 4 parts per million over the present-day bulk silicate Earth. This excess is consistent with the expected (182)W difference resulting from a late veneer with a total mass and composition inferred from HSE systematics. Thus, our data independently show that HSE abundances in the bulk silicate Earth were established after the giant impact and core formation, as predicted by the late veneer hypothesis. But, unexpectedly, we find that before the late veneer, no (182)W anomaly existed between the bulk silicate Earth and the Moon, even though one should have arisen through the giant impact. The origin of the homogeneous (182

  15. Timing and sources of granite magmatism in the Ribeira Belt, SE Brazil: Insights from zircon in situ U–Pb dating and Hf isotope geochemistry in granites from the São Roque Domain

    NASA Astrophysics Data System (ADS)

    Janasi, Valdecir de Assis; Andrade, Sandra; Vasconcellos, Antonio Carlos B. C.; Henrique-Pinto, Renato; Ulbrich, Horstpeter H. G. J.

    2016-07-01

    Eight new in situ U-Pb zircon age determinations by SHRIMP and LA-MC-ICPMS reveal that the main granitic magmatism in the São Roque Domain, which is largely dominated by metaluminous high-K calc-alkaline monzogranites with subordinate peraluminous leucogranites, occurred between 604 ± 3 and 590 ± 4 Ma. This small temporal range is ca. 20-30 Ma younger than previously admitted based on U-Pb TIMS dates from literature, some of which obtained in the same occurrences now dated. The observed discrepancy seems related to the presence of small Paleoproterozoic inherited cores in part of the zircon populations used for TIMS multigrain dating, which could also respond for the unusually high (up to 10 Ma) uncertainty associated with most of these dates. The younger age range now identified for the São Roque granite magmatism has important implications for the evolution of the Ribeira Fold Belt. Whilst previously admitted ages ca. 620-630 Ma substantiated correlations with the widespread and intensely foliated high-K calc-alkaline granitoid rocks of the neighbor Socorro-Guaxupé Nappe (potentially associated with an accretionary continental margin), the ∼600-590 Ma interval seems more consistent with a late deformation tectonic setting. Strongly negative εHf(t) characterize the magmatic zircons from the São Roque Domain granites. An eastward increase from -22 in the São Roque Granite to -11 in the Cantareira Granite and neighboring stocks suggests an across-domain shift in granite sources. Such eastward younging of sources, also indicated by Sm-Nd isotope data from granites and supracrustal sequences in neighboring domains, is suggestive that some of the first-order limits and discontinuities in this belt are not defined by the strike-slip fault systems traditionally taken to separate distinct domains. Although the negative εHf(t) and εNd(t) indicate sources with long crustal residence for all studied granite plutons, the observed range is more radiogenic than the

  16. Osmium isotopic evidence for mesozoic removal of lithospheric mantle beneath the sierra nevada, california

    PubMed

    Lee; Yin; Rudnick; Chesley; Jacobsen

    2000-09-15

    Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust. PMID:10988067

  17. Oxygen Isotope and Microtextural Evidence for Fluctuations in Fluid Pressure During Contact Metamorphism, Alta Aureole, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bowman, J. R.; Valley, J. W.; Kita, N.

    2006-12-01

    Thin section-scale textures record a detailed history of prograde and retrograde reactions in the periclase (Per) zone of the Alta Stock aureole. New ion microprobe (SIMS) measurements (10 micron spot, ±0.2 permil, 1sd) of the oxygen isotope compositions of the carbonates preserving these textures provide evidence for at least two cycles of oscillation of fluid pressure (Pfl) between lithostatic (PL) and hydrostatic (Phyd) conditions during evolution of the inner aureole. Infiltration of water-rich fluids during prograde metamorphism converted dolomite (Dol) to Per + calcite (Cal) marble and caused significant 18O/16O depletion in the Dol protolith (Initial δ18O (Cal) > +25 permil), producing Cal with δ18O values of +11 permil. The SIMS values approximate oxygen isotope exchange equilibrium with the Alta stock, indicating that infiltrating fluids were likely magmatic. Exsolution of fluid from the crystallizing magma, coupled with geothermometry from the periclase zone marbles, requires Pfl> PL. Horizontally-oriented expansion cracks filled with brucite (Br) extend from Br pseudomorphs after periclase, and cut retrograde Dol that partially to completely rims the Br pseudomorphs. This earlier retrograde Dol is significantly depleted in 18O/16O relative to matrix Cal, with δ18O of +5 to +7.1 permil. These lower δ18O values indicate that meteoric water infiltrated into the Per marbles during cooling and resulting partial back reaction of Per + Cal to Dol, prior to the hydration of the remaining Per to Br. Influx of meteoric water requires sufficient increase in permeability to permit surface- derived meteoric water to penetrate to the estimated 4.5 km depth of this structural level of the Alta aureole, and suggests a resulting decrease in Pfl to hydrostatic pressure conditions. The horizontally-oriented expansion cracks associated with the Br pseudomorphs indicate that sub-vertical expansion accompanied hydration of Per to Br, requiring that Pfl increase again to

  18. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Rino, Shuji; Maruyama, Shigenori; Hirata, Takafumi

    2010-04-01

    We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga. The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than

  19. Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: A case study from the Renison Sn-W deposit, Tasmania

    NASA Astrophysics Data System (ADS)

    Wawryk, Christine M.; Foden, John D.

    2015-02-01

    We present 50 new iron isotopic analyses of source granite and mineral separates from the Renison tin deposit in western Tasmania. The aim of the study is to characterise the composition of minerals within a tin deposit associated with a reduced, S-type magma. We have analysed bulk samples of granite, and separates of pyrrhotite, pyrite, arsenopyrite, magnetite, chalcopyrite and siderite by multi-collector inductively coupled mass spectrometry. The isotopic compositions of mineral separates are consistent with theoretical predictions of equilibrium fractionation based on Mössbauer spectroscopy and other parametric calculations. Mineral-mineral pairs yield temperatures of formation that are in agreement with prior detailed fluid inclusion studies, but are spatially inconsistent with declining fluid temperatures with distance from the causative intrusion, limiting the use of Fe isotopes as a potential geothermometer, at least in this case. Comparison of our data with published data from other deposits clearly demonstrates that pyrite, magnetite and chalcopyrite from the hottest ore fluids (>300-400 °C) at Renison are isotopically heavier than minerals sampled from a deposit formed at similar temperatures, but associated with a more oxidised and less differentiated intrusion.

  20. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf isotopes of the Wajilitag alkali mafic dikes, and associated diorite and syenitic rocks: Implications for magmatic evolution of the Tarim large igneous province

    NASA Astrophysics Data System (ADS)

    Zou, Si-Yuan; Li, Zi-Long; Song, Biao; Ernst, Richard E.; Li, Yin-Qi; Ren, Zhong-Yuan; Yang, Shu-Feng; Chen, Han-Lin; Xu, Yi-Gang; Song, Xie-Yan

    2015-01-01

    Tarim LIP indicate a FOZO-like component may also contribute to Tarim LIP magmatism. Geochemical and Sr-Nd-Pb-Hf isotopic features reflect that diorites and syenitic rocks are probably derived from a FOZO-like mantle source, consistent with a plume mantle origin and then underwent crystal fractionation process.

  1. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic.

    PubMed

    Richards, M P; Pettitt, P B; Stiner, M C; Trinkaus, E

    2001-05-22

    New carbon and nitrogen stable isotope values for human remains dating to the mid-Upper Paleolithic in Europe indicate significant amounts of aquatic (fish, mollusks, and/or birds) foods in some of their diets. Most of this evidence points to exploitation of inland freshwater aquatic resources in particular. By contrast, European Neandertal collagen carbon and nitrogen stable isotope values do not indicate significant use of inland aquatic foods but instead show that they obtained the majority of their protein from terrestrial herbivores. In agreement with recent zooarcheological analyses, the isotope results indicate shifts toward a more broad-spectrum subsistence economy in inland Europe by the mid-Upper Paleolithic period, probably associated with significant population increases. PMID:11371652

  2. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic

    PubMed Central

    Richards, Michael P.; Pettitt, Paul B.; Stiner, Mary C.; Trinkaus, Erik

    2001-01-01

    New carbon and nitrogen stable isotope values for human remains dating to the mid-Upper Paleolithic in Europe indicate significant amounts of aquatic (fish, mollusks, and/or birds) foods in some of their diets. Most of this evidence points to exploitation of inland freshwater aquatic resources in particular. By contrast, European Neandertal collagen carbon and nitrogen stable isotope values do not indicate significant use of inland aquatic foods but instead show that they obtained the majority of their protein from terrestrial herbivores. In agreement with recent zooarcheological analyses, the isotope results indicate shifts toward a more broad-spectrum subsistence economy in inland Europe by the mid-Upper Paleolithic period, probably associated with significant population increases. PMID:11371652

  3. Petrogenesis of Challis volcanics from central and southwestern Idaho - Trace element and Pb isotopic evidence

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Mertzman, Stanley A.

    1991-01-01

    An analysis of the lava flows and ash-flow tuffs in Idaho is conducted to determine the composition of the volcanics in terms of major and trace elements and Pb isotopic substances. Al2O3 is found to be low, MgO content is high, and the concentration of K2O is higher or equal to that of Na2O with respect to the lavas of mafic to intermediate composition. Trace elements and element ratios are compatible with the crustal component, and the Pb isotopic compositions suggest a lack of assimilation during crystallization. The evidence does not support the notion of a magma system related to subduction, and the data regarding Pb isotopes and trace elements point to a connection with the lithosphere. A model is proposed for the Challis volcanics in which they resulted from completely melting within the lithosphere and then extending during the late Mesozoic and early Cenozoic compression.

  4. Zircon U-Pb dating, trace element and Sr-Nd-Hf isotope geochemistry of Paleozoic granites in the Miao'ershan-Yuechengling batholith, South China: Implication for petrogenesis and tectonic-magmatic evolution

    NASA Astrophysics Data System (ADS)

    Zhao, Kui-Dong; Jiang, Shao-Yong; Sun, Tao; Chen, Wei-Feng; Ling, Hong-Fei; Chen, Pei-Rong

    2013-09-01

    The Miao'ershan-Yuechengling batholith (MYB) is one of the largest granitic batholiths in South China. At least five individual phases have been identified for the Paleozoic granites in the MYB. SHRIMP and LA-ICP-MS zircon U-Pb dating results imply that these granites were emplaced at 435 ± 4 Ma, 427 ± 3 Ma, 417 ± 6 Ma, 404 ± 6 Ma and 382 ± 2 Ma, respectively. The ages gradually decreased from the southeast to the northwest, implying that the MYB was incrementally emplaced from the southeast to the northwest lasting from early Silurian to late Devonian. Most granites are metaluminous to weakly peraluminous, and contain low P2O5 contents (<0.15%). These granites show enrichment of Rb, Th, U and depletion of Ba, Sr, Eu, Ti. They show relatively high (87Sr/86Sr)i ratios (>0.715), low ɛNd(t) values (-8.9 to -6.7), and low zircon ɛHf(t) values (-9.5 to -4.0). These geochemical and isotopic characteristics indicate that these granites may have formed from partial melting of Paleoproterozoic basement rocks. Slight geochemical differences between different phases can be interpreted as resulting from partial melting of heterogeneous sources or different proportion mixing of meta-igneous and meta-sedimentary rocks. Zircon Hf isotope model ages vary from 1.77 to 1.93 Ga, with an average value of 1.84 ± 0.07 Ga. These data indicate that crust growth in this region took place mainly during the Paleoproterozoic (ca. 1.84 Ga), and the basement in the MYB should belong to the Cathaysia Block. The formation of the Paleozoic granites in the MYB was suggested to be related to the late orogenic magmatism of the Wuyi-Yunkai orogeny. Thus, the late orogenic magmatism in the northwestern part of the Wuyi-Yunkai orogeny must have lasted until ca. 381 Ma and took place also to the east of the Anhua-Luocheng Fault.

  5. Late Paleozoic to Triassic magmatism in the north-central High Andes, Chile: New insights from SHRIMP U-Pb geochronology and O-Hf isotopic signatures in zircon

    NASA Astrophysics Data System (ADS)

    Hernández González, Álvaro; Deckart, Katja; Fanning, Mark; Arriagada, César

    2014-05-01

    The Chilean High Andes (28o- 31oS) comprises a vast number of late Paleozoic - Triassic granitoids which give information about the last stages of Gondwana assemblage. Particularly, previous studies determined two tectonic configurations during this time: subduction related compressional setting (late Carboniferous - Late Permian) and non-subduction post-collisional extensional setting (Late Permian - Triassic), as the last stage of Gondwana assemblage. However, new O-Hf isotopic data along new U-Pb SHRIMP ages in zircon have shown that this model should be modified and updated to the new analytical data available. δ18O values indicate a strong change in the tectonic configuration approximately 270 Ma (earliest middle Permian) and thus, units can be divided into 2 mayor groups: late Carboniferous to earliest middle Permian and middle Permian to Triassic. The oldest group shows slightly low values of ɛHfi (ca. +1 to -4) with high δ18O (ca. >6.5 o/oo), indicating an elevated supracrustal component and the addition of less radiogenic continental-like material, which along significant residence time (TDM2: Mesoproterozoic) can be interpreted as magmas formed at depth in a subduction-related continental arc, and contaminated with supracrustal material and/or oceanic sediments transported through the subducted slab to the mantle-wedge. Subsequently, middle Permian - Triassic rocks show a wider range of ɛHfi values (ca. +3 to -3) with relatively low, mantle-like δ18O (ca. 4.5-6.5 o/oo), indicating a source of magmas without the addition of supracrustal material for some plutons, whilst for others, a slight input. The higher positive values of ɛHfi can be related to the influence of new juvenile material in the source of some magmas. This isotopic data can be interpreted as rocks formed as the result of melting of an old thinned mafic crust (with mantle-like δ18O values characteristic of this type of rocks) with limited addition of supracrustal material; in

  6. Evidence from Lake Baikal for Siberian glaciation during oxygen-isotope substage 5d

    USGS Publications Warehouse

    Karabanov, E.B.; Prokopenko, A.A.; Williams, D.F.; Colman, Steven M.

    1998-01-01

    The paleoclimatic record from bottom sediments of Lake Baikal (eastern Siberia) reveals new evidence for an abrupt and intense glaciation during the initial part of the last interglacial period (isotope substage 5d). This glaciation lasted about 12 000 yr from 117 000 to 105 000 yr BP according to correlation with the SPEC-MAP isotope chronology. Lithological and biogeochemical evidence of glaciation from Lake Baikal agrees with evidence for the advance of ice sheet in northwestern Siberia during this time period and also with cryogenic features within the strata of Kazantzevo soils in Southern Siberia. The severe 5d glaciation in Siberia was caused by dramatic cooling due to the decrease in solar insolation (as predicted by the model of insulation changes for northern Asia according to Milankovich theory) coupled with western atmospheric transport of moisture from the opea areas of Northern Atlantic and Arctic seas (which became ice-free due to the intense warming during preceeding isotope substage 5e). Other marine and continental records show evidence for cooling during 5d, but not for intense glaciation. Late Pleistocene glaciations in the Northern Hemisphere may have begun in northwestern Siberia.

  7. Evidence for a long-lived accommodation/transfer zone beneath the Snake River Plain: A possible influence on Neogene magmatism?

    NASA Astrophysics Data System (ADS)

    Konstantinou, Alexandros; Miller, Elizabeth

    2015-12-01

    Geochronologic data compiled from 12 metamorphic core complexes and their flanking regions outline important differences in tectonic and magmatic histories north and south of the Snake River Plain-Yellowstone Province (SRP-Y). Magmatism, crustal flow, metamorphism, and extensional exhumation of core complexes north of the SRP occurred mostly between 55 and 42 Ma as compared to 42-25 Ma south of the SRP, with final exhumation of the southern complexes occurring only during younger Miocene (20-0 Ma) Basin and Range faulting. These significant differences in the timing of events suggest that the now lava-covered SRP, which is at a high angle to Cordilleran trends, may have at times operated as a steep shear or transfer zone accommodating difference in strain to the north and south. Following previous suggestions, we infer that this proposed accommodation or transfer zone developed above an important lithospheric boundary localized above a tear in the subducting slab (shallower slab angle to the south) used to explain both the locus of Late Cretaceous-Paleocene magmatism and the different ages and mechanisms of slab reconfiguration and removal north and south of the SRP during the Cenozoic. The details of these different histories help outline the complex evolution of this zone and also suggest that this zone of lithospheric weakness may have subsequently focused Miocene SRP-Y hot spot magmatism.

  8. Petrogenesis of tholeiitic basalts from the Central Atlantic magmatic province as revealed by mineral major and trace elements and Sr isotopes

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Jourdan, Fred; Bussy, François; Chiaradia, Massimo; Costa, Fidel

    2014-02-01

    The petrogenesis of the Kerforne dyke tholeiitic basalts (Brittany, France), the northernmost outcrop of the 200 Ma Central Atlantic magmatic province (CAMP), is constrained by its zoned augite and plagioclase crystals. Augite cores with high Mg/Fe and Cr suggest crystallization from near-primary magmas, with slightly enriched Rare Earth element (REE) patterns. Plagioclase crystals with high-An (An85) rounded cores are MgO- and K-rich, REE-poor, and display 87Sr/86Sr200Ma (0.7058) significantly higher than those of the surrounding ground-mass (0.7052-0.7053) suggesting open-system evolution processes. We propose a differentiation process involving mixing of different mafic magmas which occurred in less than a few hundred years judging from the lack of diffusive re-equilibration of major and trace elements in augite and of 87Sr/86Sr200Ma in plagioclase cores. The relatively large range of incompatible element contents and ratios of observed and calculated magmas are possibly due to fractional crystallization and to moderate amounts of crustal contamination which affected the more primitive magmas in particular. The calculated magmas reach near-primitive compositions and suggest that they originated from melting of a spinel peridotite slightly enriched in LREE vs. HREE.

  9. Long Term Trends in Subantarctic Nutrient Consumption: Evidence from Sedimentary and Diatom-Bound Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Bedsole, P.

    2014-12-01

    It has been proposed that the long term increase in Subantarctic opal export during glacial periods, centered around 1 Ma, is related to enhanced iron deposition and, potentially, carbon dioxide drawdown. New bulk sedimentary and diatom-bound nitrogen isotope records are used in combination with opal accumulation data from ODP Site 1090 to investigate controls on export production over the last 3 Ma. Sedimentary nitrogen content tracks opal during periods of high iron accumulation, especially after ~1 Ma. Bulk sedimentary nitrogen isotope trends are negatively correlated with sedimentary N-content and opal accumulation. This may be signal weaker nutrient consumption during times of high production, perhaps as a result of enhanced vertical nutrient supply. Alternatively, this variation in bulk, where high values occur in organic poor intervals, is consistent with other evidence for nitrogen isotopic alteration during periods of low export to the seafloor. The diatom-bound nitrogen isotope record does not have a clear relationship with opal or iron accumulation. A long term shift in the diatom-bound N isotope values is apparent, where the average diatom-bound δ15N from 0.5-1 Ma is 4.4 ‰, and from 2-2.6 Ma is 5.9 ‰. This decrease may reflect long-term changes in nitrate availability. A first order comparison to planktonic/benthic carbon isotopic gradients suggests that enhanced vertical mixing may explain the observed productivity peaks and lower overall diatom-bound N isotope values in the interval centered around 1 Ma.

  10. Mercury Isotopic Evidence for Contrasting Mercury Transport Pathways to Coastal versus Open Ocean Fisheries (Invited)

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Senn, D. B.; Chesney, E. J.; Bank, M. S.; Maage, A.; Shine, J. P.

    2009-12-01

    Mercury stable isotopes provide a new method for tracing the sources and chemical transformations of Hg in the environment. In this study we used Hg isotopes to investigate Hg sources to coastal versus migratory open-ocean species of fish residing in the northern Gulf of Mexico (nGOM). We report Hg isotope ratios as δ202Hg (mass dependent fractionation relative to NIST 3133) and Δ201Hg (mass independent fractionation of odd isotopes). In six coastal and two open ocean species (blackfin and yellowfin tuna), Hg isotopic compositions fell into two non-overlapping ranges. The tuna had significantly higher δ202Hg (0.1 to 0.7‰) and Δ201Hg (1.0 to 2.2‰) than the coastal fish (δ202Hg = 0 to -1.0‰; Δ201Hg = 0.4 to 0.5‰). The observations can be best explained by largely disconnected food webs with isotopically distinct MeHg sources. The ratio Δ199Hg/Δ201Hg in nGOM fish is 1.30±0.10 which is consistent with laboratory studies of photochemical MeHg degradation and with ratios measured in freshwater fish (Bergquist and Blum, 2007). The magnitude of mass independent fractionation of Hg in the open-ocean fish suggests that this source of MeHg was subjected to extensive photodegradation (~50%) before entering the base of the open-ocean food web. Given the Mississippi River’s large, productive footprint in the nGOM and the potential for exporting prey and MeHg to the adjacent oligotrophic GOM, the different MeHg sources are noteworthy and consistent with recent evidence in other systems of important open-ocean MeHg sources. Bergquist, B. A. and Blum, J. D., 2007. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318, 417-420.

  11. Carbon isotopic evidence for increased aridity in northwestern Australia through the Quaternary

    NASA Astrophysics Data System (ADS)

    Pack, Sean M.; Miller, Gifford H.; Fogel, Marilyn L.; Spooner, Nigel A.

    2003-03-01

    Carbon isotopic records of bulk soil organic matter from two independent sedimentary sequences in the Lake Gregory region record vegetation change from monsoonal NW Australia. A broad isotopic enrichment of ˜16% through a 9-m-thick sedimentary sequence in the main basin is interpreted to indicate a shift from C 3 to C 4 plant dominance. A second isotopic record from a 4-m-thick sequence recovered southwest of the modern lakes corroborates this conclusion. Optically stimulated luminescence (OSL) dates of an eolian sand ( depth=60 cm) and fluvial sand ( depth=330 cm) from the 9-m sequence are 27.6±1.4 and 122.4±9.5 ka, respectively, indicating that the entire record is likely to span several hundred thousand years. C 4 plants dominate only after 120 ka. Conversion of C 3 woodland to C 4 grassland requires a decrease in total precipitation and increased seasonality of precipitation, reflecting a long-term trend toward a more arid and monsoon-dominated climate regime in NW Australia. The rapid shift from mixed C 3/C 4 to dominantly C 4 vegetation after 120 ka may reflect an acceleration of landscape change in the Late Quaternary. Other Australian records that indicate increased continental aridity in the Late Quaternary support the Lake Gregory evidence. However, neither of the Lake Gregory isotopic records mimics the global oxygen isotope record, suggesting that temperature has not played a significant role in forcing vegetation change in this region.

  12. Petrogenesis of the magmatic complex at Mount Ascutney, Vermont, USA - I. Assimilation of crust by mafic magmas based on Sr and O isotopic and major element relationships

    USGS Publications Warehouse

    Foland, K.A.; Henderson, C.M.B.; Gleason, J.

    1985-01-01

    The Ascutney Mountain igneous complex in eastern Vermont, USA, is composed of three principal units with compositions ranging from gabbro to granite. Sr and O isotopic and major element relationships for mafic rocks, granites, and nearby gneissic and schistose country rock have been investigated in order to describe the petrogenesis of the mafic suite which ranges from gabbro to diorite. The entire complex appears to have been formed within a short interval 122.2??1.2 m.y. ago. The granites with ??18O near +7.8??? had an initial 87Sr/86Sr of 0.70395(??6) which is indistinguishable from the initial ratio of the most primitive gabbro. Initial 87Sr/86Sr ratios and ??18O values for the mafic rocks range from 0.7039 to 0.7057 and +6.1 to +8.6???, respectively. The isotopic ratios are highly correlated with major element trends and reflect considerable crustal contamination of a mantle-derived basaltic parent magma. The likely contaminant was Precambrian gneiss similar to exposed bedrock into which the basic rocks were emplaced. A new approach to modelling of assimilation during the formation of a cogenetic igneous rock suite is illustrated. Chemical and isotopic modelling indicate that the mafic rocks were produced by simultaneous assimilation and fractional crystallization. The relative amounts of fractionation and assimilation varied considerably. The mafic suite was not produced by a single batch of magma undergoing progressive contamination; rather, the various rocks probably were derived from separate batches of magma each of which followed a separate course of evolution. The late stage granite was apparently derived from basaltic magma by fractionation with little or no crustal assimilation. The early intrusive phases are much more highly contaminated than the final one. The observed relationships have important implications for the formation of comagmatic complexes and for isotopic modelling of crustal contamination. ?? 1985 Springer-Verlag.

  13. Chemical and U-Pb dating investigation of zircons from alnöites on Malaita, Solomon Islands: evidence for prolonged kimberlite-type magmatic activity

    NASA Astrophysics Data System (ADS)

    Simonetti, A.; Neal, C. R.

    2009-12-01

    The Solomon Islands chain is located in an area dominated by the Ontong Java Plateau (OJP). The island of Malaita formed at the obducted leading edge of the OJP and is geologically distinct from the islands to the west. Occurrences of pipe-like bodies of alnöite outcrop within limestones and mudstones in northern Malaita and have been seismically imaged offshore within the OJP. The Malaita alnöite is silica-undersaturated and contains a rich and varied suite of peridotite xenoliths and megacrysts (clinopyroxene, garnet, ilmenite, phlogopite, and minor zircon). The alnöite and associated megacrysts have been the focus of detailed chemical and radiogenic isotope investigations but the exact age of alnöite emplacement remains debatable. Previously reported ages for minerals associated with the Malaita alnöites include an Ar-Ar date of 34 Ma for phlogopite from a mantle xenolith, and a single 206Pb/238U date of 33.9 Ma obtained from a single zircon megacryst. Here we report on a detailed chemical (major and trace element) and U-Pb age investigation of zircon crystals recovered from rivers in the Aluta, Kwainale, and Faufaumela regions of central Malaita. The major element (SiO2, ZrO2, and HfO2) composition and back scattered electron (BSE) imaging of mm- to cm-sized zircons from the three locations were conducted by electron microprobe analysis. The data reveal a variation in the Zr/Hf ratio (45 to 57) for zircons from the Aluta area, whereas this ratio is relatively uniform in most zircons from Kwainale (Zr/Hf 45 to 48). Of importance, the BSE imaging reveals the homogeneous nature of the grains and the lack of inherited components. Trace element compositions of the zircon crystals were obtained by laser ablation (LA)-ICP-MS and these reveal similar chondrite-normalized REE patterns at variable enrichment levels for all grains analyzed; these patterns along with the U, Th, and Pb contents are similar to those documented for mantle-derived zircons formed within

  14. New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.

    2016-05-01

    We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.

  15. Source components and magmatic processes in the genesis of Miocene to Quaternary lavas in western Turkey: constraints from HSE distribution and Hf-Pb-Os isotopes

    NASA Astrophysics Data System (ADS)

    Aldanmaz, Ercan; Pickard, Megan; Meisel, Thomas; Altunkaynak, Şafak; Sayıt, Kaan; Şen, Pınar; Hanan, Barry B.; Furman, Tanya

    2015-08-01

    Hf-Pb-Os isotope compositions and highly siderophile element (HSE) abundance variations are used to evaluate the mantle source characteristics and possible effects of differentiation processes in lavas from western Turkey, where the eruption of Late Miocene to Quaternary OIB-type intraplate mafic alkaline lavas followed pre-Middle Miocene convergent margin-type volcanism. Concentrations of Os, Ir, and Ru (IPGE) in the OIB-type intraplate lavas decrease with fractionation for primitive melts (MgO > 10 wt%), suggesting that these elements reside predominantly in olivine and associated HSE retaining trace phases and behave compatibly during olivine-dominated fractionation. Fractional crystallization trends indicate distinctly lower bulk partition coefficients for IPGE in more evolved lavas, possibly reflecting a change in the fractionating assemblages. Pd and Re in the primitive melts display negative correlations with MgO, demonstrating moderately incompatible behavior of these elements during fractionation, while the significantly scattered variation in Pt against MgO may indicate the effects of micronuggets of a Pt-rich alloy. Os-rich alkaline primary lavas (>50 ppt Os) exhibit a limited range of 187Os/188Os (0.1361-0.1404), with some xenolith-bearing lavas displaying depletions in 187Os/188Os (0.1131-0.1232), suggesting slight compositional modification of primitive melts through contamination with highly depleted, Os-rich mantle lithosphere. More radiogenic Os isotope ratios (187Os/188Os > 0.1954) in the evolved lavas reflect contamination of the magmas by high187Os/188Os crustal material during shallow differentiation. The OIB-type lavas show limited variations in Hf and Pb isotopes with 176Hf/177Hf = 0.282941-0.283051, 206Pb/204Pb = 18.683-19.091, 207Pb/204Pb = 15.579-15.646, 208Pb/204Pb = 38.550-38.993; 176Hf/177Hf ratios correlate negatively with 208Pb*/206Pb*, suggesting the effects of similar mantle processes on the evolution of time-integrated Th/U and Lu

  16. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    NASA Astrophysics Data System (ADS)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  17. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    premetamorphic isotopic compositions. Such preservation is particularly evident in instances of high ??18O calcites (25.0 to 27.2), low ??18O wollastonites (-1.3 to 3.5), and sharp gradients in ??18O (18 permil/15m between marble and anorthosite, 8 permil/25 m in metasediments, and 6 permil/1 m in skarn). Isotopic exchange is seen across marble-anorthosite and marble-granite contacts only at the scale of a few meters. Small (<5 m) marble xenoliths are in approximate exchange equilibrium with their hosts, but for larger xenoliths and layers of marble there is no evidence of exchange at distances greater than 10 m from meta-igneous contacts. ?? 1984 Springer-Verlag.

  18. Contrasted crustal sources as defined by whole-rock and Sr-Nd-Pb isotope geochemistry of neoproterozoic early post-collisional granitic magmatism within the Southern Brazilian Shear Belt, Camboriú, Brazil

    NASA Astrophysics Data System (ADS)

    Florisbal, Luana Moreira; de Assis Janasi, Valdecir; de Fátima Bitencourt, Maria; Stoll Nardi, Lauro Valentim; Heaman, Larry M.

    2012-11-01

    The early phase of post-collisional granitic magmatism in the Camboriú region, south Brazil, is represented by the porphyritic biotite ± hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (˜610 Ma), equigranular, biotite ± muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb isotopes require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriú Complex, as indicated by strongly negative ɛNdt (-23 to -24) and unradiogenic Pb (e.g., 206Pb/204Pb = 16.0-16.3; 207Pb/204Pb = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative ɛNdt (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and isotopic characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriú Complex.

  19. Sr and O Isotope Geochemistry of Volcán Uturuncu, Andean Central Volcanic Zone, Bolivia: Resolving Crustal and Mantle Contributions to Continental Arc Magmatism

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Feeley, T.

    2015-12-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates and in situ Sr isotope ratios (mainly plagioclase) from andesitic to dacitic composition lava flows erupted from Volcán Uturuncu in the Andean Central Volcanic Zone (CVZ). Variation in δ18O values (6.6-11.8‰ relative to SMOW) for the lava suite is large and the data as a whole exhibit no simple correlation with any parameter of compositional evolution. Plagioclase separates from nearly all rocks have δ18O values (6.6-11.8‰) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the back arc regions of the CVZ. Most Uturuncu magmas must therefore contain high 18O crustal material. This hypothesis is further supported by textures and isotopic variation (87Sr/86Sr= 0.7098-0.7165) within single plagioclase phenocrysts suggesting repeated mixing followed by crustal contamination events occurring in the shallow crustal reservoir. The dacite composition rocks show more variable and extend to higher δ18O ratios than andesite composition rocks. These features are interpreted to reflect assimilation of heterogeneous upper continental crust by low 18O andesitic magmas followed by mixing or mingling with similar composition hybrid magmas with high 18O. Conversely, the δ18O values of the andesites suggest contamination of the magmas by continental crust modified by intrusion of mantle derived basaltic magmas. These results demonstrate on a relatively small scale the strong influence that intrusion of mantle-derived mafic magmas can have on modifying the composition of pre-existing continental crust in regions of melt production. Given this result, similar, but larger-scale, regional trends in magma compositions may reflect an analogous but more extensive process wherein the continental crust becomes progressively hybridized beneath frontal arc localities as a result of protracted intrusion of subduction

  20. Isotopic Evidence for Early Trade in Animals between Old Kingdom Egypt and Canaan.

    PubMed

    Arnold, Elizabeth R; Hartman, Gideon; Greenfield, Haskel J; Shai, Itzhaq; Babcock, Lindsay E; Maeir, Aren M

    2016-01-01

    Isotope data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct evidence for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900-2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete evidence of early trade in animals from Egypt to Canaan. PMID:27322197

  1. Isotopic Evidence for Early Trade in Animals between Old Kingdom Egypt and Canaan

    PubMed Central

    Greenfield, Haskel J.; Shai, Itzhaq; Babcock, Lindsay E.; Maeir, Aren M.

    2016-01-01

    Isotope data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct evidence for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900–2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete evidence of early trade in animals from Egypt to Canaan. PMID:27322197

  2. Evidence of a shallow persistent magmatic reservoir from joint inversion of gravity and ground deformation data: The 25-26 October 2013 Etna lava fountaining event

    NASA Astrophysics Data System (ADS)

    Greco, Filippo; Currenti, Gilda; Palano, Mimmo; Pepe, Antonio; Pepe, Susi

    2016-04-01

    To evaluate the volcanic processes leading to the 25-26 October 2013 lava fountain at Mount Etna, we jointly investigated gravity, GPS, and DInSAR measurements covering the late-June to early-November time interval. We used finite element modeling to infer a shallow magmatic reservoir which (i) inflated since July 2013, (ii) fed the volcanic activity at the summit craters during 25-26 October, and (iii) deflated due to magma drainage related to this volcanic activity. We suggested that this reservoir belongs to a shallow volume, which is located beneath the summit area and is replenished by magma rising from deep reservoirs and fed the short-term volcanic activity, representing a persistent shallow magmatic plumbing system of Etna. In addition, the model results show that there is a large discrepancy between the erupted and shallow reservoir deflation volumes, which could be reasonably attributable to a highly compressible volatile-rich magma.

  3. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence

    NASA Astrophysics Data System (ADS)

    Reis, Nelson Joaquim; Teixeira, Wilson; Hamilton, Mike A.; Bispo-Santos, Franklin; Almeida, Marcelo Esteves; D'Agrella-Filho, Manoel Souza

    2013-08-01

    The Avanavero Large Igneous Province (LIP) constitutes the most important Paleoproterozoic mafic magmatism event in the Guiana Shield, northern Amazonian Craton. It comprises voluminous dykes and sills, the latter intruded into regional sedimentary cover successions such as the Roraima Supergroup and Urupi Formation. Roughly contemporary mafic magmatism such as the Crepori Dolerite occurs in the southern part of the Amazonian Craton (Central Brazil Shield). This study reports new geochemical data for samples from the Avanavero Dolerite and the coeval Quarenta Ilhas Dolerite, as well as reassessing published information on roughly contemporaneous mafic dykes in the shield to address issues related with the tectonic significance of such an intraplate igneous event and paleogeographic reconstructions. The Avanavero magmatism is tholeiitic and is geochemically similar to E-MORB and subcontinental lithospheric mantle basalts. New U-Pb baddeleyite ages of 1795 ± 2 Ma and 1793 ± 1 Ma, respectively, from occurrences in both the Pakaraima and Urupi Blocks at the north and south portions of the Guiana Shield confirm that they belong to the Avanavero LIP. These two ages are within error of a U-Pb age of 1794 ± 4 Ma for an Avanavero dyke in Guyana. Slightly younger published U-Pb ages range from about 1780-1787 Ma, including the Crepori Dolerite in Central Brazil Shield (southern Amazonian Craton). This may indicate that two pulses of magmatism could be associated with the Avanavero event. The paleomagnetic data favour a Laurentia/Baltica/Amazonia link at 1.79 Ga, and this large landmass may have constituted the core of the Columbia supercontinent during Late Proterozoic times.

  4. Devonian magmatism in Brooks Range, Alaska

    SciTech Connect

    Dillion, J.T.; Tilton, G.R.

    1985-04-01

    Devonian bimodel metaplutonic and metavolcanic rocks lie in parallel, west-trending belts in the southern Brooks Range. Overlapping distribution of the plutonic and volcanic rocks occurs in volcanic centers found south of the Doonerak window in the Wiseman, Chandalar, and Colleen quadrangles, and near the Beaver Creek pluton in the Survey Pass quadrangle. The Devonian age is interpreted from isotopic analyses of U and Pb of over 55 zircon fractions from these felsic metaigneous units. Considering concordia plots and Pb-Pb ages from over 40 discordant zircon fractions and fossil ages derived from marbles intercalated in the volcanic sequences, the authors see an age range of 360-410 Ma. The age range is attributed to variation in crystallization ages, as well as the U-Pb systematics of the Brooks Range zircons. Their overlapping age and distribution provides evidence for cogenesis of the Devonian plutonic and volcanic rocks, and also for their correlation with Devonian magmatic rocks of the North American Cordilleran. Lower intercepts on U-Pb concordia diagrams for these zircons range from 105 to 150 Ma, bracketing the end of lead loss resulting from metamorphism. The age of this metamorphic event corresponds to the Late Jurassic and earliest Cretaceous emplacement of the Angayucham terrane. U-Pb concordia plots of 15 zircon fractions from five samples of the Ernie Lake granitic gneiss bodies are explained as latest Proterozoic intrusion of granitic magma with entrained 2-Ga-old zircons, which subsequently lost lead during Mesozoic metamorphism.

  5. The Mackenzie River magnetic anomaly, Yukon and Northwest Territories, Canada-Evidence for Early Proterozoic magmatic arc crust at the edge of the North American craton

    USGS Publications Warehouse

    Pilkington, M.; Saltus, R.W.

    2009-01-01

    We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300??m, 3.5??km and 400??km. The MRA is the largest amplitude (13??nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8-12??km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5??km) aeromagnetic data produces an average magnetization of 2.5??A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt. Crown Copyright ?? 2008.

  6. Trindade and Martı´n Vaz Islands, South Atlantic: Isotopic (Sr, Nd, Pb) and trace element constraints on plume related magmatism

    NASA Astrophysics Data System (ADS)

    Siebel, W.; Becchio, R.; Volker, F.; Hansen, M. A. F.; Viramonte, J.; Trumbull, R. B.; Haase, G.; Zimmer, M.

    2000-05-01

    Highly alkaline silica undersaturated lavas erupted at Trindade Island over its 5 Ma geologic history and comprise primitive nephelinites-basanites and more evolved nepheline-bearing phonolitic rocks. Nephelinites-basanites and phonolitic rocks are thought to be genetically related via crystal fractionation, as indicated by the very limited range in Sr, Nd and Pb isotope ratios, systematically increasing contents of incompatible trace elements from primitive to evolved rock types, and similar variation in chemical composition of the major phenocryst phases (clinopyroxene, amphibole, feldspar) in all rock types. Tb/Yb ratios of the primitive lavas are high (2.6-4.1) and silica contents are low (39.8-42.9 wt.% SiO 2), indicating that the melts were generated at deep mantle depths (˜150 km), within the garnet lherzolite stability field. Non-radiogenic 87Sr/ 86Sr (0.70377-0.70421) and radiogenic 143Nd/ 144Nd (0.512752-0.512837) values show that the Trindade and Martı´n Vaz rocks are derived from moderately depleted sources relative to bulk-earth. The lavas have moderate radiogenic 206Pb/ 204Pb ratios of 19.00-19.33, 207Pb/ 204Pb of 15.56-15.60, and 208Pb/ 204Pb of 38.89-39.34; they plot close to the Northern Hemisphere Reference Lines (NHRL). The narrow range of Sr, Nd, and Pb isotopic compositions in the Trindade and Martı´n Vaz lavas suggests either that the source region was homogeneous (similar to the common mantle components FOZO and "C"), or that melts from a heterogeneous three-component mantle source, involving HIMU, enriched mantle EM I, and depleted N-type MORB, were well mixed before eruption. Late Cretaceous to Present volcanism ranging from interior Brazil towards Trindade is thought to record the passage of the South American plate over the Trindade mantle plume (e.g., O'Connor and Duncan, 1990). Comparison with published data from other mafic rocks along the suggested plume track shows that Trindade isotopic compositions match those of transitional

  7. The Origin of Dark Inclusions in Allende: New Evidence from Lithium Isotopes

    NASA Technical Reports Server (NTRS)

    Sephton, Mark A.; James, Rachael H.; Zolensky, Michael E.

    2006-01-01

    Aqueous and thermal processing of primordial material occurred prior to and during planet formation in the early solar system. A record of how solid materials were altered at this time is present in the carbonaceous chondrites, which are naturally delivered fragments of primitive asteroids. It has been proposed that some materials, such as the clasts termed dark inclusions found in type III chondrites, suggest a sequence of aqueous and thermal events. Lithium isotopes (Li-6 and Li-7) can reveal the role of liquid water in dark inclusion history. During aqueous alteration, Li-7 passes preferentially into solution leaving Li-6 behind in the solid phase and, consequently, any relatively extended periods of interaction with Li-7-rich fluids would have left the dark inclusions enriched in the heavier isotope when compared to the meteorite as a whole. Our analyses of lithium isotopes in Allende and its dark inclusions reveal marked isotopic homogeneity and no evidence of greater levels of aqueous alteration in dark inclusion history.

  8. Stable isotope evidence for hydrologic conditions during regional metamorphism in the Panamint Mountains, California

    SciTech Connect

    Bergfeld, D.; Nabelek, P.I. . Dept. of Geological Sciences); Labotka, T.C. . Dept. of Geological Sciences)

    1992-01-01

    The Kingston Peak Formation forms part of the Panamint Mountains, California, metamorphic core-complex. Peak tremolite-grade metamorphism as exhibited in Wildrose Canyon occurred in the Jurassic; a retrograde thermal event may have occurred in the Cretaceous. The formation consists dominantly of interbedded siliceous limestones and graphitic calcareous schists. Stable isotopic analysis shows two distinct groups of data. delta O-18 values of calcite from the limestones range between 15.3 and 17.3[per thousand], probably reflecting their original Proterozoic depositional values. Likewise the delta C-13 values are also unshifted, ranging from +1% to +3.8%o. In contrast, delta O-18 values of calcite from the schists are for the most part > 20[per thousand]. These high values could reflect the original depostional conditions; however, they may be due to equilibration with silicate minerals which range from 14.9 to 17.9[per thousand]. Overall, the combined oxygen and carbon isotopic data indicate that most isotopic changes can be explained by closed-system equilibration. Only a limited amount of interaction with externally-derived fluids during metamorphism is evident in the isotopic data. The interaction may have been confined to vicinities of faults and fractures which are common in Wildrose Canyon.

  9. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  10. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  11. Syndepositional diagenesis of modern platform carbonates: Evidence from isotopic and minor element data

    NASA Astrophysics Data System (ADS)

    Patterson, William P.; Walter, Lynn M.

    1994-02-01

    Physical, elemental, and stable isotopic evidence documents significant syndepositional diagenesis off biogenic carbonate in modern sediment pore water. Halimeda (aragonite) and Neogoniolithon (high-Mg calcite) fragments from sediment cores and experimental substrates were compared with fresh samples to determine the magnitude of minor element (Sr, Mg), and stable isotopic (C and O) compositional shifts. Although no significant shift in bulk sediment mineralogy is apparent, experimental substrates and natural biogenic grains exhibit significant diagenetic changes. These changes include dissolution textures, net loss of mass, changes in minor element composition, and progressive evolution toward carbon and oxygen isotopic equilibrium with p ore water. Our results demonstrate that carbonate sediment can undergo rapid syndepositional dissolution and reprecipitation. Pore waters likely are buffered chemically and isotopically by most abundant carbonate grain types. In turn, compositions of less abundant carbonate grains may shift toward equilibrium with respect to pore water. Therefore, many components of shelf limestone have compositions controlled by chemically evolved pore waters rather than by seawater from which the biotic carbonate originally precipitated.

  12. Stable isotope evidence for shifting Mediterranean climatic influences in Western Romania, East-Central Europe

    NASA Astrophysics Data System (ADS)

    Perşoiu, Aurel; Viorica, Nagavciuc; Carmen, Bădăluţă

    2015-04-01

    The stable isotopic composition of oxygen and hydrogen in precipitation, preserved in various sedimentary archives (speleothems, cave ice, tree rings) is being intensively used to reconstruct past climatic variability in western Romania. These studies heavily rely on the assumption that air temperature is the main factor controlling the isotopic composition of precipitation and hence this climatic parameter is the one reconstructed. However, ongoing monitoring studies are increasingly showing that this, especially along Romania's western border, moisture source is playing an important role in determining the isotopic composition of precipitation, hence complicating the simplistic picture outlined above. One of the main factors influencing climate variability in Romania is the North Atlantic Oscillation (NAO), a measure of the strength of the Icelandic Low and Azores High. Over During the positive NAO phase, the Atlantic storms are displaced northward and, although reduced in strength, Mediterranean cyclones penetrate further north. During the negative phase however, the Atlantic storms track is displaced southward, restricting the area receiving Mediterranean precipitation to the SW corner of Romania. Here we present isotopic evidence for a shift in the source of precipitation from North Atlantic to Mediterranean ones in SW Romania that masks the temperature signal recorded in the stable isotopic composition of precipitation. Between April 2012 and 2014 we have collected monthly samples of precipitation along a N-S transect in Western Romania and have analyzed them for their δ18O and δ2H. Precipitation in NW Romania are derived solely from North Atlantic sources, while those in SW Romania mix moisture evaporated from both the North Atlantic and the Mediterranean Sea. The northern boundary of the Mediterranean influence is shifting in phase with the NAO index and the position of the jet-stream. As a result, during periods with high NAO index, the stable isotope

  13. Compound-Specific Carbon and Hydrogen Isotope Analysis - Field Evidence of MTBE Bioremediation

    NASA Astrophysics Data System (ADS)

    Kuder, T.; Kolhatkar, R. V.; Philp, P.; Wilson, J. T.; Landmeyer, J. E.; Allen, J.

    2002-12-01

    . (Env. Sci. Tech., 2002, 36, 1931-1938) and appears to be in excess of -60 for H and under -2 for C. The high H fractionation observed under aerobic conditions may be attributed to the initial, monooxygenase transformation of MTBE (cf., Deeb et al., Biodegradation, 2000, 11, 171-186). The anaerobic enzymatic reactions were not characterized yet, but a hydrolytic process may be responsible. Interestingly, isotopic fractionation at an anaerobic site, which was treated by oxygen injection, did not show differences between aerobic and anaerobic parts of the plume. Despite oxygen addition, there was no evidence for monooxygenase activity.

  14. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene

    USGS Publications Warehouse

    Nielsen, S.G.; Mar-Gerrison, S.; Gannoun, A.; LaRowe, D.; Klemm, V.; Halliday, A.N.; Burton, K.W.; Hein, J.R.

    2009-01-01

    The first high resolution thallium (Tl) isotope records in two ferromanganese crusts (Fe-Mn crusts), CD29 and D11 from the Pacific Ocean are presented. The crusts record pronounced but systematic changes in 205Tl/203Tl that are unlikely to reflect diagenetic overprinting or changes in isotope fractionation between seawater and Fe-Mn crusts. It appears more likely that the Fe-Mn crusts track the Tl isotope composition of seawater over time. The present-day oceanic residence time of Tl is estimated to be about 20,000??yr, such that the isotopic composition should reflect ocean-wide events. New and published Os isotope data are used to construct age models for these crusts that are consistent with each other and significantly different from previous age models. Application of these age models reveals that the Tl isotope composition of seawater changed systematically between ~ 55??Ma and ~ 45??Ma. Using a simple box model it is shown that the present day Tl isotope composition of seawater depends almost exclusively on the ratio between the two principal output fluxes of marine Tl. These fluxes are the rate of removal of Tl from seawater via scavenging by authigenic Fe-Mn oxyhydroxide precipitation and the uptake rate of Tl during low temperature alteration of oceanic crust. It is highly unlikely that the latter has changed greatly. Therefore, assuming that the marine Tl budget has also not changed significantly during the Cenozoic, the low 205Tl/203Tl during the Paleocene is best explained by a more than four-fold higher sequestration of Tl by Fe-Mn oxyhydroxides compared with at the present day. The calculated Cenozoic Tl isotopic seawater curve displays a striking similarity to that of S, providing evidence that both systems may have responded to the same change in the marine environment. A plausible explanation is a marked and permanent increase in organic carbon export from ~ 55??Ma to ~ 45??Ma, which led to higher pyrite burial rates and a significantly reduced

  15. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy

    NASA Astrophysics Data System (ADS)

    Conticelli, Sandro; Marchionni, Sara; Rosa, Davide; Giordano, Guido; Boari, Elena; Avanzinelli, Riccardo

    2009-01-01

    The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr-Nd-Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788-18.851 for 206Pb/204Pb, 15.685-15.701 for 207Pb/204Pb, and 39.048-39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc

  16. Radiocarbon in hydrologic systems containing dissolved magmatic carbon dioxide

    SciTech Connect

    Rose, T.P.; Davisson, M.L.

    1996-09-06

    In regions of active volcanism, the presence of magmatic carbon dioxide (CO{sub 2}) in regional hydrologic systems provides a radiocarbon-depleted tracer for delineating ground-water transport and mixing processes and provides a means of assessing regional magmatic carbon fluxes. Variations in the stable carbon isotopic composition ({delta}{sup 13}C) and carbon-14 values of springs and surface waters from the southern Cascade Range show consistent patterns of carbon isotopic mixing between magmatic, biogenic, and atmospheric CO{sub 2} reservoirs. Radiocarbon measurements of waters from the Lassen region in northern California were used to construct a ground-water carbon-14 contour map, revealing principal subsurface flow paths and a broad region of diffuse magmatic CO{sub 2} flux. 20 refs., 4 figs., 1 tab.

  17. U-Pb zircon and geochemical evidence for bimodal mid-Paleozoic magmatism and syngenetic base-metal mineralization in the Yukon-Tanana terrane, Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Wooden, J.L.; Hopkins, M.J.

    2004-01-01

    New SHRIMP (sensitive, high-resolution ion microprobe) U-Pb zircon ages and trace element geochemical data for mafic and felsic metaigneous rocks of the pericratonic Yukon-Tanana terrane in east-central Alaska help define the tectonic setting of mid-Paleozoic magmatism and syngenetic hydrothermal Zn-Pb-Ag mineralization along the ancient Pacific margin of North America. We compare data from similar greenschist-facies sequences of bimodal volcanic and subvolcanic rocks associated with carbonaceous and siliciclastic marine sedimentary rocks, in the Wood River area of the Alaska Range and the Salcha River area of the Yukon-Tanana Upland, and from amphibolite-facies augen gneiss and mafic gneiss (amphibolite) in the Goodpaster River area of the upland. Allowing for analytical uncertainties, igneous crystallization age ranges of 376-353 Ma, 378-346 Ma, and 374-358 Ma are indicated by 13 new SHRIMP U-Pb dates for the Wood River, Salcha River, and Goodpaster River areas, respectively. Bimodal magmatism is indicated by Late Devonian crystallization ages for both augen gneiss (371 ?? 3 and 362 ?? 4 Ma) and associated orthoamphibolite (369 ?? 3 Ma) in the upland and by stratigraphic interleaving of mafic and felsic rocks in the Alaska Range. Metabasites in all three study areas have elevated HFSE (high field strength element) and REE (rare earth element) contents indicative of generation in a within-plate (extensional) tectonic setting. Within-plate trace element signatures also are indicated for peralkaline metarhyolites that host the largest volcanogenic massive sulfide deposits of the Bonnifield district in the Wood River area and for metarhyolite tuff interlayered with the carbonaceous Nasina assemblage, which hosts sedimentary exhalative sulfide occurrences in the Salcha River area. Most of the other felsic metaigneous samples from the Alaska Range and the Yukon-Tanana Upland have geochemical signatures that are similar to those of both average upper continental crust

  18. Reassessment of the Role of Magmatism in the Evolution of the Catalina MCC: Evidence for a Felsic-Intermediate Pluton at Shallow Depths

    NASA Astrophysics Data System (ADS)

    Terrien, J. J.; Finn, C. A.; Baldwin, S. L.

    2005-12-01

    Aeromagnetic and Bouguer gravity data from the Catalina metamorphic core complex (MCC) combined with thermochronologic data provide evidence for the presence of a subsurface shallow level pluton in the region. The Catalina MCC located in southeastern Arizona includes the Tortolita, Santa Catalina and Rincon Mountains. The Catalina MCC trends NW-SE and the direction of extension along the Catalina detachment fault was top to the southwest. Aeromagnetic and Bouguer gravity data from the region show large NW-SE-trending highs, bordered to the NE by parallel NW-SE-trending magnetic and gravity lows. The lows can be attributed to the Wilderness granitic suite, which is exposed at the surface and extends up to 12 km below the surface based on previous gravity modeling (Holt et al., 1986). Forward modeling of the aeromagnetic data and Bouguer gravity data was performed in order to: 1) constrain the nature of the contact between the magnetic body and the Wilderness suite, 2) constrain the depth of the magnetic body and 3) distinguish between upwarping of the lower crust and pluton emplacement as mechanisms in MCC formation. Two NE-SW-trending profiles, which transect both the highs and the lows and one NW-SE profile from the magnetic and gravity highs, were modeled. The models indicate that the contact between the magnetic/dense body and the Wilderness suite is near vertical or steeply dipping to the northwest. The preferred models show the depth to the body ranges from <1 km to ~ 4 km. Several models were explored to distinguish between a pluton and upwarping of the lower crust as the cause of the magnetic/gravity high, features that have been incorporated in most models for MCC formation. Modeling shows upwarping of lower crustal is not possible because the density needed to represent the lower crust is too high to fit the observed gravity data. An alternative explanation is that the body represents a felsic to intermediate pluton. The aeromagnetic map patterns suggest

  19. Petrology and Geochemistry of Plagioclase-Phyric Basaltic Lava Flows on St. George Island, Alaska: Evidence for a Genetic Link Between Magmatic Centers of the Pribilof Islands

    NASA Astrophysics Data System (ADS)

    Deraps, M. R.; Feeley, T. C.; Underwood, S. J.; Winer, G. S.

    2006-12-01

    suggest that one endmember was produced by olivine + clinopyroxene + Fe-Ti oxide ± plagioclase fractionation of high MgO, high SiO2 parental magmas. Fractionation of high MgO parental magmas with lower SiO2 contents can yield the other endmember. Compositionally, the latter endmember is nearly identical to young plagioclase-phyric lavas erupted on St. Paul Island, and it was likely produced by similar differentiation processes. The plagioclase-phyric lavas on St. George Island thus provide cryptic evidence for a genetic link between major volcanic centers in the Pribilof Islands. Specifically, a late-stage shift in the St. George magmatic system to a system similar to that presently active on St. Paul is suggested by the high stratigraphic positions and petrologic similarities of plagioclase-phyric lavas on both islands.

  20. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil

    NASA Astrophysics Data System (ADS)

    Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros

    2016-09-01

    Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to

  1. Isotope evidence for the intensive use of marine foods by Late Upper Palaeolithic humans.

    PubMed

    Richards, M P; Jacobi, R; Cook, J; Pettitt, P B; Stringer, C B

    2005-09-01

    We report here on direct evidence for the intensive consumption of marine foods by anatomically modern humans at approximately 12,000 years ago. We undertook isotopic analysis of bone collagen from three humans, dating to the late Palaeolithic, from the site of Kendrick's Cave in North Wales, UK. The isotopic measurements of their bone collagen indicated that ca. 30% of their dietary protein was from marine sources, which we interpret as likely being high trophic level marine organisms such as marine mammals. This indicates that towards the end of the Pleistocene modern humans were pursuing a hunting strategy that incorporated both marine and terrestrial mammals. This is the first occurrence of the intensive use of marine resources, specifically marine mammals, that becomes even more pronounced in the subsequent Mesolithic period. PMID:15975629

  2. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident

    PubMed Central

    Zheng, Jian; Tagami, Keiko; Watanabe, Yoshito; Uchida, Shigeo; Aono, Tatsuo; Ishii, Nobuyoshi; Yoshida, Satoshi; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao

    2012-01-01

    The Fukushima Daiichi nuclear power plant (DNPP) accident caused massive releases of radioactivity into the environment. The released highly volatile fission products, such as 129mTe, 131I, 134Cs, 136Cs and 137Cs were found to be widely distributed in Fukushima and its adjacent prefectures in eastern Japan. However, the release of non-volatile actinides, in particular, Pu isotopes remains uncertain almost one year after the accident. Here we report the isotopic evidence for the release of Pu into the atmosphere and deposition on the ground in northwest and south of the Fukushima DNPP in the 20–30 km zones. The high activity ratio of 241Pu/239+240Pu (> 100) from the Fukushima DNPP accident highlights the need for long-term 241Pu dose assessment, and the ingrowth of 241Am. The results are important for the estimation of reactor damage and have significant implication in the strategy of decontamination. PMID:22403743

  3. Neanderthal diet at Vindija and Neanderthal predation: The evidence from stable isotopes

    PubMed Central

    Richards, Michael P.; Pettitt, Paul B.; Trinkaus, Erik; Smith, Fred H.; Paunović, Maja; Karavanić, Ivor

    2000-01-01

    Archeological analysis of faunal remains and of lithic and bone tools has suggested that hunting of medium to large mammals was a major element of Neanderthal subsistence. Plant foods are almost invisible in the archeological record, and it is impossible to estimate accurately their dietary importance. However, stable isotope (δ13C and δ15N) analysis of mammal bone collagen provides a direct measure of diet and has been applied to two Neanderthals and various faunal species from Vindija Cave, Croatia. The isotope evidence overwhelmingly points to the Neanderthals behaving as top-level carnivores, obtaining almost all of their dietary protein from animal sources. Earlier Neanderthals in France and Belgium have yielded similar results, and a pattern of European Neanderthal adaptation as carnivores is emerging. These data reinforce current taphonomic assessments of associated faunal elements and make it unlikely that the Neanderthals were acquiring animal protein principally through scavenging. Instead, these findings portray them as effective predators. PMID:10852955

  4. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident.

    PubMed

    Zheng, Jian; Tagami, Keiko; Watanabe, Yoshito; Uchida, Shigeo; Aono, Tatsuo; Ishii, Nobuyoshi; Yoshida, Satoshi; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao

    2012-01-01

    The Fukushima Daiichi nuclear power plant (DNPP) accident caused massive releases of radioactivity into the environment. The released highly volatile fission products, such as (129m)Te, (131)I, (134)Cs, (136)Cs and (137)Cs were found to be widely distributed in Fukushima and its adjacent prefectures in eastern Japan. However, the release of non-volatile actinides, in particular, Pu isotopes remains uncertain almost one year after the accident. Here we report the isotopic evidence for the release of Pu into the atmosphere and deposition on the ground in northwest and south of the Fukushima DNPP in the 20-30 km zones. The high activity ratio of (241)Pu/(239+240)Pu (> 100) from the Fukushima DNPP accident highlights the need for long-term (241)Pu dose assessment, and the ingrowth of (241)Am. The results are important for the estimation of reactor damage and have significant implication in the strategy of decontamination. PMID:22403743

  5. Evolution of Palaeoproterozoic mafic intrusions located within the thermal aureole of the Sudbury Igneous Complex, Canada: Isotopic, geochronological and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Prevec, Stephen A.; Baadsgaard, Halfdan

    2005-07-01

    Impact cratering and their resultant geological phenomena are recognised as significant factors in the lithological and biologic evolution of the earth. Age-dating of impact events is critical in correlating cause and effects for these catastrophic processes. The Falconbridge and Drury Township (Twp) intrusions were emplaced at the contact between Neoarchaean basement and Palaeoproterozoic volcanosedimentary rocks, and also lie at the southeast and southwest edges of the Sudbury Igneous Complex (SIC), within its thermal contact aureole. The Falconbridge Twp intrusion is dated at 2441 ± 3 Ma by U-Pb zircon, with evidence of Archaean inheritance from its host granitoids. Granitoids from the southernmost Abitibi Subprovince are dated here between 2670 ± 11 Ma for an undeformed Algoman granite, and 2696 ± 18 Ma for a foliated granitoid, consistent with existing data from the Abitibi Greenstone Belt and from the Wawa Subprovince. Major and trace element geochemical evidence, common-Pb isotopic compositions, and ɛNd2440 values between 0 and -1 are all consistent with a Palaeoproterozoic origin for the Falconbridge Twp intrusion, and support inclusion in the East Bull Lake-type suite of leucogabbroic plutons and sills. In contrast, the Drury Twp intrusion gives a U-Pb zircon age of 1859 ± 13 Ma, coincident with the date of SIC-emplacement. While the major and trace element compositions are comparable to the Falconbridge data, the Drury displays significant heterogeneity in ɛNd2440, with values ranging from +3.7 to -0.1, and contains more radiogenic Pb isotopic compositions. Field, geochemical and isotopic evidence clearly distinguishes this intrusion from constituents of the SIC itself, and indicates that the Drury too is a Palaeoproterozoic intrusion. This requires that apparently unshocked, undeformed magmatic-looking zircon has been grown or reset in a postmagmatic setting. This has significant implications for the identification of mantle-derived magmas and

  6. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments

    NASA Astrophysics Data System (ADS)

    Hu, Ningjing; Huang, Peng

    2016-04-01

    Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments Hu Ning-jinga, Huang Pengb,, Liu Ji-huaa, a First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China To investigate the source of Pb within Bohai Bay, Pb concentrations and Pb isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of surface sediments in this area were determined. The Pb concentration in this bay varied widely from 6.9 to 39.2 μg/g (average: 21.8 ± 7.8 μg/g), and the Pb isotopic compositions ranged from 0.8338 to 0.8864 (average: 2.0997 ± 0.0180) for 208Pb/206Pb and from 2.0797 to 2.1531 (average: 0.8477 ± 0.0135) for 207Pb/206Pb, presenting in three distinct clusters. The Pb isotopic ratios of sediments from the northeastern (NE zone) and northwestern (NW zone) coastal areas were significantly influenced by anthropogenic sources such as coal combustion and automobile emission. In sediments from the central and southern Bohai Bay (C-S zone); however, Pb mainly originated from the Yellow River catchment, as a result of lithogenic sediment (from rock weathering) accumulation. The Pb isotopic ratios further indicate that, apart from riverine inputs, the neighboring large-scale ports and aerosols significantly contributed to the anthropogenic Pb contained in these sediments. Pb contamination in the Haihe and Luanhe river mouths as well as in the regions near ports is also suggested from anthropogenic enrichment factors. As cities and ports continue to develop around Bohai Bay, a long-term extensive sewage monitoring program is highly recommended.

  7. Neoproterozoic-middle Paleozoic tectono-magmatic evolution of the Gorny Altai terrane, northwest of the Central Asian Orogenic Belt: Constraints from detrital zircon U-Pb and Hf-isotope studies

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Min; Buslov, Mikhail M.; Cai, Keda; Zhao, Guochun; Zheng, Jianping; Rubanova, Elena S.; Voytishek, Elena E.

    2015-09-01

    The Gorny Altai terrane (GA) is a key area in understanding the crustal evolution of the Central Asian Orogenic Belt (CAOB). This paper reports U-Pb and Hf-isotope data for detrital zircons from Cambrian to early Devonian sedimentary sequences to constrain their provenance, as well as the tectono-magmatic events and crustal growth in this region. Nearly all the detrital zircons are characterized by euhedral to subhedral morphology, high Th/U ratios (ca. 0.1-1.6) and typical oscillatory zoning, indicating a magmatic origin. The three samples from the Gorny Altai Group (middle Cambrian to early Ordovician) yield detrital zircon populations that are composed predominantly of 530-464 Ma grains, followed by a subordinate group of 641-549 Ma old. The Silurian and Devonian samples exhibit similar major zircon populations (555-456 Ma and 525-463 Ma, respectively), but a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sample. Our results suggest that detritus from the nearby Kuznetsk-Altai intra-oceanic island arc served as a unitary source for the Cambrian-Silurian sedimentary sequences, but older detritus from other sources added to the early Devonian sequence. The low abundance of ca. 640-540 Ma detrital zircons may testify that this island arc was under a primitive stage in this period, when mafic volcanic rocks probably dominated. In contrast, the dominant population of ca. 530-470 Ma zircons may indicate an increased amount of granitic rocks in the source area, suggesting that the Kuznetsk-Altai island arc possibly evolved into a mature one in the Cambrian to early Ordovician. The ca. 530-470 Ma detrital zircons are almost exclusively featured by positive εHf(t) values and have two-stage Hf model ages of ca. 1.40-0.45 Ga, indicating that the precursor magmas were sourced predominantly from heterogeneous juvenile materials. We conclude that the late Neoproterozoic to early Paleozoic magmatism in the Kuznetsk-Altai arc made a

  8. U-Pb Dating, whole rock and Sr-Nd-Pb-O isotope geochemistry of collisional magmatism in the CACC: Çiçekdaǧ igneous complex (ÇIC)

    NASA Astrophysics Data System (ADS)

    Deniz, Kiymet; Kagan Kadioglu, Yusuf; Stuart, Finlay; Ellam, Rob; Boyce, Adrian; Condon, Daniel

    2015-04-01

    The closure of Neotethys induced from calcalkaline through alkaline magmatism within the Central Anatolia Crystalline Complex (CACC) during the late Cretaceous-early Paleogene. Timing of these magmatism is very important for understanding the magmato-tectonic evolution and the relation with the collision. Despite the genesis of felsic products are well understood, there is lack of petrogenetic explanation about especially alkaline mafic products. The relation between Neotethyan ophiolites and late alkaline dykes which haven't reported before is the most important undeclared gap. Çiçekdağ igneous complex (ÇIC) is one of the best area for explaining all of these problems within the CACC. In accordance with these purposes, we have carried out detailed petrographic, whole rock geochemical, Sr-Nd-Pb-O isotopic and geochronological (U/Pb and Ar/Ar) study of the rocks in the ÇIC in order to unravel the magmatic history of the CACC and thus constrain the tectonic history. The intrusive rocks of the ÇIC are differentiated into four main group as an ophiolites, calcalkaline series, alkaline series and late alkaline dykes. The felsic and mafic units intruded to the ophiolitic rocks. The calcalkaline series mostly composed of monzonites and monzodiorite porphyry whereas the alkaline series consist of syenites and feldspathoid-bearing gabbros. Variations in the major oxide compositions of both rock series can be attributed with fractionation of clinopyroxene, plagioclase, amphibole, apatite and iron titan oxide minerals. The high 87Sr/86Sr and low 143Nd/144Nd of both series are indicative of mantle sources with large continental crustal components. Feldspar and quartz oxygen isotope data from calcalkaline and alkaline series have a range of δ18O values 5.1-11.4o 8.3-9.2o and 7.7-14.1o 10.2-13.7o respectively and are compatible with the values for I-A-type granitoids. Both rock series represent the mixed (mantle-crustal) origin. The combination of all data suggest that

  9. Magmatic Evolution of the Coso Geothermal Area, California

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.; Miller, J. S.; Leeman, W. P.; Johnson, B. R.; Monastero, F. C.

    2007-12-01

    Geothermal energy in the Coso field owes its origin to basaltic magmatism. Volcanism commenced ~3.5 Ma ago, coincident with a widespread Pliocene outburst in eastern California. Although most basalts associated with this event are highly potassic, those at Coso are not. Pliocene volcanic rocks at Coso (erupted between 3.5-2 Ma) range from basalt to rhyodacite, show abundant petrographic evidence for open-system behavior (e.g., quartz xenocrysts in basalts), and have compositions consistent with mixing. In contrast, Pleistocene rocks, erupted <1 Ma ago, comprise a strongly bimodal suite of mildly alkalic basalt and high-silica rhyolite. Pleistocene basalts differ from their Pliocene counterparts in generally having more depleted 87Sr/86Sr and ɛNd values (0.703, +7 vs. 0.704, +4); higher TiO2 and Nb; lower MgO; greater stalling depths in the crust. Pliocene rocks are distinctly arc-like even though they were erupted ~10 Ma after subduction ceased. In contrast, Pleistocene basalts have a distinctly OIB-like geochemical signature, with undepleted high field strength elements and plume-like radiogenic isotope ratios; these characteristics are shared with late Cenozoic basalts across the western U.S. Rare Pleistocene basalts that were erupted from within the footprint of the rhyolite field have notably high TiO2 contents (>3 wt%), similar to basalts from the Columbia River and Snake River Plain fields. Unlike Pliocene rocks, which scatter toward isotopic values of local basement with increasing SiO2, Pleistocene rhyolites generally have high and consistent ɛNd (+1 - +2.5). Producing this signature by AFC processes involving basalt and basement rocks requires remarkably consistent mixing and fractionation at small-volume volcanic centers separated by several km. Alternatively, high ɛNd values in the rhyolites could have been produced by partial melting of Pliocene basalts and andesites, which have very similar Nd isotopic compositions. Increasing ɛNd in silicic rocks

  10. Further evidence of 777 Ma subduction-related continental arc magmatism in Eastern Dom Feliciano Belt, southern Brazil: The Chácara das Pedras Orthogneiss

    NASA Astrophysics Data System (ADS)

    Koester, E.; Porcher, C. C.; Pimentel, M. M.; Fernandes, L. A. D.; Vignol-Lelarge, M. L.; Oliveira, L. D.; Ramos, R. C.

    2016-07-01

    In this study new SHRIMP U-Pb zircon data for the Chácara das Pedras Gneiss in Porto Alegre, southern Brazil are presented. They represent a small exposure of the crust which was intruded by a large volume of orogenic to anorogenic granitoids at ca. 618-562 m.y. in the Eastern Domain of the Dom Feliciano Belt. The Chácara das Pedras tonalitic orthogneiss has geochemical similarities with subduction-related magmatic rocks of continental arcs. They present high Sr initial ratios (∼0.712), negative ɛNd(t = 777) values (∼-6), TDM varying from 1.8 to 2.0 Ga. The igneous protoliths of these orthogneisses were previously considered to be Paleoproterozoic based on an upper intercept age of discordant zircon analyses. In the present study these orthogneisses were re-sampled and re-analyzed in an attempt to obtain more concordant analytical data. The U-Pb zircon analyses were carried out using the SHRIMP IIe at the Laboratório de Geocronologia de Alta Resolução of the Universidade de São Paulo. The U-Pb concordia age obtained for igneous textural domains of the zircon grains is 777 ± 4 Ma. A few analyses on zircon overgrowths give poorly defined late Cryogenian ages of ca. 650 Ma. Older ages, mostly discordant, were obtained in a few zircon cores, showing an upper intercept age of ca. 1.9 Ga. One sample of the Três Figueiras Granodiorite, which crosscut the orthogneiss in the same outcrop, was also investigated. The zircons of this granodiorite are, however, mostly metamitic, preventing the determination of a reliable age. Some concordant analyses from a few grains define ages ranging in the interval between ca. 603 and 1022 Ma. The youngest (ca. 603 Ma) may represent a maximum age for the granodiorite crystallization. Older ages, with discordance <10%, are of 745, 777, 836 and 1022 Ma. The 777 ± 4 Ma age obtained for the Chácara das Pedras orthogneiss is the first Early Cryogenian magmatic age determined for granitoids in the Porto Alegre region, although

  11. Zircon SHRIMP U Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China craton: Evidence for hybridization between mantle-derived magmas and crustal components

    NASA Astrophysics Data System (ADS)

    Chen, B.; Tian, W.; Jahn, B. M.; Chen, Z. C.

    2008-04-01

    The North China craton (NCC) was stabilized in Paleo-Proterozoic times, and the eastern part of it was remobilized in the Mesozoic, as is indicated by the presence of voluminous Mesozoic magmas in eastern NCC. In particular, the lithospheric mantle beneath eastern NCC was significantly thinned during the intense Mesozoic tectono-magmatic activity, which makes the NCC different from most other ancient cratons. The Mesozoic magmas may thus provide crucial evidence regarding the processes that transformed the NCC from craton to a tectonically active region. The South Taihang magmatic complex lies in the western part of the Mesozoic magmatic zone in the NCC. The complex falls into three main plutonic rocks: the Hongshan syenite, the Xishu gabbroic diorite-monzonite and the Wu'an monzonitic rocks. Zircon U-Pb dating reveals that the three plutonic rocks were emplaced contemporaneously at ˜ 132 Ma. In-situ Hf isotopic analyses for the dated zircons indicate that the Hongshan syenites show homogeneous ɛHf( t) values (- 10 to - 13) which are slightly lower than those (- 9.0) for the enriched subcontinental lithospheric mantle (SCLM), as revealed by zircons from mafic rocks that originated from melting of SCLM. This suggests that the parental magma to the syenites was likely derived from melting of the enriched SCLM and contaminated slightly by old lower continental crustal material during ascent. The Xishu and Wu'an gabbroic diorites to monzonitic rocks, however, show significantly varied Hf isotopic compositions, with ɛHf( t) = - 9.2 to - 16 and - 15.5 to - 24, respectively. The wide range of ɛHf( t) values for a single sample suggests that the Xishu and Wu'an plutons formed through a process of hybridization between enriched mantle-derived mafic magma and crustal components in variable proportions. This is supported by the textural and compositional disequilibrium of plagioclase phenocrysts from the two plutons. The Wu'an monzonitic rocks show lower ɛHf( t) values

  12. Magmatism on the Moon

    NASA Astrophysics Data System (ADS)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie

    2016-04-01

    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  13. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    NASA Astrophysics Data System (ADS)

    Piochi, Monica; Ayuso, Robert A.; De Vivo, Benedetto; Somma, Renato

    2006-02-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma

  14. Metasomatised lower crustal and upper mantle xenoliths from north Queensland: Chemical and isotopic evidence bearing on the composition and source of the fluid phase

    NASA Astrophysics Data System (ADS)

    Stolz, A. J.; Davies, G. R.

    1989-03-01

    A diverse range of ultramafic and mafic granulite xenoliths from cone #32, north Queensland display mineralogical and chemical evidence for enhanced fluid activities in the lowermost crust and uppermost mantle. Metasomatism of spinel lherzolite, garnet and spinel websterite and garnet granulite produced variable amounts of amphibole ± mica, locally resulting in development of hornblendite as the end-product of reaction between spinel websterite and C-O-H fluids. In contrast, associated felsic and 2-pyroxene granulite xenoliths have remained relatively unaffected. The garnet granulites and spinel websterites are interpreted as products of underplating of the lower crust by Cenozoic magmatic activity, whereas Nd-Sr isotope systematics for the 2-pyroxene and felsic granulite xenoliths suggest that they may be of Proterozoic age. The development of amphibole and mica in the mafic and ultramafic xenoliths was accompanied by increases in TiO 2, Na 2O, K 2O, A1 2O 2, Sr, Ba, Zr, Nb, LREE and Fe 2O 3/FeO, and decreased MgO, SiO 2, Cr and Ni. Virtually anhydrous spinel websterite xenoliths have 87Sr /86Sr and 143Nd/144Nd almost identical to amphibole-rich variants and hornblendite, and very similar values to the host nepheline mugearite and an amphibole megacryst. The chemical and isotopic data suggest that the metasomatism is a relatively young feature caused by oxidized fluids exsolved from alkaline magmas similar to the host as they ascended through the lithosphere. This style of metasomatism is considered a relatively localized phenomenon which is unlikely to provide an important contribution to the source regions of alkali basaltic magmas.

  15. Enriched asthenosphere melting beneath the nascent North African margin: trace element and Nd isotope evidence in middle-late Triassic alkali basalts from central Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fiannacca, Patrizia; Lustrino, Michele; Romano, Vanessa; Tranchina, Annunziata; Villa, Igor M.

    2016-03-01

    During the dismembering of the Pangea supercontinent, middle-late Triassic sub-volcanic alkaline rocks were emplaced in central Sicily. These rocks have an alkali basaltic composition and show OIB-like incompatible element patterns in primitive mantle-normalized diagrams (e.g., enrichments in HFSE and LREE coupled with high HFSE/LILE ratios), as well as slightly positive \\varepsilon_{Nd} values. Only subtle effects of crustal contamination at shallow depths emerge from geochemical data. These characteristics are very different compared with the Permian calcalkaline magmas from elsewhere in SW Europe still carrying the geochemical signature of modifications related to the Variscan orogeny. The mineralogical, geochemical and isotopic compositions of the investigated samples from central Sicily are also different from the coeval shoshonitic volcano-plutonic formations of Southern Alps (Dolomites). The incompatible element composition and Nd isotopic ratios are consistent with low-degree partial melting of a moderately depleted asthenospheric mantle source, with a negligible involvement of the thinned continental crust. The studied alkaline basalts represent the only known evidence of a segment of the Triassic rift system associated with early Pangea breakup in central Sicily. The close similarity of the central Sicily Triassic alkali basalts with coeval basalts emplaced along former orogenic sutures across the peri-Mediterranean area suggests a common origin related, at least partly, to asthenospheric passive upwelling following the tectonic collapse of the Variscan Belt. These rocks provide new constraints on the spatial-temporal distribution, magma source evolution and geodynamic meaning of the widespread Permo-Triassic basic magmatism developed after the end of the Variscan Orogeny in southwestern Europe.

  16. Extreme Hf-Os Isotope Compositions in Hawaiian Peridotite Xenoliths: Evidence for an Ancient Recycled Lithosphere

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Lassiter, J. C.; Salters, V. J.; Sen, G.; Griselin, M.

    2004-12-01

    ) melt depletion event recorded by both the low 187Os/186Os and high 176Hf/177Hf ratios in the SLC peridotites can be explained with two different scenarios. First, the SLC peridotites may represent ancient depleted lithosphere that survived subduction, remained "rafting" in the upper mantle and is now sampled beneath Oahu. However, the lack of such unradiogenic Os isotopes in both MORBs and abyssal peridotites suggests that such peridotites are rare in the upper mantle and makes their exclusive presence under Oahu a rather fortuitous coincidence. Alternatively, the SLC peridotites may represent ancient depleted recycled lithosphere brought up by the Hawaiian plume. A recycled oceanic crust origin has been previously invoked for the Koolau shield lavas. It is then conceivable that fragments of the lithospheric portion of that subducted package have remained coupled with the oceanic crust and are being brought up by the plume from the deep, but because they were previously depleted, these peridotites contribute minimally, if at all, to Hawaiian volcanism. The presence of microdiamonds and majoritic garnets in some SLC pyroxenites also corroborates a deep origin. In this case, the SLC peridotites represent the first-ever direct evidence that subducted material actually makes it back on the surface, essentially closing the subduction cycle.

  17. Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield

    SciTech Connect

    Stacey, J.S.; Hedge, C.E.

    1984-05-01

    The authors report zircon U-Pb, feldspar common Pb, whole-rock Sm-Nd, and Rb-Sr data from sample Z-103, a fine-grained granodiorite from the Jabal Khida region of the Saudi Arabian Shield (lat 21/sup 0/19'N; long 44/sup 0/50'W). The measurements yield conclusive evidence for continental crust of early Proterozoic age (approx.1630 Ma) at that locality. Furthermore, lead-isotope data indicate an even earlier, perhaps Archean, crustal history for the source of the lower Proterozoic rocks. 17 references, 4 figures, 1 table.

  18. Neodymium and lead isotope evidence for enriched early Archean crust in North America

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Housh, Todd B.; Isachsen, Clark E.; Podosek, Frank A.; King, Janet E.

    1989-01-01

    Neodymium and lead isotope measurements and uranium-lead zircon geochronology from Archaean gneisses of the Slave Province in the Northwest Territories of Canada are reported. The gneisses contain zircons with cores older than 3.842 Gyr and an epsilon(Nd) (3.7 Gyr) of - 4.8. This is the oldest reported chondritic model age for a terrestrial sample and provides evidence for strongly enriched pre-3.8-Gyr crust, a reservoir complementary to the depleted mantle already in existence by 3.8 Gyr before the present.

  19. Stable isotope and DNA evidence for ritual sequences in Inca child sacrifice

    PubMed Central

    Wilson, Andrew S.; Taylor, Timothy; Ceruti, Maria Constanza; Chavez, Jose Antonio; Reinhard, Johan; Grimes, Vaughan; Meier-Augenstein, Wolfram; Cartmell, Larry; Stern, Ben; Richards, Michael P.; Worobey, Michael; Barnes, Ian; Gilbert, M. Thomas P.

    2007-01-01

    Four recently discovered frozen child mummies from two of the highest peaks in the south central Andes now yield tantalizing evidence of the preparatory stages leading to Inca ritual killing as represented by the unique capacocha rite. Our interdisciplinary study examined hair from the mummies to obtain detailed genetic and diachronic isotopic information. This approach has allowed us to reconstruct aspects of individual identity and diet, make inferences concerning social background, and gain insight on the hitherto unknown processes by which victims were selected, elevated in social status, prepared for a high-altitude pilgrimage, and killed. Such direct information amplifies, yet also partly contrasts with, Spanish historical accounts. PMID:17923675

  20. Recycling of Volatiles in Subduction Zones: Evidence from H-O-S Isotopic Signatures of Indonesian Arc Basalts

    NASA Astrophysics Data System (ADS)

    de Hoog, J. C.; Taylor, B. E.; van Bergen, M. J.

    2001-05-01

    Subaerial lavas from eight volcanoes, situated in different sectors of the Indonesian arc system, have been analyzed for hydrogen, oxygen and sulfur isotopic compositions. The lavas are mostly basaltic and cover a range from low-K tholeiitic to high-K calc-alkaline affinities. The following whole-rock compositions were observed: δ D = -109 to -57‰ V-SMOW (avg = -89‰ ), δ 18O = +5.3 to +6.7‰ V-SMOW (avg = +5.9‰ ), δ 34S = +2.0 to +7.8‰ V-CDT (avg = +4.7‰ ). All samples are strongly degassed, as average water contents are ~0.15 wt.% and average sulfur concentrations are ~14 ppm. Because degassing-induced shifts in sulfur isotopes are limited at magmatic temperatures and oxidation states typical of basalts, the data suggest that, in all cases, the magma source in the sub-arc mantle is significantly enriched in 34S compared to MORB-source mantle. Hydrogen isotopes fractionate strongly, and our data are most consistent with multi-stage degassing of magmatic water. Based on primary H-O-S isotopic signatures inferred for the Indonesian arc basalts and on assumed compositions of the pre-subduction mantle, we performed mass-balance calculations to estimate volatile concentrations in the slab component. The results indicate that addition of about 1-1.5 wt.% aqueous fluid containing 1.5% sulfur will produce the H-O-S isotopic compositions of primary basaltic melts of the volcanoes studied. Alternatively, the slab-derived material may consist of a mix of melts and fluids, in which melts can be more voluminous, but fluids dominate the budgets of sulfur, hydrogen, and other hydrophile elements. Irrespective of the preferred model, S and H2O contents must have increased considerably in the sub-arc mantle (to ~350 ppm and ~1.3 wt.%, respectively). The S value is consistent with estimates based on primary sulfur contents in arc basalts ( ~2000 ppm), but the H2O concentration is higher than the mantle can accommodate, as it will induce melting. We argue, however, that

  1. Carbonate inclusions in Lower Cretaceous picrites from the Hončova hůrka Hill (Czech Republic, Outer Western Carpathians): Evidence for primary magmatic carbonates?

    NASA Astrophysics Data System (ADS)

    Kropáč, Kamil; Dolníček, Zdeněk; Buriánek, David; Urubek, Tomáš; Mašek, Vlastimil

    2015-07-01

    Porphyritic picrites from the Hončova hůrka site in the Silesian Unit (Western Carpathians) are composed mostly of olivine phenocrysts enclosed in a black fine-grained groundmass, which consists of clinopyroxene, biotite, magnetite, chlorite, feldspars, and zeolites. The rocks are variably affected by hydrothermal alteration. The freshest samples contain potentially primary igneous calcite and aragonite, which occur as globular inclusions hosted by olivine phenocrysts, or as fillings of the miarolitic cavities in the picrite groundmass. In this paper, we try to clarify the nature of investigated carbonates using the combination of several petrological methods. Based on the texture, mineral composition, and relationship to the alteration patterns of the host mineral, we distinguished three basic types of inclusions: carbonate inclusions, silicate inclusions, and a combined type consisting of both carbonate and silicate domains. Only the fresh olivine-hosted round carbonate globules can contain the primary igneous calcite. These globules cannot represent immiscible carbonatite melt since they lack Si, alkalis, and other essential components (e.g. P, F, Cl, and S) present in natural carbonate melts. Instead, they can be interpreted as product of equilibrium crystallization of calcite from carbonated silicate melt (i.e. crystal cumulates). In contrast, the calcite-aragonite assemblage in inclusions hosted by altered olivine and in miaroles most probably originated during recrystallization of primary calcite during late-magmatic or post-magmatic stages or is related to the superimposed hydrothermal alteration.

  2. Oxygen-Carbon and Strontium Isotope Evidence for the Origin and Evolution of CO2-rich Volatiles from Oligocene to Miocene Mantle Magmas, Southwestern Colorado and Northwestern New Mexico

    NASA Astrophysics Data System (ADS)

    Gonzales, D. A.; Zbrozek, M.

    2012-12-01

    Oligocene to Miocene, alkaline mafic to ultramafic, rocks that are exposed in the Navajo volcanic field and dikes on the northern San Juan basin (NVSJ) contain calcite in vugs, veins, and breccias. Oxygen-carbon and Sr isotope signatures of bulk carbonate samples from these rocks were used to test hypotheses on the history of volatiles related to this pulse of mantle magmatism. Elevated fluorine in rocks, and fluorite-calcite breccias in some outcrops, indicate that magmatic volatiles were released by NVSJ melts. Oxygen and carbon isotope data for carbonate samples record a complex paragenetic history. δ13C values are mostly -8‰ to -4‰ with a mean value of -5.3 ± 2.0‰, similar to δ13C for primary mantle-derived carbonate. A subset of δ18O values are +5‰ to +10‰ which are within the accepted range of δ18O values for magmatic carbonate in carbonatite and kimberlite. A majority of δ18O values, however, range from +10‰ to +24‰ revealing that low-δ18O magmatic volatiles were overprinted by processes that caused enrichment of 18O at some stage during melt generation and emplacement. A subset of 87Sr/86Sri data from carbonate samples are nearly identical to 87Sr/86Sri for related rocks, hinting that the melts and volatiles came from the same source. Generally, NVSJ calcite samples have higher 87Sr/86Sri ratios than those of rocks, reflecting different melt-volatile sources or crustal contamination from Paleozoic limestone. Field and petrologic evidence does not lend convincing support for crustal contamination. Limestone fragments comprise less than 1% of xenoliths in NVSJ rocks. Also, rock samples do not show elevated CaO, MgO, FeO, Ba or Sr with increasing δ18O calcite which is expected for contamination of magmas with limestone. We propose that CO2-H2O-F volatiles in NVSJ magmas came from distinct melt-volatile sources, similar to the interpretation of Nowell (1993). Our assertion is that CO2-rich volatiles that exsolved from low δ18O mafic melts

  3. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Kelly, W.R.; Hwang, H.-H.

    2006-01-01

    Anthropogenic nitrate (NO3-) within the Mississippi-Atchafalaya River basin and discharge to the Gulf of Mexico has been linked to serious environmental problems. The sources of this NO 3- have been estimated by others using mass balance methods; however, there is considerable uncertainty in these estimates. Part of the uncertainty is the degree of denitrification that the NO3- has undergone. The isotopic composition of NO3- in the Mississippi River adjacent to Illinois and tile drain (subsurface drain) discharge in agricultural areas of east-central Illinois was examined using N and O isotopes to help identify the major sources of NO 3- and assess the degree of denitrification in the samples. The isotopic evidence suggests that most of the NO3- in the river is primarily derived from synthetic fertilizers and soil organic N, which is consistent with published estimates of N inputs to the Mississippi River. The 1:2 relationship between ??18O and ??15N also indicate that, depending on sample location and season, NO3- in the river and tile drains lias undergone significant denitrification, ranging from about 0 to 55%. The majority of the denitrification appears to have occurred before discharge into the Mississippi River. ?? ASA, CSSA, SSSA.

  4. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes

    NASA Astrophysics Data System (ADS)

    van den Boorn, Sander H. J. M.; van Bergen, Manfred J.; Nijman, Wouter; Vroon, Pieter Z.

    2007-10-01

    The great variety and abundance of chert deposits in Archean terrains constitute one of the most unusual features that mark Earth's early geological history. Proposed explanations for their origin largely relying on field observations, trace element patterns, or oxygen isotope signatures have not yielded an encompassing model. Here we document silicon isotope systematics in cherts from 3.5-3.0 Ga units in the Pilbara Craton (Western Australia) as evidence of their formation by several distinct processes in Early Archean near-surface environments. Our δ30Si results, in combination with geochemical and mineralogical signatures and field relations, point to three end-member sources of silica derivation. One chert type is inferred to have originated through massive transformation of precursor material by silica added from sea water. At least 2‰ differences in δ30Si between the two other types, produced by direct chemical precipitation on the seafloor or in conduits, discriminate seawater from hydrothermal fluid as a source of silica. A virtually continuous Si isotope trend in cherts from this group is consistent with interaction between silica-carrying fluids at submarine vent systems.

  5. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence.

    PubMed

    Wassenaar, L I; Hobson, A

    1998-12-22

    Each year, millions of monarch butterflies from eastern North America migrate to overwinter in 10-13 discrete colonies located in the Oyamel forests of central Mexico. For decades efforts to track monarch migration have relied on observations and tag-recapture methods, culminating with the discovery of the wintering colonies in 1975. Monarch tag returns from Mexico, however, are few and primarily from two accessible colonies, and therefore tag-recapture techniques have not quantified natal origins or distinctiveness among monarch populations at wintering sites. Such information would be invaluable in the conservation of the monarch and its migration phenomenon since the wintering sites currently are threatened by habitat alteration. Here we show that stable hydrogen (deltaD) and carbon (delta13C) isotope ratios of wintering monarchs can be used to evaluate natal origins on the summer breeding range. Stable-hydrogen and carbon isotopic values of 597 wintering monarchs from 13 wintering roost sites were compared with isotopic patterns measured in individuals at natal sites across their breeding range over a single migration cycle. We determined that all monarch wintering colonies were composed of individuals originating mainly from the Midwest, United States, thereby providing evidence for a panmictic model of wintering colony composition. However, two colonies showed more northerly origins, suggesting possible priority colonies for conservation efforts. PMID:9860986

  6. Geochemistry, U–Pb geochronology, Sm–Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil

    NASA Astrophysics Data System (ADS)

    Francisco da Silva Filho, Adejardo; de Pinho Guimarães, Ignez; Santos, Lucilene; Armstrong, Richard; Van Schmus, William Randall

    2016-07-01

    The Pernambuco Alagoas (PEAL) domain shows the major occurrence of granitic batholiths of the Borborema Province, NE Brazil, with Archean to Neoproterozoic range of Nd TDM model ages, giving clues on the role of granites during the Brasiliano orogeny. SHRIMP U/Pb zircon geochronological data for seven granitic intrusions of the PEAL domain divide the studied granitoids into three groups: 1) early-to syn-collision granitoids with crystallization ages ca. 635 Ma (Serra do Catú pluton), 2) syn-collision granitoids with crystallization ages 610-618 Ma (Santana do Ipanema, Água Branca, Mata Grande and Correntes plutons) and 3) late-to post-collision granitoids with ages of ca. 590 Ma (Águas Belas, and Cachoeirinha plutons). The intrusions of group 1 and 2, except the Mata Grande and Correntes plutons, show Nd TDM model ages ranging from 1.2 to 1.5 Ga, while the granitoids from group 3, and Mata Grande Pluton and Correntes plutons have Nd TDM model ages ranging from 1.7 to 2.2 Ga. The studied granitoids with ages <600 Ma are high-K, calc-alkaline, shoshonitic and those with ages <600 Ma are transitional high-K calc-alkaline to alkaline. The volcanic arc signatures associated with the Paleoproterozoic Nd TDM model ages are interpreted as inherited from the source rocks. The oldest ages and lower Nd TDM model ages are recorded from granitoids intruded in the southwest part of the PEAL domain, suggesting that these intrusions are associated with slab-tearing during convergence between the PEAL and the Sergipano domains. Zircon oxygen isotopic data in some of the studied plutons, together with the available Nd isotopic data suggest that the Brasiliano orogeny strongly reworked older crust, of either Paleoproterozoic or Tonian ages. The studied granitoids are coeval with calc-alkaline granitoids of the Transversal Zone and Sergipano domains and rare high-K calc-alkaline granitoids from the Transversal Zone domain. Such large volumes of high-K granitoids with

  7. CAMPing by the sea: Evidence for synchrony of volcanism and the end-Triassic extinction and carbon isotope anomaly from a marine Triassic-Jurassic boundary section

    NASA Astrophysics Data System (ADS)

    Pálfy, J.; Zajzon, N.

    2012-04-01

    The end-Triassic extinction (ETE) is one of the five largest Phanerozoic mass extinctions, associated with and likely triggered by rapid and severe environmental change. Volcanism in the Central Atlantic Magmatic Province (CAMP) has been proposed as the main trigger, but direct evidence for this linkage is scarce. To help constrain scenarios for the Triassic-Jurassic boundary (TJB) events, we obtained a temporally highly resolved, multidisciplinary dataset from the Kendlbachgraben section in the Northern Calcareous Alps in Austria. The section belongs to the same paleogeographic unit (Eiberg Basin) and share similar stratigraphies with the newly selected base Jurassic GSSP at Kuhjoch. The topmost beds of the Rhaetian Kössen Formation yielded an REE pattern that differs from all other levels in an enrichment of heavy REEs, hinting at some minor contribution from mantle-derived magmatic material to the sedimentary basin. Micromineralogy of the same bed revealed pseudomorphs of altered, euhedral pyroxene and amphibole crystals. Their well-faceted morphology excludes any terrestrial weathering and transport, but is consistent with their origin from air-fallen distal mafic volcanic ash. Peculiar spherical or rounded grains, altered to illite/aluminoceladonite were also observed, likely representing altered volcanic glass. The dominant clay mineral of this bed is low- to medium-charged smectite, accompanied by vermiculite, both typical alteration products of mafic rocks. These features from a bed deposited very near to the TJB are interpreted as direct evidence of CAMP volcanism, immediately preceding the main extinction event and the initial negative carbon isotope anomaly. Clay mineralogy of the Rhaetian-Hettangian Kendlbach Formation (overlying the Kössen Formation) reveals a kaolinite-dominated interval at the base of the formation, followed by an illite-dominated interval. Thus a hot and humid period may have characterized the TJB, in agreement with a previously

  8. Regional and Local Trends in helium isotopes, basin and rangeprovince, western North America: Evidence for deep permeablepathways

    SciTech Connect

    Kennedy, B. Mack; van Soest, Matthijs C.

    2005-07-15

    Fluids from the western margin of the Basin and Range have helium isotope ratios as high as {approx}6-7 Ra, indicating a strong mantle melt influence and consistent with recent and current volcanic activity. Moving away from these areas, helium isotope ratios decrease rapidly to ''background'' values of around 0.6 Ra, and then gradually decrease toward the east to low values of {approx}0.1 Ra at the eastern margin of the Basin and Range. Superimposed on this general regional trend are isolated features with elevated helium isotope ratios (0.8-2.1 Ra) compared to the local background. Spring geochemistry and local geology indicate that these ''He-spikes'' are not related to current or recent magmatic activity, suggesting that the spikes may reflect either localized zones deep mantle melting or deep permeable pathways (faults) with high vertical fluid flowrates. A detailed study of one of the He-spikes (Dixie Valley and the Stillwater Range Front Fault system), indicates that features with high 3He/4He ratios are confined to the range front normal faults characteristic of the extensional regime in the Basin and Range, suggesting that these faults are deep permeable pathways. However, not all range front fault systems transmit fluids with a mantle signature, implying that not all have deep permeable pathways.

  9. Dating the India-Eurasia collision through arc magmatic records

    NASA Astrophysics Data System (ADS)

    Bouilhol, Pierre; Jagoutz, Oliver; Hanchar, John M.; Dudas, Francis O.

    2013-03-01

    The Himalayan orogeny, a result of the collision of India and Eurasia, provides direct evidence of strain accommodation and large-scale rheological behavior of the continental lithosphere. Knowledge of the timing of the India-Eurasia collision is essential to understand the physical processes involved in collisional systems. Here we present a geochronological and multi-isotopic study on rocks from the upper crust of the Kohistan Paleo-Island Arc that formed in the equatorial part of the Neo-Tethys Ocean. In situ U-Pb geochronology and Hf isotopes in zircon, and whole-rock Nd and Sr isotopic data of plutonic rocks from the Kohistan-Ladakh Batholith, are used to construct a continuous record of the isotopic evolution of the source region of these granitoids that are related to both the subduction of the oceanic lithosphere and subsequent arc-continent collisions. We demonstrate that profound changes in the source region of these rocks correspond to collisional events. Our dataset constrains that the Kohistan-Ladakh Island Arc initially collided along the Indus suture zone with India at 50.2±1.5 Ma, an age generally attributed to the final India-Eurasia collision for the entire Himalayan belt. In the western Himalaya, the final collision between the assembled India/Arc and Eurasia however, occurred ∼10 Ma later at 40.4±1.3 Ma along the so-called Shyok suture zone. We present evidence indicating that a similar dual collision scenario can be extended to the east and conclude that a final India/Arc-Eurasia collision at ∼40 Ma integrates crucial aspects of the magmatic, tectonic, and sedimentary record of the whole Himalayan mountain belt.

  10. Punctuated anorogenic magmatism

    NASA Astrophysics Data System (ADS)

    Martin, Robert F.; Sokolov, Maria; Magaji, Shehu S.

    2012-11-01

    The emplacement of anorogenic magmas, be they mantle-derived or crust-derived and silica-undersaturated or silica-oversaturated, marks a period of rifting or tectonic relaxation and apparent quiescence. In a given area, such magmatism commonly recurs episodically, and can yield even more strongly alkaline products than in the first cycle, in spite of the depletion that resulted from that episode of melting. Anorogenic magmatism is said to be punctuated where it recurs, in response to a triggering mechanism. The second cycle reflects an influx of heat and a fluid phase responsible for the fertilization of the depleted source-rock. In cases of an anorogenic stage after a major collision, the first cycle of magmatism, yielding an AMCG suite, arises by gravity-induced sinking of lithosphere and the diapiric rise of an asthenospheric mantle; renewed magmatism may involve localized and renewed detachment as late as 200 m.y. after the collision. Where the hiatus is much longer, as in Nigeria, we appeal to a propagating zipper-like zone of extension, possibly related to rotation of a crustal block. The economic ramifications of punctuated anorogenic magmatism are important; the second-generation magmas may well crystallize products that are mineralized in the high-field-strength elements and any other elements enriched in the source rocks. Such a model would account for the rich deposits of alluvial columbite, zircon and cassiterite associated with the Younger Granites of Nigeria.

  11. Zirconium—Hafnium Isotope Evidence from Meteorites for the Decoupled Synthesis of Light and Heavy Neutron-rich Nuclei

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.; Sprung, P.; Vogel, N.

    2013-11-01

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope 96Zr (<=1ɛ in 96Zr/90Zr) for bulk chondrites and CAIs (~2ɛ). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the 96Zr isotope variations are of nucleosynthetic origin. The 96Zr enrichments are coupled with 50Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A <= 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. 96Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M ⊙) SNII.

  12. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    SciTech Connect

    Akram, W.; Schönbächler, M.; Sprung, P.; Vogel, N.

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  13. Sr-isotopic, paleomagnetic, and biostratigraphic calibration of horse evolution: Evidence from the Miocene of Florida

    SciTech Connect

    MacFadden, B.J.; Bryant, J.D.; Mueller, P.A. )

    1991-03-01

    During the middle Miocene an explosive adaptive radiation resulted in the advent of grazing horses with high-crowned teeth in North America. New Sr isotopic, paleomagnetic, and biostratigrahic evidence from the Miocene marine and nonmarine sequence of the Florida panhandle calibrates the base of this adaptive radiation. The transition from the primitive outgroup species 'Parahippus' leonensis to the most primitive high-crowned horse, 'Merychippus' gunteri occured after about 17.7 Ma. After this event, the lowest known stratigraphic level at which diversification (i.e., presence of two or more sympatric species) of grazing merychippine horses occurs is about 16.2 Ma, or within the early part of Chron C5BR. Although this currently is the only sequence where the parahippine-merychippine transition is directly calibrated, biochronologic evidence from other important, contemporaneous localities in Texas, Nebraska, and California indicate that diversification occured rapidly throughout North America between 15 and 16 Ma.

  14. Geochronological and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield.

    USGS Publications Warehouse

    Stacey, J.S.; Hedge, C.E.

    1984-01-01

    Zircon U/Pb, feldspar common Pb, whole-rock Sm/Nd, and Rb/Sr data indicate that the fine-grained granodiorite (Z103) has yielded conclusive evidence for rocks of early Proterozoic age in the eastern Arabian Shield (21o19' N, 44o50' W). Z103 may have been emplaced approx 1630 m.y. ago and subsequently was severely deformed or perhaps even remobilized at approx 660 m.y. Furthermore, lead isotope data, along with other evidence, show that the 1630 m.y. crustal rocks inherited material from an older, probably Archaean, source at the time of their formation. At that time addition of mantle material considerably modified the Rb-Sr and Sm-Nd systems so that they now yield similar, or only slightly older apparent ages (1600-1800 m.y.).-L.diH.

  15. PRESOLAR GRAINS FROM NOVAE: EVIDENCE FROM NEON AND HELIUM ISOTOPES IN COMET DUST COLLECTIONS

    SciTech Connect

    Pepin, Robert O.; Palma, Russell L.; Gehrz, Robert D.; Starrfield, Sumner

    2011-12-01

    Presolar grains in meteorites and interplanetary dust particles carry non-solar isotopic signatures pointing to origins in supernovae, giant stars, and possibly other stellar sources. There have been suggestions that some of these grains condensed in the ejecta of classical nova outbursts, but the evidence is ambiguous. We report neon and helium compositions in particles captured on stratospheric collectors flown to sample materials from comets 26P/Grigg-Skjellerup and 55P/Tempel-Tuttle that point to condensation of their gas carriers in the ejecta of a neon (ONe) nova. The absence of detectable {sup 3}He in these particles indicates space exposure to solar wind irradiation of a few decades at most, consistent with origins in cometary dust streams. Measured {sup 4}He/{sup 20}Ne, {sup 20}Ne/{sup 22}Ne, {sup 21}Ne/{sup 22}Ne, and {sup 20}Ne/{sup 21}Ne isotope ratios, and a low upper limit on {sup 3}He/{sup 4}He, are in accord with calculations of nucleosynthesis in neon nova outbursts. Of these, the uniquely low {sup 4}He/{sup 20}Ne and high {sup 20}Ne/{sup 22}Ne ratios are the most diagnostic, reflecting the large predicted {sup 20}Ne abundances in the ejecta of such novae. The correspondence of measured Ne and He compositions in cometary matter with theoretical predictions is evidence for the presence of presolar grains from novae in the early solar system.

  16. Mineralogical, Chemical, and Isotopic Heterogeneity in Zagami: Evidence for a Complex Petrogenesis

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Misawa, K.; Shih, C-Y.; Niihara, T.; Park, J.

    2013-01-01

    Textural variations in the shergottite Zagami were initially interpreted as evidence that it formed in a heterogeneous lava flow. Variations in initial Sr-87/Sr-86 ratios between a Coarse Grained (CG) and a Fine Grained (FG) lithology and evidence for more extensive fractionation of the Rb/Sr ratio in a Dark Mottled Lithology (DML) are consistent with such an interpretation. More recently, Niihara et al. and Misawa et al. have reported the mineralogy and Sr-isotopic systematics of an Olivine Rich Lithology (ORL) found in association with the coarse-grained DML lithology in the Kanagawa Zagami specimen [6,7]. Here we call this lithology DML(Ka) to maintain a distinction with DML(USNM) as studied. An Ar-Ar study by Park et al. of a late stage K-rich melt enriched in K2O to approx 7% and intruded into ORL yielded an Ar-Ar age of 202+/0 7 Ma. The present work extends the study of Kanagawa Zagami to Nd-isotopes.

  17. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran

    NASA Astrophysics Data System (ADS)

    Malekzadeh Shafaroudi, Azadeh; Karimpour, Mohammad Hassan

    2015-07-01

    The Sechangi lead-zinc (-copper) deposit lies in the Lut block metallogenic province of Eastern Iran. This deposit consists of ore-bearing vein emplaced along fault zone and hosted by Late Eocene monzonite porphyry. Hydrothermal alteration minerals developed in the wall rock include quartz, kaolinite, illite, and calcite. Microscopic studies reveal that the vein contains galena and sphalerite with minor chalcopyrite and pyrite as hypogene minerals and cerussite, anglesite, covellite, malachite, hematite, and goethite as secondary minerals. Fluorite and quartz are the dominant gangue minerals and show a close relationship with sulfide mineralization. Calculated δ34S values for the ore fluid vary between -9.9‰ and -5.9‰. Sulfur isotopic compositions suggest that the ore-forming aqueous solutions were derived from magmatic source and mixed with isotopically light sulfur, probably leached from the volcanic and plutonic country rocks. Microthermometric study of fluid inclusions indicates homogenization temperatures of 151-352 °C. Salinities of ore-forming fluids ranged from 0.2 to 16.5 wt.% NaCl equivalent. The ore-forming fluids of the Sechangi deposit are medium- to low-temperature and salinity. Fluid mixing may have played an important role during Pb-Zn (-Cu) mineralization. The key factors allowing for metal transport and precipitation during ore formation include the sourcing of magmatic fluids with high contents of metallogenic elements and the mixing of these hydrothermal fluids with meteoric waters resulting in the formation of deposit. In terms of the genetic type of deposit, the Sechangi is classified as a volcanic-subvolcanic hydrothermal-related vein deposit.

  18. Magmatic Processes and Systems Deduced from Single Crystals

    NASA Astrophysics Data System (ADS)

    Davidson, J.; Bezard, R. C.; Morgan, D. J.; Ginibre, C.

    2014-12-01

    When crystals grow in liquids the composition of their outermost layer will reflect that of the host with which they are in equilibrium and will therefore record the liquid composition, pressure and temperature.. Following separation from their sources, magmas differentiate. This change in liquid composition is driven largely by crystallisation in response to cooling or decompression. Other open system processes such as mixing and contamination are common. These can lead to abrupt changes in trace element and isotopic composition, accompanied by petrographic features, such as dissolution surfaces or zones of melt inclusions. Where such careful mineral-scale studies have been performed, the prevalence of open system processes is clear. In many cases these are shown by core-rim isotopic variations. Crystal-scale compositional variations in the context of whole rock compositions and petrography have allowed us to show crustal assimilation even from regions of supposedly oceanic crust such as the Lesser Antilles. In tandem with tracking magma evolution, core-rim analyses of appropriate crystals have also provided diffusion profiles which reflect timescales of magmatic processes. A key point, long recognised by Bruce Marsh, is that in situ geochemical data should be considered in a petrographic context in order to gain the most (and most credible) insights on the workings of magma systems from hand specimen to whole volcano/pluton scales: The petrographic microscope is not dead yet Identification of magmatic processes from in situ scrutiny allows us to synthesise the architectures and inner workings of magma systems. The evidence for interaction among magmas in many systems is compelling and suggests that many exist as stacked dike-sill arrangements with wall-rock focussed crystal growth and mush zones. These are consistent with many of the systematics suggested some time ago by Bruce Marsh

  19. [sup 40]Ar/[sup 39]Ar isotopic dates from the Cripple Creek gold-Telluride district, Colorado: Constraints on the timing of magmatism and mineralization

    SciTech Connect

    Kelley, K.D.; Snee, L.W. ); Thompson, T.B. . Dept. of Earth Resources)

    1993-04-01

    The Cripple Creek district is within a Tertiary diatreme-intrusive complex, a steep-walled basin in Proterozoic pelitic and igneous rocks that is filled with terrigenous sedimentary rocks, volcanic and hydrothermal breccias, and tuffs. The orebodies occur as veins in Proterozoic and Tertiary rocks or as deposits localized within hydrothermal breccia bodies or disseminated in diatreme breccias. [sup 40]Ar/[sup 39]Ar dates from igneous rocks demonstrate the approximately contemporaneous emplacement of the most differentiated phonolitic rocks. Three sanidine samples from phonolite yield apparent ages ranging from 30.9 [+-] 0.1 to 31.8 [+-] 0.1 Ma (1 sigma). Biotite and sanidine age spectra from relatively less differentiated tephriphonolite are discordant; the emplacement age is estimated to be between 31.4 [+-] 0.1 and 32.5 [+-] 0.1 Ma. A maximum age of 31.5 [+-] 0.1 Ma was obtained on a whole-rock sample of trachyandesite. The mafic phonolitic rocks are relatively younger. A sample of the Isabella dike, a phonotephrite dike cutting phonolite, yields a whole-rock age of 28.7 [+-] 0.04 Ma. The data suggest that mineralization both predates and postdates emplacement of the mafic phonolitic rocks. Hydrothermal biotite in a vein cutting phonolite yields an age of 29.9 [+-] 0.1 Ma. The age spectrum of adularia from a vein cutting volcaniclastic rocks is difficult to interpret due to the presence of excess argon, but an age is estimated to be between 29.5 and 30.4 Ma. In the vicinity of the phonotephrite dike, field evidence suggests that vein mineralization postdates emplacement of the dike; potassium feldspar from potassium altered phonolite in the vicinity of mineralized rock yields ages of 28.2 [+-] 0.1 and 28.8 [+-] 0.1 Ma.

  20. Fluid migration in response to magmatic stress changes at Soufriere Hills Volcano, Montserrat (W.I.): Evidence from 4-D gravity data

    NASA Astrophysics Data System (ADS)

    Hautmann, S.; Gottsmann, J.; Camacho, A.; Fournier, N.; Sparks, R. J.

    2008-12-01

    The eruption of Soufriere Hills Volcano (SHV, Montserrat) has been ongoing for more than one decade, but routine monitoring of the activity did not include gravity surveillance for most of the time. In June/July 2006, we installed a new elevation controlled microgravity network, which we re-occupied in January/February 2007. Residual gravity changes between the two surveys allow us to infer a net mass change beneath the central part of the island documented by an up to 0.031 mGal gravity decrease. A non-linear inversion of the data reveals that mass reduction occurred in a prolate, NNW-SSE elongated structure, beneath the Centre Hills at a minimum depth of 2 km. We suggest the observed gravity decrease to be related with fracture opening along a hitherto not recognized fault, as decreased magmatic stressing at SHV led to a strain relief on the island.

  1. 40Ar/39Ar dating of basaltic dykes swarm in Western Cameroon: Evidence of Late Paleozoic and Mesozoic magmatism in the corridor of the Cameroon Line

    NASA Astrophysics Data System (ADS)

    Tchouankoue, Jean Pierre; Simeni Wambo, Nicole Armelle; Kagou Dongmo, Armand; Li, Xian-Hua

    2014-05-01

    40Ar/39Ar ages of three basalt dykes that intrude the Precambrian basement in the southern continental part of the Cretaceous Cameroon Line are presented. Specimen were sampled at Dschang, Maham and Kendem (Cameroon). The ages obtained are 421.3 ± 3.5 Ma (Dschang), 404.22 ± 3.51 Ma (Maham), and 192.10 ± 7.45 Ma (Kendem). The Dschang and Maham samples yield a relatively undisturbed spectrum while the Kendem sample shows an excess of argon but with plateau ages in the frame of the Mesozoic. Plateau ages at Dschang, Maham and Kendem represent more than 80% of the total 39Ar released and are interpreted as emplacement ages. 40Ar/39Ar dating results confirm Devonian and Jurassic K/Ar ages obtained from similar dykes of the same region. Geochemically, the basalt dykes are subalkaline in composition with 45-50 wt.% SiO2. Incompatible trace elements and rare earth elements are lower than that of the Cameroon Line basalts. Overall geochemical characteristics of the basalt dykes much more closely resemble those of tholeiites of the Benue Through in Nigeria that are interpreted as related to the opening of the Atlantic Ocean. The combination of 40Ar/39Ar ages, major, trace and rare earth elements geochemistry data demonstrate a magmatic phase that is significantly older and different of that of the Cretaceous Cameroon Line and younger than the dominantly granitic Neoproterozoic to early Paleozoic magmatism in the region. These findings offer new clues for a better understanding of the tectonic history of the region, particularly the origin of the Cameroon Line and Africa-South America pre-drift reconstitutions.

  2. Late Paleozoic magmatic record of Middle Gobi area, South Mongolia and its implications for tectonic evolution: Evidences from zircon U-Pb dating and geochemistry

    NASA Astrophysics Data System (ADS)

    Zhu, Mingshuai; Miao, Laicheng; Baatar, Munkhtsengel; Zhang, Fochin; Anaad, Chimedtseren; Yang, Shunhu; Li, Xingbo

    2016-01-01

    Late Paleozoic subduction-accretion complexes occur widely in Middle Gobi area and provide a good opportunity for unraveling the Paleozoic tectonic evolution of South Mongolia. The magmatic rocks in the Tsavchir hudug district mainly consist of rhyolites and volcaniclastic rocks. The rhyolites show enrichment in LREE and LILE and negative Nb, Ta and Ti anomalies, indicating genesis in the subduction zone. A rhyolite sample from the Tsavchir hudug region yielded a SHRIMP 206Pb/238U zircon age of 315 ± 4 Ma (MSWD = 0.79, n = 15). The andesite overlying the Namdain hundy Early Paleozoic ophiolite shows adakite geochemical features, and the two andesite samples yielded SHRIMP 206Pb/238U zircon ages of 325 ± 3 Ma (MSWD = 1.6, n = 14) and 319 ± 4 Ma (MSWD = 0.56, n = 13), respectively, suggesting that the Carboniferous island arc formed on the basis of Early Paleozoic accretionary complex. The granodiorite sample that intrudes the Early Paleozoic accretion complex with adakite geochemical features yielded a SHRIMP 206Pb/238U zircon age of 333 ± 4 Ma (MSWD = 1.6, n = 16), representing the Late Paleozoic island arc intrusive. The SHRIMP U-Pb analyses for the tuff sandstones that occur associated with Early Paleozic oceanic inliers in Middle Gobi area suggest detrital zircons mainly stem from the Devonian-Carboniferous arc. The age data obtained from the ophiolite (528-509 Ma) and tuff sandstone indicate the accretion in Middle Gobi area lasted from Early Paleozoic to Late Paleozoic for at least ca. 200 Ma, suggesting the ocean of the accretionary complex was the major Paleo-Asain ocean basin. The subduction related magmatic belt in Middle Gobi area includes both Early Paleozoic and Late Paleozoic island arc activities, which is consistent with the accretion duration time obtained from accretionary complex and also attests the argument of major Paleo-Asain ocean basin.

  3. Oxygen and hydrogen isotope evidence for meteoric water infiltration during mylonitization and uplift in the Ruby Mountains-East Humboldt Range core complex, Nevada

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Wickham, Stephen M.; O'Neil, James R.

    1992-06-01

    Stable isotope analyses of rocks and minerals associated with the detachment fault and underlying mylonite zone exposed at Secret Creek gorge and other localities in the Ruby-East Humboldt Range metamorphic core complex in northeastern Nevada provide convincing evidence for meteoric water infiltration during mylonitization. Whole-rock δ18O values of the lower plate quartzite mylonites (≥95% modal quartz) have been lowered by up to 10 per mil compared with structurally lower, compositionally similar, unmylonitized material. Biotite from these rocks has δD values ranging from -125 to -175, compared to values of -55 to-70 in biotite from unmylonitized rocks. Mylonitized leucogranites have large disequilibrium oxygen isotope fractionations ( Δ quartz-feldspar up to ˜8 per mil) relative to magmatic values ( Δ quartz-feldspar˜1 to 2 per mil)). Meteoric water is the only major oxygen and hydrogen reservoir with an isotopic composition capable of generating the observed values. Fluid inclusion water from unstrained quartz in silicified breccia has a δD value of-119 which provides a plausible estimate of the δD of the infiltrating fluid, and is similar to the isotopic composition of present-day and Tertiary local meteoric water. The quartzite mylonite biotites would have been in equilibrium with such a fluid at temperatures of 480 620° C, similar to independent estimates of the temperature of mylonitization. The relatively high temperatures required for isotopic exchange between quartz and water, the occurrence of fluid inclusion trails and deformed veins in quartzite mylonites, and the spatial association of the low-18O, low-D rocks with the shear zone all constrain isotopic exchange to the mylonitic (plastic) deformation event. These observations suggest thata significant amount of meteoric water infiltrated the shear zone during mylonitization to depths of at least 5 to 10 km below the surface. The depth of penetration of meteoric fluids into the lower plate

  4. Zirconium isotope evidence for the heterogeneous distribution of s-process materials in the solar system

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.; Bisterzo, S.; Gallino, R.

    2015-09-01

    A growing number of elements show well-resolved nucleosynthetic isotope anomalies in bulk-rock samples of solar system materials. In order to establish the occurrence and extent of such isotopic heterogeneities in Zr, and to investigate the origin of the widespread heterogeneities in our solar system, new high-precision Zr isotope data are reported for a range of primitive and differentiated meteorites. The majority of the carbonaceous chondrites (CV, CM, CO, CK) display variable ε96Zr values (⩽1.4) relative to the Earth. The data indicate the heterogeneous distribution of 96Zr-rich CAIs in these meteorites, which sampled supernova (SN) material that was likely synthesized by charged-particle reactions or neutron-captures. Other carbonaceous chondrites (CI, CB, CR), ordinary chondrites and eucrites display variable, well-resolved 96Zr excesses correlated with potential, not clearly resolved variations in 91Zr relative to the bulk-Earth and enstatite chondrites. This tentative correlation is supported by nucleosynthetic models and provides evidence for variable contributions of average solar system s-process material to different regions of the solar system, with the Earth representing the most s-process enriched material. New s-process model calculations indicate that this s-process component was produced in both low and intermediate mass asymptotic giant branch (AGB) stars. The isotopic heterogeneity pattern is different to the s-process signature resolved in a previous Zr leaching experiment, which was attributed to low mass AGB stars. The bulk-rock heterogeneity requires several nucleosynthetic sources, and therefore opposes the theory of the injection of material from a single source (e.g., supernova, AGB star) and argues for a selective dust-sorting mechanism within the solar nebula. Thermal processing of labile carrier phases is considered and, if correct, necessitates the destruction and removal of non-s-process material from the innermost solar system

  5. Lead isotopic evidence for evolutionary changes in magma-crust interaction, Central Andes, southern Peru

    NASA Astrophysics Data System (ADS)

    Barreiro, Barbara A.; Clark, Alan H.

    1984-07-01

    Lead isotopic measurements were made on Andean igneous rocks of Jurassic to Recent age in Moquegua and Tacna Departments, southernmost Peru, to clarify the petrogenesis of the rocks and, in particular, to investigate the effect of crustal thickness on rock composition. This location in the Cordillera Occidental is ideal for such a study because the ca. 2 Ga Precambrian basement rocks (Arequipa massif) have a distinct Pb isotopic signature which is an excellent tracer of crustal interaction, and because geomorphological research has shown that the continental crust was here thickened drastically in the later Tertiary. Seven samples of quartz diorites and granodiorites from the Ilo and Toquepala intrusive complexes, and seven samples of Toquepala Group subaerial volcanics were analyzed for Pb isotopic compositions. The plutonic rocks range in age from Jurassic to Eocene; the volcanic rocks are all Late Cretaceous to Eocene. With one exception, the Pb isotopic ratios are in the ranges 206Pb/ 204Pb= 18.52-18.75, 207Pb/ 204Pb= 15.58-15.65, and 208Pb/ 204Pb= 38.53-38.74. The data reflect very little or no interaction with old continental material of the Arequipa massif type. Lead from four Miocene Huaylillas Formation ash-flow tuffs, two Pliocene Capillune Formation andesites and five Quaternary Barroso Group andesites has lower 206Pb/ 204Pb than that in the pre-Miocene rocks, but relatively high 207Pb/ 204Pb and 208Pb/ 204Pb ( 206Pb/ 204Pb= 18.16-18.30, 207Pb/ 204Pb= 15.55-15.63, 208Pb/ 204Pb= 38.45-38.90). Tilton and Barreiro [9] have shown that contamination by Arequipa massif granulites can explain the isotopic composition of the Barosso Group lavas, and the new data demonstrate that this effect is evident, to varying degrees, in all the analysed Neogene volcanic rocks. The initial incorporation of such basement material into the magma coincided with the Early Miocene uplift of this segment of the Cordillera Occidental [32], and thus with the creation of a thick

  6. A fluid inclusion and isotopic study of an intrusion-related gold deposit (IRGD) setting in the 380 Ma South Mountain Batholith, Nova Scotia, Canada: evidence for multiple fluid reservoirs

    NASA Astrophysics Data System (ADS)

    Kontak, Daniel J.; Kyser, Kurt

    2011-04-01

    A set of sheeted quartz veins cutting 380 Ma monzogranite at Sandwich Point, Nova Scotia, Canada, provide an opportunity to address issues regarding fluid reservoirs and genesis of intrusion-related gold deposits. The quartz veins, locally with arsenopyrite (≤5%) and elevated Au-(Bi-Sb-Cu-Zn), occur within the reduced South Mountain Batholith, which also has other zones of anomalous gold enrichment. The host granite intruded ( P = 3.5 kbars) Lower Paleozoic metaturbiditic rocks of the Meguma Supergroup, well known for orogenic vein gold mineralization. Relevant field observations include the following: (1) the granite contains pegmatite segregations and is cut by aplitic dykes and zones (≤1-2 m) of spaced fracture cleavage; (2) sheeted veins containing coarse, comb-textured quartz extend into a pegmatite zone; (3) arsenopyrite-bearing greisens dominated by F-rich muscovite occur adjacent the quartz veins; and (4) vein and greisen formation is consistent with Riedel shear geometry. Although these features suggest a magmatic origin for the vein-forming fluids, geochemical studies indicate a more complex origin. Vein quartz contains two types of aqueous fluid inclusion assemblages (FIA). Type 1 is a low-salinity (≤3 wt.% equivalent NaCl) with minor CO2 (≤2 mol%) and has T h = 280-340°C. In contrast, type 2 is a high-salinity (20-25 wt.% equivalent NaCl), Ca-rich fluid with T h = 160-200°C. Pressure-corrected fluid inclusion data reflect expulsion of a magmatic fluid near the granite solidus (650°C) that cooled and mixed with a lower temperature (400°C), wall rock equilibrated, Ca-rich fluid. Evidence for fluid unmixing, an important process in some intrusion-related gold deposit settings, is lacking. Stable isotopic (O, D, S) analyses for quartz, muscovite and arsenopyrite samples from vein and greisens indicate the following: (1) δ18Oqtz = +11.7‰ to 17.8‰ and δ18Omusc = +10.7‰ to +11.2‰; (2) δDmusc = -44‰ to-54‰; and (3) δ34Saspy = +7.8

  7. Lead isotopic evidence for deep crustal-scale fluid transport during granite petrogenesis

    NASA Astrophysics Data System (ADS)

    McCulloch, M. T.; Woodhead, J. D.

    1993-02-01

    Lead isotopic compositions are reported for K-feldspars from the Bega and Berridale batholiths in the Paleozoic Lachlan Fold Belt (LFB) of southeastern Australia. In marked contrast to the wide range in initial Nd ( ɛNd = +3 to -9.2), the feldspars exhibit an extremely limited variation in Pb isotopic composition with 206Pb /204Pb of 18.14 to 18.18, 207Pb /204Pb of 15.58 to 15.63 and 208Pb /204Pb of 38.04 to 38.21. This variability is less than that observed in modern intra-oceanic island arcs such as the Marianas. Despite the very limited range of Pb isotopic compositions, there are still good correlations with ɛNd values as well as between single-stage Pb-Pb and TNd model ages. The Pb-Pb model ages, however, have a significantly reduced range from ~330 Ma to 440 Ma, compared to the older TNd model ages which range from 810 Ma to 1770 Ma. The correlation, particularly of 207Pb /204Pb ratios with neodymium isotopic compositions, is attributed to limited late-stage mixing between mantle and crustal components. It is argued that this late-stage crust-mantle interaction was a relatively subtle feature, superimposed upon continental crust with an already homogenous Pb isotopic composition, probably via underplating and intrusion into the crust of mafic, mantle-derived magmas. The homogeneous crustal composition is most evident in the extremely limited range of 206Pb /204Pb ratios in the Bega Batholith, implying long-term variations in U/Pb of the granite source rocks of < ±4%, despite their large range in TNd model ages. Considering the differing geochemical properties of U and Pb, this very restricted range in U/Pb ratios is thought to be an artefact of Pb isotopic homogenisation in the continental crust. The Pb isotopic composition in the granite source rocks was homogenised immediately prior to partial melting, probably as a result of mobility of Pb in deep, crustal-scale fluid advection systems. Lead mobility may be a consequence of the extremely high solubility

  8. Molybdenum Isotopic evidence of anoxia at Permo-Triassic boundary from Spiti Valley Himalaya

    NASA Astrophysics Data System (ADS)

    Rai, V. K.; Shukla, A. D.; Kamath, S.

    2013-12-01

    Permo-Triassic (PT) extinction was the most devastating event in the history of life on Earth which occurred around 251 Ma ago. The exact cause of extinction remains uncertain. To understand the cause of extinction, we studied the redox sensitive elements, sulfur and Mo isotopes from the PT section of Spiti valley of Himalaya, India. In Spiti valley, 1-10 cm of ferruginous band of sediments separates the Permian shale from Triassic limestone. Analyses of redox sensitive elements such as As, Mo, As, Ni, Sb, Th, Mn and Fe show clear evidence of anoxia or euxinia. Here we present molybdenum abundance and isotopes analysis of PT sedimentary section which has potential to distinguish between sulfidic deep water (Euxinia), suboxic and oxic conditions. Mo is redox sensitive and the most abundant transition metal in present day ocean. It enters the ocean through rivers (δ98/95Mo~ 0‰) and remains in the water as moderately unreactive MoO4-- form. Under the oxidizing marine conditions similar to present day, Mo from water column is slowly removed by incorporation into ferromanganese phases with preferential removal of lighter Mo isotopes (δ98/95Mo ~-0.7‰). As a result, the ocean water is enriched in heavier isotope (δ98/95Mo ~2.3‰). However, in euxinic conditions with sulfidic deep water ([H2S]>100μM), Mo is quantitatively removed from the solution as MoS4-- without isotopic fractionation. Therefore Mo isotopic composition of sediments deposited under these conditions represents the Mo composition of water. Earlier studies of different PT sections showed prevalence of anoxic or euxinic condition during P-T transition, therefore the Mo isotope analysis of PT sediments should let us know about extent of anoxia at the Spiti site which was open towards and well connected to super-ocean during end Permian. Mo concentration in the PT sedimentary section from Spiti showed clear enrichment with Mo content of 77 ppm at the boundary with δ98/95Mo value of 0.75‰. Whereas

  9. Mantle to Surface Fluid Transfer Above a Flat Slab Subduction Zone: Isotopic Evidence from Hot Springs in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Newell, D. L.; Jessup, M. J.; Hilton, D. R.; Shaw, C. A.; Hughes, C. A.

    2015-12-01

    Thermal springs in the Cordillera Blanca, Peru, provide geochemical evidence for deeply circulated hydrothermal fluids that carry significant mantle-derived helium. The Cordillera Blanca is a ~200 km-long NNW-SSE trending mountain range in the Peruvian Andes located above an amagmatic flat-slab subduction segment. The west side of the range is bounded by the Cordillera Blanca detachment that preserves a progression of top to the west ductile shear to brittle normal faulting since ~5 Ma. We report aqueous and stable isotope geochemical results from fluid and gas samples collected in 2013 and 2015 from 13 hot springs emanating from the Cordillera Blanca detachment and associated hanging wall faults. Most springs are vigorously bubbling (degassing), and range in temperature, pH, and conductivity from 17-89 °C, 5.95-8.87, and 0.17-21.5 mS, respectively. The hottest springs issue directly from the northern segment of the detachment. Geochemically, springs are CO2-rich, alkaline-chloride to alkaline-carbonate waters, with elevated trace metal contents including Fe, Cu, As, Zn, Sb, and Tl. Notably, As contents are ≤11 ppm, indicating that thermal waters may be adversely impacting local water quality. Water δ18O and δD, trends in elemental chemistry, and cation geothermometry collectively demonstrate mixing of hot (200-260 °C) saline fluid with cold meteoric recharge along the fault. Helium isotope ratios (3He/4He) for dissolved gases in the hot springs range from 0.62 to 1.98 RC/RA, indicating the presence of ~25% mantle-derived helium, assuming mixing of an asthenospheric end-member with the crustal helium reservoir. CO2/3He and carbon stable isotope ratios indicate a carbon source derived from mixing of crustal sources with minor mantle carbon. Overall, the volatile signature overlaps with orogen-wide datasets where crustal overprinting has modified mantle contributions at active arc volcanoes. Given the long duration since active magmatism in the Cordillera

  10. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology.

    PubMed

    Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions

  11. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    PubMed Central

    Fleming, Nicholas E.C.; Newton, Jason; Houghton, Jonathan D.R.

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ13C and δ15N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ15N (trophic position) were evident between all three species, with size-based and temporal shifts in δ15N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that

  12. Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh-Dokhtar Magmatic Arc (Iran): Implications for source regions and magmatic evolution

    NASA Astrophysics Data System (ADS)

    Kananian, Ali; Sarjoughian, Fatemeh; Nadimi, Alireza; Ahmadian, Jamshid; Ling, Wenli

    2014-08-01

    The Kuh-e Dom Pluton is located along the central northeastern margin of the Urumieh-Dokhtar Magmatic Arc, spanning a wide range of compositions from felsic rocks, including granite, granodiorite, and quartz monzonite, through to intermediate-mafic rocks comprising monzonite, monzodiorite, diorite, monzogabbro, and gabbro. The Urumieh-Dokhtar Magmatic Arc forms a distinct linear magmatic complex that is aligned parallel with the orogenic suture of the Zagros fold-thrust belt. Most samples display characteristics of metaluminous, high-K calc-alkaline, I-type granitoids. The initial isotopic signatures range from εNd (47 Ma) = -4.77 to -5.89 and 87Sr/86Sr(i) = 0.7069 to 0.7074 for felsic rocks and εNd (47 Ma) = -3.04 to -4.06 and 87Sr/86Sr(i) = 0.7063 to 0.7067 for intermediate to mafic rocks. This geochemical and isotopic evidence support a mixed origin for the Kuh-e Dom hybrid granitoid with a range of contributions of both the crust and mantle, most probably by the interaction between lower crust- and mantle-derived magmas. It is seem, the felsic rocks incorporate about 56-74% lower crust-derived magma and about 26-44% of the enriched mantle-derived mafic magma. In contrast, 66-84% of the enriched mantle-derived mafic magma incorporates 16-34% of lower crust-derived magma to generate the intermediate-mafic rocks. According to the differences in chemical composition, the felsic rocks contain a higher proportion of crustal material than the intermediate to mafic ones. Enrichment in LILEs and depletion in HFSEs with marked negative Nb, Ba, and Ti anomalies are consistent with subduction-related magmatism in an active continental margin arc environment. This suggestion is consistent with the interpretation of the Urumieh-Dokhtar Magmatic Arc as an active continental margin during subduction of the Neotethys oceanic crust beneath the Central Iranian microcontinent.

  13. Late Cenozoic crustal extension and magmatism, southern Death Valley region, California

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.

    2000-01-01

    The late Cenozoic geologic history of the southern Death Valley region is characterized by coeval crustal extension and magamatism. Crustal extension is accommodated by numerous listric and planar normal faults as well as right- and left-lateral strike slip faults. The normal faults sip 30°-50° near the surface and flatten and merge leozoic miogeoclinal rocks; the strike-slip faults act as tear faults between crustal blocks that have extended at different times and at different rates. Crustal extension began 13.4-13.1 Ma and migrated northwestward with time; undeformed basalt flows and lacustrine deposits suggest that extension stopped in this region (but continued north of the Death Valley graben) between 5 and 7 Ma. Estimates of crustal extension in this region vary from 30-50 percent to more than 100 percent. Magmatic rocks syntectonic with crustal extension in the southern Death Valley region include 12.4-6.4 Ma granitic rocks as well as bimodal 14.0-4.0 Ma volcanic rocks. Geochemical and isotopic evidence suggest that the granitic rocks get younger and less alkalic from south to north; the volcanic rocks become more mafic with less evidence of crustal interaction as they get younger. The close spatial and temporal relation between crustal extension and magmatism suggest a genetic and probably a dynamic relation between these geologic processes. We propose a rectonic-magmatic model that requires heat to be transported into the crust by mantle-derived mafic magmas. These magmas pond at lithologic or rheologic boundaries, begin the crystallize, and partially melt the surrounding crustal rocks. With time, the thermally weakened crust is extended (given a regional extensional stress field) concurrent with granitic magmatism and bimodal volcanism.

  14. Evidence of varying magma chambers and magmatic evolutionary histories for the Table Mountain Formation in the Carson-Iceberg Wilderness region, Sonora Pass, California

    NASA Astrophysics Data System (ADS)

    Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.

    2012-12-01

    The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving

  15. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Wei; Li, Wen-Yuan; Gao, Yong-Bao; Li, Chusi; Ripley, Edward M.; Kamo, Sandra

    2014-02-01

    The sulfide-bearing Yulonggou and Yaqu mafic intrusions are located in the southern margin of the Qilian Block, Qinghai Province, western China. They are small dike-like bodies mainly composed of gabbros and diorites. Disseminated sulfides (pyrrhotite, pentlandite, and chalcopyrite) are present as concordant lenses within the intrusions. Precise CA-ID-TIMS zircon U-Pb dating yields the crystallization ages of 443.39 ± 0.42 and 440.74 ± 0.33 Ma for the Yulonggou and Yaqu intrusions, respectively. Whole rock samples from both intrusions show light rare earth element (REE) enrichments relative to heavy REE and pronounced negative Nb-Ta anomalies relative to Th and La, which are consistent with the products of arc basaltic magmatism. The Yulonggou intrusion has negative ɛ Nd values from -5.7 to -7.7 and elevated (87Sr/86Sr) i ratios from 0.711 to 0.714. In contrast, the Yaqu intrusion has higher ɛ Nd values from -4.1 to +8.4 and lower (87Sr/86Sr) i ratios from 0.705 to 0.710. The δ34S values of sulfide separates from the Yulonggou and Yaqu deposits vary from 0.8 to 2.4 ‰ and from 2 to 4.3 ‰, respectively. The γ Os values of sulfide separates from the Yulonggou and Yaqu deposits vary between 80 and 123 and between 963 and 1,191, respectively. Higher γ Os values coupled with higher δ34S values for the Yaqu deposit relative to the Yulonggou deposit indicate that external sulfur played a bigger role in sulfide mineralization in the Yaqu intrusion than in the Yulonggou intrusion. Mixing calculations using Sr-Nd isotope data show that contamination with siliceous crustal materials is more pronounced in the Yulonggou intrusion (up to 20 wt%) than in the Yaqu intrusion (<15 wt%). The distribution of sulfides in both intrusions is consistent with multiple emplacements of sulfide-saturated magmas from depth. The Yulonggou and Yaqu sulfide deposits are not economically valuable under current market condition due to small sizes and low Ni grades, which can be explained

  16. Stable isotope evidence of meat eating and hunting specialization in adult male chimpanzees

    PubMed Central

    Fahy, Geraldine E.; Richards, Michael; Riedel, Julia; Hublin, Jean-Jacques; Boesch, Christophe

    2013-01-01

    Observations of hunting and meat eating in our closest living relatives, chimpanzees (Pan troglodytes), suggest that among primates, regular inclusion of meat in the diet is not a characteristic unique to Homo. Wild chimpanzees are known to consume vertebrate meat, but its actual dietary contribution is, depending on the study population, often either unknown or minimal. Constraints on continual direct observation throughout the entire hunting season mean that behavioral observations are limited in their ability to accurately quantify meat consumption. Here we present direct stable isotope evidence supporting behavioral observations of frequent meat eating among wild adult male chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d’Ivoire. Meat eating among some of the male chimpanzees is significant enough to result in a marked isotope signal detectable on a short-term basis in their hair keratin and long-term in their bone collagen. Although both adult males and females and juveniles derive their dietary protein largely from daily fruit and seasonal nut consumption, our data indicate that some adult males also derive a large amount of dietary protein from hunted meat. Our results reinforce behavioral observations of male-dominated hunting and meat eating in adult Taï chimpanzees, suggesting that sex differences in food acquisition and consumption may have persisted throughout hominin evolution, rather than being a recent development in the human lineage. PMID:23530185

  17. Stable isotope evidence for an amphibious phase in early proboscidean evolution

    PubMed Central

    Liu, Alexander G. S. C.; Seiffert, Erik R.; Simons, Elwyn L.

    2008-01-01

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring δ18O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low δ18O values and low δ18O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. δ13C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C3 terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors. PMID:18413605

  18. Evidence of high sea level during isotope stage 5c in Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Pickett, J. W.; Thompson, C. H.; Kelley, R. A.; Roman, D.

    1985-07-01

    Thirty-nine species of scleractinian corals have been recovered from under a high dune on the western (mainland) side of North Stradbroke Island, eastern Australia. The corals are associated with thin intertidal sediments and their good condition implies burial in situ and preservation in a saturated zone. Most likely this occurred as the coast prograded and a large dune advanced into the littoral zone, burying intertidal sediments and coral. The species assemblage indicates a sheltered environment but one open to the ocean without wide fluctuations in salinity. Three species yielded a mean {230Th}/{234U} age of 105,000 yr B.P. which is significantly younger than the nearest Pleistocene corals at Evans Head, New South Wales. The corals provide evidence of a sea stand near present sea level during isotope Stage 5c, which is considerably higher than previously suggested for this period. Their good condition implies that the overlying parabolic dune is of comparable age and formed during that high stand of sea level. Also, the isotope age provides a maximum period for the development of giant podzols in the podzol chronosequences on coastal dunes in southern Queensland.

  19. Stable isotope evidence for an amphibious phase in early proboscidean evolution.

    PubMed

    Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L

    2008-04-15

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors. PMID:18413605

  20. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    USGS Publications Warehouse

    Nicholson, S.W.; Shirey, S.B.

    1990-01-01

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors

  1. Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley

    SciTech Connect

    Kingston, J.D.; Hill, A. ); Marino, B.D. )

    1994-05-13

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition ([delta][sup 13]C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed [delta][sup 13]C values offer no evidence for a shift from more-closed C3 environments to C4 grasslands habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  2. Isotopic Evidence for Neogene Hominid Paleoenvironments in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Kingston, John D.; Marino, Bruno D.; Hill, Andrew

    1994-05-01

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition (δ13C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed δ13C values offer no evidence for a shift from more-closed C3 environments to C4 grassland habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  3. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica

    PubMed Central

    Sugiyama, Nawa; Somerville, Andrew D.; Schoeninger, Margaret J.

    2015-01-01

    From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1–550), one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N) of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma’s zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24) and felids (n = 29). PMID:26332042

  4. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica.

    PubMed

    Sugiyama, Nawa; Somerville, Andrew D; Schoeninger, Margaret J

    2015-01-01

    From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1-550), one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N) of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma's zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24) and felids (n = 29). PMID:26332042

  5. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Wu, Fu-Yuan; Li, Xian-Hua; Yang, Jin-Hui; Gou, Guo-Ning; Guo, Hai-Feng

    2015-09-01

    Back-arc extension and asthenosphere upwelling associated with oceanic lithospheric subduction affect the structure and thermal regime of the arc lithosphere, which often triggers widespread extension-related mafic magmatism. Although it is commonly accepted that the Neo-Tethyan oceanic lithosphere subducted beneath the southern Lhasa block, resulting in the well-known Late Mesozoic Gangdese magmatic arc, the possible role of contemporary back-arc extension and asthenosphere upwelling has been disputed due to a lack of evidence for extension-related mafic magmatism. Here, we report detailed petrological, geochronological, geochemical, and Sr-Nd-Hf-O isotopic data for the Dagze diabases located in the north of the Gangdese district, southern Lhasa block. The zircon U-Pb analyses indicate that they were generated in the Late Cretaceous (ca. 92 Ma) instead of the Eocene (42-38 Ma) as previously believed. These mafic rocks are characterized by variable MgO (4.0-12.2 wt %) and Mg# (42 to 71) values combined with flat to slightly enriched ([La/Yb]N = 1.87-5.23) light rare earth elements (REEs) and relative flat heavy REEs ([Gd/Yb]N = 1.36-1.87) with negative Ta, Nb, and Ti anomalies (e.g., [Nb/La]PM = 0.16-0.51). They also have slightly variable ɛNd(t) (-1.25 to +4.71) and low initial 87Sr/86Sr (0.7045-0.7058) values with strong positive igneous zircon ɛHf(t) (+8.0 to +12.1) and low δ18O (5.31-6.12‰) values. The estimated primary melt compositions are similar to peridotite-derived experimental melts. Given their high melting temperature (1332 to 1372°C) and hybrid geochemical characteristics, we propose that the Dagze mafic magmas likely represent mixtures of asthenospheric and enriched lithospheric mantle-derived melts that underwent minor crustal assimilation and fractional crystallization of clinopyroxene. Taking into account the spatial and temporal distribution of Mesozoic mafic-felsic magmatic rocks and regional paleomagnetic and basin data, we suggest that

  6. Cierco Pb-Zn-Ag vein deposits: Isotopic and fluid inclusion evidence for formation during the mesozoic extension in the pyrenees of Spain

    USGS Publications Warehouse

    Johnson, C.A.; Cardellach, E.; Tritlla, J.; Hanan, B.B.

    1996-01-01

    The Cierco Pb-Zn-Ag vein deposits, located in the central Pyrenees of Spain, crosscut Paleozoic metasedimentary rocks and are in close proximity to Hercynian granodiorite dikes and plutons. Galena and sphalerite in the deposits have average ??34S values of -4.3 and -0.8 per mil (CDT), respectively. Coexisting mineral pairs give an isotopic equilibration temperature range of 89?? to 163??C which overlaps with the 112?? to 198??C range obtained from primary fluid inclusions. Coexisting quartz has a ??18O value of 19 ?? 1 per mil (VSMOW). The fluid which deposited these minerals is inferred to have had ??18OH2o and ??34SH2s values of 5 ?? 1 and -1 ?? 1 per mil, respectively. Chemical and microthermometric analyses of fluid inclusions in quartz and sphalerite indicate salinities of 3 to 29 wt percent NaCl equiv with Na+ and Ca2+ as the dominant cations in solution. The Br/Cl and I/Cl ratios differ from those characteristic of magmatic waters and pristine seawater, but show some similarity to those observed in deep ground waters in crystalline terranes, basinal brines, and evaporated seawater, Barite, which postdates the sulfides, spans isotopic ranges of 13 to 21 per mil, 10 to 15 per mil, and 0.7109 to 0.7123 for ??34S, ??18O, and 87Sr/86Sr, respectively. The three parameters are correlated providing strong evidence that the barites are products of fluid mixing. We propose that the Cierco deposits formed along an extensional fault system at the margin of a marine basin during the breakup of Pangea at some time between the Early Triassic and Early Cretaceous. Sulfide deposition corresponded to an upwelling of hydrothermal fluid from the Paleozoic basement and was limited by the amount of metals carried by the fluid. Barite deposition corresponded to the waning of upward flow and the collapse of sulfate-rich surface waters onto the retreating hydrothermal plume. Calcite precipitated late in the paragenesis as meteoric or marine waters descended into the fault system

  7. Low-temperature carbonate concretions in the Martian meteorite ALH84001: evidence from stable isotopes and mineralogy.

    PubMed

    Valley, J W; Eiler, J M; Graham, C M; Gibson, E K; Romanek, C S; Stolper, E M

    1997-03-14

    The martian meteorite ALH84001 contains small, disk-shaped concretions of carbonate with concentric chemical and mineralogical zonation. Oxygen isotope compositions of these concretions, measured by ion microprobe, range from delta18O = +9.5 to +20.5 per thousand. Most of the core of one concretion is homogeneous (16.7 +/- 1.2 per thousand) and over 5 per thousand higher in delta18O than a second concretion. Orthopyroxene that hosts the secondary carbonates is isotopically homogeneous (delta18O = 4.6 +/- 1.2 per thousand). Secondary SiO2 has delta18O = 20.4 per thousand. Carbon isotope ratios measured from the core of one concretion average delta13C = 46 +/- 8 per thousand, consistent with formation on Mars. The isotopic variations and mineral compositions offer no evidence for high temperature (>650 degrees C) carbonate precipitation and suggest non-equilibrium processes at low temperatures (< approximately 300 degrees C). PMID:9054355

  8. Global mantle convection: Evidence from carbon and nitrogen isotopes in super-deep diamonds (Invited)

    NASA Astrophysics Data System (ADS)

    Palot, M.; Cartigny, P.; Harris, J.; Kaminsky, F. V.; Stachel, T.

    2009-12-01

    Constraining the convective regime of the Earth’s mantle has profound implications for our understanding of the Earth’s cooling and the geodynamics of plate tectonics. Although subducting plates seem to be occasionally deflected at 660 km, evidence from seismic tomography and fluid dynamics suggest that substantial amounts of material reach the core-mantle boundary. Most geochemists, on the other hand, based on evidence from noble gases, would argue for the presence of separate upper and lower mantle reservoirs. Diamond provides a unique opportunity to sample those parts of the mantle that remains inaccessible by any other means. Some mineral associations in diamond, such as majoritic garnet, calcic and magnesian perovskite and manganoan ilmenite with ferropericlase have been recognised as originated from the transition zone down to the lower mantle (Stachel et al., 1999; Kaminsky et al., 2001). In addition, nitrogen in these diamonds is potentially a good tracer for mantle geodynamics. Exchanges between an inner reservoir (characterised by negative δ15N) via degassing at oceanic ridges with an outer reservoir (characterised by positive δ15N) via recycling at a subduction zones can lead to isotopic contrast in a stratified mantle. Because of common super-deep mineral inclusion assemblages in diamonds from Juina (Brazil) and Kankan (Guinea), we carried out a detailed study of nitrogen and carbon isotopes. The Juina diamonds show broadly similar ranges of δ15N from +3.8‰ down to -8.8‰ for both upper (UM) and lower (LM) mantle diamonds. This important feature is also found for UM and LM diamonds from Kankan, although the range of δ15N differs with values from +9.6‰ down to -39.4‰. Both sets of results suggest extensive material-isotopic exchange through the 660km discontinuity, contrary to the idea of an isolated reservoir. Transition zone (TZ) diamonds are enriched in 13C with δ13C from -3.1‰ up to +3.8‰ at Kankan but those of Juina are depleted

  9. Pedogenic Formation of Perylene in a Terrestrial Soil Profile: Evidence From Carbon Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Gocht, T.; Jochmann, M. A.; Blessing, M.; Barth, J.; Schmidt, T. C.; Grathwohl, P.

    2005-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants (POP), which are introduced into the environment mainly due to combustion of fossil fuel. Perylene is one compound of the PAHs that consists of 5 condensed rings like the well known carcinogenic benzo(a)pyrene. Apart from the pyrogenic formation, there are strong indications that it is produced biologically and/or diagenetically under anaerobic conditions. This conclusion was derived from the presence of perylene in deeper parts of marine and lacustrine sediment profiles, where the combustion-derived PAHs are almost absent ( Lima et al., 2003). 13C/12C compound-specific stable isotopic ratios were successfully applied for the differentiation of probably biologically generated perylene in tropical termite nests and pyrolytic perylene from surface soils of temperate regions ( Wilcke et al., 2002). Our study is the first aiming on the determination of the different processes of perylene formation at one location using carbon isotopic ratios such as 13C/12C. We determined PAHs in natural soils of southern Germany. At one location in the Black Forest we found for the first time evidence for natural perylene production in the subsoil of terrestrial environments. Apart from the combustion derived PAHs that accumulate at the top of all soil profiles, the depth distribution of perylene shows the highest peak in the subsoil about 1 m below the surface. Due to its very low solubility (0.4 μg l-1 at 25 °C) vertical transport of perylene with seepage water is very unlikely. Thus, we suggest atmospheric deposition of pyrogenic perylene at the top of the profile and in-situ generation in the subsoil, probably due to microbial activities. In order to distinguish between the pyrogenic and natural generation we employed 13C/12C compound-specific stable isotope analysis of perylene in soil samples from the top of the profile as well as from the subsoil. Preliminary measurements with soil extracts show strong

  10. Eocene Granitic Magmatism in NW Anatolia (Turkey) revisited: New implications from comparative zircon SHRIMP U-Pb and 40Ar-39Ar geochronology and isotope geochemistry on magma genesis and emplacement

    NASA Astrophysics Data System (ADS)

    Altunkaynak, Şafak; Sunal, Gürsel; Aldanmaz, Ercan; Genç, Can Ş.; Dilek, Yıldırım; Furnes, Harald; Foland, Kenneth A.; Yang, Jingsui; Yıldız, Merve

    2012-12-01

    During the Eocene, the northern Neo-Tethys suture zone and immediately adjacent areas in NW Turkey were loci of emplacement of a number of granitoid plutons with age relations and geochemical signatures indicative of magma generation in association with plate convergence. Discrete granitoid plutons of Eocene age in this region are exposed mainly in two distinct belts within and north of the northern Neo-Tethys suture zone. We report new SHRIMP U-Pb zircon and 40Ar/39Ar geochronology along with Sr-Nd isotope data from the granitoids in order to constrain their melt source(s), cooling history, and tectono-magmatic evolution with respect to the Early Cenozoic collisional tectonics of the region. Ranging in composition from diorite to granite, the plutons are largely represented by medium- to high-K calc-alkaline, I-type granites accompanied by minor amounts of shoshonitic rocks with syenite compositions and mafic microgranular enclaves in some of the plutons. In terms of trace element systematics the granitoids and the associated enclaves from the entire Eocene suite display close similarities to magmas from subduction-related or active continental margin settings, characterized by significant enrichment in LILE/HFSE relative to MORB. The rocks display significantly heterogeneous distributions of radiogenic isotopes with 87Sr/86Sr and 143Nd/144Nd ranging from 0.705824 to 0.708363 and from 0.512384 to 0.512718 respectively, suggesting multi-component melt interaction in their genesis. The granitoids from the southern and northern belts yielded zircon SHRIMP U-Pb ages of 52.8 ± 1.8 to 45.41 ± 0.34 Ma and 47.02 ± 0.82 to 36.79 ± 0.67 Ma, respectively, indicating overlapping emplacement ages, with some relatively younger ages from the northern belt. 40Ar/39Ar dating of biotite and hornblende also yielded similarly overlapping cooling ages (51.8 ± 0.1 to 44.9 ± 0.2 Ma and 45.3 ± 0.1 to 36.0 ± 0.1 Ma, respectively). Our combined geochronological data from the co

  11. Oxygen isotope evidence for orbital-scale glacio-eustasy during middle Paleozoic greenhouse climates

    NASA Astrophysics Data System (ADS)

    Theiling, B. P.; Elrick, M.

    2011-12-01

    Orbital-scale cycles (or parasequences) are pervasive throughout Phanerozoic and Precambrian marine deposits. Cycles deposited under cool (icehouse) conditions are commonly attributed to orbitally-driven glacio-eustasy whereas cycles forming during warm (greenhouse) climates, which lack direct evidence for glacial ice, are not well understood because autogenic and tectonic processes can often be eliminated. This study utilizes δ18O of marine apatite to explore whether orbital-scale glacio-eustasy controlled cycle formation during Paleozoic greenhouse time intervals. Stacked orbital-scale carbonate cycles within the Upper Silurian Henryhouse Formation of central Oklahoma and the Upper Devonian Devil's Gate Formation of central Nevada were sampled for conodont apatite. Both successions accumulated in shallow epicontinental seas on the flooded North American craton in southern tropical paleolatitudes. Subtidal cycles (2-7 m thick) at both locations are generally composed of deeper subtidal skeletal mudstone-wackestone that coarsen upward into shallow subtidal skeletal wackestone-packstone at cycle tops which show no evidence of subaerial exposure. Conodont δ18O values from the Silurian range from 15.8-19.5% and the Devonian from 16.3-19.0%. The majority of sampled Silurian and Devonian cycles record low δ18O values in the deepest water facies (during sea-level rise and highstand) and higher δ18O values in the shallowest water facies (during sea-level fall and lowstand). The magnitude of isotopic shift across individual cycles ranges from 2.2-3.1% for Silurian and ≤1.6% for Devonian cycles. If the intracycle isotopic shifts were due only to seawater temperature changes, then subtropical surface seawater temperature (SST) fluctuated between ~6-14°C during individual cycle formation. This magnitude of shift is greater than that recorded in the tropics since the Last Glacial Maximum, suggesting that the Silurian and Devonian isotopic shifts were not just the result

  12. Isotopic inhomogeneity of leaf water: Evidence and implications for the use of isotopic signals transduced by plants

    NASA Astrophysics Data System (ADS)

    Yakir, Dan; DeNiro, Michael J.; Rundel, Philip W.

    1989-10-01

    Variations as large as 11%. in δ18O values and 50%. in δD values were observed among different fractions of water in leaves of ivy (Hedera helix) and sunflower (Helianthus annuus). This observation contradicts previous experimental approaches to leaf water as an isotopically uniform pool. Using ion analysis of the water fractions to identify sources within the leaf, we conclude that the isotopic composition of the water within cells, which is involved in biosynthesis and therefore recorded in the plant organic matter, differs substantially from that of total leaf water. This conclusion must be taken into account in studies in which isotope ratios of fossil plant cellulose are interpreted in paleoclimatic terms. In addition, our results have implications for attempts to explain the Dole effect and to account for the variations of 18O/16O ratios in atmospheric carbon dioxide, since the isotopic composition of cell water, not of total leaf water, influences theδ18O values of O2 and CO2 released from plants into the atmosphere.

  13. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Chen, James H.; Zhang, Junjun; Papanastassiou, Dimitri A.; Davis, Andrew M.; Travaglio, Claudia

    2014-12-01

    Thermal ionization mass spectrometry (TIMS) was used to measure the calcium isotopic compositions of carbonaceous, ordinary, enstatite chondrites as well as eucrites and aubrites. We find that after correction for mass-fractionation by internal normalization to a fixed 42Ca/44Ca ratio, the 43Ca/44Ca and 46Ca/44Ca ratios are indistinguishable from terrestrial ratios. In contrast, the 48Ca/44Ca ratios show significant departure from the terrestrial composition (from -2 ε in eucrites to +4 ε in CO and CV chondrites). Isotopic anomalies in ε48Ca correlate with ε50Ti: ε 48Ca=(1.09±0.11)×ε 50Ti+(0.03±0.14). Further work is needed to identify the carrier phase of 48Ca-50Ti anomalies but we suggest that it could be perovskite and that the stellar site where these anomalies were created was also responsible for the nucleosynthesis of the bulk of the solar system inventory of these nuclides. The Earth has identical 48Ca isotopic composition to enstatite chondrites (EH and EL) and aubrites. This adds to a long list of elements that display nucleosynthetic anomalies at a bulk planetary scale but show identical or very similar isotopic compositions between enstatite chondrites, aubrites, and Earth. This suggests that the inner protoplanetary disk was characterized by a uniform isotopic composition (IDUR for Inner Disk Uniform Reservoir), sampled by enstatite chondrites and aubrites, from which the Earth drew most of its constituents. The terrestrial isotopic composition for 17O, 48Ca, 50Ti, 62Ni, and 92Mo is well reproduced by a mixture of 91% enstatite, 7% ordinary, and 2% carbonaceous chondrites. The Earth was not simply made of enstatite chondrites but it formed from the same original material that was later modified by nebular and disk processes. The Moon-forming impactor probably came from the same region as the other embryos that made the Earth, explaining the strong isotopic similarity between lunar and terrestrial rocks.

  14. Manganese mineralization in andesites of Brestovačka Banja, Serbia: evidence of sea-floor exhalations in the Timok Magmatic Complex

    NASA Astrophysics Data System (ADS)

    Pačevski, Aleksandar; Cvetković, Vladica; Šarić, Kristina; Banješević, Miodrag; Hoefer, Heidi Eva; Kremenović, Aleksandar

    2016-08-01

    Andesites near Brestovačka Banja belong to the Late Cretaceous Timok Magmatic Complex (TMC), which hosts the world-class Bor metallogenic zone including numerous porphyry-copper and epithermal deposits. Two main volcanic phases are recognized in the TMC. The newly discovered Mn mineralization reported here is associated with the second volcanic phase of Turonian-Campanian age. Manganese mineralization containing 58 % MnO on average, occurs as black veins, lumps and nests filling cracks and cavities within an autoclastic andesite, which was deposited in a subaqueous environment. This rock also contains minor Fe mineralization, which is contemporaneous with the manganese mineralization. Manganese mineralization predominantly consists of Mn-Ca silicates (macfallite, pumpellyite-Mn, orientite, bustamite) and Mn oxides (pyrolusite, manganite). Micrometer-scale mineral intergrowths and locally preserved botryoidal and colloform textures are characteristic features of this uncommon mineral assemblage. The features could indicate that the mineralization was formed by deposition from a primary colloidal assemblage and is of sub-marine hydrothermal origin. Orientite is the only Mn mineral with grain size reaching several tenths of micrometers and showing prismatic crystal habit. Scarce to rare associated minerals are hollandite, crednerite, an unknown REE mineral, powellite, pyrite, barite and galena, in decreasing abundance. Trace element analyses of the Mn mineralization show different element contents and REE patterns compared to those of the volcanic host-rock. Manganese mineralization shows relatively high contents of Cu - 1784 ppm, Mo - 20 ppm and As - 268 ppm. These elements are commonly enriched in the Cu deposits of the Bor zone and their relatively high contents in the studied Mn crusts indicate sea-floor hydrothermal vents as a source of the metals.

  15. Mid-Neoproterozoic ridge subduction and magmatic evolution in the northeastern margin of the Indochina block: Evidence from geochronology and geochemistry of calc-alkaline plutons

    NASA Astrophysics Data System (ADS)

    Qi, Xuexiang; Santosh, M.; Zhao, Yuhao; Hu, Zhaocuo; Zhang, Chao; Ji, Fengbao; Wei, Cheng

    2016-04-01

    The mid-Neoproterozoic medium- to high-K calc-alkaline magmatic rocks in the northeastern margin of the Indochina block, SW China, provide important insights into the relationship of the Indochina block with the Gondwana supercontinent. Here we report zircon LA-ICP-MS U-Pb data from the early and late stage plutons which yield weighted mean 206Pb/238U ages of 765 Ma and 732-739 Ma suggesting mid-Neoproterozoic emplacement. The zircon εHf(t) values show a range of - 3.2 to + 2.4 (average + 0.1 ± 0.9) with TDMC of 1510 to 1870 Ma for the early plutons, and - 5.4 to + 5.1 (average + 2.1 to - 3.9) with TDMC of 1366 to 1985 Ma for late plutons. Both groups show similar geochemical characteristics including high Mg#, enrichment of LILE and LREE, slight negative Eu anomalies, and strongly negative Nb, Ta and Ti anomalies, with all the samples falling within the continental/island arc field in tectonic discrimination diagrams. These features suggest that the early and late stage magmas were produced by the mixing of mantle-derived magma and crust-derived magma in different proportion within an active continental margin, in subduction-related continental-arc tectonic setting. The linear zoning and roughly parallel distribution of the two generations of intrusions with a hiatus of 20 Ma might suggest an episode of ridge subduction with asthenosphere upwelling through the slab window that generated the second phase of plutons.

  16. Manganese mineralization in andesites of Brestovačka Banja, Serbia: evidence of sea-floor exhalations in the Timok Magmatic Complex

    NASA Astrophysics Data System (ADS)

    Pačevski, Aleksandar; Cvetković, Vladica; Šarić, Kristina; Banješević, Miodrag; Hoefer, Heidi Eva; Kremenović, Aleksandar

    2016-01-01

    Andesites near Brestovačka Banja belong to the Late Cretaceous Timok Magmatic Complex (TMC), which hosts the world-class Bor metallogenic zone including numerous porphyry-copper and epithermal deposits. Two main volcanic phases are recognized in the TMC. The newly discovered Mn mineralization reported here is associated with the second volcanic phase of Turonian-Campanian age. Manganese mineralization containing 58 % MnO on average, occurs as black veins, lumps and nests filling cracks and cavities within an autoclastic andesite, which was deposited in a subaqueous environment. This rock also contains minor Fe mineralization, which is contemporaneous with the manganese mineralization. Manganese mineralization predominantly consists of Mn-Ca silicates (macfallite, pumpellyite-Mn, orientite, bustamite) and Mn oxides (pyrolusite, manganite). Micrometer-scale mineral intergrowths and locally preserved botryoidal and colloform textures are characteristic features of this uncommon mineral assemblage. The features could indicate that the mineralization was formed by deposition from a primary colloidal assemblage and is of sub-marine hydrothermal origin. Orientite is the only Mn mineral with grain size reaching several tenths of micrometers and showing prismatic crystal habit. Scarce to rare associated minerals are hollandite, crednerite, an unknown REE mineral, powellite, pyrite, barite and galena, in decreasing abundance. Trace element analyses of the Mn mineralization show different element contents and REE patterns compared to those of the volcanic host-rock. Manganese mineralization shows relatively high contents of Cu - 1784 ppm, Mo - 20 ppm and As - 268 ppm. These elements are commonly enriched in the Cu deposits of the Bor zone and their relatively high contents in the studied Mn crusts indicate sea-floor hydrothermal vents as a source of the metals.

  17. The Central Atlantic Magmatic Province at the Triassic-Jurassic boundary: paleomagnetic and 40Ar/ 39Ar evidence from Morocco for brief, episodic volcanism

    NASA Astrophysics Data System (ADS)

    Knight, K. B.; Nomade, S.; Renne, P. R.; Marzoli, A.; Bertrand, H.; Youbi, N.

    2004-11-01

    The Central Atlantic Magmatic Province (CAMP), one of the largest known flood basalt provinces formed in the Phanerozoic, is associated with the pre-rift stage of the Atlantic Ocean at the Triassic-Jurassic boundary ca. 200 Ma. Paleomagnetic sampling targeted packages of CAMP lava flows in Morocco's High Atlas divided into four basic units (the lower, intermediate, upper, and recurrent units) from sections identified on the basis of field observations and geochemistry. Oriented cores were demagnetized using both alternating field (AF) and thermal techniques. Paleomagnetic results reveal wholly normal polarity interrupted by at least one brief reversed chron located in the intermediate unit, and reveal distinct pulses of volcanic activity identified by discrete changes in declination and inclination. These variations in magnetic direction are interpreted as a record of secular variation, and they may provide an additional correlative tool for identification of spatially separated CAMP lava flows within Morocco. 40Ar/39Ar analyses of Moroccan CAMP lavas yield plateau ages indistinguishable within 2σ error limits, sharing a weighted mean age of 199.9±0.5 Ma (2σ), reinforcing the short-lived nature of these eruptions despite the presence of sedimentary horizons between them. Correlation of our sections with the E23n, E23r, E24 sequence reported in the Newark basin terrestrial section and St. Audrie's Bay marine section is suggested. Brief volcanism in sudden pulses is a potential mechanism for volcanic-induced climatic changes and biotic disruption at the Triassic-Jurassic boundary. Combination of our directional group (DG) poles yields an African paleomagnetic pole at 200 Ma of λ(°N)=73.0°, ϕ(°E)=241.3° (Dp=5.0°, Dm=18.5°).

  18. STABLE ISOTOPIC EVIDENCE OF CARBON AND NITROGEN USE IN CULTURED ECTOMYCORRHIZAL AND SAPROTROPHIC FUNGI

    EPA Science Inventory

    Stable isotopes in sporocarps have proven useful for inferring ectomycorrhizal or saprotrophic status and understanding carbon (C) and nitrogen (N) utilization. However, greater understanding of processes producing isotopic concentrations is needed. We measured natural abundanc...

  19. COMPOUND-SPECIFIC CARBON AND HYDROGEN ISOTOPE ANALYSIS-FIELD EVIDENCE OF MTBE BIOREMEDIATION

    EPA Science Inventory

    Chemical reactions (including bio- and abiotic degradation) tend to favor molecules with the lighter isotopic species (e.g., 12C, 1H), resulting in enrichment of the heavier isotopic species (13C, D) in the unreacted substrate, referred to as isotopic fractionation. On the other ...

  20. Evidence for in-situ methane production in ice based on anomalous isotope analyses

    NASA Astrophysics Data System (ADS)

    Sowers, T. A.; Priscu, J.

    2004-12-01

    the Sajama ice core from central Bolivia (18oS, 69oW, 6542masl), for example, were 1X-5X higher than contemporaneous values recorded in polar ice cores [Campen et al., 2003]. \\delta13CH4 values from five discrete depths were compared to corresponding measurements made on the Taylor Dome ice core and suggest the additional (in-situ) CH_{4} in the Sajama samples has an average isotopic composition of -63.2±2.8‰ . For reference, atmospheric δ ^{13}CH_{4} values range from -42 to -45/pm over this period. The Sajama isotope values are characteristic of methanogenic CH_{4} emitted from most terrestrial ecosystems. The second case study revolves around ice that was recovered from a perennially ice covered lake in the McMurdo Dry Valleys, Antarctica. Previous work on ice from Lake Bonney demonstrated a rich microbial consortium located ~2m below the surface [Priscu et al., 1998]. Methane isotope analyses were made on ice from this depth interval to identify the presence of microbially produced CH_{4}. δ ^{13}CH_{4} and δ DCH4 results suggest the CH4 arises from acetogenic CH4 production as opposed to CO2 reduction. Campen, R.K., T. Sowers, and R.B. Alley, Evidence of Microbial Consortia Metabolizing Within a Low-Latitude Mountain Glacier, Geology, 31 (No. 3), 231-234, 2003. Priscu, J.C., et al., Perennial Antarctic Lake Ice: An oasis for life in a polar desert, Science, 280, 2095-2098, 1998.

  1. Carbon Retention and Isotopic Evolution in Deeply Subducted Sediments: Evidence from the Italian Alps

    NASA Astrophysics Data System (ADS)

    Cook-Kollars, J.; Bebout, G. E.; Agard, P.; Angiboust, S.

    2012-12-01

    Subduction-zone metamorphism of oceanic crust and carbonate-rich seafloor sediments plays an important regulatory role in the global C cycle by controlling the fraction of subducting C entering long-term storage in the mantle and the fraction of subducting C emitted into the atmosphere in arc volcanic gases. Modeling studies suggest that the extent of decarbonation of subducting sediments could be strongly affected by extents of infiltration by external H2O-rich fluids and that, in cool subduction zones, the dehydration of subducting oceanic slabs may not release sufficient H2O to cause significant decarbonation of overlying sediments [Gorman et al. (2006), G-cubed; Hacker (2008), G-cubed]. Metasedimentary suites in the Western Alps (sampled from the Schistes Lustres, Zermatt-Saas ophiolite, and at Lago di Cignana) were subducted to depths corresponding to 1.5-3.2 GPa, over a range of peak temperatures of 350-600°C, and are associated with HP/UHP-metamorphosed Jurassic ophiolitic rocks [Agard et al. (2001), Bull. soc. geol. France; Frezzotti et al. (2011), Nature Geoscience]. These metasedimentary suites are composed of interlayered metapelites and metacarbonates and represent a range of peak P-T conditions experienced in modern, relatively cool subduction zones. Integrated petrologic and isotopic study of these rocks allows an analysis of decarbonation and isotopic exchange among oxidized and reduced C reservoirs along prograde subduction-zone P-T paths. Petrographic work on Schistes Lustres metacarbonates indicates only minor occurrences of calc-silicate phases, consistent with the rocks having experienced only very minor decarbonation during prograde metamorphism. Carbonate δ13CVPDB values (-1.5 to 1‰) are similar to values typical of marine carbonates. Higher grade, UHP-metamorphosed carbonates at Cignana show mineralogic evidence of decarbonation; however, the δ13C of the calcite in these samples remains similar to that of marine carbonate. With

  2. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects

    NASA Astrophysics Data System (ADS)

    Markowski, A.; Quitté, G.; Halliday, A. N.; Kleine, T.

    2006-02-01

    High-precision W isotopic compositions are presented for 35 iron meteorites from 7 magmatic groups (IC, IIAB, IID, IIIAB, IIIF, IVA, and IVB) and 3 non-magmatic groups (IAB, IIICD, and IIE). Small but resolvable isotopic variations are present both within and between iron meteorite groups. Variations in the 182W/ 184W ratio reflect either time intervals of metal-silicate differentiation, or result from the burnout of W isotopes caused by a prolonged exposure to galactic cosmic rays. Calculated apparent time spans for some groups of magmatic iron meteorites correspond to 8.5 ± 2.1 My (IID), 5.1 ± 2.3 My (IIAB), and 5.3 ± 1.3 My (IVB). These time intervals are significantly longer than those predicated from models of planetesimal accretion. It is shown that cosmogenic effects can account for a large part of the W isotopic variation. No simple relationship exists with exposure ages, compromising any reliable method of correction. After allowance for maximum possible cosmogenic effects, it is found that there is no evidence that any of the magmatic iron meteorites studied here have initial W isotopic compositions that differ from those of Allende CAIs [ ɛ182W = - 3.47 ± 0.20; [T. Kleine, K. Mezger, H. Palme, E. Scherer and C. Münker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf- 182W in CAIs, metal-rich chondrites and iron meteorites, Geochim. Cosmochim. Acta (in press)]. Cosmogenic corrections cannot yet be made with sufficient accuracy to obtain highly precise ages for iron meteorites. Some of the corrected ages nevertheless require extremely early metal-silicate segregation no later than 1 My after formation of CAIs. Therefore, magmatic iron meteorites appear to provide the best examples yet identified of material derived from the first planetesimals that grew by runaway growth, as modelled in dynamic simulations. Non-magmatic iron meteorites have a more radiogenic W isotopic composition than magmatic

  3. Isotopic evidence of source variations in commingled magma systems: Colorado River extensional corridor, Arizona and Nevada

    SciTech Connect

    Metcalf, R.V.; Smith, E.I.; Martin, M.W. . Dept. of Geoscience); Gonzales, D.A.; Walker, J.D. . Isotope Geochronology Lab.)

    1993-04-01

    Mixing of mantle derived mafic and crustal derived felsic magmas is a major Province-wide process forming Tertiary intermediate magmas within the Basin and Range. Major variations in magma sources, however, may exist in temporally and spatially related systems. Such variations are exemplified by two closely spaced plutons within the northern Colorado River extensional corridor. The 15.96 Ma Mt. Perkins pluton (MPP) was emplaced in three major phases: phase 1 (oldest) gabbro; phase 2 quartz diorite to hornblende granodiorite; and phase 3 biotite granodiorite ([+-]hbld). Phases 2 and 3 contain mafic microgranitoid enclaves (MME) that exhibit evidence of magma mingling. Combined data from phase 2 and 3 rocks, including MMW, shows positive [sup 87]Sr/[sup 86]Sr and negative [var epsilon]Nd correlations vs. SiO[sub 2] (50--72 wt %). Phase 2 rocks, which plot between phase 2 MME and MME-free phase 3 granodiorite, represent hybrid magmas formed by mixing of mantle and crustal derived magmas. Phase 1 gabbro falls off isotope-SiO[sub 2] trends and represents a separate mantle derived magma. The 13.2 Ma Wilson Ridge pluton (WRP), <20 km north of MPP, is cogenetic with the river Mountains volcano (RMV). In WRP an early diorite was intruded by a suite of monzodiorite to quartz monzonite. The monzodiorite portion contains MME and mafic schlieren representing mingled and mixed mafic magmas. The WRP and MPP represent two closely spaced isotopically distinct and separate magma systems. There are five magma sources. The two felsic mixing end members represent two different crustal magma sources. Two mantle sources are presented by MPP phase 1 gabbro and phase 2 MME, reflecting lithospheric and asthenospheric components, respectively. The latter represents the oldest reported Tertiary asthenospheric component within the region. A single lithospheric mantle source, different from the MPP gabbro, is indicated for the mafic mixing end member in the WRP-RMV suite.

  4. Evidence from Hydrogen Isotopes in Meteorites for a Subsurface Hydrogen Reservoir on Mars

    NASA Technical Reports Server (NTRS)

    Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have conducted in situ hydrogen isotope (D/H) analyses of quenched and impact glasses in three Martian meteorites (Yamato 980459, EETA79001, LAR 06319) by Cameca ims-6f at Digital Terrain Models (DTM) following the methods of [1]. The hydrogen isotope analyses provide evidence for the existence of a distinct but ubiquitous water/ice reservoir (D/H = 2-3 times Earth's ocean water: Standard Mean Ocean Water (SMOW)) that lasted from at least the time when the meteorites crystallized (173-472 Ma) to the time they were ejected by impacts (0.7-3.3 Ma), but possibly much longer [2]. The origin of this reservoir appears to predate the current Martian atmospheric water (D/H equals approximately 5-6 times SMOW) and is unlikely to be a simple mixture of atmospheric and primordial water retained in the Martian mantle (D/H is approximately equal to SMOW [1]). Given the fact that this intermediate-D/H reservoir (2-3 times SMOW) is observed in a diverse range of Martian materials with different ages (e.g., SNC (Shergottites, Nakhlites, Chassignites) meteorites, including shergottites such as ALH 84001; and Curiosity surface data [3]), we conclude that this intermediate-D/H reservoir is likely a global surficial feature that has remained relatively intact over geologic time. We propose that this reservoir represents either hydrated crust and/or ground ice interbedded within sediments. Our results corroborate the hypothesis that a buried cryosphere accounts for a large part of the initial water budget of Mars.

  5. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    PubMed

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction. PMID:26709616

  6. Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence

    USGS Publications Warehouse

    Degnan, James R.; Bohlke, John Karl; Pelham, Krystle; David M. Langlais; Walsh, Gregory J.

    2015-01-01

    Explosives used in construction have been implicated as sources of NO3– contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3– can be complicated by other NO3– sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3– transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3– sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3– (low δ15N, high δ18O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3– subjected to partial denitrification (high δ15N, high δ18O); (3) relatively persistent concentrations of blasting-related biogenic NO3– derived from nitrification of NH4+ (low δ15N, low δ18O); and (4) stable but spatially variable biogenic NO3– concentrations, consistent with recharge from septic systems (high δ15N, low δ18O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ15N/Δδ18O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  7. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.

  8. Stable Isotope Evidence of Variation in Nitrogen Fixation by Cyanobacteria in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Paul, V.; Clementz, M.

    2006-12-01

    Increased nutrient loading via both natural and anthropogenic factors has been reported as one possible mechanism for the recent increase in the occurrence and intensity of harmful algal blooms (HAB) in coastal ecosystems. Influx of iron, phosphorous, and organic carbon have proven to be significant stimulating factors for HAB, since the benthic cyanobacteria that often make up these blooms are capable of nitrogen-fixation and require these nutrients for this process as well as photosynthesis. These cyanobacteria can switch to direct uptake of dissolved inorganic nitrogen (DIN), however, when concentrations are high enough to energetically favor this source, suggesting that high nitrogen input may also stimulate HAB. Given the distinct isotope differences between atmospheric N2 (0‰) and anthropogenic sources of DIN (>6‰), measurement of the δ15N composition of cyanobacteria can provide a means of gauging the relative significance of anthropogenic versus atmospheric nitrogen to the growth of these blooms. Likewise, the δ13C composition of these primary producers is controlled by the δ13C composition of the DIC, and can be a second tracer of anthropogenic influx into marine ecosystems. A combined approach using both isotope tracers was employed to determine the significance of anthropogenic nitrogen on HAB in subtropical/tropical coastal marine ecosystems. Samples of cyanobacteria and associated macroalgae were collected from three coastal sites in Guam (Facpi Point, Tanguisson, and Ypao Beach), one locality in Hawaii, and three sites in southern Florida (Pepper Park, Fort Lauderdale, Florida Keys). Following removal of marine carbonates via an acid rinse, the δ13C and δ15N values were determined for each species. Cyanobacterial δ15N values ranged from -2.3‰ to 7.7‰ with the highest values reported from sites in Guam. Only cyanobacteria sampled from Hawaii showed no isotope evidence of an anthropogenic source for nitrogen. A strong negative correlation

  9. Insights into early Earth from Barberton komatiites: Evidence from lithophile isotope and trace element systematics

    NASA Astrophysics Data System (ADS)

    Puchtel, I. S.; Blichert-Toft, J.; Touboul, M.; Walker, R. J.; Byerly, G. R.; Nisbet, E. G.; Anhaeusser, C. R.

    2013-05-01

    Major, minor, and lithophile trace element abundances and Nd and Hf isotope systematics are reported for two sets of remarkably fresh, by Archean standards, samples of komatiitic lavas from the 3.48 Ga Komati and the 3.27 Ga Weltevreden Formations of the Barberton Greenstone Belt (BGB) in South Africa. These data are used to place new constraints on the thermal history of the early Archean mantle, on the timing of its differentiation, and on the origin and chemical nature of early mantle reservoirs and their evolution through time. Projected moderate to strong depletions of highly incompatible lithophile trace elements and water in the mantle sources of both komatiite systems, combined with the partitioning behavior of V during lava differentiation, are consistent with anhydrous condi