Science.gov

Sample records for magnesium oxide surface

  1. Magnesium Oxide

    MedlinePlus

    ... repeatedly. Magnesium oxide also is used as a dietary supplement when the amount of magnesium in the diet ... any products such as vitamins, minerals, or other dietary supplements. You should bring this list with you each ...

  2. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    NASA Technical Reports Server (NTRS)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  3. Influence of mineral oil and additives on microhardness and surface chemistry of magnesium oxide (001) surface

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Shigaki, H.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted with cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved into specimens along the /001/ surface, and indentations were made on the cleaved surface in laboratory air, in nitrogen gas, or in degassed mineral oil with and without an additive while not exposing specimen surface to any other environment. The various additives examined contained sulfur, phosphorus, chlorine, or oleic acid. The sulfur-containing additive exhibited the highest hardness and smallest dislocation patterns evidencing plastic deformation; the chlorine-containing additive exhibited the lowest hardness and largest dislocation patterns evidencing plastic deformation. Hydrocarbon and chloride (MgCl2) films formed on the magnesium oxide surface. A chloride film was responsible for the lowest measured hardness.

  4. Methanol adsorption on magnesium oxide surface with defects: a DFT study

    NASA Astrophysics Data System (ADS)

    Branda, M. M.; Ferullo, R. M.; Belelli, P. G.; Castellani, N. J.

    2003-03-01

    The methanol adsorption on several defects of the magnesium oxide surface were studied. Structural and electronic study with geometrical optimization and natural bond orbital (NBO) analysis were performed using a density functional theory (DFT) method. Oxygen and magnesium with different coordination numbers have very different reactivity in this surface producing dissociated and non-dissociated species. These results are in agreement with infrared spectroscopy observations where CH 3OH, OCH 3 and OH species were found in defective MgO surfaces.

  5. Physicochemistry of the surface of and exoemission from magnesium oxide

    NASA Astrophysics Data System (ADS)

    Krylova, I. V.

    2010-02-01

    To optimize the processes of obtaining MgO with the highest possible exoemission intensity and time of decay, the influence of dehydration conditions and the subsequent adsorption of active gases (H2, O2, and H2O vapor) on its parameters was investigated. The nature of adsorption centers and exoemission is discussed, based on the results obtained using the latest literature data on dehydration processes, as are the formation of defects on the MgO surface (coloring centers) and their interaction with hydrogen and oxygen. Due to the introduction of exoemissionally active MgO in the manufacturing of plasma displays, the literature data dealing with the exposure of extremely active grains of oxide monocrystals containing exoemission centers (OH-groups) are examined.

  6. How surface reparation prevents catalytic oxidation of carbon monoxide on atomic gold at defective magnesium oxide surfaces.

    PubMed

    Töpfer, Kai; Tremblay, Jean Christophe

    2016-07-21

    In this contribution, we study using first principles the co-adsorption and catalytic behaviors of CO and O2 on a single gold atom deposited at defective magnesium oxide surfaces. Using cluster models and point charge embedding within a density functional theory framework, we simulate the CO oxidation reaction for Au1 on differently charged oxygen vacancies of MgO(001) to rationalize its experimentally observed lack of catalytic activity. Our results show that: (1) co-adsorption is weakly supported at F(0) and F(2+) defects but not at F(1+) sites, (2) electron redistribution from the F(0) vacancy via the Au1 cluster to the adsorbed molecular oxygen weakens the O2 bond, as required for a sustainable catalytic cycle, (3) a metastable carbonate intermediate can form on defects of the F(0) type, (4) only a small activation barrier exists for the highly favorable dissociation of CO2 from F(0), and (5) the moderate adsorption energy of the gold atom on the F(0) defect cannot prevent insertion of molecular oxygen inside the defect. Due to the lack of protection of the color centers, the surface becomes invariably repaired by the surrounding oxygen and the catalytic cycle is irreversibly broken in the first oxidation step. PMID:27345190

  7. Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation

    NASA Technical Reports Server (NTRS)

    Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

    1986-01-01

    An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

  8. Synthesis and application of magnesium oxide nanospheres with high surface area

    SciTech Connect

    Hsiao, Chu-Yun; Li, Wei-Min; Tung, Kuo-Shin; Shih, Chuan-Feng

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► MgO nanospheres with high specific surface area synthesized by the polyol method. ► The BET specific surface area of nanopowders was 102 m{sup 2}/g by calcining at ∼250 °C. ► MgO nanospheres were applied to remove hexavalent chromium. -- Abstract: Magnesium oxide (MgO) nanospheres with a high specific surface area were synthesized by the polyol method. The BET specific surface area of the nanopowders was ∼90 m{sup 2}/g by adjusting the molar ratio of the precursor, the reaction time, and the washing solution. It was increased to 102 m{sup 2}/g by calcining at ∼250 °C. Scanning electron microscopic and transmission electron microscopic observations showed that the MgO nanospheres composed of highly folded flakes, which were responsible for the observed high surface area. The high BET characteristic of the MgO nanospheres can be applied to sintering of microwave ceramics at a reducing sintering temperature, uniformed grain size distribution, and high bulk density. Finally, their capacity to remove hexavalent chromium was presented.

  9. Tape casting of magnesium oxide.

    SciTech Connect

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.

    2008-02-01

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  10. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... light magnesium oxide. Heating the salts under more rigorous conditions (1200 °C for 12 hours)...

  11. Magnesium: Engineering the Surface

    NASA Astrophysics Data System (ADS)

    Chen, X. B.; Yang, H. Y.; Abbott, T. B.; Easton, M. A.; Birbilis, N.

    2012-06-01

    Magnesium (Mg) and its alloys provide numerous benefits as lightweight materials; however, industrial deployment of Mg in most instances requires anticorrosion coatings. Engineering the Mg surface is an area that has been undergoing intense research recently. Surface engineering commences with the "pretreatment" step, which can be used to modify the surface composition and morphology, resulting in surface enrichment or depletion of alloying elements. Following this, electrochemical plating (including electro- and electroless plating) and conversion coatings have emerged as common means of coating Mg. In this study, we present the key aspects relating to the science and technology associated with pretreatment, electrochemical plating, and conversion coatings. This is followed by experimental examples of engineered surfaces of industrial relevance.

  12. In vitro biocompatibility of magnesium-incorporated submicro-porous titanium oxide surface produced by hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; An, Chang-Hyeon

    2010-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of titanium (Ti) oxide surface incorporating magnesium ions (Mg), produced by hydrothermal treatment using an alkaline Mg-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and optical profilometry. Mouse calvaria-derived osteoblastic cell (MC3T3-E1) attachment, spreading, proliferation, alkaline phosphatase (ALP) activity, and osteoblastic gene expression on Mg-containing surfaces were compared with untreated Ti surfaces. Hydrothermal treatment resulted in Mg-incorporated Ti oxide layer with submicro-porous surface structures approximately 2 μm in thickness. ICP-AES analysis revealed Mg ions release from treated surfaces into the solution. The Mg-incorporated surface displayed significantly increased cellular attachment and ALP activity compared with untreated surface ( p < 0.05), and supported better cell spreading. Real-time polymerase chain reaction analysis showed notably higher mRNA expression of the osteoblast transcription factor genes (Dlx5, Runx2) and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on the Mg-incorporated surfaces than untreated surfaces. These results demonstrate that the Mg-incorporated submicro-porous Ti oxide surface produced by hydrothermal treatment may improve implant osseointegration by enhancing the attachment, spreading and differentiation of osteoblastic cells.

  13. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or...

  14. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  15. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  16. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  17. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  18. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  19. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  20. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  1. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  2. Adsorption of titanium, chromium, and copper atoms on thin aluminum and magnesium oxide film surfaces

    NASA Astrophysics Data System (ADS)

    Tvauri, I. V.; Turiev, A. M.; Tsidaeva, N. I.; Gazzaeva, M. E.; Vladimirov, G. G.; Magkoev, T. T.

    2012-04-01

    Methods of Auger electron spectroscopy (AES), spectroscopy of characteristic electron energy losses (SCEEL), slow electron diffraction (SED), and contact potential difference (CPD) in ultrahigh vacuum are used to investigate the adsorption-emission properties and stability of two-component film systems formed by putting of Ti, Cr, and Cu atoms on MgO-Mo(011) and Al2O3-Mo(011) surfaces. All atoms have the properties of electronegative adsorbates. Continuous adatom monolayers are formed on the Al2O3-Mo(011) system surface, and three-dimensional islands are formed on the MgO-Mo(011) surface. The properties of monoatomic films on the oxide layer surface are close to those observed for bulk materials. No radical changes of the system properties are detected with increasing dielectric layer thickness. The thermal stability of the newly formed structures decreases in the order Ti, Cr, Cu, Al2O3(MgO), and Mo(011).

  3. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium...

  4. Uniform magnesium oxide adsorbents

    NASA Technical Reports Server (NTRS)

    Dash, J. G.; Ecke, R.; Stoltenberg, J.; Vilches, O. E.; Whittemore, O. J., Jr.

    1978-01-01

    Kr adsorption on MgO is used to characterize the surface uniformity of MgO smoke and thermally decomposed Mg(OH)2. It is found that initially heterogeneous samples develop progressively sharper stepwise isotherms with increasingly-high-temperature heat treatment, apparently due to the removal of imperfections and high-energy facets, leaving surfaces of highly uniform (100) planes.

  5. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  6. Thermal conductivities of nanostructured magnesium oxide coatings deposited on magnesium alloys by plasma electrolytic oxidation.

    PubMed

    Shen, Xinwei; Nie, Xueyuan; Hu, Henry

    2014-10-01

    The resistances of magnesium alloys to wear, friction and corrosion can be effectively improved by depositing coatings on their surfaces. However, the coatings can also reduce the heat transfer from the coated components to the surroundings (e.g., coated cylinder bores for internal combustion of engine blocks). In this paper, nanostructured magnesium oxides were produced by plasma electrolytic oxidation (PEO) process on the magnesium alloy AJ62 under different current densities. The guarded comparative heat flow method was adopted to measure the thermal conductivities of such coatings which possess gradient nanoscale grain sizes. The aim of the paper is to explore how the current density in the PEO process affects the thermal conductivity of the nanostructured magnesium coatings. The experimental results show that, as the current density rises from 4 to 20 A/mm2, the thermal conductivity has a slight increase from 0.94 to 1.21 W/m x K, which is significantly smaller than that of the corresponding bulk magnesium oxide materials (29.4 W/m x K). This mostly attributed to the variation of the nanoscale grain sizes of the PEO coatings. PMID:25942897

  7. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1431 Magnesium oxide. (a)...

  8. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5431 Magnesium oxide. (a)...

  9. Exoelectron emission from magnesium surfaces

    NASA Astrophysics Data System (ADS)

    Klar, F.; Bansmann, J.; Glaefeke, H.; Fitting, H.-J.; Meiwes-Broer, K.-H.

    1999-12-01

    Clean magnesium surfaces were created by evaporating Mg onto silicon wafers. When exposing the Mg surface to a low oxygen partial pressure, an exoelectron emission (EEE) is observed after a time delay of the order of several hours after evaporation. On a much shorter time scale, similar effects in exoemission from Mg and alkali metals have been observed previously. The results are discussed within a 'potential emission' model of exoelectrons during oxygen capture at the pure Mg surface, but extending the model by including an escape mechanism. A macroscopic quantitative description of the model is given, which is in good agreement with our measurements.

  10. Improved biological performance of magnesium by micro-arc oxidation

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2014-01-01

    Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917

  11. Improved biological performance of magnesium by micro-arc oxidation.

    PubMed

    Ma, W H; Liu, Y J; Wang, W; Zhang, Y Z

    2015-03-01

    Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917

  12. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-01

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real

  13. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  14. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation

    SciTech Connect

    Zheng, He; Wu, Shujing; Sheng, Huaping; Liu, Chun; Liu, Yu; Cao, Fan; Zhou, Zhichao; Zhao, Dongshan E-mail: dszhao@whu.edu.cn; Wang, Jianbo E-mail: dszhao@whu.edu.cn; Zhao, Xingzhong

    2014-04-07

    The atomic-scale oxide growth dynamics are directly revealed by in situ high resolution transmission electron microscopy during the oxidation of Mg surface. The oxidation process is characterized by the layer-by-layer growth of magnesium oxide (MgO) nanocrystal via the adatom process. Consistently, the nucleated MgO crystals exhibit faceted surface morphology as enclosed by (200) lattice planes. It is believed that the relatively lower surface energies of (200) lattice planes should play important roles, governing the growth mechanism. These results facilitate the understanding of the nanoscale oxide growth mechanism that will have an important impact on the development of magnesium or magnesium alloys with improved resistance to oxidation.

  15. Adsorption of nitrogen oxide molecules to the surface of nanosized nickel clusters formed on the (111) surface of a magnesium oxide film

    NASA Astrophysics Data System (ADS)

    Remar, D. F.; Turiev, A. M.; Tsidaeva, N. I.; Magkoev, T. T.

    2010-10-01

    The properties of the systems formed on deposition of Ni atoms on the (111) surface of a MgO film of thickness equal to six monomolecular layers grown on a Mo(110) crystal face and the adsorption of NO nitrogen oxide molecules to the system surface have been studied by methods of electron spectroscopy (AES, XPES, LEED, LEIBSS) and reflective infrared absorption spectroscopy. On deposition of Ni atoms on the surface of MgO at a substrate temperature of 600 K, three-dimensional islands of Ni are formed. The subsequent adsorption of NO results in molecule dissociation even at 110 K. The efficiency of this process depends on the morphology of the Ni layer.

  16. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane Electrolysis Processes

    SciTech Connect

    Xiaofei Guan; Peter A. Zink; Uday B. Pal; Adam C. Powell

    2012-01-01

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.

  17. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap Through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    SciTech Connect

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    2012-03-11

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.

  18. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  19. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  20. A surface site as polydentate ligand of a metal complex: Density functional studies of rhenium subcarbonyls supported on magnesium oxide

    SciTech Connect

    Hu, A.; Neyman, K.M.; Staufer, M.; Belling, T.; Gates, B.C.; Roesch, N.

    1999-05-12

    Notwithstanding the importance of supported organometallic species as industrial catalysts, most are nonuniform mixtures, with only a few being well-characterized at the atomic level. Rhenium subcarbonyls on MgO, in contrast, consist of nearly uniform surface species and are among the best-studied organometallic complexes on oxides. EXAFS and infrared spectra showed that decomposition of the precursors [HRe(CO){sub 5}], [H{sub 3}Re{sub 3}(CO){sub 12}], and [Re{sub 2}(CO){sub 10}] on MgO powder results in fragments, assigned as Re(CO){sub 3}{sup n+}, coordinated to surface ligands. The concept of a surface site as a polydentate ligand evokes the remarkable circumstance in which the adsorbate-substrate bonds are as strong as metal-ligand bonds in common transition metal complexes, as shown by the present investigation.

  1. Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Cancan; Liang, Jun; Zhou, Jiansong; Li, Qingbiao; Wang, Lingqian

    2016-09-01

    Top ceramic coatings were fabricated on the laser surface melting (LSM) modified AZ31 alloy by plasma electrolytic oxidation (PEO) in a phosphate electrolyte. The effect of LSM treatment on the microstructure and corrosion behavior of the bare and PEO treated AZ31 alloy was evaluated. Results showed that LSM treatment produced a homogeneous modified layer with redistributed intermetallic compounds, resulting in enhanced corrosion resistance of AZ31 alloy. The LSM treatment had no obvious influence on the surface and cross-sectional microstructures of the PEO coatings on AZ31 alloy. Besides, MgO was the main constituent for PEO coatings, regardless of LSM pretreatment. However, the long-term corrosion properties of the PEO coated AZ31 alloy with LSM pretreatment revealed large enhancement. Based on the analysis of microstructure and corrosion property, the corrosion mechanisms of the PEO and LSM-PEO coated AZ31 alloy were proposed.

  2. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability.

    PubMed

    Ishizaki, Takahiro; Saito, Naobumi

    2010-06-15

    We have developed a facile, simple, time-saving method of creating a superhydrophobic surface on a magnesium alloy by a simple immersion process at room temperature. First, a crystalline CeO(2) film was vertically formed on the magnesium alloy by immersion in a cerium nitrate aqueous solution for 20 min. The density of the crystals vertically with respect to the magnesium alloy increased with increasing immersion time. Next, the film were covered with fluoroalkylsilane (FAS: CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3)) molecules within 30 min by immersion in a toluene solution containing FAS and tetrakis(trimethylsiloxy)titanium (TTST: (CH(3))(3)SiO)(4)Ti). TTST was used as a catalyst to promote the hydrolysis and/or polymerization of FAS molecules. The FAS-coated CeO(2) film had a static contact angle of more than 150 degrees, that is, a superhydrophobic property. The shortest processing time for the fabrication of the superhydrophobic surface was 40 min. The contact angle hysteresis decreased with an increase in the immersion time in the cerium nitrate aqueous solution. The chemical stability of the superhydrophobic surface on magnesium alloy AZ31 was investigated. The average static water contact angles of the superhydrophobic surfaces after immersion in the solutions at pH 4, 7, and 10 for 24 h were found to be 139.7 +/- 2, 140.0 +/- 2, and 145.7 +/- 2 degrees, respectively. In addition, the chemical stability of the superhydrophobic surface in the solutions at pH ranging from 1 to 14 was also examined. The superhydrophobic surfaces had static contact angles of more than 142 degrees in the solutions at pH ranging from 1 to 14, showing that our superhydrophobic surface had a high chemical stability. Moreover, the corrosion resistance of the superhydrophobic surface on the magnesium alloy was investigated using electrochemical measurements. PMID:20377219

  3. Isotopically pure magnesium isotope-24 is prepared from magnesium-24 oxide

    NASA Technical Reports Server (NTRS)

    Chellew, N. R.; Schilb, J. D.; Steunenberg, R. K.

    1968-01-01

    Apparatus is used to prepare isotopically pure magnesium isotope-24, suitable for use in neutron scattering and polarization experiments. The apparatus permits thermal reduction of magnesium-24 oxide with aluminum and calcium oxide, and subsequent vaporization of the product metal in vacuum. It uses a resistance-heated furnace tube and cap assembly.

  4. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section...

  5. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section...

  6. Effects of environment on microhardness of magnesium oxide

    NASA Technical Reports Server (NTRS)

    Ishigaki, H.; Buckley, D. H.

    1982-01-01

    Micro-Vickers hardness measurements of magnesium oxide single crystals were conducted in various environments. These environments included air, nitrogen gas, water, mineral oil with or without various additives, and aqueous solutions with various pH values. Indentations were made on the (100) plane with the diagonals of the indentation in the (100) direction. The results indicate that a sulfur containing additve in mineral oil increased hardness, a chlorine containing additive in mineral oil decreased hardness, and aqueous solutions of hydrogen chloride decreased hardness. Other environments were found to have little effect on hardness. Mechanically polished surfaces showed larger indentation creep than did as-cleaved surfaces.

  7. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  8. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  9. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  10. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  11. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  12. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    ... picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, ... oxide and anhydrous citric acid combine when the powder is mixed with water to form a medication ...

  13. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, bowel) before a colonoscopy (examination of the inside of the colon to check ...

  14. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOEpatents

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  15. Corrosion prevention of magnesium surfaces via surface conversion treatments using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin

    2016-09-06

    A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.

  16. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  17. Nanostructured magnesium oxide biosensing platform for cholera detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj K.; Azahar Ali, Md.; Agrawal, Ved V.; Ansari, Z. A.; Ansari, S. G.; Malhotra, B. D.

    2013-04-01

    We report fabrication of highly crystalline nanostructured magnesium oxide (NanoMgO, size >30 nm) film electrophoretically deposited onto indium-tin-oxide (ITO) glass substrate for Vibrio cholerae detection. The single stranded deoxyribonucleic acid (ssDNA) probe, consisting of 23 bases (O1 gene sequence) immobilized onto NanoMgO/ITO electrode surface, has been characterized using electrochemical, Fourier Transform-Infra Red, and UltraViolet-visible spectroscopic techniques. The hybridization studies of ssDNA/NanoMgO/ITO bioelectrode with fragmented target DNA conducted using differential pulse voltammetry reveal sensitivity as 16.80 nA/ng/cm2, response time of 3 s, linearity as 100-500 ng/μL, and stability of about 120 days.

  18. Oxide Film and Porosity Defects in Magnesium Alloy AZ91

    SciTech Connect

    Wang, Liang; Rhee, Hongjoo; Felicelli, Sergio D.; Sabau, Adrian S; Berry, John T.

    2009-01-01

    Porosity is a major concern in the production of light metal parts. This work aims to identify some of the mechanisms of microporosity formation in magnesium alloy AZ91. Microstructure analysis was performed on several samples obtained from gravity-poured ingots in graphite plate molds. Temperature data during cooling was acquired with type K thermocouples at 60 Hz at three locations of each casting. The microstructure of samples extracted from the regions of measured temperature was then characterized with optical metallography. Tensile tests and conventional four point bend tests were also conducted on specimens cut from the cast plates. Scanning electron microscopy was then used to observe the microstructure on the fracture surface of the specimens. The results of this study revealed the existence of abundant oxide film defects, similar to those observed in aluminum alloys. Remnants of oxide films were detected on some pore surfaces, and folded oxides were observed in fracture surfaces indicating the presence of double oxides entrained during pouring.

  19. Surface Analytical Methods Applied to Magnesium Corrosion.

    PubMed

    Dauphin-Ducharme, Philippe; Mauzeroll, Janine

    2015-08-01

    Understanding magnesium alloy corrosion is of primary concern, and scanning probe techniques are becoming key analytical characterization methods for that purpose. This Feature presents recent trends in this field as the progressive substitution of steel and aluminum car components by magnesium alloys to reduce the overall weight of vehicles is an irreversible trend. PMID:25826577

  20. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  1. Laser-induced magnesium production from magnesium oxide using reducing agents

    SciTech Connect

    Mohamed, M. S.; Yabe, T.; Baasandash, C.; Sato, Y.; Mori, Y.; Shi-Hua, Liao; Sato, H.; Uchida, S.

    2008-12-01

    Experiments for laser induced production of magnesium (Mg) from magnesium oxide (MgO) using reducing agents (R) were conducted. In these experiments, continuous wave CO{sub 2} focused laser is focused on a mixture of magnesium oxide and reducing agent. High power density of focused laser leads to high temperature and the reduction reaction resulting in Mg production. The resultant vapor is collected on a copper plate and analyzed in terms of magnesium deposition efficiency. Deposition efficiencies with various reducing agents such as Zr, C, and Si have been measured to be 60, 9.2, and 12.1 mg/kJ respectively. An excess addition of reducing agent over their corresponding reaction stoichiometric amounts is found to be optimum condition for the most of performed laser induced reactions. In addition, utilizing solar-pumped laser in Mg production with reducing agent will reduce CO{sub 2} emission and produce magnesium with high-energy efficiency and large throughput.

  2. Magnesium

    MedlinePlus

    ... supplements are available? Magnesium is available in multivitamin-mineral supplements and other dietary supplements . Forms of magnesium ... higher intakes of magnesium have a higher bone mineral density , which is important in reducing the risk ...

  3. Electrical properties of magnesium oxide layers with different surface pretreatment on high mobility Ge1-xSnx and Ge MOS capacitors

    NASA Astrophysics Data System (ADS)

    Su, Chen-Yi; Lieten, Ruben; Bakalov, Petar; Tseng, Wei-Jhih; Dillemans, Leander; Menghini, Mariela; Smets, Tomas; Seo, Jin Won; Locquet, Jean-Pierre

    2014-02-01

    Germanium based channels are interesting for high performance CMOS devices because of their high carrier mobility. In this study, the electrical properties of MgO on both GeSn and Ge MOS capacitors have been investigated. The low equivalent oxide thickness (EOT) of 2.1 nm for MgO on GeSn with a Ge cap layer indicates the high potential for MOSFET applications. A surface treatment prior to oxide deposition is found essential to reduce the gate leakage. It is shown that HCl and H2O2 dipping followed by ozone treatment improves the leakage and leads to good capacitance-voltage (C-V) behavior.

  4. Improved transmittance measurement with a magnesium oxide coated integrating sphere

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Spisz, E. W.

    1972-01-01

    Simple and convenient technique has been found for extending transmittance measurement capability of conventional magnesium oxide coated integrating sphere system at low (near ultraviolet) wavelengths. Technique can be used to determine effect of contaminants on window materials and can also be used for measurements on thermal control coatings and telescope mirrors.

  5. A Polycarbonate/Magnesium Oxide Nanocomposite with High Flame Retardancy

    PubMed Central

    Dong, Quanxiao; Gao, Chong; Ding, Yanfen; Wang, Feng; Wen, Bin; Zhang, Shimin; Wang, Tongxin; Yang, Mingshu

    2014-01-01

    A new flame retardant polycarbonate/magnesium oxide (PC/MgO) nanocomposite, with high flame retardancy was developed by melt compounding. The effect of MgO to the flame retardancy, thermal property, and thermal degradation kinetics were investigated. Limited oxygen index (LOI) test revealed that a little amount of MgO (2 wt %) led to significant enhancement (LOI = 36.8) in flame retardancy. Thermogravimetric analysis results demonstrated that the onset temperature of degradation and temperature of maximum degradation rate decreased in both air and N2 atmosphere. Apparent activation energy was estimated via Flynn–Wall–Ozawa method. Three steps in the thermal degradation kinetics were observed after incorporation of MgO into the matrix and the additive raised activation energies of the composite in the full range except the initial stage. It was interpreted that the flame retardancy of PC was influenced by MgO through the following two aspects: on the one hand, MgO catalyzed the thermal-oxidative degradation and accelerated a thermal protection/mass loss barrier at burning surface; on the other hand, the filler decreased activation energies in the initial step and improved thermal stability in the final period. PMID:24696526

  6. A study of the chemisorption of a series of aminophenols on plasma-grown aluminium and magnesium oxides by IETS

    NASA Astrophysics Data System (ADS)

    Brown, N. M. D.; Taggart, G. M.

    Inelastic electron tunnelling spectroscopy (IETS) has been applied to study the adsorption of a series of aminophenols on plasma-grown aluminium and magnesium oxides. Vapour-phase doping of these surfaces was used and spectra recorded for 1,2-aminophenol, 1,3-aminophenol and 1,4-aminophenol. The tunnel spectra of the 1,2- and 1,3-aminophenols show that their chemisorption at both oxide surfaces is via reaction between phenolic and surface hydroxyl groups. For the 1,4-aminophenol example, adsorbate chemisorption involves transfer of surface-bound protons from the oxide in amino-group protonation. Some of these protons are replaced by deprotonation of the phenol at surface oxide ions. Observed band intensities for all three systems on aluminium oxide are held to be indicative of an adsorbate orientation on the surface which is close to the vertical. In contrast, those for magnesium oxide are more consistent with a non-vertical configuration.

  7. Synthesis of micromesoporous magnesium oxide cubes with nanograin structures in a supercritical carbon dioxide/ethanol solution.

    PubMed

    Kim, Kwang Deok; Kim, Young Do; Kim, Sang Woo

    2011-07-01

    Micromesoporous magnesium oxide architectures with cubic morphologies were prepared via the chemical reaction of magnesium hydroxide in a supercritical carbon dioxide (CO2)-ethanol system, and via the sequential thermal combustion of the reaction products. The morphological change to the cube shape from an irregular form was induced by the dehydoxylation-carbonation reaction of magnesium hydroxide with supercritical CO2 at a reaction temperature of 150 degrees C, which leads to the greatly improved carbonation efficiency of magnesium hydroxide to magnesium carbonate. The precursor cubes with 3-5 microm sizes were decarbonized and transformed into the nanocrystalline MgO phase with pore sizes of 1.3-6 nm after calcining at 600 degrees C. The micromesoporous cube with high surface area of 117.5 m2/g was obtained by the thermal decarbonation with phase transition from rhombohedral to cubic phase. As a result, nanograined magnesium oxide cubes with micromesoporous structures and high specific surface areas were formed by the carbonation reaction of the magnesium hydroxide with the supercritical CO2, and the subsequent thermal decomposition of the magnesium carbonate cubes. PMID:22121614

  8. Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Zink, Peter A.; Pal, Uday B.; Powell, Adam C.

    2013-04-01

    Pure magnesium was recycled from partially oxidized 50.5 wt pct Mg-Al scrap alloy and AZ91 Mg alloy (9 wt pct Al, 1 wt pct Zn). Refining experiments were performed using a eutectic mixture of MgF2-CaF2 molten salt (flux). During the experiments, potentiodynamic scans were performed to determine the electrorefining potentials for magnesium dissolution and magnesium bubble nucleation in the flux. The measured electrorefining potential for magnesium bubble nucleation increased over time as the magnesium content inside the magnesium alloy decreased. Potentiostatic holds and electrochemical impedance spectroscopy were employed to measure the electronic and ionic resistances of the flux. The electronic resistivity of the flux varied inversely with the magnesium solubility. Up to 100 pct of the magnesium was refined from the Mg-Al scrap alloy by dissolving magnesium and its oxide into the flux followed by argon-assisted evaporation of dissolved magnesium and subsequently condensing the magnesium vapor. Solid oxide membrane electrolysis was also employed in the system to enable additional magnesium recovery from magnesium oxide in the partially oxidized Mg-Al scrap. In an experiment employing AZ91 Mg alloy, only the refining step was carried out. The calculated refining yield of magnesium from the AZ91 alloy was near 100 pct.

  9. New insights into the fundamental chemical nature of ionic liquid film formation on magnesium alloy surfaces.

    PubMed

    Forsyth, Maria; Neil, Wayne C; Howlett, Patrick C; Macfarlane, Douglas R; Hinton, Bruce R W; Rocher, Nathalie; Kemp, Thomas F; Smith, Mark E

    2009-05-01

    Ionic liquids (ILs) based on trihexyltetradecylphosphonium coupled with either diphenylphosphate or bis(trifluoromethanesulfonyl)amide have been shown to react with magnesium alloy surfaces, leading to the formation a surface film that can improve the corrosion resistance of the alloy. The morphology and microstructure of the magnesium surface seems critical in determining the nature of the interphase, with grain boundary phases and intermetallics within the grain, rich in zirconium and zinc, showing almost no interaction with the IL and thereby resulting in a heterogeneous surface film. This has been explained, on the basis of solid-state NMR evidence, as being due to the extremely low reactivity of the native oxide films on the intermetallics (ZrO2 and ZnO) with the IL as compared with the magnesium-rich matrix where a magnesium hydroxide and/or carbonate inorganic surface is likely. Solid-state NMR characterization of the ZE41 alloy surface treated with the IL based on (Tf)2N(-) indicates that this anion reacts to form a metal fluoride rich surface in addition to an organic component. The diphenylphosphate anion also seems to undergo an additional chemical process on the metal surface, indicating that film formation on the metal is not a simple chemical interaction between the components of the IL and the substrate but may involve electrochemical processes. PMID:20355890

  10. The influence of surface microchemistry in protective film formation on multi-phase magnesium alloys

    NASA Astrophysics Data System (ADS)

    Gray-Munro, J. E.; Luan, B.; Huntington, L.

    2008-02-01

    The high strength:weight ratio of magnesium alloys makes them an ideal metal for automotive and aerospace applications where weight reduction is of significant concern. Unfortunately, magnesium alloys are highly susceptible to corrosion particularly in salt-spray conditions. This has limited their use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate by a process such as electroless plating, which is a low-cost, non line of sight process. Magnesium is classified as a difficult to plate metal due to its high reactivity. This means that in the presence of air magnesium very quickly forms a passive oxide layer that must be removed prior to plating. Furthermore, high aluminium content alloys are especially difficult to plate due to the formation of intermetallic species at the grain boundaries, resulting in a non-uniform surface potential across the substrate and thereby further complicating the plating process. The objective of this study is to understand how the magnesium alloy microstructure influences the surface chemistry of the alloy during both pretreatment and immersion copper coating of the substrate. A combination of scanning electron microscopy, energy dispersive spectroscopy and scanning Auger microscopy has been used to study the surface chemistry at the various stages of the coating process. Our results indicate that the surface chemistry of the alloy is different on the aluminum rich β phase of the material compared to the magnesium matrix which leads to preferential deposition of the metal on the aluminum rich phase of the alloy.

  11. Pulsed laser cleaning of aluminium-magnesium alloys: effect of surface modifications on adhesion

    NASA Astrophysics Data System (ADS)

    Autric, Michel; Oltra, Roland

    2008-05-01

    Surface cleaning is a key step in many industrial processes and especially in laser surface treatments. During laser cleaning of metallic alloys using pulsed lasers, surface modification can be induced due to transient thermal effect. In ambient atmospheric conditions, an oxidation of the cleaned surface can be detected. The aim of this work was to characterize this transient oxidation that can occur below the laser energy domain leading to any phase change (melting, ablation) of the cleaned substrate. A Q-switched Nd:YAG laser (1.06 μm) with 10 ns pulse duration was used for this study. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy were used for surface analysis of irradiated samples. Thermal oxidation took place on the aluminium-magnesium alloy (5000 series) during the irradiation in air (fluence range 0.6-1.4 Jcm-2). It has been demonstrated that this 10 ns laser thermal oxidation and the steady state thermal oxidation have the same mechanism. When the laser fluence reached 1 J cm -2 , the oxide formed by the thermal oxidation became in a large extent crystalline and its outer part was entirely covered by a continuous magnesium oxide layer.

  12. Antimicrobial properties and mechanism of magnesium oxide nanoparticles on Campylobacter, E. coli O157:H7, and Salmonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Metal oxide nanoparticles have considerable potential as antimicrobial agents in food safety applications due to their structure, surface properties, and stability. In this study, the antibacterial effects and mechanisms of Magnesium Oxide Nanoparticles (MgO NPs, with an average size o...

  13. Lignopolymers as viscosity-reducing additives in magnesium oxide suspensions.

    PubMed

    Murray, Lisa R; Gupta, Chetali; Washburn, Newell R; Erk, Kendra A

    2015-12-01

    Lignopolymers are a new class of polymer additives with the capability to be used as dispersants in cementitious pastes. Made with kraft lignin cores and grafted polymer side-chains, the custom-synthesized lignopolymers were examined in terms of the molecular architecture for viscosity reducing potential in inert model suspensions. Lignin-poly(acrylic acid) (LPAA) and lignin-polyacrylamide (LPAm) have been found to vary the rheology of magnesium oxide (MgO) suspensions based on differences in chain architecture and particle-polymer interactions. A commercial comb-polymer polycarboxylate ester was compared to LPAA and LPAm at 2.7 mg/mL, a typical dosage for cement admixtures, as well as 0.25mg/mL. It was found that LPAm was a more effective viscosity reducer than both LPAA and the commercial additive at low concentrations, which was attributed to greater adsorption on the MgO particle surface and increased steric dispersion from PAm side-chain extension. The influence of chain adsorption and grafted side-chain molecular weight on rheology was also tested. PMID:26275503

  14. Status of Research on Magnesium Oxide Backfill

    SciTech Connect

    PAPENGUTH,HANS W.; KRUMHANSL,JAMES L.; BYNUM,R. VANN; WANG,YIFENG; KELLY,JOHN W.; ANDERSON,HOWARD; NOWAK,E. JAMES

    2000-07-31

    For the WIPP, chemical and physical characteristics of MgO suggest it to be the most beneficial backfill choice, particularly because it has the ability to buffer the aqueous chemical conditions to control actinide volubility. In the current experimental program, the authors are developing a technical basis for taking credit for the complete set of attributes of MgO in geochemical, hydrogeological, and geomechanical technical areas, resulting in an improved conceptual model for the WIPP such as the following. Water uptake by MgO will delay the development of mobile actinides and gas generation by microbes and corrosion. Reduced gas generation will reduce or even eliminate spallings releases. As MgO hydrates, it swells, reducing porosity and permeability, which will inhibit gas flow in the repository, in turn reducing spallings releases. Hydration will also result in a self-sealing mechanism by which water uptake and swelling of MgO adjacent to a groundwater seep cuts off further seepage. Reaction with some groundwaters will produce cementitious materials, which will help to cement waste particles or produce a cohesive solid mass. Larger particles are less likely to be entrained in a spallings release. If sufficient water eventually accumulates in a repository to support microbial gas generation, magnesium carbonate cements will form; also producing good cohesion and strength.

  15. The analysis of magnesium oxide hydration in three-phase reaction system

    SciTech Connect

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  16. [Photometric method of the detection of magnesium oxide in the working zone air after using magnesium caustic dust].

    PubMed

    Putilina, O N; Makarevskaia, V V

    1991-01-01

    The contributors proposed a new highly sensitive selective technique of magnesium oxide detection, based on the Congo red and salicylic acid reaction. The minimal detection level is 0.25 mg of magnesium oxide in the analyzed sample volume. The range of measured concentrations varies from 0.01 to 0.4 mcg/ml. The express technique is simple and selective with Ca (II), Fe (III), AI (III). PMID:2060814

  17. Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces

    NASA Astrophysics Data System (ADS)

    Hagemann, Ulrich; Nienhaus, Hermann

    2015-12-01

    The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent. Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.

  18. Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces

    SciTech Connect

    Hagemann, Ulrich; Nienhaus, Hermann

    2015-12-28

    The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent. Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.

  19. Highly mobile oxygen holes in magnesium oxide

    NASA Technical Reports Server (NTRS)

    Freund, Minoru M.; Freund, Friedemann; Batllo, Francois

    1989-01-01

    High-purity MgO exhibits an unexpected giant anomaly of the apparent static dielectric constant and a positive surface charge of the order of 5 x 10 to the 21st/cu cm in the top 15 nm. It is postulated that the MgO matrix contains traces of peroxy defects, O2(2-), associated with Mg(2+) vacancies. Above approximately 400 C the O2(2-) dissociates to vacancy bound O(-) and highly mobile O(-) states, which diffuse to the surface, giving rise to a high surface conductivity.

  20. The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Shen, Shijun; Jiang, Bin; Jiang, Zhongtao; Yang, Hong; Pan, Fusheng

    2016-05-01

    This paper studies the effect of the existing state of Y element on the high temperature oxidation resistance of magnesium alloys. Different levels of Al element were added into Mg-2.5Y alloy to obtain different existing state of Y. The oxidation rate of Mg-2.5Y-2.5Al alloy is the highest among Mg-2.5Y, Mg-2.5Y-2.5Al and Mg-2.5Y-4.2Al alloys at 500 °C. An effective and protective Y2O3/MgO composite oxide film was formed on the surface of Mg-2.5Y alloy after oxidized at 500 °C for 360 min. The results show that the dissolved Y element in the matrix was beneficial to improve the oxidation resistance of magnesium alloys. Once Y element transformed to the high temperature stable Al2Y compound, its ability in preventing oxidation would disappear. The formation of Al2Y compound severely deteriorated the oxidation resistance of Mg-2.5Y alloy. In addition, the dissolved Al can also cause the rise of oxidation resistance at a certain extent.

  1. Magnesium Oxide Carbonation Rate Law in Saturated Brines

    NASA Astrophysics Data System (ADS)

    Nemer, M. B.; Allen, C.; Deng, H.

    2008-12-01

    Magnesium oxide (MgO) is the only engineered barrier certified by the EPA for emplacement in the Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy repository for transuranic waste in southeast New Mexico. MgO reduces actinide solubility by sequestering CO2 generated by the biodegradation of cellulosic, plastic, and rubber materials. Demonstration of the effectiveness of MgO is essential for WIPP recertification. In order to be an effective barrier, the rate of CO2 sequestration should be fast compared to the rate CO2 production, over the entire 10,000 year regulatory period. While much research has been conducted on the kinetics of magnesium oxide carbonation in waters with salinity up to that of sea water, we are not aware of any work on determining the carbonation rate law in saturated brines at low partial pressures of CO2 (PCO2 as low as 10-5.5 atm), which is important for performing safety assessments of bedded salt waste repositories. Using a Varian ion-trap gas- chromatograph/mass-spectrometer (GC/MS) we experimentally followed the CO2 sequestration kinetics of magnesium oxide in salt-saturated brines down to a PCO2 as low as 10-5.5 atm. This was performed in a closed reactor with a known initial PCO2. The results of this study show that carbonation is approximately first order in PCO2, in saturated brines. We believe that this method will benefit the study of the detailed kinetics of other similar processes.

  2. Novel process for recycling magnesium alloy employing refining and solid oxide membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei

    Magnesium is the least dense engineering metal, with an excellent stiffness-to-weight ratio. Magnesium recycling is important for both economic and environmental reasons. This project demonstrates feasibility of a new environmentally friendly process for recycling partially oxidized magnesium scrap to produce very pure magnesium at low cost. It combines refining and solid oxide membrane (SOM) based oxide electrolysis in the same reactor. Magnesium and its oxide are dissolved in a molten flux. This is followed by argon-assisted evaporation of dissolved magnesium, which is subsequently condensed in a separate condenser. The molten flux acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium collected has high purity. Potentiodynamic scans are performed to monitor the magnesium content change in the scrap as well as in solution in the flux. The SOM electrolysis is employed in the refining system to enable electrolysis of the magnesium oxide dissolved in the flux from the partially oxidized scrap. During the SOM electrolysis, oxygen anions are transported out of the flux through a yttria stabilized zirconia membrane to a liquid silver anode where they are oxidized. Simultaneously, magnesium cations are transported through the flux to a steel cathode where they are reduced. The combination of refining and SOM electrolysis yields close to 100% removal of magnesium metal from partially oxidized magnesium scrap. The magnesium recovered has a purity of 99.6w%. To produce pure oxygen it is critical to develop an inert anode current collector for use with the non-consumable liquid silver anode. In this work, an innovative inert anode current collector is successfully developed and used in SOM electrolysis experiments. The current collector employs a sintered strontium-doped lanthanum manganite (La0.8Sr0.2MnO 3-delta or LSM) bar, an Inconel alloy 601 rod, and a liquid silver contact in between. SOM electrolysis experiments

  3. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide...

  4. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide...

  5. Microstructural and physical properties of magnesium oxide-doped silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Sirota, V.; Lukianova, O.; Krasilnikov, V.; Selemenev, V.; Dokalov, V.

    Silicon nitride based ceramics with aluminum, yttrium and magnesium oxides were produced by cold isostatic pressing and free sintering. The phase composition of the starting MgO powder obtained by the novel technology has been studied. The effect of magnesium oxide content on the structure of the produced materials has been investigated. It was found, that obtained materials with 1 and 2 wt.% of magnesium oxide and without it have a typical β-silicon nitride structure with elongated grains. Ceramics with 5 wt.% magnesia has a duplex α/β-structure with elongated and equiaxed grains. Ceramics with 2 wt.% magnesium oxide has a maximum density of 2.91 g/cm3. The increases in magnesium oxide content upto 5% led to decrease in the shrinkage (from 16% to 12%) and density (from 2.88 to 2.37 g/cm3).

  6. The analysis of magnesium oxide hydration in three-phase reaction system

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas-liquid-solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid-solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH)2 precipitation, Mg(OH)2 peeling off from MgO particle and leaving behind fresh MgO surface.

  7. Influence of Ar + ion bombardment on the initial interaction of water vapour with polycrystalline magnesium surfaces

    NASA Astrophysics Data System (ADS)

    Splinter, S. J.; McIntyre, N. S.; Palumbo, G.

    1994-01-01

    The room temperature interaction of water vapour with magnesium surfaces irradiated with Ar + ions in the dose range θ = 10 to 2000 ions/surface atom and ion energy range 1 to 5 keV has been systematically studied by Auger electron spectroscopy (AES). The character of the kinetics of water interaction with irradiated surfaces has been found to be dependent upon the total ion bombardment dose and the ion energy and to change with the level of water exposure. The effect of ion bombardment was found to be most pronounced in the oxide nucleation and growth stage of the oxidation process. The dissociative chemisorption and final bulk thickening regimes were only weakly affected by prior irradiation. The results have been interpreted based on the assumption of competition between the effects of radiation defects (vacancies, vacancy clusters, dislocation loops) and implanted argon atoms on the oxidation process. The effect of vacancy-type defects was speculated to be the provision of adsorption sites of high sticking probability and nucleation sites of reduced activation energy for place exchange and subsequent island growth. The effect of implanted argon atoms was speculated to be the blocking of adsorption and nucleation sites and interference with oxide island ordering. At relatively high water exposures (20 L) there was enhanced penetration of oxygen into the magnesium lattice postulated to occur along dislocation emergence points. No such enhanced penetration was observed for shorter water exposures (0.3 L). The limiting thickness of the oxide layer formed on magnesium at room temperature was not found to be affected by the level of prior ion bombardment.

  8. Nanocrystalline titanium dioxide and magnesium oxide in vitro dermal absorption in human skin.

    PubMed

    van der Merwe, Deon; Tawde, Snehal; Pickrell, John A; Erickson, Larry E

    2009-01-01

    The dermal absorption potential of a nanocrystalline magnesium oxide (MgO) and titanium dioxide (TiO(2)) mixture in dermatomed human skin was assessed in vitro using Bronaugh-type flow-through diffusion cells. Nanocrystalline material was applied to the skin surface at a dose rate of 50 mg/cm(2) as a dry powder, as a water suspension, and as a water/surfactant (sodium lauryl sulfate) suspension, for 8 hours. Dermal absorption of nanocrystalline MgO and TiO(2) through human skin with intact, functional stratum corneum was not detectable under the conditions of this experiment. PMID:19514931

  9. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  10. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  11. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  12. Sorption characteristics of fluoride on to magnesium oxide-rich phases calcined at different temperatures.

    PubMed

    Sasaki, Keiko; Fukumoto, Naoyuki; Moriyama, Sayo; Hirajima, Tsuyoshi

    2011-07-15

    The effect of calcination temperature during production of magnesium oxide-rich phases from MgCO(3) on the sorption of F(-) ions in the aqueous phase has been investigated. Magnesium oxide-rich phases were formed by calcination at over 873 K for 1h. Higher calcination temperatures produced more crystalline MgO with smaller specific surface area and provided larger values of the total basicity per unit surface area. The higher calcination temperatures lead to slower F(-) removal rate, and lower equilibrium F(-) concentrations, when the equilibrium F(-) concentrations are less than 1 mmol dm(-3). Larger total basicity per unit surface area made the reactivity with F(-) ions in aqueous phase more feasible, resulting in a greater degree of F(-) sorption. For equilibrium F(-) concentrations more than 1 mmol dm(-3), lower calcination temperatures favored the co-precipitation of F(-) with Mg(OH)(2), probably leading to the formation of Mg(OH)(2-x)F(x), and the achievement of larger sorption density. This is the first paper which describes the relationship between the solid base characteristics obtained by CO(2)-TPD for MgO with different calcination temperatures as a function of the reactivity of F(-) sorption in the aqueous phase. PMID:21571430

  13. Effect of magnesium oxide content on oxidation behavior of some superalloy-base cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1975-01-01

    The effect of increasing magnesium oxide (MgO) content on the cyclic oxidation resistance of hot-pressed cermets of MgO in NiCrAlY, MgO in Hoskins-875, MgO in Inconel-702, and MgO in Hastelloy-X was investigated. The cermets with magnesium oxide levels of 5, 10, 20, and 40 vol percent were examined. The cyclic oxidation behavior of these cermets at 1100 and 1200 C in still air was determined by a thermogravimetric method supplemented by X-ray diffraction analysis and light and electron microscopy. In all instances, MgO prevented grain growth in the metallic phase. No evidence of oxidation along interphase boundaries was detected. Cermets of MgO in NiCrAlY and MgO in Hoskins-875 were superior to cermets of MgO in Inconel-702 and MgO in Hastelloy-X. Their oxidation resistance was degraded only when the MgO content was 40 vol percent. The oxidation behavior of MgO-in-Inconel-702 powder cermets containing 5- and 10-vol percent MgO was approximately similar to that of pure Inconel-702 compacts. The 20- and 40-vol percent MgO content reduced the oxidation resistance of MgO-in-Inconel-702 powder cermets relative to that of pure Inconel-702.

  14. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  15. Laser Surface Engineering of Magnesium Alloys: A Review

    NASA Astrophysics Data System (ADS)

    Singh, Ashish; Harimkar, Sandip P.

    2012-06-01

    Magnesium (Mg) and its alloys are well known for their high specific strength and low density. However, widespread applications of Mg alloys in structural components are impeded by their insufficient wear and corrosion resistance. Various surface engineering approaches, including electrochemical processes (plating, conversion coatings, hydriding, and anodizing), gas-phase deposition (thermal spray, chemical vapor deposition, physical vapor deposition, diamond-like coatings, diffusion coatings, and ion implantation), and organic polymer coatings (painting and powder coating), have been used to improve the surface properties of Mg and its alloys. Recently, laser surface engineering approaches are attracting significant attention because of the wide range of possibilities in achieving the desired microstructural and compositional modifications through a range of laser-material interactions (surface melting, shock peening, and ablation). This article presents a review of various laser surface engineering approaches such as laser surface melting, laser surface alloying, laser surface cladding, laser composite surfacing, and laser shock peening used for surface modification of Mg alloys. The laser-material interactions, microstructural/compositional changes, and properties development (mostly corrosion and wear resistance) accompanied with each of these approaches are reviewed.

  16. Magnesium-based composites with improved in vitro surface biocompatibility

    PubMed Central

    Huan, Zhiguang; Duszczyk, Jurek

    2010-01-01

    In this study, bioactive glass (BG, 45S5) particles were added to a biodegradable magnesium alloy (ZK30) through a semi-solid high-pressure casting process in order to improve the surface biocompatibility of the biomaterial and potentially its bioactivity. The observation of the as-cast microstructures of ZK30-BG composites indicated homogeneous dispersion of BG particles in the matrix. SEM, EDX and EPMA showed the retention of the morphological characteristics and composition of BG particles in the as-cast composite materials. In vitro tests in a cell culture medium confirmed that the composites indeed possessed an enhanced ability to induce the deposition of a bone-like apatite layer on the surface, indicating an improved surface biocompatibility as compared with the matrix alloy. PMID:20922559

  17. Growth Kinetics of the S Sub H Center on Magnesium Oxide Using Electron Paramagnetic Resonance

    NASA Technical Reports Server (NTRS)

    Jayne, J. P.

    1971-01-01

    Electron paramagnetic resonance spectroscopy was used to study the growth of S sub H centers on magnesium oxide powder which had hydrogen adsorbed on its surface. The centers were produced by ultraviolet radiation. The effects of both radiation intensity and hydrogen pressure were also studied. At constant hydrogen pressure and radiation dose, the initial S sub H center growth rate was found to be zero order. Beyond the initial region the growth rate deviated from zero order and finally approached saturation. The results are interpreted in terms of a model which assumes that the S sub H center is a hydrogen atom associated with a surface vacancy. Saturation appears to result from a limited supply of surface vacancies.

  18. Potassium promotion of iron oxide dehydrogenation catalysts supported on magnesium oxide: 1. Preparation and characterization

    SciTech Connect

    Stobbe, D.E.; Buren, F.R. van ); Dillen, A.J. van; Geus, J.W. )

    1992-06-01

    Catalysts of iron oxide supported on magnesium oxide and promoted with potassium were prepared by incipient wetness impregnation of preshaped magnesium oxide support pellets with a solution of an iron complex, either ammonium iron (III) citrate or ammonium iron (III) EDTA and potassium carbonate. Iron and potassium were applied wither simultaneously or consecutively. As determined using X-ray diffraction, thermogravimetric analysis, and magnetic measurements, calcination above 923 K results in the formation of a mixed oxide of iron and potassium, viz., KFeO[sub 2]. After calcination at 973 K the average crystallite size of the KFeO[sub 2] phase is about 300 [angstrom]. The formation of KFeO[sub 2] appeared to have a strong retarding effect on the reduction of the iron oxide phase to metallic iron. It was found that the KFeO[sub 2] phase is unstable in atomspheric air due to reaction with carbon dioxide and moisture to form potassium (hydrogen) carbonate and (hydrated) iron oxide.

  19. Magnesium

    NASA Astrophysics Data System (ADS)

    Bechtel, H.; Bulian, W.; Bungardt, K.; Gürs, K.; Gürs, U.; Helling, W.; Kyri, H.; Laue, H. J.; Mahler, W.; Matting, A.; Meyer, F. R.; Mialki, W.; Ritter, F.; Ruge, J.; Saur, G.; Simon, W.; Strnat, K.; Weber, R.; Weigand, H. H.; Weik, H.; Ziesler, H.; Borchers, Heinz; Schmidt, Ernst

    Magnesium wird überwiegend durch Schmelzflußelektrolyse hergestellt. Das dabei anfallende Reinmagnesium hat einen Mg-Gehalt von etwa 99,9%. Hauptbeimengung ist das Eisen; Silizium und Aluminium sind nur in Spuren vorhanden. Der Anwendungsumfang des Reinmagnesiums ist gering; dagegen werden Magnesiumlegierungen zunehmend, insbesondere für den Druckguß verwendet. Neben den bis etwa zum Jahre 1950 allein gebräuchlichen Mg-Mn-, Mg-Al- und Mg-Al-Zn-Legierungen werden heute mehr und mehr die besonders warmfesten Legierungen mit Zusätzen von Zirkon, Thorium und Seltenen Erden hergestellt (siehe dazu auch Abschnitt Seltene Erden). Als Umhüllungsmaterial für Uranstäbe dient die Legierung Magnox A 12, die nach [H 3] neben 1 % Al noch geringe Mengen an Ca und Ba enthält. In den in Deutschland üblichen Kurzzeichen (DIN 1729) werden die chemischen Symbole und der ungefähre Gehalt der wichtigsten Legierungselemente angegeben. Gußlegierungen werden zusätzlich durch ein G (Sandguß oder Kokillenguß) oder ein D (Druckguß) gekennzeichnet (siehe Tab. 5).

  20. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    NASA Astrophysics Data System (ADS)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng

    2016-09-01

    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  1. Vapor-phase reaction of acetophenone with methanol or dimethyl carbonate on magnesium oxide and magnesium phosphates

    SciTech Connect

    Aramendia, M.A.; Borau, V.; Jimenez, C.; Marinas, J.M.; Romero, F.J.

    1999-04-01

    The vapor-phase reaction of acetophenone with methanol on magnesium oxide, various magnesium phosphates, and combinations of the two types of catalysts was studied. The process was found to involve the Meerwein-Ponndorf-Verley reaction, aldol condensations, dehydrations, and hydrogenations. The presence of basic sites is indispensable for the reaction to develop; however, acid sites also play an active role. The selectivity for each reaction product depends on the particular catalyst used. The total conversion is maximal with the catalysts containing the largest populations of acid and basic sites. Also, catalysts with large numbers of acid sites exhibit an increased selectivity towards the corresponding alkenes. The use of dimethyl carbonate instead of methanol alters the reaction selectivity to an extent dependent on the particular catalyst and operating conditions. However, this also results in markedly decreased total conversion in some instances.

  2. Low temperature growth of crystalline magnesium oxide on hexagonal silicon carbide (0001) by molecular beam epitaxy

    SciTech Connect

    Goodrich, T. L.; Parisi, J.; Cai, Z.; Ziemer, K. S.

    2007-01-22

    Magnesium oxide (111) was grown epitaxially on hexagonal silicon carbide (6H-SiC) (0001) substrates at low temperatures by molecular beam epitaxy and a remote oxygen plasma source. The films were characterized by reflection high-energy electron diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. Crystal structure, morphology, and growth rate of the magnesium oxide (MgO) films were found to be dependent on the magnesium flux, indicating a magnesium adsorption controlled growth mechanism. The single crystalline MgO thin films had an epitaxial relationship where MgO (111) parallel 6H-SiC (0001) and were stable in both air and 10{sup -9} Torr up to 1023 K.

  3. Sputtered magnesium diboride thin films: Growth conditions and surface morphology

    NASA Astrophysics Data System (ADS)

    O'Brien, April; Villegas, Brendon; Gu, J. Y.

    2009-01-01

    Magnesium diboride (MgB 2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB 2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature ( Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate ( Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB 2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB 2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB 2 heterostructures using rather simple physical vapor deposition method such as sputtering.

  4. First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: Oxygen chemisorption to Mg(0001) and thermodynamic stability

    NASA Astrophysics Data System (ADS)

    Francis, M. F.; Taylor, C. D.

    2013-02-01

    In this paper, a detailed density functional theory analysis of oxygen binding to Mg(0001) and subsequent clustering is presented. Oxygen monomer adsorption to Mg(0001) is demonstrated to be subsurface. It is shown that magnesium mediates an attractive oxygen-oxygen interaction which ultimately leads to the formation of hexagonal clusters of O* in the tetrahedral-1 site. The structure, work function, and binding properties of oxygen chemisorbed structures are compared with experiment, which allows the unique identification of the tetrahedral-1 site as the low coverage oxygen binding site and the construction of a picture of the early stages of oxide nuclei formation over magnesium. A model of oxide growth at O*/Mg(0001) is proposed. First-principles thermodynamics analysis is used to describe the surface oxide structures and reveals that surface oxides of intermediate oxygen coverage undergo spinodal decomposition. The thermodynamics of an underlying spinodal create an energetic driving force for decomposition of an oxide surface and renewal of a reactive metal interface that may be important in understanding magnesium corrosion. The implications of the findings are that magnesium unalloyed for oxide behavior will always be highly vulnerable to corrosion.

  5. Gold Nanoparticles Supported on Magnesium Oxide Nanorods for Oxidation of Alcohols.

    PubMed

    Emayavaramban, P; Babu, S Ganesh; Karvembu, R; Kadirvelu, K; Dharmaraj, N

    2016-03-01

    Gold nanoparticles supported on magnesium oxide nanorods (Au-MgO) have been synthesised by a solution based chemical reduction method. Au-MgO nanorods were found to be an efficient heterogeneous catalyst for oxidation of alcohols with hydrogen peroxide in aqueous medium at room temperature. To find out the best reaction conditions for oxidation, optimization of catalyst quantity, solvent, mole equivalence of hydrogen peroxide were carried out. The scope of the reaction was extended to several aromatic and aliphatic alcohols, product yields were quantified by gas chromatography (GC) and GC/mass spectroscopy. Heterogeneity and reusability tests were performed. The use of water as a solvent and hydrogen peroxide as co-catalyst at room temperature makes the reaction interesting from sustainable development point of view. PMID:27455664

  6. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide

    NASA Astrophysics Data System (ADS)

    Ito, Tomoyasu; Lunsford, Jack H.

    1985-04-01

    The partial oxidation of methane into more useful chemicals such as methanol, ethylene and benzene has been investigated extensively, although yields for these products have been poor1-4. Moreover, in several of these processes the required oxidant is N2O rather than O2. Recent work5 in our laboratory has demonstrated that lithium-doped magnesium oxide (Li/MgO) in the presence of O2 has high activity for abstracting H from CH4 to form .CH3 radicals. This suggests that C2H6 and C2H4 (C2 compounds) are produced by a coupling between two gaseous .CH3 radicals formed on this catalyst. We report here our success in converting CH4 to C2 compounds in high yields in conventional catalytic conditions.

  7. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  8. Influence of natural adsorbates of magnesium oxide on its reactivity in basic catalysis.

    PubMed

    Cornu, Damien; Petitjean, Hugo; Costentin, Guylène; Guesmi, Hazar; Krafft, Jean-Marc; Lauron-Pernot, Hélène

    2013-12-01

    Solid materials possessing basic properties are naturally covered by carbonates and hydroxyl groups. Those natural adsorbates modify their chemical reactivity. This article aims to specifically evidence the role of surface carbonates and hydroxyls in basic heterogeneous catalysis on MgO. It compares the catalytic behaviors of hydroxylated or carbonated MgO surfaces for two types of reactions: one alkene isomerization and one alcohol conversion (hept-1-ene isomerization and 2-methyl-3-butyn-2-ol conversion). Catalysis experiments showed that carbon dioxide adsorption poisons the catalyst surface and the DRIFT-DFT combination showed that the nature of active sites in the two reactions differs. On the reverse, partial hydroxylation of the surface enhances activity for both reactions. Interestingly hept-1-ene isomerization gives a volcano curve for the conversion as a function of hydroxyl coverage. Calculations of the electronic structure of magnesium oxide surfaces show that neither Lewis basicity nor Brønsted basicity of the surface defects (steps for example) are enhanced by hydroxylation. Meanwhile CO2 adsorption followed by IR spectroscopy shows that (110) and (111) unstable planes are strongly basic and are stabilized by partial surface hydroxylation. These results could explain the volcano curve obtained for the evolution of alkene isomerisation as a function of hydroxyl coverage. PMID:24145744

  9. Optimized deposition and characterization of nanocrystalline magnesium indium oxide thin films for opto-electronic applications

    SciTech Connect

    Raj, A. Moses Ezhil; Ravidhas, C.; Ravishankar, R.; Kumar, A. Rathish; Selvan, G.; Jayachandran, M.; Sanjeeviraja, C.

    2009-05-06

    Transparent conducting magnesium indium oxide films (MgIn{sub 2}O{sub 4}) were deposited on to quartz substrates without a buffer layer at an optimized deposition temperature of 450 deg. C to achieve high transmittance in the visible spectral range and electrical conductivity in the low temperature region. Magnesium ions are distributed over the tetrahedral and octahedral sites of the inverted spinel structure with preferential orientation along (3 1 1) Miller plane. The possible mechanism that promotes conductivity in this system is the charge transfer between the resident divalent (Mg{sup 2+}) and trivalent (In{sup 3+}) cations in addition to the available oxygen vacancies in the lattice. A room temperature electrical conductivity of 1.5 x 10{sup -5} S cm{sup -1} and an average transmittance >75% have been achieved. Hall measurements showed n-type conductivity with electron mobility value 0.95 x 10{sup -2} cm{sup 2} V{sup -1} s{sup -1} and carrier concentration 2.7 x 10{sup 19} cm{sup -3}. Smoothness of the film surface observed through atomic force microscope measurements favors this material for gas sensing and opto-electronic device development.

  10. Preparation of Composite Coating on AZ91D Magnesium Alloy by Silica Sol-Micro Oxidation

    NASA Astrophysics Data System (ADS)

    Shao, Zhongcai; Zhang, Feifei; Zhao, Ruiqiang; Shen, Xiaoyi

    2016-03-01

    Composite coating was prepared on AZ91D magnesium alloy with a new method which combined silica sol with micro-arc oxidation (MAO). The MAO coating was prepared on the basis of MAO solution, and then coated by sol-gel process. The composite coating was obtained after second MAO treatment. Scanning electron microscopy coupled with X-ray diffraction (XRD), energy spectrum analysis and electrochemical testing was applied to characterize the properties of MAO coating and composite coating. The experimental test results indicated that the Si element derived from SiO2 gel particle embedded into the MAO coating by second MAO treatment. The surface of composite coating became dense and the holes were smaller with silica sol sealing process. The corrosion resistance of composite coating was improved than the MAO coating.

  11. Surface modification of biodegradable magnesium and its alloys for biomedical applications.

    PubMed

    Tian, Peng; Liu, Xuanyong

    2015-06-01

    Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization. PMID:26816637

  12. Surface modification of biodegradable magnesium and its alloys for biomedical applications

    PubMed Central

    Tian, Peng; Liu, Xuanyong

    2015-01-01

    Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization. PMID:26816637

  13. Iron oxide surfaces

    NASA Astrophysics Data System (ADS)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  14. X-ray photoelectron spectroscopy (XPS) investigation of the surface film on magnesium powders.

    PubMed

    Burke, Paul J; Bayindir, Zeynel; Kipouros, Georges J

    2012-05-01

    Magnesium (Mg) and its alloys are attractive for use in automotive and aerospace applications because of their low density and good mechanical properties. However, difficulty in forming magnesium and the limited number of available commercial alloys limit their use. Powder metallurgy may be a suitable solution for forming near-net-shape parts. However, sintering pure magnesium presents difficulties due to surface film that forms on the magnesium powder particles. The present work investigates the composition of the surface film that forms on the surface of pure magnesium powders exposed to atmospheric conditions and on pure magnesium powders after compaction under uniaxial pressing at a pressure of 500 MPa and sintering under argon at 600 °C for 40 minutes. Initially, focused ion beam microscopy was utilized to determine the thickness of the surface layer of the magnesium powder and found it to be ~10 nm. The X-ray photoelectron analysis of the green magnesium sample prior to sintering confirmed the presence of MgO, MgCO(3)·3H(2)O, and Mg(OH)(2) in the surface layer of the powder with a core of pure magnesium. The outer portion of the surface layer was found to contain MgCO(3)·3H(2)O and Mg(OH)(2), while the inner portion of the layer is primarily MgO. After sintering, the MgCO(3)·3H(2)O was found to be almost completely absent, and the amount of Mg(OH)(2) was also decreased significantly. This is postulated to occur by decomposition of the compounds to MgO and gases during the high temperature of sintering. An increase in the MgO content after sintering supports this theory. PMID:22524956

  15. The initial stage of surface modification of magnesium alloys by high intensity pulse ions beam

    NASA Astrophysics Data System (ADS)

    Li, P.; Liu, Z. H.; Zhang, Z. P.

    2016-06-01

    The initial stage of high intensity pulsed ion beam irradiated magnesium alloys was studied by MD simulation. Specimens containing Mg17Al12 precipitation were modeled to investigate the evolution of magnesium alloys during several picoseconds after a high-energy ion impacting. It was found that the Mg17Al12 precipitation has little effects on the kinetic energy evolution in the heat zone, but considerable effects on strength of kinetic energy peak moving to the deep matrix and on the surface morphology of the magnesium alloy at thermal equilibrium state. The thickness of the heat zone is independent on the temperature of surface region.

  16. Strength by atomic force microscopy (AFM): Molecular dynamics of water layer squeezing on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Kendall, K.; Dhir, Aman; Yong, Chin W.

    2010-11-01

    Localised strength testing of materials is often carried out in an atomic force microscope (AFM), as foreseen by Kelly in his book Strong Solids (Clarendon Press, Oxford, 1966). During AFM indentation experiments, contamination can strongly influence the observed strength and theoretical interpretation of the results is a major problem. Here, we use molecular dynamics computer modelling to describe the contact of NaCl and MgO crystal probes onto surfaces, comparable to an AFM experiment. Clean NaCl gave elastic, brittle behaviour in contact simulations at 300 K, whereas MgO was more plastic, leading to increased toughness. This paper also considers the strength of an oxide substrate contaminated by water molecules and tested by indentation with a pyramidal probe of oxide crystal. Recent theory on the effect of liquid contaminant layers on surface strength has been mainly focussed on Lennard Jones (LJ) molecules with some studies on alcohols and water, described by molecular dynamics, which allows the molecules to be squeezed out as the crystal lattice is deformed. In this work, we have focused on water by studying the forces between a magnesium oxide (MgO) atomic force microscope (AFM) probe and an MgO slab. Force versus separation has been plotted as the AFM probe was moved towards and away from the substrate. Simulation results showed that the water layers could be removed in steps, giving up to four force peaks. The last monolayer of water could not be squeezed out, even at pressures where MgO deformed plastically. Interestingly, with water present, strength was reduced, but more in tensile than compressive measurements. In conclusion, water contaminating the oxide surface in AFM strength testing is structured. Water layer squeezing removal can be predicted by molecular modelling, which may be verified by AFM experiments to show that water can influence the strength of perfect crystals at the nanometre scale.

  17. Magnesium oxide nanoparticles on green activated carbon as efficient CO{sub 2} adsorbent

    SciTech Connect

    Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar

    2013-11-27

    This study was focused on carbon dioxide (CO{sub 2}) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO{sub 2} adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ΔH and ΔG of this reaction were − 117.5 kJ⋅mol{sup −1} and − 65.4 kJ⋅mol{sup −1}, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD−CO{sub 2}. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m{sup 2}/g and 702.5 m{sup 2}/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm{sup 3}/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO{sub 2} emissions as well as better CO{sub 2} adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO{sub 2} adsorbent.

  18. Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent

    NASA Astrophysics Data System (ADS)

    Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar

    2013-11-01

    This study was focused on carbon dioxide (CO2) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO2 adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ΔH and ΔG of this reaction were - 117.5 kJṡmol-1 and - 65.4 kJṡmol-1, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD-CO2. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m2/g and 702.5 m2/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm3/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO2 emissions as well as better CO2 adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO2 adsorbent.

  19. An Environmentally Friendly Process Involving Refining and Membrane-Based Electrolysis for Magnesium Recovery from Partially Oxidized Scrap Alloy

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2013-10-01

    Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.

  20. Formation of Ha-Containing Coating on AZ31 Magnesium Alloy by Micro-Arc Oxidation

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Li, Deyu; Chen, Xiuping; Wu, Chao; Wang, Fuping

    2013-08-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this study, a HA-containing coating was fabricated by micro-arc oxidation (MAO). The active plasma species of micro-discharge was studied by optical emission spectroscopy (OES). The microstructure and composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior and apatite-forming ability were studied by electrochemical tests and immersed samples in simulated body fluids (SBF). The results show that the microdischarge channel model is gas discharges and oxide layer discharges. The elements from the substrate and electrolyte take part in the formation of the coating. The MAO coating significantly improves the corrosion resistance of AZ31 magnesium alloy and enhances the apatite formation ability.

  1. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  2. Precipitation and growth of magnesium hydroxide nanopetals on zeolite 4A surfaces

    NASA Astrophysics Data System (ADS)

    Koh, Pei-Yoong; Yan, Jing; Teja, Amyn

    2011-09-01

    We have studied the precipitation and growth of magnesium hydroxide Mg(OH) 2 nanopetals on zeolite 4A particles dispersed in aqueous magnesium chloride solutions at 298 K. We show that the precipitation of these petal-like nanostructures can be achieved by the addition of ammonium hydroxide to aqueous magnesium chloride, and their growth can be controlled by concentration and pH. We propose a mechanism for nanocomposite formation driven by acid-base interactions between the bridging hydroxyl groups on the zeolite surface and weakly basic Mg(OH) 2.

  3. Fast neutron activation analysis of oxide inclusions in magnesium alloy ingots

    NASA Astrophysics Data System (ADS)

    Fuerst, C. D.; James, W. D.

    1999-06-01

    Magnesium will have an increasingly important role to play in the automotive industry's materials strategy. In addition to its obvious use as a lightweight alternative, magnesium offers advantages in areas such as component integration and NVH (noise, vibration and harshness). Although the metallic composition of magnesium alloys has been carefully defined, there is no uniform industry standard for non-metallic inclusions, such as oxides, which are believed to adversely impact the material's strength. A definitive test has been needed, preferably one that provides a highly sensitive, calibrated, nondestructive evaluation of the metal's bulk oxide content. In response to this need, fast neutron activation analysis (FNAA) has emerged as an important tool for providing highly accurate quantitative information on the oxygen content in magnesium alloys. Oxygen levels from less than 50 to several thousand ppm have been observed in these alloys, with the highest levels concentrated at the top center of the ingot. Several operational procedures have been developed to optimize the analysis, including: a new automated, blank-free procedure which pneumatically transports machined magnesium cylinders between the irradiation and counting facilities; the use of an oxygen standard prepared from polyethylene and titanium dioxide, machined to match the sample dimensions; and implementation of new background subtraction software.

  4. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activities of magnesium oxide nanoparticles (MgO NP) alone or in combination with other antimicrobials (nisin and ZnO NP) against E. coli O157:H7 and Salmonella Stanley were investigated. The results show that MgO NP have strong bactericidal activity against the pathogens, achievin...

  5. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  6. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have strong antibacterial activities against several important foodborne pathogens. Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. Th...

  7. Oxidation at Surfaces of Uranium Oxide Particles

    NASA Astrophysics Data System (ADS)

    Schueneman, Richard; Burgraff, Larry

    2001-04-01

    Uranium dioxide (UO2 (S)) is unstable in an oxidizing environment and oxidizes until covered with a layer of uranium trioxide (UO3 (C)). During the oxidation process, uranium cations change from U+4 to U+6 and the oxide crystal structure changes from face centered cubic to orthorhombic. Seven UO2(S) samples were prepared by pressing UO2 (S) powder into a tungsten screen and then subjected to five different temperatures and three partial pressures of oxygen. UO2 (S) oxidation was monitored with in situ photoluminescence (PL) spectroscopy. Quantitative oxidation data was obtained with secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS). The in situ PL spectra did not identify UO3 (C) forming on the sample surfaces however, a new PL signature not associated with uranyl was observed. SIMS and XPS data from oxidized UO2 (S) samples indicated that at low temperatures, surface oxidation is kinetically limited and at high temperatures, surface oxidation is limited by diffusion. A model for the oxidation rate to UO3 (C) was not developed due to the temperature dependant oxidation process and high vacuum reduction of amorphous UO3 (A) present on the UO2 (S) sample surfaces prior to oxidation. A PL emission spectra intensity reduction was noticed on a UO3 (C) sample at room temperature under high vacuum. A reduction and re-oxidation of three additional UO3 (C) samples identified a kinetically irreversible reduction process for UO3(C) under high vacuum. A SIMS surface scan was performed on a fourth UO3(C) sample before and after exposure to ultra-high vacuum (10-8 torr) and the results suggest the reduction of UO3(C) to lower oxides (U3O8, U3O7 and UO2) at room temperature.

  8. Study of Coating Growth Behavior During the Plasma Electrolytic Oxidation of Magnesium Alloy ZK60

    NASA Astrophysics Data System (ADS)

    Qiu, Zhaozhong; Wang, Rui; Zhang, Yushen; Qu, Yunfei; Wu, Xiaohong

    2015-04-01

    Plasma electrolytic oxidation technique was used to coat ZK60 magnesium alloy in a silicate-based electrolyte. Effects of oxidation time on the morphology, phase structure, and corrosion resistance of the resulting coatings were systematically investigated by scanning electron microscopy, energy-dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy, and potentiodynamic polarization. The main components of the inner and the outer coating layers were MgO and Mg2SiO4, respectively. It was also found that the oxidation time has a significant impact on the corrosion resistance properties of the coatings. The coating obtained within the oxidation time of 360 s exhibited a corrosion current of 7.6 × 10-8 A/cm2 in 3.5 wt.% NaCl solution, which decreased significantly when comparing with the pristine magnesium alloy.

  9. Effect of plasma etching on destructive adsorption properties of polypropylene fibers containing magnesium oxide nanoparticles.

    PubMed

    Lange, Laura E; Obendorf, S Kay

    2012-02-01

    Dermal absorption of pesticides poses a danger for agricultural workers. Use of personal protection equipment (PPE) is required to provide protection; some of the current PPE involves impermeable barriers. In these barrier materials, the same mechanism that prevents the penetration of toxic chemicals also blocks the passage of water vapor and air from flowing through the material, making the garments uncomfortable. Fibers that degrade organophosphate pesticides, such as methyl parathion, were developed by incorporating metal oxides. These modified fibers can be incorporated into conventional fabric structures that allow water vapor to pass through, thereby maintaining comfort. Fibers with self-decontamination functionality were developed by incorporating magnesium oxide (MgO) nanoparticles into a polypropylene (PP) melt-extruded fiber. These fibers were then treated with plasma etching to expose increased surface area of the MgO nanoparticles. Three steps were involved in this research project: (1) determining the reactivity of MgO and methyl parathion, (2) making melt-spun MgO/PP fibers, and (3) testing the reactivity of MgO/PP composite fibers and methyl parathion. It was confirmed that MgO stoichiometrically degrades methyl parathion by way of destructive adsorption. The etching of the PP fibers containing MgO nanoparticles increased the chemical accessibility of MgO reactive sites, therefore making them more effective in degrading methyl parathion. These fibers can enhance the protection provided by PPE to agricultural and horticultural workers and military personnel. PMID:21850511

  10. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation.

    PubMed

    Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi; Lim, Jung Eun; Ok, Yong Sik

    2015-12-15

    Three Australian shooting range soils were treated with phosphate and magnesium oxide, or a combination of both to chemically stabilize Pb. Lead speciation was determined after 1 month ageing by X-ray absorption spectroscopy combined with linear combination fitting in control and treated soils. The predominant Pb species in untreated soils were iron oxide bound Pb, humic acid bound Pb and the mineral litharge. Treatment with phosphate resulted in substantial pyromorphite formation in two of the soils (TV and PE), accounting for up to 38% of Pb species present, despite the addition of excess phosphate. In MgO treated soils only, up to 43% of Pb was associated with MgO. Litharge and Pb hydroxide also formed as a result of MgO addition in the soils. Application of MgO after P treatment increased hydroxypyromorphite/pyromorphite formation relative to soils teated with phosphate only. X-ray diffraction and Scanning electron microscopy revealed PbO precipitate on the surface of MgO. Soil pH, (5.3-9.3) was an important parameter, as was the solubility of existing Pb species. The use of direct means of determination of the stabilisation of metals such as by X-ray absorption spectroscopy is desirable, particularly in relation to understanding long term stability of the immobilised contaminants. PMID:26150282

  11. Magnesium-doped zinc oxide nanorod-nanotube semiconductor/p-silicon heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Caglar, Yasemin; Görgün, Kamuran; Ilican, Saliha; Caglar, Mujdat; Yakuphanoğlu, Fahrettin

    2016-08-01

    Nanostructured zinc oxide material is usable in electronic device applications such as light-emitting diodes, heterojunction diode, sensors, solar cell due to its interesting electrical conductivity and optical properties. Magnesium-doped zinc oxide nanorod (NR)-nanotube (NT) films were grown by microwave-assisted chemical bath deposition to fabricate ZnO-based heterojunction diode. It is found that ZnO hexagonal nanorods turn into hexagonal nanotubes when the Mg doping ratio is increased from 1 to 10 %. The values of the optical band gap for 1 % Mg-doped ZnO NR and 10 % Mg-doped ZnO NT films are found to be 3.14 and 3.22 eV, respectively. The n-ZnO:Mg/p-Si heterojunction diodes were fabricated. The diodes exhibited a rectification behavior with ideality factor higher than unity due to the presence of surface states in the junction and series resistance. The obtained results indicate that Mg doping improves the electrical and optical properties of ZnO.

  12. Comparison of methods to determine relative bioavailability of magnesium in magnesium oxides for ruminants.

    PubMed

    Van Ravenswaay, R O; Henry, P R; Ammerman, C B; Littell, R C

    1989-11-01

    Two Mg balance trials were conducted with wethers to compare relative bioavailability of Mg in several Mg oxides with that of reagent grade sulfate as determined by different methods. In Experiment 1,600 ppm Mg as sulfate or four feed grade oxides varying in origin and particle size were added to a semi-purified basal diet (200 ppm Mg). Diets were fed at 800 g/d to 30 crossbred wethers during the 14-d trial and fecal and urinary collections were made during the last 7 d. In Experiment 2, the basal corn-soybean meal-cottonseed hull diet (1387 ppm Mg) was supplemented with 0, 700, 1400, or 2100 ppm added Mg as reagent grade sulfate or 1400 ppm Mg as three of the oxides from Experiment 1 and fed at 1000 g/d to 35 wethers. Urine was collected daily for 10 d and feces were collected on d 7 through 10. In Experiments 1 and 2, absorption of Mg from the oxide of brine origin and larger particle size distribution was lower than that from sulfate, but there was no difference in absorption for sheep fed oxides derived from sea water or calcined magnesite. In Experiment 2, urinary Mg excretion on d 4 and 5 of the collection was lower for sheep fed the brine oxide than for those fed sulfate or oxide from calcined magnesite. Urinary Mg excretion on d 4 and 5 following addition of 1400 ppm Mg to practical diets could be used to predict bioavailability of Mg. PMID:2625487

  13. In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants.

    PubMed

    Wong, Hoi Man; Zhao, Ying; Tam, Vivian; Wu, Shuilin; Chu, Paul K; Zheng, Yufeng; To, Michael Kai Tsun; Leung, Frankie K L; Luk, Keith D K; Cheung, Kenneth M C; Yeung, Kelvin W K

    2013-12-01

    A newly developed magnesium implant is used to stimulate bone formation in vivo. The magnesium implant after undergoing dual aluminum and oxygen plasma implantation is able to suppress rapid corrosion, leaching of magnesium ions, as well as hydrogen gas release from the biodegradable alloy in simulated body fluid (SBF). No released aluminum is detected from the SBF extract and enhanced corrosion resistance properties are confirmed by electrochemical tests. In vitro studies reveal enhanced growth of GFP mouse osteoblasts on the aluminum oxide coated sample, but not on the untreated sample. In addition to that a small amount (50 ppm) of magnesium ions can enhance osteogenic differentiation as reported previously, our present data show a low concentration of hydrogen can give rise to the same effect. To compare the bone volume change between the plasma-treated magnesium implant and untreated control, micro-computed tomography is performed and the plasma-treated implant is found to induce significant new bone formation adjacent to the implant from day 1 until the end of the animal study. On the contrary, bone loss is observed during the first week post-operation from the untreated magnesium sample. Owing to the protection offered by the Al2O3 layer, the plasma-treated implant degrades more slowly and the small amount of released magnesium ions stimulate new bone formation locally as revealed by histological analyses. Scanning electron microscopy discloses that the Al2O3 layer at the bone-implant interface is still present two months after implantation. In addition, no inflammation or tissue necrosis is observed from both treated and untreated implants. These promising results suggest that the plasma-treated magnesium implant can stimulate bone formation in vivo in a minimal invasive way and without causing post-operative complications. PMID:24060425

  14. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    NASA Astrophysics Data System (ADS)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 °C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  15. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types.

    PubMed

    Mahmoud, Abudayyak; Ezgi, Öztaş; Merve, Arici; Özhan, Gül

    2016-07-01

    Worldwide researchers have rising concerns about magnesium-based materials, especially magnesium oxide (MgO) nanaoparticles, due to increasing usage as promising structural materials in various fields including cancer treatment. However, there is a serious lack of information about their toxicity at the cellular and molecular levels. In this study, the toxic potentials of MgO nanoparticles were investigated on liver (HepG2), kidney (NRK-52E), intestine (Caco-2), and lung (A549) cell lines. For the toxicological assessment, the following assays were used: the particle characterization by transmission electron microscopy, the determination of cellular uptake by inductively coupled plasma-mass spectrometry, MTT and neutral red uptake assays for cytotoxicity, comet assay for genotoxicity, and the determination of malondialdehyde (MDA), 8-hydroxydeoxyguanosine, protein carbonyl, and glutathione levels by enzyme-linked immune sorbent assays for the potential of oxidative damage and annexin V-fluorescein isothiocyanate (FITC) apoptosis detection assay with propidium iodide (PI) for apoptosis. Magnesium oxide nanoparticles were taken up by the cells depending on their concentration and agglomeration/aggregation potentials. Magnesium oxide nanoparticles induced DNA (≤14.27 fold) and oxidative damage. At a concentration of ≥323.39 µg/mL, MgO nanoparticles caused 50% inhibition in cell viability by 2 different cytotoxicity assays. The cell sensitivity to cytotoxic and genotoxic damage induced by MgO nanoparticles was ranked as HepG2 < A549 < Caco-2 < NRK-52E. Although it was observed that MgO nanoparticles induced apoptotic effects on the cells, apoptosis was not the main cell death. DNA damage, cell death, and oxidative damage effects of MgO nanoparticles should raise concern about the safety associated with their applications in consumer products. PMID:27177543

  16. Magnesium ion implantation on a micro/nanostructured titanium surface promotes its bioactivity and osteogenic differentiation function

    PubMed Central

    Wang, Guifang; Li, Jinhua; Zhang, Wenjie; Xu, Lianyi; Pan, Hongya; Wen, Jin; Wu, Qianju; She, Wenjun; Jiao, Ting; Liu, Xuanyong; Jiang, Xinquan

    2014-01-01

    As one of the important ions associated with bone osseointegration, magnesium was incorporated into a micro/nanostructured titanium surface using a magnesium plasma immersion ion-implantation method. Hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 30 minutes (Mg30) and hierarchical hybrid micro/nanostructured titanium surfaces followed by magnesium ion implantation for 60 minutes (Mg60) were used as test groups. The surface morphology, chemical properties, and amount of magnesium ions released were evaluated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy, and inductively coupled plasma-optical emission spectrometry. Rat bone marrow mesenchymal stem cells (rBMMSCs) were used to evaluate cell responses, including proliferation, spreading, and osteogenic differentiation on the surface of the material or in their medium extraction. Greater increases in the spreading and proliferation ability of rBMMSCs were observed on the surfaces of magnesium-implanted micro/nanostructures compared with the control plates. Furthermore, the osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) genes were upregulated on both surfaces and in their medium extractions. The enhanced cell responses were correlated with increasing concentrations of magnesium ions, indicating that the osteoblastic differentiation of rBMMSCs was stimulated through the magnesium ion function. The magnesium ion-implanted micro/nanostructured titanium surfaces could enhance the proliferation, spreading, and osteogenic differentiation activity of rBMMSCs, suggesting they have potential application in improving bone-titanium integration. PMID:24940056

  17. Degradation behaviors of surface modified magnesium alloy wires in different simulated physiological environments

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Shi, Chao; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Ping-Hua; Chu, Cheng-Lin

    2014-09-01

    The degradation behaviors of the novel high-strength AZ31B magnesium alloy wires after surface modification using micro-arc-oxidization (MAO) and subsequently sealing with poly-L-lactic acid (PLLA) in different simulated physiological environments were investigated. The results show the surface MAO micropores could be physically sealed by PLLA, thus forming an effective protection to corrosion resistance for the wires. In simulated gastric fluid (SGF) at a low pH value (1.5 or 2.5), the treated wires have a high degradation rate with a rapid decrease of mass, diameter, mechanical properties and a significant increase of pH value of the immersion fluid. However, surface modification could effectively reduce the degradation rate of the treated wires in SGF with a pH value above 4.0. For the treated wires in simulated intestinal fluid at pH = 8.5, their strength retention ability is higher than that in strong acidic SGF. And the loss rate of mass is faster than that of diameter, while the pH value of the immersion fluid decreases. It should be noted that the modified wires in simulated body environment have the best strength retention ability. The wires show the different degradation behaviors indicating their different degradation mechanisms, which are also proposed in this work.

  18. Magnesium Supplementation Diminishes Peripheral Blood Lymphocyte DNA Oxidative Damage in Athletes and Sedentary Young Man

    PubMed Central

    Petrović, Jelena; Stanić, Dušanka; Dmitrašinović, Gordana; Plećaš-Solarović, Bosiljka; Ignjatović, Svetlana; Batinić, Bojan; Popović, Dejana

    2016-01-01

    Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL) with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id: ACTRN12615001237572. PMID:27042258

  19. Factors Affecting the Plasticity of Sodium Chloride, Lithium Fluoride, and Magnesium Oxide Single Crystals. 1

    NASA Technical Reports Server (NTRS)

    Stearns, Carl A.; Pack, Ann E.; Lad, Robert A.

    1959-01-01

    A study was made of the relative magnitude of the effects of various factors on the ductility of single crystals of sodium chloride (NaCl), lithium fluoride (LiF), and magnesium oxide (MgO). Specimen treatments included water-polishing, varying cleavage rate, annealing, quenching, X-irradiation, surface coating, aging, and combinations of some of these treatments. The mechanical behavior of the crystals was studied in flexure and in compression, the latter study being performed at both constant strain rate and constant load. Etch-pit studies were carried out to provide some pertinent information on the results of pretreatment on the dislocation concentration and distribution in the vicinity of the surface. The load deformation curves for these ionic single crystals show an initial region of very low slope which proved to be due to anelastic deformation. The extent of initial anelastic deformation is modified by specimen pretreatment in a way that suggests that this deformation is the result of expansion of cleaved-in dislocation loops, which can contract on the removal of the stress. The effects of the various pretreatments on the load and deflection at fracture are in accord with the prediction one might make with regard to their effect on the nucleation of fatal surface cracks. For NaCl, increases in ductility are always accompanied by increases in strength. The creep constants for NaCl are a function of treatments which affect the bulk structure but are not a function of treatments which only affect the surface.

  20. Dual Ion Assist Beam Deposition of Magnesium Oxide for Coated Conductors

    NASA Astrophysics Data System (ADS)

    Groves, J. R.; Arendt3, P. N.; Holesinger, T. G.; Hammond, R. H.; Foltyn, S. R.; DePaula, R. F.; Stan, L.; Usov, I. O.

    2006-03-01

    Ion Beam Assisted Deposition (IBAD) of Magnesium Oxide (MgO) has been proven to be a viable route for producing template films used to deposit high quality YBCO coated conductors on flexible polycrystalline metal substrates. Here we will discuss improvements in this process using a dual ion assist beam configuration. Dual ion assist beam deposition of MgO reduces the requirements for substrate surface finishing while maintaining comparable film quality (phi scan full-width at half-maximum values between 7 and 8 degrees). Furthermore, this adaptation of the IBAD process eliminates the degradation of MgO texture observed in thick IBAD MgO films deposited on silicon nitride. We have deposited films up to 50 nanometers thick without degradation of in-plane texture. Increasing the MgO thickness increases the chemical stability of the template layer and can eliminate the necessity for subsequent buffer layers or the application of the homoepitaxial MgO layer needed to stabilize the thin, conventional IBAD MgO layer. Initial results of subsequently deposited YBCO on these dual assist ion beam MgO templates are quite promising.

  1. Optimization of ion assist beam deposition of magnesium oxide template films during initial nucleation and growth

    SciTech Connect

    Groves, James R; Matias, Vladimir; Stan, Liliana; De Paula, Raymond F; Hammond, Robert H; Clemens, Bruce M

    2010-01-01

    Recent efforts in investigating the mechanism of ion beam assisted deposition (IBAD) of biaxially textured thin films of magnesium oxide (MgO) template layers have shown that the texture develops suddenly during the initial 2 nm of deposition. To help understand and tune the behavior during this initial stage, we pre-deposited thin layers of MgO with no ion assist prior to IBAD growth of MgO. We found that biaxial texture develops for pre-deposited thicknesses < 2 nm, and that the thinnest layer tested, at 1 nm, resulted in the best qualitative RHEED image, indicative of good biaxial texture development. The texture developed during IBAD growth on the 1.5 nm pre-deposited layer is slightly worse and IBAD growth on the 2 nm pre-deposited layer produces a fiber texture. Application of these layers on an Al{sub 2}O{sub 3} starting surface, which has been shown to impede texture development, improves the overall quality of the IBAD MgO and has some of the characteristics of a biaxially texture RHEED pattern. It is suggested that the use of thin (<2 nm) pre-deposited layers may eliminate the need for bed layers like Si{sub 3}N{sub 4} and Y{sub 2}O{sub 3} that are currently thought to be required for proper biaxial texture development in IBAD MgO.

  2. Aqueous Corrosion Behavior of Micro Arc Oxidation (MAO)-Coated Magnesium Alloys: A Critical Review

    NASA Astrophysics Data System (ADS)

    Rama Krishna, L.; Sundararajan, G.

    2014-06-01

    Magnesium (Mg) and its alloys, in the current era of persistently growing engineering demands, have become the most promising materials finding widespread industrial applications. Numerous processes are available for surface protection of Mg and its alloys to potentially minimize corrosion damage. The micro arc oxidation (MAO), a fairly recent and eco-friendly coating process, emerged as a novel means to provide an adherent, hard, scratch-resistant, wear-resistant, and corrosion-resistant coatings on Mg alloys. However, the successful utilization of such coatings demands a thorough understanding of the influence of a relatively large number of process parameters such as electrolytic composition, presence of insoluble additives in the electrolyte, electrical parameters employed, and the composition of the Mg alloy substrate on the corrosion resistance. The detailed influence of all the above parameters on the corrosion behavior of Mg alloys is critically reviewed and presented in this article. In addition, this article also reviews the recent trends in terms of duplexing the MAO process using different techniques/processes such that the composite coatings are produced with enhanced corrosion resistance.

  3. Microstructure and biological properties of micro-arc oxidation coatings on ZK60 magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Yu, X

    2012-08-01

    Ceramic coatings were prepared on ZK60 magnesium alloy in electrolyte with different concentration ratio of calcium and phosphorus (Ca/P) by micro-arc oxidation (MAO) technique at constant voltage. The microstructure, phase composition, elemental distribution, corrosion resistance, and adhesion of the coatings were investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD), energy-dispersive X-ray spectrometry (EDS), electrochemical workstation, and scratch spectrometer, respectively. The coating biocompatibility was evaluated by in vitro cytotoxicity tests and systemic toxicity tests, and the bioactivity and degradability were evaluated by simulation body fluid (SBF) immersion tests. SEM shows that pores with different shapes distribute all over the coating surface. The adhesion and thickness of the coatings increases with increasing Ca/P ratio of electrolyte. The in vitro cytotoxicity tests and systemic toxicity texts demonstrate that the coatings have no toxicity to cell and living animal, which show that the coatings have excellent biocompatibility. XRD analysis shows that bioactive calciumphosphate (CaP) phases such as hydroxyapatite (HA, Ca(10)(PO(4))(6)(OH)(2)) and calcium pyrophosphate (CPP, Ca(2)P(2)O(7)) are induced in the immersed coatings, indicating that the MAO coatings have excellent bioactivity. PMID:22692915

  4. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Guevara-Bertsch, M.; Ramírez-Hidalgo, G.; Chavarría-Sibaja, A.; Avendaño, E.; Araya-Pochet, J. A.; Herrera-Sancho, O. A.

    2016-03-01

    We investigate the variation of the oscillation frequency of the Mg2+ and O2- ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110-300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  5. Phisicochemistry of alkaline-earth metals oxides surface

    NASA Astrophysics Data System (ADS)

    Ekimova, Irina; Minakova, Tamara; Ogneva, Tatyana

    2016-01-01

    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation.

  6. Magnesium phosphate glass cements with ceramic-type properties

    SciTech Connect

    Sugama, T.; Kukacka, L.E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono-and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  7. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  8. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  9. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  10. Microcalorimetric Studies of Surface Acid/Base Properties of Magnesium Iron Catalysts Prepared from Hydrotalcite-Type Precursors

    NASA Astrophysics Data System (ADS)

    Tu, Mai; Shen, Jianyi; Chen, Yi

    1997-01-01

    Magnesium-iron mixed oxides with Mg/Fe molar ratios 1,3, and 6 were prepared from hydrotalcite-type precursors. Microcalorimetric adsorption of NH 3and CO 2showed that the surface acidity and basicity of the mixed oxides after calcination at 673 K are similar despite the different Mg/Fe ratios. Increasing calcination temperature from 673 to 773 K significantly decreased the surface area of the 3 Mg/Fe oxide, but the densities of both the acid and base sites were not changed. Mössbauer spectroscopy revealed that the reduction of the 3 Mg/Fe oxide (Fe 2O 3/MgO) in H 2at 673 K converted all Fe 3+to Fe 2+. The resulted FeO/MgO exhibited the same acidity as that of the Fe 2O 3/MgO, but the basicity of the FeO/MgO was greatly enhanced. Reduction at 773 K resulted in the formation of 76% Fe 2+and 24% Fe 0as detected by Mössbauer spectroscopy. The Fe/FeO/MgO sample formed exhibited very low heat for the adsorption of NH 3(40 kJ/mol) indicating that all iron atoms on the surface are Fe 0. However, a substantial basicity remained on the surface of this sample that may account for its high olefin selectivity compared with pure iron catalyst in the Fischer-Tropsch synthesis.

  11. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    NASA Astrophysics Data System (ADS)

    Lebeau, D.; Beuvier, L.; Cornaton, M.; Miserque, F.; Tabarant, M.; Esnouf, S.; Ferry, M.

    2015-05-01

    In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  12. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    PubMed

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys. PMID:25559356

  13. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro-nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  14. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  15. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  16. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C) subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  17. Thermal Property Evaluation of Cerium Dioxide and Cerium Dioxide Magnesium Oxide Powders for Testing Plutonium

    SciTech Connect

    HOYT, R C

    2002-06-01

    Ceric oxide (CeO{sub 2}) and mixtures of CeO{sub 2} -magnesium oxide (MgO) have been utilized at the Plutonium Finishing Plant (PFP) as surrogate materials to represent plutonium dioxide (PuO{sub 2}) and impure PuO{sub 2} containing impurities such as MgO during verification tests on PFP's stabilization furnaces. Magnesium oxide was selected during furnace testing as the impurity of interest since much of the impure PuO{sub 2} to be stabilized and packaged at the PFP contains significant amounts of MgO from solution stabilization work. The issue being addressed in this study is whether or not heating the surrogate materials to 950 C adequately simulates heating PuO{sub 2} powders to 950 C. This paper evaluates some of the thermal properties of these oxides, as related to the heating of powders of these materials where heat transfer within the powders is governed primarily by conduction. Detailed heat transfer modeling was outside the scope of this paper.

  18. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2010-07-15

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) A, b = 17.1823(4) A, c = 23.5718(5) A, {beta} = 90{sup o}, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with vertical bar F vertical bar > 7{sigma}(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca{sub 2}Mg{sub 2}{sup IV}Fe{sub 2}{sup (2+)IV}[Al{sub 14}{sup VI}O{sub 31}(OH)][Al{sub 2}{sup IV}O][Al{sup IV}]AL{sup IV}(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe{sup 2+} tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  19. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    PubMed

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior. PMID:25280850

  20. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    NASA Astrophysics Data System (ADS)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  1. Phase transformations and metallization of magnesium oxide at high pressure and temperature.

    PubMed

    McWilliams, R Stewart; Spaulding, Dylan K; Eggert, Jon H; Celliers, Peter M; Hicks, Damien G; Smith, Raymond F; Collins, Gilbert W; Jeanloz, Raymond

    2012-12-01

    Magnesium oxide (MgO) is representative of the rocky materials comprising the mantles of terrestrial planets, such that its properties at high temperatures and pressures reflect the nature of planetary interiors. Shock-compression experiments on MgO to pressures of 1.4 terapascals (TPa) reveal a sequence of two phase transformations: from B1 (sodium chloride) to B2 (cesium chloride) crystal structures above 0.36 TPa, and from electrically insulating solid to metallic liquid above 0.60 TPa. The transitions exhibit large latent heats that are likely to affect the structure and evolution of super-Earths. Together with data on other oxide liquids, we conclude that magmas deep inside terrestrial planets can be electrically conductive, enabling magnetic field-producing dynamo action within oxide-rich regions and blurring the distinction between planetary mantles and cores. PMID:23180773

  2. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

  3. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  4. Fogging technique used to coat magnesium with plastic

    NASA Technical Reports Server (NTRS)

    Mroz, T. S.

    1967-01-01

    Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.

  5. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review.

    PubMed

    Wang, Jiali; Tang, Jian; Zhang, Peng; Li, Yangde; Wang, Jue; Lai, Yuxiao; Qin, Ling

    2012-08-01

    As a bioabsorbable metal with mechanical properties close to bone, pure magnesium or its alloys have great potential to be developed as medical implants for clinical applications. However, great efforts should be made to avoid its fast degradation in vivo for orthopedic applications when used for fracture fixation. Therefore, how to decease degradation rate of pure magnesium or its alloys is one of the focuses in Research and Development (R&D) of medical implants. It has been recognized that surface modification is an effective method to prevent its initial degradation in vivo to maintain its desired mechanical strength. This article reviews the recent progress in surface modifications for prevention of fast degradation of magnesium or its alloys using in vitro testing model, a fast yet relevant model before moving towards time-consuming and expensive in vivo testing. Pros and cons of various surface modifications are also discussed for the goal to design available products to be applied in clinical trials. PMID:22566412

  6. Magnesium oxide-supported ziegler catalyst modified with acid and higher alkanol, and process for preparing narrow MWD HDPE

    SciTech Connect

    Hsieh, J.T.T.

    1989-09-05

    This patent describes a coordination-catalyst suitable for the polymerization of olefins. It comprises a titanium component and an organoaluminum compound reducing agent on a magnesium oxide support which has been pre-treated with a molar deficiency of a carboxylic acid with respect to the magnesium oxide support. The titanium component is the reaction product of an alkanol having 5 to 12 carbon atoms and TiCl/sub 4/ with the molar ratio of the alkanol to the TiCl/sub 4/ being about 0.5 to about 1.5.

  7. Insulating oxide surfaces and nanostructures

    NASA Astrophysics Data System (ADS)

    Goniakowski, Jacek; Noguera, Claudine

    2016-03-01

    This contribution describes some peculiarities of the science of oxide surfaces and nanostructures and proposes a simple conceptual scheme to understand their electronic structure, in the spirit of Jacques Friedel's work. Major results on the effects of non-stoichiometry and polarity are presented, for both semi-infinite surfaces and ultra-thin films, and promising lines of research for the near future are sketched. xml:lang="fr"

  8. Magnesium Oxide

    MedlinePlus

    ... Talk to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in your community. See the FDA's Safe Disposal of Medicines website (http://goo.gl/c4Rm4p) for ...

  9. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    NASA Astrophysics Data System (ADS)

    Feliu, S., Jr.; Pardo, A.; Merino, M. C.; Coy, A. E.; Viejo, F.; Arrabal, R.

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH) 2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH) 2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  10. THE HYDROLYSIS AND OXIDATION BEHAVIOR OF LITHIUM BOROHYDRIDE AND MAGNESIUM HYDRIDE DETERMINED BY CALORIMETRY

    SciTech Connect

    Brinkman, K; Donald Anton, D; Joshua Gray, J; Bruce Hardy, B

    2008-03-13

    Lithium borohydride, magnesium hydride and the 2:1 'destabilized' ball milled mixtures (2LiBH{sub 4}:MgH{sub 2}) underwent liquid phase hydrolysis, gas phase hydrolysis and air oxidation reactions monitored by isothermal calorimetry. The experimentally determined heats of reaction and resulting products were compared with those theoretically predicted using thermodynamic databases. Results showed a discrepancy between the predicted and observed hydrolysis and oxidation products due to both kinetic limitations and to the significant amorphous character of observed reaction products. Gas phase and liquid phase hydrolysis were the dominant reactions in 2LiBH{sub 4}:MgH{sub 2} with approximately the same total energy release and reaction products; liquid phase hydrolysis displayed the maximum heat flow for likely environmental exposure with a peak energy release of 6 (mW/mg).

  11. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy.

    PubMed

    Xu, Liping; Pan, Feng; Yu, Guoning; Yang, Lei; Zhang, Erlin; Yang, Ke

    2009-03-01

    Magnesium has shown potential application as a bio-absorbable biomaterial, such as for bone screws and plates. In order to improve the surface bioactivity, a calcium phosphate was coated on a magnesium alloy by a phosphating process (Ca-P coating). The surface characterization showed that a porous and netlike CaHPO(4).2H(2)O layer with small amounts of Mg(2+) and Zn(2+) was formed on the surface of the Mg alloy. Cells L929 showed significantly good adherence and significantly high growth rate and proliferation characteristics on the Ca-P coated magnesium alloy (p<0.05) in in-vitro cell experiments, demonstrating that the surface cytocompatibility of magnesium was significantly improved by the Ca-P coating. In vivo implantations of the Ca-P coated and the naked alloy rods were carried out to investigate the bone response at the early stage. Both routine pathological examination and immunohistochemical analysis demonstrated that the Ca-P coating provided magnesium with a significantly good surface bioactivity (p<0.05) and promoted early bone growth at the implant/bone interface. It was suggested that the Ca-P coating might be an effective method to improve the surface bioactivity of magnesium alloy. PMID:19111896

  12. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation.

    PubMed

    Chen, Ying; Song, Yang; Zhang, Shaoxiang; Li, Jianan; Zhao, Changli; Zhang, Xiaonong

    2011-04-01

    In this study, polycaprolactone (PCL) and polylactic acid (PLA) coatings were prepared on the surface of high purity magnesium (HPMs), respectively, and electrochemical and dynamic degradation tests were used to investigate the degradation behaviors of these polymer-coated HPMs. The experimental results indicated that two uniform and smooth polymer films with thicknesses between 15 and 20 µm were successfully prepared on the HPMs. Electrochemical tests showed that both PCL-coated and PLA-coated HPMs had higher free corrosion potentials (E(corr)) and smaller corrosion currents (I(corr)) in the modified simulated body fluid (m-SBF) at 37 °C, compared to those of the uncoated HPMs. Dynamic degradation tests simulating the flow conditions in coronary arteries were carried out on a specific test platform. The weight of the specimens and the pH over the tests were recorded to characterize the corrosion performance of those samples. The surfaces of the specimens after the dynamic degradation tests were also examined. The data implied that there was a special interaction between HPM and its polymer coatings during the dynamic degradation tests, which undermined the corrosion resistance of the coated HPMs. A model was proposed to illustrate the interaction between the polymer coatings and HPM. This study also suggested that this reciprocity may also exist on the implanted magnesium stents coated with biodegradable polymers, which is a potential obstacle for the further development of drug-eluting magnesium stents. PMID:21358027

  13. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  14. The surface modified composite layer formation with boron carbide particles on magnesium alloy surfaces through pulse gas tungsten arc treatment

    NASA Astrophysics Data System (ADS)

    Ding, W. B.; Jiang, H. Y.; Zeng, X. Q.; Li, D. H.; Yao, S. S.

    2007-02-01

    A novel fabrication process of surface modified composite layer by pulse current gas tungsten arc (GTA) surface modification process was used to deposit B 4C particles on the surface of magnesium alloy AZ31. This method is an effective technique in producing a high performance surface modified composite layer. During the pulse current GTA surface modification process, considerable convection can exist in the molten pool due to various driving forces and the pulse current could cause violent stirring in the molten pool, and the large temperature gradient across the boundary between the GTA modified surface and matrix metal resulted in rapid resolidification with high cooling rates in the molten pool, so that the process result notable grain refinement in the GTA surface modified composite layer. The hardness and wear resistance of the GTA surface modified composite layer are superior to that of as-received magnesium alloy AZ31. The hardness values and wear resistance of GTA surface modified composite layer depend on the GTA process parameters and the B 4C particles powder concentration and distribution. The optimum processing parameters for the formation of a homogeneous crack/defect-free and grain refinement microstructure were established.

  15. Microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions.

    PubMed

    Bontrager, J; Mahapatro, A; Gomes, A S

    2014-08-01

    Biodegradable materials including biodegradable metals are continuously being investigated for the development of next generation cardiovascular stents. Predictive in vitro tests are needed that could evaluate potential materials while simulating in vivo conditions. In this manuscript we report the microscopic bio-corrosion evaluations of magnesium surfaces in static and dynamic conditions. A corrosion test bench was designed and fabricated and static and dynamic corrosion tests were carried out with samples of magnesium alloy. The fluid wall shear stress equation and the Churchill's friction factor equation were used to calculate the fluid velocity required to generate the desired shear stress on samples in the test bench. Static and dynamic corrosion tests at 24 and 72 h were carried out at 0.88 Pa shear stress mimicking the in vivo shear stress. Microscopic evaluations of the corroded surfaces were carried out by optical, scanning electron microscopy and energy dispersive X-ray spectroscopy to evaluate the corrosion behaviour and surface properties of the test samples. The surface and interface analysis of magnesium samples post test indicated that dynamic conditions prevented the build-up of corrosion by-products on the sample surface and the corrosion mechanism was uniform as compared to static conditions. The use of a masking element to restrict the exposed area of the sample didn't result in increased corrosion at the boundary. Thus, we have demonstrated the feasibility of the designed test bench as a viable method for bio-corrosion surface analysis under dynamic corrosion conditions for potential biodegradable cardiovascular stent materials. PMID:24910359

  16. Study on the mechanism of surface modification of magnesium oxysulfate whisker

    NASA Astrophysics Data System (ADS)

    Dang, Li; Nai, Xueying; Zhu, Donghai; Jing, Yanwei; Liu, Xin; Dong, Yaping; Li, Wu

    2014-10-01

    Hydrophobic-lipophilic magnesium oxysulfate whisker (MOSw) was prepared by surface modification with lauric acid and the surface morphology of MOSw was examined with field emission scanning electron microscope (FESEM). X-ray powder diffraction (XRD) was used to characterize the crystalline degree of MOSw and modified MOSw (MOSw-LA). Both FESEM and XRD suggested that modification occurred on the surface of MOSw exclusively. The inexistence of physisorbed lauric acid was proved by Fouier transform infrared (FT-IR) spectroscopy. Thermogravimetric analyses ruled out the possibility that magnesium laurate (LA-Mg) physisorbed on the surface of MOSw-LA. Solid state 13C nuclear magnetic resonance (13C NMR) further verified the formation of COO-Mg< bonds based on the significant changes of chemical shift and decrease in intensity. Hence, we confirmed that the type of surface modification of MOSw with lauric acid was chemical adsorption taken place between lauric acid and Mg<. In order to study the dynamic state approach of this reaction, a pH meter was employed to monitor the reaction process synchronously, and then we proposed a reaction mechanism which was similar to the "acid-base neutralization". This research provides a detailed explanation for a kind of surface modification, which may be further used in the performance of whisker/polymer matrix composites.

  17. Development of Laser Surface Technologies for Anti-Corrosion on Magnesium Alloys: a Review

    NASA Astrophysics Data System (ADS)

    Sun, Rujian; Guan, Yingchun; Zhu, Ying

    2016-03-01

    Magnesium (Mg) alloys have been increasingly used in industries and biomaterial fields due to low density, high specific strength and biodegradability. However, poor surface-related properties are major factors that limit their practical applications. This paper mainly focuses on laser-based anti-corrosion technologies for Mg alloys, beginning with a brief review of conventional methods, and then demonstrates the feasibility of laser surface technologies including laser surface melting (LSM), laser surface alloying (LSA), laser surface cladding (LSC) and laser shock peening (LSP) in achieving enhancement of corrosion resistance. The mechanism and capability of each technique in corrosion resistance is carefully discussed. Finally, an outlook of the development of laser surface technology for Mg alloy is further concluded, aiming to serve as a guide for further research both in industry applications and biomedical devices.

  18. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. PMID:25828828

  19. Laser surface modification of Ti and TiC coatings on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Lee, S. G.; Park, J. S.; Kim, H. G.

    2014-12-01

    In order to enhance the surface properties of magnesium alloy, a highly intense laser surface melting process following plasma spraying of Ti or TiC on AZ31 alloy were employed. When laser surface melting was applied to Ti coated magnesium alloy, the formation of fine Ti particle dispersed surface layer on the substrate occurred. The corrosion potential of the AZ31 alloy with Ti dispersed surface was significantly increased in 3.5 wt % NaCl solution. Additionally, an improved hardness was observed for the laser treated specimens as compared to the untreated AZ31 alloy. Laser melting process following plasma thermal deposition was also applied for obtaining in situ TiC coating layer on AZ31 alloy. The TiC coating layer could be successfully formed via in situ reaction between pure titanium and carbon powders. Incomplete TiC formation was observed in the plasma sprayed specimen, while completely transformed TiC layer was found after post laser melting process. It was also confirmed that the laser post treatment induced enhanced adhesion strength between the coating and the substrate.

  20. Modifying AM60B Magnesium Alloy Die Cast Surfaces by Friction Stir Processing

    SciTech Connect

    Santella, Michael L; Feng, Zhili; Degen, Cassandra; Pan, Dr. Tsung-Yu

    2006-01-01

    These experiments were done to evaluate the feasibility of locally modifying the surface properties of magnesium alloys with friction-stir processing. The magnesium alloy used for the study was high-pressure die-cast AM60B, nominally Mg-6Al-0.13 Mn (wt. %). Friction-stir passes were made with a translation speed of 1.7 mm/s using tool-rotation speeds of 1,250 rpm or 2,500 rpm. Stir passes with good appearance were obtained under both conditions. In some cases up to five passes were overlapped on a single bar to produce stir zones with cross-sectional dimensions of about 1.5 mm x 10 mm. Metallographic examinations indicated that the stir zones were largely comprised of a magnesium solid solution with equiaxed grains on the order of 5-10 {micro}m in size. Hardness mapping showed that the stir zones experienced increases of 16-25% compared to the as-cast metal. Room-temperature testing showed that, compared to the cast metal, the stir zones had flow stresses nearly 20% higher with about twice the tensile elongation.

  1. NANOSIZED MAGNESIUM OXIDE AS CATALYST FOR THE RAPID AND GREEN SYNTHESIS OF SUBSTITUTED 2-AMINO-2-CHROMENES

    EPA Science Inventory

    A nanosized magnesium oxide catalyzed three-component condensation reaction of aldehyde, malononitrile and ¿-naphthol proceeded rapidly in water/PEG to afford corresponding 2-amino-2-chromenes in high yields at room temperature. The greener protocol was found to be fairly general...

  2. CONTROL OF AIR POLLUTION EMISSIONS FROM MOLYBDENUM ROASTING. VOLUME 3. PILOT SCALE TEST RESULTS FOR MAGNESIUM OXIDE SCRUBBING

    EPA Science Inventory

    A research project was conducted to determine the feasibility of applying the magnesium oxide (MgO) scrubbing system to smelter off-gas streams containing approximately one percent SO2. Pilot scale (4000 cu Nm/hr) tests of the MgO system using a packed tower absorber with no rege...

  3. Method for production of magnesium

    DOEpatents

    Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  4. Method for production of magnesium

    DOEpatents

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  5. Magnesium Lewis Acid Assisted Oxidative Bromoetherification Involving Bromine Transfer from Alkyl Bromides with Aldehydes by Umpolung of Bromide.

    PubMed

    Moriyama, Katsuhiko; Nishinohara, Chihiro; Togo, Hideo

    2016-08-16

    An oxidative bromoetherification involving a bromine transfer from alkyl bromides upon reacting them with aldehydes in a Grignard reaction with a concurrent oxidation of bromide was developed to provide substituted tetrahydrofurans in high yields. This reaction, which proceeds through two types of bromine transfer, was promoted by the addition of a Brønsted acid. Mechanistic studies suggested that a magnesium Lewis acid activates hypobromate, which is generated in situ from the reaction of bromide and Oxone to improve the electrophilicity of the bromonium ion (Br(+) ) for the oxidative bromoetherification of alkenyl alcohols. Furthermore, the magnesium Lewis acid catalyzed oxidative bromoetherification of an alkenyl alcohol proceeded to provide a cyclization product in 92 % yield. PMID:27304660

  6. Surface-Step-Induced Oscillatory Oxide Growth

    NASA Astrophysics Data System (ADS)

    Li, Liang; Luo, Langli; Ciston, Jim; Saidi, Wissam A.; Stach, Eric A.; Yang, Judith C.; Zhou, Guangwen

    2014-09-01

    We report in situ atomic-resolution transmission electron microscopy observations of the oxidation of stepped Cu surfaces. We find that the presence of surface steps both inhibits oxide film growth and leads to the oxide decomposition, thereby resulting in oscillatory oxide film growth. Using atomistic simulations, we show that the oscillatory oxide film growth is induced by oxygen adsorption on the lower terrace along the step edge, which destabilizes the oxide film formed on the upper terrace.

  7. Application Of Phenol/Amine Copolymerized Film Modified Magnesium Alloys: Anticorrosion And Surface Biofunctionalization.

    PubMed

    Chen, Si; Zhang, Jiang; Chen, Yingqi; Zhao, Sheng; Chen, Meiyun; Li, Xin; Maitz, Manfred F; Wang, Jin; Huang, Nan

    2015-11-11

    Magnesium metal as degradable metallic material is one of the most researched areas, but its rapid degradation rate restricts its development. The current anticorrosion surface modification methods require expensive equipment and complicated operation processes and cannot continue to introduce biofunction on modified surface. In this study, the GAHD conversion coatings were fabricated on the surface of magnesium alloys (MZM) by incubating in the mixture solution of gallic acid (GA) and hexamethylenediamine (HD) to decrease the corrosion rate and provide primary amines (-NH2), carboxyl (-COOH), and quinone groups, which is supposed to introduce biomolecules on MZM. Chemical structures of the MZM-GAHD and MZM-HEP-GAHD were explored by analyzing the results of FTIR and XPS comprehensively. Furthermore, it was proved that the heparin (HEP) molecules were successfully immobilized on MZM-GAHD surface through carbodiimide method. The evaluation of platelet adhesion and clotting time test showed that MZM-HEP-GAHD had higher anticoagulation than MZM-GAHD. Through electrochemical detection (polarization curves and electrochemical impedance spectroscopy Nyquist spectrum) and immersion test (Mg(2+) concentration and weight loss), it was proved that compared to MZM, both the MZM-GAHD and MZM-HEP-GAHD significantly improved the corrosion resistance. Finally, in vivo experimentation indicated that mass loss had no significant difference between MZM-1:1, MZM-HEP-1:1, and MZM. However, the trend still suggested that MZM-1:1 and MZM-HEP-1:1 possessed corrosion resistance property. PMID:26479205

  8. Determination of tetracyclines in surface water and milk by the magnesium hydroxide coprecipitation method.

    PubMed

    Tsai, Wen-Hsien; Huang, Tzou-Chi; Chen, Ho-Hsien; Huang, Joh-Jong; Hsue, Min-Hsien; Chuang, Hung-Yi; Wu, Yuh-Wern

    2010-01-15

    A simple coprecipitation method was developed for the determination of tetracyclines (TCs) in surface water and milk by high-performance liquid chromatography with diode-array detection (HPLC-DAD). Magnesium ion was added into the surface water or the acetonitrile (MeCN) extract of milk. After alkalinization, magnesium hydroxide precipitates which had been formed can be separated from the matrix solution easily by centrifuging and then a dissolution step was performed by adding a small amount of acid. The final solution could be introduced directly into HPLC system for the determination of the analytes. Under optimal conditions, recoveries for the analysis of spiked surface water samples ranged from 83.6% to 95.1% with relative standard deviation of 2.0-5.5%. For milk samples, relative recoveries were 95.9-104.6% with relative standard deviation of 3.4-6.7%. The enrichment factors ranged from 41.5 to 48.1 for 10 mL water samples, and from 3.6 to 4.4 for 1 mL MeCN extracts of milk. Limits of detection ranged from 0.13 to 0.51 ng/mL, and from 3.0 to 8.5 ng/g for four TCs in surface water and milk samples, respectively. PMID:20015512

  9. Ab initio calculations on magnetism induced by composite defects in magnesium oxide

    SciTech Connect

    Zhang, Yao-Fang; Feng, Min; Shao, Bin; Lu, Yuan; Zuo, Xu; Liu, Hong

    2014-05-07

    The local magnetic state induced by the composite defects, composed of an oxygen vacancy and a nitrogen substituting oxygen, in magnesium oxide has been studied by using ab initio calculation based on density functional theory. The calculated results show that local magnetic moment can be induced by the composite defects around the oxygen vacancy, when the exchange split of the oxygen vacancy is enhanced either by the hybridization between the N-p and nearest neighbor O-p orbitals or by applying on-site Coulomb repulsion (U) and exchange interaction (J). We show that the magnetic state induced by the composite defect is energetically more stable than the non-magnetic state. In addition, we show that the U and J applied on the p-orbitals of N and O atoms may significantly impact the calculated magnetic state of the composite defect, resulting in magnetic state for a configuration that is non-magnetic by generalized gradient approximation.

  10. Thermoelectric properties of hot-pressed and PECS-sintered magnesium-doped copper aluminum oxide

    SciTech Connect

    Liu, Chang; Morelli, Donald T

    2011-02-03

    Copper aluminum oxide (CuAlO{sub 2}) is considered as a potential candidate for thermoelectric applications. Partially magnesium-doped CuAlO{sub 2} bulk pellets were fabricated using solid-state reactions, hot-pressing, and pulsed electric current sintering (PECS) techniques. X-ray diffraction and scanning electron microscopy were adopted for structural analysis. High-temperature transport property measurements were performed on hot-pressed samples. Electrical conductivity increased with Mg doping before secondary phases became significant, while the Seebeck coefficient displayed the opposite trend. Thermal conductivity was consistently reduced as the Mg concentration increased. Effects of Mg doping, preparation conditions, and future modification on this material’s properties are discussed.

  11. RF-sputter-deposited magnesium oxide films as high-quality adjustable tunnel barriers

    SciTech Connect

    Villegier, J.C.; Radparvar, M.; Yu, L.S.; Faris, S.M.

    1989-03-01

    High quality RF-sputtered MgO films are used as tunnel barriers to fabricate small area, niobium nitride Josephson tunnel junctions. A magnesium oxide barrier deposited as a single layer, or as a multilayer film, results in devices with similar characteristics. Annealing trilayers at temperatures in excess of 250/sup 0/C for several hours decrease junction current density and improve device quality presumably by increasing barrier heights through reducing resonant tunneling states. A self-aligned process utilizing only two mask levels is used to produce junctions as small as 0.5 ..mu..m/sup 2/ with excellent critical current uniformity. These junctions exhibit energy gaps of 5.1 mV and low subgap currents at current densities in excess of 1000 A/cm/sup 2/ which make them suitable for a variety of applications such as SIS mixers and logic circuits.

  12. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. PMID:26283286

  13. Corrosion behavior of silicon nitride, magnesium oxide, and several metals in molten calcium chloride with chlorine

    SciTech Connect

    McLaughlin, D. . Research and Development Center); Sesions, C.E.; Marra, J.E. )

    1992-08-01

    In this paper corrosion studies are described in a molten calcium chloride environment sparged with chlorine gas at 850{degrees}C, both in the melt and in the gas phase above the salt, in support of efforts at Westinghouse Savannah River Company to develop more resistant materials of construction for molten salt processing of plutonium. Corrosion rates and electron microscope analyses are reported for Inconel alloys 601 and 617, tantalum, tungsten, magnesium oxide, and silicon nitride. Silicon nitride exhibited the greatest resistance, showing {lt}0.1 mg/cm{sup 2} {center dot} h loss in both melt and vapor None of the metallic coupons withstood the chlorine vapor environment, although Inconel indicated resistance immersed in the melt if protected from chlorine gas.

  14. On the surface properties of biodegrading magnesium and its alloys: a survey and discussion

    NASA Astrophysics Data System (ADS)

    Wang, J. L.; Kirkland, N. T.; Chen, X. B.; Lyndon, J. A.; Birbilis, N.

    2016-03-01

    Biodegradable magnesium (Mg) alloys present exceptional promise as functional implants, as evidenced by the significant research effort associated with the topic in recent years. However, a salient point regarding the degradation of Mg and Mg-alloys—in any aqueous environment, including biological media—is the certain presence and accumulation of surface films, representing dissolution products. The corrosion of Mg does not require that bare metal surfaces be presented to the surrounding environment, it follows that any tissue or cells in the immediate vicinity of a Mg-based implant will therefore be in intimate contact with the dissolution products of Mg. To this end, the present work describes the typical Mg/Mg-alloy surface evolution during dissolution in biological media, and the associated factors which govern the morphology and control of surface films. This combines original research with review, finishing with prospects for further illumination.

  15. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  16. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  17. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.

    PubMed

    Efthimiadis, Jim; Neil, Wayne C; Bunter, Andrew; Howlett, Patrick C; Hinton, Bruce R W; MacFarlane, Douglas R; Forsyth, Maria

    2010-05-01

    The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg-Zn-Rare Earth (RE)-Zr, nominal composition approximately 4 wt % Zn, approximately 1.7 wt % RE (Ce), approximately 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P(6,6,6,14)][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of -200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes. PMID:20433137

  18. Adsorption of carbon oxide and nitrogen oxide molecules on the surface of the Ni/MgO(111) system

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.; Turiev, A. M.; Tsidaeva, N. I.; Pantileev, D. G.

    2009-10-01

    The coadsorption of carbon oxide (CO) and nitrogen oxide (NO) molecules on the surface of nickel nanoclusters formed on a thin magnesium oxide MgO(111) film grown on the Mo(110) face in an ultrahigh vacuum is studied by reflective infrared spectroscopy and thermodesorption spectroscopy (TDS). The adsorption of NO molecules is found to substantially change the state of the initially adsorbed CO molecules. The TDS and IR spectra suggest that the adsorption of NO molecules stimulates the surface migration of CO molecules from the surface of metallic clusters to the cluster-oxide interface, which is accompanied by a decrease in the angle of inclination of the molecular axis to the surface.

  19. Surface properties of AZ91 magnesium alloy after PEO treatment using molybdate salts and low current densities

    NASA Astrophysics Data System (ADS)

    Pezzato, Luca; Brunelli, Katya; Napolitani, Enrico; Magrini, Maurizio; Dabalà, Manuele

    2015-12-01

    Plasma electrolytic oxidation (PEO) process is a recently developed electrochemical method used to produce on the surface of various metals oxide ceramic coatings that improve corrosion and wear properties of the substrate. In this work, PEO process was applied on AZ91 magnesium alloy using low current densities (0.05 A/cm2) and an alkaline solution of silicates with different concentrations of sodium molybdate (0.3-3 g/l). The effect of the low current densities of process and of molybdate salts on the corrosion resistance of the coatings was studied with potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) in chloride and sulfate environment. The morphology, the phases and the chemical composition of the coatings were examined using a scanning electron microscope equipped with EDS, X-ray diffraction, secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The corrosion properties of the PEO coated samples were remarkably improved if compared with the uncoated samples. The addition of sodium molybdate, in determinate conditions, had a positive effect on the characteristics of the coatings in terms of corrosion resistance.

  20. Effects of CH3OH Addition on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    He, Yongyi; Chen, Li; Yan, Zongcheng; Zhang, Yalei

    2015-09-01

    Plasma electrolytic oxidation (PEO) films on AZ31 magnesium alloys were prepared in alkaline silicate electrolytes (base electrolyte) with the addition of different volume concentrations of CH3OH, which was used to adjust the thickness of the vapor sheath. The compositions, morphologies, and thicknesses of ceramic layers formed with different CH3OH concentrations were determined via X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). Corrosion behavior of the oxide films was evaluated in 3.5 wt.% NaCl solution using potentiodynamic polarization tests. PEO coatings mainly comprised Mg, MgO, and Mg2SiO4. The addition of CH3OH in base electrolytes affected the thickness, pores diameter, and Mg2SiO4 content in the films. The films formed in the electrolyte containing 12% CH3OH exhibited the highest thickness. The coatings formed in the electrolyte containing different concentrations of CH3OH exhibited similar corrosion resistance. The energy consumption of PEO markedly decreased upon the addition of CH3OH to the electrolytes. The result is helpful for energy saving in the PEO process. supported by National Natural Science Foundation of China (No. 21376088), the Project of Production, Education and Research, Guangdong Province and Ministry of Education (Nos. 2012B09100063, 2012A090300015), and Guangzhou Science and Technology Plan Projects of China (No. 2014Y2-00042)

  1. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particle. In situ GC-MS studies of pulsed microreactions over magnesium oxide. (Reannouncement with new availability information). Progress report, 31 December 1991-30 June 1992

    SciTech Connect

    Li, Y.X.; Koper, O.; Atteya, M.; Klabunde, K.J.

    1992-12-31

    Using an in situ reactor GC-MS system, the thermal decomposition of organophosphorus compound (as models of nerve agents) has been compared with their destructive adsorption on high surface area magnesium oxide. Dramatically lower temperatures are required when MgO is present. Volatile products evolved were formic acid, water, alcohols, and alkenes. At higher temperatures CO, CH4, and water predominated. Phosphorus residues remained completed immobilized. Addition of water enhanced the facility of MgO to destroy these compounds, and in fact, water pulses were found to partially regenerate a spent MgO bed. Using 18O labeling some aspects of the reaction mechanisms were clarified and in particular showed that oxygen scrambling occurred. Surface OH and MgO groups transferred oxygen in the formation of formic acid, and surface mobility and reactivity of adsorbed groups was very high. The substantial capacity of high surface area MgO for destruction and immobilization of such toxic substance makes it attractive for air purification schemes as well as solid reagents for destruction and immobilization of bulk quantities of hazardous phosphorus compounds or organohalides. Organophosphorus, ultrafine powder, destructive adsorption, magnesium oxide, immobilization, nanoscale powder.

  2. Intestinal inflammation caused by magnesium deficiency alters basal and oxidative stress-induced intestinal function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnesium-deficiency (MgD)induces a systemic pro-inflammatory state. The aim of this study was to determine the effect of MgD on the functional and molecular response to mesenteric ischemia reperfusion. Rats were assigned to 4 groups and placed on magnesium sufficient or deficient diet for 1 or 3 we...

  3. Indium Tin Oxide-Magnesium Fluoride Co-Deposited Films for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Dever, Joycer A.; Rutledge, Sharon K.; Hambourger, Paul D.; Bruckner, Eric; Ferrante, Rhea; Pal, Anna Marie; Mayer, Karen; Pietromica, Anthony J.

    1998-01-01

    Highly transparent coatings with a maximum sheet resistivity between 10(exp 8) and 10(exp 9) ohms/square are desired to prevent charging of solar arrays for low Earth polar orbit and geosynchronous orbit missions. Indium tin oxide (ITO) and magnesium fluoride (MgF2) were ion beam sputter co-deposited onto fused silica substrates and were evaluated for transmittance, sheet resistivity and the effects of simulated space environments including atomic oxygen (AO) and vacuum ultraviolet (VUV) radiation. Optical properties and sheet resistivity as a function of MgF2 content in the films will be presented. Films containing 8.4 wt.% MgF2 were found to be highly transparent and provided sheet resistivity in the required range. These films maintained a high transmittance upon exposure to AO and to VUV radiation, although exposure to AO in the presence of charged species and intense electromagnetic radiation caused significant degradation in film transmittance. Sheet resistivity of the as-fabricated films increased with time in ambient conditions. Vacuum beat treatment following film deposition caused a reduction in sheet resistivity. However, following vacuum heat treatment, sheet resistivity values remained stable during storage in ambient conditions.

  4. Mechanism by Which Magnesium Oxide Suppresses Tablet Hardness Reduction during Storage.

    PubMed

    Sakamoto, Takatoshi; Kachi, Shigeto; Nakamura, Shohei; Miki, Shinsuke; Kitajima, Hideaki; Yuasa, Hiroshi

    2016-01-01

    This study investigated how the inclusion of magnesium oxide (MgO) maintained tablet hardness during storage in an unpackaged state. Tablets were prepared with a range of MgO levels and stored at 40°C with 75% relative humidity for up to 14 d. The hardness of tablets prepared without MgO decreased over time. The amount of added MgO was positively associated with tablet hardness and mass from an early stage during storage. Investigation of the water sorption properties of the tablet components showed that carmellose water sorption correlated positively with the relative humidity, while MgO absorbed and retained moisture, even when the relative humidity was reduced. In tablets prepared using only MgO, a petal- or plate-like material was observed during storage. Fourier transform infrared spectrophotometry showed that this material was hydromagnesite, produced when MgO reacts with water and CO2. The estimated level of hydromagnesite at each time-point showed a significant negative correlation with tablet porosity. These results suggested that MgO suppressed storage-associated softening by absorbing moisture from the environment. The conversion of MgO to hydromagnesite results in solid bridge formation between the powder particles comprising the tablets, suppressing the storage-related increase in volume and increasing tablet hardness. PMID:27581629

  5. Effect of Food Thickener on Dissolution and Laxative Activity of Magnesium Oxide Tablets in Mice.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Kato, Kazushige; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao

    2016-01-01

    The present study examined the dissolution of magnesium oxide (MgO) from MgO tablets placed in a food thickening agent (food thickener) and its effects on laxative activity. We prepared mixtures of MgO tablets suspended in an aqueous suspension and food thickeners in order to evaluate the dissolution of MgO. The results of the dissolution tests revealed that agar-based food thickeners did not affect the MgO dissolution. In contrast, some xanthan gum-based food-thickener products show dissolution rates with certain mixtures containing disintegrated MgO tablets suspended in a food thickener that decrease over time. However, other xanthan gum-based food-thickener products show dissolution rates that decrease immediately after mixing, regardless of the time they were allowed to stand. In order to investigate the laxative activity of MgO, we orally administered a mixture of MgO suspension and food thickener to mice and observed their bowel movements. The animal experiments showed that when agar-based food thickeners were used, the laxative activity of MgO was not affected, but it decreased when xanthan gum-based food thickeners were used. PMID:27040638

  6. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    PubMed Central

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, AbdulAziz A.; Fouad, H.; Ansari, Z.A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-01-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera. PMID:26611737

  7. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  8. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  9. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    SciTech Connect

    Diaz, A.F.; Modestino, A.J.; Howard, J.B.

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  10. Collagen Self-Assembly on Orthopedic Magnesium Biomaterials Surface and Subsequent Bone Cell Attachment

    PubMed Central

    Zhao, Nan; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials. PMID:25303459

  11. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    NASA Astrophysics Data System (ADS)

    Feliu, S.; Llorente, I.

    2015-08-01

    This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  12. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces.

    PubMed

    Meininger, M; Wolf-Brandstetter, C; Zerweck, J; Wenninger, F; Gbureck, U; Groll, J; Moseke, C

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr(2+) ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr(2+) into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr(2+) ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant-bone interface. PMID:27287100

  13. Preformed magnesium hydroxide precipitate for second-step concentration of enteroviruses from drinking and surface waters.

    PubMed

    Vilagines, P; Sarrette, B; Vilagines, R

    1982-07-01

    A method is described for the second-step concentration of viruses from large volumes of drinking and surface waters. Seeded viruses present in the first eluate, performed with 50 mM glycine buffer, pH 11.5, were adsorbed on a preformed magnesium hydroxide precipitate. After low-speed centrifugation they were desorbed and adjusted to pH 7 with McIlvaine citrate-phosphate buffer. In these experimental conditions 90% of the viruses present in the 300-mL first eluate were reconcentrated in a final volume of 40 mL. The recovery efficiency was independent of either virus concentration or water quality. PMID:6293693

  14. The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage

    SciTech Connect

    Qu, Jian; Ren, Xian; Hou, Rui-ying; Dai, Xing-ping; Zhao, Ying-chun; Xu, Xiao-jing; Zhang, Wei; Zhou, Gan; Zhou, Hong-hao; Liu, Zhao-qian

    2011-07-22

    Highlights: {yields} LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. {yields} LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. {yields} LAB plays an important role against glucose-induced intracellular oxidative damage. {yields} The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway. -- Abstract: Objectives: To investigate the effects of magnesium lithospermate B (LAB) on intracellular reactive oxygen species (ROS) production induced by high dose of glucose or H{sub 2}O{sub 2}, we explored the influences of LAB on the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor-2 (Nrf2) in HEK293T cells after treatment with high dose of glucose. Materials and methods: The total nuclear proteins in HEK293T cells were extracted with Cytoplasmic Protein Extraction Kit. The ROS level was determined by flow cytometry. The mRNA and protein expression of HO-1 and Nrf2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results: LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. The amount of Nrf2 translocation was enhanced after cells were pretreated with 50 {mu}mol/L or 100 {mu}mol/L LAB. Silencing of Nrf2 gene eliminated the enhanced expression of HO-1 protein induced by high dose of glucose plus LAB. Conclusions: LAB plays an important role against glucose-induced intracellular oxidative damage. The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway.

  15. Surface composite nanostructures of AZ91 magnesium alloy induced by high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Li, M. C.; Hao, S. Z.; Wen, H.; Huang, R. F.

    2014-06-01

    High current pulsed electron beam (HCPEB) treatment was conducted on an AZ91 cast magnesium alloy with accelerating voltage 27 kV, energy density 3 J/cm2 and pulse duration 2.5 μs. The surface microstructure was characterized by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), and transmission electron microscope (TEM). The surface corrosion property was tested with electrochemical method in 3.5 wt.% NaCl solution. It is found that after 1 pulse of HCPEB treatment, the initial eutectic α phase and Mg17Al12 particles started to dissolve in the surface modified layer of depth ˜15 μm. When using 15 HCPEB pulses, the Al content in surface layer increased noticeably, and the phase structure was modified as composite nanostructures consisted of nano-grained Mg3.1Al0.9 domains surrounded by network of Mg17Al12 phase. The HCPEB treated samples showed an improved corrosion resistance with cathodic current density decreased by two orders of magnitude as compared to the initial AZ91 alloy.

  16. Surface integrity of biodegradable Magnesium-Calcium orthopedic implant by burnishing.

    PubMed

    Salahshoor, M; Guo, Y B

    2011-11-01

    Magnesium-Calcium (MgCa) alloy as an emerging biodegradable implant material has received considerable attention in orthopedic fixation applications. The biodegradable MgCa alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable MgCa implant is the fast corrosion in the human body environment. The ability to adjust the degradation rate of MgCa alloys is critical in the successful development of biodegradable orthopedic materials. Burnishing as a low plastic deformation process is a promising technique to tune surface integrity of MgCa implant surface for biodegradation control. However, the poor ductility of MgCa alloys imposes a great challenge for burnishing. This study focuses on the basic understanding of surface mechanical behavior of burnished biodegradable MgCa0.8 (wt%) alloy. The effects of burnishing parameters, i.e., pressure, feed, speed, number of path, and burnishing pattern on surface integrity factors such as surface topography, roughness, microhardness, microstructure, and residual stresses are investigated. The burnished surfaces are shinier and smoother than the as-machined ones. The MgCa alloy can be safely burnished at suitable burnishing conditions since no cracks are produced at the surface and in the subsurface. The microstructure including grain size does not show a noticeable change after burnishing. The machined surfaces are harder than the burnished ones down to the deep subsurface (∼200 μm) as opposed to the shallow hardened depth (∼50 μm) in cutting. Residual stresses are highly compressive especially at low burnishing pressure. PMID:22098888

  17. Magnesium Gluconate

    MedlinePlus

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  18. Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane (SOM) Electrolysis and Recycling of Magnesium

    SciTech Connect

    Powell, Adam; Pati, Soobhankar

    2012-03-11

    Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat and mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.

  19. Nanoscale analysis of surface oxides on ZnMgAl hot-dip-coated steel sheets.

    PubMed

    Arndt, M; Duchoslav, J; Itani, H; Hesser, G; Riener, C K; Angeli, G; Preis, K; Stifter, D; Hingerl, K

    2012-05-01

    In this work, the first few nanometres of the surface of ZnMgAl hot-dip-galvanised steel sheets were analysed by scanning Auger electron spectroscopy, angle-resolved X-ray photoelectron spectroscopy and atomic force microscopy. Although the ZnMgAl coating itself is exhibiting a complex micro-structure composed of several different phases, it is shown that the topmost surface is covered by a smooth, homogeneous oxide layer consisting of a mixture of magnesium oxide and aluminium oxide, exhibiting a higher amount of magnesium than aluminium and a total film thickness of 4.5 to 5 nm. Especially by the combined analytical approach of surface-sensitive methods, it is directly demonstrated for the first time that within surface imprints--created by industrial skin rolling of the steel sheet which ensures a smooth surface appearance as well as reduced yield-point phenomenon--the original, smooth oxide layer is partly removed and that a layer of native oxides, exactly corresponding to the chemical structure of the underlying metal phases, is formed. PMID:22086398

  20. Reagent use efficiency with removal of nitrogen from pig slurry via struvite: A study on magnesium oxide and related by-products.

    PubMed

    Romero-Güiza, M S; Tait, S; Astals, S; Del Valle-Zermeño, R; Martínez, M; Mata-Alvarez, J; Chimenos, J M

    2015-11-01

    Controlled struvite formation has been attracting increasing attention as a near mature technology to recover nutrients from wastewater. However, struvite feasibility is generally limited by the high cost of chemical reagents. With the aim to understand and control reagent use efficiency, experiments and equilibrium model simulations examined inorganic nitrogen (TAN) removal from pig manure via struvite with added magnesium and phosphate reagents. Four industrial magnesium oxide (MgO), a commercial product and three by-products from magnesite calcination, were tested with phosphate added as a highly soluble potassium salt. TAN removal extents with the MgOs ranged from 47 to 72%, with the highest grade MgO providing the greatest extent of TAN removal. However, model analysis showed that all the MgO reagents were poorly soluble (only about 40% of added magnesium actually dissolved). The model results suggested that this poor dissolution was due to kinetic limitations, not solubility constraints. A further set of additional reagents (termed stabilization agents) were prepared by pre-treating the MgO reagents with phosphoric acid, and were tested separately as a source of both magnesium and phosphate. Results showed that acid pre-treatment of moderate to highly reactive MgOs (soft to medium-burnt) primarily formed bobierrite as the stabilizing agent, whereas the pre-treatment of very low reactivity MgOs (dead-burnt) mostly formed newberyite. The newberyite stabilizing agents achieved very high TAN removal extents of about 80%, which is significant, considering that these were formed from dead-burnt/low-grade MgOs. However, the bobierrite stabilizing agents achieved a substantially lower TAN removal extent than their medium-to-high reactivity precursor MgOs. Again, model analysis showed that the bobierrite stabilizing agents were poorly soluble, due to kinetic limitations, not solubility constraints. In contrast, the model suggested that the newberyite stabilizing

  1. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS

    NASA Astrophysics Data System (ADS)

    Verdier, S.; van der Laak, N.; Delalande, S.; Metson, J.; Dalard, F.

    2004-08-01

    The behaviour of the 6% Al magnesium alloy AM60 in aqueous acid fluoride solutions was studied in situ by electrochemical techniques and the surface chemistry of the resulting film was examined by monochromatized XPS. The evolution of the corrosion potential and cyclic voltammograms showed that the aggressiveness of the solutions is mainly driven by their fluoride concentration, the pH having almost no detectable influence. The more concentrated and acidic fluoride solutions led to a higher degree of fluoride coverage of the surface. The surface film is composed of magnesium hydroxide and hydroxyfluoride Mg(OH) 2- xF x which approaches MgF 2 with increasing fluoride concentration in the film. The parameters governing the film evolution and their relation to surface reactions are discussed.

  2. Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides

    NASA Astrophysics Data System (ADS)

    Gattinoni, Chiara; Michaelides, Angelos

    2015-11-01

    The oxidation and corrosion of metals are fundamental problems in materials science and technology that have been studied using a large variety of experimental and computational techniques. Here we review some of the recent studies that have led to significant advances in our atomic-level understanding of copper oxide, one of the most studied and best understood metal oxides. We show that a good atomistic understanding of the physical characteristics of cuprous (Cu2O) and cupric (CuO) oxide and of some key processes of their formation has been obtained. Indeed, the growth of the oxide has been shown to be epitaxial with the surface and to proceed, in most cases, through the formation of oxide nano-islands which, with continuous oxygen exposure, grow and eventually coalesce. We also show how electronic structure calculations have become increasingly useful in helping to characterise the structures and energetics of various Cu oxide surfaces. However a number of challenges remain. For example, it is not clear under which conditions the oxidation of copper in air at room temperature (known as native oxidation) leads to the formation of a cuprous oxide film only, or also of a cupric overlayer. Moreover, the atomistic details of the nucleation of the oxide islands are still unknown. We close our review with a brief perspective on future work and discuss how recent advances in experimental techniques, bringing greater temporal and spatial resolution, along with improvements in the accuracy, realism and timescales achievable with computational approaches make it possible for these questions to be answered in the near future.

  3. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  4. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    PubMed Central

    König, Thomas; Simon, Georg H; Heinke, Lars; Lichtenstein, Leonid

    2011-01-01

    Summary Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms. PMID:21977410

  5. Magnesium oxide-impregnated tuff soil-derived ceramic: a novel cadmium(II) adsorbing media

    NASA Astrophysics Data System (ADS)

    Salim, Md; Bhakta, Jatindra N.; Maneesh, Namburath; Munekage, Yukihiro; Motomura, Kevin

    2015-07-01

    The contamination of cadmium (Cd) in the aquatic environment is one of the serious environmental and human health's risks. The present study attempted to develop the potential magnesium oxide (MgO)-impregnated tuff soil-derived ceramic (MITDC)-based novel adsorbent media for adsorbing higher rate of cadmium [Cd(II)] from water phase. A potential MITDC adsorbent media was developed using volcanic raw tuff soil and its Cd(II) adsorption capacity from water phase was evaluated comparing with the raw tuff soil. A series of studies were carried out in an agitated batch method at 20 ± 2 °C to characterize the adsorption capacity of MITDC under different conditions of factors, such as contact time (0-360 min), initial pH (3-11) of solution, dose of MITDC (2, 5, 7.5 and 10 g/L), and initial concentration of Cd(II) (5, 10, 20, 30, and 40 mg/L), influencing the adsorption mechanism. MITDC exhibited the equilibrium state of maximum Cd(II) adsorption at the contact time 120 min and pH 4.7 (removed 98.2 % Cd) when initial Cd(II) concentration was 10 mg/L in the present study. The dose of 7.5 g MITDC/L showed maximum removal of Cd(II) from water. Experimental data were described by the Freundlich and the Langmuir isotherms and equilibrium data fitted well with the Langmuir model (R 2 = 0.996). The Cd(II) adsorption capacity of MITDC was 31.25 mg/g. The high Cd(II) adsorption capacity indicated that novel MITDC could be used as a potential ceramic adsorbent media to remove high rate of Cd(II) from aqueous phase.

  6. Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Ma, Qingxin

    2008-04-01

    The experimental determination of rate constants for atmospheric reactions and how these rate constants vary with temperature remain a crucially important part of atmosphere science. In this study, the temperature dependence of the heterogeneous reaction of carbonyl sulfide (COS) on magnesium oxide (MgO) has been investigated using a Knudsen cell reactor and a temperature-programmed reaction apparatus. We found that the adsorption and the heterogeneous reaction are sensitive to temperature. The initial uptake coefficients (gammat(Ini)) of COS on MgO decrease from 1.07 +/- 0.71 x 10-6 to 4.84 +/- 0.60 x 10-7 with the increasing of temperature from 228 to 300 K, and the steady state uptake coefficients (gammat(SS)) increase from 5.31 +/- 0.06 x 10-8 to 1.68 +/- 0.41 x 10-7 with the increasing of temperature from 240 to 300 K. The desorption rate constants (kdes) were also found to increase slightly with the enhancement of temperature. The empirical formula between the uptake coefficients, desorption rate constants and temperature described in the form of Arrhenius expression were obtained. The activation energies for the heterogeneous reaction and desorption of COS on MgO were measured to be 11.02 +/- 0.34 kJ.mol-1 and 6.30 +/- 0.81 kJ.mol-1, respectively. The results demonstrate that the initial uptake of COS on MgO is mainly contributed by an adsorption process and the steady state uptake is due to a catalytic reaction. The environmental implication was also discussed. PMID:18302353

  7. Mechanical Strength and Surface Roughness of Magnesium-Based Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Fernandes, Daniel Jogaib; Elias, Carlos Nelson; de Souza Resende, Celso Renato; Bolfarini, Claudemiro

    2016-06-01

    This work evaluated the mechanical strength and surface roughness of MgZn30Ca5 ribbon manufactured via a melt spinning technique for applications in the biomedical field. Annealing was performed at 280°C. The inner side (in contact with the wheel) and the outer side (not in contact with the wheel) of the ribbons were mechanically evaluated using nanoindentation, and its surfaces were analyzed by an optical profilometer. Differential scanning calorimeter (DSC) and X-ray diffraction (XRD) analyses were also performed to identify the structure and devitrification of the magnesium metallic glass (MgMG). The nanohardness and elastic modulus increased after annealing (p < 0.0001). No differences were seen in the strength between the two sides of the ribbons (p > 0.05). Although both sides of the ribbons showed different surface profiles (p < 0.0001), no statistical difference was detected in roughness parameters on either ribbon side before (p = 0.3094) and after (p = 0.8742) annealing. DSC curves showed disturbances in enthalpy attributed to a relaxation in the MgMG structure and free volume annihilation. The DRX diffractogram showed sharp peaks after annealing, with MgZn and Ca2Mg5Zn13 phases being identified. Although the use of MgMG in biomedical applications is promising, the ribbons displayed limited ductility, toughness, and a relevant embrittlement after the annealing procedure. There were significant changes in the surface profile of both sides of the ribbons. Nevertheless, neither annealing nor the ribbon side had influenced surface roughness parameters.

  8. Oxide driven strength evolution of silicon surfaces

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Milosevic, Erik; Boyce, Brad L.

    2015-11-21

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

  9. Oxide driven strength evolution of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Grutzik, Scott J.; Milosevic, Erik; Boyce, Brad L.; Zehnder, Alan T.

    2015-11-01

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

  10. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications.

    PubMed

    Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna

    2016-11-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. PMID:27524097

  11. Hydrothermal synthesis and characterization under dynamic conditions of cobalt oxide nanoparticles supported over magnesium oxide nano-plates.

    PubMed

    Alayoglu, Selim; Rosenberg, Daniel J; Ahmed, Musahid

    2016-06-14

    A nano-catalyst comprised of oxidized Co NPs supported on MgO nano-plates was synthesized via a hydrothermal co-precipitation strategy and calcination in O2 and subsequently in H2 at 250 °C. Spectro-microscopy characterization was performed by scanning transmission electron microscopy, electron energy loss spectroscopy and scanning X-ray transmission microscopy. Surface measurements under H2 and H2 + CO atmospheres were obtained by ambient pressure X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy in the 225-480 °C range. These measurements at the atomic and microscopic levels demonstrated that the oxidized Co nanoparticles uniformly decorated the MgO nano-plates. The surfaces are enriched with Co, and with a mixture of Co(OH)2 and CoO under H2 and H2 + CO atmospheres. Under a H2 atmosphere, the outermost surfaces were composed of (lattice) O(2-), CO3(2-) and OH(-). No inorganic carbonates were observed in the bulk. Chemisorbed CO, likely on the oxidized Co surfaces, was observed at the expense of O(2-) under 300 mTorr H2 + CO (2 : 1) at 225 °C. Gas phase CO2 was detected under 32 Torr H2 + CO (2 : 1) at 225 °C upon prolonged reaction time, and was attributed to a surface chemical reaction between O(2-) and chemisorbed CO. Furthermore, sp(3) like carbon species were detected on the otherwise carbon free surface in H2 + CO, which remained on the surface under the subsequent reaction conditions. The formation of sp(3) like hydrocarbons was ascribed to a surface catalytic reaction between the chemisorbed CO and OH(-) as the apparent hydrogen source. PMID:26979489

  12. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    SciTech Connect

    Lips, Irene M.; Gils, Carla H. van; Kotte, Alexis N.T.J.; Leerdam, Monique E. van; Franken, Stefan P.G.; Heide, Uulke A. van der; Vulpen, Marco van

    2012-06-01

    Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondary outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.

  13. Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions.

    PubMed

    Suryanto, Bryan H R; Zhao, Chuan

    2016-05-11

    Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols. PMID:27097802

  14. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lin, Xiao; Yang, Xiaoming; Tan, Lili; Li, Mei; Wang, Xin; Zhang, Yu; Yang, Ke; Hu, Zhuangqi; Qiu, Jianhong

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  15. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    NASA Astrophysics Data System (ADS)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  16. Degradation and biological properties of Ca-P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation

    PubMed Central

    Wang, Weidan; Wan, Peng; Liu, Chen; Tan, Lili; Li, Weirong; Li, Lugee; Yang, Ke

    2015-01-01

    Poor corrosion resistance is one of the main disadvantages for biodegradable magnesium-based metals, especially applied for bone fixation, where there is a high demand of bio-mechanical strength and stability. Surface coating has been proved as an effective method to control the in vivo degradation. In this study a Ca-P self-sealing micro-arc oxidation (MAO) coating was studied to verify its efficacy and biological properties by in vitro and in vivo tests. It was found that the MAO coating could effectively retard the degradation according to immersion and electrochemical tests as well as 3D reconstruction by X-ray tomography after implantation. The MAO coating exhibited no toxicity and could stimulate the new bone formation. Therefore, the Ca-P self-sealing MAO coating could be a potential candidate for application of biodegradable Mg-based implant in bone fixations. PMID:26816635

  17. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  18. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    NASA Astrophysics Data System (ADS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  19. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    electron microscope. The corrosion rate of the nonequilibrium sputtered alloys, as determined by polarization resistance, is significantly reduced compared to the most corrosion resistant commercial magnesium alloys. The open circuit potentials of the sputter deposited alloys are significantly more noble compared to commercial, equilibrium phase magnesium alloys. Galvanic corrosion susceptibility has also been considerably reduced. Nonequilibrium magnesium-yttrium-titanium alloys have been shown to achieve passivity autonomously by alteration of the composition chemistry of the surface oxide/hydroxide layer. Self-healing properties are also evident, as corrosion propagation can be arrested after initial pitting of the material. A clear relationship exists between the corrosion resistance of sputter vapor deposited magnesium alloys and the amount of ion bombardment incurred by the alloy during deposition. Argon pressure, the distance between the source and the substrate, and alloy morphology play important roles in determining the ability of the alloy to develop a passive film. Thermal effects, both during and after alloy deposition, alter the stress state of the alloys, precipitation of second phases, and the mechanical stability of the passive film. An optimal thermal treatment has been developed in order to maximize the corrosion resistance of the magnesium-yttrium-titanium alloys. The significance of the results includes the acquisition of electrochemical data for these novel materials, as well as expanding the utilization of magnesium alloys by the improvement in their corrosion resistance. The magnesium alloys developed in this work are more corrosion resistant than any commercial magnesium alloy. Structural components comprised of these alloys would therefore exhibit unprecedented corrosion performance. Coatings of these alloys on magnesium components would provide a corrosion resistant yet galvanically-compatible coating. The broad impact of these contributions is

  20. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    electron microscope. The corrosion rate of the nonequilibrium sputtered alloys, as determined by polarization resistance, is significantly reduced compared to the most corrosion resistant commercial magnesium alloys. The open circuit potentials of the sputter deposited alloys are significantly more noble compared to commercial, equilibrium phase magnesium alloys. Galvanic corrosion susceptibility has also been considerably reduced. Nonequilibrium magnesium-yttrium-titanium alloys have been shown to achieve passivity autonomously by alteration of the composition chemistry of the surface oxide/hydroxide layer. Self-healing properties are also evident, as corrosion propagation can be arrested after initial pitting of the material. A clear relationship exists between the corrosion resistance of sputter vapor deposited magnesium alloys and the amount of ion bombardment incurred by the alloy during deposition. Argon pressure, the distance between the source and the substrate, and alloy morphology play important roles in determining the ability of the alloy to develop a passive film. Thermal effects, both during and after alloy deposition, alter the stress state of the alloys, precipitation of second phases, and the mechanical stability of the passive film. An optimal thermal treatment has been developed in order to maximize the corrosion resistance of the magnesium-yttrium-titanium alloys. The significance of the results includes the acquisition of electrochemical data for these novel materials, as well as expanding the utilization of magnesium alloys by the improvement in their corrosion resistance. The magnesium alloys developed in this work are more corrosion resistant than any commercial magnesium alloy. Structural components comprised of these alloys would therefore exhibit unprecedented corrosion performance. Coatings of these alloys on magnesium components would provide a corrosion resistant yet galvanically-compatible coating. The broad impact of these contributions is

  1. Surface modification to prevent oxide scale spallation

    DOEpatents

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  2. Electron stimulated oxidation of silicon surfaces

    SciTech Connect

    Munoz, M.C.; Sacedon, J.L.

    1981-04-15

    Experimental evidence of electron stimulated oxidation (ESO) has been given for Si(111) 7 x 7 surface. In a first stage, the oxide thickness as a function of time shows a linear relationship; in a second stage, the growth rate quickly decreases and a pressure dependent saturation oxide thickness is reached. During the oxidation process an electrical potential does exist across the oxide, as is required in the Cabrera--Mott theory. The linear kinetics and the electrical potential are shown to be explicable in terms of a modified coupled-current approach based on the Cabrera--Mott theory, provided a semiphenomenological pressure dependent parameter is included. This represents a contribution of the surface reaction to the transport equation. The saturation has been explained as due to the decrease of the negative surface charge (donor levels) which produces a decrease of the electron current.

  3. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  4. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    SciTech Connect

    Li, P.; Lei, M.K.; Zhu, X.P.

    2011-06-15

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: {yields} A modified layer about 30 {mu}m thick is obtained by HIPIB irradiation. {yields} Selective ablation of element/impurity phase having lower melting point is observed. {yields} More importantly, microstructural refinement occurred on the irradiated surface. {yields} The modified layer exhibited a significantly improved corrosion resistance. {yields} Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  5. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    PubMed

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation. PMID:26682385

  6. Surface Wrinkling on Polydimethylsiloxane Microspheres via Wet Surface Chemical Oxidation

    PubMed Central

    Yin, Jian; Han, Xue; Cao, Yanping; Lu, Conghua

    2014-01-01

    Here we introduce a simple low-cost yet robust method to realize spontaneously wrinkled morphologies on spherical surfaces. It is based on surface chemical oxidation of aqueous-phase-synthesized polydimethylsiloxane (PDMS) microspheres in the mixed H2SO4/HNO3/H2O solution. Consequently, curvature and overstress-sensitive wrinkles including dimples and labyrinth patterns are successfully induced on the resulting oxidized PDMS microspheres. A power-law dependence of the wrinkling wavelength on the microsphere radius exists. The effects of experimental parameters on these tunable spherical wrinkles have been systematically investigated, when the microspheres are pre-deposited on a substrate. These parameters include the radius and modulus of microspheres, the mixed acid solution composition, the oxidation duration, and the water washing post-treatment. Meanwhile, the complicated chemical oxidation process has also been well studied by in-situ optical observation via the microsphere system, which represents an intractable issue in a planar system. Furthermore, we realize surface wrinkled topographies on the whole microspheres at a large scale, when microspheres are directly dispersed in the mixed acid solution for surface oxidation. These results indicate that the introduced wet surface chemical oxidation has the great potential to apply to other complicated curved surfaces for large-scale generation of well-defined wrinkling patterns, which endow the solids with desired physical properties. PMID:25028198

  7. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  8. A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide

    NASA Astrophysics Data System (ADS)

    Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J.

    2001-06-01

    This paper describes the design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter. The calorimeter was made using a covered Styrofoam cup as the reaction chamber. A thermistor was used as a temperature-sensing element and was incorporated in a temperature-to-voltage converter circuit based on a bridge amplifier. The instrument was interfaced to a personal computer via an I/O board, and data acquisition software was used to monitor the output voltage of the bridge amplifier. The design and construction of this instrument offer many possible applications of operational amplifiers and related basic electronics theory in chemistry and in interfacing experiments to computers. One application, the determination of the enthalpy of formation of magnesium oxide by applying Hess's law of heat of summation, is demonstrated in this paper. Experimental results for the heat of formation for magnesium oxide were within 1% of the literature value. This experiment also demonstrates the utility and ease of automating temperature measurements for other applications.

  9. Surface nitriding and oxidation of nitinol

    NASA Astrophysics Data System (ADS)

    Bazochaharbakhsh, Edin

    Nitinol has been widely employed in biomedical devices due to its unique mechanical properties such as superelasticity, shape memory, and good biocompatibility. However, nickel ion release from the surface of the Nitinol is an issue. Surface nitriding and oxidation was performed on the Nitinol specimens to develop a nickel-free oxide layer on the surface. Nitinol specimens were nitrided in nitrogen + 4% hydrogen at 800--1000°C for 10--30 min and further nitrided in nitrogen + 5% ammonia at 500--675°C for 0--30 min. The thickness and chemical composition, specifically the nickel content of the surface layer, were determined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The effect of the nitriding time and temperature on the thickness and chemical composition of the nitride layer was evaluated. Nitriding temperature was found to be more effective than nitriding time on the thickness of TiN layer. Titanium nitride, the dominant phase on the surface of the nitrided specimens, was nickel free. The nitrided Nitinol specimens were then oxidized at 675°C and 700°C for 30 and 60 min, respectively. The chemical composition and elemental depth profile showed that oxidizing Nitinol specimens with a 0.4 microm thick nitride layer on the surface did not provide a nickel-free oxide layer on the surface of the Nitinol. However, oxidizing the Nitinol specimens with a surface nitride layer that was thicker than 6 microm resulted in a nickel-free oxide layer.

  10. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  11. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  12. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in...

  13. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... salt or by hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium...

  14. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O,...

  15. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    NASA Astrophysics Data System (ADS)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  16. Electrical and optical properties of gallium-doped magnesium zinc oxide system

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    The primary aim in this thesis is to investigate Ga-doped Mg1-x ZnxO, as well as undoped Mg1-xZnxO for the application of transparent conducting oxide. For this thesis work, the films have been grown on sapphire using pulsed laser deposition technique. The films were grown under various deposition conditions in order to understand the effect of processing on the film properties. The grown films have been characterized using various techniques, including XRD, TEM, XPS, 4-probe resistivity measurements, Hall measurements and absorption/transmission spectroscopy. Undoped Mg1-xZnxO films have been grown at several temperatures between room temperature and 750°C. Photoluminescence was correlated with Urbach energy values which were determined from absorption spectrum. The film grown at 350°C exhibited lowest band-tail parameter values and highest photoluminescence values than the other films. The optical and electrical properties of heavily Ga-doped MgxZn 1-xO thin films were investigated. The film transparency is greater than 90% in the visible spectrum range. The absorption can be extended to lower wavelength range with higher magnesium concentration, which can improve the transparency in the ultraviolet wavelength range; however, conductivity is decreased. The optimum Ga concentration was found to be 0.5 at.%. At this Ga concentration, the film resistivity increased from 1.9x10 -3 to 3.62x10-2 O·cm as the magnesium concentration increased from 5 at.% to 15 at.%. The optical and electrical properties of Ga-doped MgxZn 1-xO thin films were investigated systematically. In these films, the Ga content was varied from 0.05 at.% to 7 at.% and the Mg content was varied from 5 at.% to 15 at.%. X-ray diffraction showed that the solid solubility limit of Ga in MgxZn1-xO is less than 3 at.%. The absorption spectra were fitted to examine Ga doping effects on bandgap and band tail characteristics. Distinctive trends in fitted bandgap and band tail characteristics were

  17. Influence of Microstructure of Friction Stir Welded Joints on Growth and Properties of Microarc Oxidation Coatings on AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Tingfang; Li, Yongliang; Xue, Wenbin; Yang, Chaolin; Qu, Yao; Hua, Ming

    2015-03-01

    Ceramic coatings on friction stir welded (FSW) joints of AZ31B magnesium alloy were fabricated by microarc oxidation (MAO) method in silicate electrolyte. Microstructure, phase constituents, microhardness and electrochemical corrosion behaviors of bare and coated magnesium alloys at different zones of FSW joints for different oxidation time were investigated. The influence of microstructure at different zones on the growth of MAO coatings was analyzed. The results show that the MAO coatings on FSW joints are uniform, and they have almost the same morphology, phase constituents, hardness and corrosion resistance at base metal, stir zone and heat-affected zone. The properties of MAO coatings are independent on the microstructures of AZ31B alloy. In addition, the microstructures of magnesium alloy near the coating/alloy interface at different zones of FSW joint was not changed by microarc discharge process.

  18. The influence of magnesium-pyridoxal-5'-phosphate-glutamate in comparison with probucol, alpha-tocopherol and trolox on copper-induced oxidation of human low density lipoprotein in vitro.

    PubMed

    Kögl, C; Schneider, W; Elstner, E F

    1994-06-15

    Low density lipoprotein (LDL) in the presence of magnesium-pyridoxal-5'-phosphate-glutamate (MPPG), pyridoxal-5'-phosphate (PP), alpha-tocopherol, probucol or trolox is more resistant against copper-induced oxidation as control-LDL in vitro. The efficiency of the drugs is: probucol > MPPG > trolox > alpha-tocopherol > PP. LDL oxidation is determined by its increasing negative surface charge, fragmentation of apolipoprotein B-100 and changes of the fatty acid content of LDL. The protection of the drugs depends on their concentration and incubation time. Different experiments point to the fact that copper-induced oxidation of LDL in vitro starts with the binding of copper at the apolipoprotein B-100, resulting in an increasing negative surface charge and fragmentation of the apolipoprotein B-100. Afterwards a decrease of LDL-bound linoleic acid (18:2) is measurable. PMID:8031313

  19. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  20. Surface chemistry and structure of beryllium oxide

    SciTech Connect

    Fuller, E.L. Jr.; Eager, M.H.; Smithwick, R.W. III; Smyrl, N.R.

    1982-02-01

    Detailed examination of nitrogen sorption isotherms related to the surface chemistry and structure of high-purity beryllium oxide and the products of alkali treatment aid in a better understanding of the topochemical problems encountered in the production of ceramic items. Details are corroborated by additional techniques: diffuse reflectance infrared Fourier transform (DRIFT); mercury intrusion porosimetry (MIP); and scanning electron microscopy (SEM). The results correlate well with studies on other oxides when the unique thermophysical properties of this material are considered.

  1. The surface chemistry of cerium oxide

    DOE PAGESBeta

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less

  2. The surface chemistry of cerium oxide

    SciTech Connect

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.

  3. Magnesium basics

    PubMed Central

    Ketteler, Markus

    2012-01-01

    As a cofactor in numerous enzymatic reactions, magnesium fulfils various intracellular physiological functions. Thus, imbalance in magnesium status—primarily hypomagnesaemia as it is seen more often than hypermagnesaemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Measuring total serum magnesium is a feasible and affordable way to monitor changes in magnesium status, although it does not necessarily reflect total body magnesium content. The following review focuses on the natural occurrence of magnesium and its physiological function. The absorption and excretion of magnesium as well as hypo- and hypermagnesaemia will be addressed. PMID:26069819

  4. Chemistry of Frozen Sodium-Magnesium-Sulfate-Chloride Brines: Implications for Surface Expression of Europa's Ocean Composition

    NASA Astrophysics Data System (ADS)

    Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Johnson, Paul V.

    2016-01-01

    The composition of Europa’s subsurface ocean is a critical determinant of its habitability. However, our current understanding of the ocean composition is limited to its expression on the surface. This work investigates experimentally the composition of mixed sodium-magnesium-sulfate-chloride solutions when frozen to 100 K, simulating conditions that likely occur as ocean fluids are emplaced onto Europa’s surface. Micro-Raman spectroscopy is used to characterize phase composition of the frozen brines at 100 K. Our results show that solutions containing Na+, Cl-, Mg2+, and {{{SO}}4}2- preferentially crystallize into Na2SO4 and MgCl2 hydrated minerals upon freezing, even at elevated [Mg2+]/[Na+] ratios. The detection of epsomite (MgSO4•7H2O) on Europa’s surface, if confirmed, may thus imply a relatively sodium-poor ocean composition or a radiolytic process that converts MgCl2 to MgSO4 as suggested by Brown & Hand. The formation of NaCl on the surface, while dependent upon a number of factors such as freezing rate, may indicate an ocean significantly more concentrated in sodium than in magnesium.

  5. Corrosion in Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Akavipat, Sanay

    Magnesium and a magnesium alloy (AZ91C) have been ion implanted over a range of ions energies (50 to 150 keV) and doses (1 x 10('16) to 2 x 10('17) ions/cm('2)) to modify the corrosion properties of the metals. The corrosion tests were done by anodic polarization in chloride -free and chloride-containing aqueous solutions of a borated -boric acid with a pH of 9.3. Anodic polarization measurements showed that some implantations could greatly reduce the corrosion current densities at all impressed voltages and also increased slightly the pitting potential, which indicated the onset of the chloride attack. These improvements in corrosion resistance were caused by boron implantations into both types of samples. However, iron implantations were found to improve only the magnesium alloy. To study the corrosion in more detail, Scanning Auger Microprobe Spectrometer (SAM), Scanning Electron Microscope (SEM) with an X-ray Energy Spectrometry (XES) attachment, and Transmission Electron Microscope (TEM) measurements were used to analyze samples before, after, and at various corrosion stages. In both the unimplanted pure magnesium and AZ91C samples, anodic polarization results revealed that there were three active corrosion stages (Stages A, C, and E) and two passivating stages (Stages B and D). Examination of Stages A and B in both types of samples showed that only a mild, generalized corrosion had occurred. In Stage C of the TD samples, a pitting breakdown in the initial oxide film was observed. In Stage C of the AZ91C samples, galvanic and intergranular attack around the Mg(,17)Al(,12) intermetallic islands and along the matrix grain boundaries was observed. Stage D of both samples showed the formation of a thick, passivating oxygen containing, probably Mg(OH)(,2) film. In Stage E, this film was broken down by pits, which formed due to the presence of the chloride ions in both types of samples. Stages A through D of the unimplanted samples were not seen in the boron or iron

  6. Influence of sodium borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Zhang, S. F.; Shen, Y. L.; Zhang, L. H.; Liu, T. Z.; Zhang, Y. Q.; Guo, S. B.

    2012-06-01

    The influence of sodium borate concentration on the formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on magnesium alloys was systematically studied in an alkaline solution with addition of 0-40 g/L sodium borate. It is shown that sodium borate can decrease the solution conductivity, take part in the coating formation and increase the coating thickness. With the increase of sodium borate concentration, the boron content in the coatings increases in the range of 10-20 g/L but decreases within the range of 20-40 g/L. Sodium borate cannot further improve the corrosion resistance attributed to the development of porous or rough anodic coatings.

  7. High-rate reel-to-reel continuous coating of biaxially textured magnesium oxide thin films for coated conductors

    SciTech Connect

    Chudzik, M. P.; Erck, R. A.; Balachandran, U.; Luo, Z. P.; Miller, D. J.; Kannewurf, C. R.

    2000-01-12

    Biaxially textured thin films of magnesium oxide (MgO) were deposited by electron beam evaporation at deposition rates of 0.6 {mu}m/min on moving Ni-based alloy tapes as oriented buffer layers for coated conductors. Moving substrates were inclined with respect to the atomic vapor and translated through collimated dual vapor sources. Growth anisotropy in the MgO and self-shadowing effects due to the inclined angle combine to create biaxial texture in the deposited thin films. MgO films grown to a thickness of 2.0 {mu}m with this inclined-substrate deposition technique have yielded in-plane textures of 10--12{degree} fill-width half-maximum (FWHM). Results of a parametric study on the in-plane texture in short-length static-mode samples are presented, along with preliminary results of long-length samples deposited under translating conditions.

  8. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Shinohara, Tadashi; Zhang, Bo-Ping

    2010-08-01

    The surface chemistry on AZ31 and AZ91 magnesium alloys was characterized by X-ray photoelectron spectroscopy (XPS) in the corrosion and the passivation zones. In the corrosion zone, the presence of Mg(OH) 2 and MgCO 3 species was found in the outer surface, whereas, in the inner layer, the co-existence of Mg(OH) 2, MgO and MgCO 3 species was observed for both alloys. The presence of Al 3+ in the surface electrolyte to form Al 2O 3/Al(OH) 3 and the formation of carbonate product provide a better passivation on the surfaces and retard the chloride-induced corrosion on the materials in the passivation zone.

  9. Critical review of electrical conductivity measurements and charge distribution analysis of magnesium oxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Freund, Minoru M.; Batllo, Francois

    1993-01-01

    The electrical conductivity sigma of MgO single crystals shows a sharp increase at 500-800 C, in particular of sigma surface, generally attributed to surface contamination. Charge Distribution Analysis (CDA), a new technique providing information on fundamental properties that was previously unavailable, allows for the determination of surface charges, their sign and associated internal electric field. Data on 99.99% purity, arc-fusion grown MgO crystals show that mobile charge carriers start to appear in the bulk of the MgO crystals between 200 and 400 C when sigma (measured by conventional techniques) is in t he 10(exp -14) to 10(exp -16) /omega/cm range. Above 500 C, as sigma increases to 10(exp -6) to 10(exp -7)/omega/cm, more charges appear giving rise to a strong positive surface charge supported by a strong internal field. This indicates that charges are generated in the bulk and diffuse to the surface by an internally controlled process. On the basis of their positive sign they are identified as holes (defect electrons). Because of the low cation content of these very pure MgO crystals, theses holes cannnot be associated with transition metal impurties. Instead, they are associated with the O(2-) sublattice, e.g. consist of O(-) states or positive holes. This conclusion is supported by magnetic susceptibility data showing the appearance of 1000 +/- 500 ppm paramagnetic species between 200-500 C. The magnetic data are consistent with strongly coupled, diamagnetic O(-) pairs below 200-500 C, chemically equivalent to peroxy anions, O2(2-), and probably associated with cation vacancies in the MgO matrix. The formation of O2(2-) in arc-fusion grown MgO crystals is very unexpected because of the highly reducing growth conditions. Their presence implies an internal redox reaction involving dissolved 'water' by which OH(-) pairs convert to O2(2-) plus H2 molecules. This redox conversion is supported by mass spectroscopic measurements of the H2 release from highly

  10. SURFACE REACTIONS OF OXIDES OF SULFUR

    EPA Science Inventory

    Surface reactions of several sulfur-containing molecules have been studied in order to understand the mechanism by which sulfate ions are formed on atmospheric aerosols. At 25C the heterogeneous oxidation of SO2 by NO2 to sulfuric acid and sulfate ions occurred on hydrated silica...

  11. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    SciTech Connect

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  12. Cryogenic machining and burnishing of AZ31B magnesium alloy for enhanced surface integrity and functional performance

    NASA Astrophysics Data System (ADS)

    Pu, Zhengwen

    Surface integrity of manufactured components has a critical impact on their functional performance. Magnesium alloys are lightweight materials used in the transportation industry and are also emerging as a potential material for biodegradable medical implants. However, the unsatisfactory corrosion performance of Mg alloys limits their application to a great extent. Surface integrity factors, such as grain size, crystallographic orientation and residual stress, have been proved to remarkably influence the functional performance of magnesium alloys, including corrosion resistance, wear resistance and fatigue life. In this dissertation, the influence of machining conditions, including dry and cryogenic cooling (liquid nitrogen was sprayed to the machined surface during machining), cutting edge radius, cutting speed and feed rate, on the surface integrity of AZ31B Mg alloy was investigated. Cryogenic machining led to the formation of a "featureless layer" on the machined surface where significant grain refinement from 12 microm to 31 nm occurred due to dynamic recrystallization (DRX), as well as increased intensity of basal plane on the surface and more compressive residual stresses. Dry and cryogenic burnishing experiments of the same material were conducted using a fixed roller setup. The thickness of the processed-influenced layer, where remarkable microstructural changes occurred, was dramatically increased from the maximum value of 20 microm during machining to 3.4 mm during burnishing. The burnishing process also produced a stronger basal texture on the surface than the machining process. Preliminary corrosion tests were conducted to evaluate the corrosion performance of selected machined and burnished AZ31B Mg samples in 5% NaCl solution and simulated body fluid (SBF ). Cryogenic cooling and large edge radius tools were found to significantly improve the corrosion performance of machined samples in both solutions. The largest improvement in the material

  13. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.

    PubMed

    Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Kim, Dong-Won

    2016-02-17

    Trapping lithium polysulfides formed in the sulfur positive electrode of lithium-sulfur batteries is one of the promising approaches to overcome the issues related to polysulfide dissolution. In this work, we demonstrate that intrinsically hydrophilic magnesium oxide (MgO) nanoparticles having surface hydroxyl groups can be used as effective additives to trap lithium polysulfides in the positive electrode. MgO nanoparticles were uniformly distributed on the surface of the active sulfur, and the addition of MgO into the sulfur electrode resulted in an increase in capacity retention of the lithium-sulfur cell compared to a cell with pristine sulfur electrode. The improvement in cycling stability was attributed to the strong chemical interactions between MgO and lithium polysulfide species, which suppressed the shuttling effect of lithium polysulfides and enhanced the utilization of the sulfur active material. To the best of our knowledge, this report is the first demonstration of MgO as an effective functional additive to trap lithium polysulfides in lithium-sulfur cells. PMID:26808673

  14. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    NASA Astrophysics Data System (ADS)

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-04-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.

  15. Facilitated receptor-recognition and enhanced bioactivity of bone morphogenetic protein-2 on magnesium-substituted hydroxyapatite surface

    PubMed Central

    Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng

    2016-01-01

    Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233

  16. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  17. Surface effects in zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Combe, Nicolas; Chassaing, Pierre-Marie; Demangeot, François

    2009-01-01

    Structural properties of zinc oxide nanoparticles are theoretically studied focusing on the effects induced by the surfaces. In this aim, we compare two models: an atomistic and an elastic model. Atomistic model uses a semiempirical potential: the shell model. Effects of surface relaxation and surface stress are taken into account in this model while they were not in the elastic model. Studying nanoparticles with sizes varying from 1.5 to 4.5 nm, we show that surface relaxation occurs on a typical length of about 1 nm in the vicinity of surfaces within the atomistic model. This significant length is due to the existence of long-range interaction forces in zinc oxide which is an ionocovalent material. Because this typical length is comparable to nanoparticle size, elasticity fails to reproduce correctly structural properties of the nanoparticles. As an illustration of structural properties changes by decreasing nanoparticles sizes, we study the nanoparticles acoustic vibrations eigenfrequencies focusing on the mostly observable modes by vibration spectroscopy. Differences between elasticity and atomistic calculations are attributed to surface effects. If elasticity acceptably provides vibration frequencies of most studied nanoparticles, it fails to reproduce them for nanoparticles with a size below an approximate value of 2.5 nm. We expect such effects to be experimentally observable.

  18. Effect of heat treatments on oxidation kinetics in AZ91 and AM60 magnesium alloys

    SciTech Connect

    Barrena, M.I. Gomez de Salazar, J.M.; Matesanz, L.; Soria, A.

    2011-10-15

    The effect of heat treatments on a non protective atmosphere (air) on the morphology and composition of the oxide in AM60 and AZ91 alloys has been evaluated. With the aim of evaluating the loss of alloying elements during heat treatment, a study of these alloys has been carried out using thermogravimetric analysis (TGA). In order to determine the nature of the oxides the reaction products generated were evaluated by scanning electron microscopy and X-ray diffraction. Results show that the nature and morphology of the oxides generated are related to the temperature and the time of the heating conditions applied. - Highlights: {yields} The effect of heat treatments on the oxide growth in Mg-Al alloys has been evaluated. {yields} The nature and morphology of the oxides have been characterized. {yields} These oxides are associated to the time and the temperature conditions.

  19. Magnesium Hydroxide

    MedlinePlus

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  20. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  1. Oxygen Evolution Electrocatalysis on Cobalt Oxide surfaces

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Norskov, Jens K.; García-Mota, Monica; Bell, Alexis T.

    2012-02-01

    The oxidation of water for hydrogen production using sunlight is of high importance to photo-fuel cell research. The electrochemical approach via heterogeneous catalysis to water splitting is a very promising route. The key challenge of this method lies in reduction of the loses, i.e., over-potential, for the oxygen evolution reaction (OER) on the anode. In this work, we investigate the dependence of theoretical over-potential of OER on type of anode by applying standard density functional theory (DFT). We attempt to explain recent experimental observation of enhanced activity on gold supported Cobalt Oxide surfaces [1]. We explore variety of possible CoO structures and associated surfaces which could emerge under operating conditions of catalyst. Finally, we also explore the influence of environment and admixtures of CoO with other elements. [4pt] [1] B.S. Yeo, A.T. Bell, AT, J. Am. Chem. Soc., 133, 5587-5593 (2011).

  2. Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies

    NASA Astrophysics Data System (ADS)

    John Sushma, N.; Prathyusha, D.; Swathi, G.; Madhavi, T.; Deva Prasad Raju, B.; Mallikarjuna, K.; Kim, Hak-Sung

    2016-03-01

    Facile approach to synthesize the metal oxide nanoparticles is getting an increased attention in various biomedical applications such as, to treat antibiotic resistant diseases. Magnesium oxide nanoparticles (MgO·NPs) were synthesized by using Clitoria ternatea as the stabilizer in a green synthesis approach. The preliminary screening of MgO·NPs in the presence of C. ternatea extract was observed by UV-visible spectrophotometer. X-ray diffraction (XRD) pattern have proved the crystalline nature of the MgO·NPs; Photoluminescence (PL) measurement studies are used to identify the quality and defects in the crystal structure. FE-SEM with EDS has showed the size of 50-400 nm with specific binding energies. FT-IR has revealed the functional groups present in the plant extract and the peak at 521 cm-1 indicated the characteristic absorption bands of MgO·NPs. The DPPH activity and reducing power assay of biologically synthesized MgO·NPs could reach 65 % at a concentration of 150 µg/ml, respectively. From the results it was concluded that the biologically synthesized MgO·NPs exhibit good antioxidant activity.

  3. Oxidation-extraction spectrometry of reactive oxygen species (ROS) generated by chlorophyllin magnesium (Chl-Mg) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Guo, Yuwei; Cheng, Chunping; Wang, Jun; Jin, Xudong; Liu, Bin; Wang, Zhiqiu; Gao, Jingqun; Kang, Pingli

    2011-09-01

    In order to examine the mechanism and process of sonodynamic reaction, the chlorophyllin magnesium (Chl-Mg) acting as a sonosensitizer was irradiated by ultrasound, and the generation of reactive oxygen species (ROS) were detected by the method of oxidation-extraction spectrometry (OES). That is, under ultrasonic irradiation in the presence of Chl-Mg, the 1,5-diphenyl carbazide (DPCI) is oxidized by generated ROS into 1,5-diphenyl carbazone (DPCO), which can be extracted by mixed organic solvent and display a obvious visible absorption at 563 nm wavelength. Besides, the generation conditions of ROS were also reviewed. The results demonstrated that the quantities of generated ROS increased with the increase of ultrasonic irradiation time, Chl-Mg concentration and DPCI concentration. Finally, several radical scavengers (l-Histidine (His), 2,6-Di-tert-butyl-methylphenol (BHT) and Vitamin C (VC)) were used to determine the kind of the generated ROS. It was found that at least the hydroxyl radical (OH) and singlet oxygen ( 1O 2) were generated in the presence of Chl-Mg under ultrasonic irradiation. It is wish that this paper might offer some valuable references for the study on the mechanism of SDT and the application of Chl-Mg in tumor treatment.

  4. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. PMID:23603036

  5. Acceleration of Biochar Surface Oxidation during Composting?

    PubMed

    Wiedner, Katja; Fischer, Daniel; Walther, Sabine; Criscuoli, Irene; Favilli, Filippo; Nelle, Oliver; Glaser, Bruno

    2015-04-22

    Biochar composting experiments were performed to determine whether composting is a suitable method to accelerate biochar surface oxidation for increasing its reactivity. To assess the results, surface properties of Terra Preta (Brazil) and ancient charcoal pit (Northern Italy) biochars were additionally investigated. Calculation of O/C ratios by energy-dispersive X-ray spectroscopy demonstrated the anticipated increasing values from fresh biochars (0.13) to composted biochars (0.40), and finally charcoal pit biochars (0.54) and ancient Terra Preta biochars (0.64). By means of Fourier transformation infrared microscopy, formation of carboxylic and phenolic groups on biochars surface could be detected. Carboxylic acids of three composted biochars increased up to 14%, whereas one composted biochar showed a 21% lower proportion of carboxylic acids compared to the corresponding fresh biochar. Phenolic groups increased by 23% for the last mentioned biochar, and on all other biochars phenolic groups decreased up to 22%. Results showed that biochar surface oxidation can be accelerated through composting but still far away from ancient biochars. PMID:25802948

  6. Surface Stabilization Mechanisms in Metal Oxides

    NASA Astrophysics Data System (ADS)

    Becerra Toledo, Andres Enrique

    2011-07-01

    Metal oxide surfaces play a central role in modern applications, ranging from heterogeneous catalysis to electronic devices, yet little is known about the processes determining their structural stabilization. Several such stabilization mechanisms are explored via a combination of theoretical and experimental methods. The processes of periodic reconstruction, adsorption and segregation are studied through case studies of model material systems. The evaluation of structural models of periodic SrTiO3(001) reconstructions via bonding analysis and simulated scanning tunneling microscopy images supports the family of "DL" models terminating in two consecutive layers of TiO2 composition, and discards alternative proposals such as the models based on periodic Sr adatoms. Experimental and simulated scanning tunneling microscopy images and complementary spectroscopic data are used to determine the structure of linear Ti-rich SrTiO 3(001) nanostructures. The structural solution exemplifies the recurrence of locally stable motifs across numerous surfaces. In particular, the arrangement of edge-sharing TiO5 surface polyhedra is a trait is shared by (001) nanostructures and DL reconstructions. This is a flexible framework which allows for optimal bonding in surface atoms. Modeling of water adsorption on reconstructed SrTiO3(001) surfaces reveals that water plays two major roles in the stabilization of oxide surfaces: it may mediate the formation of certain ordered structures, or it may be part of the ultimately stable structures themselves. This can be understood in terms of the inevitable presence of chemisorbed water on defective surfaces. Since the surface mobility of cationic species is relatively low, the kinetics associated to water diffusion and desorption dominate the surface ordering process. High-temperature annealing of SrLaAlO4 single crystals leads to the segregation of SrO to the surfaces, in the form of islands. This process is in fact a bulk stabilization

  7. Polarity of oxide surfaces and nanostructures

    NASA Astrophysics Data System (ADS)

    Goniakowski, Jacek; Finocchi, Fabio; Noguera, Claudine

    2008-01-01

    Whenever a compound crystal is cut normal to a randomly chosen direction, there is an overwhelming probability that the resulting surface corresponds to a polar termination and is highly unstable. Indeed, polar oxide surfaces are subject to complex stabilization processes that ultimately determine their physical and chemical properties. However, owing to recent advances in their preparation under controlled conditions and to improvements in the experimental techniques for their characterization, an impressive variety of structures have been investigated in the last few years. Recent progress in the fabrication of oxide nano-objects, which have been largely stimulated by a growing demand for new materials for applications ranging from micro-electronics to heterogeneous catalysis, also offer interesting examples of exotic polar structures. At odds with polar orientations of macroscopic samples, some smaller size polar nano-structures turn out to be perfectly stable. Others are subject to unusual processes of stabilization, which are absent or not effective in their extended counterparts. In this context, a thorough and comprehensive reflexion on the role that polarity plays at oxide surfaces, interfaces and in nano-objects seems timely. This review includes a first section which presents the theoretical concepts at the root of the polar electrostatic instability and its compensation and introduces a rigorous definition of polar terminations that encompasses previous theoretical treatments; a second section devoted to a summary of all experimental and theoretical results obtained since the first review paper by Noguera (2000 J. Phys.: Condens. Matter 12 R367); and finally a discussion section focusing on the relative strength of the stabilization mechanisms, with special emphasis on ternary compound surfaces and on polarity effects in ultra-thin films.

  8. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    SciTech Connect

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  9. Activation of Methane and Carbon Dioxide Mediated by Transition-Metal Doped Magnesium Oxide Clusters [MMgO](+/0/-) (M=Sc-Zn).

    PubMed

    Li, Jilai; González-Navarrete, Patricio; Schlangen, Maria; Schwarz, Helmut

    2015-05-18

    Mission: impossible? DFT calculations show that the trends in the thermochemistry are very different for the activation of CO2 and CH4 mediated by transition-metal doped magnesium oxide clusters [MMgO](+/0/-) (M=Sc-Zn). Thus, seeking a "simple" reagent to simultaneously mediate activation and coupling of CH4 and CO2 with high efficiency seems extremely daunting, if not impossible. PMID:25867011

  10. The investigation of different particle size magnesium-doped zinc oxide (Zn0.92Mg0.08O) nanoparticles on the lubrication behavior of paraffin oil

    NASA Astrophysics Data System (ADS)

    Kalyani; Jaiswal, V.; Rastogi, R. B.; Kumar, D.

    2015-06-01

    Magnesium-doped zinc oxide (Zn0.92Mg0.08O) (ZMO) nanoparticles of 23 nm particle size have been synthesized by auto-combustion method. The variation in particle size of these nanoparticles has been performed by their further calcination at 800 and 1000 °C for 2 h and the corresponding calcined particles are designated as ZMO-1 and ZMO-2, respectively. The nanoparticles have been characterized by powder-XRD, scanning electron microscopy (SEM), energy dispersive X-ray and transmission electron microscope. The effect of particle size on the antiwear lubrication behavior of paraffin base oil has been investigated on four-ball lubricant tester. The tribological tests of these nanoparticles as antiwear additives have been studied at an optimized concentration (0.5 %w/v) by varying load for 30 min test duration and by varying the test durations at 392 N load. Various tribological parameters such as mean wear scar diameter, friction coefficient (µ), mean wear volume, running-in and steady-state wear rates show that these nanoparticles act as efficient antiwear additives and possess high load-carrying ability. From these tribological tests it has been observed that the lubrication behavior of studied nanoparticles is strongly size-dependent. The best tribological behavior is shown by nanoparticles of the smallest size, ZMO. Being sulfur, halogen and phosphorous free, ZMO nanoparticles have potential to be used as low SAPS lubricant additives. The SEM and atomic force microscopy analysis of the worn surfaces lubricated with ZMO nanoparticles at 392 N applied load for 60 min test duration show drastic decrease in surface roughness. The values of surface roughness of different additives are in good agreement with their observed tribological behavior.

  11. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.

    PubMed

    Du, Fei-Peng; Yang, Wen; Zhang, Fang; Tang, Chak-Yin; Liu, Sheng-Peng; Yin, Le; Law, Wing-Cheung

    2015-07-01

    Composite materials, such as organic matrices doped with inorganic fillers, can generate new properties that exhibit multiple functionalities. In this paper, an epoxy-based nanocomposite that has a high thermal conductivity and a low electrical conductivity, which are required for the use of a material as electronic packaging and insulation, was prepared. The performance of the epoxy was improved by incorporating a magnesium oxide-coated graphene (MgO@GR) nanomaterial into the epoxy matrix. We found that the addition of a MgO coating not only improved the dispersion of the graphene in the matrix and the interfacial bonding between the graphene and epoxy but also enhanced the thermal conductivity of the epoxy while preserving the electrical insulation. By adding 7 wt % MgO@GR, the thermal conductivity of the epoxy nanocomposites was enhanced by 76% compared with that of the neat epoxy, and the electrical resistivity was maintained at 8.66 × 10(14) Ω m. PMID:26075677

  12. Oxidation-driven surface dynamics on NiAl(100)

    SciTech Connect

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.

  13. Oxidation-driven surface dynamics on NiAl(100)

    DOE PAGESBeta

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less

  14. Oxidation-driven surface dynamics on NiAl(100)

    NASA Astrophysics Data System (ADS)

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2015-01-01

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). By comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.

  15. Oxidation-driven surface dynamics on NiAl(100)

    PubMed Central

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2015-01-01

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). By comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps. PMID:25548155

  16. Perfluorodiethoxymethane on nickel and nickel oxide surfaces

    SciTech Connect

    Jacobson, J.

    1994-03-03

    The interaction of perfluorodiethoxymethane with a nickel single crystal, Ni(100); a nickel crystal with chemisorbed oxygen, Ni(100)-c(2x2)O; and a nickel crystal with nickel oxide crystallites, NiO(100) is investigated in an ultra high vacuum environment using thermal desorption spectroscopy and high resolution electron energy loss spectroscopy. Nickel, a component of hard disk drives and stainless steel, is used to represent metal surfaces in these {open_quotes}real{close_quotes} systems. Perfluorodiethoxymethane is used in this study as a model compound of industrial perfluoropolyether lubricants. These lubricants are known for their exceptional stability, except in the presence of metals. Perfluorodiethoxymethane contains the acetal group (-OCF{sub 2}O-), believed to be particularly vulnerable to attack in the presence of Lewis acids. Since the surfaces studied show increasing Lewis acidity at the nickel atom sites, one might expect to see increasing decomposition of perfluorodiethoxymethane due to acidic attack of the acetal group. No decomposition of perfluorodiethoxymethane is observed on the clean Ni(100) surface, while more research is needed to determine whether a small decomposition pathway is observed on the oxygenated surfaces, or whether sample impurities are interfering with results. The strength of the bonding of perfluorodiethoxymethane to the surface is found to increase as the nickel atoms sites become more acidic in moving from Ni(100) to Ni (100)-c(2x2)O to NiO (100).

  17. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    PubMed

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-01

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway. PMID:25882096

  18. Producing Nanocomposite Layer on the Surface of As-Cast AZ91 Magnesium Alloy by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Asadi, P.; Besharati Givi, M. K.; Faraji, G.

    Friction stir processing (FSP) is an effective tool to produce a surface composite layer with enhanced mechanical properties and modified microstructure of as-cast and sheet metals. In the present work, the mechanical and microstructural properties of as-cast AZ91 magnesium alloy were enhanced by FSP and an AZ91/SiC surface nanocomposite layer has been produced using 30 nm SiC particles. Effect of the FSP pass number on the microstructure, grain size, microhardness, and powder distributing pattern of the surface developed has been investigated. The developed surface nanocomposite layer presents a higher hardness, an ultra fine grain size and a better homogeneity. Results show that, increasing the number of FSP passes enhances distribution of nano-sized SiC particles in the AZ91 matrix, decreases the grain size, and increases the hardness significantly. Also, changing of the tool rotating direction results much uniform distribution of the SiC particles, finer grains, and a little higher hardness.

  19. Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications.

    PubMed

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Hashemi Beni, Batoul; Vashaee, Daryoosh; Tayebi, Lobat

    2014-05-01

    Magnesium (Mg) alloys, owing to their biodegradability and good mechanical properties, have potential applications as biodegradable orthopedic implants. However, several poor properties including low corrosion resistance, mechanical stability and cytocompatibility have prevented their clinical application, as these properties may result in the sudden failure of the implants during the bone healing. In this research, nanostructured akermanite (Ca2MgSi2O7) powder was coated on the AZ91 Mg alloy through electrophoretic deposition (EPD) assisted micro arc oxidation (MAO) method to modify the properties of the alloy. The surface microstructure of coating, corrosion resistance, mechanical stability and cytocompatibility of the samples were characterized with different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical corrosion test, immersion test, compression test and cell culture test. The results showed that the nanostructured akermanite coating can improve the corrosion resistance, mechanical stability and cytocompatibility of the biodegradable Mg alloy making it a promising material to be used as biodegradable bone implants for orthopedic applications. PMID:24721316

  20. Ignition Temperature of Magnesium Powder and Pyrotechnic Composition

    NASA Astrophysics Data System (ADS)

    Zhu, Chen-Guang; Wang, Hai-Zhen; Min, Li

    2014-07-01

    Using potassium nitrate, strontium nitrate, and potassium perchlorate as the oxidizing agents, the ignition and combustion behaviors of magnesium powders with different specific surface area were studied. The ignition temperature (Te) was extrapolated using a differential thermal analyzer, and the pyrotechnic spontaneous reaction temperature (Ts) was inferred from the temperature curve by inflection point analysis. The results showed that Ts has much better reproducibility than the extrapolated Te in characterizing the ignition of the pyrotechnic formulations. Increasing the specific surface area of the magnesium powder resulted in decreased Ts of the pyrotechnics.

  1. Oxidation behavior of nickel-chromium-aluminum-yttrium - Magnesium oxide and nickel-chromium-aluminum-yttrium - zirconate type of cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1976-01-01

    The 1100 and 1200 C cyclic oxidation resistance of dense Ni-Cr-Al-Y - MgO, Ni-Cr-Al-Y - CaZrO3, Ni-Cr-Al-Y - SrZrO3, Ni-Cr-Al-Y - MgZro3 cermets and a 70 percent dense Ni-Cr-Al-Y developmental material was determined. The cermets contained 60 and 50 volume percent of Ni-Cr-Al-Y which formed a matrix with the oxide particles imbedded in it. The cermets containing MgO were superior to cermets based on zirconates and to the porous Ni-Cr-Al-Y material.

  2. All magnesium diboride Josephson junctions with MgO and native oxide barriers

    NASA Astrophysics Data System (ADS)

    Costache, M. V.; Moodera, J. S.

    2010-02-01

    We present results on all-MgB2 tunnel junctions, where the tunnel barrier is deposited MgO or native-oxide of base electrode. For the junctions with MgO, the hysteretic I-V curve resembles a conventional underdamped Josephson junction characteristic with critical current-resistance product nearly independent of the junction area. The dependence of the critical current with temperature up to 20 K agrees with the [Ambegaokar and Baratoff, Phys. Rev. Lett. 10, 486 (1963)] expression. For the junctions with native-oxide, conductance at low bias exhibits subgap features while at high bias reveals thick barriers. As a result no supercurrent was observed in the latter, despite the presence of superconducting-gaps to over 30 K.

  3. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGESBeta

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  4. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  5. Nondestructive spot test method for magnesium and magnesium alloys

    NASA Technical Reports Server (NTRS)

    Wilson, M. L. (Inventor)

    1973-01-01

    A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.

  6. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-01

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. PMID:27514793

  7. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    SciTech Connect

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-03-15

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO{sub 2} with some Mg(OH){sub 2}. The middle layer that is 50 nm thick comprises predominantly TiO{sub 2} and MgO with minor contributions from MgAl{sub 2}O{sub 4} and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti{sub 3}Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37{+-}1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased {beta}-Mg{sub 12}Al{sub 17} phase.

  8. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants

    NASA Astrophysics Data System (ADS)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.

    2016-06-01

    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  9. Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Iwaszko, Józef; Strzelecka, Monika

    2016-06-01

    In the study, samples of AZ91 magnesium alloy were subjected to a surface remelting treatment by means of a continuous wave (cw) CO2 laser. The scope of the investigation included both macro- and microstructural examination, hardness measurements, and wear resistance tests. The investigation has shown that remelting treatment leads to a strong refinement of structure in the surface layer and a more even distribution of phases. Fine α-phase dendrites have been observed to dominate in the remelting zone. The dendritic arm spacing in the laser treated surface was in the range of 1-2.5 μm. The structural changes triggered by remelting have contributed to an increase in the hardness and the wear resistance of AZ91 alloy. The microhardness of the remelted zone has increased to 71-93 HV0.05 for single-strip remelting and to 84-107 HV0.05 for multi-strip remelting in comparison with about ~60 HV0.05 for untreated alloy. The friction coefficient has decreased from 0.375 for material w/o treatment to 0.311 for remelted material. SEM investigations of samples after tribological tests have revealed the presence of parallel grooves proving the occurrence of microploughing and micro cutting of the material during the tribological testing. The results of the conducted investigation have indicated a beneficial influence of the cw-CO2 laser remelting treatment on the structure and properties of AZ91 alloy.

  10. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  11. Biochemical and molecular evidences on the protection by magnesium oxide nanoparticles of chlorpyrifos-induced apoptosis in human lymphocytes

    PubMed Central

    Heydary, Vida; Navaei-Nigjeh, Mona; Rahimifard, Mahban; Mohammadirad, Azadeh; Baeeri, Maryam; Abdollahi, Mohammad

    2015-01-01

    Background: Chlorpyrifos (CP) is one of the most widely used organophosphate (OP) insecticides in agricultural and residential pest control with its attendant adverse health effect. In the present study, it is proposed to investigate the possible modulatory role of magnesium oxide nanoparticles (MgO NPs) against CP-induced toxicity in human lymphocytes and determine the mechanisms lying behind this protection by viability and biochemical assays. Materials and Methods: Isolated lymphocytes were exposed to 12 μg/mL CP either alone or in combination with different concentrations of MgO NPs (0.1 μg/mL, 1 μg/mL, 10 μg/mL, and 100 μg/mL). After a 3-day incubation, the viability and oxidative stress markers including cellular mitochondrial activity, caspase-3 and -9 activities, total antioxidant power, lipid peroxidation, and myeloperoxidase (MPO) activity were measured. Also, the levels of tumor necrosis factor-α (TNF-α) as inflammatory index, along with acetylcholinesterase (AChE) activity were measured. Statistical differences were determined using one-way analysis of variance (ANOVA) and Dunnett's multiple comparison tests. Results: It is indicated that CP-exposed lymphocytes treated with MgO NPs resulted in a substantial reduction in the pace of mortality as well as the stages of oxidative stress in a dose-dependent manner. Also, MgO NPs (100 μg/mL) meaningfully restored CP-induced increase of TNF-α (P < 0.001) and decrease of AChE activity (P < 0.001) and were capable of preventing CP-treated human lymphocytes from apoptosis (P < 0.001). Conclusion: Our results demonstrate that MgO NPs in approximate 100 nm diameter not only make cells resistant to the toxic properties of CP but also attenuate toxic effects of CP, which is demonstrating the potential of MgO NPs to be applied in future immune deficiency therapeutic strategies. PMID:26941804

  12. Magnesium bicarbonate as an in situ uranium lixiviant

    SciTech Connect

    Sibert, J.W.

    1984-09-25

    In the subsurface solution mining of mineral values, especially uranium, in situ, magnesium bicarbonate leaching solution is used instead of sodium, potassium and ammonium carbonate and bicarbonates. The magnesium bicarbonate solution is formed by combining carbon dioxide with magnesium oxide and water. The magnesium bicarbonate lixivant has four major advantages over prior art sodium, potassium and ammonium bicarbonates.

  13. Magnesium Corrosion Triggered Spontaneous Generation of H2O2 on Oxidized Titanium for Promoting Angiogenesis.

    PubMed

    Park, Jimin; Du, Ping; Jeon, Jin-Kyung; Jang, Gun Hyuk; Hwang, Mintai Peter; Han, Hyung-Seop; Park, Kwideok; Lee, Kwan Hyi; Lee, Jee-Wook; Jeon, Hojeong; Kim, Yu-Chan; Park, Jong Woong; Seok, Hyun-Kwang; Ok, Myoung-Ryul

    2015-12-01

    Although the use of reactive oxygen species (ROS) has been extensively studied, current systems employ external stimuli such as light or electrical energy to produce ROS, which limits their practical usage. In this report, biocompatible metals were used to construct a novel electrochemical system that can spontaneously generate H2O2 without any external light or voltage. The corrosion of Mg transfers electrons to Au-decorated oxidized Ti in an energetically favorable process, and the spontaneous generation of H2O2 in an oxygen reduction reaction was revealed to occur at titanium by combined spectroscopic and electrochemical analyses. The controlled release of H2O2 noticeably enhanced in vitro angiogenesis even in the absence of growth factors. Finally, a new titanium implant prototype was developed by Mg incorporation, and its potential for promoting angiogenesis was demonstrated. PMID:26482466

  14. Cancer mortality in towns in the vicinity of installations for the production of cement, lime, plaster, and magnesium oxide.

    PubMed

    García-Pérez, Javier; López-Abente, Gonzalo; Castelló, Adela; González-Sánchez, Mario; Fernández-Navarro, Pablo

    2015-06-01

    Our objective was to investigate whether there might be excess cancer mortality in the vicinity of Spanish installations for the production of cement, lime, plaster, and magnesium oxide, according to different categories of industrial activity. An ecologic study was designed to examine municipal mortality due to 33 types of cancer (period 1997-2006) in Spain. Population exposure to pollution was estimated on the basis of distance from town to industrial facility. Using spatial Besag-York-Mollié regression models with integrated nested Laplace approximations for Bayesian inference, we assessed the relative risk of dying from cancer in a 5-km zone around installations, analyzed the effect of category of industrial activity according to the manufactured product, and conducted individual analyses within a 50-km radius of each installation. Excess all cancer mortality (relative risk, 95% credible interval) was detected in the vicinity of these installations as a whole (1.04, 1.01-1.07 in men; 1.03, 1.00-1.06 in women), and, principally, in the vicinity of cement installations (1.05, 1.01-1.09 in men). Special mention should be made of the results for tumors of colon-rectum in both sexes (1.07, 1.01-1.14 in men; 1.10, 1.03-1.16 in women), and pleura (1.71, 1.24-2.28), peritoneum (1.62, 1.15-2.20), gallbladder (1.21, 1.02-1.42), bladder (1.11, 1.03-1.20) and stomach (1.09, 1.00-1.18) in men in the vicinity of all such installations. Our results suggest an excess risk of dying from cancer, especially in colon-rectum, in towns near these industries. PMID:25681568

  15. Positive holes in magnesium oxide - Correlation between magnetic, electric, and dielectric anomalies

    NASA Technical Reports Server (NTRS)

    Batllo, F.; Leroy, R. C.; Parvin, K.; Freund, F.; Freund, M. M.

    1991-01-01

    The present magnetic susceptibility investigation of high purity MgO single crystals notes an anomally at 800 K which is associated with increasing electrical conductivity, a rise in static dielectric constant from 9 to 150, and the appearance of a pronounced positive surface charge. These phenomena can be accounted for in terms of peroxy defects which represent self-trapped, spin-paired positive holes at Mg(2+) vacancy sites. The holes begin to decouple their spins above 600 K.

  16. Energetics of nanoparticle oxides: interplay between surface energy and polymorphism†

    PubMed Central

    Navrotsky, Alexandra

    2003-01-01

    Many oxides tend to form different structures (polymorphs) for small particles. High temperature oxide melt solution calorimetry has been used to measure the enthalpy as a function of polymorphism and surface area for oxides of Al, Ti, and Zr. The results confirm crossovers in polymorph stability at the nanoscale. The energies of internal and external surfaces of zeolitic silicas with open framework structures are an order of magnitude smaller than those of oxides of normal density.

  17. Pretreatment of lubricated surfaces with sputtered cadmium oxide

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Inventor)

    1991-01-01

    Cadmium oxide is used with a dry solid lubricant on a surface to improve wear resistance. The surface topography is first altered by photochemical etching to a predetermined pattern. The cadmium oxide is then sputtered onto the altered surface to form an intermediate layer to more tightly hold the dry lubricant, such as graphite.

  18. Superhydrophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: Wettability and corrosion inhibition.

    PubMed

    Liu, Yan; Li, Shuyi; Wang, Yaming; Wang, Huiyuan; Gao, Ke; Han, Zhiwu; Ren, Luquan

    2016-09-15

    Superamphiphobic (both superhydrophobic and superoleophobic) surfaces have attracted great interests in the fundamental research and practical application. This research successfully fabricated the superamphiphobic surfaces by combining the nickel plating process and modification with perfluorocaprylic acid. The cooperation of hierarchical micro-nano structures and perfluorocaprylic acid with low surface energy plays an important role in the formation of superamphiphobic surfaces. The contact angles of water/oil have reached up to 160.2±1°/152.4±1°, respectively. Contrast with bare substrate, the electrochemical measurements of superamphiphobic surfaces, not only the EIS measurement, but also potentiodynamic polarization curves, all revealed that, the surface corrosion inhibition was improved significantly. Moreover, superamphiphobic surfaces exhibited superior stability in the solutions with a large pH range, also could maintain excellent performance after storing for a long time in the air. This method is easy, feasible and effective, and could be used to fabricate large-area mutli-functional surface. Such a technique will develop a new approach to fabricate superamphiphobic surfaces on different engineering materials. PMID:27289431

  19. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  20. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  1. Chemically synthesized nano composite (Zinc/Magnesium) Oxide for tunable band gap devices

    NASA Astrophysics Data System (ADS)

    Sharmila, P. P.; Tharayil, Nisha J.

    2015-02-01

    Formation of hetro structures in nano structured materials is essential for their potential applications in nano electronics and photonic devices. As a promising candidate for blue and ultraviolet optoelectronic devices, ZnO has attracted much attention due to its wide band gap (3.37eV), large exciton binding energy (60meV), low epitaxial growth temperature and high oxidation resistance. In addition since the ionic radii of Mg+2+(0.57A0) and Zn2+(0.60A0) are quite close, they may alloy by replacing each other in the matrix. The doping of Mg in ZnO is done through a simple and novel technique from metal acetates using ammonium carbonate as precipitant. An organic capping agent (EDTA) is used prevent agglomeration and the addition is done under constant stirring. The carbonate precursor obtained is heated on the basis of TGA to obtain the metal nano composite. The effects of different parameters on particle size and morphology of (Zn-Mg)O nano composite is optimized by "one at a time" method. Under optimum conditions, spongy shaped, uniform and homogeneous structured (Zn-Mg)O nano composite powders with particle size few nano meters are obtained. The optical and structural properties of nano composite prepared by solution techniques are investigated by X-ray diffraction, UV-Visible spectroscopy, and PL, FTIR and electron microscopy techniques. The effect of annealing on the optical properties of this nano composite is also studied

  2. Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization

    NASA Astrophysics Data System (ADS)

    Finch, Kenneth

    2013-01-01

    Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.

  3. Bioadsorption Behavior of Rhodococcus Opacus on the Surface of Calcium and Magnesium Minerals

    NASA Astrophysics Data System (ADS)

    Li, Hongxu; Zhang, Mingming; Li, Chao; Yang, Xie; Li, An; Zhang, Lifeng

    2015-02-01

    The surface properties of minerals can be influenced and changed by microbial activities when microorganisms adhere to the mineral surface. The change of mineral surface properties and thus mineral floatability can be used to separate gangues from valuable minerals. This study investigated the Rhodococcus opacus ( R. opacus) adsorption behavior on the surfaces of calcite, serpentine, and dolomite by bioadhesive test, contact angle measurements, Zeta potential, Fourier transform infrared spectroscopy (FTIR) spectra, and scanning electron microscopy (SEM). The results showed that R. opacus could be absorbed well onto the surfaces of calcite, serpentine, and dolomite in a few minutes, with adsorption rate up to 96%. The cell adsorption was dependent on the pH value and the most suitable pH is 7.2, whereas no significant influence of temperature on adsorption was found. Increasing pulp density could provide more adsorption sites to R. opacus cells and increase the adsorption rate consequently. The contact angle of three minerals decreased after R. opacus attached, which indicated that the dispersibility of the mineral surface was improved and in favor of being separated. Zeta potential measurements showed that the cell with the charge was opposite to that of minerals on a broad of pH value. The SEM images showed that R. opacus attached very tightly onto the mineral surface, with a large number of small mineral particles gathered around the cell. FTIR spectra showed the presence of polymer groups on the cell wall that could have given a net charge on the mineral surface.

  4. On the Utility of Spinel Oxide Hosts for Magnesium-Ion Batteries.

    PubMed

    Knight, James C; Therese, Soosairaj; Manthiram, Arumugam

    2015-10-21

    There is immense interest to develop Mg-ion batteries, but finding suitable cathode materials has been a challenge. The spinel structure has many advantages for ion insertion and has been successfully used in Li-ion batteries. We present here findings on the attempts to extract Mg from MgMn2O4-based spinels with acid (H2SO4) and with NO2BF4. The acid treatment was able to fully remove all Mg from MgMn2O4 by following a mechanism involving the disproportionation of Mn(3+), and the extraction rate decreased with increasing cation disorder. Samples with additional Mg(2+) ions in the octahedral sites (e.g., Mg1.1Mn1.9O4 and Mg1.5Mn1.5O4) also exhibit complete or near complete demagnesiation due to an additional mechanism involving ion exchange of Mg(2+) by H(+), but no Mg could be extracted from MgMnAlO4 due to the disruption of Mn-Mn interaction/contact across shared octahedral edges. In contrast, no Mg could be extracted with the oxidizing agent NO2BF4 from MgMn2O4 or Mg1.5Mn1.5O4 as the electrostatic repulsion between the divalent Mg(2+) ions prevents Mg(2+) diffusion through the 16c octahedral sites, unlike Li(+) diffusion, suggesting that spinels may not serve as potential hosts for Mg-ion batteries. The ability to extract Mg with acid in contrast to that with NO2BF4 is attributed to Mn dissolution from the lattice and the consequent reduction in electrostatic repulsion. The findings could provide insights toward the design of Mg hosts for Mg-ion batteries. PMID:26436429

  5. Calculations of oxide formation on low-index Cu surfaces

    NASA Astrophysics Data System (ADS)

    Lian, Xin; Xiao, Penghao; Yang, Sheng-Che; Liu, Renlong; Henkelman, Graeme

    2016-07-01

    Density-functional theory is used to evaluate the mechanism of copper surface oxidation. Reaction pathways of O2 dissociation on the surface and oxidation of the sub-surface are found on the Cu(100), Cu(110), and Cu(111) facets. At low oxygen coverage, all three surfaces dissociate O2 spontaneously. As oxygen accumulates on the surfaces, O2 dissociation becomes more difficult. A bottleneck to further oxidation occurs when the surfaces are saturated with oxygen. The barriers for O2 dissociation on the O-saturated Cu(100)-c(2×2)-0.5 monolayer (ML) and Cu(100) missing-row structures are 0.97 eV and 0.75 eV, respectively; significantly lower than those have been reported previously. Oxidation of Cu(110)-c(6×2), the most stable (110) surface oxide, has a barrier of 0.72 eV. As the reconstructions grow from step edges, clean Cu(110) surfaces can dissociatively adsorb oxygen until the surface Cu atoms are saturated. After slight rearrangements, these surface areas form a "1 ML" oxide structure which has not been reported in the literature. The barrier for further oxidation of this "1 ML" phase is only 0.31 eV. Finally the oxidized Cu(111) surface has a relatively low reaction energy barrier for O2 dissociation, even at high oxygen coverage, and allows for facile oxidation of the subsurface by fast O diffusion through the surface oxide. The kinetic mechanisms found provide a qualitative explanation of the observed oxidation of the low-index Cu surfaces.

  6. Calculations of oxide formation on low-index Cu surfaces.

    PubMed

    Lian, Xin; Xiao, Penghao; Yang, Sheng-Che; Liu, Renlong; Henkelman, Graeme

    2016-07-28

    Density-functional theory is used to evaluate the mechanism of copper surface oxidation. Reaction pathways of O2 dissociation on the surface and oxidation of the sub-surface are found on the Cu(100), Cu(110), and Cu(111) facets. At low oxygen coverage, all three surfaces dissociate O2 spontaneously. As oxygen accumulates on the surfaces, O2 dissociation becomes more difficult. A bottleneck to further oxidation occurs when the surfaces are saturated with oxygen. The barriers for O2 dissociation on the O-saturated Cu(100)-c(2×2)-0.5 monolayer (ML) and Cu(100) missing-row structures are 0.97 eV and 0.75 eV, respectively; significantly lower than those have been reported previously. Oxidation of Cu(110)-c(6×2), the most stable (110) surface oxide, has a barrier of 0.72 eV. As the reconstructions grow from step edges, clean Cu(110) surfaces can dissociatively adsorb oxygen until the surface Cu atoms are saturated. After slight rearrangements, these surface areas form a "1 ML" oxide structure which has not been reported in the literature. The barrier for further oxidation of this "1 ML" phase is only 0.31 eV. Finally the oxidized Cu(111) surface has a relatively low reaction energy barrier for O2 dissociation, even at high oxygen coverage, and allows for facile oxidation of the subsurface by fast O diffusion through the surface oxide. The kinetic mechanisms found provide a qualitative explanation of the observed oxidation of the low-index Cu surfaces. PMID:27475390

  7. Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals

    NASA Technical Reports Server (NTRS)

    Freund, F.; Gupta, A. D.; Kumar, D.

    1999-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  8. Carboxylic and Dicarboxylic Acids Extracted from Crushed Magnesium Oxide Single Crystals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Gupta, Alka D.; Kumar, Devendra; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THE) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and (sup 1)H-NMR (Nuclear Magnetic Resonance). The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS (Gas Chromatography - Mass Spectroscopy) analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P2(sub 1)/c with a(sub o) = 5.543 A, b(sub o) = 8.845 A, c(sub o) = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg/g MgO. The MgO crystals from which these organic acids were extracted grew from the 2360 C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H, and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)(sup n-). The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  9. Ultra-senstitive magnesium oxide-based magnetic tunnel junctions for spintronic immunoassay

    NASA Astrophysics Data System (ADS)

    Shen, Weifeng

    We systematically studied the spin-dependent tunnel properties of MgO-based magnetic tunnel junctions (MTJs). Utilizing the spin-coherent tunnel effects of the MgO (001) insulating layer, we have achieved large tunneling magnetoresistance (TMR) ratios (above 200%) at room temperature in optimized MTJ devices. We have shown that the MgO surface roughness, and therefore device magnetoresistance, depends strongly on the pressure of the Ar sputtering gas. We have investigated the characteristics of MgO-MTJs, including their dependence on barrier thickness and bias voltage, their thermal stability and resistance to electrostatic discharge (ESD). We have also fabricated MgO-MTJs with a synthetic antiferromagnetic (SAF) free layer, which exhibits a coherent, single-domain-like switching. Our data show that MgO-MTJs have superior properties for low-field magnetic field sensing applications as compared with conventional AlOx-based MTJs. Based on this giant TMR effect, we designed and developed ultra-sensitive magnetic tunnel junction (MTJ) sensors and sensor arrays for biomagnetic sensing applications. By integrating MTJ sensor arrays into microfluidic channels, we were able to detect the presence of moving, micron-size superparamagnetic beads in real time. We have obtained an average signal of 80 mV for a single Dynal M-280 bead, with a signal-to-noise ratio (SNR) of 24 dB. We also biologically treated the MTJ sensor array surfaces, and demonstrated the detection of 2.5 muM single strand target DNA labeled with 16-nm-diameter Fe3O 4 nanoparticles (NPs). Our measured signal of 72 muV indicates that the current system's detection limit for analyte DNA is better than 150 nM. We also demonstrated the detection of live HeLa cells labeled with Fe 3O4 nanoparticles, with an effective signal of 8 mV and a signal-to-noise ratio of 6 dB. These results represent an important milestone in the development of spintronics immunoassay technology: the detection of a single live cell

  10. Chromium and yttrium-doped magnesium aluminum oxides prepared from layered double hydroxides

    NASA Astrophysics Data System (ADS)

    García-García, J. M.; Pérez-Bernal, M. E.; Ruano-Casero, R. J.; Rives, V.

    2007-12-01

    Layered double hydroxides with the hydrotalcite-like structures, containing Mg 2+ and Al 3+, doped with Cr 3+ and Y 3+, have been prepared by precipitation at constant pH. The weight percentages of Cr 3+ and Y 3+ were 1, 2, or 3%, and 0.5 or 1%, respectively. Single phases were obtained in all cases, whose crystallinity decreased as the content in Cr and Y was increased. The solids have been characterised by element chemical analysis, powder X-ray diffraction, thermal analyses (differential, thermogravimetric and programmed reduction), FT-IR and UV-vis spectroscopies; the specific surface areas have been determined from nitrogen adsorption isotherms at -196 °C. Upon calcination at 1200 °C for 5 h in air all solids display a mixed structure (spinel and rock salt for MgO); these solids have also been characterised by these techniques and their chromatic coordinates (CIE - L∗a∗b∗) have been determined. Their pink colour makes these solids suitable for being used as ceramic pigments.

  11. Inclined-substrate deposition of biaxially textured magnesium oxide thin films for YBCO coated conductors.

    SciTech Connect

    Ma, B.; Li, M.; Jee, Y. A.; Koritala, R. E.; Fisher, B. L.; Balachandran, U.; Energy Technology

    2002-02-01

    Highly textured MgO films were grown by the inclined-substrate deposition (ISD) technique at a high deposition rate. A columnar grain with a roofing-tile-shaped surface was observed in these MgO films. X-ray pole figure, and {phi}- and {omega}-scan were used to characterize in-plane and out-of-plane textures. MgO films deposited when the incline angle {alpha} was 55 and 30 degrees exhibited the best in-plane and out-of-plane texture, respectively. High-quality YBCO films were epitaxially grown on ISD-MgO-buffered Hastelloy C substrates by pulsed laser deposition. {Tc}=88 K, with sharp transition, and j{sub c} values of {approx}2x10{sup 5} A/cm{sup 2} at 77 K in zero field were observed on films 5 mm wide and 1 cm long. This work has demonstrated that biaxially textured ISD MgO buffer layers deposited on metal substrates are excellent candidates for fabrication of high-quality YBCO coated conductors.

  12. Sonochemical synthesis and photocatalytic property of zinc oxide nanoparticles doped with magnesium(II)

    SciTech Connect

    Lu, Xianyong; Liu, Zhaoyue; Zhu, Ying; Jiang, Lei

    2011-10-15

    Highlights: {yields} Mg-doped ZnO nanoparticles were synthesized by sonochemical strategy. {yields} Mg-doped ZnO nanoparticles present good photocatalytic properties. {yields} The change of band gap contributes to their high efficiency in photocatalyst. -- Abstract: Mg-doped ZnO nanoparticles were successfully synthesized by sonochemical method. The products were characterized by scan electron microscopy (SEM) and X-ray powder diffraction (XRD). SEM images revealed that ZnO doped with Mg(II) nanoparticles and ZnO nanoparticles synthesized by the same strategy all had spherical topography. XRD patterns showed that the doped nanoparticles had the same crystals structures as the pure ZnO nanoparticles. The Mg-doped ZnO nanoparticles had larger lattice volume than the un-doped nanoparticles. X-ray photoelectron spectroscopy (XPS) not only demonstrated the moral ratio of Mg and Zn element on the surface of nanoparticles, but their valence in nanoparticles as well. The Mg-doped ZnO nanoparticles presented good properties in photocatalyst compared with pure ZnO nanoparticles.

  13. TOPICAL REVIEW: Low-dimensional surface oxides in the oxidation of Rh particles

    NASA Astrophysics Data System (ADS)

    Mittendorfer, Florian

    2010-10-01

    The oxidation of rhodium particles leads to the formation of low-dimensional nanostructures, namely ultrathin oxide films and stripes adsorbed on the metallic surface. These structures display unique electronic and structural properties, which have been studied in detail experimentally and theoretically in recent years. In this review, the state of research on low-dimensional surface oxides formed on Rh surfaces will be discussed with a special focus on the contributions derived from computational approaches. Several points elucidating the novel properties of the surface oxides will be addressed: (i) the structural relation between the surface oxides and their bulk counterparts, (ii) the electronic properties of the low-dimensional oxide films and (iii) potential catalytic and electronic applications of the surface oxides.

  14. Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions

    SciTech Connect

    Mosayebi, Zeinab; Rezaei, Mehran; Hadian, Narges; Kordshuli, Fazlollah Zareie; Meshkani, Fereshteh

    2012-09-15

    Highlights: ► MgAl{sub 2}O{sub 4} showed a high surface area and nanocrystalline structure. ► Addition of polymeric surfactant affected the structural properties of MgAl{sub 2}O{sub 4}. ► MgAl{sub 2}O{sub 4} prepared with surfactant showed a hollow cylindrical shape. -- Abstract: A surfactant assisted co-precipitation method was employed for the low temperature synthesis of magnesium aluminate spinel with nanocrystalline size and high specific surface area. Pluronic P123 triblock copolymer and ammonia solution were used as surfactant and precipitation agent, respectively. The prepared samples were characterized by thermal gravimetric and differential thermal gravimetric analyses (TG/DTG), X-ray diffraction (XRD), N{sub 2} adsorption (BET) and transmission electron microscopy (TEM) techniques. The effects of several process parameters such as refluxing temperature, refluxing time, pH, P123 to metals mole ratio (P123/metals) and calcination temperature on the structural properties of the samples were investigated. The obtained results showed that, among the process parameters pH and refluxing temperature have a significant effect on the structural properties of samples. The results revealed that increase in pH from 9.5 to 11 and refluxing temperature from 40 °C to 80 °C increased the specific surface area of prepared samples in the range of 157–188 m{sup 2} g{sup −1} and 162–184 m{sup 2} g{sup −1}, respectively. The XRD analysis showed the single-phase MgAl{sub 2}O{sub 4} was formed at 700 °C.

  15. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  16. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  17. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    SciTech Connect

    Hoerst, S. M.; Brown, M. E.

    2013-02-20

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  18. On the processing, structure and properties of aluminum oxide-magnesium aluminate nanocomposites

    NASA Astrophysics Data System (ADS)

    McEnerney, Bryan William

    . High-strain-rate testing indicated better than expected performance, albeit with a small sample size at a single processing temperature. The grindability of the compositions was also evaluated and found to be excellent, with some evidence of surface plasticity. The grindability of the ceramic materials varied with the MgAl2O4 content.

  19. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    NASA Astrophysics Data System (ADS)

    Witecka, Agnieszka; Yamamoto, Akiko; Dybiec, Henryk; Swieszkowski, Wojciech

    2012-12-01

    Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.

  20. MOCVD growth of magnesium zinc oxide films and nanostructures for photovoltaics

    NASA Astrophysics Data System (ADS)

    Duan, Ziqing

    MgxZn1-xO, which is formed by alloying ZnO with MgO, has been developed as a promising window layer in chalcopyrite thin film solar cells and hybrid polymer solar cells for enhanced open-circuit voltage and solar conversion efficiency because of its bandgap tunability. The surface morphology of MgxZn1-xO layers in those photovoltaic applications plays important roles on the performances of solar cells. Two-dimensional (2-D) dense and smooth film is preferred in the inorganic p-n junction solar cells while one-dimensional (1-D) nanostructures are favorable for the hybrid polymer solar cells. In this dissertation, metal-organic chemical vapor deposition (MOCVD) is used to grow both of MgxZn1-xO polycrystalline 2-D films and single crystalline 1-D nanostructures for solar cells. A low-temperature (~250°C) ZnO buffer layer, followed by the high-temperature (~500°C) growth of MgxZn1-xO, is found to be beneficial for the formation of a 2-D dense and smooth film. On the other hand, a high-temperature (~520°C) ZnO buffer layer followed by a high temperature (530°C-560°C) growth of MgxZn1-xO is needed to grow the 1-D Mg xZn1-xO (0≤x≤0.15) nanostructures on Si. For the first time, 1-D MgxZn1-xO nanostructures (0≤x≤0.1) are sequentially grown on a Ga-doped ZnO (GZO) 2-D film to form the 3-D photoelectrode, which is used to fabricate the P3HT-MgxZn1-xO hybride solar cells. The preliminary testing results of solar cells show that Mg xZn1-xO is promising to be used in hybrid polymer solar cells for the enhancement of open circuit voltage (VOC). MgxZn1-xO (0≤x≤0.1) polycrystalline films are used in Cu2O-MgxZn1-x O heterojunction solar cells. The current density-voltage (J-V) measurements of solar cells under illumination show that VOC, shunt resistance Rsh and the solar conversion efficiency η are improved with increasing of Mg% until 10%. A relatively high solar conversion efficiency, η AM1.5 = 0.71 % with a short circuit current JSC = 3.0 mA/cm 2 and VOC

  1. Surface and sub-surface thermal oxidation of thin ruthenium films

    SciTech Connect

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.; Kokke, S.; Zoethout, E.

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  2. Magnesium Test

    MedlinePlus

    ... Mg; Mag Formal name: Magnesium Related tests: Calcium , Potassium , Phosphorus , PTH , Vitamin D At a Glance Test ... can, over time, cause persistently low calcium and potassium levels, it may be checked to help diagnose ...

  3. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  4. Surface and catalytic properties of doped tin oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Tsung; Lai, De-Lun; Chen, Miao-Ting

    2010-10-01

    Mixed oxides composed of Zn-Sn, Ti-Sn and V-Sn were prepared by a co-precipitation method and evaluated as catalysts for methanol oxidation in an ambient fixed-bed reactor. Surface analysis by X-ray photoelectron spectroscopy (XPS) revealed an electronic interaction between dopant and Sn atoms in the oxide structure and showed the formation of surface states associated with the dopants. Oxygen vacancies were present on the Zn-doped oxide, and the oxidation of methanol to carbon oxides was favored. The Ti-doped oxide exhibited a favorable selectivity to dimethyl ether, related to the oxygen anions near Ti centers. Vanadium dopants not only dramatically increased the catalytic activity but also promoted the partial oxidation of methanol to formaldehyde. Results demonstrate that the bridging dopant-O-Sn bond acts as active sites and influences product distribution.

  5. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy.

    PubMed

    Sealy, M P; Guo, Y B

    2010-10-01

    Current permanent metallic biomaterials of orthopedic implants, such as titanium, stainless steel, and cobalt-chromium alloys, have excellent corrosive properties and superior strengths. However, their strengths are often too high resulting in a stress shielding effect that is detrimental to the bone healing process. Without proper healing, costly and painful revision surgeries may be required. The close Young's modulus between magnesium-based implants and cancellous bones has the potential to minimize stress shielding while providing both biocompatibility and adequate mechanical properties. The problem with Mg implants is how to control corrosion rates so that the degradation of Mg implants matches that of bone growth. Laser shock peening (LSP) is an innovative surface treatment method to impart compressive residual stress to a novel Mg-Ca implant. The high compressive residual stress has great potential to slow corrosion rates. Therefore, LSP was initiated in this study to investigate surface topography and integrity produced by sequential peening a Mg-Ca alloy. Also, a 3D semi-infinite simulation was developed to predict the topography and residual stress fields produced by sequential peening. The dynamic mechanical behavior of the biomaterial was modeled using a user material subroutine from the internal state variable plasticity model. The temporal and spatial peening pressure was modeled using a user load subroutine. The simulated dent agrees with the measured dent topography in terms of profile and depth. Sequential peening was found to increase the tensile pile-up region which is critical to orthopedic applications. The predicted residual stress profiles are also presented. PMID:20696413

  6. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design.

    PubMed

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216

  7. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design

    NASA Astrophysics Data System (ADS)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-04-01

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.

  8. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    PubMed Central

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216

  9. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    DOE PAGESBeta

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; et al

    2016-04-05

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance.more » Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Lastly, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.« less

  10. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    PubMed

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency. PMID:23196863

  11. Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Guan, Y. C.; Zhou, W.; Zheng, H. Y.; Li, Z. L.

    2013-09-01

    Permanent darkening effect was achieved on surface of AZ31B Mg alloy irradiated with nanosecond pulse Nd:YAG laser, and special attention was made to examine how surface structure as well as oxidation affect the darkening effect. Experiments were carried out to characterize morphological evolution and chemical composition of the irradiated areas by optical reflection spectrometer, Talysurf surface profiler, SEM, EDS, and XPS. The darkening effect was found to be occurred at the surface under high laser energy. Optical spectra showed that the induced darkening surface was uniform over the spectral range from 200 nm to 1100 nm. SEM and surface profiler showed that surface morphology of darkening areas consisted of large number of micron scale cauliflower-like clusters and protruding particles. EDS and XPS showed that compared to non-irradiated area, oxygen content at the darkening areas increased significantly. It was proposed a mechanism that involved trapping of light in the surface morphology and chemistry variation of irradiated areas to explain the laser-induced darkening effect on AZ31B Mg alloy.

  12. Characterization and stability of thin oxide films on plutonium surfaces

    NASA Astrophysics Data System (ADS)

    Flores, H. G. García; Roussel, P.; Moore, D. P.; Pugmire, D. L.

    2011-02-01

    X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were employed to study oxide films on plutonium metal surfaces. Measurements of the relative concentrations of oxygen and plutonium, as well as the resulting oxidation states of the plutonium (Pu) species in the near-surface region are presented. The oxide product of the auto-reduction (AR) of plutonium dioxide films is evaluated and found to be an oxide species which is reduced further than what is expected. The results of this study show a much greater than anticipated extent of auto-reduction and challenge the commonly held notion of the stoichiometric stability of Pu 2O 3 thin-films. The data indicates that a sub-stoichiometric plutonium oxide (Pu 2O 3 - y ) exists at the metal-oxide interface. The level of sub-stoichiometry is shown to depend, in part, on the carbidic contamination of the metal surface.

  13. Multiscale Investigations of the Early Stage Oxidation on Cu Surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Xiao, Penghao; Lian, Xin; Yang, Shen-Che; Henkelman, Grame; Saidi, Wissam; Yang, Judith; University of Pittsburgh Team; University of Texas at Austin Team

    Previous in situ TEM experiments have shown that the oxidation of the three low index Cu surfaces (100), (110) and (111) exhibit different oxide nucleation rates, and the resulting oxides have 3-dimensional (3D) island shapes or 2D rafts under different conditions. In order to better understand these results, we have investigated the early stages of Cu oxidation using a multiscale computational approach that employs density functional theory (DFT), reactive force field (ReaxFF), and kinetic Mote Carlo (KMC). With DFT calculation, we have compared O2 dissociation barriers on Cu (100), (110) and (111) surfaces at high oxygen coverage to evaluate the kinetic barrier of sublayer oxidization. We found that O2 dissociation barriers on Cu(111) surface are all lower than those on (110) and (100) surfaces. This trend agrees with experimental observations that (111) surface is easier to oxidize. These DFT calculated energy barriers are then incorporated into KMC simulations. The large scale ReaxFF molecular dynamics and KMC simulations detail the oxidation dynamics of the different Cu surfaces, and show the formation of various oxide morphologies that are consistent with experimental observations.

  14. Oxidized In-containing III-V(100) surfaces: Formation of crystalline oxide films and semiconductor-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Punkkinen, M. P. J.; Laukkanen, P.; Lång, J.; Kuzmin, M.; Tuominen, M.; Tuominen, V.; Dahl, J.; Pessa, M.; Guina, M.; Kokko, K.; Sadowski, J.; Johansson, B.; Väyrynen, I. J.; Vitos, L.

    2011-05-01

    Previously found oxidized III-V semiconductor surfaces have been generally structurally disordered and useless for applications. We disclose a family of well-ordered oxidized InAs, InGaAs, InP, and InSb surfaces found by experiments. The found epitaxial oxide-III-V interface is insulating and free of defects related to the harmful Fermi-level pinning, which opens up new possibilities to develop long-sought III-V metal-oxide-semiconductor transistors. Calculations reveal that the early stages in the oxidation process include only O-III bonds due to the geometry of the III-V(100)c(8×2) substrate, which is responsible for the formation of the ordered interface. The found surfaces provide a different platform to study the oxidation and properties of oxides, e.g., the origins of the photoemission shifts and electronic structures, using surface science methods.

  15. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    NASA Astrophysics Data System (ADS)

    Wu, Wei; He, Quanguo; Jiang, Changzhong

    2008-10-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed.

  16. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    PubMed Central

    2008-01-01

    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed. PMID:21749733

  17. High-Temperature Oxide Regrowth on Mechanically-Damaged Surfaces

    SciTech Connect

    Blau, Peter Julian; Lowe, Tracie M

    2008-01-01

    Here we report the effects of mechanical damage from a sharp stylus on the regrowth of oxide layers on a Ni-based superalloy known as Pyromet 80A . It was found that the oxide that reformed on the damaged portion of a pre-oxidized surface differed from that which formed on undamaged areas after the equal exposures to elevated temperature in air. These findings have broad implications for modeling the processes of material degradation in applications such as exhaust valves in internal combustion engines because they imply that static oxidation data for candidate materials may not adequately reflect their reaction to operating environments that involve both mechanical contact and oxidation.

  18. Production of magnesium metal

    DOEpatents

    Blencoe, James G.; Anovitz, Lawrence M.; Palmer, Donald A.; Beard, James S.

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  19. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  20. Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal

    NASA Astrophysics Data System (ADS)

    Graham, Andrew M.; Bouwer, Edward J.

    2012-04-01

    In-situ reduction of toxic Cr(VI) to nontoxic Cr(III) represents an important natural attenuation process for Cr(VI)-impacted environments. This study investigates the stoichiometry and kinetics of Cr(VI) reduction by pyrite, a reduced iron-sulfur mineral ubiquitous in recent estuarine and marine sediments. Pyrite suspensions at surface loadings of 0.28-2.10 m2/L (typical of estuarine or marine sediments) were capable of completely reducing 7-120 μM Cr(VI) on the timescale of minutes to days, with the time to reaction completion decreasing with increasing pyrite loading, decreasing initial Cr(VI) concentration, and decreasing suspension pH. Analysis of metal species (Cr and Fe) and sulfur species in solution and at the mineral surface indicated that Cr(VI) oxidatively dissolved the pyrite surface, releasing ferrous iron and sulfate into solution as the reaction progressed. Surface disulfide groups were postulated as the Cr(VI)-reactive surface entity. Net production or consumption of aqueous Fe(II) was shown to depend upon the relative rates of proton-promoted Fe(II) release, Fe(II) release due to oxidative dissolution of pyrite in the presence of Cr(VI), and Fe(II) consumption due to homogeneous reaction with Cr(VI). Kinetics of Cr(VI) reduction by pyrite displayed a biphasic pattern, and the time to reaction completion increased dramatically with increasing initial Cr(VI) concentration. Rapid Cr(VI) removal occurred early in the reaction progress, attributable to Cr(VI) loss under an adsorption-limited regime. Slow, approximately zero-order, Cr(VI) removal occurred over the bulk of the time courses, and corresponded to Cr(VI) removal under surface site saturation conditions. Stoichiometric Cr(VI) reduction was able to proceed under surface site limited conditions owing to regeneration of reactive surface sites following desorption/dissolution of oxidized surface products, as demonstrated in repeat Cr(VI)-spiking experiments. The role of surface passivation was

  1. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  2. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2002-01-01

    Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  3. Surface characterization and reactivity of vanadium-tin oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Tsung; Chen, Miao-Ting; Lai, De-Lun

    2011-03-01

    Surface state and reactivity of vanadium-tin mixed oxide nanoparticles (V/Sn ratios 0.05-0.2) were characterized by spectroscopic techniques and catalytic measurements. Analyses by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS) revealed that the oxidation state and surface structure of vanadium oxide species and the electronic interaction between Sn and V atoms are dependent upon the vanadium content. These oxides were evaluated as catalysts for methanol oxidation in a fixed-bed reactor. Both reaction rate and formaldehyde selectivity increased with increasing the vanadium amount in catalyst. Results demonstrate that the V 5+ site in the bridging V-O-Sn structure exhibits a high redox activity to facilitate the transformation of adsorbed methoxy to formaldehyde and that the vanadium dispersion plays a crucial role in the surface reactivity. A mechanism that elucidates the catalytic redox process is proposed.

  4. Optical glass surfaces polishing by cerium oxide particles

    NASA Astrophysics Data System (ADS)

    Bouzid, D.; Belkhie, N.; Aliouane, T.

    2012-02-01

    The use of powders in metallic oxides as means of grinding and polishing of the optical glass components have seen recently a large application in optical industry. In fact, cerium oxide abrasive is more used in the optical glass polishing. It is used as grains abrasive in suspension or fixed abrasive (pellets); these pellets are manufactured from a mixture made of cerium oxide abrasive and a organic binder. The cerium oxide used in the experiments is made by (Logitech USA) of 99 % purity, the average grain size of the particle is 300 nm, the density being 6,74 g /cm3 and the specific surface is 3,3042 m2/g. In this study, we are interested in the surfaces quality of the optical glass borosilicate crown (BK7) polished by particles in cerium oxide bounded by epoxy. The surfaces of the optical glass treated are characterized by the roughness, the flatness by using the microscope Zygo and the SEM.

  5. Thermal instability of GaSb surface oxide

    NASA Astrophysics Data System (ADS)

    Tsunoda, K.; Matsukura, Y.; Suzuki, R.; Aoki, M.

    2016-05-01

    In the development of InAs/GaSb Type-II superlattice (T2SL) infrared photodetectors, the surface leakage current at the mesa sidewall must be suppressed. To achieve this requirement, both the surface treatment and the passivation layer are key technologies. As a starting point to design these processes, we investigated the GaSb oxide in terms of its growth and thermal stability. We found that the formation of GaSb oxide was very different from those of GaAs. Both Ga and Sb are oxidized at the surface of GaSb. In contrast, only Ga is oxidized and As is barely oxidized in the case of GaAs. Interestingly, the GaSb oxide can be formed even in DI water, which results in a very thick oxide film over 40 nm after 120 minutes. To examine the thermal stability, the GaSb native oxide was annealed in a vacuum and analyzed by XPS and Raman spectroscopy. These analyses suggest that SbOx in the GaSb native oxide will be reduced to metallic Sb above 300°C. To directly evaluate the effect of oxide instability on the device performance, a T2SL p-i-n photodetector was fabricated that has a cutoff wavelength of about 4 μm at 80 K. As a result, the surface leakage component was increased by the post annealing at 325°C. On the basis of these results, it is possible to speculate that a part of GaSb oxide on the sidewall surface will be reduced to metallic Sb, which acts as an origin of additional leakage current path.

  6. The chemistry and physics of zinc oxide surfaces

    NASA Astrophysics Data System (ADS)

    Wöll, Christof

    Metal oxides are virtually everywhere - only gold has the property not to form an oxide on its surface when exposed to the ambient. As a result, understanding the physics and chemistry of oxide surfaces is a topic of pronounced general interest and, of course, also a necessary prerequisite for many technical applications. The most important of these is certainly heterogeneous catalysis, but one has to realize that - under ambient conditions - virtually all phenomena occurring at liquid/metal and gas/metal interfaces are determined by the corresponding oxide. This applies in particular to friction phenomena, adhesion and corrosion. A necessary - but not necessarily sufficient - condition for unravelling the fundamentals governing this complex field is to analyze in some detail elementary chemical and physical processes at oxide surfaces. Although the Surface Science of metal surfaces has seen a major progress in the past decades, for oxides detailed experimental investigations for well-defined single crystal surfaces still represent a formidable challenge - mostly because of technical difficulties (charging), but to some extent also due to fundamental problems related to the stabilization of polar surfaces. As a result, the amount of information available for this class of materials is - compared to that at hand for metals - clearly not satisfactory. A particular disturbing lack of information is that about the presence of hydrogen at oxide surfaces - either as hydroxy-species or in form of metal hydrides. In the present review we will summarize recent experimental and theoretical information which has become available from single crystal studies on ZnO surfaces. While the number of papers dealing with another oxide, rutile TiO 2, is significantly larger (although titania does not exhibit a polar surface), also for zinc oxide a basis of experimental and theoretical knowledge as been accumulated, which - at least for the non-polar surfaces - allows to understand

  7. Halogens on Semiconductor Surfaces: Adsorption, Oxidation, and Etching.

    NASA Astrophysics Data System (ADS)

    Stepniak, Frank

    This dissertation presents studies of Si, GaAs, and InP surfaces following exposure to the halogens Cl _2 and Br_2. Synchrotron radiation photoemission is used to investigate the oxidation states of Si near the Si/SiO_2 interface as a function of Cl_2 exposure. Oxidation of highly ordered surfaces shows no dependence of the oxidation state concentration on Cl_2 inclusion in the gas mixture. For less-than-ideal Si surfaces, oxidation with O_2 -only results in a broader transition region, and presumably, inferior electrical properties. The addition of Cl_2 in the oxidizing gas reduced the concentration of intermediate oxides by a factor of two for these disordered starting Si surfaces. A new feature is also measured from Cl-Si bonds that we associate with passivation of Si defects at the oxide interface. The adsorption and reactivity of Br_2 and Cl_2 on GaAs(110) and InP(110) was studied in the temperature range of 25 K < T < 625 K with photoemission spectroscopy and scanning tunneling microscopy. Initial halogen adsorption was dissociative at all temperatures and we find that a simple model where the halogen atoms bond to a single Ga or As surface site can not account for the complex surface chemistry and morphology. Thermally-activated etching was observed after warming a surface with chemisorbed Br or Cl. Etching resulted from the formation and eventual temperature dependent desorption of the trihalides of Ga and As. For halogen exposures where T < 650 K, monohalide-like surface bonding persist during the etching process and the etched surface is rough. For T > 700 K, the surface is essentially free of halogen and etching occurs in a nearly layer-by-layer fashion.

  8. Improve oxidation resistance at high temperature by nanocrystalline surface layer.

    PubMed

    Xia, Z X; Zhang, C; Huang, X F; Liu, W B; Yang, Z G

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  9. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Implicit in the mnemonic 'MSATT' (Mars surface and atmosphere through time) is that rates of surface processes on Mars through time should be investigated, including studies of the kinetics and mechanism of oxidative weathering reactions occurring in the Martian regolith. Such measurements are described. Two major elements analyzed in the Viking Lander XRF experiment that are most vulnerable to atmospheric oxidation are iron and sulfur. Originally, they occurred as Fe(2+)-bearing silicate and sulfide minerals in basaltic rocks on the surface of Mars. However, chemical weathering reactions through time have produced ferric- and sulfate-bearing assemblages now visible in the Martian regolith. Such observations raise several question about: (1) when the oxidative weathering reactions took place on Mars; (2) whether or not the oxidized regolith is a fossilized remnant of past weathering processes; (3) deducting chemical interactions of the ancient Martian atmosphere with its surface from surviving phases; (4) possible weathering reactions still occurring in the frozen regolith; and (5) the kinetics and mechanism of past and present-day oxidative reactions on Mars. These questions may be addressed experimentally by studying reaction rates of dissolution and oxidation of basaltic minerals, and by identifying reaction products forming on the mineral surfaces. Results for the oxidation of pyrrhotite and dissolved ferrous iron are reported.

  10. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  11. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    PubMed Central

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  12. Formation and Evaluation of Protective Layer over Magnesium Melt Under CO2/Air Mixtures

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong

    2015-02-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air that contains various concentrations of CO2 was investigated, including the kinetics of the oxide layer growth. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgO-C layer was formed under the test conditions. The thicknesses of this layer formed under CO2/air ranged from 500 nm to 12 μm. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using SEM and EDS.

  13. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida; from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties, and Rohm & Haas; and from magnesite in Nevada by Premier Chemicals. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  14. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  15. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2001-01-01

    Seawater and natural brines accounted for about 63% of US magnesium compounds production during 2000. Premier Services in Florida, Dow Chemical in Michigan, Martin Marietta Magnesia Specialties, and Rohm & Haas recovered dead-burned and caustic-calcined magnesias from seawater. And Premier Services' recoveries, in Nevada, were from magnasite.

  16. The surface and materials science of tin oxide

    NASA Astrophysics Data System (ADS)

    Batzill, Matthias; Diebold, Ulrike

    The study of tin oxide is motivated by its applications as a solid state gas sensor material, oxidation catalyst, and transparent conductor. This review describes the physical and chemical properties that make tin oxide a suitable material for these purposes. The emphasis is on surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface science studies with the broader field of materials science of tin oxide. The key for understanding many aspects of SnO 2 surface properties is the dual valency of Sn. The dual valency facilitates a reversible transformation of the surface composition from stoichiometric surfaces with Sn 4+ surface cations into a reduced surface with Sn 2+ surface cations depending on the oxygen chemical potential of the system. Reduction of the surface modifies the surface electronic structure by formation of Sn 5s derived surface states that lie deep within the band gap and also cause a lowering of the work function. The gas sensing mechanism appears, however, only to be indirectly influenced by the surface composition of SnO 2. Critical for triggering a gas response are not the lattice oxygen concentration but chemisorbed (or ionosorbed) oxygen and other molecules with a net electric charge. Band bending induced by charged molecules cause the increase or decrease in surface conductivity responsible for the gas response signal. In most applications tin oxide is modified by additives to either increase the charge carrier concentration by donor atoms, or to increase the gas sensitivity or the catalytic activity by metal additives. Some of the basic concepts by which additives modify the gas sensing and catalytic properties of SnO 2 are discussed and the few surface science studies of doped SnO 2 are reviewed. Epitaxial SnO 2 films may facilitate the surface science studies of doped films in the future. To this end film growth

  17. Structural and surface changes of copper modified manganese oxides

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    The structural and surface properties of manganese and copper-manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  18. MOISTURE AND SURFACE AREA MEASUREMENTS OF PLUTONIUM-BEARING OXIDES

    SciTech Connect

    Crowder, M.; Duffey, J.; Livingston, R.; Scogin, J.; Kessinger, G.; Almond, P.

    2009-09-28

    To ensure safe storage, plutonium-bearing oxides are stabilized at 950 C for at least two hours in an oxidizing atmosphere. Stabilization conditions are expected to decompose organic impurities, convert metals to oxides, and result in moisture content below 0.5 wt%. During stabilization, the specific surface area is reduced, which minimizes readsorption of water onto the oxide surface. Plutonium oxides stabilized according to these criteria were sampled and analyzed to determine moisture content and surface area. In addition, samples were leached in water to identify water-soluble chloride impurity content. Results of these analyses for seven samples showed that the stabilization process produced low moisture materials (< 0.2 wt %) with low surface area ({le} 1 m{sup 2}/g). For relatively pure materials, the amount of water per unit surface area corresponded to 1.5 to 3.5 molecular layers of water. For materials with chloride content > 360 ppm, the calculated amount of water per unit surface area increased with chloride content, indicating hydration of hygroscopic salts present in the impure PuO{sub 2}-containing materials. The low moisture, low surface area materials in this study did not generate detectable hydrogen during storage of four or more years.

  19. Peroxide-dependent amino acid oxidation and chemiluminescence catalysed by magnesium-pyridoxal phosphate-glutamate complex.

    PubMed

    Meyer, B U; Schneider, W; Elstner, E F

    1992-08-01

    Magnesium-pyridoxal-5'-phosphate-glutamate (MPPG) has been shown to ameliorate atherosclerotic symptoms in rabbits. In vitro, MPPG in the presence of peroxides such as cholesterolhydroperoxide or cumene hydroperoxide and Mn2+ ions produces "excited states" measurable as chemiluminescence or ethylene release from 1-aminocyclopropane-1-carboxylic acid (ACC). The reactions are stimulated synergistically by unsaturated fatty acids. Pyridoxal phosphate exhibits similar properties, but can be differentiated from the activities of MPPG or the sum of the components present in MPPG. PMID:1510700

  20. Albumin adsorption on to aluminium oxide and polyurethane surfaces.

    PubMed

    Sharma, C P; Sunny, M C

    1990-05-01

    The changes in protein adsorption onto aluminium surfaces coated with different thicknesses of oxide layers were examined. The oxide layers on aluminium substrates were derived by the anodizing technique. Protein adsorption studies were conducted using 125I-labelled albumin and the amount of albumin adsorbed was estimated with the help of a gamma counter. An increase in albumin adsorption was observed on oxide layer coated aluminium surfaces. The effect of anti-Hageman factor on albumin and fibrinogen adsorption on to bare aluminium, oxide layer coated aluminium and bare polyether urethane urea surfaces was also investigated. It was observed that the presence of anti-Hageman factor increased the adsorption of albumin and fibrinogen on to all these substrates. PMID:2383620

  1. Surface Morphology of Si(111) during Electrochemical Oxidation

    NASA Astrophysics Data System (ADS)

    Ando, A.; Miki, K.; Sakamoto, K.; Matsumoto, K.; Morita, Y.; Tokumoto, H.

    1997-03-01

    Topographical changes of hydrogen terminated Si(111) during electrochemical oxidation in a 0.2 M H_2SO4 aqueous solution have been investigated using atomic force microscopy (AFM). The hydrogen terminated surface with atomically flat terraces was prepared by dipping into a NH_4F aqueous solution. Electrochemical oxidation has been performed by a potentiostatic (constant potential) or a galvanostatic (constant current) method. AFM images show that the oxidation occured on the terraces and proceeded homogeneously. The surface became rough as the oxidation proceeded. However, step edges were still observed even after the charge of 50 mC/cm^2 was applied. Quantitative analysis of a relation between the charge and surface morphology will be discussed. the address below:

  2. New perspectives on thermal and hyperthermal oxidation of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Khalilov, Umedjon

    The growth of (ultra)thin silica (SiO2) layers on crystalline silicon (c-Si) and controlling the thickness of SiO2 is an important issue in the fabrication of microelectronics and photovoltaic devices (e.g., MOSFETs, solar cells, optical fibers etc.). Such ultrathin oxide can be grown and tuned even at low temperature (including room temperature), by hyperthermal oxidation or when performed on non-planar Si surfaces (e.g., Si nanowires or spheres). However, hyperthermal silica growth as well as small Si-NW oxidation in general and the initial stages in particular have not yet been investigated in full detail. This work is therefore devoted to controlling ultrathin silica thickness on planar and non-planar Si surfaces, which can open new perspectives in nanodevice fabrication. The simulation of hyperthermal (1-100 eV) Si oxidation demonstrate that at low impact energy (<10 eV), oxygen does not damage the Si surface and this energy region could thus beneficially be used for Si oxidation. In contrast to thermal oxidation, 10 eV species can directly oxidize Si subsurface layers. A transition temperature of about 700 K was found: below this temperature, the oxide thickness only depends on the impact energy of the impinging species. Above this temperature, the oxide thickness depends on the impact energy, type of oxidant and the surface temperature. The results show that control over the ultrathin oxide (a-SiO2) thickness is possible by hyperthermal oxidation of silicon surfaces at temperatures below the transition temperature. In small Si-NWs, oxidation is a self-limiting process that occurs at low temperature, resulting in small Si core - SiO2 shell (semiconductor + dielectric) or c-Si|SiOx| a-SiO2 nanowire, which has also being envisaged to be used as nanowire field-effect transistors and photovoltaic devices in near-future nanotechnology. Above the transition temperature such core-shell nanowires are completely converted to a-SiO2 nanowires. It can be concluded that

  3. Magnesium fluoride recovery method

    DOEpatents

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  4. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.

    PubMed

    Wang, Juan; He, Yonghui; Maitz, Manfred F; Collins, Boyce; Xiong, Kaiqin; Guo, Lisha; Yun, Yeoheung; Wan, Guojiang; Huang, Nan

    2013-11-01

    Biodegradable magnesium-based materials have a high potential for cardiovascular stent applications; however, there exist concerns on corrosion control and biocompatibility. A surface-eroding coating of poly(1,3-trimethylene carbonate) (PTMC) on magnesium (Mg) alloy was studied, and its dynamic degradation behavior, electrochemical corrosion, hemocompatibility and histocompatibility were investigated. The PTMC coating effectively protected the corrosion of the Mg alloy in the dynamic degradation test. The corrosion current density of the PTMC-coated alloy reduced by three orders and one order of magnitude compared to bare and poly(ε-caprolactone) (PCL)-coated Mg alloy, respectively. Static and dynamic blood tests in vitro indicated that significantly fewer platelets were adherent and activated, and fewer erythrocytes attached on the PTMC-coated surface and showed less hemolysis than on the controls. The PTMC coating after 16 weeks' subcutaneous implantation in rats maintained ~55% of its original thickness and presented a homogeneously flat surface demonstrating surface erosion, in contrast to the PCL coated control, which exhibited non-uniform bulk erosion. The Mg alloy coated with PTMC showed less volume reduction and fewer corrosion products as compared to the controls after 52 weeks in vivo. Excessive inflammation, necrosis and hydrogen gas accumulation were not observed. The homogeneous surface erosion of the PTMC coating from exterior to interior (surface-eroding behavior) and its charge neutral degradation products contribute to its excellent protective performance. It is concluded that PTMC is a promising candidate for a surface-eroding coating applied to Mg-based implants. PMID:23467041

  5. Potential reproductive health effects and oxidative stress associated with exposure to potassium dichromate (K2Cr2O7) and magnesium sulphate (MgSO4) in male mice

    PubMed Central

    Rasool, Mahmood; Zaigham, Kalsoom; Malik, Arif; Naseer, Muhammad Imran; Umm-e-Habiba; Manan, Abdul; Qazi, Mahmood Husain; Asif, Muhammad

    2014-01-01

    Objective: To investigate the potential harmful effects of potassium dichromate and magnesium sulphate causing oxidative stress and reproductive toxicity in adult male mice model. Methods: The experimental work was conducted on sixty male mice (Mus musculus) divided into three groups. Mice in group B and C received potassium dichromate and magnesium sulphate of 5.0 and 500 mg/Kg body weight/ml respectively, for sixty days. The blood sample was analyzed to assess oxidative stress and cellular damage. Results: Results showed high malondialdehyde (MDA) and low levels of antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)] in both potassium dichromate and magnesium sulphate administrated groups as compared to control group. Reduced number of sperm count and excessive destruction of testicular follicles, including destruction of spermatids, leydig cells and sertoli cells, were also seen in both groups. Conclusion: We concluded from present study that potassium dichromate and magnesium sulphate causes oxidative stress by generation of reactive oxygen species (ROS) and causing DNA damage in testicular cells leading to adverse reproductive abnormalities. PMID:25097524

  6. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  7. OXYANION SORPTION TO HIGH SURFACE AREA IRON AND ALUMINUM OXIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption of selected oxyanions (Mo, As, and P) to high surface area iron and aluminum oxides was investigated using in situ Raman and ATR-FTIR spectroscopy, batch sorption methods, electrophoretic mobility measurements, and surface complexation modeling. In situ ATR-FTIR and Raman spectra were coup...

  8. Metal-oxide-semiconductor photocapacitor for sensing surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Khalilzade-Rezaie, Farnood; Peale, Robert E.; Panjwani, Deep; Smith, Christian W.; Nath, Janardan; Lodge, Michael; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Yannuzzi, Mark; Cleary, Justin W.

    2015-09-01

    An electronic detector of surface plasmon polaritons (SPP) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-semiconductor capacitor. Semitransparent metal and graphene gates function similarly. We report the dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing.

  9. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    PubMed Central

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827

  10. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials.

  11. Oxidation-Resistant Surfaces For Solar Reflectors

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.; Egger, Robert A.; Banholzer, William F.

    1988-01-01

    Thin films on silver provide highly-reflective, corrosion-resistant mirrors. Study evaluated variety of oxidation-resistant reflective materials for use in solar dynamic power system, one that generates electricity by focusing Sunlight onto reciever of heat engine. Thin films of platinum and rhodium deposited by ion-beam sputtering on various substrate materials. Solar reflectances measured as function of time of exposure to radio-frequency-generated air plasma. Several protective coating materials deposited on silver-coated substrates and exposed to plasma. Analyzed before and after exposure by electon spectroscopy for chemical analysis and by Auger spectroscopy.

  12. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    SciTech Connect

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-12-31

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation.

  13. Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite

    NASA Astrophysics Data System (ADS)

    Arrabal, R.; Matykina, E.; Skeldon, P.; Thompson, G. E.

    2009-02-01

    Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm -2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na 2SiO 3.5H 2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ˜1 μm min -1 for treatment times up to 100 min and ˜0.2 μm min -1 for later times. The coatings are composed mainly of MgO and Mg 2SiO 4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.

  14. Interaction of nanostructured metal overlayers with oxide surfaces

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Wagner, Thomas

    2007-11-01

    Interactions between metals and oxides are key factors to determine the performance of metal/oxide heterojunctions, particularly in nanotechnology, where the miniaturization of devices down to the nanoregime leads to an enormous increase in the density of interfaces. One central issue of concern in engineering metal/oxide interfaces is to understand and control the interactions which consist of two fundamental aspects: (i) interfacial charge redistribution — electronic interaction, and (ii) interfacial atom transport — chemical interaction. The present paper focuses on recent advances in both electronic and atomic level understanding of the metal-oxide interactions at temperatures below 1000 ∘C, with special emphasis on model systems like ultrathin metal overlayers or metal nanoclusters supported on well-defined oxide surfaces. The important factors determining the metal-oxide interactions are provided. Guidelines are given in order to predict the interactions in such systems, and methods to desirably tune them are suggested. The review starts with a brief summary of the physics and chemistry of heterophase interface contacts. Basic concepts for quantifying the electronic interaction at metal/oxide interfaces are compared to well-developed contact theories and calculation methods. The chemical interaction between metals and oxides, i.e., the interface chemical reaction, is described in terms of its thermodynamics and kinetics. We review the different chemical driving forces and the influence of kinetics on interface reactions, proposing a strong interplay between the chemical interaction and electronic interaction, which is decisive for the final interfacial reactivity. In addition, a brief review of solid-gas interface reactions (oxidation of metal surfaces and etching of semiconductor surfaces) is given, in addition to a comparison of a similar mechanism dominating in solid-solid and solid-gas interface reactions. The main body of the paper reviews

  15. Characterizations of Ca- and Mg-incorporating micro/nano-structured surfaces on titanium fabricated by microarc oxidation and hydrothermal treatments

    NASA Astrophysics Data System (ADS)

    Ko, Sang-Hoon; Hwang, Moon-Jin; Moon, Won-Jin; Park, Yeong-Joon; Song, Ho-Jun

    2015-12-01

    The micro/nano-surface characteristics of magnesium- and calcium-incorporating titanium oxide layers fabricated on titanium metal using microarc oxidation (MAO) and hydrothermal (HT) treatments were investigated. Calcium acetate monohydrate (CA), magnesium acetate monohydrate (MA), and β-glycerophosphoric acid disodium salt pentahydrate were used as electrolytes for MAO treatment of titanium disks. CA/MA electrolyte concentrations (all in M) were 0.2/0.0 (CA20-MAO), 0.15/0.05 (CA15MA5-MAO), 0.1/0.1 (CA10MA10-MAO), 0.05/0.15 (CA5MA15-MAO), and 0.0/0.2 (MA20-MAO). MAO-HT groups were prepared by hydrothermal treatment of MAO groups. The porous surface morphology was consistent even after HT treatment. The incorporation of Mg ions in the oxide layer during MAO treatment was more favorable than incorporation of Ca ions. However, Mg ions were released more rapidly than Ca ions after HT treatment. The anatase TiO2 structure was dominant for all the groups and an increase in the rutile TiO2 structure was observed with an increase in MA concentration. Nano-sized crystallites were observed on the porous surface for all MAO-HT groups. Nano-needle-like crystallites were observed on the surface of CA20-MAO-HT. The crystallites exhibited shorter and thicker characteristics with an increase in Mg concentration.

  16. A molecular catalyst for water oxidation that binds to metal oxide surfaces

    PubMed Central

    Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  17. Comparison of thermal oxidation and plasma oxidation of 4H-SiC (0001) for surface flattening

    SciTech Connect

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya

    2014-03-10

    The thermal oxidation and water vapor plasma oxidation of 4H-SiC (0001) were investigated. The initial oxidation rate of helium-based atmospheric-pressure plasma oxidation was six times higher than that of thermal oxidation. The oxide-SiC interface generated by plasma oxidation became flatter with increasing thickness of the oxide, whereas the interface generated by thermal oxidation was atomically flat regardless of the oxide thickness. Many pits were generated on the thermally oxidized surface, whereas few pits were observed on the surface oxidized by plasma. After the oxide layer generated plasma oxidation was removed, an atomically flat and pit-free SiC surface was obtained.

  18. The intermediate oxidation of the Pd(100) surface

    NASA Astrophysics Data System (ADS)

    Mikkelsen, A.; Lundgren, E.; Gustafson, J.; Borg, M.; Andersen, J. N.

    2003-03-01

    The formation of oxides on metal surfaces has recently received much attention. Apart from the fundamental importance of the oxidation process, the interest is driven by the observation that oxides can play an important role in catalysis1, 2. The geometric structure of surface oxides can in some cases3 not be directly inferred from known bulk oxides. The surface structures formed by oxygen on Pd(100) have been studied by Scanning Tunneling Microscopy (STM), High Resolution Core-Level Spectroscopy (HRCLS) and Low Energy Electron Diffraction (LEED). It is shown that the structure determined in a recent LEED analysis4 of the Pd(100)- (root5xroot5)-O structure formed by adsorption of 0.8 ML of oxygen is difficult to reconcile with our STM and HRCLS data. New models for this surface oxide consistent with our experimental results are suggested. [1] Y. D. Kim, A. P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, and G. Ertl., Science 287, 1474 (2000). [2] B. L. M. Hendriksen and J. W. M. Frenken, Phys. Rev. Lett. 89, 046101 (2002). [3] E. Lundgren,, G. Kresse, C. Klein, M. Borg, J.N. Andersen, M. De Santis, Y. Gauthier, C. Konvicka, M. Schmid, and P.Varga, Phys. Rev. Lett. 88 (2002) 246103 [4] M. Saidy, O.L. Warren, P.A. Thiel, and K.A.R. Mitchell, Surf. Sci. 494, L799 (2001).

  19. Surface structures of polar and non-polar metal oxides

    NASA Astrophysics Data System (ADS)

    Chamberlin, Sara E.

    Metal oxides have long been a challenge to surface science since many traditional surface techniques are often affected by their insulating nature. In particular, high current electron beams can cause charging effects in addition to potentially desorbing surface species and damaging the surface. The development of a low current, low energy electron diffraction (LEED) system has allowed us to investigate metal oxide surfaces while significantly limiting the above mentioned complications. This low current LEED system has been used to perform a structural LEED-IV study of the reconstructed TiO2(011)-(2x1) surface. This surface is known to experience significant oxygen desorption when exposed to high current electron beams. The low current LEED system was crucial to maintain confidence in the structure found, which generally agreed with recently published models, but did not confirm one key feature. The oxygen atoms at the surface were not found to be asymmetrically bonded, which has been thought to be the cause of this surface's enhanced photocatalytic activity. We have also used the low current LEED system to investigate the polar oxide surfaces of ZnO(000 1¯) and MgO(111)-(✓3x✓3)R30°. For Zn0(000 1¯) LEED-IV structural study was combined with Density Functional Theory (DFT) calculations to investigate the impact of hydrogen on the surface. Our results support a disordered, fractional coverage of hydrogen terminating the surface. MgO(111)-(✓3x✓3)R30° has proven to be a challenging reconstructed surface. Both LEED-IV and surface x-ray diffraction (SXRD) find that previously proposed models for the surface are not a good fit to the data, so other models have been explored. The SXRD data in particular suggest that the reconstruction is more than one atomic layer deep.

  20. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  1. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  2. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  3. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  4. Surface modification of a biodegradable magnesium alloy with phosphorylcholine (PC) and sulfobetaine (SB) functional macromolecules for reduced thrombogenicity and acute corrosion resistance

    PubMed Central

    Ye, Sang-Ho; Jang, Yong-Seok; Yun, Yeo-Heung; Shankarraman, Venkat; Woolley, Joshua R.; Hong, Yi; Gamble, Lara J.; Ishihara, Kazuhiko; Wagner, William R.

    2013-01-01

    Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi and SBSSi modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys. PMID:23705967

  5. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  6. Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    SciTech Connect

    Uçar, A.; Çopuroğlu, M.; Suzer, S.; Baykara, M. Z.; Arıkan, O.

    2014-10-28

    We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (∼0.5°) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45° before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100° were obtained.

  7. Reporting central tendencies of chamber measured surface emission and oxidation

    SciTech Connect

    Abichou, Tarek; Clark, Jeremy; Chanton, Jeffery

    2011-05-15

    Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report 'averages' of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the 'average' measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH{sub 4} emissions and surface air CH{sub 4} concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R{sup 2} = 0.86), indicating that surface scans are a good way of identifying locations of high emissions.

  8. Magnesium in diet

    MedlinePlus

    Diet - magnesium ... Magnesium is needed for more than 300 biochemical reactions in the body. It helps to maintain normal ... There is ongoing research into the role of magnesium in preventing and managing disorders such as high ...

  9. Low magnesium level

    MedlinePlus

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  10. Surface Properties of Photo-Oxidized Bituminous Coals: Final report

    SciTech Connect

    1998-09-01

    Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light

  11. Characterization of air-formed surface oxide film on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks' solution

    NASA Astrophysics Data System (ADS)

    Nagai, Akiko; Tsutsumi, Yusuke; Suzuki, Yuta; Katayama, Keiichi; Hanawa, Takao; Yamashita, Kimihiro

    2012-05-01

    The air-formed surface oxide films used for stents were characterized to determine their composition and chemical state on a Co-Ni-Cr-Mo alloy. The change of the films in Hanks' solution was used to estimate the reconstruction of the film in the human body. Angle-resolved X-ray photoelectron spectroscopy was used to characterize the composition of the film and substrate, as well as the film's thickness. The surface oxide film on the Co-Ni-Cr-Mo alloy (when mechanically polished) consists of oxide species of cobalt, nickel, chromium, and molybdenum, contains a large amount of OH-, and has a thickness of approximately 2.5 nm. Cations exist in the oxide as Co2+, Ni2+, Cr3+, Mo4+, Mo5+, and Mo6+. Chromium is enriched and cobalt and nickel are depleted in the oxide; however, nickel is enriched and cobalt is depleted in the substrate alloy just under the surface oxide film. Concentration of chromium was low and that of nickel was high at small take-off angles. This indicates that distribution of chromium is greater in the inner layer, but nickel is distributed more in the outer layer of the surface oxide film. During immersion in Hanks' solution, cobalt and nickel dissolved, and the film composition changed to mostly chromium oxide (Cr3+), along with small amounts of cobalt, nickel, and molybdenum oxides, and calcium phosphate containing magnesium, potassium, and carbonate. After immersion in Hanks' solution, the thickness of the surface layer containing calcium phosphate increased to more than 4 nm, while the amount of OH- increased. The amount of cobalt and nickel in the surface oxide film and in the substrate alloy just below the oxide decreased during immersion.

  12. Surface oxidability of pure liquid metals and alloys

    NASA Astrophysics Data System (ADS)

    Arato, E.; Bernardi, M.; Giuranno, D.; Ricci, E.

    2012-01-01

    The analysis of the oxygen-liquid metal interaction is a topic of particular technological interest. A deep knowledge of the kinetics and transport mechanisms involved in the oxidation phenomena is necessary: the effect of oxidation reactions taking place in the gas phase and the evaporation of oxides must be considered. This paper aims to review our works in order to provide a systematic analysis of the oxidation of pure metals and determine the most likely to keeping oxygen-free the surface in a binary alloy. In addition, the upgrading of this theoretical approach, here briefly described, is addressed to give a contribution to a better understanding of the evolution of oxidation phenomena close to the solid-liquid-gas interfaces.

  13. Surface-confined atomic silver centers catalyzing formaldehyde oxidation.

    PubMed

    Hu, Pingping; Amghouz, Zakariae; Huang, Zhiwei; Xu, Fei; Chen, Yaxin; Tang, Xingfu

    2015-02-17

    Formaldehyde (HCHO) is a prior pollutant in both indoor and outdoor air, and catalytic oxidation proves the most promising technology for HCHO abatement. For this purpose, supported metal catalysts with single silver atoms confined at 4-fold O4-terminated surface hollow sites of a hollandite manganese oxide (HMO) as catalytic centers were synthesized and investigated in the complete oxidation of HCHO. Synchrotron X-ray diffraction patterns, X-ray absorption spectra, and electron diffraction tomography revealed that geometric structures and electronic states of the catalytic centers were tuned by the changes of HMO structures via controllable metal-support interactions. The catalytic tests demonstrated that the catalytically active centers with high electronic density of states and strong redox ability are favorable for enhancement of the catalytic efficiency in the HCHO oxidation. This work provides a strategy for designing efficient oxidation catalysts for controlling air pollution. PMID:25634796

  14. The oxidation state of the surface of Venus. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Klingelhofer, G.; Brackett, R. A.; Izenberg, N.

    1994-01-01

    We present experimental results showing that basalt is oxidized in CO-CO2 gas mixtures having CO number densities close to those (approximately 2 times higher) at the surface of Venus. The results suggest that the red color observed by Pieters et al at the Venera 9 and 10 landing sites is due to subaerial oxidation of Fe(2+)-bearing basalt on the surface of Venus, and that hematite, instead of magnetite, is present on the surface of Venus. Well-characterized basalt powder was iosthermally heated in 1000 ppm CO-CO2 gas mixtures at atmospheric pressure for several days. The starting material and reacted samples were analyzed by Mossbauer spectroscopy to determine the amount of Fe(2+) and Fe(3+) in the samples. X-ray diffraction and optical microscopy were also used to characterize samples. The basalt oxidation occurs because the CO and CO2 do not equilibrate in the gas mixture at the low temperatures used. Thus, the basalt reacts with the more abundant CO2 and is oxidized. We propose that the red color of the surface of Venus is due to failure of CO and CO2 to equilibrate with one another in the near-surface atmosphere of Venus, leading to subaerial oxidation of erupted Fe(2+)-bearing basalts. Our interpretation is supported by our studies of magnetite oxidation, which show that synthetic magnetite powders are oxidized to hematite in CO-CO2 gas mixtures inside the magnetite stability field, by our studies of pyrite decomposition, and by independent work on CO-CO2 equilibration in furnace gases.

  15. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  16. Surface Chemistry and Properties of Oxides as Catalyst Supports

    SciTech Connect

    DeBusk, Melanie Moses; Narula, Chaitanya Kumar; Contescu, Cristian I

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  17. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  18. Enhanced photothermal effect of surface oxidized silicon nanocrystals anchored to reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Afshani, Parichehr; Moussa, Sherif; Atkinson, Garrett; Kisurin, Vitaly Y.; Samy El-Shall, M.

    2016-04-01

    We demonstrate the coupling of the photothermal effects of silicon nanocrystals and graphene oxide (GO) dispersed in water. Using laser irradiation (532 nm or 355 nm) of suspended Si nanocrystals in an aqueous solution of GO, the synthesis of surface oxidized Si-reduced GO nanocomposites (SiOx/Si-RGO) is reported. The laser reduction of GO is accompanied by surface oxidation of the Si nanocrystals resulting in the formation of the SiOx/Si-RGO nanocomposites. The SiOx/Si-RGO nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal and thermomechanical applications.

  19. Reaction of ethanol on oxidized and metallic cobalt surfaces

    NASA Astrophysics Data System (ADS)

    Hyman, Matthew P.; Vohs, John M.

    2011-02-01

    The reaction of ethanol on metallic and oxidized cobalt surfaces was studied using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) in order to determine the dependence of the reaction pathways on the cobalt oxidation state. The primary reaction for ethoxide species on metallic cobalt surfaces was decarbonylation producing CO, H 2 and carbon. This reaction was facile and occurred below 400 K. In contrast, CoO x surfaces which predominantly contained Co 2+ were selective for the dehydrogenation of ethoxide groups to produce acetaldehyde at 400 K. A fraction of the acetaldehyde molecules produced by this pathway were further oxidized to acetate which decomposed to produce CO 2 at 495 K. More highly oxidized Co surfaces that contained both CO 2+ and Co 3+ were active for the complete oxidation of ethanol producing CO, CO 2, and H 2O as the primary products. The insights that these results provide for understanding the mechanism of the steam reforming of ethanol on cobalt catalysts is discussed.

  20. Mechanical tearing of graphene on an oxidizing metal surface

    NASA Astrophysics Data System (ADS)

    George, Lijin; Gupta, Aparna; Shaina, P. R.; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-01

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ˜0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp3-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  1. Cr(OH)₃(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

    SciTech Connect

    Namgung, Seonyi; Kwon, M.; Qafoku, Nikolla; Lee, Gie Hyeon

    2014-09-16

    This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).

  2. Local anodic oxidation patterning of Au deposited Si surfaces.

    PubMed

    Vijaykumar, T; Kulkarni, G U

    2009-09-01

    Nanopatterning of Si(100) surfaces deposited with Au films from physical and chemical methods, has been carried out using a AFM set up mounted with a conducting tip. At a tip bias of -12 V, the LAO patterns drawn on various Au/SiOx surfaces have been compared with those on bare Si. The height of the oxide patterns is several times higher in the case of Au covered Si surfaces compared to patterns on bare Si surface. The enhancement in LAO is related to the catalytic activity of Au nanoparticulates at SiOx interface. PMID:19928226

  3. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid.

    PubMed

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-28

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (E(p), 1.10 ≤ E(p) ≤ 1.50 V), polarization time (t(p), 10(0) ≤ t(p) ≤ 10(4) s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (d(ox)). Because X1 > d(ox) for the entire range of E(p), t(p), and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Pt(δ+)-O(δ-) surface dipole (μ(PtO)), and the potential drop (V(ox)) and electric field (E(ox)) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide. PMID:25362330

  4. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  5. Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal Oxide Surfaces

    EPA Science Inventory

    Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration a...

  6. The technology of chromium oxide passivation on stainless steel surface

    SciTech Connect

    Ohmi, Tadahiro; Ohki, Atsushi; Nakamura, Masakazu; Kawada, Koji; Watanabe, Tsuyoshi; Nakagawa, Yoshinori; Miyoshi, Shinji; Takahashi, Shinji; Chen, M.S.K. . Dept. of Electronics)

    1993-06-01

    A complete chromium oxide (Cr[sub 2]O[sub 3]) passivation technology has been developed for stainless steel surfaces for use in high purity gas-delivery systems and process chambers. Starting with an electrochemical buffing (ECB) to add to electro-polished (EP) SUS316L stainless steel material, an optimal thermal treatment was found by using a gas mixture of 10% hydrogen, 1--10 ppm oxygen and argon balance gas at 500C for 1 h. Five-day corrosion tests with HCl gas (containing 1.4 ppm moisture) at 5 kg/cm[sup 2] and 100C showed no sign of corrosion on the chromium oxide passivated surface. Chemical stability tests on this surface with silane specialty gas thermal decomposition also showed a remarkable noncatalytic activity compared with conventional surfaces.

  7. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    PubMed Central

    Variola, Fabio; Zalzal, Sylvia Francis; Leduc, Annie; Barbeau, Jean; Nanci, Antonio

    2014-01-01

    Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB) was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS), nanobeam electron diffraction (NBED), and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting. PMID:24872694

  8. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties.

    PubMed

    Variola, Fabio; Zalzal, Sylvia Francis; Leduc, Annie; Barbeau, Jean; Nanci, Antonio

    2014-01-01

    Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB) was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS), nanobeam electron diffraction (NBED), and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting. PMID:24872694

  9. Formation and stability of surface oxides and oxide surfaces of the O/Cu system: First-principles investigations

    NASA Astrophysics Data System (ADS)

    Soon, Aloysius; Todorova, Mira; Delley, Bernard; Stampfl, Catherine

    2006-03-01

    Copper-based catalysts are important for several industrial reactions, e.g., the low-temperature water-gas-shift reaction and for methanol oxidation reactions. Despite this, very little is presently known about the surface structure, about the atomic and molecular processes involved and the associated reaction pathways. As a first step towards a microscopic understanding, we use density-functional theory to investigate chemisorption of oxygen on Cu(111), and the stability of surface oxides and oxide surfaces. Surface oxide structures are found to be energetically favoured over chemisorbed oxygen even at coverages as low as 116,L. Taking into account the pressure and temperature through the framework of ab initio thermodynamics [1,2] however, shows that for the conditions relevant to technical catalysis, bulk oxide structures are the appropriate ones to consider. Our results are compared to the behavior of other O/transition-metal systems. [1] K. Reuter, C. Stampfl and M. Scheffler, in Handbook of Materials Modeling, Volume 1, Fundamental Models and Methods, Sidney Yip (Ed). [2] C. Stampfl, Catal. Today 105, 17 (2005).

  10. Surface modification of nickel based alloys for improved oxidation resistance

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.

    2005-02-01

    The present research is aimed at the evaluation of a surface modification treatment to enhance the high temperature stability of nickel-base superalloys. A low Coefficient Thermal Expansion (CTE ~12.5x10-6/°C) alloy based on the composition (in weight %) of Ni-22Mo-12.5Cr was produced by Vacuum Induction Melting and Vacuum Arc Melting and reduced to sheet by conventional thermal-mechanical processing. A surface treatment was devised to enhance the oxidation resistance of the alloys at high temperature. Oxidation tests (in dry and wet air; treated and untreated) were conducted 800°C to evaluate the oxidation resistance of the alloys. The results were compared to the behavior of Haynes 230 (Ni-22Cr) in the treated and untreated conditions. The treatment was not very effective for Haynes 230, as this alloy had similar oxidation behavior in both the treated and untreated conditions. However, the treatment had a significant effect on the behavior of the low CTE alloy. At 800°C, the untreated Ni-12.5Cr alloy was 5 times less oxidation resistant than Haynes 230. However, in the treated condition, the Ni-12.5Cr alloy had comparable oxidation resistance to the Haynes 230 alloy.

  11. Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys

    SciTech Connect

    Zhang, Long; Jiang, Bailing; Ge, Yanfeng; Nyberg, Eric A.; Liu, Ming

    2013-05-21

    Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on the surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.

  12. Producing nano-grained and Al-enriched surface microstructure on AZ91 magnesium alloy by high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Li, Mincai

    2016-05-01

    Surface treatment of AZ91 magnesium alloy was carried out by high current pulsed electron beam (HCPEB) with accelerating voltage 27 kV and energy density 3 J/cm2. The surface microstructure and phase composition were characterized by using optical microscope (OM), X-ray diffraction (XRD), and scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). The surface microhardness and corrosion resistance were measured. Under HCPEB treatments, the preferential evaporation of Mg element occurred intensively on irradiated surface and the initial large Mg17Al12 phases were dissolved. The nano-grained and Al-enriched surface modified layer was ultimately formed of depth ∼8 μm. According to the testing results, the surface microhardness increased from 63 to 141 HK after 30 pulses of HCPEB treatment, while the best improvement of corrosion resistance was obtained by 15 pulses of HCPEB treatment with a cathodic current density decreased by two orders of magnitude as compared with the initial AZ91 sample.

  13. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  14. Oxidation of a platinum microwire surface applied in glucose detection

    NASA Astrophysics Data System (ADS)

    Pham Xuan, Thanh Tung; Thanh Tuyen Le, Thi; Duy Tran, Phu; Van Pham, Binh; Hien Tong, Duy; Chien Dang, Mau

    2010-06-01

    In this paper, we report the results of the surface oxidation of platinum (Pt) microwires in aqueous sulfuric acid (H2SO4) solutions by using a cyclic voltammetry technique. The Pt microwire chips were scanned and applied with voltage potentials ranging from 0 to 1.4 V in the H2SO4 solution with concentrations from 0.0003 to 0.0018 M to find out the optimized concentration of sulfuric acid for the oxidation process. The cyclic voltammetry (CV) measurements show the oxidation peak at a potential range from 1.1 to 1.2 V. This is the peak of the interfacial place exchange of chemisorbed O (Ochem) and surface Pt atoms, resulting in the formation of a quasi-3D surface PtO lattice comprising Pt2+ and O2‑. The oxidized surface Pt microwires were then functionalized with a 3-aminopropyl triethoxy silane (APTES) and glucose oxidase (GOD) was immobilized onto the functionalized chips for further application in glucose detection. By using this process, Pt microwires have been used for the successful detection of glucose in solution with concentrations in the range of 4–20 mM.

  15. The relationship between concentrations of magnesium and oxidized low-density lipoprotein and Beta2-microglobulin in the serum of patients on the end-stage of renal disease.

    PubMed

    Raikou, Vaia D; Kyriaki, Despina

    2016-05-01

    The end-stage of renal disease is associated with increased oxidative stress and oxidative modification of low-density lipoproteins (LDLs). Beta2 microglobulin (beta2M) is accumulated in the serum of dialysis patients. Magnesium (Mg) plays a protective role in the development of oxidative stress in healthy subjects. We studied the relationship between concentrations of magnesium and oxidized LDL (ox-LDL) and beta2M in the serum of patients on the end stage of renal disease. In 96 patients on on-line- predilution hemodiafiltration, beta2M and intact parathormone were measured by radioimmunoassays. High-sensitivity C-reactive protein (hsCRP) and ox-LDL were measured using ΕLISA. Serum bicarbonate levels were measured in the blood gas analyser gas machine. We performed logistic regression analysis models to investigate Mg as an important independent predictor of elevated ox-LDL and high beta2M serum concentrations, after adjustment to traditional and specific for dialysis patients' factors. We observed a positive correlation of Mg with ox-LDL (r = 0.383, P = 0.001), but the association of Mg with beta2M, hsCRP, and serum bicarbonate levels was significantly inverse (r = -0.252, P = 0.01, r = -0.292, P = 0.004, and r = -0.282, P = 0.04 respectively). The built logistic-regression analysis showed that Mg act as a significant independent factor for the elevated ox-LDL and beta2M serum concentrations adjusting to traditional and specific factors for these patients. We observed a positive relationship between magnesium and acidosis status- related ox-LDL concentrations, but the inverse association between magnesium and beta2M serum concentrations in hemodialysis patients. PMID:27215248

  16. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    PubMed Central

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  17. Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer

    SciTech Connect

    Sarpi, B.; Daineche, R.; Girardeaux, C.; Bertoglio, M.; Derivaux, F.; Vizzini, S.; Biberian, J. P.; Hemeryck, A.

    2015-01-12

    Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicide interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.

  18. Electrochemically-Controlled Compositional Oscillations of Oxide Surfaces

    SciTech Connect

    Mutoro, Eva; Crumlin, Ethan; Pöpke, Hendrik; Luerssen, Bjoern; Amati, Matteo; Abyaneh, Majid; Biegalski, Michael D; Christen, Hans M; Gregoratti, Luca; Janek, Jürgen; Shao-Horn, Yang

    2012-01-01

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically and/or ionically conducting, and thus they have been used in a number of solid-state devices such as solid oxide fuel cells and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface chemistries is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface chemistry changes of La0.8Sr0.2CoO3 (LSC113), LaSrCoO4 (LSC214), and LSC214-decorated LSC113 films (LSC113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr was found for the LSC113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites.

  19. The role of probe oxide in local surface conductivity measurements

    SciTech Connect

    Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.; Maffeis, T. G. G.; Cobley, R. J.; Kalna, K.

    2015-05-07

    Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantum dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.

  20. Bacterial adhesion to glass and metal-oxide surfaces.

    PubMed

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  1. Polarization-driven catalysis via ferroelectric oxide surfaces.

    PubMed

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2016-07-20

    The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields (e.g., temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NOx direct decomposition and SO2 oxidation into SO3. The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations. PMID:27381676

  2. Mechanically reliable surface oxides for high-temperature corrosion resistance

    SciTech Connect

    Natesan, K.; Veal, B.W.; Grimsditch, M.; Renusch, D.; Paulikas, A.P.

    1995-05-01

    Corrosion is widely recognized as being important, but an understanding of the underlying phenomena involves factors such as the chemistry and physics of early stages of oxidation, chemistry and bonding at the substrate/oxide interface, role of segregants on the strength of that bond, transport processes through scale, mechanisms of residual stress generation and relief, and fracture behavior at the oxide/substrate interface. Because of this complexity a multilaboratory program has been initiated under the auspices of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, with strong interactions and cross-leveraging with DOE Fossil Energy and US industry. Objective is to systematically generate the knowledge required to establish a scientific basis for designing and synthesizing improved protective oxide scales/coatings (slow-growing, adherent, sound) on high-temperature materials without compromising the requisite properties of the bulk materials. The objectives of program work at Argonne are to (1) correlate actual corrosion performance with stresses, voids, segregants, interface roughness, initial stages of oxidation, and microstructures; (2) study such behavior in growing or as-grown films; and (3) define prescriptive design and synthesis routes to mechanically reliable surface oxides. Several techniques, such as Auger electron spectroscopy, X-ray diffraction, X-ray grazing incidence reflectance, grazing-angle X-ray fluorescence, optical fluorescence, and Raman spectroscopy, are used in the studies. Tne project has selected Fe-25 wt.% Cr-20 wt.% Ni and Fe-Cr-Al alloys, which are chromia- and alumina-formers respectively, for the studies. This paper presents some of the results on early stages of oxidation and on surface segregation of elements.

  3. Surface characteristics and in vitro biocompatibility of a manganese-containing titanium oxide surface

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee

    2011-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating the manganese ions (Mn) obtained by hydrothermal treatment with the expectation of utilizing potent integrin-ligand binding enhancement effect of Mn for future applications as an endosseous implant surface. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro biocompatibility of the Mn-containing Ti oxide surface was evaluated in comparison with untreated bare Ti using a mouse calvaria-derived osteoblastic cell line (MC3T3-E1). The hydrothermal treatment produced a nanostructured Mn-incorporated Ti oxide layer approximately 0.6 μm thick. ICP-AES analysis demonstrated that the Mn ions were released from the hydrothermally treated surface into the solution. Mn incorporation notably decreased cellular attachment, spreading, proliferation, alkaline phosphatase activity, and osteoblast phenotype gene expression compared with the bare Ti surface (p < 0.05). The results indicate that the Mn-incorporation into the surface Ti oxide layer has no evident beneficial effects on osteoblastic cell function, but instead, actually impaired cell behavior.

  4. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 °C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1° and a low contact angle hysteresis of 2.5°. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  5. Hydrogen passivation and ozone oxidation of silicon surface

    SciTech Connect

    Kurokawa, Akira; Nakamura, Ken; Ichimura, Shingo

    1998-12-31

    The oxidation of H/Si(100) and H/Si(111) with high concentration ozone gas was investigated with X-ray photoelectron spectroscopy (XPS). The ozone oxidation of partially hydride-covered surface was observed. The hydrogen termination reduced the rate of oxygen insertion into silicon backbond. The reduction of oxygen insertion rate by the H-termination for H/Si(100) was larger than that for H/Si(111). The dissociation rate of ozone molecule on H/Si was estimated to be {approx_equal}0.2 with a directional mass analyzer.

  6. Chloridization and Reduction Roasting of High-Magnesium Low-Nickel Oxide Ore Followed by Magnetic Separation to Enrich Ferronickel Concentrate

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-02-01

    The chloridization and reduction roasting of high-magnesium, low-nickel oxide ore containing 0.82 pct Ni and 31.49 pct MgO were investigated in this study. Mineralogical investigation indicated that 84.6 pct of nickel was associated with silicates, and nickel was well distributed in mineral in the form of isomorphism. A series of chloridization tests with different added proportions of sodium chloride and coal along with different roasting temperatures and times was conducted. The results indicate that for a ferronickel content of 7.09 pct Ni, a nickel recovery of 98.31 pct could be obtained by chloridizing the laterite ore at 1473 K (1200 °C) for 20 minutes with the addition of 10 wt pct sodium chloride and 8 wt pct coal followed by the application of a 150-mT magnetic field. X-ray diffraction indicated that the nickel is mainly present in the form of ferronickel, which can also be detected by SEM-EDS. Compared with the roasted ore with no added chlorinating agent, the ore roasted in the presence of sodium chloride exhibited enhanced ferronickel particle growth.

  7. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2014-12-01

    A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO2 and ZrO2 nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO2 and ZrO2 peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  8. Sorption, desorption, and surface oxidative fate of nicotine.

    PubMed

    Petrick, Lauren; Destaillats, Hugo; Zouev, Irena; Sabach, Sara; Dubowski, Yael

    2010-09-21

    Nicotine dynamics in an indoor environment can be greatly affected by building parameters (e.g. relative humidity (RH), air exchange rate (AER), and presence of ozone), as well as surface parameters (e.g. surface area (SA) and polarity). To better understand the indoor fate of nicotine, these parameter effects on its sorption, desorption, and oxidation rates were investigated on model indoor surfaces that included fabrics, wallboard paper, and wood materials. Nicotine sorption under dry conditions was enhanced by higher SA and higher polarity of the substrate. Interestingly, nicotine sorption to cotton and nylon was facilitated by increased RH, while sorption to polyester was hindered by it. Desorption was affected by RH, AER, and surface type. Heterogeneous nicotine-ozone reaction was investigated by Fourier transform infrared spectrometry with attenuated total reflection (FTIR-ATR), and revealed a pseudo first-order surface reaction rate of 0.035 +/- 0.015 min(-1) (at [O(3)] = 6 +/- 0.3 x 10(15) molecules cm(-3)) that was partially inhibited at high RH. Extrapolation to a lower ozone level ([O(3)] = 42 ppb) showed oxidation on the order of 10(-5) min(-1) corresponding to a half-life of 1 week. In addition, similar surface products were identified in dry and high RH using gas chromatography-mass spectrometry (GC-MS). However, FTIR analysis revealed different product spectra for these conditions, suggesting additional unidentified products and association with surface water. Knowing the indoor fate of condensed and gas phase nicotine and its oxidation products will provide a better understanding of nicotine's impact on personal exposures as well as overall indoor air quality. PMID:20582338

  9. Oxidative dehydrogenation of n-butane over magnesium vanadate nano-catalysts supported on magnesia-zirconia: effect of vanadium content.

    PubMed

    Lee, Jong Kwon; Hong, Ung Gi; Yoo, Yeonshick; Cho, Young-Jin; Lee, Jinsuk; Chang, Hosik; Song, In Kyu

    2013-12-01

    Magnesia-zirconia (MgO-ZrO2) support was prepared by a sol-gel method, and magnesium vanadate nano-catalysts supported on magnesia-zirconia (X-Mg3(VO4)2/MgO-ZrO2) were then prepared by a wet impregnation method with a variation of vanadium content (X = 6.6, 9.9, 12.8, 15.2, and 19.1 wt%). X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts were applied to the oxidative dehydrogenation of n-butane to n-butene and 1,3-butadiene. The formation of X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts was well confirmed by XRD, XPS, and ICP-AES analyses. 15.2-Mg3(VO4)2/MgO-ZrO2 and 19.1-Mg3(VO4)2/MgO-ZrO2 catalysts experienced a catalyst deactivation, while the other Mg3(VO4)2/MgO-ZrO2 catalysts showed a stable catalytic performance during the whole reaction time. The effect of oxygen property of X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts on the catalytic performance in the oxidative dehydrogenation of n-butane was investigated. Experimental results revealed that oxygen capacity of the catalyst was closely related to the catalytic performance, while oxygen mobility of the catalyst played an important role in the catalyst stability. Among the catalysts tested, 12.8-Mg3(VO4)2/MgO-ZrO2 catalyst showed the best catalytic performance in terms of yield for TDP (total dehydrogenation products). PMID:24266201

  10. Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization.

    PubMed

    Bai, Yu; Zhang, Wenhua; Zhang, Zhenhua; Zhou, Jie; Wang, Xijun; Wang, Chengming; Huang, Weixin; Jiang, Jun; Xiong, Yujie

    2014-10-22

    Heterogeneous catalysis often involves charge transfer from catalyst surface to adsorbed molecules, whose activity thus depends on the surface charge density of catalysts. Here, we demonstrate a unique solution-phase approach to achieve controllable interfacial lengths in oxide-metal hybrid structures. Resulting from their different work functions, surface polarization is induced by the Ag-CuO interface and acts to tailor the surface charge state of CuO. As a result, the designed hybrid catalysts exhibit enhanced intrinsic activities in catalyzing CO oxidation in terms of apparent activation energy, as compared with their counterparts. Moreover, the CO conversion rate can be enhanced by maximizing the Ag-CuO interfacial length and thus the number of active sites on the CuO. This work provides a new strategy for tuning catalytic performance by controlling interface in hybrid catalysts. PMID:25296380

  11. Ammonia modification of oxide-free Si(111) surfaces

    NASA Astrophysics Data System (ADS)

    Chopra, Tatiana Peixoto; Longo, Roberto C.; Cho, Kyeongjae; Chabal, Yves J.

    2016-08-01

    Amination of surfaces is useful in a variety of fields, ranging from device manufacturing to biological applications. Previous studies of ammonia reaction on silicon surfaces have concentrated on vapor phase rather than wet chemical processes, and mostly on clean Si surfaces. In this work, the interaction of liquid and vapor-phase ammonia is examined on three types of oxide-free surfaces - passivated by hydrogen, fluorine (1/3 monolayer) or chlorine - combining infrared absorption spectroscopy, X-ray photoelectron spectroscopy, and first-principles calculations. The resulting chemical composition highly depends on the starting surface; there is a stronger reaction on both F- and Cl-terminated than on the H-terminated Si surfaces, as evidenced by the formation of Si-NH2. Side reactions can also occur, such as solvent reaction with surfaces, formation of ammonium salt by-products (in the case of 0.2 M ammonia in dioxane solution), and nitridation of silicon (in the case of neat and gas-phase ammonia reactions for instance). Unexpectedly, there is formation of Si-H bonds on hydrogen-free Cl-terminated Si(111) surfaces in all cases, whether vapor phase of neat liquid ammonia is used. The first-principles modeling of this complex system suggests that step-edge surface defects may play a key role in enabling the reaction under certain circumstances, despite the endothermic nature for Si-H bond formation.

  12. Binding and uptake of 125iodine-labelled, oxidized low density lipoprotein by macrophages: comparison of the effects of alpha-tocopherol, probucol, pyridoxal-5'-phosphate and magnesium-pyridoxal-5'-phosphate-glutamate.

    PubMed

    Selmer, D; Senekowitsch-Schmidtke, R; Schneider, W; Elstner, E F

    1997-01-01

    Specific and unspecific binding and uptake (internalization) by macrophages of 125iodine-labelled, copper-oxidized human low density lipoprotein is differently influenced by the anti-oxidants alpha-tocopherol (alpha-Toc), probucol (Prob), pyridoxal-5'-phosphate (PP) and the magnesium-pyridoxal-5'-phosphate glutamate complex (MPPG). Binding as well as internalization, mediated by the so-called "scavenger receptor" is lower in the presence of MPPG whereas both specific binding and internalization are enhanced. The comparison of the effects in vitro allows a rating of the potentially anti-atherogenic and thus protective effects of the tested substances as follows: MPPG > PP > alpha-Toc > Prob. PMID:9090072

  13. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes.

    PubMed

    Lu, Xunyu; Yim, Wai-Leung; Suryanto, Bryan H R; Zhao, Chuan

    2015-03-01

    Large-scale storage of renewable energy in the form of hydrogen (H2) fuel via electrolytic water splitting requires the development of water oxidation catalysts that are efficient and abundant. Carbon-based nanomaterials such as carbon nanotubes have attracted significant applications for use as substrates for anchoring metal-based nanoparticles. We show that, upon mild surface oxidation, hydrothermal annealing and electrochemical activation, multiwall carbon nanotubes (MWCNTs) themselves are effective water oxidation catalysts, which can initiate the oxygen evolution reaction (OER) at overpotentials of 0.3 V in alkaline media. Oxygen-containing functional groups such as ketonic C═O generated on the outer wall of MWCNTs are found to play crucial roles in catalyzing OER by altering the electronic structures of the adjacent carbon atoms and facilitates the adsorption of OER intermediates. The well-preserved microscopic structures and highly conductive inner walls of MWCNTs enable efficient transport of the electrons generated during OER. PMID:25658670

  14. Influence of Surface Morphology on the Antimicrobial Effect of Transition Metal Oxides in Polymer Surface.

    PubMed

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Hinterdorfer, Peter

    2015-10-01

    In this study, the physical properties of transition metal oxide surfaces were examined using scanning probe microscopic (SPM) techniques for elucidating the antimicrobial activity of molybdenum trioxide (MoO3), tungsten trioxide (WO3), and zinc oxide (ZnO) embedded into the polymers thermoplastic polyurethane (TPU) and polypropylene (PP). We utilized atomic force microscopy (AFM) in the contact imaging mode and its derivative single-pass Kelvin probe force microscopy for investigating samples that were presumably identical in their compositions, but showed different antimicrobial activity in bacterial adhesion tests. Our results revealed that surfaces with larger roughness and higher surface potential variation showed stronger antimicrobial activities compared to smoother and homogeneously charge-distributed surfaces. In addition, capacitance gradient (dC/dZ) measurements were performed to elucidate the antimicrobial activity arising from the different dielectric behavior of the transition metal oxides in this heterogeneous polymer surface. We found that the nano-scale exposure of transition metal oxides on polymer surfaces provided strong antimicrobial effects. Applications arising from our studies will be useful for public and healthcare environments. PMID:26726428

  15. Corrosion resistant performances of alkanoic and phosphonic acids derived self-assembled monolayers on magnesium alloy AZ31 by vapor-phase method.

    PubMed

    Ishizaki, Takahiro; Okido, Masazumi; Masuda, Yoshitake; Saito, Naobumi; Sakamoto, Michiru

    2011-05-17

    Alkanoic and phosphonic acid derived self-assembled monolayers (SAMs) were formed on magnesium alloy by the vapor phase method. AFM and XPS studies showed that SAMs were formed on Mg alloy. The chemical and anticorrosive properties of the SAMs prepared on magnesium alloys were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. Water contact angle measurements revealed that, although SA and ISA have the same headgroup to anchor to the magnesium alloy surface, the packing density on the magnesium alloy surface could be considerably different. The contact angle hysteresis of SAMs with a carboxylate headgroup is much larger than that of SAMs with a phosphonic acid group. The XPS O 1s peaks indicated more likely a mix of mono-, bi-, or tridentate binding of phosphonic acid SAM to the oxide or hydroxide surface of the Mg alloy. The electrochemical measurements showed that the phosphonic acid derived SAM had better corrosion resistance compared to alkanoic acid derived SAM. The chemical stability of SAMs modified magnesium alloy was investigated using water contact angle and XPS measurements. The water contact angle and XPS measurements revealed that the molecular density of OP and PFEP on magnesium alloy would be higher than those of SA and ISA on magnesium alloy. PMID:21504153

  16. Interaction of D{sub 2}O with model oxide single crystal surfaces: Clean and oxidized W(110)

    SciTech Connect

    Herman, G.S.; Gallagher, M.C.; Joyce, S.

    1995-12-31

    It has been suggested that the interaction of D{sub 2}O with single crystal oxide surfaces are dominated by defects. To investigate this we have prepared and then characterized oxidized W(110) surfaces with Auger electron spectroscopy, low-energy electron diffraction, and scanning tunneling microscopy. We have also used temperature programmed desorption (TPD) to investigate the interaction of D{sub 2}O with these surfaces. Results indicate that desorption of D{sub 2}O occurs from two states for both the clean and fully oxidized surface. The decomposition of D{sub 2}O was found to occur on the clean surface but not for the fully oxidized surface. This is evident from the observation of residual oxygen remaining on the clean surface after a TPD cycle as well as the observation of two different D{sub 2} desorption features for the clean surface. On the fully oxidized surface neither occur.

  17. Water-Mediated Proton Hopping on an Iron Oxide Surface

    SciTech Connect

    Merte, L. R.; Peng, Guowen; Bechstein, Ralf; Rieboldt, Felix; Farberow, Carrie A.; Grabow, Lars C.; Kudernatsch, Wilhelmine; Wendt, Stefen; Laegsgaard, E.; Mavrikakis, Manos; Besenbacher, Fleming

    2012-05-18

    The diffusion of hydrogen atoms across solid oxide surfaces is often assumed to be accelerated by the presence of water molecules. Here we present a high-resolution, high-speed scanning tunneling microscopy (STM) study of the diffusion of H atoms on an FeO thin film. STM movies directly reveal a water-mediated hydrogen diffusion mechanism on the oxide surface at temperatures between 100 and 300 kelvin. Density functional theory calculations and isotope-exchange experiments confirm the STM observations, and a proton-transfer mechanism that proceeds via an H3O+-like transition state is revealed. This mechanism differs from that observed previously for rutile TiO2(110), where water dissociation is a key step in proton diffusion.

  18. Stochastic stick-slip nanoscale friction on oxide surfaces.

    PubMed

    Craciun, A D; Gallani, J L; Rastei, M V

    2016-02-01

    The force needed to move a nanometer-scale contact on various oxide surfaces has been studied using an atomic force microscope and theoretical modeling. Force-distance traces unveil a stick-slip movement with erratic slip events separated by several nanometers. A linear scaling of friction force with normal load along with low pull-off forces reveals dispersive adhesive interactions at the interface. We model our findings by considering a variable Lennard-Jones-like interaction potential, which accounts for slip-induced variation of the effective contact area. The model explains the formation and fluctuation of stick-slip phases and provides guidelines for predicting transitions from stick-slip to continuous sliding on oxide surfaces. PMID:26751769

  19. Surface oxidation - A major sink for water on Mars

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.

    1976-01-01

    Surface oxidation irreversibly removes both oxygen and hydrogen from the Martian atmosphere at a rate of 10 million-100 billion per square centimeter per second. This rate corresponds to a net loss of 100 to 100,000 grams per square centimeter of H2O, if it is assumed that the loss rate is uniform over geologic time. Heretofore, exospheric escape was considered to be the principal irreversible sink for H2O, but the loss rate was estimated to be only 100 million per square centimeter per second. It is possible that surface oxidation may have had a minor effect on the supply of H2O in the regolith and polar caps.

  20. Band energy control of molybdenum oxide by surface hydration

    SciTech Connect

    Butler, Keith T. Walsh, Aron; Crespo-Otero, Rachel; Buckeridge, John; Scanlon, David O.; Bovill, Edward; Lidzey, David

    2015-12-07

    The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.

  1. Kinetics and Mechanisms of Ciprofloxacin Oxidation on Hematite Surfaces.

    PubMed

    Martin, Sébastien; Shchukarev, Andrey; Hanna, Khalil; Boily, Jean-François

    2015-10-20

    Adsorption of antibiotics at mineral surfaces has been extensively studied over the past 20 years, yet much remains to be learned on their interfacial properties and transformation mechanisms. In this study, interactions of Ciprofloxacin (CIP), a fluoroquinolone antibiotic with two sets of synthetic nanosized hematite particles, with relatively smooth (H10, 10-20 nm in diameter) and roughened (H80, 80-90 nm in diameter) surfaces, were studied by means of liquid chromatography (LC), mass spectrometry (MS), and spectroscopy (vibration and X-ray photoelectron). Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy provides evidence for inner-sphere bidentate complex formation of CIP at hematite surfaces in 0.01 M NaCl, irrespective of pH and particle size. ATR-FTIR spectroscopy also revealed that the sorbed mother CIP molecule decayed to other surface species over a period of at least 65 h. This was supported by the detection of three daughter products in the aqueous phase by LC/MS. The appearance of NH3(+) groups during the course of these experiments, revealed by cryogenic XPS, provides further evidence that CIP oxidation proceeds through an opening of piperazine ring via N-dealkylation. Additional in vacuo FTIR experiments under temperature-programmed desorption also showed that oxidation of sorbed byproducts were effectively degraded beyond 450 °C, a result denoting considerably strong (inter)molecular bonds of both mother and daughter products. This work also showed that rougher, possibly multidomainic particles (H80) generated slower rates of CIP decomposition but occurring through more complex schemes than at smoother particle surfaces (H10). This work thus uncovered key aspects of the binding of an important antibiotic at iron oxide surfaces, and therefore provided additional constraints to our growing understanding of the fate of emerging contaminants in the environment. PMID:26419340

  2. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  3. Switchable mirrors based on nickel-magnesium films

    SciTech Connect

    Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

    2001-01-16

    A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

  4. Switchable mirrors based on nickel-magnesium films

    NASA Astrophysics Data System (ADS)

    Richardson, T. J.; Slack, J. L.; Armitage, R. D.; Kostecki, R.; Farangis, B.; Rubin, M. D.

    2001-05-01

    An electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin, magnesium-rich Ni-Mg films prepared on glass substrates by co-sputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on cathodic polarization in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction, and to protect the metal surface against oxidation.

  5. The role of nitric oxide in ocular surface cells.

    PubMed

    Kim, Jae Chan; Park, Gun Sic; Kim, Jin Kook; Kim, Young Myeong

    2002-06-01

    The role of nitric oxide (NO) in the ocular surface remains unknown. We investigated the conditions leading to an increase of NO generation in tear and the main sources of NO in ocular surface tissue. We evaluated the dual action (cell survival or cell death) of NO depending on its amount. We measured the concentration of nitrite plus nitrate in the tears of ocular surface diseases and examined the main source of nitric oxide synthase (NOS). When cultured human corneal fibroblast were treated with NO producing donor with or without serum, the viabilities of cells was studied. We found that the main sources of NO in ocular surface tissue were corneal epithelium, fibroblast, endothelium, and inflammatory cells. Three forms of NOS (eNOS, bNOS, and iNOS) were expressed in experimentally induced inflammation. In the fibroblast culture system, the NO donor (SNAP, S-nitroso-N-acetyl-D, L-penicillamine) prevented the death of corneal fibroblast cells caused by serum deprivation in a dose dependent manner up to 500 micrometer SNAP, but a higher dose decreased cell viability. This study suggested that NO might act as a double-edged sword in ocular surface diseases depending on the degree of inflammation related with NO concentration. PMID:12068145

  6. Photocurrent spectroscopy of Ge nanoclusters grown on oxidized silicon surface

    NASA Astrophysics Data System (ADS)

    Mykytiuk, A. A.; Kondratenko, S. V.; Lysenko, V. S.; Kozyrev, Yu. N.

    2014-05-01

    Germanium (Ge) nanoclusters are grown by a molecular-beam epitaxy technique on chemically oxidized Si(100) surface at 700ºC. Evidence for long-term photoinduced changes of surface conductivity in structures with Ge nanoclusters (NCs) grown on silicon oxide is presented. Photoexcitation NCs or Si by quanta with different energy allows observing two non-equilibrium steady-states with excess and shortage of conductivity values as compare to equilibrium one. The persistent photoconductivity (PPC) behaviour was observed after interband excitation of electron-hole pairs in Si(001) substrate. This effect may be attributed to spatial carrier separation of photoexcited electron-hole pairs by macroscopic fields in the depletion layer of near-surface Si. Photoquenching of surface conductivity, driven by optical recharging of Ge NC's and Si/SiO2 interface states, is observed. Conductivity decay is discussed in the terms of hole`s accumulation by Ge-NC states enhancing the local-potential variations and, therefore, decreasing the surface conductivity of p-Si.

  7. SURFACE COMPLEXATION OF ACTINIDES WITH IRON OXIDES: IMPLICATIONS FOR RADIONUCLIDE TRANSPORT IN NEAR-SURFACE AQUIFERS

    SciTech Connect

    J.L. Jerden Jr.; A.J. Kropf; Y. Tsai

    2005-08-25

    The surface complexation of actinides with iron oxides plays a key role in actinide transport and retardation in geosphere-biosphere systems. The development of accurate actinide transport models therefore requires a mechanistic understanding of surface complexation reactions (i.e. knowledge of chemical speciation at mineral/fluid interfaces). Iron oxides are particularly important actinide sorbents due to their pH dependent surface charges, relatively high surface areas and ubiquity in oxic and suboxic near-surface systems. In this paper we present results from field and laboratory investigations that elucidate the mechanisms involved in binding uranium and neptunium to iron oxide mineral substrates in near neutral groundwaters. The field study involved sampling and characterizing uranium-bearing groundwaters and solids from a saprolite aquifer overlying an unmined uranium deposit in the Virginia Piedmont. The groundwaters were analyzed by inductively coupled mass spectrometry and ion chromatography and the aquifer solids were analyzed by electron microprobe. The laboratory study involved a series of batch sorption tests in which U(VI) and Np(V) were reacted with goethite, hematite and magnetite in simulated groundwaters. The pH, ionic strength, aging time, and sorbent/sorbate ratios were varied in these experiments. The oxidation state and coordination environment of neptunium in solutions and sorbents from the batch tests were characterized by X-ray absorption spectroscopy (XAS) at the Advanced Photon Source, Argonne National Laboratory. Results from this work indicate that, in oxidizing near-surface aquifers, the dissolved concentration of uranium may be limited to less than 30 parts per billion due to uptake by iron oxide mineral coatings and the precipitation of sparingly soluble U(VI) phosphate minerals. Results from the batch adsorption tests showed that, in near neutral groundwaters, a significant fraction of the uranium and neptunium adsorbed as strongly

  8. Nanostructured magnesium increases bone cell density

    NASA Astrophysics Data System (ADS)

    Weng, Lucy; Webster, Thomas J.

    2012-12-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH- which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  9. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    PubMed

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment. PMID:27433692

  10. Quantitative DEMS study of ethanol oxidation: effect of surface structure and Sn surface modification.

    PubMed

    Mostafa, Ehab; Abd-El-Latif, Abd-El-Aziz A; Ilsley, Richard; Attard, Gary; Baltruschat, Helmut

    2012-12-14

    Using the dual thin layer flow through cell, a semi-quantitative analysis of the volatile products during the electrooxidation of adsorbed and bulk solution of 0.01 M ethanol at polycrystalline platinum, smooth, roughened and Sn modified Pt(11,1,1), Pt(311) electrodes has been done by on-line differential electrochemical mass spectroscopy (DEMS). In addition to the current efficiency of CO(2), that of acetaldehyde was determined as a function of the flow rate. At polycrystalline platinum, ethanol oxidation produces only acetaldehyde; the amount of acetaldehyde further oxidized to acetic acid is negligible due to convection conditions. For comparison and for calibration purposes, i-propanol oxidation was examined for which acetone is the only oxidation product. At Pt(11,1,1), the main oxidation product is acetaldehyde. At Pt(311), in addition to acetaldehyde, acetic acid was also formed. Surface modification with Sn did not increase the reactivity of Pt(11,1,1) instead it led to inhibition of the ethanol oxidation. In the case of Pt(311), the onset potential of oxidation was shifted negatively by 0.2 V in the presence of Sn. The results of the potentiostatic measurements showed that this shift is not associated with the production of CO(2); rather acetic acid and acetaldehyde are the main oxidation products. PMID:23108295

  11. Periodic Shorting of SOM Cell to Remove Soluble Magnesium in Molten Flux and Improve Faradaic Efficiency

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Su, Shizhao; Pal, Uday B.; Powell, Adam C.

    2014-12-01

    Solid oxide membrane (SOM) electrolysis has been used for magnesium production directly from magnesium oxide. Magnesium dissolution in molten flux electrolyte is of particular concern in SOM electrolysis, because it imparts electronic conductivity to the flux and thereby decreases the faradaic current efficiency. In this work, a new approach for removing soluble magnesium in the flux is explored. Periodic shorting is performed between the anode and the cathode of SOM electrolysis cell. During shorting, soluble magnesium in the flux is oxidized to magnesium oxide. This significantly reduces the electronic current in the flux and therefore keeps the faradaic current efficiency high during SOM electrolysis. Electronic transference numbers in the flux are measured to assess the soluble magnesium concentration. Potentiodynamic scan results also confirm the feasibility of shorting the electrodes to remove soluble magnesium.

  12. Ligand effects in supported metal carbonyls: X-ray absorption spectroscopy of rhenium subcarbonyls on magnesium oxide

    SciTech Connect

    Honji, A.; Gron, L.U.; Chang, J.R.

    1992-11-01

    [HRe(CO){sub 5}] reacted with the surfaces of MgO powders, one being partially dehydroxylated (about 55%) and the other almost fully dehydroxylated (about 93%). The initial surface species were molecularly absorbed [HRe(CO){sub 5}], which, upon heating to 80{degrees}C in H{sub 2} or under vacuum, gave rhenium subcarbonyls with three CO ligands and three oxygen-containing ligands provided by the MgO surface. Infrared spectra are consistent with C{sub 3{upsilon}} symmetry in both structures, with bands at 2011 (vs), 1895 (vs), and 1862 (sh) cm{sup -1} for rhenium subcarbonyl on the partially dehydroxylated MgO and at 2017 (vs), 1908 (vs), and 1867 (sh) cm{sup -1} for the rhenium subcarbonyl on the almost fully dehydroxylated MgO. The average bond distances were determined by extended X-ray absorption fine structure spectroscopy: On the partially dehydroxylated MgO, the Re-C, Re-O* (O* is a carbonyl oxygen), and Re-O{sub s} (O{sub s} is a surface oxygen) distances were 1.87, 3.11, and 2.13 {Angstrom}, respectively. These distances indicate chemical bonding of the rhenium carbonyl to oxygens of the MgO surface. They also demonstrate greater electron donation (backbonding) from the Re to the CO on the partially dehydroxylated MgO than from the Re to the CO on the almost fully dehydroxylated MgO surface, suggesting electron transfer from the MgO to the Re. The MgO surface is thus modeled as a rigid multidentate electron donor analogous to a molecular ligand. The X-ray absorption near edge data confirm a higher electron density on the Re atoms bonded to the oxygens of partially dehydroxylated MgO than on Re atoms bonded to almost fully dehydroxylated MgO. 27 refs., 7 figs., 3 tabs.

  13. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  14. Magnesium and sudden death.

    PubMed

    Leary, W P; Reyes, A J

    1983-10-22

    Magnesium deficiency may result from reduced dietary intake of the ion or increased losses in sweat, urine or faeces. Stress potentiates magnesium deficiency, and an increased incidence of sudden death associated with ischaemic heart disease is found in some areas in which soil and drinking water lack magnesium. Furthermore, it has been demonstrated experimentally that reduction of the plasma magnesium level is associated with arterial spasm. Careful studies are required to assess the clinical importance of magnesium and the benefits of magnesium supplementation in man. PMID:6353622

  15. Adsorption of T4 bacteriophages on planar indium tin oxide surface via controlled surface tailoring.

    PubMed

    Liana, Ayu Ekajayanthi; Chia, Ed Win; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2016-04-15

    The work investigates the influence of surface physicochemical properties of planar indium tin oxide (ITO) as a model substrate on T4 bacteriophage adsorption. A comparative T4 bacteriophage adsorption study shows a significant difference in bacteriophage adsorption observed on chemically modified planar ITO when compared to similarly modified particulate ITO, which infers that trends observed in virus-particle interaction studies are not necessarily transferrable to predict virus-planar surface adsorption behaviour. We also found that ITO surfaces modified with methyl groups, (resulting in increased surface roughness and hydrophobicity) remained capable of adsorbing T4 bacteriophage. The adsorption of T4 onto bare, amine and carboxylic functionalised planar ITO suggests the presence of a unique binding behaviour involving specific functional groups on planar ITO surface beyond the non-specific electrostatic interactions that dominate phage to particle interactions. The paper demonstrates the significance of physicochemical properties of surfaces on bacteriophage-surface interactions. PMID:26851452

  16. Effects of surface oxide formation on germanium nanowire band-edge photoluminescence

    SciTech Connect

    Minaye Hashemi, Fatemeh Sadat; Laboratoire des Materiaux Semiconducteurs, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne ; Thombare, Shruti; Brongersma, Mark L.; Morral, Anna Fontcuberta i; McIntyre, Paul C.; Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305

    2013-06-24

    The effect of intentional surface oxide formation on band-edge photoluminescence (PL) of Ge nanowires was investigated. Thermal oxidation in molecular O{sub 2} was used to produce a surface oxide layer on assemblies of single crystal nanowires grown by the vapor-liquid-solid method. With increasing oxidation of the wires, the band-edge PL associated with the indirect gap transition becomes more intense. X-ray photoelectron spectroscopy confirms the formation of an increasingly GeO{sub 2}-like surface oxide under annealing conditions that enhance the indirect-gap PL, consistent with surface oxide passivation of nonradiative recombination centers initially present on the nanowire surface.

  17. Surface Proton Hopping and Coupling Pathway of Water Oxidation on Cobalt Oxide Catalyst

    NASA Astrophysics Data System (ADS)

    Pham, Hieu; Cheng, Mu-Jeng; Frei, Heinz; Wang, Lin-Wang

    We propose an oxidation pathway of water splitting on cobalt oxide surface with clear thermodynamic and kinetic details. The density-functional theory studies suggest that the coupled proton-electron transfer is not necessarily sequential and implicit in every elementary step of this mechanistic cycle. Instead, the initial O-O bond could be formed by the landing of water molecule on the surface oxos, which is then followed by the dispatch of protons through the hopping manner and subsequent release of di-oxygen. Our theoretical investigations of intermediates and transition states indicate that all chemical conversions in this pathway, including the proton transfers, are possible with low activation barriers, in addition to their favorable thermodynamics. Our hypothesis is supported by recent experimental observations of surface superoxide that is stabilized by hydrogen bonding to adjacent hydroxyl group, as an intermediate on fast-kinetics catalytic site.

  18. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  19. Atomistic Mechanism of Surface-Oxide Formation on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Reuter, K.; Ganduglia-Pirovano, M. V.; Scheffler, M.; Stampfl, C.

    2001-03-01

    CO-oxidation catalysis on Ruthenium is a prime example of the pressure and materials gap in the sense, that a very low activity under UHV conditions is contrasted with very high turnover rates at high pressures. A recent experimental study has connected this change in activity with the formation of RuO_2(110) patches on the surface (H. Over et al., Science 287, 1474 (2000)). In order to analyze the atomistic mechanism behind this surface oxide formation, we perform density functional theory calculations for more and more O loaded Ru(0001) surfaces. After a full monolayer coverage on the surface has been reached, O starts to penetrate into the sample. Instead of diffusing further into the bulk, oxygen agglomerates in subsurface islands between the first and second substrate layers. These islands can be characterized as a O-Ru-O trilayer ``floating'' on top of the Ru(0001) substrate. Further O incorporation leads to a successive formation of such O-Ru-O trilayers, which at first remain in a CaF2 type stacking sequence. After a critical thickness has been exceeded, we finally observe a phase transition into the experimentally seen rutile RuO_2(110) structure.

  20. Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers

    SciTech Connect

    Alexandridis, P.; Athanassiou, V.; Fukuda, Shinya; Hatton, T.A. )

    1994-08-01

    The surface tension of aqueous solutions of seven poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) Pluronic copolymers, covering a wide range of molecular weights (3400-14600) and PPO/PEO ratios (0.19-1.79), was determined over the 10[sup [minus]5]-10% w/v concentration range, at two temperatures (25 and 35[degree]C). Two breaks (changes in slope) were observed in the surface tension vs log concentration curve for most of the copolymers. The low-concentration break, occurring at bulk copolymer concentrations of approximately 10[sup [minus]3]%, is believed to originate from rearrangement of the copolymer molecules on the surface at complete coverage of the air/water interface. The breaks at the high-concentration part of the surface tension curve occurred at concentrations that correspond to the critical micellization concentration values as determined by a dye solubilization technique. The surface area per copolymer molecule, A, increased as a function of the number of EO segments, N[sub EO], obeying a scaling law (A [approx] N[sub EO][sup 1/2]) similar to that of lower molecular weight C[sub i]E[sub j] nonionic surfactants. 56 refs., 6 figs., 2 tabs.

  1. Properties of the Oxidized Cu(110) Surface: The DFT study

    NASA Astrophysics Data System (ADS)

    Olenga, Antoine; Fazleev, N. G.

    2012-10-01

    The study of adsorption of oxygen on transition metal surfaces is important for the understanding of oxidation, heterogeneous catalysis, and metal corrosion. In this work we have studied from first principles the changes of electronic properties of the Cu(110) surface due to oxygen adsorption. Especially, we have focused on studies of changes in the work function, electronic density, interlayer spacing, density of states and band structure with oxygen coverage. Calculations of electronic properties from first principles have been also performed for the (110) and surface of Cu2O to use for comparison. The first-principles calculations in this work have been performed on the basis of the Density Functional Theory and using DMOl3 code. The obtained theoretical results have been compared with available experimental data.

  2. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    NASA Technical Reports Server (NTRS)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  3. How strain affects the reactivity of surface metal oxide catalysts.

    PubMed

    Amakawa, Kazuhiko; Sun, Lili; Guo, Chunsheng; Hävecker, Michael; Kube, Pierre; Wachs, Israel E; Lwin, Soe; Frenkel, Anatoly I; Patlolla, Anitha; Hermann, Klaus; Schlögl, Robert; Trunschke, Annette

    2013-12-16

    Highly dispersed molybdenum oxide supported on mesoporous silica SBA-15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2-2.5 Mo atoms nm(-2) ). X-ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature-programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O-K-edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity. PMID:24259425

  4. Attachment of Pathogenic Prion Protein to Model Oxide Surfaces

    PubMed Central

    Jacobson, Kurt H.; Kuech, Thomas R.; Pedersen, Joel A.

    2014-01-01

    Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The N-terminal portion of the protein appeared to facilitate attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions preferentially associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides). PMID:23611152

  5. Choline Magnesium Trisalicylate

    MedlinePlus

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  6. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  7. Oxide-Confined Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Liu, W. L.; Li, L.; Zhong, J. C.; Zhao, Y. J.; Zeng, L. N.; Yan, C. L.

    Novel distributed Bragg reflectors (DBRs) with 6-pair-GaAs/AlAs short period superlattice for the oxide-confined vertical-cavity surface-emitting lasers (VCSEL) are designed. They are for the VCSEL that emits at 840 nm and is grown with 34-period n-type mirrors, three-quantum-well active region, and 22-period p-type mirrors. In addition, a 35-nm-layer of Al0.98Ga0.02As was inserted in the top mirrors for being selectively oxidized. The maximum output power is more than 2 mW with low threshold current of about 2 mA. The fact that the device's threshold current in both CW and pulsed operation depends slightly on the operation temperature shows its higher characteristic temperature (T0).

  8. Reflection spectra and magnetochemistry of iron oxides and natural surfaces

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1978-01-01

    The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.

  9. Effect of surface roughness on the texture and oxidation behavior of Zircaloy-4 cladding tube

    NASA Astrophysics Data System (ADS)

    Akhiani, Hamed; Szpunar, Jerzy A.

    2013-11-01

    Conventional pressure water reactors like CANDU use Zircaloy-4 as a fuel cladding tube. Surface roughness that arises from the manufacturing process, pilgering, may alter these tubes' properties in various ways. This paper presents a comparative study of cladding tubes with different surface conditions in order to investigate their effect on the Zircaloy-4 substrate and oxide textures as well as the oxidation kinetic. The experimental results reveal that surface roughness affects the oxidation rate and weight gain of the cladding tubes. Although surface polishing slightly changes the substrate texture, it induces no significant change in the oxide texture. Moreover, oxidation time does not significantly change the preferred orientation of the zirconium oxide.

  10. Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis.

    PubMed

    Hozumi, Atsushi; McCarthy, Thomas J

    2010-02-16

    Ultralyophobic oxidized aluminum surfaces exhibiting negligible contact angle hysteresis for probe liquids were prepared by chemical vapor deposition (CVD) of bis((tridecafluoro-1,1,2,2,-tetrahydrooctyl)-dimethylsiloxy)methylsilane (CF(3)(CF(2))(5)CH(2)CH(2)Si(CH(3))(2)O)(2)SiCH(3)H, (R(F)Si(Me)(2)O)(2)SiMeH). Oxidized aluminum surfaces were prepared by photooxidation/cleaning of sputter-coated aluminum on silicon wafers (Si/Al(Al(2)(O(3)))) using oxygen plasma. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) confirmed that this facile CVD method produces a monolayer with a thickness of 1.1 nm on the Si/Al(Al(2)(O(3))) surface without a discernible change in surface morphology. After monolayer deposition, the hydrophilic Si/Al(Al(2)(O(3))) surface became both hydrophobic and oleophobic and exhibited essentially no contact angle hysteresis for water and n-hexadecane (advancing/receding contact angles (theta(A)/theta(R)) = 110 degrees/109 degrees and 52 degrees/50 degrees, respectively). Droplets move very easily on this surface and roll off of slightly tilted surfaces, independently of the contact angle (which is a practical definition of ultralyophobic). A conventional fluoroalkylsilane monolayer was also prepared from 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3), R(F)Si(OMe)(3)) for comparison. The theta(A)/theta(R) values for water and n-hexadecane are 121 degrees/106 degrees and 76 degrees/71 degrees, respectively. The larger hysteresis values indicate the "pinning" of probe liquids, even though advancing contact angles are larger than those of the (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers. The (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers have excellent hydrolytic stability in water. We propose that the (R(F)Si(Me)(2)O)(2)SiMeH-derived monolayers are flexible and liquidlike and that drops in contact with these surfaces experience very low energy barriers between metastable states, leading to the

  11. Positive Biomechanical Effects of Titanium Oxide for Sandblasting Implant Surface as an Alternative to Aluminium Oxide.

    PubMed

    Gehrke, Sergio Alexandre; Taschieri, Silvio; Del Fabbro, Massimo; Coelho, Paulo Guilherme

    2015-10-01

    The aim of this study was to evaluate the physico-chemical properties and the in vivo host response of a surface sandblasted with particles of titanium oxide (TiO2) followed by acid etching as an alternative to aluminium oxide. Thirty titanium disks manufactured in the same conditions as the implants and 24 conventional cylindrical implants were used. Half of the implants had a machined surface (Gcon) while in the other half; the surface was treated with particles of TiO2 followed by acid etching (Gexp). Surface characterization was assessed by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), profilometry, and wettability. For the in vivo test, 12 implants of each group were implanted in the tibia of 6 rabbits, and were reverse torque tested after periods of 30 or 60 days after implantation. Following torque, SEM was utilized to assess residual bone-implant contact. The surface characterization by SEM showed a very homogeneous surface with uniform irregularities for Gexp and a small amount of residues of the blasting procedure, while Gcon presented a surface with minimal irregularities from the machining tools. Wettability test showed decreased contact angle for the Gcon relative to the Gexp. The Gexp removal torque at 30 and 60 days was 28.7%, and 33.2% higher relative to the Gcon, respectively. Blasting the surface with particles of TiO2 represents an adequate option for the surface treatment of dental implants, with minimal risk of contamination by the residual debris from the blasting procedure. PMID:24001048

  12. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  13. Magnesium and Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  14. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions. PMID:26670248

  15. Electrochemical chlorine evolution at rutile oxide (110) surfaces.

    PubMed

    Hansen, Heine A; Man, Isabela C; Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas; Rossmeisl, Jan

    2010-01-01

    Based on density functional theory (DFT) calculations we study the electrochemical chlorine evolution reaction on rutile (110) oxide surfaces. First we construct the Pourbaix surface diagram for IrO(2) and RuO(2), and from this we find the chlorine evolution reaction intermediates and identify the lowest overpotential at which all elementary reaction steps in the chlorine evolution reaction are downhill in free energy. This condition is then used as a measure for catalytic activity. Linear scaling relations between the binding energies of the intermediates and the oxygen binding energies at cus-sites are established for MO(2) (M being Ir, Ru, Pt, Ti). The linear relations form the basis for constructing a generalized surface phase diagram where two parameters, the potential and the binding energy of oxygen, are needed to determine the surface composition. We calculate the catalytic activity as function of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity is high for a wide range of oxygen binding energies. We find that the required overpotential for chlorine evolution is lower than the overpotential necessary for oxygen evolution. PMID:20024470

  16. Step dynamics and oxide formation during CO oxidation over a vicinal Pd surface.

    PubMed

    Shipilin, Mikhail; Gustafson, Johan; Zhang, Chu; Merte, Lindsay Richard; Lundgren, Edvin

    2016-07-27

    In an attempt to bridge the material and pressure gaps - two major challenges for an atomic scale understanding of heterogeneous catalysis - we employed high-energy surface X-ray diffraction as a tool to study the Pd(553) surface in situ under changing reaction conditions during CO oxidation. The diffraction patterns recorded under CO rich reaction conditions are characteristic for the metallic state of the surface. In an environment with low excess of O2 over the reaction stoichiometry, the surface seems to accommodate oxygen atoms along the steps forming one or several subsequent adsorbate structures and rapidly transforms into a combination of (332), (111) and (331) facets likely providing the room for the formation of a surface oxide. For the case of large excess of O2, the diffraction data show the presence of a multilayer PdO with the [101] crystallographic direction parallel to the [111] and the [331] directions of the substrate. The reconstructions in O2 excess are to a large extent similar to those previously reported for pure O2 exposures by Westerström et al. [R. Westerström et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 76, 155410]. PMID:26805438

  17. Local conductivity and surface photovoltage variations due to magnesium segregation in p-type GaN

    NASA Astrophysics Data System (ADS)

    Simpkins, B. S.; Yu, E. T.; Chowdhury, U.; Wong, M. M.; Zhu, T. G.; Yoo, D. W.; Dupuis, R. D.

    2004-06-01

    Conductive atomic force microscopy (C-AFM) and surface photovoltage (SPV) microscopy were used to investigate local electronic structure in p-type GaN. C-AFM imaging revealed locally reduced forward- and reverse-bias conductivity near threading dislocations. In addition, regions near threading dislocations demonstrated significantly enhanced surface photovoltage response when compared to regions away from dislocations. Analytical treatment of the surface photovoltage as a function of pertinent material properties indicated that reduced background dopant concentration is the most likely cause for the increased SPV. Both reduced conductivity and enhanced surface photovoltage are shown to be consistent with Mg segregation to dislocation cores that results in regions of locally decreased electrically active Mg concentration surrounding the dislocations.

  18. Magnesium industry overview

    SciTech Connect

    Clow, B.B.

    1996-10-01

    Magnesium products provide an excellent strength-to-weight ratio, good fatigue strength, high impact strength, good corrosion resistance, high-speed machinability, and good thermal and electrical conductivities. As a result, applications are expanding in almost every industry. Dozens of automotive components are now made of magnesium, including steering wheels, valve covers, and seat frames. Magnesium alloys are also used in computer housings, in-line roller skates, golf clubs, tennis racquets, and baseball bats. Good strength and stiffness at both room and elevated temperatures make magnesium alloys especially valuable for aerospace applications. This article presents an overview of magnesium technology, world production, increasing demand, and recycling.

  19. Determining the virtual surface in the thermal evaporation process of magnesium fluoride from a tungsten boat for different deposition rates, to be used in precision optical components

    NASA Astrophysics Data System (ADS)

    Tejada Esteves, A.; Gálvez de la Puente, G.

    2013-11-01

    Vacuum thermal evaporation has, for some time now, been the principal method for the deposition of thin films, given, among other aspects, its simplicity, flexibility, and relatively low cost. Therefore, the development of models attempting to predict the deposition patterns of given thin film materials in different locations of a vacuum evaporation chamber are arguably important. With this in mind, we have designed one of such models for the thermal evaporation process of magnesium fluoride (MgF2), a common material used in optical thin films, originating from a tungsten boat source. For this we took several deposition samples in glass slide substrates at different locations in the vacuum chamber, considering as independent variables the mean deposition rate, and the axial and vertical distances of the source to the substrate. After a careful analysis by matrix method from the spectral transmittance data of the samples, while providing as output data the spectral transmittance, as well as the physical thickness of the films, both as functions of the aforementioned variables, the virtual surface of the source was determined.

  20. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform.

    PubMed

    Roychoudhury, Appan; Basu, Suddhasatwa; Jha, Sandeep Kumar

    2016-10-15

    A dopamine biosensor has been developed using nickel oxide nanoparticles (NPs) and tyrosinase enzyme conjugate. Nickel oxide (NiO) NPs were synthesized by sol-gel method using anionic surfactant, sodium dodecyl sulphate (SDS), as template to control the size of synthesized nanoparticles. The structural and morphological studies of the prepared NPs were carried out using X-ray diffraction (XRD), transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Afterwards, tyrosinase enzyme molecules were adsorbed on NiO NPs surface and enzyme coated NPs were deposited on indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) substrate by solution casting method. The formation of enzyme-NPs conjugate was investigated by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) techniques and used in selective detection and estimation of neurochemical dopamine by electrochemical method. The fabricated Tyrosinase/NiO/ITO electrode exhibits high sensitivity of 60.2nA/µM in linear detection range (2-100μM) with a detection limit of 1.038μM. The proposed sensor had a response time of 45s, long shelf life (45 days) with good reproducibility and selectivity in presence of interfering substances and was validated with real samples. The tyrosinase enzyme functionalized NiO platform has good bio-sensing efficacy and can be used in detection of other catecholamines and phenolic neurochemicals. PMID:26626970