Science.gov

Sample records for magnesium oxides

  1. Magnesium Oxide

    MedlinePlus

    ... repeatedly. Magnesium oxide also is used as a dietary supplement when the amount of magnesium in the diet ... any products such as vitamins, minerals, or other dietary supplements. You should bring this list with you each ...

  2. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... light magnesium oxide. Heating the salts under more rigorous conditions (1200 °C for 12 hours)...

  3. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or...

  4. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  5. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  6. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  7. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  8. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  9. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  10. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  11. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This...

  12. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium...

  13. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  14. 21 CFR 582.1431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1431 Magnesium oxide. (a)...

  15. 21 CFR 582.5431 - Magnesium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5431 Magnesium oxide. (a)...

  16. Tape casting of magnesium oxide.

    SciTech Connect

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.

    2008-02-01

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  17. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  18. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane Electrolysis Processes

    SciTech Connect

    Xiaofei Guan; Peter A. Zink; Uday B. Pal; Adam C. Powell

    2012-01-01

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.

  19. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap Through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    SciTech Connect

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    2012-03-11

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.

  20. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  1. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  2. Thermal conductivities of nanostructured magnesium oxide coatings deposited on magnesium alloys by plasma electrolytic oxidation.

    PubMed

    Shen, Xinwei; Nie, Xueyuan; Hu, Henry

    2014-10-01

    The resistances of magnesium alloys to wear, friction and corrosion can be effectively improved by depositing coatings on their surfaces. However, the coatings can also reduce the heat transfer from the coated components to the surroundings (e.g., coated cylinder bores for internal combustion of engine blocks). In this paper, nanostructured magnesium oxides were produced by plasma electrolytic oxidation (PEO) process on the magnesium alloy AJ62 under different current densities. The guarded comparative heat flow method was adopted to measure the thermal conductivities of such coatings which possess gradient nanoscale grain sizes. The aim of the paper is to explore how the current density in the PEO process affects the thermal conductivity of the nanostructured magnesium coatings. The experimental results show that, as the current density rises from 4 to 20 A/mm2, the thermal conductivity has a slight increase from 0.94 to 1.21 W/m x K, which is significantly smaller than that of the corresponding bulk magnesium oxide materials (29.4 W/m x K). This mostly attributed to the variation of the nanoscale grain sizes of the PEO coatings. PMID:25942897

  3. Isotopically pure magnesium isotope-24 is prepared from magnesium-24 oxide

    NASA Technical Reports Server (NTRS)

    Chellew, N. R.; Schilb, J. D.; Steunenberg, R. K.

    1968-01-01

    Apparatus is used to prepare isotopically pure magnesium isotope-24, suitable for use in neutron scattering and polarization experiments. The apparatus permits thermal reduction of magnesium-24 oxide with aluminum and calcium oxide, and subsequent vaporization of the product metal in vacuum. It uses a resistance-heated furnace tube and cap assembly.

  4. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  5. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  6. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  7. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  8. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  9. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    ... picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, ... oxide and anhydrous citric acid combine when the powder is mixed with water to form a medication ...

  10. Improved biological performance of magnesium by micro-arc oxidation

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2014-01-01

    Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917

  11. Improved biological performance of magnesium by micro-arc oxidation.

    PubMed

    Ma, W H; Liu, Y J; Wang, W; Zhang, Y Z

    2015-03-01

    Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO), which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications. PMID:25517917

  12. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, bowel) before a colonoscopy (examination of the inside of the colon to check ...

  13. Laser-induced magnesium production from magnesium oxide using reducing agents

    SciTech Connect

    Mohamed, M. S.; Yabe, T.; Baasandash, C.; Sato, Y.; Mori, Y.; Shi-Hua, Liao; Sato, H.; Uchida, S.

    2008-12-01

    Experiments for laser induced production of magnesium (Mg) from magnesium oxide (MgO) using reducing agents (R) were conducted. In these experiments, continuous wave CO{sub 2} focused laser is focused on a mixture of magnesium oxide and reducing agent. High power density of focused laser leads to high temperature and the reduction reaction resulting in Mg production. The resultant vapor is collected on a copper plate and analyzed in terms of magnesium deposition efficiency. Deposition efficiencies with various reducing agents such as Zr, C, and Si have been measured to be 60, 9.2, and 12.1 mg/kJ respectively. An excess addition of reducing agent over their corresponding reaction stoichiometric amounts is found to be optimum condition for the most of performed laser induced reactions. In addition, utilizing solar-pumped laser in Mg production with reducing agent will reduce CO{sub 2} emission and produce magnesium with high-energy efficiency and large throughput.

  14. Magnesium

    MedlinePlus

    ... supplements are available? Magnesium is available in multivitamin-mineral supplements and other dietary supplements . Forms of magnesium ... higher intakes of magnesium have a higher bone mineral density , which is important in reducing the risk ...

  15. Improved transmittance measurement with a magnesium oxide coated integrating sphere

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Spisz, E. W.

    1972-01-01

    Simple and convenient technique has been found for extending transmittance measurement capability of conventional magnesium oxide coated integrating sphere system at low (near ultraviolet) wavelengths. Technique can be used to determine effect of contaminants on window materials and can also be used for measurements on thermal control coatings and telescope mirrors.

  16. Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Zink, Peter A.; Pal, Uday B.; Powell, Adam C.

    2013-04-01

    Pure magnesium was recycled from partially oxidized 50.5 wt pct Mg-Al scrap alloy and AZ91 Mg alloy (9 wt pct Al, 1 wt pct Zn). Refining experiments were performed using a eutectic mixture of MgF2-CaF2 molten salt (flux). During the experiments, potentiodynamic scans were performed to determine the electrorefining potentials for magnesium dissolution and magnesium bubble nucleation in the flux. The measured electrorefining potential for magnesium bubble nucleation increased over time as the magnesium content inside the magnesium alloy decreased. Potentiostatic holds and electrochemical impedance spectroscopy were employed to measure the electronic and ionic resistances of the flux. The electronic resistivity of the flux varied inversely with the magnesium solubility. Up to 100 pct of the magnesium was refined from the Mg-Al scrap alloy by dissolving magnesium and its oxide into the flux followed by argon-assisted evaporation of dissolved magnesium and subsequently condensing the magnesium vapor. Solid oxide membrane electrolysis was also employed in the system to enable additional magnesium recovery from magnesium oxide in the partially oxidized Mg-Al scrap. In an experiment employing AZ91 Mg alloy, only the refining step was carried out. The calculated refining yield of magnesium from the AZ91 alloy was near 100 pct.

  17. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    NASA Technical Reports Server (NTRS)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  18. Status of Research on Magnesium Oxide Backfill

    SciTech Connect

    PAPENGUTH,HANS W.; KRUMHANSL,JAMES L.; BYNUM,R. VANN; WANG,YIFENG; KELLY,JOHN W.; ANDERSON,HOWARD; NOWAK,E. JAMES

    2000-07-31

    For the WIPP, chemical and physical characteristics of MgO suggest it to be the most beneficial backfill choice, particularly because it has the ability to buffer the aqueous chemical conditions to control actinide volubility. In the current experimental program, the authors are developing a technical basis for taking credit for the complete set of attributes of MgO in geochemical, hydrogeological, and geomechanical technical areas, resulting in an improved conceptual model for the WIPP such as the following. Water uptake by MgO will delay the development of mobile actinides and gas generation by microbes and corrosion. Reduced gas generation will reduce or even eliminate spallings releases. As MgO hydrates, it swells, reducing porosity and permeability, which will inhibit gas flow in the repository, in turn reducing spallings releases. Hydration will also result in a self-sealing mechanism by which water uptake and swelling of MgO adjacent to a groundwater seep cuts off further seepage. Reaction with some groundwaters will produce cementitious materials, which will help to cement waste particles or produce a cohesive solid mass. Larger particles are less likely to be entrained in a spallings release. If sufficient water eventually accumulates in a repository to support microbial gas generation, magnesium carbonate cements will form; also producing good cohesion and strength.

  19. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation

    SciTech Connect

    Zheng, He; Wu, Shujing; Sheng, Huaping; Liu, Chun; Liu, Yu; Cao, Fan; Zhou, Zhichao; Zhao, Dongshan E-mail: dszhao@whu.edu.cn; Wang, Jianbo E-mail: dszhao@whu.edu.cn; Zhao, Xingzhong

    2014-04-07

    The atomic-scale oxide growth dynamics are directly revealed by in situ high resolution transmission electron microscopy during the oxidation of Mg surface. The oxidation process is characterized by the layer-by-layer growth of magnesium oxide (MgO) nanocrystal via the adatom process. Consistently, the nucleated MgO crystals exhibit faceted surface morphology as enclosed by (200) lattice planes. It is believed that the relatively lower surface energies of (200) lattice planes should play important roles, governing the growth mechanism. These results facilitate the understanding of the nanoscale oxide growth mechanism that will have an important impact on the development of magnesium or magnesium alloys with improved resistance to oxidation.

  20. [Photometric method of the detection of magnesium oxide in the working zone air after using magnesium caustic dust].

    PubMed

    Putilina, O N; Makarevskaia, V V

    1991-01-01

    The contributors proposed a new highly sensitive selective technique of magnesium oxide detection, based on the Congo red and salicylic acid reaction. The minimal detection level is 0.25 mg of magnesium oxide in the analyzed sample volume. The range of measured concentrations varies from 0.01 to 0.4 mcg/ml. The express technique is simple and selective with Ca (II), Fe (III), AI (III). PMID:2060814

  1. Magnesium Oxide Carbonation Rate Law in Saturated Brines

    NASA Astrophysics Data System (ADS)

    Nemer, M. B.; Allen, C.; Deng, H.

    2008-12-01

    Magnesium oxide (MgO) is the only engineered barrier certified by the EPA for emplacement in the Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy repository for transuranic waste in southeast New Mexico. MgO reduces actinide solubility by sequestering CO2 generated by the biodegradation of cellulosic, plastic, and rubber materials. Demonstration of the effectiveness of MgO is essential for WIPP recertification. In order to be an effective barrier, the rate of CO2 sequestration should be fast compared to the rate CO2 production, over the entire 10,000 year regulatory period. While much research has been conducted on the kinetics of magnesium oxide carbonation in waters with salinity up to that of sea water, we are not aware of any work on determining the carbonation rate law in saturated brines at low partial pressures of CO2 (PCO2 as low as 10-5.5 atm), which is important for performing safety assessments of bedded salt waste repositories. Using a Varian ion-trap gas- chromatograph/mass-spectrometer (GC/MS) we experimentally followed the CO2 sequestration kinetics of magnesium oxide in salt-saturated brines down to a PCO2 as low as 10-5.5 atm. This was performed in a closed reactor with a known initial PCO2. The results of this study show that carbonation is approximately first order in PCO2, in saturated brines. We believe that this method will benefit the study of the detailed kinetics of other similar processes.

  2. Effects of environment on microhardness of magnesium oxide

    NASA Technical Reports Server (NTRS)

    Ishigaki, H.; Buckley, D. H.

    1982-01-01

    Micro-Vickers hardness measurements of magnesium oxide single crystals were conducted in various environments. These environments included air, nitrogen gas, water, mineral oil with or without various additives, and aqueous solutions with various pH values. Indentations were made on the (100) plane with the diagonals of the indentation in the (100) direction. The results indicate that a sulfur containing additve in mineral oil increased hardness, a chlorine containing additive in mineral oil decreased hardness, and aqueous solutions of hydrogen chloride decreased hardness. Other environments were found to have little effect on hardness. Mechanically polished surfaces showed larger indentation creep than did as-cleaved surfaces.

  3. Novel process for recycling magnesium alloy employing refining and solid oxide membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei

    Magnesium is the least dense engineering metal, with an excellent stiffness-to-weight ratio. Magnesium recycling is important for both economic and environmental reasons. This project demonstrates feasibility of a new environmentally friendly process for recycling partially oxidized magnesium scrap to produce very pure magnesium at low cost. It combines refining and solid oxide membrane (SOM) based oxide electrolysis in the same reactor. Magnesium and its oxide are dissolved in a molten flux. This is followed by argon-assisted evaporation of dissolved magnesium, which is subsequently condensed in a separate condenser. The molten flux acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium collected has high purity. Potentiodynamic scans are performed to monitor the magnesium content change in the scrap as well as in solution in the flux. The SOM electrolysis is employed in the refining system to enable electrolysis of the magnesium oxide dissolved in the flux from the partially oxidized scrap. During the SOM electrolysis, oxygen anions are transported out of the flux through a yttria stabilized zirconia membrane to a liquid silver anode where they are oxidized. Simultaneously, magnesium cations are transported through the flux to a steel cathode where they are reduced. The combination of refining and SOM electrolysis yields close to 100% removal of magnesium metal from partially oxidized magnesium scrap. The magnesium recovered has a purity of 99.6w%. To produce pure oxygen it is critical to develop an inert anode current collector for use with the non-consumable liquid silver anode. In this work, an innovative inert anode current collector is successfully developed and used in SOM electrolysis experiments. The current collector employs a sintered strontium-doped lanthanum manganite (La0.8Sr0.2MnO 3-delta or LSM) bar, an Inconel alloy 601 rod, and a liquid silver contact in between. SOM electrolysis experiments

  4. Nanostructured magnesium oxide biosensing platform for cholera detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj K.; Azahar Ali, Md.; Agrawal, Ved V.; Ansari, Z. A.; Ansari, S. G.; Malhotra, B. D.

    2013-04-01

    We report fabrication of highly crystalline nanostructured magnesium oxide (NanoMgO, size >30 nm) film electrophoretically deposited onto indium-tin-oxide (ITO) glass substrate for Vibrio cholerae detection. The single stranded deoxyribonucleic acid (ssDNA) probe, consisting of 23 bases (O1 gene sequence) immobilized onto NanoMgO/ITO electrode surface, has been characterized using electrochemical, Fourier Transform-Infra Red, and UltraViolet-visible spectroscopic techniques. The hybridization studies of ssDNA/NanoMgO/ITO bioelectrode with fragmented target DNA conducted using differential pulse voltammetry reveal sensitivity as 16.80 nA/ng/cm2, response time of 3 s, linearity as 100-500 ng/μL, and stability of about 120 days.

  5. Microstructural and physical properties of magnesium oxide-doped silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Sirota, V.; Lukianova, O.; Krasilnikov, V.; Selemenev, V.; Dokalov, V.

    Silicon nitride based ceramics with aluminum, yttrium and magnesium oxides were produced by cold isostatic pressing and free sintering. The phase composition of the starting MgO powder obtained by the novel technology has been studied. The effect of magnesium oxide content on the structure of the produced materials has been investigated. It was found, that obtained materials with 1 and 2 wt.% of magnesium oxide and without it have a typical β-silicon nitride structure with elongated grains. Ceramics with 5 wt.% magnesia has a duplex α/β-structure with elongated and equiaxed grains. Ceramics with 2 wt.% magnesium oxide has a maximum density of 2.91 g/cm3. The increases in magnesium oxide content upto 5% led to decrease in the shrinkage (from 16% to 12%) and density (from 2.88 to 2.37 g/cm3).

  6. Oxide Film and Porosity Defects in Magnesium Alloy AZ91

    SciTech Connect

    Wang, Liang; Rhee, Hongjoo; Felicelli, Sergio D.; Sabau, Adrian S; Berry, John T.

    2009-01-01

    Porosity is a major concern in the production of light metal parts. This work aims to identify some of the mechanisms of microporosity formation in magnesium alloy AZ91. Microstructure analysis was performed on several samples obtained from gravity-poured ingots in graphite plate molds. Temperature data during cooling was acquired with type K thermocouples at 60 Hz at three locations of each casting. The microstructure of samples extracted from the regions of measured temperature was then characterized with optical metallography. Tensile tests and conventional four point bend tests were also conducted on specimens cut from the cast plates. Scanning electron microscopy was then used to observe the microstructure on the fracture surface of the specimens. The results of this study revealed the existence of abundant oxide film defects, similar to those observed in aluminum alloys. Remnants of oxide films were detected on some pore surfaces, and folded oxides were observed in fracture surfaces indicating the presence of double oxides entrained during pouring.

  7. Effect of magnesium oxide content on oxidation behavior of some superalloy-base cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1975-01-01

    The effect of increasing magnesium oxide (MgO) content on the cyclic oxidation resistance of hot-pressed cermets of MgO in NiCrAlY, MgO in Hoskins-875, MgO in Inconel-702, and MgO in Hastelloy-X was investigated. The cermets with magnesium oxide levels of 5, 10, 20, and 40 vol percent were examined. The cyclic oxidation behavior of these cermets at 1100 and 1200 C in still air was determined by a thermogravimetric method supplemented by X-ray diffraction analysis and light and electron microscopy. In all instances, MgO prevented grain growth in the metallic phase. No evidence of oxidation along interphase boundaries was detected. Cermets of MgO in NiCrAlY and MgO in Hoskins-875 were superior to cermets of MgO in Inconel-702 and MgO in Hastelloy-X. Their oxidation resistance was degraded only when the MgO content was 40 vol percent. The oxidation behavior of MgO-in-Inconel-702 powder cermets containing 5- and 10-vol percent MgO was approximately similar to that of pure Inconel-702 compacts. The 20- and 40-vol percent MgO content reduced the oxidation resistance of MgO-in-Inconel-702 powder cermets relative to that of pure Inconel-702.

  8. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  9. A Polycarbonate/Magnesium Oxide Nanocomposite with High Flame Retardancy

    PubMed Central

    Dong, Quanxiao; Gao, Chong; Ding, Yanfen; Wang, Feng; Wen, Bin; Zhang, Shimin; Wang, Tongxin; Yang, Mingshu

    2014-01-01

    A new flame retardant polycarbonate/magnesium oxide (PC/MgO) nanocomposite, with high flame retardancy was developed by melt compounding. The effect of MgO to the flame retardancy, thermal property, and thermal degradation kinetics were investigated. Limited oxygen index (LOI) test revealed that a little amount of MgO (2 wt %) led to significant enhancement (LOI = 36.8) in flame retardancy. Thermogravimetric analysis results demonstrated that the onset temperature of degradation and temperature of maximum degradation rate decreased in both air and N2 atmosphere. Apparent activation energy was estimated via Flynn–Wall–Ozawa method. Three steps in the thermal degradation kinetics were observed after incorporation of MgO into the matrix and the additive raised activation energies of the composite in the full range except the initial stage. It was interpreted that the flame retardancy of PC was influenced by MgO through the following two aspects: on the one hand, MgO catalyzed the thermal-oxidative degradation and accelerated a thermal protection/mass loss barrier at burning surface; on the other hand, the filler decreased activation energies in the initial step and improved thermal stability in the final period. PMID:24696526

  10. Potassium promotion of iron oxide dehydrogenation catalysts supported on magnesium oxide: 1. Preparation and characterization

    SciTech Connect

    Stobbe, D.E.; Buren, F.R. van ); Dillen, A.J. van; Geus, J.W. )

    1992-06-01

    Catalysts of iron oxide supported on magnesium oxide and promoted with potassium were prepared by incipient wetness impregnation of preshaped magnesium oxide support pellets with a solution of an iron complex, either ammonium iron (III) citrate or ammonium iron (III) EDTA and potassium carbonate. Iron and potassium were applied wither simultaneously or consecutively. As determined using X-ray diffraction, thermogravimetric analysis, and magnetic measurements, calcination above 923 K results in the formation of a mixed oxide of iron and potassium, viz., KFeO[sub 2]. After calcination at 973 K the average crystallite size of the KFeO[sub 2] phase is about 300 [angstrom]. The formation of KFeO[sub 2] appeared to have a strong retarding effect on the reduction of the iron oxide phase to metallic iron. It was found that the KFeO[sub 2] phase is unstable in atomspheric air due to reaction with carbon dioxide and moisture to form potassium (hydrogen) carbonate and (hydrated) iron oxide.

  11. Lignopolymers as viscosity-reducing additives in magnesium oxide suspensions.

    PubMed

    Murray, Lisa R; Gupta, Chetali; Washburn, Newell R; Erk, Kendra A

    2015-12-01

    Lignopolymers are a new class of polymer additives with the capability to be used as dispersants in cementitious pastes. Made with kraft lignin cores and grafted polymer side-chains, the custom-synthesized lignopolymers were examined in terms of the molecular architecture for viscosity reducing potential in inert model suspensions. Lignin-poly(acrylic acid) (LPAA) and lignin-polyacrylamide (LPAm) have been found to vary the rheology of magnesium oxide (MgO) suspensions based on differences in chain architecture and particle-polymer interactions. A commercial comb-polymer polycarboxylate ester was compared to LPAA and LPAm at 2.7 mg/mL, a typical dosage for cement admixtures, as well as 0.25mg/mL. It was found that LPAm was a more effective viscosity reducer than both LPAA and the commercial additive at low concentrations, which was attributed to greater adsorption on the MgO particle surface and increased steric dispersion from PAm side-chain extension. The influence of chain adsorption and grafted side-chain molecular weight on rheology was also tested. PMID:26275503

  12. Magnesium

    NASA Astrophysics Data System (ADS)

    Bechtel, H.; Bulian, W.; Bungardt, K.; Gürs, K.; Gürs, U.; Helling, W.; Kyri, H.; Laue, H. J.; Mahler, W.; Matting, A.; Meyer, F. R.; Mialki, W.; Ritter, F.; Ruge, J.; Saur, G.; Simon, W.; Strnat, K.; Weber, R.; Weigand, H. H.; Weik, H.; Ziesler, H.; Borchers, Heinz; Schmidt, Ernst

    Magnesium wird überwiegend durch Schmelzflußelektrolyse hergestellt. Das dabei anfallende Reinmagnesium hat einen Mg-Gehalt von etwa 99,9%. Hauptbeimengung ist das Eisen; Silizium und Aluminium sind nur in Spuren vorhanden. Der Anwendungsumfang des Reinmagnesiums ist gering; dagegen werden Magnesiumlegierungen zunehmend, insbesondere für den Druckguß verwendet. Neben den bis etwa zum Jahre 1950 allein gebräuchlichen Mg-Mn-, Mg-Al- und Mg-Al-Zn-Legierungen werden heute mehr und mehr die besonders warmfesten Legierungen mit Zusätzen von Zirkon, Thorium und Seltenen Erden hergestellt (siehe dazu auch Abschnitt Seltene Erden). Als Umhüllungsmaterial für Uranstäbe dient die Legierung Magnox A 12, die nach [H 3] neben 1 % Al noch geringe Mengen an Ca und Ba enthält. In den in Deutschland üblichen Kurzzeichen (DIN 1729) werden die chemischen Symbole und der ungefähre Gehalt der wichtigsten Legierungselemente angegeben. Gußlegierungen werden zusätzlich durch ein G (Sandguß oder Kokillenguß) oder ein D (Druckguß) gekennzeichnet (siehe Tab. 5).

  13. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOEpatents

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  14. Vapor-phase reaction of acetophenone with methanol or dimethyl carbonate on magnesium oxide and magnesium phosphates

    SciTech Connect

    Aramendia, M.A.; Borau, V.; Jimenez, C.; Marinas, J.M.; Romero, F.J.

    1999-04-01

    The vapor-phase reaction of acetophenone with methanol on magnesium oxide, various magnesium phosphates, and combinations of the two types of catalysts was studied. The process was found to involve the Meerwein-Ponndorf-Verley reaction, aldol condensations, dehydrations, and hydrogenations. The presence of basic sites is indispensable for the reaction to develop; however, acid sites also play an active role. The selectivity for each reaction product depends on the particular catalyst used. The total conversion is maximal with the catalysts containing the largest populations of acid and basic sites. Also, catalysts with large numbers of acid sites exhibit an increased selectivity towards the corresponding alkenes. The use of dimethyl carbonate instead of methanol alters the reaction selectivity to an extent dependent on the particular catalyst and operating conditions. However, this also results in markedly decreased total conversion in some instances.

  15. Low temperature growth of crystalline magnesium oxide on hexagonal silicon carbide (0001) by molecular beam epitaxy

    SciTech Connect

    Goodrich, T. L.; Parisi, J.; Cai, Z.; Ziemer, K. S.

    2007-01-22

    Magnesium oxide (111) was grown epitaxially on hexagonal silicon carbide (6H-SiC) (0001) substrates at low temperatures by molecular beam epitaxy and a remote oxygen plasma source. The films were characterized by reflection high-energy electron diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. Crystal structure, morphology, and growth rate of the magnesium oxide (MgO) films were found to be dependent on the magnesium flux, indicating a magnesium adsorption controlled growth mechanism. The single crystalline MgO thin films had an epitaxial relationship where MgO (111) parallel 6H-SiC (0001) and were stable in both air and 10{sup -9} Torr up to 1023 K.

  16. Methanol adsorption on magnesium oxide surface with defects: a DFT study

    NASA Astrophysics Data System (ADS)

    Branda, M. M.; Ferullo, R. M.; Belelli, P. G.; Castellani, N. J.

    2003-03-01

    The methanol adsorption on several defects of the magnesium oxide surface were studied. Structural and electronic study with geometrical optimization and natural bond orbital (NBO) analysis were performed using a density functional theory (DFT) method. Oxygen and magnesium with different coordination numbers have very different reactivity in this surface producing dissociated and non-dissociated species. These results are in agreement with infrared spectroscopy observations where CH 3OH, OCH 3 and OH species were found in defective MgO surfaces.

  17. Gold Nanoparticles Supported on Magnesium Oxide Nanorods for Oxidation of Alcohols.

    PubMed

    Emayavaramban, P; Babu, S Ganesh; Karvembu, R; Kadirvelu, K; Dharmaraj, N

    2016-03-01

    Gold nanoparticles supported on magnesium oxide nanorods (Au-MgO) have been synthesised by a solution based chemical reduction method. Au-MgO nanorods were found to be an efficient heterogeneous catalyst for oxidation of alcohols with hydrogen peroxide in aqueous medium at room temperature. To find out the best reaction conditions for oxidation, optimization of catalyst quantity, solvent, mole equivalence of hydrogen peroxide were carried out. The scope of the reaction was extended to several aromatic and aliphatic alcohols, product yields were quantified by gas chromatography (GC) and GC/mass spectroscopy. Heterogeneity and reusability tests were performed. The use of water as a solvent and hydrogen peroxide as co-catalyst at room temperature makes the reaction interesting from sustainable development point of view. PMID:27455664

  18. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide

    NASA Astrophysics Data System (ADS)

    Ito, Tomoyasu; Lunsford, Jack H.

    1985-04-01

    The partial oxidation of methane into more useful chemicals such as methanol, ethylene and benzene has been investigated extensively, although yields for these products have been poor1-4. Moreover, in several of these processes the required oxidant is N2O rather than O2. Recent work5 in our laboratory has demonstrated that lithium-doped magnesium oxide (Li/MgO) in the presence of O2 has high activity for abstracting H from CH4 to form .CH3 radicals. This suggests that C2H6 and C2H4 (C2 compounds) are produced by a coupling between two gaseous .CH3 radicals formed on this catalyst. We report here our success in converting CH4 to C2 compounds in high yields in conventional catalytic conditions.

  19. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  20. Influence of mineral oil and additives on microhardness and surface chemistry of magnesium oxide (001) surface

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Shigaki, H.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted with cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved into specimens along the /001/ surface, and indentations were made on the cleaved surface in laboratory air, in nitrogen gas, or in degassed mineral oil with and without an additive while not exposing specimen surface to any other environment. The various additives examined contained sulfur, phosphorus, chlorine, or oleic acid. The sulfur-containing additive exhibited the highest hardness and smallest dislocation patterns evidencing plastic deformation; the chlorine-containing additive exhibited the lowest hardness and largest dislocation patterns evidencing plastic deformation. Hydrocarbon and chloride (MgCl2) films formed on the magnesium oxide surface. A chloride film was responsible for the lowest measured hardness.

  1. An Environmentally Friendly Process Involving Refining and Membrane-Based Electrolysis for Magnesium Recovery from Partially Oxidized Scrap Alloy

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2013-10-01

    Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.

  2. Formation of Ha-Containing Coating on AZ31 Magnesium Alloy by Micro-Arc Oxidation

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Li, Deyu; Chen, Xiuping; Wu, Chao; Wang, Fuping

    2013-08-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this study, a HA-containing coating was fabricated by micro-arc oxidation (MAO). The active plasma species of micro-discharge was studied by optical emission spectroscopy (OES). The microstructure and composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior and apatite-forming ability were studied by electrochemical tests and immersed samples in simulated body fluids (SBF). The results show that the microdischarge channel model is gas discharges and oxide layer discharges. The elements from the substrate and electrolyte take part in the formation of the coating. The MAO coating significantly improves the corrosion resistance of AZ31 magnesium alloy and enhances the apatite formation ability.

  3. Fast neutron activation analysis of oxide inclusions in magnesium alloy ingots

    NASA Astrophysics Data System (ADS)

    Fuerst, C. D.; James, W. D.

    1999-06-01

    Magnesium will have an increasingly important role to play in the automotive industry's materials strategy. In addition to its obvious use as a lightweight alternative, magnesium offers advantages in areas such as component integration and NVH (noise, vibration and harshness). Although the metallic composition of magnesium alloys has been carefully defined, there is no uniform industry standard for non-metallic inclusions, such as oxides, which are believed to adversely impact the material's strength. A definitive test has been needed, preferably one that provides a highly sensitive, calibrated, nondestructive evaluation of the metal's bulk oxide content. In response to this need, fast neutron activation analysis (FNAA) has emerged as an important tool for providing highly accurate quantitative information on the oxygen content in magnesium alloys. Oxygen levels from less than 50 to several thousand ppm have been observed in these alloys, with the highest levels concentrated at the top center of the ingot. Several operational procedures have been developed to optimize the analysis, including: a new automated, blank-free procedure which pneumatically transports machined magnesium cylinders between the irradiation and counting facilities; the use of an oxygen standard prepared from polyethylene and titanium dioxide, machined to match the sample dimensions; and implementation of new background subtraction software.

  4. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activities of magnesium oxide nanoparticles (MgO NP) alone or in combination with other antimicrobials (nisin and ZnO NP) against E. coli O157:H7 and Salmonella Stanley were investigated. The results show that MgO NP have strong bactericidal activity against the pathogens, achievin...

  5. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  6. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have strong antibacterial activities against several important foodborne pathogens. Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. Th...

  7. Study of Coating Growth Behavior During the Plasma Electrolytic Oxidation of Magnesium Alloy ZK60

    NASA Astrophysics Data System (ADS)

    Qiu, Zhaozhong; Wang, Rui; Zhang, Yushen; Qu, Yunfei; Wu, Xiaohong

    2015-04-01

    Plasma electrolytic oxidation technique was used to coat ZK60 magnesium alloy in a silicate-based electrolyte. Effects of oxidation time on the morphology, phase structure, and corrosion resistance of the resulting coatings were systematically investigated by scanning electron microscopy, energy-dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy, and potentiodynamic polarization. The main components of the inner and the outer coating layers were MgO and Mg2SiO4, respectively. It was also found that the oxidation time has a significant impact on the corrosion resistance properties of the coatings. The coating obtained within the oxidation time of 360 s exhibited a corrosion current of 7.6 × 10-8 A/cm2 in 3.5 wt.% NaCl solution, which decreased significantly when comparing with the pristine magnesium alloy.

  8. The analysis of magnesium oxide hydration in three-phase reaction system

    SciTech Connect

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  9. Comparison of methods to determine relative bioavailability of magnesium in magnesium oxides for ruminants.

    PubMed

    Van Ravenswaay, R O; Henry, P R; Ammerman, C B; Littell, R C

    1989-11-01

    Two Mg balance trials were conducted with wethers to compare relative bioavailability of Mg in several Mg oxides with that of reagent grade sulfate as determined by different methods. In Experiment 1,600 ppm Mg as sulfate or four feed grade oxides varying in origin and particle size were added to a semi-purified basal diet (200 ppm Mg). Diets were fed at 800 g/d to 30 crossbred wethers during the 14-d trial and fecal and urinary collections were made during the last 7 d. In Experiment 2, the basal corn-soybean meal-cottonseed hull diet (1387 ppm Mg) was supplemented with 0, 700, 1400, or 2100 ppm added Mg as reagent grade sulfate or 1400 ppm Mg as three of the oxides from Experiment 1 and fed at 1000 g/d to 35 wethers. Urine was collected daily for 10 d and feces were collected on d 7 through 10. In Experiments 1 and 2, absorption of Mg from the oxide of brine origin and larger particle size distribution was lower than that from sulfate, but there was no difference in absorption for sheep fed oxides derived from sea water or calcined magnesite. In Experiment 2, urinary Mg excretion on d 4 and 5 of the collection was lower for sheep fed the brine oxide than for those fed sulfate or oxide from calcined magnesite. Urinary Mg excretion on d 4 and 5 following addition of 1400 ppm Mg to practical diets could be used to predict bioavailability of Mg. PMID:2625487

  10. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    NASA Astrophysics Data System (ADS)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 °C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  11. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types.

    PubMed

    Mahmoud, Abudayyak; Ezgi, Öztaş; Merve, Arici; Özhan, Gül

    2016-07-01

    Worldwide researchers have rising concerns about magnesium-based materials, especially magnesium oxide (MgO) nanaoparticles, due to increasing usage as promising structural materials in various fields including cancer treatment. However, there is a serious lack of information about their toxicity at the cellular and molecular levels. In this study, the toxic potentials of MgO nanoparticles were investigated on liver (HepG2), kidney (NRK-52E), intestine (Caco-2), and lung (A549) cell lines. For the toxicological assessment, the following assays were used: the particle characterization by transmission electron microscopy, the determination of cellular uptake by inductively coupled plasma-mass spectrometry, MTT and neutral red uptake assays for cytotoxicity, comet assay for genotoxicity, and the determination of malondialdehyde (MDA), 8-hydroxydeoxyguanosine, protein carbonyl, and glutathione levels by enzyme-linked immune sorbent assays for the potential of oxidative damage and annexin V-fluorescein isothiocyanate (FITC) apoptosis detection assay with propidium iodide (PI) for apoptosis. Magnesium oxide nanoparticles were taken up by the cells depending on their concentration and agglomeration/aggregation potentials. Magnesium oxide nanoparticles induced DNA (≤14.27 fold) and oxidative damage. At a concentration of ≥323.39 µg/mL, MgO nanoparticles caused 50% inhibition in cell viability by 2 different cytotoxicity assays. The cell sensitivity to cytotoxic and genotoxic damage induced by MgO nanoparticles was ranked as HepG2 < A549 < Caco-2 < NRK-52E. Although it was observed that MgO nanoparticles induced apoptotic effects on the cells, apoptosis was not the main cell death. DNA damage, cell death, and oxidative damage effects of MgO nanoparticles should raise concern about the safety associated with their applications in consumer products. PMID:27177543

  12. Magnesium Supplementation Diminishes Peripheral Blood Lymphocyte DNA Oxidative Damage in Athletes and Sedentary Young Man

    PubMed Central

    Petrović, Jelena; Stanić, Dušanka; Dmitrašinović, Gordana; Plećaš-Solarović, Bosiljka; Ignjatović, Svetlana; Batinić, Bojan; Popović, Dejana

    2016-01-01

    Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL) with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id: ACTRN12615001237572. PMID:27042258

  13. The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Shen, Shijun; Jiang, Bin; Jiang, Zhongtao; Yang, Hong; Pan, Fusheng

    2016-05-01

    This paper studies the effect of the existing state of Y element on the high temperature oxidation resistance of magnesium alloys. Different levels of Al element were added into Mg-2.5Y alloy to obtain different existing state of Y. The oxidation rate of Mg-2.5Y-2.5Al alloy is the highest among Mg-2.5Y, Mg-2.5Y-2.5Al and Mg-2.5Y-4.2Al alloys at 500 °C. An effective and protective Y2O3/MgO composite oxide film was formed on the surface of Mg-2.5Y alloy after oxidized at 500 °C for 360 min. The results show that the dissolved Y element in the matrix was beneficial to improve the oxidation resistance of magnesium alloys. Once Y element transformed to the high temperature stable Al2Y compound, its ability in preventing oxidation would disappear. The formation of Al2Y compound severely deteriorated the oxidation resistance of Mg-2.5Y alloy. In addition, the dissolved Al can also cause the rise of oxidation resistance at a certain extent.

  14. Synthesis of micromesoporous magnesium oxide cubes with nanograin structures in a supercritical carbon dioxide/ethanol solution.

    PubMed

    Kim, Kwang Deok; Kim, Young Do; Kim, Sang Woo

    2011-07-01

    Micromesoporous magnesium oxide architectures with cubic morphologies were prepared via the chemical reaction of magnesium hydroxide in a supercritical carbon dioxide (CO2)-ethanol system, and via the sequential thermal combustion of the reaction products. The morphological change to the cube shape from an irregular form was induced by the dehydoxylation-carbonation reaction of magnesium hydroxide with supercritical CO2 at a reaction temperature of 150 degrees C, which leads to the greatly improved carbonation efficiency of magnesium hydroxide to magnesium carbonate. The precursor cubes with 3-5 microm sizes were decarbonized and transformed into the nanocrystalline MgO phase with pore sizes of 1.3-6 nm after calcining at 600 degrees C. The micromesoporous cube with high surface area of 117.5 m2/g was obtained by the thermal decarbonation with phase transition from rhombohedral to cubic phase. As a result, nanograined magnesium oxide cubes with micromesoporous structures and high specific surface areas were formed by the carbonation reaction of the magnesium hydroxide with the supercritical CO2, and the subsequent thermal decomposition of the magnesium carbonate cubes. PMID:22121614

  15. Aging of magnesium stearate under high doses gamma irradiation and oxidative conditions

    NASA Astrophysics Data System (ADS)

    Lebeau, D.; Beuvier, L.; Cornaton, M.; Miserque, F.; Tabarant, M.; Esnouf, S.; Ferry, M.

    2015-05-01

    In nuclear waste packages conditioning processes, magnesium stearate is widely used because of its high lubricating properties. For safety purposes, the radiolytic degradation of these organic materials has to be better understood to be able to predict their aging in repository conditions. This study reports the radiolytic degradation of magnesium stearate, using gamma-rays at room temperature and under air. Modifications were followed using different analytical tools (XPS, ATR-FTIR, ICP-AES, ATG and mass spectrometry). It has been observed that molecules mainly formed up to 1000 kGy of gamma irradiation dose under radio-oxidation are alkanes, hydroperoxides, double bonds in the aliphatic chain, carboxylates with aliphatic chain shorter than the one of stearate and ketones. At a dose of 4000 kGy, dicarboxylic acids are observed: the formation of these molecules needs a dose of at least 1000 kGy to be created under radio-oxidation. These observations allow us to propose a non-exhaustive degradation mechanism of magnesium stearate under gamma-irradiation at room temperature and under air.

  16. The analysis of magnesium oxide hydration in three-phase reaction system

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas-liquid-solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid-solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH)2 precipitation, Mg(OH)2 peeling off from MgO particle and leaving behind fresh MgO surface.

  17. Physicochemistry of the surface of and exoemission from magnesium oxide

    NASA Astrophysics Data System (ADS)

    Krylova, I. V.

    2010-02-01

    To optimize the processes of obtaining MgO with the highest possible exoemission intensity and time of decay, the influence of dehydration conditions and the subsequent adsorption of active gases (H2, O2, and H2O vapor) on its parameters was investigated. The nature of adsorption centers and exoemission is discussed, based on the results obtained using the latest literature data on dehydration processes, as are the formation of defects on the MgO surface (coloring centers) and their interaction with hydrogen and oxygen. Due to the introduction of exoemissionally active MgO in the manufacturing of plasma displays, the literature data dealing with the exposure of extremely active grains of oxide monocrystals containing exoemission centers (OH-groups) are examined.

  18. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  19. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  20. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C) subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  1. Thermal Property Evaluation of Cerium Dioxide and Cerium Dioxide Magnesium Oxide Powders for Testing Plutonium

    SciTech Connect

    HOYT, R C

    2002-06-01

    Ceric oxide (CeO{sub 2}) and mixtures of CeO{sub 2} -magnesium oxide (MgO) have been utilized at the Plutonium Finishing Plant (PFP) as surrogate materials to represent plutonium dioxide (PuO{sub 2}) and impure PuO{sub 2} containing impurities such as MgO during verification tests on PFP's stabilization furnaces. Magnesium oxide was selected during furnace testing as the impurity of interest since much of the impure PuO{sub 2} to be stabilized and packaged at the PFP contains significant amounts of MgO from solution stabilization work. The issue being addressed in this study is whether or not heating the surrogate materials to 950 C adequately simulates heating PuO{sub 2} powders to 950 C. This paper evaluates some of the thermal properties of these oxides, as related to the heating of powders of these materials where heat transfer within the powders is governed primarily by conduction. Detailed heat transfer modeling was outside the scope of this paper.

  2. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2010-07-15

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) A, b = 17.1823(4) A, c = 23.5718(5) A, {beta} = 90{sup o}, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with vertical bar F vertical bar > 7{sigma}(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca{sub 2}Mg{sub 2}{sup IV}Fe{sub 2}{sup (2+)IV}[Al{sub 14}{sup VI}O{sub 31}(OH)][Al{sub 2}{sup IV}O][Al{sup IV}]AL{sup IV}(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe{sup 2+} tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  3. Antimicrobial properties and mechanism of magnesium oxide nanoparticles on Campylobacter, E. coli O157:H7, and Salmonella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Metal oxide nanoparticles have considerable potential as antimicrobial agents in food safety applications due to their structure, surface properties, and stability. In this study, the antibacterial effects and mechanisms of Magnesium Oxide Nanoparticles (MgO NPs, with an average size o...

  4. Phase transformations and metallization of magnesium oxide at high pressure and temperature.

    PubMed

    McWilliams, R Stewart; Spaulding, Dylan K; Eggert, Jon H; Celliers, Peter M; Hicks, Damien G; Smith, Raymond F; Collins, Gilbert W; Jeanloz, Raymond

    2012-12-01

    Magnesium oxide (MgO) is representative of the rocky materials comprising the mantles of terrestrial planets, such that its properties at high temperatures and pressures reflect the nature of planetary interiors. Shock-compression experiments on MgO to pressures of 1.4 terapascals (TPa) reveal a sequence of two phase transformations: from B1 (sodium chloride) to B2 (cesium chloride) crystal structures above 0.36 TPa, and from electrically insulating solid to metallic liquid above 0.60 TPa. The transitions exhibit large latent heats that are likely to affect the structure and evolution of super-Earths. Together with data on other oxide liquids, we conclude that magmas deep inside terrestrial planets can be electrically conductive, enabling magnetic field-producing dynamo action within oxide-rich regions and blurring the distinction between planetary mantles and cores. PMID:23180773

  5. Nanocrystalline titanium dioxide and magnesium oxide in vitro dermal absorption in human skin.

    PubMed

    van der Merwe, Deon; Tawde, Snehal; Pickrell, John A; Erickson, Larry E

    2009-01-01

    The dermal absorption potential of a nanocrystalline magnesium oxide (MgO) and titanium dioxide (TiO(2)) mixture in dermatomed human skin was assessed in vitro using Bronaugh-type flow-through diffusion cells. Nanocrystalline material was applied to the skin surface at a dose rate of 50 mg/cm(2) as a dry powder, as a water suspension, and as a water/surfactant (sodium lauryl sulfate) suspension, for 8 hours. Dermal absorption of nanocrystalline MgO and TiO(2) through human skin with intact, functional stratum corneum was not detectable under the conditions of this experiment. PMID:19514931

  6. A study of the chemisorption of a series of aminophenols on plasma-grown aluminium and magnesium oxides by IETS

    NASA Astrophysics Data System (ADS)

    Brown, N. M. D.; Taggart, G. M.

    Inelastic electron tunnelling spectroscopy (IETS) has been applied to study the adsorption of a series of aminophenols on plasma-grown aluminium and magnesium oxides. Vapour-phase doping of these surfaces was used and spectra recorded for 1,2-aminophenol, 1,3-aminophenol and 1,4-aminophenol. The tunnel spectra of the 1,2- and 1,3-aminophenols show that their chemisorption at both oxide surfaces is via reaction between phenolic and surface hydroxyl groups. For the 1,4-aminophenol example, adsorbate chemisorption involves transfer of surface-bound protons from the oxide in amino-group protonation. Some of these protons are replaced by deprotonation of the phenol at surface oxide ions. Observed band intensities for all three systems on aluminium oxide are held to be indicative of an adsorbate orientation on the surface which is close to the vertical. In contrast, those for magnesium oxide are more consistent with a non-vertical configuration.

  7. Magnesium oxide-supported ziegler catalyst modified with acid and higher alkanol, and process for preparing narrow MWD HDPE

    SciTech Connect

    Hsieh, J.T.T.

    1989-09-05

    This patent describes a coordination-catalyst suitable for the polymerization of olefins. It comprises a titanium component and an organoaluminum compound reducing agent on a magnesium oxide support which has been pre-treated with a molar deficiency of a carboxylic acid with respect to the magnesium oxide support. The titanium component is the reaction product of an alkanol having 5 to 12 carbon atoms and TiCl/sub 4/ with the molar ratio of the alkanol to the TiCl/sub 4/ being about 0.5 to about 1.5.

  8. Sorption characteristics of fluoride on to magnesium oxide-rich phases calcined at different temperatures.

    PubMed

    Sasaki, Keiko; Fukumoto, Naoyuki; Moriyama, Sayo; Hirajima, Tsuyoshi

    2011-07-15

    The effect of calcination temperature during production of magnesium oxide-rich phases from MgCO(3) on the sorption of F(-) ions in the aqueous phase has been investigated. Magnesium oxide-rich phases were formed by calcination at over 873 K for 1h. Higher calcination temperatures produced more crystalline MgO with smaller specific surface area and provided larger values of the total basicity per unit surface area. The higher calcination temperatures lead to slower F(-) removal rate, and lower equilibrium F(-) concentrations, when the equilibrium F(-) concentrations are less than 1 mmol dm(-3). Larger total basicity per unit surface area made the reactivity with F(-) ions in aqueous phase more feasible, resulting in a greater degree of F(-) sorption. For equilibrium F(-) concentrations more than 1 mmol dm(-3), lower calcination temperatures favored the co-precipitation of F(-) with Mg(OH)(2), probably leading to the formation of Mg(OH)(2-x)F(x), and the achievement of larger sorption density. This is the first paper which describes the relationship between the solid base characteristics obtained by CO(2)-TPD for MgO with different calcination temperatures as a function of the reactivity of F(-) sorption in the aqueous phase. PMID:21571430

  9. Magnesium Oxide

    MedlinePlus

    ... Talk to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in your community. See the FDA's Safe Disposal of Medicines website (http://goo.gl/c4Rm4p) for ...

  10. THE HYDROLYSIS AND OXIDATION BEHAVIOR OF LITHIUM BOROHYDRIDE AND MAGNESIUM HYDRIDE DETERMINED BY CALORIMETRY

    SciTech Connect

    Brinkman, K; Donald Anton, D; Joshua Gray, J; Bruce Hardy, B

    2008-03-13

    Lithium borohydride, magnesium hydride and the 2:1 'destabilized' ball milled mixtures (2LiBH{sub 4}:MgH{sub 2}) underwent liquid phase hydrolysis, gas phase hydrolysis and air oxidation reactions monitored by isothermal calorimetry. The experimentally determined heats of reaction and resulting products were compared with those theoretically predicted using thermodynamic databases. Results showed a discrepancy between the predicted and observed hydrolysis and oxidation products due to both kinetic limitations and to the significant amorphous character of observed reaction products. Gas phase and liquid phase hydrolysis were the dominant reactions in 2LiBH{sub 4}:MgH{sub 2} with approximately the same total energy release and reaction products; liquid phase hydrolysis displayed the maximum heat flow for likely environmental exposure with a peak energy release of 6 (mW/mg).

  11. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide.

    PubMed

    Mhareb, M H A; Hashim, S; Ghoshal, S K; Alajerami, Y S M; Saleh, M A; Razak, N A B; Azizan, S A B

    2015-12-01

    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters. PMID:25828828

  12. Optimized deposition and characterization of nanocrystalline magnesium indium oxide thin films for opto-electronic applications

    SciTech Connect

    Raj, A. Moses Ezhil; Ravidhas, C.; Ravishankar, R.; Kumar, A. Rathish; Selvan, G.; Jayachandran, M.; Sanjeeviraja, C.

    2009-05-06

    Transparent conducting magnesium indium oxide films (MgIn{sub 2}O{sub 4}) were deposited on to quartz substrates without a buffer layer at an optimized deposition temperature of 450 deg. C to achieve high transmittance in the visible spectral range and electrical conductivity in the low temperature region. Magnesium ions are distributed over the tetrahedral and octahedral sites of the inverted spinel structure with preferential orientation along (3 1 1) Miller plane. The possible mechanism that promotes conductivity in this system is the charge transfer between the resident divalent (Mg{sup 2+}) and trivalent (In{sup 3+}) cations in addition to the available oxygen vacancies in the lattice. A room temperature electrical conductivity of 1.5 x 10{sup -5} S cm{sup -1} and an average transmittance >75% have been achieved. Hall measurements showed n-type conductivity with electron mobility value 0.95 x 10{sup -2} cm{sup 2} V{sup -1} s{sup -1} and carrier concentration 2.7 x 10{sup 19} cm{sup -3}. Smoothness of the film surface observed through atomic force microscope measurements favors this material for gas sensing and opto-electronic device development.

  13. NANOSIZED MAGNESIUM OXIDE AS CATALYST FOR THE RAPID AND GREEN SYNTHESIS OF SUBSTITUTED 2-AMINO-2-CHROMENES

    EPA Science Inventory

    A nanosized magnesium oxide catalyzed three-component condensation reaction of aldehyde, malononitrile and ¿-naphthol proceeded rapidly in water/PEG to afford corresponding 2-amino-2-chromenes in high yields at room temperature. The greener protocol was found to be fairly general...

  14. CONTROL OF AIR POLLUTION EMISSIONS FROM MOLYBDENUM ROASTING. VOLUME 3. PILOT SCALE TEST RESULTS FOR MAGNESIUM OXIDE SCRUBBING

    EPA Science Inventory

    A research project was conducted to determine the feasibility of applying the magnesium oxide (MgO) scrubbing system to smelter off-gas streams containing approximately one percent SO2. Pilot scale (4000 cu Nm/hr) tests of the MgO system using a packed tower absorber with no rege...

  15. Method for production of magnesium

    DOEpatents

    Diaz, Alexander F.; Howard, Jack B.; Modestino, Anthony J.; Peters, William A.

    1998-01-01

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400.degree. C. or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products.

  16. Method for production of magnesium

    DOEpatents

    Diaz, A.F.; Howard, J.B.; Modestino, A.J.; Peters, W.A.

    1998-07-21

    A continuous process for the production of elemental magnesium is described. Magnesium is made from magnesium oxide and a light hydrocarbon gas. In the process, a feed stream of the magnesium oxide and gas is continuously fed into a reaction zone. There the magnesium oxide and gas are reacted at a temperature of about 1400 C or greater in the reaction zone to provide a continuous product stream of reaction products, which include elemental magnesium. The product stream is continuously quenched after leaving the reaction zone, and the elemental magnesium is separated from other reaction products. 12 figs.

  17. Magnesium Lewis Acid Assisted Oxidative Bromoetherification Involving Bromine Transfer from Alkyl Bromides with Aldehydes by Umpolung of Bromide.

    PubMed

    Moriyama, Katsuhiko; Nishinohara, Chihiro; Togo, Hideo

    2016-08-16

    An oxidative bromoetherification involving a bromine transfer from alkyl bromides upon reacting them with aldehydes in a Grignard reaction with a concurrent oxidation of bromide was developed to provide substituted tetrahydrofurans in high yields. This reaction, which proceeds through two types of bromine transfer, was promoted by the addition of a Brønsted acid. Mechanistic studies suggested that a magnesium Lewis acid activates hypobromate, which is generated in situ from the reaction of bromide and Oxone to improve the electrophilicity of the bromonium ion (Br(+) ) for the oxidative bromoetherification of alkenyl alcohols. Furthermore, the magnesium Lewis acid catalyzed oxidative bromoetherification of an alkenyl alcohol proceeded to provide a cyclization product in 92 % yield. PMID:27304660

  18. Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation

    NASA Technical Reports Server (NTRS)

    Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

    1986-01-01

    An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

  19. Growth Kinetics of the S Sub H Center on Magnesium Oxide Using Electron Paramagnetic Resonance

    NASA Technical Reports Server (NTRS)

    Jayne, J. P.

    1971-01-01

    Electron paramagnetic resonance spectroscopy was used to study the growth of S sub H centers on magnesium oxide powder which had hydrogen adsorbed on its surface. The centers were produced by ultraviolet radiation. The effects of both radiation intensity and hydrogen pressure were also studied. At constant hydrogen pressure and radiation dose, the initial S sub H center growth rate was found to be zero order. Beyond the initial region the growth rate deviated from zero order and finally approached saturation. The results are interpreted in terms of a model which assumes that the S sub H center is a hydrogen atom associated with a surface vacancy. Saturation appears to result from a limited supply of surface vacancies.

  20. Ab initio calculations on magnetism induced by composite defects in magnesium oxide

    SciTech Connect

    Zhang, Yao-Fang; Feng, Min; Shao, Bin; Lu, Yuan; Zuo, Xu; Liu, Hong

    2014-05-07

    The local magnetic state induced by the composite defects, composed of an oxygen vacancy and a nitrogen substituting oxygen, in magnesium oxide has been studied by using ab initio calculation based on density functional theory. The calculated results show that local magnetic moment can be induced by the composite defects around the oxygen vacancy, when the exchange split of the oxygen vacancy is enhanced either by the hybridization between the N-p and nearest neighbor O-p orbitals or by applying on-site Coulomb repulsion (U) and exchange interaction (J). We show that the magnetic state induced by the composite defect is energetically more stable than the non-magnetic state. In addition, we show that the U and J applied on the p-orbitals of N and O atoms may significantly impact the calculated magnetic state of the composite defect, resulting in magnetic state for a configuration that is non-magnetic by generalized gradient approximation.

  1. Thermoelectric properties of hot-pressed and PECS-sintered magnesium-doped copper aluminum oxide

    SciTech Connect

    Liu, Chang; Morelli, Donald T

    2011-02-03

    Copper aluminum oxide (CuAlO{sub 2}) is considered as a potential candidate for thermoelectric applications. Partially magnesium-doped CuAlO{sub 2} bulk pellets were fabricated using solid-state reactions, hot-pressing, and pulsed electric current sintering (PECS) techniques. X-ray diffraction and scanning electron microscopy were adopted for structural analysis. High-temperature transport property measurements were performed on hot-pressed samples. Electrical conductivity increased with Mg doping before secondary phases became significant, while the Seebeck coefficient displayed the opposite trend. Thermal conductivity was consistently reduced as the Mg concentration increased. Effects of Mg doping, preparation conditions, and future modification on this material’s properties are discussed.

  2. RF-sputter-deposited magnesium oxide films as high-quality adjustable tunnel barriers

    SciTech Connect

    Villegier, J.C.; Radparvar, M.; Yu, L.S.; Faris, S.M.

    1989-03-01

    High quality RF-sputtered MgO films are used as tunnel barriers to fabricate small area, niobium nitride Josephson tunnel junctions. A magnesium oxide barrier deposited as a single layer, or as a multilayer film, results in devices with similar characteristics. Annealing trilayers at temperatures in excess of 250/sup 0/C for several hours decrease junction current density and improve device quality presumably by increasing barrier heights through reducing resonant tunneling states. A self-aligned process utilizing only two mask levels is used to produce junctions as small as 0.5 ..mu..m/sup 2/ with excellent critical current uniformity. These junctions exhibit energy gaps of 5.1 mV and low subgap currents at current densities in excess of 1000 A/cm/sup 2/ which make them suitable for a variety of applications such as SIS mixers and logic circuits.

  3. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. PMID:26283286

  4. Corrosion behavior of silicon nitride, magnesium oxide, and several metals in molten calcium chloride with chlorine

    SciTech Connect

    McLaughlin, D. . Research and Development Center); Sesions, C.E.; Marra, J.E. )

    1992-08-01

    In this paper corrosion studies are described in a molten calcium chloride environment sparged with chlorine gas at 850{degrees}C, both in the melt and in the gas phase above the salt, in support of efforts at Westinghouse Savannah River Company to develop more resistant materials of construction for molten salt processing of plutonium. Corrosion rates and electron microscope analyses are reported for Inconel alloys 601 and 617, tantalum, tungsten, magnesium oxide, and silicon nitride. Silicon nitride exhibited the greatest resistance, showing {lt}0.1 mg/cm{sup 2} {center dot} h loss in both melt and vapor None of the metallic coupons withstood the chlorine vapor environment, although Inconel indicated resistance immersed in the melt if protected from chlorine gas.

  5. Preparation of Composite Coating on AZ91D Magnesium Alloy by Silica Sol-Micro Oxidation

    NASA Astrophysics Data System (ADS)

    Shao, Zhongcai; Zhang, Feifei; Zhao, Ruiqiang; Shen, Xiaoyi

    2016-03-01

    Composite coating was prepared on AZ91D magnesium alloy with a new method which combined silica sol with micro-arc oxidation (MAO). The MAO coating was prepared on the basis of MAO solution, and then coated by sol-gel process. The composite coating was obtained after second MAO treatment. Scanning electron microscopy coupled with X-ray diffraction (XRD), energy spectrum analysis and electrochemical testing was applied to characterize the properties of MAO coating and composite coating. The experimental test results indicated that the Si element derived from SiO2 gel particle embedded into the MAO coating by second MAO treatment. The surface of composite coating became dense and the holes were smaller with silica sol sealing process. The corrosion resistance of composite coating was improved than the MAO coating.

  6. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  7. How surface reparation prevents catalytic oxidation of carbon monoxide on atomic gold at defective magnesium oxide surfaces.

    PubMed

    Töpfer, Kai; Tremblay, Jean Christophe

    2016-07-21

    In this contribution, we study using first principles the co-adsorption and catalytic behaviors of CO and O2 on a single gold atom deposited at defective magnesium oxide surfaces. Using cluster models and point charge embedding within a density functional theory framework, we simulate the CO oxidation reaction for Au1 on differently charged oxygen vacancies of MgO(001) to rationalize its experimentally observed lack of catalytic activity. Our results show that: (1) co-adsorption is weakly supported at F(0) and F(2+) defects but not at F(1+) sites, (2) electron redistribution from the F(0) vacancy via the Au1 cluster to the adsorbed molecular oxygen weakens the O2 bond, as required for a sustainable catalytic cycle, (3) a metastable carbonate intermediate can form on defects of the F(0) type, (4) only a small activation barrier exists for the highly favorable dissociation of CO2 from F(0), and (5) the moderate adsorption energy of the gold atom on the F(0) defect cannot prevent insertion of molecular oxygen inside the defect. Due to the lack of protection of the color centers, the surface becomes invariably repaired by the surrounding oxygen and the catalytic cycle is irreversibly broken in the first oxidation step. PMID:27345190

  8. Strength by atomic force microscopy (AFM): Molecular dynamics of water layer squeezing on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Kendall, K.; Dhir, Aman; Yong, Chin W.

    2010-11-01

    Localised strength testing of materials is often carried out in an atomic force microscope (AFM), as foreseen by Kelly in his book Strong Solids (Clarendon Press, Oxford, 1966). During AFM indentation experiments, contamination can strongly influence the observed strength and theoretical interpretation of the results is a major problem. Here, we use molecular dynamics computer modelling to describe the contact of NaCl and MgO crystal probes onto surfaces, comparable to an AFM experiment. Clean NaCl gave elastic, brittle behaviour in contact simulations at 300 K, whereas MgO was more plastic, leading to increased toughness. This paper also considers the strength of an oxide substrate contaminated by water molecules and tested by indentation with a pyramidal probe of oxide crystal. Recent theory on the effect of liquid contaminant layers on surface strength has been mainly focussed on Lennard Jones (LJ) molecules with some studies on alcohols and water, described by molecular dynamics, which allows the molecules to be squeezed out as the crystal lattice is deformed. In this work, we have focused on water by studying the forces between a magnesium oxide (MgO) atomic force microscope (AFM) probe and an MgO slab. Force versus separation has been plotted as the AFM probe was moved towards and away from the substrate. Simulation results showed that the water layers could be removed in steps, giving up to four force peaks. The last monolayer of water could not be squeezed out, even at pressures where MgO deformed plastically. Interestingly, with water present, strength was reduced, but more in tensile than compressive measurements. In conclusion, water contaminating the oxide surface in AFM strength testing is structured. Water layer squeezing removal can be predicted by molecular modelling, which may be verified by AFM experiments to show that water can influence the strength of perfect crystals at the nanometre scale.

  9. Effect of plasma etching on destructive adsorption properties of polypropylene fibers containing magnesium oxide nanoparticles.

    PubMed

    Lange, Laura E; Obendorf, S Kay

    2012-02-01

    Dermal absorption of pesticides poses a danger for agricultural workers. Use of personal protection equipment (PPE) is required to provide protection; some of the current PPE involves impermeable barriers. In these barrier materials, the same mechanism that prevents the penetration of toxic chemicals also blocks the passage of water vapor and air from flowing through the material, making the garments uncomfortable. Fibers that degrade organophosphate pesticides, such as methyl parathion, were developed by incorporating metal oxides. These modified fibers can be incorporated into conventional fabric structures that allow water vapor to pass through, thereby maintaining comfort. Fibers with self-decontamination functionality were developed by incorporating magnesium oxide (MgO) nanoparticles into a polypropylene (PP) melt-extruded fiber. These fibers were then treated with plasma etching to expose increased surface area of the MgO nanoparticles. Three steps were involved in this research project: (1) determining the reactivity of MgO and methyl parathion, (2) making melt-spun MgO/PP fibers, and (3) testing the reactivity of MgO/PP composite fibers and methyl parathion. It was confirmed that MgO stoichiometrically degrades methyl parathion by way of destructive adsorption. The etching of the PP fibers containing MgO nanoparticles increased the chemical accessibility of MgO reactive sites, therefore making them more effective in degrading methyl parathion. These fibers can enhance the protection provided by PPE to agricultural and horticultural workers and military personnel. PMID:21850511

  10. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation.

    PubMed

    Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi; Lim, Jung Eun; Ok, Yong Sik

    2015-12-15

    Three Australian shooting range soils were treated with phosphate and magnesium oxide, or a combination of both to chemically stabilize Pb. Lead speciation was determined after 1 month ageing by X-ray absorption spectroscopy combined with linear combination fitting in control and treated soils. The predominant Pb species in untreated soils were iron oxide bound Pb, humic acid bound Pb and the mineral litharge. Treatment with phosphate resulted in substantial pyromorphite formation in two of the soils (TV and PE), accounting for up to 38% of Pb species present, despite the addition of excess phosphate. In MgO treated soils only, up to 43% of Pb was associated with MgO. Litharge and Pb hydroxide also formed as a result of MgO addition in the soils. Application of MgO after P treatment increased hydroxypyromorphite/pyromorphite formation relative to soils teated with phosphate only. X-ray diffraction and Scanning electron microscopy revealed PbO precipitate on the surface of MgO. Soil pH, (5.3-9.3) was an important parameter, as was the solubility of existing Pb species. The use of direct means of determination of the stabilisation of metals such as by X-ray absorption spectroscopy is desirable, particularly in relation to understanding long term stability of the immobilised contaminants. PMID:26150282

  11. Effects of CH3OH Addition on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    He, Yongyi; Chen, Li; Yan, Zongcheng; Zhang, Yalei

    2015-09-01

    Plasma electrolytic oxidation (PEO) films on AZ31 magnesium alloys were prepared in alkaline silicate electrolytes (base electrolyte) with the addition of different volume concentrations of CH3OH, which was used to adjust the thickness of the vapor sheath. The compositions, morphologies, and thicknesses of ceramic layers formed with different CH3OH concentrations were determined via X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). Corrosion behavior of the oxide films was evaluated in 3.5 wt.% NaCl solution using potentiodynamic polarization tests. PEO coatings mainly comprised Mg, MgO, and Mg2SiO4. The addition of CH3OH in base electrolytes affected the thickness, pores diameter, and Mg2SiO4 content in the films. The films formed in the electrolyte containing 12% CH3OH exhibited the highest thickness. The coatings formed in the electrolyte containing different concentrations of CH3OH exhibited similar corrosion resistance. The energy consumption of PEO markedly decreased upon the addition of CH3OH to the electrolytes. The result is helpful for energy saving in the PEO process. supported by National Natural Science Foundation of China (No. 21376088), the Project of Production, Education and Research, Guangdong Province and Ministry of Education (Nos. 2012B09100063, 2012A090300015), and Guangzhou Science and Technology Plan Projects of China (No. 2014Y2-00042)

  12. Magnesium-doped zinc oxide nanorod-nanotube semiconductor/p-silicon heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Caglar, Yasemin; Görgün, Kamuran; Ilican, Saliha; Caglar, Mujdat; Yakuphanoğlu, Fahrettin

    2016-08-01

    Nanostructured zinc oxide material is usable in electronic device applications such as light-emitting diodes, heterojunction diode, sensors, solar cell due to its interesting electrical conductivity and optical properties. Magnesium-doped zinc oxide nanorod (NR)-nanotube (NT) films were grown by microwave-assisted chemical bath deposition to fabricate ZnO-based heterojunction diode. It is found that ZnO hexagonal nanorods turn into hexagonal nanotubes when the Mg doping ratio is increased from 1 to 10 %. The values of the optical band gap for 1 % Mg-doped ZnO NR and 10 % Mg-doped ZnO NT films are found to be 3.14 and 3.22 eV, respectively. The n-ZnO:Mg/p-Si heterojunction diodes were fabricated. The diodes exhibited a rectification behavior with ideality factor higher than unity due to the presence of surface states in the junction and series resistance. The obtained results indicate that Mg doping improves the electrical and optical properties of ZnO.

  13. Intestinal inflammation caused by magnesium deficiency alters basal and oxidative stress-induced intestinal function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnesium-deficiency (MgD)induces a systemic pro-inflammatory state. The aim of this study was to determine the effect of MgD on the functional and molecular response to mesenteric ischemia reperfusion. Rats were assigned to 4 groups and placed on magnesium sufficient or deficient diet for 1 or 3 we...

  14. Dual Ion Assist Beam Deposition of Magnesium Oxide for Coated Conductors

    NASA Astrophysics Data System (ADS)

    Groves, J. R.; Arendt3, P. N.; Holesinger, T. G.; Hammond, R. H.; Foltyn, S. R.; DePaula, R. F.; Stan, L.; Usov, I. O.

    2006-03-01

    Ion Beam Assisted Deposition (IBAD) of Magnesium Oxide (MgO) has been proven to be a viable route for producing template films used to deposit high quality YBCO coated conductors on flexible polycrystalline metal substrates. Here we will discuss improvements in this process using a dual ion assist beam configuration. Dual ion assist beam deposition of MgO reduces the requirements for substrate surface finishing while maintaining comparable film quality (phi scan full-width at half-maximum values between 7 and 8 degrees). Furthermore, this adaptation of the IBAD process eliminates the degradation of MgO texture observed in thick IBAD MgO films deposited on silicon nitride. We have deposited films up to 50 nanometers thick without degradation of in-plane texture. Increasing the MgO thickness increases the chemical stability of the template layer and can eliminate the necessity for subsequent buffer layers or the application of the homoepitaxial MgO layer needed to stabilize the thin, conventional IBAD MgO layer. Initial results of subsequently deposited YBCO on these dual assist ion beam MgO templates are quite promising.

  15. Optimization of ion assist beam deposition of magnesium oxide template films during initial nucleation and growth

    SciTech Connect

    Groves, James R; Matias, Vladimir; Stan, Liliana; De Paula, Raymond F; Hammond, Robert H; Clemens, Bruce M

    2010-01-01

    Recent efforts in investigating the mechanism of ion beam assisted deposition (IBAD) of biaxially textured thin films of magnesium oxide (MgO) template layers have shown that the texture develops suddenly during the initial 2 nm of deposition. To help understand and tune the behavior during this initial stage, we pre-deposited thin layers of MgO with no ion assist prior to IBAD growth of MgO. We found that biaxial texture develops for pre-deposited thicknesses < 2 nm, and that the thinnest layer tested, at 1 nm, resulted in the best qualitative RHEED image, indicative of good biaxial texture development. The texture developed during IBAD growth on the 1.5 nm pre-deposited layer is slightly worse and IBAD growth on the 2 nm pre-deposited layer produces a fiber texture. Application of these layers on an Al{sub 2}O{sub 3} starting surface, which has been shown to impede texture development, improves the overall quality of the IBAD MgO and has some of the characteristics of a biaxially texture RHEED pattern. It is suggested that the use of thin (<2 nm) pre-deposited layers may eliminate the need for bed layers like Si{sub 3}N{sub 4} and Y{sub 2}O{sub 3} that are currently thought to be required for proper biaxial texture development in IBAD MgO.

  16. Indium Tin Oxide-Magnesium Fluoride Co-Deposited Films for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Dever, Joycer A.; Rutledge, Sharon K.; Hambourger, Paul D.; Bruckner, Eric; Ferrante, Rhea; Pal, Anna Marie; Mayer, Karen; Pietromica, Anthony J.

    1998-01-01

    Highly transparent coatings with a maximum sheet resistivity between 10(exp 8) and 10(exp 9) ohms/square are desired to prevent charging of solar arrays for low Earth polar orbit and geosynchronous orbit missions. Indium tin oxide (ITO) and magnesium fluoride (MgF2) were ion beam sputter co-deposited onto fused silica substrates and were evaluated for transmittance, sheet resistivity and the effects of simulated space environments including atomic oxygen (AO) and vacuum ultraviolet (VUV) radiation. Optical properties and sheet resistivity as a function of MgF2 content in the films will be presented. Films containing 8.4 wt.% MgF2 were found to be highly transparent and provided sheet resistivity in the required range. These films maintained a high transmittance upon exposure to AO and to VUV radiation, although exposure to AO in the presence of charged species and intense electromagnetic radiation caused significant degradation in film transmittance. Sheet resistivity of the as-fabricated films increased with time in ambient conditions. Vacuum beat treatment following film deposition caused a reduction in sheet resistivity. However, following vacuum heat treatment, sheet resistivity values remained stable during storage in ambient conditions.

  17. Mechanism by Which Magnesium Oxide Suppresses Tablet Hardness Reduction during Storage.

    PubMed

    Sakamoto, Takatoshi; Kachi, Shigeto; Nakamura, Shohei; Miki, Shinsuke; Kitajima, Hideaki; Yuasa, Hiroshi

    2016-01-01

    This study investigated how the inclusion of magnesium oxide (MgO) maintained tablet hardness during storage in an unpackaged state. Tablets were prepared with a range of MgO levels and stored at 40°C with 75% relative humidity for up to 14 d. The hardness of tablets prepared without MgO decreased over time. The amount of added MgO was positively associated with tablet hardness and mass from an early stage during storage. Investigation of the water sorption properties of the tablet components showed that carmellose water sorption correlated positively with the relative humidity, while MgO absorbed and retained moisture, even when the relative humidity was reduced. In tablets prepared using only MgO, a petal- or plate-like material was observed during storage. Fourier transform infrared spectrophotometry showed that this material was hydromagnesite, produced when MgO reacts with water and CO2. The estimated level of hydromagnesite at each time-point showed a significant negative correlation with tablet porosity. These results suggested that MgO suppressed storage-associated softening by absorbing moisture from the environment. The conversion of MgO to hydromagnesite results in solid bridge formation between the powder particles comprising the tablets, suppressing the storage-related increase in volume and increasing tablet hardness. PMID:27581629

  18. Synthesis and application of magnesium oxide nanospheres with high surface area

    SciTech Connect

    Hsiao, Chu-Yun; Li, Wei-Min; Tung, Kuo-Shin; Shih, Chuan-Feng

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► MgO nanospheres with high specific surface area synthesized by the polyol method. ► The BET specific surface area of nanopowders was 102 m{sup 2}/g by calcining at ∼250 °C. ► MgO nanospheres were applied to remove hexavalent chromium. -- Abstract: Magnesium oxide (MgO) nanospheres with a high specific surface area were synthesized by the polyol method. The BET specific surface area of the nanopowders was ∼90 m{sup 2}/g by adjusting the molar ratio of the precursor, the reaction time, and the washing solution. It was increased to 102 m{sup 2}/g by calcining at ∼250 °C. Scanning electron microscopic and transmission electron microscopic observations showed that the MgO nanospheres composed of highly folded flakes, which were responsible for the observed high surface area. The high BET characteristic of the MgO nanospheres can be applied to sintering of microwave ceramics at a reducing sintering temperature, uniformed grain size distribution, and high bulk density. Finally, their capacity to remove hexavalent chromium was presented.

  19. Effect of Food Thickener on Dissolution and Laxative Activity of Magnesium Oxide Tablets in Mice.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Kato, Kazushige; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao

    2016-01-01

    The present study examined the dissolution of magnesium oxide (MgO) from MgO tablets placed in a food thickening agent (food thickener) and its effects on laxative activity. We prepared mixtures of MgO tablets suspended in an aqueous suspension and food thickeners in order to evaluate the dissolution of MgO. The results of the dissolution tests revealed that agar-based food thickeners did not affect the MgO dissolution. In contrast, some xanthan gum-based food-thickener products show dissolution rates with certain mixtures containing disintegrated MgO tablets suspended in a food thickener that decrease over time. However, other xanthan gum-based food-thickener products show dissolution rates that decrease immediately after mixing, regardless of the time they were allowed to stand. In order to investigate the laxative activity of MgO, we orally administered a mixture of MgO suspension and food thickener to mice and observed their bowel movements. The animal experiments showed that when agar-based food thickeners were used, the laxative activity of MgO was not affected, but it decreased when xanthan gum-based food thickeners were used. PMID:27040638

  20. Magnesium oxide nanoparticles on green activated carbon as efficient CO{sub 2} adsorbent

    SciTech Connect

    Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar

    2013-11-27

    This study was focused on carbon dioxide (CO{sub 2}) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO{sub 2} adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ΔH and ΔG of this reaction were − 117.5 kJ⋅mol{sup −1} and − 65.4 kJ⋅mol{sup −1}, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD−CO{sub 2}. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m{sup 2}/g and 702.5 m{sup 2}/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm{sup 3}/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO{sub 2} emissions as well as better CO{sub 2} adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO{sub 2} adsorbent.

  1. Aqueous Corrosion Behavior of Micro Arc Oxidation (MAO)-Coated Magnesium Alloys: A Critical Review

    NASA Astrophysics Data System (ADS)

    Rama Krishna, L.; Sundararajan, G.

    2014-06-01

    Magnesium (Mg) and its alloys, in the current era of persistently growing engineering demands, have become the most promising materials finding widespread industrial applications. Numerous processes are available for surface protection of Mg and its alloys to potentially minimize corrosion damage. The micro arc oxidation (MAO), a fairly recent and eco-friendly coating process, emerged as a novel means to provide an adherent, hard, scratch-resistant, wear-resistant, and corrosion-resistant coatings on Mg alloys. However, the successful utilization of such coatings demands a thorough understanding of the influence of a relatively large number of process parameters such as electrolytic composition, presence of insoluble additives in the electrolyte, electrical parameters employed, and the composition of the Mg alloy substrate on the corrosion resistance. The detailed influence of all the above parameters on the corrosion behavior of Mg alloys is critically reviewed and presented in this article. In addition, this article also reviews the recent trends in terms of duplexing the MAO process using different techniques/processes such that the composite coatings are produced with enhanced corrosion resistance.

  2. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    PubMed Central

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, AbdulAziz A.; Fouad, H.; Ansari, Z.A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-01-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera. PMID:26611737

  3. Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent

    NASA Astrophysics Data System (ADS)

    Wan Isahak, Wan Nor Roslam; Ramli, Zatil Amali Che; Mohamed Hisham, Mohamed Wahab; Yarmo, Mohd Ambar

    2013-11-01

    This study was focused on carbon dioxide (CO2) adsorption ability using Magnesium oxide (MgO) nanoparticles and MgO nanoparticles supported activated carbon based bamboo (BAC). The suitability of MgO as a good CO2 adsorbent was clarified using Thermodynamic considerations (Gibbs-Helmholtz relationship). The ΔH and ΔG of this reaction were - 117.5 kJṡmol-1 and - 65.4 kJṡmol-1, respectively, at standard condition (298 K and 1 atm). The complete characterization of these adsorbent were conducted by using BET, XRD, FTIR, TEM and TPD-CO2. The surface areas for MgO nanoparticles and MgO nanoparticles supported BAC were 297.1 m2/g and 702.5 m2/g, respectively. The MgO nanoparticles supported BAC shown better physical and chemical adsorption ability with 39.8 cm3/g and 6.5 mmol/g, respectively. The combination of MgO nanoparticle and BAC which previously prepared by chemical method can reduce CO2 emissions as well as better CO2 adsorption behavior. Overall, our results indicate that nanoparticles of MgO on BAC posses unique surface chemistry and their high surface reactivity coupled with high surface area allowed them to approach the goal as an efficient CO2 adsorbent.

  4. Influence of natural adsorbates of magnesium oxide on its reactivity in basic catalysis.

    PubMed

    Cornu, Damien; Petitjean, Hugo; Costentin, Guylène; Guesmi, Hazar; Krafft, Jean-Marc; Lauron-Pernot, Hélène

    2013-12-01

    Solid materials possessing basic properties are naturally covered by carbonates and hydroxyl groups. Those natural adsorbates modify their chemical reactivity. This article aims to specifically evidence the role of surface carbonates and hydroxyls in basic heterogeneous catalysis on MgO. It compares the catalytic behaviors of hydroxylated or carbonated MgO surfaces for two types of reactions: one alkene isomerization and one alcohol conversion (hept-1-ene isomerization and 2-methyl-3-butyn-2-ol conversion). Catalysis experiments showed that carbon dioxide adsorption poisons the catalyst surface and the DRIFT-DFT combination showed that the nature of active sites in the two reactions differs. On the reverse, partial hydroxylation of the surface enhances activity for both reactions. Interestingly hept-1-ene isomerization gives a volcano curve for the conversion as a function of hydroxyl coverage. Calculations of the electronic structure of magnesium oxide surfaces show that neither Lewis basicity nor Brønsted basicity of the surface defects (steps for example) are enhanced by hydroxylation. Meanwhile CO2 adsorption followed by IR spectroscopy shows that (110) and (111) unstable planes are strongly basic and are stabilized by partial surface hydroxylation. These results could explain the volcano curve obtained for the evolution of alkene isomerisation as a function of hydroxyl coverage. PMID:24145744

  5. Microstructure and biological properties of micro-arc oxidation coatings on ZK60 magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Yu, X

    2012-08-01

    Ceramic coatings were prepared on ZK60 magnesium alloy in electrolyte with different concentration ratio of calcium and phosphorus (Ca/P) by micro-arc oxidation (MAO) technique at constant voltage. The microstructure, phase composition, elemental distribution, corrosion resistance, and adhesion of the coatings were investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD), energy-dispersive X-ray spectrometry (EDS), electrochemical workstation, and scratch spectrometer, respectively. The coating biocompatibility was evaluated by in vitro cytotoxicity tests and systemic toxicity tests, and the bioactivity and degradability were evaluated by simulation body fluid (SBF) immersion tests. SEM shows that pores with different shapes distribute all over the coating surface. The adhesion and thickness of the coatings increases with increasing Ca/P ratio of electrolyte. The in vitro cytotoxicity tests and systemic toxicity texts demonstrate that the coatings have no toxicity to cell and living animal, which show that the coatings have excellent biocompatibility. XRD analysis shows that bioactive calciumphosphate (CaP) phases such as hydroxyapatite (HA, Ca(10)(PO(4))(6)(OH)(2)) and calcium pyrophosphate (CPP, Ca(2)P(2)O(7)) are induced in the immersed coatings, indicating that the MAO coatings have excellent bioactivity. PMID:22692915

  6. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  7. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  8. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    SciTech Connect

    Diaz, A.F.; Modestino, A.J.; Howard, J.B.

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  9. The protective effect of magnesium lithospermate B against glucose-induced intracellular oxidative damage

    SciTech Connect

    Qu, Jian; Ren, Xian; Hou, Rui-ying; Dai, Xing-ping; Zhao, Ying-chun; Xu, Xiao-jing; Zhang, Wei; Zhou, Gan; Zhou, Hong-hao; Liu, Zhao-qian

    2011-07-22

    Highlights: {yields} LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. {yields} LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. {yields} LAB plays an important role against glucose-induced intracellular oxidative damage. {yields} The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway. -- Abstract: Objectives: To investigate the effects of magnesium lithospermate B (LAB) on intracellular reactive oxygen species (ROS) production induced by high dose of glucose or H{sub 2}O{sub 2}, we explored the influences of LAB on the expression of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor-2 (Nrf2) in HEK293T cells after treatment with high dose of glucose. Materials and methods: The total nuclear proteins in HEK293T cells were extracted with Cytoplasmic Protein Extraction Kit. The ROS level was determined by flow cytometry. The mRNA and protein expression of HO-1 and Nrf2 were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. Results: LAB reduced the ROS production in HEK293T cells cultured under oxidative stress. High dose of glucose enhanced the expression of HO-1 mRNA and HO-1 protein in a time-dependent manner. LAB enhanced the expression of HO-1 mRNA and HO-1 protein in a dose-dependent manner treated with high dose of glucose. The amount of Nrf2 translocation was enhanced after cells were pretreated with 50 {mu}mol/L or 100 {mu}mol/L LAB. Silencing of Nrf2 gene eliminated the enhanced expression of HO-1 protein induced by high dose of glucose plus LAB. Conclusions: LAB plays an important role against glucose-induced intracellular oxidative damage. The enhanced expression of HO-1 mRNA and HO-1 protein caused by LAB is regulated via Nrf2 signal pathway.

  10. Magnesium Gluconate

    MedlinePlus

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  11. Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane (SOM) Electrolysis and Recycling of Magnesium

    SciTech Connect

    Powell, Adam; Pati, Soobhankar

    2012-03-11

    Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat and mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.

  12. Magnesium oxide-impregnated tuff soil-derived ceramic: a novel cadmium(II) adsorbing media

    NASA Astrophysics Data System (ADS)

    Salim, Md; Bhakta, Jatindra N.; Maneesh, Namburath; Munekage, Yukihiro; Motomura, Kevin

    2015-07-01

    The contamination of cadmium (Cd) in the aquatic environment is one of the serious environmental and human health's risks. The present study attempted to develop the potential magnesium oxide (MgO)-impregnated tuff soil-derived ceramic (MITDC)-based novel adsorbent media for adsorbing higher rate of cadmium [Cd(II)] from water phase. A potential MITDC adsorbent media was developed using volcanic raw tuff soil and its Cd(II) adsorption capacity from water phase was evaluated comparing with the raw tuff soil. A series of studies were carried out in an agitated batch method at 20 ± 2 °C to characterize the adsorption capacity of MITDC under different conditions of factors, such as contact time (0-360 min), initial pH (3-11) of solution, dose of MITDC (2, 5, 7.5 and 10 g/L), and initial concentration of Cd(II) (5, 10, 20, 30, and 40 mg/L), influencing the adsorption mechanism. MITDC exhibited the equilibrium state of maximum Cd(II) adsorption at the contact time 120 min and pH 4.7 (removed 98.2 % Cd) when initial Cd(II) concentration was 10 mg/L in the present study. The dose of 7.5 g MITDC/L showed maximum removal of Cd(II) from water. Experimental data were described by the Freundlich and the Langmuir isotherms and equilibrium data fitted well with the Langmuir model (R 2 = 0.996). The Cd(II) adsorption capacity of MITDC was 31.25 mg/g. The high Cd(II) adsorption capacity indicated that novel MITDC could be used as a potential ceramic adsorbent media to remove high rate of Cd(II) from aqueous phase.

  13. Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong; Ma, Qingxin

    2008-04-01

    The experimental determination of rate constants for atmospheric reactions and how these rate constants vary with temperature remain a crucially important part of atmosphere science. In this study, the temperature dependence of the heterogeneous reaction of carbonyl sulfide (COS) on magnesium oxide (MgO) has been investigated using a Knudsen cell reactor and a temperature-programmed reaction apparatus. We found that the adsorption and the heterogeneous reaction are sensitive to temperature. The initial uptake coefficients (gammat(Ini)) of COS on MgO decrease from 1.07 +/- 0.71 x 10-6 to 4.84 +/- 0.60 x 10-7 with the increasing of temperature from 228 to 300 K, and the steady state uptake coefficients (gammat(SS)) increase from 5.31 +/- 0.06 x 10-8 to 1.68 +/- 0.41 x 10-7 with the increasing of temperature from 240 to 300 K. The desorption rate constants (kdes) were also found to increase slightly with the enhancement of temperature. The empirical formula between the uptake coefficients, desorption rate constants and temperature described in the form of Arrhenius expression were obtained. The activation energies for the heterogeneous reaction and desorption of COS on MgO were measured to be 11.02 +/- 0.34 kJ.mol-1 and 6.30 +/- 0.81 kJ.mol-1, respectively. The results demonstrate that the initial uptake of COS on MgO is mainly contributed by an adsorption process and the steady state uptake is due to a catalytic reaction. The environmental implication was also discussed. PMID:18302353

  14. Factors Affecting the Plasticity of Sodium Chloride, Lithium Fluoride, and Magnesium Oxide Single Crystals. 1

    NASA Technical Reports Server (NTRS)

    Stearns, Carl A.; Pack, Ann E.; Lad, Robert A.

    1959-01-01

    A study was made of the relative magnitude of the effects of various factors on the ductility of single crystals of sodium chloride (NaCl), lithium fluoride (LiF), and magnesium oxide (MgO). Specimen treatments included water-polishing, varying cleavage rate, annealing, quenching, X-irradiation, surface coating, aging, and combinations of some of these treatments. The mechanical behavior of the crystals was studied in flexure and in compression, the latter study being performed at both constant strain rate and constant load. Etch-pit studies were carried out to provide some pertinent information on the results of pretreatment on the dislocation concentration and distribution in the vicinity of the surface. The load deformation curves for these ionic single crystals show an initial region of very low slope which proved to be due to anelastic deformation. The extent of initial anelastic deformation is modified by specimen pretreatment in a way that suggests that this deformation is the result of expansion of cleaved-in dislocation loops, which can contract on the removal of the stress. The effects of the various pretreatments on the load and deflection at fracture are in accord with the prediction one might make with regard to their effect on the nucleation of fatal surface cracks. For NaCl, increases in ductility are always accompanied by increases in strength. The creep constants for NaCl are a function of treatments which affect the bulk structure but are not a function of treatments which only affect the surface.

  15. A Double-Blind Placebo-Controlled Randomized Clinical Trial With Magnesium Oxide to Reduce Intrafraction Prostate Motion for Prostate Cancer Radiotherapy

    SciTech Connect

    Lips, Irene M.; Gils, Carla H. van; Kotte, Alexis N.T.J.; Leerdam, Monique E. van; Franken, Stefan P.G.; Heide, Uulke A. van der; Vulpen, Marco van

    2012-06-01

    Purpose: To investigate whether magnesium oxide during external-beam radiotherapy for prostate cancer reduces intrafraction prostate motion in a double-blind, placebo-controlled randomized trial. Methods and Materials: At the Department of Radiotherapy, prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. The primary outcome was the proportion of patients with clinically relevant intrafraction prostate motion, defined as the proportion of patients who demonstrated in {>=}50% of the fractions an intrafraction motion outside a range of 2 mm. Secondary outcome measures included quality of life and acute toxicity. Results: In total, 46 patients per treatment arm were enrolled. The primary endpoint did not show a statistically significant difference between the treatment arms with a percentage of patients with clinically relevant intrafraction motion of 83% in the magnesium oxide arm as compared with 80% in the placebo arm (p = 1.00). Concerning the secondary endpoints, exploratory analyses demonstrated a trend towards worsened quality of life and slightly more toxicity in the magnesium oxide arm than in the placebo arm; however, these differences were not statistically significant. Conclusions: Magnesium oxide is not effective in reducing the intrafraction prostate motion during external-beam radiotherapy, and therefore there is no indication to use it in clinical practice for this purpose.

  16. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    PubMed

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation. PMID:26682385

  17. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  18. First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: Oxygen chemisorption to Mg(0001) and thermodynamic stability

    NASA Astrophysics Data System (ADS)

    Francis, M. F.; Taylor, C. D.

    2013-02-01

    In this paper, a detailed density functional theory analysis of oxygen binding to Mg(0001) and subsequent clustering is presented. Oxygen monomer adsorption to Mg(0001) is demonstrated to be subsurface. It is shown that magnesium mediates an attractive oxygen-oxygen interaction which ultimately leads to the formation of hexagonal clusters of O* in the tetrahedral-1 site. The structure, work function, and binding properties of oxygen chemisorbed structures are compared with experiment, which allows the unique identification of the tetrahedral-1 site as the low coverage oxygen binding site and the construction of a picture of the early stages of oxide nuclei formation over magnesium. A model of oxide growth at O*/Mg(0001) is proposed. First-principles thermodynamics analysis is used to describe the surface oxide structures and reveals that surface oxides of intermediate oxygen coverage undergo spinodal decomposition. The thermodynamics of an underlying spinodal create an energetic driving force for decomposition of an oxide surface and renewal of a reactive metal interface that may be important in understanding magnesium corrosion. The implications of the findings are that magnesium unalloyed for oxide behavior will always be highly vulnerable to corrosion.

  19. A Simple Computer-Interfaced Calorimeter: Application to the Determination of the Heat of Formation of Magnesium Oxide

    NASA Astrophysics Data System (ADS)

    Wong, Sze-Shun; Popovich, Natasha D.; Coldiron, Shelley J.

    2001-06-01

    This paper describes the design, construction, and laboratory instructional application of a simple computer-controlled, constant-pressure calorimeter. The calorimeter was made using a covered Styrofoam cup as the reaction chamber. A thermistor was used as a temperature-sensing element and was incorporated in a temperature-to-voltage converter circuit based on a bridge amplifier. The instrument was interfaced to a personal computer via an I/O board, and data acquisition software was used to monitor the output voltage of the bridge amplifier. The design and construction of this instrument offer many possible applications of operational amplifiers and related basic electronics theory in chemistry and in interfacing experiments to computers. One application, the determination of the enthalpy of formation of magnesium oxide by applying Hess's law of heat of summation, is demonstrated in this paper. Experimental results for the heat of formation for magnesium oxide were within 1% of the literature value. This experiment also demonstrates the utility and ease of automating temperature measurements for other applications.

  20. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  1. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... mineral bischofite. It is prepared by dissolving magnesium oxide, hydroxide, or carbonate in...

  2. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... salt or by hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium...

  3. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O,...

  4. Electrical and optical properties of gallium-doped magnesium zinc oxide system

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    The primary aim in this thesis is to investigate Ga-doped Mg1-x ZnxO, as well as undoped Mg1-xZnxO for the application of transparent conducting oxide. For this thesis work, the films have been grown on sapphire using pulsed laser deposition technique. The films were grown under various deposition conditions in order to understand the effect of processing on the film properties. The grown films have been characterized using various techniques, including XRD, TEM, XPS, 4-probe resistivity measurements, Hall measurements and absorption/transmission spectroscopy. Undoped Mg1-xZnxO films have been grown at several temperatures between room temperature and 750°C. Photoluminescence was correlated with Urbach energy values which were determined from absorption spectrum. The film grown at 350°C exhibited lowest band-tail parameter values and highest photoluminescence values than the other films. The optical and electrical properties of heavily Ga-doped MgxZn 1-xO thin films were investigated. The film transparency is greater than 90% in the visible spectrum range. The absorption can be extended to lower wavelength range with higher magnesium concentration, which can improve the transparency in the ultraviolet wavelength range; however, conductivity is decreased. The optimum Ga concentration was found to be 0.5 at.%. At this Ga concentration, the film resistivity increased from 1.9x10 -3 to 3.62x10-2 O·cm as the magnesium concentration increased from 5 at.% to 15 at.%. The optical and electrical properties of Ga-doped MgxZn 1-xO thin films were investigated systematically. In these films, the Ga content was varied from 0.05 at.% to 7 at.% and the Mg content was varied from 5 at.% to 15 at.%. X-ray diffraction showed that the solid solubility limit of Ga in MgxZn1-xO is less than 3 at.%. The absorption spectra were fitted to examine Ga doping effects on bandgap and band tail characteristics. Distinctive trends in fitted bandgap and band tail characteristics were

  5. Influence of Microstructure of Friction Stir Welded Joints on Growth and Properties of Microarc Oxidation Coatings on AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Tingfang; Li, Yongliang; Xue, Wenbin; Yang, Chaolin; Qu, Yao; Hua, Ming

    2015-03-01

    Ceramic coatings on friction stir welded (FSW) joints of AZ31B magnesium alloy were fabricated by microarc oxidation (MAO) method in silicate electrolyte. Microstructure, phase constituents, microhardness and electrochemical corrosion behaviors of bare and coated magnesium alloys at different zones of FSW joints for different oxidation time were investigated. The influence of microstructure at different zones on the growth of MAO coatings was analyzed. The results show that the MAO coatings on FSW joints are uniform, and they have almost the same morphology, phase constituents, hardness and corrosion resistance at base metal, stir zone and heat-affected zone. The properties of MAO coatings are independent on the microstructures of AZ31B alloy. In addition, the microstructures of magnesium alloy near the coating/alloy interface at different zones of FSW joint was not changed by microarc discharge process.

  6. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  7. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

  8. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    PubMed

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior. PMID:25280850

  9. Magnesium basics

    PubMed Central

    Ketteler, Markus

    2012-01-01

    As a cofactor in numerous enzymatic reactions, magnesium fulfils various intracellular physiological functions. Thus, imbalance in magnesium status—primarily hypomagnesaemia as it is seen more often than hypermagnesaemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Measuring total serum magnesium is a feasible and affordable way to monitor changes in magnesium status, although it does not necessarily reflect total body magnesium content. The following review focuses on the natural occurrence of magnesium and its physiological function. The absorption and excretion of magnesium as well as hypo- and hypermagnesaemia will be addressed. PMID:26069819

  10. Influence of sodium borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, R. F.; Zhang, S. F.; Shen, Y. L.; Zhang, L. H.; Liu, T. Z.; Zhang, Y. Q.; Guo, S. B.

    2012-06-01

    The influence of sodium borate concentration on the formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on magnesium alloys was systematically studied in an alkaline solution with addition of 0-40 g/L sodium borate. It is shown that sodium borate can decrease the solution conductivity, take part in the coating formation and increase the coating thickness. With the increase of sodium borate concentration, the boron content in the coatings increases in the range of 10-20 g/L but decreases within the range of 20-40 g/L. Sodium borate cannot further improve the corrosion resistance attributed to the development of porous or rough anodic coatings.

  11. High-rate reel-to-reel continuous coating of biaxially textured magnesium oxide thin films for coated conductors

    SciTech Connect

    Chudzik, M. P.; Erck, R. A.; Balachandran, U.; Luo, Z. P.; Miller, D. J.; Kannewurf, C. R.

    2000-01-12

    Biaxially textured thin films of magnesium oxide (MgO) were deposited by electron beam evaporation at deposition rates of 0.6 {mu}m/min on moving Ni-based alloy tapes as oriented buffer layers for coated conductors. Moving substrates were inclined with respect to the atomic vapor and translated through collimated dual vapor sources. Growth anisotropy in the MgO and self-shadowing effects due to the inclined angle combine to create biaxial texture in the deposited thin films. MgO films grown to a thickness of 2.0 {mu}m with this inclined-substrate deposition technique have yielded in-plane textures of 10--12{degree} fill-width half-maximum (FWHM). Results of a parametric study on the in-plane texture in short-length static-mode samples are presented, along with preliminary results of long-length samples deposited under translating conditions.

  12. In vitro biocompatibility of magnesium-incorporated submicro-porous titanium oxide surface produced by hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; An, Chang-Hyeon

    2010-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of titanium (Ti) oxide surface incorporating magnesium ions (Mg), produced by hydrothermal treatment using an alkaline Mg-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and optical profilometry. Mouse calvaria-derived osteoblastic cell (MC3T3-E1) attachment, spreading, proliferation, alkaline phosphatase (ALP) activity, and osteoblastic gene expression on Mg-containing surfaces were compared with untreated Ti surfaces. Hydrothermal treatment resulted in Mg-incorporated Ti oxide layer with submicro-porous surface structures approximately 2 μm in thickness. ICP-AES analysis revealed Mg ions release from treated surfaces into the solution. The Mg-incorporated surface displayed significantly increased cellular attachment and ALP activity compared with untreated surface ( p < 0.05), and supported better cell spreading. Real-time polymerase chain reaction analysis showed notably higher mRNA expression of the osteoblast transcription factor genes (Dlx5, Runx2) and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on the Mg-incorporated surfaces than untreated surfaces. These results demonstrate that the Mg-incorporated submicro-porous Ti oxide surface produced by hydrothermal treatment may improve implant osseointegration by enhancing the attachment, spreading and differentiation of osteoblastic cells.

  13. Effect of heat treatments on oxidation kinetics in AZ91 and AM60 magnesium alloys

    SciTech Connect

    Barrena, M.I. Gomez de Salazar, J.M.; Matesanz, L.; Soria, A.

    2011-10-15

    The effect of heat treatments on a non protective atmosphere (air) on the morphology and composition of the oxide in AM60 and AZ91 alloys has been evaluated. With the aim of evaluating the loss of alloying elements during heat treatment, a study of these alloys has been carried out using thermogravimetric analysis (TGA). In order to determine the nature of the oxides the reaction products generated were evaluated by scanning electron microscopy and X-ray diffraction. Results show that the nature and morphology of the oxides generated are related to the temperature and the time of the heating conditions applied. - Highlights: {yields} The effect of heat treatments on the oxide growth in Mg-Al alloys has been evaluated. {yields} The nature and morphology of the oxides have been characterized. {yields} These oxides are associated to the time and the temperature conditions.

  14. Magnesium Hydroxide

    MedlinePlus

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  15. Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies

    NASA Astrophysics Data System (ADS)

    John Sushma, N.; Prathyusha, D.; Swathi, G.; Madhavi, T.; Deva Prasad Raju, B.; Mallikarjuna, K.; Kim, Hak-Sung

    2016-03-01

    Facile approach to synthesize the metal oxide nanoparticles is getting an increased attention in various biomedical applications such as, to treat antibiotic resistant diseases. Magnesium oxide nanoparticles (MgO·NPs) were synthesized by using Clitoria ternatea as the stabilizer in a green synthesis approach. The preliminary screening of MgO·NPs in the presence of C. ternatea extract was observed by UV-visible spectrophotometer. X-ray diffraction (XRD) pattern have proved the crystalline nature of the MgO·NPs; Photoluminescence (PL) measurement studies are used to identify the quality and defects in the crystal structure. FE-SEM with EDS has showed the size of 50-400 nm with specific binding energies. FT-IR has revealed the functional groups present in the plant extract and the peak at 521 cm-1 indicated the characteristic absorption bands of MgO·NPs. The DPPH activity and reducing power assay of biologically synthesized MgO·NPs could reach 65 % at a concentration of 150 µg/ml, respectively. From the results it was concluded that the biologically synthesized MgO·NPs exhibit good antioxidant activity.

  16. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  17. Oxidation-extraction spectrometry of reactive oxygen species (ROS) generated by chlorophyllin magnesium (Chl-Mg) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Guo, Yuwei; Cheng, Chunping; Wang, Jun; Jin, Xudong; Liu, Bin; Wang, Zhiqiu; Gao, Jingqun; Kang, Pingli

    2011-09-01

    In order to examine the mechanism and process of sonodynamic reaction, the chlorophyllin magnesium (Chl-Mg) acting as a sonosensitizer was irradiated by ultrasound, and the generation of reactive oxygen species (ROS) were detected by the method of oxidation-extraction spectrometry (OES). That is, under ultrasonic irradiation in the presence of Chl-Mg, the 1,5-diphenyl carbazide (DPCI) is oxidized by generated ROS into 1,5-diphenyl carbazone (DPCO), which can be extracted by mixed organic solvent and display a obvious visible absorption at 563 nm wavelength. Besides, the generation conditions of ROS were also reviewed. The results demonstrated that the quantities of generated ROS increased with the increase of ultrasonic irradiation time, Chl-Mg concentration and DPCI concentration. Finally, several radical scavengers (l-Histidine (His), 2,6-Di-tert-butyl-methylphenol (BHT) and Vitamin C (VC)) were used to determine the kind of the generated ROS. It was found that at least the hydroxyl radical (OH) and singlet oxygen ( 1O 2) were generated in the presence of Chl-Mg under ultrasonic irradiation. It is wish that this paper might offer some valuable references for the study on the mechanism of SDT and the application of Chl-Mg in tumor treatment.

  18. DEGRADATION OF SM2ZR2O7 THERMAL BARRIER COATING CAUSED BY CALCIUM-MAGNESIUM-ALUMINUM-SILICON OXIDE (CMAS) DEPOSITION

    SciTech Connect

    Wang, Honglong; Sheng, Zhizhi; Tarwater, Emily; Zhang, Xingxing; Dasgupta, Sudip; Fergus, Jeffrey

    2015-03-16

    Rare earth zirconates are promising materials for use as thermal barrier coatings in gas turbine engines. Among the lanthanide zirconate materials, Sm2Zr2O7 with the pyrochlore structure has lower thermal conductivity and better corrosion resistance against calcium-magnesium-aluminum-silicon oxide (CMAS). In this work, after reaction with CMAS, the pyrochlore structure transforms to the cubic fluorite structure and Ca2Sm8(SiO4)6O2 forms in elongated grain.

  19. Activation of Methane and Carbon Dioxide Mediated by Transition-Metal Doped Magnesium Oxide Clusters [MMgO](+/0/-) (M=Sc-Zn).

    PubMed

    Li, Jilai; González-Navarrete, Patricio; Schlangen, Maria; Schwarz, Helmut

    2015-05-18

    Mission: impossible? DFT calculations show that the trends in the thermochemistry are very different for the activation of CO2 and CH4 mediated by transition-metal doped magnesium oxide clusters [MMgO](+/0/-) (M=Sc-Zn). Thus, seeking a "simple" reagent to simultaneously mediate activation and coupling of CH4 and CO2 with high efficiency seems extremely daunting, if not impossible. PMID:25867011

  20. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  1. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.

    PubMed

    Du, Fei-Peng; Yang, Wen; Zhang, Fang; Tang, Chak-Yin; Liu, Sheng-Peng; Yin, Le; Law, Wing-Cheung

    2015-07-01

    Composite materials, such as organic matrices doped with inorganic fillers, can generate new properties that exhibit multiple functionalities. In this paper, an epoxy-based nanocomposite that has a high thermal conductivity and a low electrical conductivity, which are required for the use of a material as electronic packaging and insulation, was prepared. The performance of the epoxy was improved by incorporating a magnesium oxide-coated graphene (MgO@GR) nanomaterial into the epoxy matrix. We found that the addition of a MgO coating not only improved the dispersion of the graphene in the matrix and the interfacial bonding between the graphene and epoxy but also enhanced the thermal conductivity of the epoxy while preserving the electrical insulation. By adding 7 wt % MgO@GR, the thermal conductivity of the epoxy nanocomposites was enhanced by 76% compared with that of the neat epoxy, and the electrical resistivity was maintained at 8.66 × 10(14) Ω m. PMID:26075677

  2. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    PubMed

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-01

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway. PMID:25882096

  3. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    NASA Astrophysics Data System (ADS)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  4. Oxidation behavior of nickel-chromium-aluminum-yttrium - Magnesium oxide and nickel-chromium-aluminum-yttrium - zirconate type of cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1976-01-01

    The 1100 and 1200 C cyclic oxidation resistance of dense Ni-Cr-Al-Y - MgO, Ni-Cr-Al-Y - CaZrO3, Ni-Cr-Al-Y - SrZrO3, Ni-Cr-Al-Y - MgZro3 cermets and a 70 percent dense Ni-Cr-Al-Y developmental material was determined. The cermets contained 60 and 50 volume percent of Ni-Cr-Al-Y which formed a matrix with the oxide particles imbedded in it. The cermets containing MgO were superior to cermets based on zirconates and to the porous Ni-Cr-Al-Y material.

  5. All magnesium diboride Josephson junctions with MgO and native oxide barriers

    NASA Astrophysics Data System (ADS)

    Costache, M. V.; Moodera, J. S.

    2010-02-01

    We present results on all-MgB2 tunnel junctions, where the tunnel barrier is deposited MgO or native-oxide of base electrode. For the junctions with MgO, the hysteretic I-V curve resembles a conventional underdamped Josephson junction characteristic with critical current-resistance product nearly independent of the junction area. The dependence of the critical current with temperature up to 20 K agrees with the [Ambegaokar and Baratoff, Phys. Rev. Lett. 10, 486 (1963)] expression. For the junctions with native-oxide, conductance at low bias exhibits subgap features while at high bias reveals thick barriers. As a result no supercurrent was observed in the latter, despite the presence of superconducting-gaps to over 30 K.

  6. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-01

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. PMID:27514793

  7. Biochemical and molecular evidences on the protection by magnesium oxide nanoparticles of chlorpyrifos-induced apoptosis in human lymphocytes

    PubMed Central

    Heydary, Vida; Navaei-Nigjeh, Mona; Rahimifard, Mahban; Mohammadirad, Azadeh; Baeeri, Maryam; Abdollahi, Mohammad

    2015-01-01

    Background: Chlorpyrifos (CP) is one of the most widely used organophosphate (OP) insecticides in agricultural and residential pest control with its attendant adverse health effect. In the present study, it is proposed to investigate the possible modulatory role of magnesium oxide nanoparticles (MgO NPs) against CP-induced toxicity in human lymphocytes and determine the mechanisms lying behind this protection by viability and biochemical assays. Materials and Methods: Isolated lymphocytes were exposed to 12 μg/mL CP either alone or in combination with different concentrations of MgO NPs (0.1 μg/mL, 1 μg/mL, 10 μg/mL, and 100 μg/mL). After a 3-day incubation, the viability and oxidative stress markers including cellular mitochondrial activity, caspase-3 and -9 activities, total antioxidant power, lipid peroxidation, and myeloperoxidase (MPO) activity were measured. Also, the levels of tumor necrosis factor-α (TNF-α) as inflammatory index, along with acetylcholinesterase (AChE) activity were measured. Statistical differences were determined using one-way analysis of variance (ANOVA) and Dunnett's multiple comparison tests. Results: It is indicated that CP-exposed lymphocytes treated with MgO NPs resulted in a substantial reduction in the pace of mortality as well as the stages of oxidative stress in a dose-dependent manner. Also, MgO NPs (100 μg/mL) meaningfully restored CP-induced increase of TNF-α (P < 0.001) and decrease of AChE activity (P < 0.001) and were capable of preventing CP-treated human lymphocytes from apoptosis (P < 0.001). Conclusion: Our results demonstrate that MgO NPs in approximate 100 nm diameter not only make cells resistant to the toxic properties of CP but also attenuate toxic effects of CP, which is demonstrating the potential of MgO NPs to be applied in future immune deficiency therapeutic strategies. PMID:26941804

  8. Magnesium bicarbonate as an in situ uranium lixiviant

    SciTech Connect

    Sibert, J.W.

    1984-09-25

    In the subsurface solution mining of mineral values, especially uranium, in situ, magnesium bicarbonate leaching solution is used instead of sodium, potassium and ammonium carbonate and bicarbonates. The magnesium bicarbonate solution is formed by combining carbon dioxide with magnesium oxide and water. The magnesium bicarbonate lixivant has four major advantages over prior art sodium, potassium and ammonium bicarbonates.

  9. Magnesium Corrosion Triggered Spontaneous Generation of H2O2 on Oxidized Titanium for Promoting Angiogenesis.

    PubMed

    Park, Jimin; Du, Ping; Jeon, Jin-Kyung; Jang, Gun Hyuk; Hwang, Mintai Peter; Han, Hyung-Seop; Park, Kwideok; Lee, Kwan Hyi; Lee, Jee-Wook; Jeon, Hojeong; Kim, Yu-Chan; Park, Jong Woong; Seok, Hyun-Kwang; Ok, Myoung-Ryul

    2015-12-01

    Although the use of reactive oxygen species (ROS) has been extensively studied, current systems employ external stimuli such as light or electrical energy to produce ROS, which limits their practical usage. In this report, biocompatible metals were used to construct a novel electrochemical system that can spontaneously generate H2O2 without any external light or voltage. The corrosion of Mg transfers electrons to Au-decorated oxidized Ti in an energetically favorable process, and the spontaneous generation of H2O2 in an oxygen reduction reaction was revealed to occur at titanium by combined spectroscopic and electrochemical analyses. The controlled release of H2O2 noticeably enhanced in vitro angiogenesis even in the absence of growth factors. Finally, a new titanium implant prototype was developed by Mg incorporation, and its potential for promoting angiogenesis was demonstrated. PMID:26482466

  10. Adsorption of titanium, chromium, and copper atoms on thin aluminum and magnesium oxide film surfaces

    NASA Astrophysics Data System (ADS)

    Tvauri, I. V.; Turiev, A. M.; Tsidaeva, N. I.; Gazzaeva, M. E.; Vladimirov, G. G.; Magkoev, T. T.

    2012-04-01

    Methods of Auger electron spectroscopy (AES), spectroscopy of characteristic electron energy losses (SCEEL), slow electron diffraction (SED), and contact potential difference (CPD) in ultrahigh vacuum are used to investigate the adsorption-emission properties and stability of two-component film systems formed by putting of Ti, Cr, and Cu atoms on MgO-Mo(011) and Al2O3-Mo(011) surfaces. All atoms have the properties of electronegative adsorbates. Continuous adatom monolayers are formed on the Al2O3-Mo(011) system surface, and three-dimensional islands are formed on the MgO-Mo(011) surface. The properties of monoatomic films on the oxide layer surface are close to those observed for bulk materials. No radical changes of the system properties are detected with increasing dielectric layer thickness. The thermal stability of the newly formed structures decreases in the order Ti, Cr, Cu, Al2O3(MgO), and Mo(011).

  11. Cancer mortality in towns in the vicinity of installations for the production of cement, lime, plaster, and magnesium oxide.

    PubMed

    García-Pérez, Javier; López-Abente, Gonzalo; Castelló, Adela; González-Sánchez, Mario; Fernández-Navarro, Pablo

    2015-06-01

    Our objective was to investigate whether there might be excess cancer mortality in the vicinity of Spanish installations for the production of cement, lime, plaster, and magnesium oxide, according to different categories of industrial activity. An ecologic study was designed to examine municipal mortality due to 33 types of cancer (period 1997-2006) in Spain. Population exposure to pollution was estimated on the basis of distance from town to industrial facility. Using spatial Besag-York-Mollié regression models with integrated nested Laplace approximations for Bayesian inference, we assessed the relative risk of dying from cancer in a 5-km zone around installations, analyzed the effect of category of industrial activity according to the manufactured product, and conducted individual analyses within a 50-km radius of each installation. Excess all cancer mortality (relative risk, 95% credible interval) was detected in the vicinity of these installations as a whole (1.04, 1.01-1.07 in men; 1.03, 1.00-1.06 in women), and, principally, in the vicinity of cement installations (1.05, 1.01-1.09 in men). Special mention should be made of the results for tumors of colon-rectum in both sexes (1.07, 1.01-1.14 in men; 1.10, 1.03-1.16 in women), and pleura (1.71, 1.24-2.28), peritoneum (1.62, 1.15-2.20), gallbladder (1.21, 1.02-1.42), bladder (1.11, 1.03-1.20) and stomach (1.09, 1.00-1.18) in men in the vicinity of all such installations. Our results suggest an excess risk of dying from cancer, especially in colon-rectum, in towns near these industries. PMID:25681568

  12. Hydrothermal synthesis and characterization under dynamic conditions of cobalt oxide nanoparticles supported over magnesium oxide nano-plates.

    PubMed

    Alayoglu, Selim; Rosenberg, Daniel J; Ahmed, Musahid

    2016-06-14

    A nano-catalyst comprised of oxidized Co NPs supported on MgO nano-plates was synthesized via a hydrothermal co-precipitation strategy and calcination in O2 and subsequently in H2 at 250 °C. Spectro-microscopy characterization was performed by scanning transmission electron microscopy, electron energy loss spectroscopy and scanning X-ray transmission microscopy. Surface measurements under H2 and H2 + CO atmospheres were obtained by ambient pressure X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy in the 225-480 °C range. These measurements at the atomic and microscopic levels demonstrated that the oxidized Co nanoparticles uniformly decorated the MgO nano-plates. The surfaces are enriched with Co, and with a mixture of Co(OH)2 and CoO under H2 and H2 + CO atmospheres. Under a H2 atmosphere, the outermost surfaces were composed of (lattice) O(2-), CO3(2-) and OH(-). No inorganic carbonates were observed in the bulk. Chemisorbed CO, likely on the oxidized Co surfaces, was observed at the expense of O(2-) under 300 mTorr H2 + CO (2 : 1) at 225 °C. Gas phase CO2 was detected under 32 Torr H2 + CO (2 : 1) at 225 °C upon prolonged reaction time, and was attributed to a surface chemical reaction between O(2-) and chemisorbed CO. Furthermore, sp(3) like carbon species were detected on the otherwise carbon free surface in H2 + CO, which remained on the surface under the subsequent reaction conditions. The formation of sp(3) like hydrocarbons was ascribed to a surface catalytic reaction between the chemisorbed CO and OH(-) as the apparent hydrogen source. PMID:26979489

  13. Chemically synthesized nano composite (Zinc/Magnesium) Oxide for tunable band gap devices

    NASA Astrophysics Data System (ADS)

    Sharmila, P. P.; Tharayil, Nisha J.

    2015-02-01

    Formation of hetro structures in nano structured materials is essential for their potential applications in nano electronics and photonic devices. As a promising candidate for blue and ultraviolet optoelectronic devices, ZnO has attracted much attention due to its wide band gap (3.37eV), large exciton binding energy (60meV), low epitaxial growth temperature and high oxidation resistance. In addition since the ionic radii of Mg+2+(0.57A0) and Zn2+(0.60A0) are quite close, they may alloy by replacing each other in the matrix. The doping of Mg in ZnO is done through a simple and novel technique from metal acetates using ammonium carbonate as precipitant. An organic capping agent (EDTA) is used prevent agglomeration and the addition is done under constant stirring. The carbonate precursor obtained is heated on the basis of TGA to obtain the metal nano composite. The effects of different parameters on particle size and morphology of (Zn-Mg)O nano composite is optimized by "one at a time" method. Under optimum conditions, spongy shaped, uniform and homogeneous structured (Zn-Mg)O nano composite powders with particle size few nano meters are obtained. The optical and structural properties of nano composite prepared by solution techniques are investigated by X-ray diffraction, UV-Visible spectroscopy, and PL, FTIR and electron microscopy techniques. The effect of annealing on the optical properties of this nano composite is also studied

  14. On the Utility of Spinel Oxide Hosts for Magnesium-Ion Batteries.

    PubMed

    Knight, James C; Therese, Soosairaj; Manthiram, Arumugam

    2015-10-21

    There is immense interest to develop Mg-ion batteries, but finding suitable cathode materials has been a challenge. The spinel structure has many advantages for ion insertion and has been successfully used in Li-ion batteries. We present here findings on the attempts to extract Mg from MgMn2O4-based spinels with acid (H2SO4) and with NO2BF4. The acid treatment was able to fully remove all Mg from MgMn2O4 by following a mechanism involving the disproportionation of Mn(3+), and the extraction rate decreased with increasing cation disorder. Samples with additional Mg(2+) ions in the octahedral sites (e.g., Mg1.1Mn1.9O4 and Mg1.5Mn1.5O4) also exhibit complete or near complete demagnesiation due to an additional mechanism involving ion exchange of Mg(2+) by H(+), but no Mg could be extracted from MgMnAlO4 due to the disruption of Mn-Mn interaction/contact across shared octahedral edges. In contrast, no Mg could be extracted with the oxidizing agent NO2BF4 from MgMn2O4 or Mg1.5Mn1.5O4 as the electrostatic repulsion between the divalent Mg(2+) ions prevents Mg(2+) diffusion through the 16c octahedral sites, unlike Li(+) diffusion, suggesting that spinels may not serve as potential hosts for Mg-ion batteries. The ability to extract Mg with acid in contrast to that with NO2BF4 is attributed to Mn dissolution from the lattice and the consequent reduction in electrostatic repulsion. The findings could provide insights toward the design of Mg hosts for Mg-ion batteries. PMID:26436429

  15. Critical review of electrical conductivity measurements and charge distribution analysis of magnesium oxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Freund, Minoru M.; Batllo, Francois

    1993-01-01

    OH(-)-doped, finely divided MgO and by wet-chemical analysis of its oxidant concentration.

  16. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-01

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real

  17. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Guevara-Bertsch, M.; Ramírez-Hidalgo, G.; Chavarría-Sibaja, A.; Avendaño, E.; Araya-Pochet, J. A.; Herrera-Sancho, O. A.

    2016-03-01

    We investigate the variation of the oscillation frequency of the Mg2+ and O2- ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110-300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  18. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  19. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  20. Magnesium Test

    MedlinePlus

    ... Mg; Mag Formal name: Magnesium Related tests: Calcium , Potassium , Phosphorus , PTH , Vitamin D At a Glance Test ... can, over time, cause persistently low calcium and potassium levels, it may be checked to help diagnose ...

  1. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  2. Reagent use efficiency with removal of nitrogen from pig slurry via struvite: A study on magnesium oxide and related by-products.

    PubMed

    Romero-Güiza, M S; Tait, S; Astals, S; Del Valle-Zermeño, R; Martínez, M; Mata-Alvarez, J; Chimenos, J M

    2015-11-01

    Controlled struvite formation has been attracting increasing attention as a near mature technology to recover nutrients from wastewater. However, struvite feasibility is generally limited by the high cost of chemical reagents. With the aim to understand and control reagent use efficiency, experiments and equilibrium model simulations examined inorganic nitrogen (TAN) removal from pig manure via struvite with added magnesium and phosphate reagents. Four industrial magnesium oxide (MgO), a commercial product and three by-products from magnesite calcination, were tested with phosphate added as a highly soluble potassium salt. TAN removal extents with the MgOs ranged from 47 to 72%, with the highest grade MgO providing the greatest extent of TAN removal. However, model analysis showed that all the MgO reagents were poorly soluble (only about 40% of added magnesium actually dissolved). The model results suggested that this poor dissolution was due to kinetic limitations, not solubility constraints. A further set of additional reagents (termed stabilization agents) were prepared by pre-treating the MgO reagents with phosphoric acid, and were tested separately as a source of both magnesium and phosphate. Results showed that acid pre-treatment of moderate to highly reactive MgOs (soft to medium-burnt) primarily formed bobierrite as the stabilizing agent, whereas the pre-treatment of very low reactivity MgOs (dead-burnt) mostly formed newberyite. The newberyite stabilizing agents achieved very high TAN removal extents of about 80%, which is significant, considering that these were formed from dead-burnt/low-grade MgOs. However, the bobierrite stabilizing agents achieved a substantially lower TAN removal extent than their medium-to-high reactivity precursor MgOs. Again, model analysis showed that the bobierrite stabilizing agents were poorly soluble, due to kinetic limitations, not solubility constraints. In contrast, the model suggested that the newberyite stabilizing

  3. Uniform magnesium oxide adsorbents

    NASA Technical Reports Server (NTRS)

    Dash, J. G.; Ecke, R.; Stoltenberg, J.; Vilches, O. E.; Whittemore, O. J., Jr.

    1978-01-01

    Kr adsorption on MgO is used to characterize the surface uniformity of MgO smoke and thermally decomposed Mg(OH)2. It is found that initially heterogeneous samples develop progressively sharper stepwise isotherms with increasingly-high-temperature heat treatment, apparently due to the removal of imperfections and high-energy facets, leaving surfaces of highly uniform (100) planes.

  4. Production of magnesium metal

    DOEpatents

    Blencoe, James G.; Anovitz, Lawrence M.; Palmer, Donald A.; Beard, James S.

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  5. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  6. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2002-01-01

    Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  7. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lin, Xiao; Yang, Xiaoming; Tan, Lili; Li, Mei; Wang, Xin; Zhang, Yu; Yang, Ke; Hu, Zhuangqi; Qiu, Jianhong

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  8. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida; from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties, and Rohm & Haas; and from magnesite in Nevada by Premier Chemicals. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  9. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  10. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2001-01-01

    Seawater and natural brines accounted for about 63% of US magnesium compounds production during 2000. Premier Services in Florida, Dow Chemical in Michigan, Martin Marietta Magnesia Specialties, and Rohm & Haas recovered dead-burned and caustic-calcined magnesias from seawater. And Premier Services' recoveries, in Nevada, were from magnasite.

  11. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    NASA Astrophysics Data System (ADS)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  12. Degradation and biological properties of Ca-P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation

    PubMed Central

    Wang, Weidan; Wan, Peng; Liu, Chen; Tan, Lili; Li, Weirong; Li, Lugee; Yang, Ke

    2015-01-01

    Poor corrosion resistance is one of the main disadvantages for biodegradable magnesium-based metals, especially applied for bone fixation, where there is a high demand of bio-mechanical strength and stability. Surface coating has been proved as an effective method to control the in vivo degradation. In this study a Ca-P self-sealing micro-arc oxidation (MAO) coating was studied to verify its efficacy and biological properties by in vitro and in vivo tests. It was found that the MAO coating could effectively retard the degradation according to immersion and electrochemical tests as well as 3D reconstruction by X-ray tomography after implantation. The MAO coating exhibited no toxicity and could stimulate the new bone formation. Therefore, the Ca-P self-sealing MAO coating could be a potential candidate for application of biodegradable Mg-based implant in bone fixations. PMID:26816635

  13. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  14. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    NASA Astrophysics Data System (ADS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  15. Peroxide-dependent amino acid oxidation and chemiluminescence catalysed by magnesium-pyridoxal phosphate-glutamate complex.

    PubMed

    Meyer, B U; Schneider, W; Elstner, E F

    1992-08-01

    Magnesium-pyridoxal-5'-phosphate-glutamate (MPPG) has been shown to ameliorate atherosclerotic symptoms in rabbits. In vitro, MPPG in the presence of peroxides such as cholesterolhydroperoxide or cumene hydroperoxide and Mn2+ ions produces "excited states" measurable as chemiluminescence or ethylene release from 1-aminocyclopropane-1-carboxylic acid (ACC). The reactions are stimulated synergistically by unsaturated fatty acids. Pyridoxal phosphate exhibits similar properties, but can be differentiated from the activities of MPPG or the sum of the components present in MPPG. PMID:1510700

  16. Magnesium fluoride recovery method

    DOEpatents

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  17. Potential reproductive health effects and oxidative stress associated with exposure to potassium dichromate (K2Cr2O7) and magnesium sulphate (MgSO4) in male mice

    PubMed Central

    Rasool, Mahmood; Zaigham, Kalsoom; Malik, Arif; Naseer, Muhammad Imran; Umm-e-Habiba; Manan, Abdul; Qazi, Mahmood Husain; Asif, Muhammad

    2014-01-01

    Objective: To investigate the potential harmful effects of potassium dichromate and magnesium sulphate causing oxidative stress and reproductive toxicity in adult male mice model. Methods: The experimental work was conducted on sixty male mice (Mus musculus) divided into three groups. Mice in group B and C received potassium dichromate and magnesium sulphate of 5.0 and 500 mg/Kg body weight/ml respectively, for sixty days. The blood sample was analyzed to assess oxidative stress and cellular damage. Results: Results showed high malondialdehyde (MDA) and low levels of antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)] in both potassium dichromate and magnesium sulphate administrated groups as compared to control group. Reduced number of sperm count and excessive destruction of testicular follicles, including destruction of spermatids, leydig cells and sertoli cells, were also seen in both groups. Conclusion: We concluded from present study that potassium dichromate and magnesium sulphate causes oxidative stress by generation of reactive oxygen species (ROS) and causing DNA damage in testicular cells leading to adverse reproductive abnormalities. PMID:25097524

  18. Magnesium phosphate glass cements with ceramic-type properties

    SciTech Connect

    Sugama, T.; Kukacka, L.E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono-and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  19. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  20. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  1. Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite

    NASA Astrophysics Data System (ADS)

    Arrabal, R.; Matykina, E.; Skeldon, P.; Thompson, G. E.

    2009-02-01

    Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm -2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na 2SiO 3.5H 2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ˜1 μm min -1 for treatment times up to 100 min and ˜0.2 μm min -1 for later times. The coatings are composed mainly of MgO and Mg 2SiO 4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.

  2. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  3. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  4. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particle. In situ GC-MS studies of pulsed microreactions over magnesium oxide. (Reannouncement with new availability information). Progress report, 31 December 1991-30 June 1992

    SciTech Connect

    Li, Y.X.; Koper, O.; Atteya, M.; Klabunde, K.J.

    1992-12-31

    Using an in situ reactor GC-MS system, the thermal decomposition of organophosphorus compound (as models of nerve agents) has been compared with their destructive adsorption on high surface area magnesium oxide. Dramatically lower temperatures are required when MgO is present. Volatile products evolved were formic acid, water, alcohols, and alkenes. At higher temperatures CO, CH4, and water predominated. Phosphorus residues remained completed immobilized. Addition of water enhanced the facility of MgO to destroy these compounds, and in fact, water pulses were found to partially regenerate a spent MgO bed. Using 18O labeling some aspects of the reaction mechanisms were clarified and in particular showed that oxygen scrambling occurred. Surface OH and MgO groups transferred oxygen in the formation of formic acid, and surface mobility and reactivity of adsorbed groups was very high. The substantial capacity of high surface area MgO for destruction and immobilization of such toxic substance makes it attractive for air purification schemes as well as solid reagents for destruction and immobilization of bulk quantities of hazardous phosphorus compounds or organohalides. Organophosphorus, ultrafine powder, destructive adsorption, magnesium oxide, immobilization, nanoscale powder.

  5. Magnesium in diet

    MedlinePlus

    Diet - magnesium ... Magnesium is needed for more than 300 biochemical reactions in the body. It helps to maintain normal ... There is ongoing research into the role of magnesium in preventing and managing disorders such as high ...

  6. Low magnesium level

    MedlinePlus

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  7. Corrosion in Magnesium and a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Akavipat, Sanay

    Magnesium and a magnesium alloy (AZ91C) have been ion implanted over a range of ions energies (50 to 150 keV) and doses (1 x 10('16) to 2 x 10('17) ions/cm('2)) to modify the corrosion properties of the metals. The corrosion tests were done by anodic polarization in chloride -free and chloride-containing aqueous solutions of a borated -boric acid with a pH of 9.3. Anodic polarization measurements showed that some implantations could greatly reduce the corrosion current densities at all impressed voltages and also increased slightly the pitting potential, which indicated the onset of the chloride attack. These improvements in corrosion resistance were caused by boron implantations into both types of samples. However, iron implantations were found to improve only the magnesium alloy. To study the corrosion in more detail, Scanning Auger Microprobe Spectrometer (SAM), Scanning Electron Microscope (SEM) with an X-ray Energy Spectrometry (XES) attachment, and Transmission Electron Microscope (TEM) measurements were used to analyze samples before, after, and at various corrosion stages. In both the unimplanted pure magnesium and AZ91C samples, anodic polarization results revealed that there were three active corrosion stages (Stages A, C, and E) and two passivating stages (Stages B and D). Examination of Stages A and B in both types of samples showed that only a mild, generalized corrosion had occurred. In Stage C of the TD samples, a pitting breakdown in the initial oxide film was observed. In Stage C of the AZ91C samples, galvanic and intergranular attack around the Mg(,17)Al(,12) intermetallic islands and along the matrix grain boundaries was observed. Stage D of both samples showed the formation of a thick, passivating oxygen containing, probably Mg(OH)(,2) film. In Stage E, this film was broken down by pits, which formed due to the presence of the chloride ions in both types of samples. Stages A through D of the unimplanted samples were not seen in the boron or iron

  8. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    SciTech Connect

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  9. The relationship between concentrations of magnesium and oxidized low-density lipoprotein and Beta2-microglobulin in the serum of patients on the end-stage of renal disease.

    PubMed

    Raikou, Vaia D; Kyriaki, Despina

    2016-05-01

    The end-stage of renal disease is associated with increased oxidative stress and oxidative modification of low-density lipoproteins (LDLs). Beta2 microglobulin (beta2M) is accumulated in the serum of dialysis patients. Magnesium (Mg) plays a protective role in the development of oxidative stress in healthy subjects. We studied the relationship between concentrations of magnesium and oxidized LDL (ox-LDL) and beta2M in the serum of patients on the end stage of renal disease. In 96 patients on on-line- predilution hemodiafiltration, beta2M and intact parathormone were measured by radioimmunoassays. High-sensitivity C-reactive protein (hsCRP) and ox-LDL were measured using ΕLISA. Serum bicarbonate levels were measured in the blood gas analyser gas machine. We performed logistic regression analysis models to investigate Mg as an important independent predictor of elevated ox-LDL and high beta2M serum concentrations, after adjustment to traditional and specific for dialysis patients' factors. We observed a positive correlation of Mg with ox-LDL (r = 0.383, P = 0.001), but the association of Mg with beta2M, hsCRP, and serum bicarbonate levels was significantly inverse (r = -0.252, P = 0.01, r = -0.292, P = 0.004, and r = -0.282, P = 0.04 respectively). The built logistic-regression analysis showed that Mg act as a significant independent factor for the elevated ox-LDL and beta2M serum concentrations adjusting to traditional and specific factors for these patients. We observed a positive relationship between magnesium and acidosis status- related ox-LDL concentrations, but the inverse association between magnesium and beta2M serum concentrations in hemodialysis patients. PMID:27215248

  10. Chloridization and Reduction Roasting of High-Magnesium Low-Nickel Oxide Ore Followed by Magnetic Separation to Enrich Ferronickel Concentrate

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-02-01

    The chloridization and reduction roasting of high-magnesium, low-nickel oxide ore containing 0.82 pct Ni and 31.49 pct MgO were investigated in this study. Mineralogical investigation indicated that 84.6 pct of nickel was associated with silicates, and nickel was well distributed in mineral in the form of isomorphism. A series of chloridization tests with different added proportions of sodium chloride and coal along with different roasting temperatures and times was conducted. The results indicate that for a ferronickel content of 7.09 pct Ni, a nickel recovery of 98.31 pct could be obtained by chloridizing the laterite ore at 1473 K (1200 °C) for 20 minutes with the addition of 10 wt pct sodium chloride and 8 wt pct coal followed by the application of a 150-mT magnetic field. X-ray diffraction indicated that the nickel is mainly present in the form of ferronickel, which can also be detected by SEM-EDS. Compared with the roasted ore with no added chlorinating agent, the ore roasted in the presence of sodium chloride exhibited enhanced ferronickel particle growth.

  11. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.

    PubMed

    Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Kim, Dong-Won

    2016-02-17

    Trapping lithium polysulfides formed in the sulfur positive electrode of lithium-sulfur batteries is one of the promising approaches to overcome the issues related to polysulfide dissolution. In this work, we demonstrate that intrinsically hydrophilic magnesium oxide (MgO) nanoparticles having surface hydroxyl groups can be used as effective additives to trap lithium polysulfides in the positive electrode. MgO nanoparticles were uniformly distributed on the surface of the active sulfur, and the addition of MgO into the sulfur electrode resulted in an increase in capacity retention of the lithium-sulfur cell compared to a cell with pristine sulfur electrode. The improvement in cycling stability was attributed to the strong chemical interactions between MgO and lithium polysulfide species, which suppressed the shuttling effect of lithium polysulfides and enhanced the utilization of the sulfur active material. To the best of our knowledge, this report is the first demonstration of MgO as an effective functional additive to trap lithium polysulfides in lithium-sulfur cells. PMID:26808673

  12. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2014-12-01

    A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO2 and ZrO2 nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO2 and ZrO2 peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  13. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility. PMID:23603036

  14. Oxidative dehydrogenation of n-butane over magnesium vanadate nano-catalysts supported on magnesia-zirconia: effect of vanadium content.

    PubMed

    Lee, Jong Kwon; Hong, Ung Gi; Yoo, Yeonshick; Cho, Young-Jin; Lee, Jinsuk; Chang, Hosik; Song, In Kyu

    2013-12-01

    Magnesia-zirconia (MgO-ZrO2) support was prepared by a sol-gel method, and magnesium vanadate nano-catalysts supported on magnesia-zirconia (X-Mg3(VO4)2/MgO-ZrO2) were then prepared by a wet impregnation method with a variation of vanadium content (X = 6.6, 9.9, 12.8, 15.2, and 19.1 wt%). X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts were applied to the oxidative dehydrogenation of n-butane to n-butene and 1,3-butadiene. The formation of X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts was well confirmed by XRD, XPS, and ICP-AES analyses. 15.2-Mg3(VO4)2/MgO-ZrO2 and 19.1-Mg3(VO4)2/MgO-ZrO2 catalysts experienced a catalyst deactivation, while the other Mg3(VO4)2/MgO-ZrO2 catalysts showed a stable catalytic performance during the whole reaction time. The effect of oxygen property of X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts on the catalytic performance in the oxidative dehydrogenation of n-butane was investigated. Experimental results revealed that oxygen capacity of the catalyst was closely related to the catalytic performance, while oxygen mobility of the catalyst played an important role in the catalyst stability. Among the catalysts tested, 12.8-Mg3(VO4)2/MgO-ZrO2 catalyst showed the best catalytic performance in terms of yield for TDP (total dehydrogenation products). PMID:24266201

  15. Binding and uptake of 125iodine-labelled, oxidized low density lipoprotein by macrophages: comparison of the effects of alpha-tocopherol, probucol, pyridoxal-5'-phosphate and magnesium-pyridoxal-5'-phosphate-glutamate.

    PubMed

    Selmer, D; Senekowitsch-Schmidtke, R; Schneider, W; Elstner, E F

    1997-01-01

    Specific and unspecific binding and uptake (internalization) by macrophages of 125iodine-labelled, copper-oxidized human low density lipoprotein is differently influenced by the anti-oxidants alpha-tocopherol (alpha-Toc), probucol (Prob), pyridoxal-5'-phosphate (PP) and the magnesium-pyridoxal-5'-phosphate glutamate complex (MPPG). Binding as well as internalization, mediated by the so-called "scavenger receptor" is lower in the presence of MPPG whereas both specific binding and internalization are enhanced. The comparison of the effects in vitro allows a rating of the potentially anti-atherogenic and thus protective effects of the tested substances as follows: MPPG > PP > alpha-Toc > Prob. PMID:9090072

  16. Periodic Shorting of SOM Cell to Remove Soluble Magnesium in Molten Flux and Improve Faradaic Efficiency

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Su, Shizhao; Pal, Uday B.; Powell, Adam C.

    2014-12-01

    Solid oxide membrane (SOM) electrolysis has been used for magnesium production directly from magnesium oxide. Magnesium dissolution in molten flux electrolyte is of particular concern in SOM electrolysis, because it imparts electronic conductivity to the flux and thereby decreases the faradaic current efficiency. In this work, a new approach for removing soluble magnesium in the flux is explored. Periodic shorting is performed between the anode and the cathode of SOM electrolysis cell. During shorting, soluble magnesium in the flux is oxidized to magnesium oxide. This significantly reduces the electronic current in the flux and therefore keeps the faradaic current efficiency high during SOM electrolysis. Electronic transference numbers in the flux are measured to assess the soluble magnesium concentration. Potentiodynamic scan results also confirm the feasibility of shorting the electrodes to remove soluble magnesium.

  17. Magnesium and sudden death.

    PubMed

    Leary, W P; Reyes, A J

    1983-10-22

    Magnesium deficiency may result from reduced dietary intake of the ion or increased losses in sweat, urine or faeces. Stress potentiates magnesium deficiency, and an increased incidence of sudden death associated with ischaemic heart disease is found in some areas in which soil and drinking water lack magnesium. Furthermore, it has been demonstrated experimentally that reduction of the plasma magnesium level is associated with arterial spasm. Careful studies are required to assess the clinical importance of magnesium and the benefits of magnesium supplementation in man. PMID:6353622

  18. Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Cancan; Liang, Jun; Zhou, Jiansong; Li, Qingbiao; Wang, Lingqian

    2016-09-01

    Top ceramic coatings were fabricated on the laser surface melting (LSM) modified AZ31 alloy by plasma electrolytic oxidation (PEO) in a phosphate electrolyte. The effect of LSM treatment on the microstructure and corrosion behavior of the bare and PEO treated AZ31 alloy was evaluated. Results showed that LSM treatment produced a homogeneous modified layer with redistributed intermetallic compounds, resulting in enhanced corrosion resistance of AZ31 alloy. The LSM treatment had no obvious influence on the surface and cross-sectional microstructures of the PEO coatings on AZ31 alloy. Besides, MgO was the main constituent for PEO coatings, regardless of LSM pretreatment. However, the long-term corrosion properties of the PEO coated AZ31 alloy with LSM pretreatment revealed large enhancement. Based on the analysis of microstructure and corrosion property, the corrosion mechanisms of the PEO and LSM-PEO coated AZ31 alloy were proposed.

  19. A surface site as polydentate ligand of a metal complex: Density functional studies of rhenium subcarbonyls supported on magnesium oxide

    SciTech Connect

    Hu, A.; Neyman, K.M.; Staufer, M.; Belling, T.; Gates, B.C.; Roesch, N.

    1999-05-12

    Notwithstanding the importance of supported organometallic species as industrial catalysts, most are nonuniform mixtures, with only a few being well-characterized at the atomic level. Rhenium subcarbonyls on MgO, in contrast, consist of nearly uniform surface species and are among the best-studied organometallic complexes on oxides. EXAFS and infrared spectra showed that decomposition of the precursors [HRe(CO){sub 5}], [H{sub 3}Re{sub 3}(CO){sub 12}], and [Re{sub 2}(CO){sub 10}] on MgO powder results in fragments, assigned as Re(CO){sub 3}{sup n+}, coordinated to surface ligands. The concept of a surface site as a polydentate ligand evokes the remarkable circumstance in which the adsorbate-substrate bonds are as strong as metal-ligand bonds in common transition metal complexes, as shown by the present investigation.

  20. The investigation of different particle size magnesium-doped zinc oxide (Zn0.92Mg0.08O) nanoparticles on the lubrication behavior of paraffin oil

    NASA Astrophysics Data System (ADS)

    Kalyani; Jaiswal, V.; Rastogi, R. B.; Kumar, D.

    2015-06-01

    Magnesium-doped zinc oxide (Zn0.92Mg0.08O) (ZMO) nanoparticles of 23 nm particle size have been synthesized by auto-combustion method. The variation in particle size of these nanoparticles has been performed by their further calcination at 800 and 1000 °C for 2 h and the corresponding calcined particles are designated as ZMO-1 and ZMO-2, respectively. The nanoparticles have been characterized by powder-XRD, scanning electron microscopy (SEM), energy dispersive X-ray and transmission electron microscope. The effect of particle size on the antiwear lubrication behavior of paraffin base oil has been investigated on four-ball lubricant tester. The tribological tests of these nanoparticles as antiwear additives have been studied at an optimized concentration (0.5 %w/v) by varying load for 30 min test duration and by varying the test durations at 392 N load. Various tribological parameters such as mean wear scar diameter, friction coefficient (µ), mean wear volume, running-in and steady-state wear rates show that these nanoparticles act as efficient antiwear additives and possess high load-carrying ability. From these tribological tests it has been observed that the lubrication behavior of studied nanoparticles is strongly size-dependent. The best tribological behavior is shown by nanoparticles of the smallest size, ZMO. Being sulfur, halogen and phosphorous free, ZMO nanoparticles have potential to be used as low SAPS lubricant additives. The SEM and atomic force microscopy analysis of the worn surfaces lubricated with ZMO nanoparticles at 392 N applied load for 60 min test duration show drastic decrease in surface roughness. The values of surface roughness of different additives are in good agreement with their observed tribological behavior.

  1. Choline Magnesium Trisalicylate

    MedlinePlus

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  2. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  3. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  4. Magnesium and Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  5. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions. PMID:26670248

  6. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    electron microscope. The corrosion rate of the nonequilibrium sputtered alloys, as determined by polarization resistance, is significantly reduced compared to the most corrosion resistant commercial magnesium alloys. The open circuit potentials of the sputter deposited alloys are significantly more noble compared to commercial, equilibrium phase magnesium alloys. Galvanic corrosion susceptibility has also been considerably reduced. Nonequilibrium magnesium-yttrium-titanium alloys have been shown to achieve passivity autonomously by alteration of the composition chemistry of the surface oxide/hydroxide layer. Self-healing properties are also evident, as corrosion propagation can be arrested after initial pitting of the material. A clear relationship exists between the corrosion resistance of sputter vapor deposited magnesium alloys and the amount of ion bombardment incurred by the alloy during deposition. Argon pressure, the distance between the source and the substrate, and alloy morphology play important roles in determining the ability of the alloy to develop a passive film. Thermal effects, both during and after alloy deposition, alter the stress state of the alloys, precipitation of second phases, and the mechanical stability of the passive film. An optimal thermal treatment has been developed in order to maximize the corrosion resistance of the magnesium-yttrium-titanium alloys. The significance of the results includes the acquisition of electrochemical data for these novel materials, as well as expanding the utilization of magnesium alloys by the improvement in their corrosion resistance. The magnesium alloys developed in this work are more corrosion resistant than any commercial magnesium alloy. Structural components comprised of these alloys would therefore exhibit unprecedented corrosion performance. Coatings of these alloys on magnesium components would provide a corrosion resistant yet galvanically-compatible coating. The broad impact of these contributions is

  7. Imparting passivity to vapor deposited magnesium alloys

    NASA Astrophysics Data System (ADS)

    Wolfe, Ryan C.

    electron microscope. The corrosion rate of the nonequilibrium sputtered alloys, as determined by polarization resistance, is significantly reduced compared to the most corrosion resistant commercial magnesium alloys. The open circuit potentials of the sputter deposited alloys are significantly more noble compared to commercial, equilibrium phase magnesium alloys. Galvanic corrosion susceptibility has also been considerably reduced. Nonequilibrium magnesium-yttrium-titanium alloys have been shown to achieve passivity autonomously by alteration of the composition chemistry of the surface oxide/hydroxide layer. Self-healing properties are also evident, as corrosion propagation can be arrested after initial pitting of the material. A clear relationship exists between the corrosion resistance of sputter vapor deposited magnesium alloys and the amount of ion bombardment incurred by the alloy during deposition. Argon pressure, the distance between the source and the substrate, and alloy morphology play important roles in determining the ability of the alloy to develop a passive film. Thermal effects, both during and after alloy deposition, alter the stress state of the alloys, precipitation of second phases, and the mechanical stability of the passive film. An optimal thermal treatment has been developed in order to maximize the corrosion resistance of the magnesium-yttrium-titanium alloys. The significance of the results includes the acquisition of electrochemical data for these novel materials, as well as expanding the utilization of magnesium alloys by the improvement in their corrosion resistance. The magnesium alloys developed in this work are more corrosion resistant than any commercial magnesium alloy. Structural components comprised of these alloys would therefore exhibit unprecedented corrosion performance. Coatings of these alloys on magnesium components would provide a corrosion resistant yet galvanically-compatible coating. The broad impact of these contributions is

  8. Magnesium industry overview

    SciTech Connect

    Clow, B.B.

    1996-10-01

    Magnesium products provide an excellent strength-to-weight ratio, good fatigue strength, high impact strength, good corrosion resistance, high-speed machinability, and good thermal and electrical conductivities. As a result, applications are expanding in almost every industry. Dozens of automotive components are now made of magnesium, including steering wheels, valve covers, and seat frames. Magnesium alloys are also used in computer housings, in-line roller skates, golf clubs, tennis racquets, and baseball bats. Good strength and stiffness at both room and elevated temperatures make magnesium alloys especially valuable for aerospace applications. This article presents an overview of magnesium technology, world production, increasing demand, and recycling.

  9. The influence of magnesium-pyridoxal-5'-phosphate-glutamate in comparison with probucol, alpha-tocopherol and trolox on copper-induced oxidation of human low density lipoprotein in vitro.

    PubMed

    Kögl, C; Schneider, W; Elstner, E F

    1994-06-15

    Low density lipoprotein (LDL) in the presence of magnesium-pyridoxal-5'-phosphate-glutamate (MPPG), pyridoxal-5'-phosphate (PP), alpha-tocopherol, probucol or trolox is more resistant against copper-induced oxidation as control-LDL in vitro. The efficiency of the drugs is: probucol > MPPG > trolox > alpha-tocopherol > PP. LDL oxidation is determined by its increasing negative surface charge, fragmentation of apolipoprotein B-100 and changes of the fatty acid content of LDL. The protection of the drugs depends on their concentration and incubation time. Different experiments point to the fact that copper-induced oxidation of LDL in vitro starts with the binding of copper at the apolipoprotein B-100, resulting in an increasing negative surface charge and fragmentation of the apolipoprotein B-100. Afterwards a decrease of LDL-bound linoleic acid (18:2) is measurable. PMID:8031313

  10. Magnesium and the Athlete.

    PubMed

    Volpe, Stella Lucia

    2015-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation in the body. It is a required mineral that is involved in more than 300 metabolic reactions in the body. Magnesium helps maintain normal nerve and muscle function, heart rhythm (cardiac excitability), vasomotor tone, blood pressure, immune system, bone integrity, and blood glucose levels and promotes calcium absorption. Because of magnesium's role in energy production and storage, normal muscle function, and maintenance of blood glucose levels, it has been studied as an ergogenic aid for athletes. This article will cover the general roles of magnesium, magnesium requirements, and assessment of magnesium status as well as the dietary intake of magnesium and its effects on exercise performance. The research articles cited were limited from those published in 2003 through 2014. PMID:26166051

  11. Fogging technique used to coat magnesium with plastic

    NASA Technical Reports Server (NTRS)

    Mroz, T. S.

    1967-01-01

    Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.

  12. Expansion during the formation of the magnesium aluminate spinel (MgAl(2)O(4)) from its basic oxide (MgO and Al(2)O(3)) powders

    NASA Astrophysics Data System (ADS)

    Duncan, Flavia Cunha

    The extraordinary expansion during the reaction sintering of the magnesium aluminate spinel (MgAl2O4) from its basic oxide (MgO and Al2O3) powders was studied. Experimental series of different size fractions of the reacting materials were formulated to produce the Mg-Al spinel. After batches were prepared, specimens were compacted and fired in air from 1200° to 1700°C for a fixed firing time. A separate set of specimens was fired as a function of time to determine the reaction kinetic parameters. Dimensional changes confirmed that extraordinary expansions of three to four times greater than the prediction from the reaction of solids occur. The solid-state reactions were monitored by X-ray diffraction. The activation energy of the spinel reaction formation was determined to be 280 +/- 20 kJ/mol. It is believed to be associated with the diffusivity of Mg 2+ in either magnesia or spinel during the development of the final spinel structure. New porosity developed in the compacts during the reaction formation of spinel. Scanning electron microscopy confirmed that the magnesia evaporated leaving behind porous magnesia grains, condensed on the alumina particles and reacted to form a shell of spinel. Hollow spinel particles resulted from the original particles of alumina. These porosities generated within the reacting materials influenced the expansions. Final volumetric expansion could potentially reach 56% as a result of the reaction of solids and the porosity generation within MgO and Al2O3. Models of a single alumina particle with and without development of internal porosity were developed. 3-D arrangements of particles showed additional porosity, influencing on the expansions. The decrease in porosity of some specimens fired at higher temperatures indicated that sintering and densification occur simultaneously with the reaction formation of spinel. The decrease in the interparticle porosity limits the full expansion of the particulates to levels lower than the

  13. Method for magnesium sulfate recovery

    DOEpatents

    Gay, Richard L.; Grantham, LeRoy F.

    1987-01-01

    A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  14. Method for magnesium sulfate recovery

    DOEpatents

    Gay, R.L.; Grantham, L.F.

    1987-08-25

    A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  15. Adsorption of nitrogen oxide molecules to the surface of nanosized nickel clusters formed on the (111) surface of a magnesium oxide film

    NASA Astrophysics Data System (ADS)

    Remar, D. F.; Turiev, A. M.; Tsidaeva, N. I.; Magkoev, T. T.

    2010-10-01

    The properties of the systems formed on deposition of Ni atoms on the (111) surface of a MgO film of thickness equal to six monomolecular layers grown on a Mo(110) crystal face and the adsorption of NO nitrogen oxide molecules to the system surface have been studied by methods of electron spectroscopy (AES, XPES, LEED, LEIBSS) and reflective infrared absorption spectroscopy. On deposition of Ni atoms on the surface of MgO at a substrate temperature of 600 K, three-dimensional islands of Ni are formed. The subsequent adsorption of NO results in molecule dissociation even at 110 K. The efficiency of this process depends on the morphology of the Ni layer.

  16. Magnesium in depression.

    PubMed

    Serefko, Anna; Szopa, Aleksandra; Wlaź, Piotr; Nowak, Gabriel; Radziwoń-Zaleska, Maria; Skalski, Michał; Poleszak, Ewa

    2013-01-01

    Magnesium is one of the most essential mineral in the human body, connected with brain biochemistry and the fluidity of neuronal membrane. A variety of neuromuscular and psychiatric symptoms, including different types of depression, was observed in magnesium deficiency. Plasma/serum magnesium levels do not seem to be the appropriate indicators of depressive disorders, since ambiguous outcomes, depending on the study, were obtained. The emergence of a new approach to magnesium compounds in medical practice has been seen. Apart from being administered as components of dietary supplements, they are also perceived as the effective agents in treatment of migraine, alcoholism, asthma, heart diseases, arrhythmias, renal calcium stones, premenstrual tension syndrome etc. Magnesium preparations have an essential place in homeopathy as a remedy for a range of mental health problems. Mechanisms of antidepressant action of magnesium are not fully understood yet. Most probably, magnesium influences several systems associated with development of depression. The first information on the beneficial effect of magnesium sulfate given hypodermically to patients with agitated depression was published almost 100 years ago. Numerous pre-clinical and clinical studies confirmed the initial observations as well as demonstrated the beneficial safety profile of magnesium supplementation. Thus, magnesium preparations seem to be a valuable addition to the pharmacological armamentarium for management of depression. PMID:23950577

  17. Magnesium in disease

    PubMed Central

    Wanner, Christoph

    2012-01-01

    Although the following text will focus on magnesium in disease, its role in healthy subjects during physical exercise when used as a supplement to enhance performance is also noteworthy. Low serum magnesium levels are associated with metabolic syndrome, Type 2 diabetes mellitus (T2DM) and hypertension; consequently, some individuals benefit from magnesium supplementation: increasing magnesium consumption appears to prevent high blood pressure, and higher serum magnesium levels are associated with a lower risk of developing a metabolic syndrome. There are, however, conflicting study results regarding magnesium administration with myocardial infarction with and without reperfusion therapy. There was a long controversy as to whether or not magnesium should be given as a first-line medication. As the most recent trials have not shown any difference in outcome, intravenous magnesium cannot be recommended in patients with myocardial infarction today. However, magnesium has its indication in patients with torsade de pointes and has been given successfully to patients with digoxin-induced arrhythmia or life-threatening ventricular arrhythmias. Magnesium sulphate as an intravenous infusion also has an important established therapeutic role in pregnant women with pre-eclampsia as it decreases the risk of eclamptic seizures by half compared with placebo. PMID:26069818

  18. 76 FR 26247 - Magnesium Metal From the Russian Federation: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ..., silicon, rare earth metals/mischmetal, cryolite, silica/fly ash, magnesium oxide, periclase, ferroalloys...: Magnesium Metal From the Russian Federation, 70 FR 19930 (April 15, 2005). On April 1, 2010, the Department... Administrative Review, 75 FR 78968 (December 17, 2010), and Magnesium Metal From the Russian...

  19. Oxidative dehydrogenation of n-butane over vanadium magnesium oxide catalysts supported on nano-structured MgO and ZrO2: effect of oxygen capacity of the catalyst.

    PubMed

    Lee, Howon; Lee, Jong Kwon; Hong, Ung Gi; Song, In Kyu; Yoo, Yeonshick; Cho, Young-Jin; Lee, Jinsuk; Chang, Hosik; Jung, Ji Chul

    2012-07-01

    Vanadium-magnesium oxide catalysts supported on nano-structured MgO and ZrO2 (Mg3(VO4)2/MgO/ZrO2) were prepared by a wet impregnation method with a variation of Mg:Zr ratio (8:1, 4:1, 2:1, and 1:1). For comparison, Mg3(VO4)2/MgO and Mg3(VO4)2/ZrO2 catalysts were also prepared by a wet impregnation method. The prepared catalysts were applied to the oxidative dehydrogenation of n-butane in a continuous flow fixed-bed reactor. Mg3(VO4)2/MgO/ZrO2 (Mg:Zr = 4:1, 2:1, and 1:1) and Mg3(VO4)2/ZrO2 catalysts showed a stable catalytic activity during the whole reaction time, while Mg3(VO4)2/MgO/ZrO2 (8:1) and Mg3(VO4)2/MgO catalysts experienced a severe catalyst deactivation. Deactivation of Mg3(VO4)2/MgO/ZrO2 (8:1) and Mg3(VO4)2/MgO catalysts was due to their low oxygen mobility. Effect of oxygen capacity (the amount of oxygen in the catalyst involved in the reaction) of the supported Mg3(V04)2 catalysts on the catalytic performance in the oxidative dehydrogenation of n-butane was investigated. Experimental results revealed that oxygen capacity of the catalyst was closely related to the catalytic activity in the oxidative dehydrogenation of n-butane. A large oxygen capacity of the catalyst was favorable for obtaining a high catalytic activity in this reaction. Among the catalysts tested, Mg3(VO4)2/MgO/ZrO2 (4:1) catalyst with the largest oxygen capacity showed the best catalytic performance. PMID:22966706

  20. The WOMED model of benign thyroid disease: Acquired magnesium deficiency due to physical and psychological stressors relates to dysfunction of oxidative phosphorylation

    PubMed Central

    Moncayo, Roy; Moncayo, Helga

    2014-01-01

    Background The aim of this study was to discern whether a relation between biochemical parameters, sonography and musculoskeletal data exists in cases of hyperthyroidism and whether they are modifiable through supplementation with selenomethionine and magnesium citrate as well as by acupuncture and manual medicine methods. Results A direct correlation between whole blood selenium and serum magnesium was found in subjects without thyroid disease and in menopausal women while it was reversed in cases of thyroid diseases as well as in patients with depression, infection, and in infertile women. Vascularization indices were elevated in cases of newly diagnosed benign thyroid diseases. Musculoskeletal changes i.e. lateral tension and idiopathic moving toes, as well as situations of physical and psychological stress and minor trauma and infection led to an increase of vascularization. Magnesium levels correlated negatively with these two conditions. The supplementation brought a reduction of the vascularization indices and reduced the incidence of idiopathic moving toes. Treatment of lateral tension required manual medicine methods and acupuncture (gastrocnemius). A small subgroup of patients showed a further reduction of hyper-vascularization after receiving coenzyme Q10. Conclusions We interpret the elevated thyroid vascularization and low magnesium levels as signs of an inflammatory process related to the musculoskeletal changes. Improvement of thyroid function and morphology can be achieved after correcting the influence of stressors together with the supplementation regime. We hypothesize that the central biochemical event in thyroid disease is that of an acquired, altered mitochondrial function due to deficiency of magnesium, selenium, and coenzyme Q10. PMID:26675817

  1. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability.

    PubMed

    Ishizaki, Takahiro; Saito, Naobumi

    2010-06-15

    We have developed a facile, simple, time-saving method of creating a superhydrophobic surface on a magnesium alloy by a simple immersion process at room temperature. First, a crystalline CeO(2) film was vertically formed on the magnesium alloy by immersion in a cerium nitrate aqueous solution for 20 min. The density of the crystals vertically with respect to the magnesium alloy increased with increasing immersion time. Next, the film were covered with fluoroalkylsilane (FAS: CF(3)(CF(2))(7)CH(2)CH(2)Si(OCH(3))(3)) molecules within 30 min by immersion in a toluene solution containing FAS and tetrakis(trimethylsiloxy)titanium (TTST: (CH(3))(3)SiO)(4)Ti). TTST was used as a catalyst to promote the hydrolysis and/or polymerization of FAS molecules. The FAS-coated CeO(2) film had a static contact angle of more than 150 degrees, that is, a superhydrophobic property. The shortest processing time for the fabrication of the superhydrophobic surface was 40 min. The contact angle hysteresis decreased with an increase in the immersion time in the cerium nitrate aqueous solution. The chemical stability of the superhydrophobic surface on magnesium alloy AZ31 was investigated. The average static water contact angles of the superhydrophobic surfaces after immersion in the solutions at pH 4, 7, and 10 for 24 h were found to be 139.7 +/- 2, 140.0 +/- 2, and 145.7 +/- 2 degrees, respectively. In addition, the chemical stability of the superhydrophobic surface in the solutions at pH ranging from 1 to 14 was also examined. The superhydrophobic surfaces had static contact angles of more than 142 degrees in the solutions at pH ranging from 1 to 14, showing that our superhydrophobic surface had a high chemical stability. Moreover, the corrosion resistance of the superhydrophobic surface on the magnesium alloy was investigated using electrochemical measurements. PMID:20377219

  2. Magnesium in pregnancy.

    PubMed

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. PMID:27445320

  3. Magnesium-zinc reduction is effective in preparation of metals

    NASA Technical Reports Server (NTRS)

    Knighton, J. B.; Steuneberg, R. K.

    1967-01-01

    Uranium, thorium, and plutonium are effectively prepared by magnesium-zinc reduction, using uranium oxides, thorium dioxide, and plutonium dioxide as starting materials. This technique is also useful in performing reduction of metals such as zirconium and titanium.

  4. The anticarcinogenic effect of magnesium.

    PubMed

    Blondell, J M

    1980-08-01

    Evidence is reviewed supporting a hypothesis of an anticarcinogenic effect of magnesium. Animal studies reported increased cancer in rodents maintained on magnesium deficient diets and a preventive effect for rodents fed excess levels of magnesium. Epidemiologic evidence is presented that magnesium levels in water, food, and air are inversely related to cancer mortality. Magnesium may also have a role in the reduced cancer mortality experienced by people living at high altitudes. Two biologically plausible mechanisms are considered by which magnesium could prevent carcinogenesis. Intracellular magnesium may enhance the fidelity of DNA replication or magnesium on the cell membrane may prevent changes which trigger the carcinogenic process. PMID:7442590

  5. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  6. Effect of magnesium on the burning characteristics of boron particles

    NASA Astrophysics Data System (ADS)

    Liu, Jian-zhong; Xi, Jian-fei; Yang, Wei-juan; Hu, You-rui; Zhang, Yan-wei; Wang, Yang; Zhou, Jun-hu

    2014-03-01

    Boron is an attractive fuel for propellants and explosives because of its high energy density. However, boron particles are difficult to combust because of inhibiting oxide layers that cover the particles. The use of magnesium as additives has been shown to promote boron oxidation. In this study, laser ignition facility and thermobalance were used to investigate the effect of magnesium on the burning characteristics of boron particles. The influences of magnesium addition on sample combustion flame, boron ignition delay time, boron combustion efficiency and initial temperature of boron oxidation. Results show that all Mg/B samples exhibit the same type of flame structure, i.e., a bright plume surrounded by green radiation which is interpreted as BO2 emission. The combustion flame intensity of a sample increases with the increasing magnesium content of boron particles. An increase in magnesium content results in a decrease and a subsequent increase in boron ignition delay time. (Mg/B)0.2 has a minimum ignition delay time of ~48 ms. Boron combustion efficiency increases with increasing magnesium addition. (Mg/B)0.5 shows a maximum boron combustion efficiency of ~64.2%. Magnesium addition decreases the initial temperature of boron oxidation.

  7. Chemically Prepared Lead Magnesium Niobate Dielectrics

    SciTech Connect

    Tuttle, B.A.; Voigt, J.A.; Sipola, D.L.; Olson, W.R.; Goy, D.M.

    1998-01-01

    A chemical solution powder synthesis technique has been developed that produces fine uniform powders of lead magnesium niobate (PMN) with 60 to 80 nm crystallite size. The synthesis technique was based on the dissolution of lead acetate and alkoxide precursors in acetic acid followed by precipitation with oxalic acid/propanol solutions. Lead magnesium niobate ceramics fabricated from these chemically derived powders had smaller, more uniform grain size and higher dielectric constants than ceramics fabricated from mixed oxide powders that were processed under similar thermal conditions.

  8. Magnesium deficiency: what's our status?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  9. Magnesium battery disposal characteristics

    NASA Astrophysics Data System (ADS)

    Soffer, Louis; Atwater, Terrill

    1994-12-01

    This study assesses the disposal characteristics of U.S. Army procured military magnesium batteries under current Resource Conservation and Recovery Act (RCRA) hazardous waste identification regulations administered by the U.S. Environmental Protection Agency. Magnesium batteries were tested at 100, 50, 10 and 0 percent remaining state of charge. Present findings indicate that magnesium batteries with less than 50 percent remaining charge do not exceed the federal regulatory limit of 5.0 mg/L for chromium. All other RCRA contaminates were below regulatory limits at all levels of remaining charge. Assay methods, findings, disposal requirements and design implications are discussed.

  10. Rapid recovery from major depression using magnesium treatment.

    PubMed

    Eby, George A; Eby, Karen L

    2006-01-01

    Major depression is a mood disorder characterized by a sense of inadequacy, despondency, decreased activity, pessimism, anhedonia and sadness where these symptoms severely disrupt and adversely affect the person's life, sometimes to such an extent that suicide is attempted or results. Antidepressant drugs are not always effective and some have been accused of causing an increased number of suicides particularly in young people. Magnesium deficiency is well known to produce neuropathologies. Only 16% of the magnesium found in whole wheat remains in refined flour, and magnesium has been removed from most drinking water supplies, setting a stage for human magnesium deficiency. Magnesium ions regulate calcium ion flow in neuronal calcium channels, helping to regulate neuronal nitric oxide production. In magnesium deficiency, neuronal requirements for magnesium may not be met, causing neuronal damage which could manifest as depression. Magnesium treatment is hypothesized to be effective in treating major depression resulting from intraneuronal magnesium deficits. These magnesium ion neuronal deficits may be induced by stress hormones, excessive dietary calcium as well as dietary deficiencies of magnesium. Case histories are presented showing rapid recovery (less than 7 days) from major depression using 125-300 mg of magnesium (as glycinate and taurinate) with each meal and at bedtime. Magnesium was found usually effective for treatment of depression in general use. Related and accompanying mental illnesses in these case histories including traumatic brain injury, headache, suicidal ideation, anxiety, irritability, insomnia, postpartum depression, cocaine, alcohol and tobacco abuse, hypersensitivity to calcium, short-term memory loss and IQ loss were also benefited. Dietary deficiencies of magnesium, coupled with excess calcium and stress may cause many cases of other related symptoms including agitation, anxiety, irritability, confusion, asthenia, sleeplessness

  11. Magnesium blood test

    MedlinePlus

    Magnesium - blood ... A blood sample is needed. ... When the needle is inserted to draw blood, some people feel slight pain. Others feel a prick or stinging. Afterward, there may be some throbbing or a slight bruise. This soon ...

  12. Magnesium for automotive applications

    SciTech Connect

    VanFleteren, R.

    1996-05-01

    Die cast magnesium parts are rapidly replacing steel and aluminum structural components in automotive applications, as design engineers seek to reduce assembly costs, raise fuel efficiency, and improve safety. Dozens of automotive components are now die cast from magnesium alloys, including seat stanchions, valve covers, steering wheels, and a variety of steering column components. Because of their excellent castability, complex magnesium die castings can sometimes consolidate several components and eliminate assembly steps. Highly ductile magnesium alloys such as AM60B (6% aluminum) and AM50A (5% aluminum) are important in helping to meet automotive industry crash-energy requirements for car seating and steering components. AZ91D (9% aluminum, 1% zinc) alloys are making removable rear seats in new minivans much easier to handle.

  13. Low magnesium level

    MedlinePlus

    ... in the body that convert or use energy ( metabolism ). When the level of magnesium in the body ... Walls RM, et al., eds. Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ed. Philadelphia, PA: Elsevier ...

  14. Rechargeable Magnesium Power Cells

    NASA Technical Reports Server (NTRS)

    Koch, Victor R.; Nanjundiah, Chenniah; Orsini, Michael

    1995-01-01

    Rechargeable power cells based on magnesium anodes developed as safer alternatives to high-energy-density cells like those based on lithium and sodium anodes. At cost of some reduction in energy density, magnesium-based cells safer because less susceptible to catastrophic meltdown followed by flames and venting of toxic fumes. Other advantages include ease of handling, machining, and disposal, and relatively low cost.

  15. Interstellar magnesium abundances

    NASA Technical Reports Server (NTRS)

    Murray, M. J.; Dufton, P. L.; Hibbert, A.; York, D. G.

    1984-01-01

    An improved evaluation of the Mg II 1240 A doublet oscillator strength is used in conjunction with recently published Copernicus observations to derive accurate Mg II column densities toward 74 stars. These imply an average of 40 percent of interstellar magnesium is in the gaseous phase. Magnesium depletion is examined as a function of various interstellar extinction and density parameters, and the results are briefly discussed in terms of current depletion theories.

  16. Magnesium for Future Autos

    SciTech Connect

    Nyberg, Eric A.; Luo, Alan A.; Sadayappan, Kumar; Shi, Wenfang

    2008-10-01

    In the quest for better fuel economy and improved environmental performance, magnesium may well become a metal of choice for constructing lighter, more efficient vehicles. Magnesium is the lightest structural metal, yet it has a high strength-to-weight ratio makes it comparable to steel in many applications. The world’s automakers already use magnesium for individual components. But new alloys and processing methods are needed before the metal can become economically and technologically feasible as a major automotive structural material. This article will explore the formation, challenges and initial results of an international collaboration—the Magnesium Front End Research and Development (MFERD) project—that is leveraging the expertise and resources of Canada, China and the United States to advance the creation of magnesium-intensive vehicles. The MFERD project aims to develop the enabling technologies and knowledge base that will lead to a vehicles that are 50-60 percent lighter, equally affordable, more recyclable and of equal or better quality when compared to today’s vehicles. Databases of information also will be captured in models to enable further alloy and manufacturing process optimization. Finally, a life-cycle analysis of the magnesium used will be conducted.

  17. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  18. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  19. Electrodeposition of magnesium and magnesium/aluminum alloys

    SciTech Connect

    Mayer, A.

    1988-10-18

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/alumnum alloys having varying selected compositions.

  20. Process for converting magnesium fluoride to calcium fluoride

    DOEpatents

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  1. Biodegradable Magnesium Alloys: A Review of Material Development and Applications

    PubMed Central

    Persaud-Sharma, Dharam; McGoron, Anthony

    2012-01-01

    Magnesium based alloys possess a natural ability to biodegrade due to corrosion when placed within aqueous substances, which is promising for cardiovascular and orthopedic medical device applications. These materials can serve as a temporary scaffold when placed in vivo, which is desirable for treatments when temporary supportive structures are required to assist in the wound healing process. The nature of these materials to degrade is attributed to the high oxidative corrosion rates of magnesium. In this review, a summary is presented for magnesium material development, biocorrosion characteristics, as well as a biological translation for these results. PMID:22408600

  2. Effect of Oxygen-affinity Additives on the Superconducting Properties of Magnesium Diboride

    NASA Astrophysics Data System (ADS)

    Jang, J.-J.; Ahn, J.-H.

    We examined the effect of oxygen-affinity additives on the superconducting properties of magnesium diborides. The additives were elemental Y, Sm, Ca, Li compounds (LiH, LiBH4), polyethylene and polyethylene glycol, which have a higher oxygen-affinity than magnesium. The formation of magnesium oxide during in-situ sintering of magnesium diboride was inhibited by the addition of such materials. The critical current density was not improved by the additives of Y, Sm, Ca and lithium compounds in spite of reduced oxide phases. Only the addition of polyethylene and polyethylene glycol resulted in the enhanced superconducting property.

  3. Chemically prepared lead magnesium niobate dielectrics

    SciTech Connect

    Tuttle, B.A.; Voigt, J.A.; Sipola, D.L.; Olson, W.R.; Goy, D.M.

    1998-11-01

    A chemical solution powder synthesis technique has been developed that produces first, uniform powders of lead magnesium niobate (PMN) with 60 to 80 nm crystallite size. The synthesis technique was based on the dissolution of lead acetate and alkoxide precursors in acetic acid followed by precipitation with oxalic acid/propanol solutions. Lead magnesium niobate ceramics fabricated from these chemically derived powders had smaller, more uniform grain size and higher dielectric constants than ceramics fabricated from mixed oxide powders that were processed under similar thermal conditions. Chem-prep PMN dielectrics with peak dielectric constants greater than 22,000 and polarizations in excess of 29 {micro}C/cm{sup 2} were obtained for 1,100 C firing treatments. Substantial decreases in dielectric constant and polarization were measured for chemically prepared PMN ceramics fired at lower temperatures, consistent with previous work on mixed oxide materials.

  4. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  5. Absorption of magnesium from orally administered magnesium sulfate in man.

    PubMed

    Morris, M E; LeRoy, S; Sutton, S C

    1987-01-01

    The use of magnesium sulfate (Epsom salt) as a cathartic in patients with impaired renal function can lead to severe toxicity due to hypermagnesemia. Although toxicity is uncommon in healthy subjects, little is known concerning the extent of absorption of magnesium after a cathartic dose of magnesium sulfate. The bioavailability of magnesium following a large oral dose of magnesium sulfate in normal volunteers was examined in the present investigation. Baseline 24-hour urinary excretion rates of magnesium and creatinine were determined over 3 consecutive days in 6 healthy men. The oral administration of 13.9 g (56.5 mmoles) magnesium sulfate U.S.P., in 4 equal hourly increments, resulted in the urinary excretion (corrected for baseline excretion rate) of 4.0 +/- 2.9% (mean +/- SD) of the dose of magnesium during the first 24 hours and 6.9 +/- 7.0% of the dose during a 72-hour interval. Magnesium sulfate administration had no effect on the 24-hour urinary excretion rate of creatinine. The baseline excretion rate of magnesium was significantly correlated with that of creatinine (r = 0.875) and inorganic sulfate (r = 0.921). All of the subjects experienced mild or moderate diarrhea. Therefore, magnesium is absorbed to a limited and variable extent in healthy adults following a cathartic dose of magnesium sulfate. PMID:3430654

  6. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low magnesium status has been associated with numerous conditions characterized as having a chronic inflammatory stress component. Some animal findings indicate that a moderate magnesium deficiency, similar to which apparently commonly occurs in humans, may enhance inflammatory or oxidative stress i...

  7. Calcium carbonate with magnesium overdose

    MedlinePlus

    The combination of calcium carbonate and magnesium is commonly found in antacids. These medicines provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone takes more than the ...

  8. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  9. Efficient One-Step Electrolytic Recycling of Low-Grade and Post-Consumer Magnesium Scrap

    SciTech Connect

    Adam C. Powell, IV

    2012-07-19

    Metal Oxygen Separation Technologies, Inc. (abbreviated MOxST, pronounced most) and Boston University (BU) have developed a new low-cost process for recycling post-consumer co-mingled and heavily-oxidized magnesium scrap, and discovered a new chemical mechanism for magnesium separations in the process. The new process, designated MagReGenTM, is very effective in laboratory experiments, and on scale-up promises to be the lowest-cost lowest-energy lowest-impact method for separating magnesium metal from aluminum while recovering oxidized magnesium. MagReGenTM uses as little as one-eighth as much energy as today's methods for recycling magnesium metal from comingled scrap. As such, this technology could play a vital role in recycling automotive non-ferrous metals, particularly as motor vehicle magnesium/aluminum ratios increase in order to reduce vehicle weight and increase efficiency.

  10. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  11. Cardioprotective effects of magnesium valproate in type 2 diabetes mellitus.

    PubMed

    Patel, Bhoomika M; Raghunathan, Suchi; Porwal, Urvashi

    2014-04-01

    We have evaluated the effect of magnesium valproate (210 mg/kg/day, p.o.) in type 2 diabetes induced cardiovascular complications induced by streptozotocin (STZ, 90 mg/kg, i.p.) in neonatal wistar rats. Various biochemical, cardiovascular and hemodynamic parameters were measured at the end of 8 weeks of treatment. STZ produced significant hyperglycaemia, hypoinsulinemia and dyslipidemia, which was prevented by magnesium valproate treatment. STZ produced increase in Creatinine Kinase, C-reactive protein and lactate dehydrogenase levels and treatment with magnesium valproate produced reduction in these levels. STZ produced increase in cardiac and LV hypertrophy index, LV/RV ratio, LV collagen deposition and LV cardiomyocyte diameter which were decreased by magnesium valproate treatment. Magnesium valproate also prevented STZ induced hemodynamic alterations and oxidative stress. These results were further supported by histopathological studies in which magnesium valproate showed marked reduction in fibrosis and cardiac fiber disarray. In conclusion, our data suggests that magnesium valproate is beneficial as an anti-diabetic agent in type-2 diabetes mellitus and also prevents its cardiac complications. PMID:24530414

  12. Magnesium Research and Technology Development

    SciTech Connect

    Nyberg, Eric A.; Joost, William; Smith, Mark T.

    2009-12-30

    The Magnesium Research and Technical Development (MR&TD) project supports efforts to increase using magnesium in automotive applications, including improving technology, lowering costs and increasing the knowledge needed to enable alloy and manufacturing process optimization. MR&TD supports the U.S. Department of Energy (DOE)/United States Automotive Materials Partnership (USAMP) Magnesium Front End Research and Development (MFERD) project in collaboration with China and Canada. The MR&TD projects also maintains the magnesium bibliographic database at magnesium.pnl.gov.

  13. Electrical properties of magnesium oxide layers with different surface pretreatment on high mobility Ge1-xSnx and Ge MOS capacitors

    NASA Astrophysics Data System (ADS)

    Su, Chen-Yi; Lieten, Ruben; Bakalov, Petar; Tseng, Wei-Jhih; Dillemans, Leander; Menghini, Mariela; Smets, Tomas; Seo, Jin Won; Locquet, Jean-Pierre

    2014-02-01

    Germanium based channels are interesting for high performance CMOS devices because of their high carrier mobility. In this study, the electrical properties of MgO on both GeSn and Ge MOS capacitors have been investigated. The low equivalent oxide thickness (EOT) of 2.1 nm for MgO on GeSn with a Ge cap layer indicates the high potential for MOSFET applications. A surface treatment prior to oxide deposition is found essential to reduce the gate leakage. It is shown that HCl and H2O2 dipping followed by ozone treatment improves the leakage and leads to good capacitance-voltage (C-V) behavior.

  14. PRECIPITATION CHEMISTRY OF MAGNESIUM SULFITE HYDRATES IN MAGNESIUM OXIDE SCRUBBING

    EPA Science Inventory

    The report gives results of laboratory studies defining the precipitation chemistry of MgSO3 hydrates. The results apply to the design of Mg-based scrubbing processes for SO2 removal from combustion flue gas. In Mg-based scrubbing processes, MgSO3 precipitates as either trihydrat...

  15. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  16. 75 FR 26922 - Magnesium Metal From the Russian Federation: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ..., silicon, rare earth metals/mischmetal, cryolite, silica/fly ash, magnesium oxide, periclase, ferroalloys...: Magnesium Metal From the Russian Federation, 70 FR 19930 (April 15, 2005) (Antidumping Duty Order). On April... Administrative Review, 74 FR 14771 (April 1, 2009). On April 30, 2009, AVISMA, a Russian Federation producer...

  17. Solubilities and raman spectra of NdOCl in some chloride melts of interest for the electrowinning of magnesium from its oxide

    NASA Astrophysics Data System (ADS)

    Mediaas, H.; Tkatcheva, O.; Dracopoulos, V.; Papatheodorou, G. N.; Kipouros, G. J.; Østvold, T.

    2000-08-01

    Some fundamental data related to the solvent proposed for a new technical electrolytic process for magnesium production based on MgO as the raw material are presented. Liquidus data are obtained for MgCl2-rich melts in the MgCl2-NdOCl system. The solubility of MgO and NdOCl in pure liquid NdCl3, MgO in NdCl3-MgCl2 and in MgCl2-NdCl3-NaCl liquid mixtures, and NdOCl in CaCl2 and Cs2MgCl4 have also been studied. The solubility of MgO decreases when MgCl2 is added to the pure NdCl3 and further by additions of NaCl as expected. A so far unidentified compound having the composition Mg x Nd y OCl2 x-3 y-2 where x and y are larger than 1 seems to be formed in very small amounts in these melts. This compound seems to precipitate at temperatures higher than 910 °C in the NdCl3-MgO quasi-binary system containing about 8 mol pct MgO and seems to remain suspended in the melt in small quantities. The first liquid-solid phase transition observed, however, was the NdCl3 (1)=NdCl3 (s) transition <758 °C. X-ray diffraction (XRD) data of filtered samples of this solid show new X-ray lines not detected in MgCl2, NdCl3, NaCl, MgO, and NdOCl. The published phase diagram of the quasi binary system MgCl2-NdOCl is, according to the present work, not correct because the solubility of MgO seems to be much less than previously reported. Raman spectroscopic data of NdCl3-MgCl2-NdOCl melts show the known features of the NdCl3-MgCl2 and NdCl3-NdOCl melts. Raman bands due to dissolved species of the unidentified compound were not detected. In view of the obvious small concentration of this species in the liquid phase, this was reasonable.

  18. Magnesium diboride films on iron substrates

    NASA Astrophysics Data System (ADS)

    Auinger, Michael; Gritzner, Gerhard

    2008-01-01

    The fabrication of superconducting magnesium diboride films on iron substrates with and without buffer layers (Y2O3 stabilized ZrO2 and Al2O3) is reported. Both the boron and the buffer layers were applied via screen-printing. Conversion into the superconducting MgB2 was carried out via vapour transport under Ar/H2 at temperatures around 850 °C in a sealed aluminium oxide crucible together with magnesium as a source material. X-ray diffraction was used to identify the phases formed during the preparation procedure. Smooth films with high critical temperatures of up to 38 K and a narrow transition range of only 1 K were obtained on Y2O3 stabilized ZrO2 or Al2O3 buffered iron substrates.

  19. Mechanisms and regulation of renal magnesium transport.

    PubMed

    Houillier, Pascal

    2014-01-01

    Magnesium's most important role is in the release of chemical energy. Although most magnesium is stored outside of the extracellular fluid compartment, the regulated value is blood magnesium concentration. Cellular magnesium and bone magnesium do not play a major role in the defense of blood magnesium concentration; the major role is played by the kidney, where the renal tubule matches the urinary magnesium excretion and the net entry of magnesium into the extracellular fluid. In the kidney, magnesium is reabsorbed in the proximal tubule, the thick ascending limb of the loop of Henle, and the distal convoluted tubule. Magnesium absorption is mainly paracellular in the proximal tubule and in the thick ascending limb of the loop of Henle, whereas it is transcellular in the distal convoluted tubule. Several hormones and extracellular magnesium itself alter the distal tubular handling of magnesium, but the hormone(s) regulating extracellular magnesium concentration remains unknown. PMID:24512082

  20. ZIRCONIA-BASED MIXED POTENTIAL CARBON MONOXIDE/HYDROCARBON SENSORS WITH LANTHANUM MAGNESIUM OXIDE, AND TERBIUM-DOPED YTTRIUM STABILIZED ZIRCONIA ELECTRODES

    SciTech Connect

    E. L. BROSHA; R. MUKUNDAN; ET AL

    2000-10-01

    We have investigated the performance of dual metal oxide electrode mixed potential sensors in an engine-out, dynamometer environment. Sensors were fabricated by sputtering thin films of LaMnO{sub 3} and Tb-doped YSZ onto YSZ electrolyte. Au gauze held onto the metal oxide thin films with Au ink was used for current collection. The exhaust gas from a 4.8L, V8 engine operated in open loop, steady-state mode around stoichiometry at 1500 RPM and 50 Nm. The sensor showed a stable EMF response (with no hysteresis) to varying concentrations of total exhaust gas HC content. The sensor response was measured at 620 and 670 C and shows temperature behavior characteristic of mixed potential-type sensors. The results of these engine-dynamometer tests are encouraging; however, the limitations associated with Au current collection present the biggest impediment to automotive use.

  1. Nondestructive spot test method for magnesium and magnesium alloys

    NASA Technical Reports Server (NTRS)

    Wilson, M. L. (Inventor)

    1973-01-01

    A method for spot test identification of magnesium and various magnesium alloys commonly used in aerospace applications is described. The spot test identification involves color codes obtained when several drops of 3 M hydrochloric acid are placed on the surface to be tested. After approximately thirty seconds, two drops of this reacted acid is transferred to each of two depressions in a spot plate for additions of other chemicals with subsequent color changes indicating magnesium or its alloy.

  2. Highly Soluble Alkoxide Magnesium Salts for Rechargeable Magnesium Batteries

    SciTech Connect

    Liao, Chen; Guo, Bingkun; Jiang, Deen; Custelcean, Radu; Mahurin, Shannon Mark; Sun, Xiao-Guang; Dai, Sheng

    2014-01-01

    A unique class of air-stable and non-pyrophoric magnesium electrolytes has been developed based on alkoxide magnesium compounds. The crystals obtained from this class of electrolytes exhibit a unique structure of tri-magnesium cluster, [Mg3Cl3(OR)2(THF)6]+ [(THF)MgCl3] . High reversible capacities and good rate capabilities were obtained in Mg-Mo6S8 batteries using these new electrolytes at both 20 and 50 oC.

  3. CELLULAR MAGNESIUM HOMEOSTASIS

    PubMed Central

    Romani, Andrea M.P.

    2011-01-01

    Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg2+ homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg2+ in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg2+ homeostasis and how these mechanisms are altered under specific pathological conditions. PMID:21640700

  4. Constraining magnesium cycling in marine sediments using magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Schrag, D. P.

    2010-09-01

    Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid δ 26Mg values increase with depth by as much as 2‰. Because carbonates preferentially incorporate 24Mg (low δ 26Mg), the increase in pore-fluid δ 26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid δ 26Mg values decrease with depth by up to 2‰. The decline in pore-fluid δ 26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured δ 26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7‰ depleted in δ 26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the

  5. Understanding the effects of disorder in magnesium diboride films and development of novel magnesium diboride based Josephson junctions

    NASA Astrophysics Data System (ADS)

    Gandikota, Raghuram

    Magnesium diboride, with a critical temperature of 39 Kelvin, is an unusual superconductor with two conduction bands (pi and sigma) in which carriers couple with lattice vibrations resulting in two superconducting gaps. The properties of magnesium diboride films and related multi-layers were respectively explored on two fronts: (i) to understand the role that disorder in magnesium diboride plays in making it a practicable material for magnet applications; and, (ii) to design and fabricate magnesium diboride-based Josephson junctions for fast-switching circuits. The role that the two bands play in establishing upper critical field and resistivity is quantitatively shown by modifying disorder in magnesium diboride through controlled introduction of point defects in films with different levels of as-grown disorder, followed by annealing. Point defects were introduced iteratively by irradiation using a helium ion beam, and their effects on critical temperature, resistivity, and upper critical field of magnesium diboride films were studied. Results suggest that resistivity and upper critical field are determined by scattering in pi and sigma bands, respectively, and they can be uncorrelated when the scattering rates in the two bands are altered independently. A common correlation was found between the upper critical field (at zero Kelvin) and critical temperature of magnesium diboride samples made in several forms and disordered by different means. As an alternate means of introducing disorder, oxygen was incorporated in magnesium diboride films and the effects on the normal and superconducting properties were analyzed. Magnesium diboride films required for Josephson junctions were grown in a vacuum chamber using evaporative sources. The potential of native and thermal oxides formed on magnesium diboride, for use as tunnel barriers, was explored. The barrier height and thickness of these oxides were obtained by studying conductance-voltage characteristics of junctions

  6. Enhancements in Magnesium Die Casting Impact Properties

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    % in AM50 to over 9% in AZ91, more of the intermetallic Mg17Al12 is formed in the microstructure. For instance, for 15 increase in the aluminum content from AM50 to AM60, the volume fraction of eutectic present in the microstructure increases by 35%! Eventually, the brittle Mg17Al12 compound forms an interconnected network that reduces ductility and impact resistance. The lower aluminum in AM50 and AM60 are therefore a desirable feature in applications that call for higher impact resistance. Further improvement in impact resistance depends on the processing condition of the casting. Sound castings without porosity and impurities will have better mechanical properties. Since magnesium oxidizes readily, good melting and metal transfer practices are essential. The liquid metal has to be protected from oxidation at all times and entrainment of oxide films in the casting needs to be prevented. In this regard, there is evidence that us of vacuum to evacuate air from the die casting cavity can improve the quality of the castings. Fast cooling rates, leading to smaller grain size are beneficial and promote superior mechanical properties. Micro-segregation and banding are two additional defect types often encountered in magnesium alloys, in particular in AZ91D. While difficult to eliminate, segregation can be minimized by careful thermal management of the dies and the shot sleeve. A major source of segregation is the premature solidification in the shot sleeve. The primary solid dendrites are carried into the casting and form a heterogeneous structure. Furthermore, during the shot, segregation banding can occur. The remedies for this kind of defects include a hotter shot sleeve, use of insulating coatings on the shot sleeve and a short lag time between pouring into the shot sleeve and the shot.

  7. Mineral of the month: magnesium

    USGS Publications Warehouse

    Kramer, Deborah A.

    2005-01-01

    Magnesium, often confused with last month’s mineral of the month manganese, is valued primarily because of its light weight and high strength-to-weight ratio. Magnesium is the eighth most abundant element and constitutes about 2 percent of the Earth’s crust. It is the third most plentiful element dissolved in seawater, with a concentration averaging 0.13 percent. Magnesium is found in over 60 minerals, and also is recovered from seawater, wells, and lake brines and bitterns.

  8. Low brain magnesium in migraine

    SciTech Connect

    Ramadan, N.M.; Halvorson, H.; Vande-Linde, A.; Levine, S.R.; Helpern, J.A.; Welch, K.M.

    1989-10-01

    Brain magnesium was measured in migraine patients and control subjects using in vivo 31-Phosphorus Nuclear Magnetic Resonance Spectroscopy. pMg and pH were calculated from the chemical shifts between Pi, PCr and ATP signals. Magnesium levels were low during a migraine attack without changes in pH. We hypothesize that low brain magnesium is an important factor in the mechanism of the migraine attack.

  9. Production and Refining of Magnesium Metal from Turkey Originating Dolomite

    NASA Astrophysics Data System (ADS)

    Demiray, Yeliz; Yücel, Onuralp

    2012-06-01

    In this study crown magnesium produced from Turkish calcined dolomite by the Pigeon Process was refined and corrosion tests were applied. By using factsage thermodynamic program metalothermic reduction behavior of magnesium oxide and silicate formation structure during this reaction were investigated. After thermodynamic studies were completed, calcination of dolomite and it's metalothermic reduction at temperatures of 1473 K, 1523 K and within a vacuum (varied from 20 to 200 Pa) and refining of crown magnesium was studied. Different flux compositions consisting of MgCl2, KCl, CaCl2, MgO, CaF2, NaCl, and SiO2 with and without B2O3 additions were selected for the refining process. These tests were carried out at 963 K for 15, 30 and 45 minutes setting time. Considerable amount of iron was transferred into the sludge phase and its amount decreased from 0.08% to 0.027%. This refined magnesium was suitable for the production of various magnesium alloys. As a result of decreasing iron content, minimum corrosion rate of refined magnesium was obtained 2.35 g/m2/day. The results are compared with previous studies.

  10. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    SciTech Connect

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  11. Magnesium metabolism: a brief review.

    PubMed Central

    Paymaster, N. J.

    1976-01-01

    The important role played by the magnesium ion in the body is not generally recognized. The action of numerous enzyme systems critical to cellular metabolism is regulated by it and it contributes importantly to macromolecular structure. Magnesium defiency occurs more often than is generally suspected; magnesium excess, though uncommon, is of special interest to the anaesthetist because it produces a curare-like effect on neuromuscular transmission. It is hoped that this brief review of magnesium metabolism will draw attention to its importance and relevance in everyday practice. PMID:942168

  12. Process modeling and analysis of structure and stoichiometry of magnesium oxide nano thin films grown by molecular beam epitaxy on 6 hydrogen-silicon carbide substrates

    NASA Astrophysics Data System (ADS)

    Uddin, Ghulam Moeen

    In recent years there has been an increasing interest in effective integration of nano scale functional oxides with semiconductors for third and fourth generation nano devices including high-K dielectrics based electronic devices and paradigm-shifting spintronics-based circuits. In this research we investigate the growth of MgO nano thin films on 6H-SiC substrate in a molecular beam epitaxy process. Here MgO serves as a template layer to minimize the mismatch with both substrate and a functional oxide films such as BTO and BaM. In this research we constructed neural network based process models using historical experimental data. Based on these process models we performed structural and stoichiometric analyses through both design of experiments and Monte Carlo simulation. We found that the percentage starting oxygen on the substrate is the most critical variable that promotes the undesired bonding states, i.e., Mg-OH and excessive strain in film crystalline structure. In addition the impact of percentage of starting oxygen on structure and stoichiometry is affected by the film thickness. The interaction between substrate temperature and oxygen on the starting substrate surface is the critical pair that affects the dynamics of Mg-OH bonding state. This study helped us analyze the process behavior and gain process knowledge to conduct systematic experimentation. After conducting the systematic experiments we quantitatively studied the causal relationship the undesired bonding states and the percentage starting oxygen at 3 levels of film thickness. Moreover, the cleaning of silicon carbide (6H-SiC) substrate surface is an essential and important step to grow MgO films with minimum undesired bonding states. We investigated high temperature hydrogen etching process to clean the substrate surface. In this research we studied the impact of cleaning time and cleaning temperature by analyzing the reflection high energy electron diffraction (RHEED) structural performance

  13. Magnesium Hall Thruster

    NASA Technical Reports Server (NTRS)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  14. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-09-01

    The present study deals with the preparation of a novel MgO-impregnated magnetic biochar (MMSB) for phosphate recovery from aqueous solution. The MMSB was evaluated against sugarcane harvest residue biochar (SB) and magnetic biochar without Mg (MSB). The results showed that increasing Mg content in MMSB greatly improved the phosphate adsorption compared to SB and MSB, with 20% Mg-impregnated MMSB (20MMSB) recovering more than 99.5% phosphate from aqueous solution. Phosphate adsorption capacity of 20MMSB was 121.25mgP/g at pH 4 and only 37.53% of recovered phosphate was desorbed by 0.01mol/L HCl solutions. XRD and FTIR analysis showed that phosphate sorption mechanisms involved predominately with surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide. The 20MMSB exhibited both maximum phosphate sorption and strong magnetic separation ability. Overall, phosphate-loaded 20MMSB significantly enhanced plant growth and could be used as a potential substitute for phosphate-based fertilizer. PMID:26995322

  15. Effect of magnesium on the aluminothermic reduction rate of zinc oxide obtained from spent alkaline battery anodes for the preparation of Al-Zn-Mg alloys

    NASA Astrophysics Data System (ADS)

    Ochoa, Rocio; Flores, Alfredo; Torres, Jesus

    2016-04-01

    The aluminothermic reduction of zinc oxide (ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450-500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.

  16. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803.

    PubMed

    Hollingshead, Sarah; Kopecná, Jana; Jackson, Philip J; Canniffe, Daniel P; Davison, Paul A; Dickman, Mark J; Sobotka, Roman; Hunter, C Neil

    2012-08-10

    The cyclase step in chlorophyll (Chl) biosynthesis has not been characterized biochemically, although there are some plausible candidates for cyclase subunits. Two of these, Sll1214 and Sll1874 from the cyanobacterium Synechocystis 6803, were FLAG-tagged in vivo and used as bait in separate pulldown experiments. Mass spectrometry identified Ycf54 as an interaction partner in each case, and this interaction was confirmed by a reciprocal pulldown using FLAG-tagged Ycf54 as bait. Inactivation of the ycf54 gene (slr1780) in Synechocystis 6803 resulted in a strain that exhibited significantly reduced Chl levels. A detailed analysis of Chl precursors in the ycf54 mutant revealed accumulation of very high levels of Mg-protoporphyrin IX methyl ester and only traces of protochlorophyllide, the product of the cyclase, were detected. Western blotting demonstrated that levels of the cyclase component Sll1214 and the Chl biosynthesis enzymes Mg-protoporphyrin IX methyltransferase and protochlorophyllide reductase are significantly impaired in the ycf54 mutant. Ycf54 is, therefore, essential for the activity and stability of the oxidative cyclase. We discuss a possible role of Ycf54 as an auxiliary factor essential for the assembly of a cyclase complex or even a large multienzyme catalytic center. PMID:22711541

  17. Development of novel low-temperature selective hydrogen gas sensors made of palladium/oxide or nitride capped Magnesium-transition metal hydride films

    NASA Astrophysics Data System (ADS)

    Tang, Yu Ming

    Palladium capped Mg-based transition metal alloy film (Pd/Mg-TM) is a potentially useful hydrogen gas (H2) sensing material, which can operate at low temperature for detection of H2 leakage in an environment to ensure safe use and storage of the gas. The Pd layer catalytically dissociates hydrogen molecules, and the hydrogen atoms produced can enter (hydridation) or be detached (dehydridation) from the alloy layer. These processes are reversible, such that the film is switchable between a metal state and a hydride state, giving rise to substantial changes in its optical transmittance/reflectance and electrical resistivity. Unlike a conventional metal-oxide (MOx) H2 sensor, hydridation of an Mg-TM film is associated with relatively low enthalpy, and hence can perform at temperature much lower than the operation temperature of an MOx sensor (typically around 500°C or above). As such, an Mg-TM based sensor does not experience undesired annealing effect during operation, and hence is much more stable and durable. Furthermore, the detection selectivity of a Pd/Mg-TM film versus other reducing gases is superior to most conventional MOx-type hydrogen sensors. In this project, we systematically investigated the H2 sensing properties of Pd/Mg-TM films.

  18. Magnesium in Prevention and Therapy

    PubMed Central

    Gröber, Uwe; Schmidt, Joachim; Kisters, Klaus

    2015-01-01

    Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP) metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, and attention deficit hyperactivity disorder (ADHD). PMID:26404370

  19. Magnesium substitution in brushite cements.

    PubMed

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals. PMID:25428098

  20. Leaf Senescence by Magnesium Deficiency

    PubMed Central

    Tanoi, Keitaro; Kobayashi, Natsuko I.

    2015-01-01

    Magnesium ions (Mg2+) are the second most abundant cations in living plant cells, and they are involved in various functions, including photosynthesis, enzyme catalysis, and nucleic acid synthesis. Low availability of Mg2+ in an agricultural field leads to a decrease in yield, which follows the appearance of Mg-deficient symptoms such as chlorosis, necrotic spots on the leaves, and droop. During the last decade, a variety of physiological and molecular responses to Mg2+ deficiency that potentially link to leaf senescence have been recognized, allowing us to reconsider the mechanisms of Mg2+ deficiency. This review focuses on the current knowledge about the physiological responses to Mg2+ deficiency including a decline in transpiration, accumulation of sugars and starch in source leaves, change in redox states, increased oxidative stress, metabolite alterations, and a decline in photosynthetic activity. In addition, we refer to the molecular responses that are thought to be related to leaf senescence. With these current data, we give an overview of leaf senescence induced by Mg deficiency. PMID:27135350

  1. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    SciTech Connect

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-03-15

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO{sub 2} with some Mg(OH){sub 2}. The middle layer that is 50 nm thick comprises predominantly TiO{sub 2} and MgO with minor contributions from MgAl{sub 2}O{sub 4} and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti{sub 3}Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37{+-}1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased {beta}-Mg{sub 12}Al{sub 17} phase.

  2. Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment

    NASA Astrophysics Data System (ADS)

    Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2011-06-01

    In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes.

  3. Ignition Temperature of Magnesium Powder and Pyrotechnic Composition

    NASA Astrophysics Data System (ADS)

    Zhu, Chen-Guang; Wang, Hai-Zhen; Min, Li

    2014-07-01

    Using potassium nitrate, strontium nitrate, and potassium perchlorate as the oxidizing agents, the ignition and combustion behaviors of magnesium powders with different specific surface area were studied. The ignition temperature (Te) was extrapolated using a differential thermal analyzer, and the pyrotechnic spontaneous reaction temperature (Ts) was inferred from the temperature curve by inflection point analysis. The results showed that Ts has much better reproducibility than the extrapolated Te in characterizing the ignition of the pyrotechnic formulations. Increasing the specific surface area of the magnesium powder resulted in decreased Ts of the pyrotechnics.

  4. Synthesis of magnesium diboride by magnesium vapor infiltration process (MVIP)

    DOEpatents

    Serquis, Adriana C.; Zhu, Yuntian T.; Mueller, Frederick M.; Peterson, Dean E.; Liao, Xiao Zhou

    2003-01-01

    A process of preparing superconducting magnesium diboride powder by heating an admixture of solid magnesium and amorphous boron powder or pellet under an inert atmosphere in a Mg:B ratio of greater than about 0.6:1 at temperatures and for time sufficient to form said superconducting magnesium diboride. The process can further include exposure to residual oxygen at high synthesis temperatures followed by slow cooling. In the cooling process oxygen atoms dissolved into MgB.sub.2 segregated to form nanometer-sized coherent Mg(B,O) precipitates in the MgB.sub.2 matrix, which can act as flux pinning centers.

  5. Ultrasound-assisted synthesis of magnesium hydroxide nanoparticles from magnesium.

    PubMed

    Baidukova, Olga; Skorb, Ekaterina V

    2016-07-01

    Acoustic cavitation in water provides special kinetic and thermodynamic conditions for chemical synthesis and nanostructuring of solids. Using cavitation phenomenon, we obtained magnesium hydroxide from pure magnesium. This approach allows magnesium hydroxide to be synthesized without the requirement of any additives and non-aqueous solvents. Variation of sonochemical parameters enabled a total transformation of the metal to nanosized brucite with distinct morphology. Special attention is given to the obtaining of platelet-shaped, nanometric and de-agglomerated powders. The products of the synthesis were characterized by transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and X-ray diffraction (XRD). PMID:26964968

  6. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium hydroxide. 184.1428 Section 184.1428 Food... Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS... a white precipitate by the addition of sodium hydroxide to a water soluble magnesium salt or...

  7. Mineral resource of the month: magnesium

    USGS Publications Warehouse

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  8. Role of Cellular Magnesium in Human Diseases

    PubMed Central

    Long, Samantha; Romani, Andrea MP

    2015-01-01

    Magnesium is required for many of the major organs to function and plays a crucial role in human and mammalian physiology. Magnesium is essential for the structure of bones and teeth, acts as a cofactor for more than 300 enzymes in the body, including binding to ATP for kinase reactions, and affects permeability of excitable membranes and neuromuscular transmission. Despite these essential roles, much is still unknown about magnesium physiology and homeostasis. Currently, nutritionists believe that the general population intakes insufficient magnesium daily through the diet. The effects of magnesium deficiency are, for the most part undetected, and simple, widespread assessments of magnesium intake remain unavailable for humans. Many of the patients admitted to hospitals or medical care facilities are unaware of their low magnesium levels. Moreover, because magnesium is predominantly an intracellular cation (>99%), serum magnesium levels remain a poor predictor of tissue magnesium content and availability. This review will discuss the effects of magnesium deficiency in various pathologies affecting the human population. The underlying causes for magnesium depletion in major physiological systems will be examined along with the involved signaling pathways and the main roles of magnesium homeostasis. Where possible (e.g. alcoholism), the implications of administering supplemental magnesium will be discussed. Ultimately, this review will advocate for the necessity of identifying easy and reproducible methods to assess serum and cellular magnesium levels and to identify magnesium deficiency in order to alleviate related pathological conditions. PMID:25839058

  9. Preparation and characterization of magnesium borate for special glass

    NASA Astrophysics Data System (ADS)

    Dou, Lishuang; Zhong, Jianchu; Wang, Hongzhi

    2010-05-01

    Magnesium borate with a variety of B2O3/MgO molar ratios, which can be applied for special glass, has been prepared through the reaction of light-burned magnesia with boric acid by a hydrothermal method. The effects of the B2O3/MgO molar ratio of raw materials, reaction time, temperature and liquid to solid ratio (ml g-1) on the synthetic product are investigated. The XRD and TG-DTG analyses indicate that the prepared magnesium borate is a mixture of magnesium hexaborate hydrate and ascharite. The results show that high B2O3/MgO molar ratios of raw materials and low reaction liquid-solid ratios favour the product with a high B2O3/MgO molar ratio and vice versa. There exists free MgO in the product when the reaction temperature is below 140 °C or the reaction time is not enough, because of the incomplete reaction of magnesium oxide with boric acid. The process of fractional crystallization for the magnesium borate mixture is also discussed.

  10. Magnesium and hearing.

    PubMed

    Cevette, Michael J; Vormann, Jürgen; Franz, Kay

    2003-01-01

    The last several decades have revealed clinical and experimental data regarding the importance of magnesium (Mg) in hearing. Increased susceptibility to noise damage, ototoxicity, and auditory hyperexcitability are linked to states of Mg deficiency. Evidence for these processes has come slowly and direct effects have remained elusive because plasma Mg levels do not always correlate with its deficiency. Despite the major progress in the understanding of cochlear mechanical and auditory nerve function, the neurochemical and pharmacologic role of Mg is not clear. The putative mechanism suggests that Mg deficiency may contribute to a metabolic cellular cascade of events. Mg deficiency leads to an increased permeability of the calcium channel in the hair cells with a consequent over influx of calcium, an increased release of glutamate via exocytosis, and over stimulation of NMDA receptors on the auditory nerve. This paper provides a current overview of relevant Mg metabolism and deficiency and its influence on hearing. PMID:12940704

  11. Magnesium: Engineering the Surface

    NASA Astrophysics Data System (ADS)

    Chen, X. B.; Yang, H. Y.; Abbott, T. B.; Easton, M. A.; Birbilis, N.

    2012-06-01

    Magnesium (Mg) and its alloys provide numerous benefits as lightweight materials; however, industrial deployment of Mg in most instances requires anticorrosion coatings. Engineering the Mg surface is an area that has been undergoing intense research recently. Surface engineering commences with the "pretreatment" step, which can be used to modify the surface composition and morphology, resulting in surface enrichment or depletion of alloying elements. Following this, electrochemical plating (including electro- and electroless plating) and conversion coatings have emerged as common means of coating Mg. In this study, we present the key aspects relating to the science and technology associated with pretreatment, electrochemical plating, and conversion coatings. This is followed by experimental examples of engineered surfaces of industrial relevance.

  12. Highly mobile oxygen holes in magnesium oxide

    NASA Technical Reports Server (NTRS)

    Freund, Minoru M.; Freund, Friedemann; Batllo, Francois

    1989-01-01

    High-purity MgO exhibits an unexpected giant anomaly of the apparent static dielectric constant and a positive surface charge of the order of 5 x 10 to the 21st/cu cm in the top 15 nm. It is postulated that the MgO matrix contains traces of peroxy defects, O2(2-), associated with Mg(2+) vacancies. Above approximately 400 C the O2(2-) dissociates to vacancy bound O(-) and highly mobile O(-) states, which diffuse to the surface, giving rise to a high surface conductivity.

  13. Magnesium status and digoxin toxicity.

    PubMed Central

    Young, I S; Goh, E M; McKillop, U H; Stanford, C F; Nicholls, D P; Trimble, E R

    1991-01-01

    1. Eighty-one hospital patients receiving digoxin were separated into groups with and without digoxin toxicity using clinical criteria. Serum digoxin, sodium, potassium, calcium, creatinine, magnesium and monocyte magnesium concentrations were compared. 2. Subjects with digoxin toxicity had impaired colour vision (P less than 0.0001, Farnsworth-Munsell 100 hue test) and increased digoxin levels (1.89 (1.56-2.21) vs 1.34 (1.20-1.47) nmol l-1, P less than 0.01) (mean (95% confidence limits], though there was considerable overlap between two groups. 3. Subjects with digoxin toxicity had lower levels of serum magnesium (0.80 (0.76-0.84) vs 0.88 (0.85-0.91) mmol l-1, P less than 0.01) and monocyte magnesium (6.40 (5.65-7.16) vs 8.76 (7.81-9.71) mg g-1 DNA, P less than 0.01), but there were no significant differences in other biochemical parameters. A greater proportion of toxic subjects were receiving concomitant diuretic therapy (20/21 vs 37/60, P less than 0.05). 4. Magnesium deficiency was the most frequently identified significant electrolyte disturbance in relation to digoxin toxicity. In the presence of magnesium deficiency digoxin toxicity developed at relatively low serum digoxin concentrations. PMID:1768564

  14. Combustion Synthesis of Magnesium Aluminate

    NASA Astrophysics Data System (ADS)

    Kale, M. A.; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    In the system MgO-Al2O3, three compounds MgAl2O4, MgAl6O10 (also expressed as- Mg0.4Al2.4O4) and MgAl26O40 are well known. Importance of the first two is well established. Magnesium aluminate (MgAl2O4) spinel is a technologically important material due to its interesting thermal properties. The MgAl2O4 ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl2O4 is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl6O10 has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl2O4 and MgAl6O10 were formed in a single step, while MgAl26O40 was not formed by this procedure. Activation of MgAl6O10 by rare earth ions like Ce3+, Eu3+ and Tb3+ and ns2 ion Pb2+ could be achieved. Excitation bands for MgAl6O10 are at slightly shorter wavelengths compared to those reported for MgAl2O4.

  15. Combustion Synthesis of Magnesium Aluminate

    SciTech Connect

    Kale, M. A.; Joshi, C. P.; Moharil, S. V.

    2011-10-20

    In the system MgO-Al{sub 2}O{sub 3}, three compounds MgAl{sub 2}O{sub 4}, MgAl{sub 6}O{sub 10}(also expressed as-Mg{sub 0.4}Al{sub 2.4}O{sub 4}) and MgAl{sub 26}O{sub 40} are well known. Importance of the first two is well established. Magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel is a technologically important material due to its interesting thermal properties. The MgAl{sub 2}O{sub 4} ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl{sub 2}O{sub 4} is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl{sub 6}O{sub 10} has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl{sub 2}O{sub 4} and MgAl{sub 6}O{sub 10} were formed in a single step, while MgAl{sub 26}O{sub 40} was not formed by this procedure. Activation of MgAl{sub 6}O{sub 10} by rare earth ions like Ce{sup 3+}, Eu{sup 3+} and Tb{sup 3+} and ns{sup 2} ion Pb{sup 2+} could be achieved. Excitation bands for MgAl{sub 6}O{sub 10} are at slightly shorter wavelengths compared to those reported for MgAl{sub 2}O{sub 4}.

  16. Effect of magnesium supplementation on blood rheology in NOS inhibition-induced hypertension model.

    PubMed

    Cengiz, Melike; Ülker, Pinar; Üyüklü, Mehmet; Yaraş, Nazmi; Özen, Nur; Aslan, Mutay; Özyurt, Dilek; Basralı, Filiz

    2016-01-27

    This study investigated the effects of magnesium on blood rheological properties and blood pressure in nitric oxide synthase (NOS) inhibition-induced hypertension model. Hypertension was induced by oral administration of the nonselective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME, 25 mg/kg/day) for 6 weeks and systolic blood pressure was measured by the tail-cuff method. The groups receiving magnesium supplementation were fed with rat chow containing 0.8% magnesium oxide during the experiment. At the end of experiment, blood samples were obtained from abdominal aorta, using ether anesthesia. Plasma and erythrocyte magnesium levels were determined by the atomic absorption spectrometer. RBC deformability and aggregation were determined by rotational ektacytometry. Plasma fibrinogen concentration was evaluated by ELISA. Whole blood and plasma viscosities were determined by viscometer and intracellular free Ca++ level was measured by using spectroflurometric method. Blood pressure was elevated in hypertensive groups and suppressed by magnesium therapy. Plasma viscosity and RBC aggregation were found to be higher in hypertensive rats than control animals and these parameters significantly decreased in magnesium supplemented hypertensive animals. Other measurements were not different between experimental groups. These results confirm that blood pressure, plasma viscosity and RBC aggregation increased in NOS inhibition-induced hypertension model and oral magnesium supplementation improved these parameters. PMID:26890104

  17. Magnesium and fetal growth

    SciTech Connect

    Weaver, K.

    1988-01-01

    Fetal growth retardation and premature labor are major problems in perinatal medicine today and account for a great deal of the observed fetal morbidity. While the neonatal death rate has steadily declined over the past decade, there has been a lack of concommitant decrease in these two leading problems. Magnesium (Mg/sup ++/) plays a major role in both of these areas of concern. The fact that it is used as a treatment for premature labor has led investigators to look at low Mg/sup ++/ as a possible cause of this poorly understood phenomenon. The second major cause of small for gestational age infants is intrauterine growth retardation, a condition which may be of either fetal or maternal origin. In either case, Mg/sup ++/ may be implicated since it exerts a strong influence on the underlying pathophysiology of placental failure and maternal hypertension. Both of these conditions are mediated by vascular and platelet hyperactivity as well as by and increase in the ration of thromboxane to prostacyclin. Studies in both the human and animal species are beginning to show how Mg/sup ++/ interacts in these conditions to produce such a damaging fetal outcome. The recent use of Doppler velocimetry of the developing fetus has shown reduced fetal vascular and maternal uterine vascular compliance as early as 14 weeks of gestation in those who would be so affected.

  18. Thermochemistry of dense hydrous magnesium silicates

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  19. Magnesium diboride films on metallic and ceramic substrates

    NASA Astrophysics Data System (ADS)

    Auinger, M.; Gritzner, G.

    2008-02-01

    A boron suspension in terpineol was applied to iron, titanium as well as to polycrystalline aluminium oxide, titanium dioxide and yttria doped zirconium dioxide substrates by screen printing. The samples were dried at 125 °C. The specimens were placed into a covered aluminium oxide crucible together with metallic magnesium. Conversion to magnesium diboride was carried out in an argon - hydrogen (6.5 vol-%) atmosphere under ambient pressure. Sintering temperature depended on the substrate chosen and varied between 750 °C and 950 °C. Dense and uniform MgB2-layers were obtained, showing transition temperatures of up to 38 K. Characterisation of the films was performed by X-ray diffraction, by scanning electron microscopy as well as by temperature - resistance measurements. Furthermore, technological applications of this technique will be discussed.

  20. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  1. Magnesium/Calcium Competition at Excitable Membranes.

    ERIC Educational Resources Information Center

    Belzer, Bill; Fry, Panni

    1998-01-01

    Considers some consequences of altering intracellular calcium supply by magnesium concentration changes. Focuses on using this procedure as an exercise with allied health students as they witness therapeutic uses of magnesium and other calcium entry inhibitors. (DDR)

  2. Lightweight magnesium-lithium alloys show promise

    NASA Technical Reports Server (NTRS)

    Adams, W. T.; Cataldo, C. E.

    1964-01-01

    Evaluation tests show that magnesium-lithium alloys are lighter and more ductile than other magnesium alloys. They are being used for packaging, housings, containers, where light weight is more important than strength.

  3. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium carbonate. 184.1425 Section 184.1425 Food... Specific Substances Affirmed as GRAS § 184.1425 Magnesium carbonate. (a) Magnesium carbonate (molecular formula approximately (MgCO3)4·Mg(OH)2·5H2O, CAS Reg. No. 39409-82-0) is also known as magnesium...

  4. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium stearate. 184.1440 Section 184.1440 Food... Specific Substances Affirmed as GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate...

  5. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate by the addition of...

  6. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... Specific Substances Affirmed as GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate...

  7. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium carbonate. 184.1425 Section 184.1425... GRAS § 184.1425 Magnesium carbonate. (a) Magnesium carbonate (molecular formula approximately (MgCO3)4·Mg(OH)2·5H2O, CAS Reg. No. 39409-82-0) is also known as magnesium carbonate hydroxide. It is a...

  8. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... Specific Substances Affirmed as GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate...

  9. 21 CFR 184.1440 - Magnesium stearate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium stearate. 184.1440 Section 184.1440 Food... Specific Substances Affirmed as GRAS § 184.1440 Magnesium stearate. (a) Magnesium stearate (Mg(C17H34COO)2, CAS Reg. No. 557-04-0) is the magnesium salt of stearic acid. It is produced as a white precipitate...

  10. Synthesis, characterization, and hydrogen uptake studies of magnesium nanoparticles by solution reduction method

    SciTech Connect

    Rather, Sami ullah

    2014-12-15

    Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough, all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO.

  11. Dislocation Creep in Magnesium Calcite

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, X.; Evans, B. J.

    2003-12-01

    To investigate the effect of dissolved Mg on plastic deformation of calcite, we performed triaxial deformation experiments on synthetic calcite with varying amount of Mg content. Mixtures of powders of calcite and dolomite were isostatically hot pressed (HIP) at 850° C and 300 MPa confining pressure for different intervals (2 to 20hrs) resulting in homogeneous aggregates of high-magnesium calcite; Mg content varied from 0.07 to 0.17 mol%. Creep tests were performed at differential stresses from 20 to 160 MPa at 700 to 800° C. Grain sizes before and after deformation were determined from the images obtained from scanning electron microscope (SEM) and optical microscope. Grain sizes are in the range of 5 to 20 microns depending on the HIP time, and decrease with increasing magnesium content. Both BSE images and chemical analysis suggest that all dolomite are dissolved and the Mg distribution is homogeneous through the sample, after 2 hrs HIP. At stresses below 40 MPa, the samples deformed in diffusion region (Coble creep), as described previously by Herwegh. The strength decreases with increasing magnesium content, owing to the difference of grain size. At stresses above 80 MPa, the stress exponent is greater than 3, indicating an increased contribution of dislocation creep. The transition between diffusion to dislocation creep occurs at higher stresses for the samples with higher magnesium content and smaller grain size. Preliminary data suggests a slight increase in strength with increasing magnesium content, but more tests are needed to verify this effect. In a few samples, some strain weakening may have been evident. The activation energy in the transition region (at 80 MPa) is ˜200 KJ/mol with no dependence on magnesium content, agreeing with previous measurements of diffusion creep in natural and synthetic marbles.

  12. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  13. Investigation of a novel passivation technique for gas atomized magnesium powders

    NASA Astrophysics Data System (ADS)

    Steinmetz, Andrew Douglas

    Gas atomized magnesium powders are critical for the production of a wide variety of flares, tracer projectiles, and other munitions for the United States military, along with a growing number of applications in both alloying and powder metallurgy. Gas atomization of magnesium is performed by numerous companies worldwide, but represents a single point failure within the United States as there is only one domestic producer. These powders are pyrophoric and must be handled carefully and kept dry at all times. Recent studies have explored the ability of certain fluorine containing cover gases to protect molten magnesium in casting operations from excessive vaporization and burning by modifying the native oxide (MgO) through interaction with these gas atmospheres. The present study sought to adapt this melt protection strategy for use as an in-situ passivation technique that could be employed to form a protective reaction film during gas atomization of magnesium powders. This fluorinated oxide shell was intended to provide superior coverage and adherence to the underlying metal, which may improve the ability of powders to resist ignition at elevated temperatures and during powder handling. Two candidate gases were tested in this research, SF6 and NF3, and reaction films of both were produced on miniature melt samples in a controlled environment and characterized using auger electron spectroscopy and x-ray photoelectron spectroscopy. Ultimately, SF6 was chosen to conduct a small scale magnesium atomization experiment for verification of the fluorination reaction and to experimentally test the ignition temperature of these coated particles compared to other magnesium powders available today. This novel passivation technique was found to be far superior to magnesium's native oxide at resisting ignition and, thus, to reduce the hazard associated with handling and transport of magnesium powders for defense applications. If fully commercialized, this passivation method also

  14. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use....

  15. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  16. 21 CFR 201.71 - Magnesium labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Magnesium labeling. 201.71 Section 201.71 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.71 Magnesium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the magnesium...

  17. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use....

  18. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  19. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  20. 76 FR 69284 - Pure Magnesium From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... COMMISSION Pure Magnesium From China Determination On the basis of the record \\1\\ developed in the subject... order on pure magnesium from China would be likely to lead to continuation or recurrence of material... USITC Publication 4274 (October 2011), entitled Pure Magnesium from China: Investigation No....

  1. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  2. Synthesis of superconducting magnesium diboride objects

    DOEpatents

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-08-15

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  3. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  4. Synthesis Of Superconducting Magnesium Diboride Objects.

    DOEpatents

    Finnemore, Douglas K.; Canfield, Paul C.; Bud'ko, Sergey L.; Ostenson, Jerome E.; Petrovic, Cedomir; Cunningham, Charles E.; Lapertot, Gerard

    2003-07-08

    A process to produce magnesium diboride objects from boron objects with a similar form is presented. Boron objects are reacted with magnesium vapor at a predetermined time and temperature to form magnesium diboride objects having a morphology similar to the boron object's original morphology.

  5. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  6. Magnesium, Inflammation, and Obesity in Chronic Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 60% of U.S. adults do not consume the Estimated Average Intake for magnesium, but widespread pathological conditions attributed to magnesium deficiency have not been reported. However, low magnesium status has been associated with numerous pathological conditions characterized as having a chr...

  7. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  8. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use....

  9. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  10. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  11. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  12. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  13. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use....

  14. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  15. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  16. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  17. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  18. 21 CFR 582.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use....

  19. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  20. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  1. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  2. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium carbonate. 582.1425 Section 582.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  3. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  4. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use....

  5. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  6. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  7. 21 CFR 582.5434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  8. Magnesium Diboride Current Leads

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.

  9. [Magnesium deficiency and stress: Issues of their relationship, diagnostic tests, and approaches to therapy].

    PubMed

    Tarasov, E A; Blinov, D V; Zimovina, U V; Sandakova, E A

    2015-01-01

    Magnesium plays an important role in the functions of the central nervous system. It takes part in the regulation of the cell membrane, the transmembrane transport of calcium and sodium ions, and metabolic reactions that produce, accumulate, transfer, and utilize energy, free radicals, and their oxidation products. The magnesium-containing substances include many sequestered antigens, such as glial fibrillary acidic protein, S100, and neuron-specific enolase; magnesium may act as a neuroprotector that is able to modulate the regulation of blood-brain barrier permeability. Investigations have demonstrated a relationship between the manifestations of stress reactions (anxiety, autonomic dysfunction, and maladjustment) and magnesium deficiency (MD). Thus, mental and physical stresses cause an increase in magnesium elimination from the body. MD in turn enhances a response to stress, by paradoxically aggravating its sequels. Compensation for MD increases the ability of the nervous system to resist stress. The valid diagnosis of MD present difficulties; namely, a blood magnesium concentration decrease below 0.8 mmol/l is evidence of MD; but the constant blood level of magnesium may be long maintained due to its release from the bone tissue depot. So it is necessary to keep in mind the clinical manifestations of MD. The authors have developed and tested a simple rapid MD assessment test and a stress resistance self-rating test. The proposed tests will help to screen stress resistance and MD in outpatient settings. PMID:26591563

  10. [The significance of magnesium in orthopedics. V. Magnesium in osteoporosis].

    PubMed

    Ditmar, R; Steidl, L

    1989-04-01

    The authors submit an investigation of 60 patients with senile, post-menopausal and drug-induced osteoporosis. Using the method of absorption spectrophotometry, they found a reduced level of Mg in red blood cells in 63.6% of senile, 66.7% postmenopausal and only in 22.2% drug-induced osteoporoses. Also the mean level of red cell magnesium was significantly lower in the group of senile (1.94 mmol) and postmenopausal (1.85 mmol) osteoporosis as compared with drug-induced osteoporosis (2.25 mmol). The authors revealed moreover that the level of red cell magnesium in the former two groups declines in proportion to the severity of osteoporosis and correlates thus with the clinical and X-ray finding. For treatment of osteoporisis the authors used magnesium lactate alone (in 37 patients) and combined with sodium fluoride (in 23 patients). In the majority of patients they had very favourable results. Based on laboratory and therapeutic results, consistent with data in the experimental literature, the authors assume that magnesium as a catalyst of bone metabolism and as one of the most important factors controlling the formation of bone matrix and its mineralization plays a significant role in the aetiopathogenesis of senile and postmenopausal osteoporosis. The authors assume that Mg deficiency which is increasing in recent years in soil as well as in foodstuffs and water may be the main cause of the increasing number of patients with osteoporosis in civilized countries. Magnesium should have its firm place not only in therapy but also in prevention of the majority of osteoporosis. PMID:2750424

  11. Formation and Evaluation of Protective Layer over Magnesium Melt Under CO2/Air Mixtures

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong

    2015-02-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air that contains various concentrations of CO2 was investigated, including the kinetics of the oxide layer growth. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgO-C layer was formed under the test conditions. The thicknesses of this layer formed under CO2/air ranged from 500 nm to 12 μm. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using SEM and EDS.

  12. Fatigue Properties of Cast Magnesium Wheels

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-05-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  13. Fatigue Properties of Cast Magnesium Wheels

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-08-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  14. Major Minerals - Calcium, Magnesium, Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...

  15. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    SciTech Connect

    Hoerst, S. M.; Brown, M. E.

    2013-02-20

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  16. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhu, Yanying; Wu, Guangming; Zhao, Qing; Zhang, Yun-Hong; Xing, Guangjian; Li, Donglin

    2009-09-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37°C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  17. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  18. Switchable mirrors based on nickel-magnesium films

    SciTech Connect

    Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

    2001-01-16

    A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

  19. Switchable mirrors based on nickel-magnesium films

    NASA Astrophysics Data System (ADS)

    Richardson, T. J.; Slack, J. L.; Armitage, R. D.; Kostecki, R.; Farangis, B.; Rubin, M. D.

    2001-05-01

    An electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin, magnesium-rich Ni-Mg films prepared on glass substrates by co-sputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on cathodic polarization in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction, and to protect the metal surface against oxidation.

  20. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite

    SciTech Connect

    Ghatak, S.; Sinha, M.; Meikap, A.K.; Pradhan, S.K.

    2010-08-15

    This paper presents the direct current conductivity, alternate current conductivity and dielectric properties of nonstoichiometric magnesium-zinc ferrite below room temperature. The frequency exponent (s) of conductivity shows an anomalous temperature dependency. The magnitude of the temperature exponent (n) of dielectric permittivity strongly depends on frequency and its value decreases with increasing frequency. The grain boundary contribution is dominating over the grain contribution in conduction process and the temperature dependence of resistance due to grain and grain boundary contribution exhibits two activation regions. The ferrite shows positive alternating current magnetoconductivity. The solid state processing technique was used for the preparation of nanocrystalline ferrite powder from oxides of magnesium, zinc and iron. The X-ray diffraction methods were used in determining the structure and composition of obtained ferrite, while multimeter, impedance analyzer, liquid nitrogen cryostat and electromagnet were used in the study of conducting and dielectric properties of ferrite.

  1. Substrate and method for the formation of continuous magnesium diboride and doped magnesium diboride wire

    DOEpatents

    Suplinskas, Raymond J.; Finnemore, Douglas; Bud'ko, Serquei; Canfield, Paul

    2007-11-13

    A chemically doped boron coating is applied by chemical vapor deposition to a silicon carbide fiber and the coated fiber then is exposed to magnesium vapor to convert the doped boron to doped magnesium diboride and a resultant superconductor.

  2. Method for removing magnesium from aluminum-magnesium alloys with engineered scavenger compound

    SciTech Connect

    Riley, W.D.; Jong, B.W.

    1994-12-31

    The invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using an engineered scanvenger compound. In particular, the invention relates to a method for removal and production of high purity magnesium from aluminum-magnesium alloys using the engineered scanvenger compound (ESC) lithium titanate (Li2O3TiO2). The removal of magnesium from the aluminum-magnesium alloys is performed at about 600-750 C in a molten salt bath of KCl or KCl-MgCl2 using lithium titanate (Li2O3TiO2) as the engineered scavenger compound (ESC). Electrode deposition of magnesium from the loaded ESC onto a stainless steel electrode is accomplished in a second step, and provides a clean magnesium electrode deposit for recycling. The second step also prepares the ESC for reuse.

  3. Lightweight Heat Pipes Made from Magnesium

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  4. Coating Prospects in Corrosion Prevention of Aluminized Steel and Its Coupling with Magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Fuyan

    In this study, a plasma electrolytic oxidation (PEO) process was used to form oxide coating on aluminized steel, heated aluminized steel and magnesium. A potentiodynamic polarization corrosion test was employed to investigate the general corrosion properties. Galvanic corrosion of steel samples and magnesium samples was studied by zero resistance ammeter (ZRA) tests and boiling tests. Scanning electron microscopy (SEM) and EDS were used to investigate the coating microstructure and the coating/substrate interface. In general, the PEO coatings on all three substrate can help prevent general corrosion. 6-min coated magnesium with unipolar current mode performs best in most galvanic couplings for preventing both general corrosion and galvanic corrosion. Factors which could influence galvanic corrosion behaviors of tested samples were discussed based on area ratios of anode/cathode and cell potential driving force during the ZRA corrosion tests and boiling tests.

  5. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium carbonate. 184.1425 Section 184.1425... Listing of Specific Substances Affirmed as GRAS § 184.1425 Magnesium carbonate. (a) Magnesium carbonate (molecular formula approximately (MgCO3)4·Mg(OH)2·5H2O, CAS Reg. No. 39409-82-0) is also known as...

  6. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium carbonate. 184.1425 Section 184.1425... Listing of Specific Substances Affirmed as GRAS § 184.1425 Magnesium carbonate. (a) Magnesium carbonate (molecular formula approximately (MgCO3)4·Mg(OH)2·5H2O, CAS Reg. No. 39409-82-0) is also known as...

  7. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels...

  8. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels...

  9. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels...

  10. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels...

  11. 21 CFR 862.1495 - Magnesium test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels...

  12. In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants.

    PubMed

    Wong, Hoi Man; Zhao, Ying; Tam, Vivian; Wu, Shuilin; Chu, Paul K; Zheng, Yufeng; To, Michael Kai Tsun; Leung, Frankie K L; Luk, Keith D K; Cheung, Kenneth M C; Yeung, Kelvin W K

    2013-12-01

    A newly developed magnesium implant is used to stimulate bone formation in vivo. The magnesium implant after undergoing dual aluminum and oxygen plasma implantation is able to suppress rapid corrosion, leaching of magnesium ions, as well as hydrogen gas release from the biodegradable alloy in simulated body fluid (SBF). No released aluminum is detected from the SBF extract and enhanced corrosion resistance properties are confirmed by electrochemical tests. In vitro studies reveal enhanced growth of GFP mouse osteoblasts on the aluminum oxide coated sample, but not on the untreated sample. In addition to that a small amount (50 ppm) of magnesium ions can enhance osteogenic differentiation as reported previously, our present data show a low concentration of hydrogen can give rise to the same effect. To compare the bone volume change between the plasma-treated magnesium implant and untreated control, micro-computed tomography is performed and the plasma-treated implant is found to induce significant new bone formation adjacent to the implant from day 1 until the end of the animal study. On the contrary, bone loss is observed during the first week post-operation from the untreated magnesium sample. Owing to the protection offered by the Al2O3 layer, the plasma-treated implant degrades more slowly and the small amount of released magnesium ions stimulate new bone formation locally as revealed by histological analyses. Scanning electron microscopy discloses that the Al2O3 layer at the bone-implant interface is still present two months after implantation. In addition, no inflammation or tissue necrosis is observed from both treated and untreated implants. These promising results suggest that the plasma-treated magnesium implant can stimulate bone formation in vivo in a minimal invasive way and without causing post-operative complications. PMID:24060425

  13. Removal of organic magnesium in coccolithophore calcite

    NASA Astrophysics Data System (ADS)

    Blanco-Ameijeiras, S.; Lebrato, M.; Stoll, H. M.; Iglesias-Rodriguez, M. D.; Méndez-Vicente, A.; Sett, S.; Müller, M. N.; Oschlies, A.; Schulz, K. G.

    2012-07-01

    Coccolithophore calcite refers to the plates of calcium carbonate (CaCO3) produced by the calcifying phytoplankton, coccolithophores. The empirical study of the elemental composition has a great potential in the development of paleoproxies. However, the difficulties to separate coccolithophore carbonates from organic phases hamper the investigation of coccoliths magnesium to calcium ratios (Mg/Ca) in biogeochemical studies. Magnesium (Mg) is found in organic molecules in the cells at concentrations up to 400 times higher than in inorganically precipitated calcite in present-day seawater. The aim of this study was to optimize a reliable procedure for organic Mg removal from coccolithophore samples to ensure reproducibility in measurements of inorganic Mg in calcite. Two baseline methods comprising organic matter oxidations with (1) bleach and (2) hydrogen peroxide (H2O2) were tested on synthetic pellets, prepared by mixing reagent grade CaCO3 with organic matter from the non-calcifying marine algae Chlorella autotrophica and measured with an ICP-AES (inductively coupled plasma-atomic emission spectrometer). Our results show that treatments with a reductive solution [using hydroxylamine-hydrochloride (NH2OH·HCl + NH4OH)] followed by three consecutive oxidations (using H2O2) yielded the best cleaning efficiencies, removing >99% of organic Mg in 24 h. P/Ca and Fe/Ca were used as indicators for organic contamination in the treated material. The optimized protocol was tested in dried coccolithophore pellets from batch cultures of Emiliania huxleyi, Calcidiscus leptoporus and Gephyrocapsa oceanica. Mg/Ca of treated coccolithophores were 0.151 ± 0.018, 0.220 ± 0.040, and 0.064 ± 0.023 mmol/mol, respectively. Comparison with Mg/Ca literature coccolith values, suggests a tight dependence on modern seawater Mg/Ca, which changes as a consequence of different seawater origins (<10%). The reliable determination of Mg/Ca and Sr/Ca, and the low levels of organic contamination

  14. Dusting control of magnesium slag produced by Pidgeon process

    NASA Astrophysics Data System (ADS)

    Wu, Laner; Yang, Qixing; Han, Fenglan; Du, Chun

    2013-06-01

    Magnesium production by Pidgeon process has been developed very fast in China since 1990's. The waste slag from magnesium production has attracted broad attention because the huge amounts of the slag. For each ton of magnesium produced, there will be 6-8 tons of the slag generated. A big part of the Mg slag exists as fine dust with particle size of D95 < 0.1mm, which may pollute air, soil and water surrounding the Mg industry. The fine particles are generated by phase transformations of dicalcium silicate C2S (2CaOṡSiO2) during the slag cooling. There is a volume expansion of more than 10% with the transformation of β-C2S to γ-C2S phase, causing a disintegration or dusting of the Mg slag. In the present study, several chemical stabilizers were used to treat the dusting Mg slag at 1200°C, including borates, phosphates and rare earth oxides, in order to obtain volume stable slag aggregates for environmental protection and recycling of the Mg slag. The volume expanding rates of the samples were measured. XRD and SEM studies were carried out to confirm effects of the stabilizers. The results show that all of the stabilizers were effective for the stabilization of Mg slag. Some differences between the stabilizers were also described and discussed.

  15. The TMS Magnesium Committee: Committed to the Advancement of Global Magnesium Technology

    SciTech Connect

    Sillekens, Wim H.; Nyberg, Eric A.

    2011-04-21

    The TMS Magnesium Committee was established in the year 2000 as a spin-off of the Reactive Metals Committee, triggered by the strong global growth of magnesium being used in a variety of structural lightweight applications since the mid-1990’s. Since then the committee has seen a distinct development in terms of size, participation and focus. The article at hand outlines this development by recapitulating the output of its two main activities: the annual Magnesium Technology Symposia and the JOM Special Issues dedicated to magnesium research and development. Further records on the Magnesium Committee are available from the committee homepage (accessible through http://members.tms.org).

  16. Study of Some Dielectric Properties of Suspensions of Magnesium Particles in Mineral Oil

    NASA Technical Reports Server (NTRS)

    Altshuller, Aubrey P

    1954-01-01

    The variation of dielectric constant has been measured as a function of the concentration of magnesium particles; the shape, size, and degree of oxidation of the particles; the temperature; and the frequency of oscillation. The variation of dielectric constant and settling rate was investigated as a function of time. Also investigated were the effects of particle concentration, shape and time on dielectric losses.

  17. Marginal Zinc Deficiency Increases Magnesium Retention and Impairs Calcium Utilization in Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment with rats was conducted to determine whether magnesium retention is increased and calcium utilization is altered by, and whether increased oxidative stress induced by a marginal copper deficiency exacerbated responses to, a marginal zinc deficiency. Weanling rats were assigned to six g...

  18. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ALDH2 catalyzes oxidation of toxic aldehydes to their corresponding carboxylic acids. Magnesium ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements have monitored the blue shift of the NADH fluorescence spectrum to elucidate the extent of...

  19. Improvement of bioactivity, degradability, and cytocompatibility of biocement by addition of mesoporous magnesium silicate into sodium-magnesium phosphate cement.

    PubMed

    Wu, Yingyang; Tang, Xiaofeng; Chen, Jie; Tang, Tingting; Guo, Han; Tang, Songchao; Zhao, Liming; Ma, Xuhui; Hong, Hua; Wei, Jie

    2015-09-01

    A novel mesoporous magnesium-based cement (MBC) was fabricated by using the mixed powders of magnesium oxide, sodium dihydrogen phosphate, and mesoporous magnesium silicate (m-MS). The results indicate that the setting time and water absorption of the MBC increased as a function of increasing m-MS content, while compressive strength decreased. In addition, the degradability of the MBC in a solution of Tris-HCl and the ability of apatite formation on the MBC were significantly improved with the increase in m-MS content. In cell culture experiments, the results show that the attachment, proliferation, and alkaline phosphatase activity of the MC3T3-E1 cells on the MBC were significantly enhanced with the increase of the content of m-MS. It can be suggested that the MBC with good cytocompatibility could promote the proliferation and differentiation of the MC3T3-E1 cells. In short, our findings indicate that the MBC containing m-MS had promising potential as a new biocement for bone regeneration and repair applications. PMID:26395363

  20. Photoelastic properties of magnesium fluoride

    SciTech Connect

    Chung, S.; Carleton, H.R.

    1980-05-01

    Magnesium fluoride (MgF/sub 2/) has the rutile crystal structure with a tetragonal space lattice (P4/mnm). The crystal is uniaxial positive with n/sub omega/ = 1.378 and n/sub epsilon/ = 1.390 for sodium D light. A single crystal of MgF/sub 2/ grown by the Materials Research Corporation was used in this study. The crystal was approximately 1 cm/sup 3/ with polished faces in the (001), (110), and (anti 110) crystal planes as verified by the back-reflection Laue method. Sample preparations and measurements are described.

  1. Exoelectron emission from magnesium surfaces

    NASA Astrophysics Data System (ADS)

    Klar, F.; Bansmann, J.; Glaefeke, H.; Fitting, H.-J.; Meiwes-Broer, K.-H.

    1999-12-01

    Clean magnesium surfaces were created by evaporating Mg onto silicon wafers. When exposing the Mg surface to a low oxygen partial pressure, an exoelectron emission (EEE) is observed after a time delay of the order of several hours after evaporation. On a much shorter time scale, similar effects in exoemission from Mg and alkali metals have been observed previously. The results are discussed within a 'potential emission' model of exoelectrons during oxygen capture at the pure Mg surface, but extending the model by including an escape mechanism. A macroscopic quantitative description of the model is given, which is in good agreement with our measurements.

  2. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a)...

  3. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a)...

  4. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide....

  5. Nanostructured magnesium increases bone cell density

    NASA Astrophysics Data System (ADS)

    Weng, Lucy; Webster, Thomas J.

    2012-12-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH- which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  6. Surface Analytical Methods Applied to Magnesium Corrosion.

    PubMed

    Dauphin-Ducharme, Philippe; Mauzeroll, Janine

    2015-08-01

    Understanding magnesium alloy corrosion is of primary concern, and scanning probe techniques are becoming key analytical characterization methods for that purpose. This Feature presents recent trends in this field as the progressive substitution of steel and aluminum car components by magnesium alloys to reduce the overall weight of vehicles is an irreversible trend. PMID:25826577

  7. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product....

  8. Kinetics of the development of a nonchromate conversion coating for magnesium alloys and magnesium-based metal matrix composites

    SciTech Connect

    Gonzalez-Nunez, M.A.; Skeldon, P.; Thompson, G.E.; Karimzadeh, H.

    1999-12-01

    Kinetics of the development of a conversion coating from a stannate bath on commercial purity magnesium (Mg{sup comm}), magnesium-based alloys ZC71 and WE43, and a metal matrix composite (MMC), comprising a ZC71 alloy matrix and 12 vol% silicon carbide (SiC) particles were studied using linear polarization resistance, potential-time, potentiodynamic polarization, x-ray diffraction, Rutherford backscattering spectroscopy, and microscopic examination. The coating, typically {approximately}3 {micro}m to 5 {micro}m thick, was composed largely of crystalline magnesium tin oxide (MgSnO{sub 3} {center{underscore}dot} 3H{sub 2}O), and developed by a nucleation and growth process through an initial corrosion film on the substrate. Nucleation probably occurred on regions where a critical concentration of magnesium ions was reached for coating crystals to form. Specific sites of nucleation, such as particles of eutectic phase and of reinforcement, were revealed in some cases, but frequently the precise sites of nucleation were not disclosed. A longer treatment time (at least 35 min) was suggested by polarization resistance data for improved coverage of the substrate than the previously recommended time of 20 min. The coating continuity on the substrates, after a particular time of treatment, depends upon ally composition increasing in order: Mg{sup comm}, 12% (SiC)p/ZC71 alloy MMC, ZC71 alloy, and WE43 alloy. Polarization resistance (R{sub p}) changed systematically with coating development, showing a decrease in R{sub p} in the early stages of the coating process, related to the initial corrosion.

  9. The Phase Stabilities of Magnesium Hydroxychlorides

    NASA Astrophysics Data System (ADS)

    de Bakker, Jan; LaMarre, Joshua; Peacey, John; Davis, Boyd

    2012-08-01

    This work presents experimental determinations of oxide phase stabilities in the MgCl2-MgO-H2O system. Magnesium hydroxychlorides are compounds with the overall stoichiometry xMgO· yMgCl2· zH2O, which form from the reaction of MgO with MgCl2 brines. They have historically been of importance as the components of Sorel cements; they also have a central role in proposed flowsheets for chloride leaching of laterite nickel ores (among others) and treatment of waste liquors from carnallite processing. A phase diagram of the MgCl2-MgO-H2O system is presented, incorporating both this investigation's results and the values from the literature. Thermochemical values of the 2-form and 3-form hydroxychlorides are estimated from the phase diagram. In addition, a scanning electron microscopy (SEM) micrograph of the hydroxychloride precipitate is presented. The highlights of this article are as follows: Precipitates of stoichiometry xMgO· yMgCl2· zH2O were obtained by adding MgO to MgCl2 solutions.

  10. Wood ash as a magnesium source for phosphorus recovery from source-separated urine.

    PubMed

    Sakthivel, S Ramesh; Tilley, Elizabeth; Udert, Kai M

    2012-03-01

    Struvite precipitation is a simple technology for phosphorus recovery from source-separated urine. However, production costs can be high if expensive magnesium salts are used as precipitants. Therefore, waste products can be interesting alternatives to industrially-produced magnesium salts. We investigated the technical and financial feasibility of wood ash as a magnesium source in India. In batch experiments with source-separated urine, we could precipitate 99% of the phosphate with a magnesium dosage of 2.7 mol Mg mol P(-1). The availability of the magnesium from the wood ash used in our experiment was only about 50% but this could be increased by burning the wood at temperatures well above 600 °C. Depending on the wood ash used, the precipitate can contain high concentrations of heavy metals. This could be problematic if the precipitate were used as fertilizer depending on the applicable fertilizer regulations. The financial study revealed that wood ash is considerably cheaper than industrially-produced magnesium sources and even cheaper than bittern. However, the solid precipitated with wood ash is not pure struvite. Due to the high calcite and the low phosphorus content (3%), the precipitate would be better used as a phosphorus-enhanced conditioner for acidic soils. The estimated fertilizer value of the precipitate was actually slightly lower than wood ash, because 60% of the potassium dissolved into solution during precipitation and was not present in the final product. From a financial point of view and due to the high heavy metal content, wood ash is not a very suitable precipitant for struvite production. Phosphate precipitation from urine with wood ash can be useful if (1) a strong need for a soil conditioner that also contains phosphate exists, (2) potassium is abundant in the soil and (3) no other cheap precipitant, such as bittern or magnesium oxide, is available. PMID:22297249

  11. The influence of surface microchemistry in protective film formation on multi-phase magnesium alloys

    NASA Astrophysics Data System (ADS)

    Gray-Munro, J. E.; Luan, B.; Huntington, L.

    2008-02-01

    The high strength:weight ratio of magnesium alloys makes them an ideal metal for automotive and aerospace applications where weight reduction is of significant concern. Unfortunately, magnesium alloys are highly susceptible to corrosion particularly in salt-spray conditions. This has limited their use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate by a process such as electroless plating, which is a low-cost, non line of sight process. Magnesium is classified as a difficult to plate metal due to its high reactivity. This means that in the presence of air magnesium very quickly forms a passive oxide layer that must be removed prior to plating. Furthermore, high aluminium content alloys are especially difficult to plate due to the formation of intermetallic species at the grain boundaries, resulting in a non-uniform surface potential across the substrate and thereby further complicating the plating process. The objective of this study is to understand how the magnesium alloy microstructure influences the surface chemistry of the alloy during both pretreatment and immersion copper coating of the substrate. A combination of scanning electron microscopy, energy dispersive spectroscopy and scanning Auger microscopy has been used to study the surface chemistry at the various stages of the coating process. Our results indicate that the surface chemistry of the alloy is different on the aluminum rich β phase of the material compared to the magnesium matrix which leads to preferential deposition of the metal on the aluminum rich phase of the alloy.

  12. Monitoring Biodegradation of Magnesium Implants with Sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Daoli; Wang, Tingting; Guo, Xuefei; Kuhlmann, Julia; Doepke, Amos; Dong, Zhongyun; Shanov, Vesselin N.; Heineman, William R.

    2016-04-01

    Magnesium and its alloys exhibit properties such as high strength, light weight, and in vivo corrosion that make them promising candidates for the development of biodegradable metallic implant materials for bone repair, stents and other medical applications. Sensors have been used to monitor the corrosion of magnesium and its alloys by measuring the concentrations of the following corrosion products: magnesium ions, hydroxyl ions and hydrogen gas. The corrosion characterization system with home-made capillary pH and Mg2+ microsensors has been developed for real-time detection of magnesium corrosion in vitro. A hydrogen gas sensor was used to monitor the corrosion of magnesium by measuring the concentration of the hydrogen gas reaction product in vivo. The high permeability of hydrogen through skin allows transdermal monitoring of the biodegradation of a magnesium alloy implanted beneath the skin by detecting hydrogen gas at the skin surface. The sensor was used to map hydrogen concentration in the vicinity of an implanted magnesium alloy.

  13. Magnesium based degradable biomaterials: A review

    NASA Astrophysics Data System (ADS)

    Gu, Xue-Nan; Li, Shuang-Shuang; Li, Xiao-Ming; Fan, Yu-Bo

    2014-09-01

    Magnesium has been suggested as a revolutionary biodegradable metal for biomedical applications. The corrosion of magnesium, however, is too rapid to match the rates of tissue healing and, additionally, exhibits the localized corrosion mechanism. Thus it is necessary to control the corrosion behaviors of magnesium for their practical use. This paper comprehensively reviews the research progress on the development of representative magnesium based alloys, including Mg-Ca, Mg-Sr, Mg-Zn and Mg-REE alloy systems as well as the bulk metallic glass. The influence of alloying element on their microstructures, mechanical properties and corrosion behaviors is summarized. The mechanical and corrosion properties of wrought magnesium alloys are also discussed in comparison with those of cast alloys. Furthermore, this review also covers research carried out in the field of the degradable coatings on magnesium alloys for biomedical applications. Calcium phosphate and biodegradable polymer coatings are discussed based on different preparation techniques used. We also compare the effect of different coatings on the corrosion behaviors of magnesium alloys substrate.

  14. Magnesium doping of boron nitride nanotubes

    DOEpatents

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  15. Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys

    SciTech Connect

    Zhang, Long; Jiang, Bailing; Ge, Yanfeng; Nyberg, Eric A.; Liu, Ming

    2013-05-21

    Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on the surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.

  16. Magnesium-lithium casting alloys

    NASA Technical Reports Server (NTRS)

    Latenko, V. P.; Silchenko, T. V.; Tikhonov, V. A.; Maltsev, V. P.; Korablin, V. P.

    1974-01-01

    The strength properties of magnesium-lithium alloys at room, low, and high temperatures are investigated. It is found that the alloys may have practical application at ambient temperatures up to 100 C, that negative temperatures have a favorable influence on the alloy strength, and that cyclic temperature variations have practically no effect on the strength characteristics. The influence of chemical coatings on corrosion resistance of the MgLi alloys is examined. Several facilities based on pressure casting machines, low-pressure casting machines, and magnetodynamic pumps were designed for producing MgLi alloy castings. Results were obtained for MgLi alloys reinforced with fibers having a volumetric content of 15%.

  17. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes**

    PubMed Central

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W

    2014-01-01

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electrolytes is very high. PMID:24519845

  18. Boron clusters as highly stable magnesium-battery electrolytes.

    PubMed

    Carter, Tyler J; Mohtadi, Rana; Arthur, Timothy S; Mizuno, Fuminori; Zhang, Ruigang; Shirai, Soichi; Kampf, Jeff W

    2014-03-17

    Boron clusters are proposed as a new concept for the design of magnesium-battery electrolytes that are magnesium-battery-compatible, highly stable, and noncorrosive. A novel carborane-based electrolyte incorporating an unprecedented magnesium-centered complex anion is reported and shown to perform well as a magnesium-battery electrolyte. This finding opens a new approach towards the design of electrolytes whose likelihood of meeting the challenging design targets for magnesium-battery electrolytes is very high. PMID:24519845

  19. Thiamine and magnesium deficiencies: keys to disease.

    PubMed

    Lonsdale, D

    2015-02-01

    Thiamine deficiency (TD) is accepted as the cause of beriberi because of its action in the metabolism of simple carbohydrates, mainly as the rate limiting cofactor for the dehydrogenases of pyruvate and alpha-ketoglutarate, both being critical to the action of the citric acid cycle. Transketolase, dependent on thiamine and magnesium, occurs twice in the oxidative pentose pathway, important in production of reducing equivalents. Thiamine is also a cofactor in the dehydrogenase complex in the degradation of the branched chain amino acids, leucine, isoleucine and valine. In spite of these well accepted facts, the overall clinical effects of TD are still poorly understood. Because of the discovery of 2-hydroxyacyl-CoA lyase (HACL1) as the first peroxisomal enzyme in mammals found to be dependent on thiamine pyrophosphate (TPP) and the ability of thiamine to bind with prion protein, these factors should improve our clinical approach to TD. HACL1 has two important roles in alpha oxidation, the degradation of phytanic acid and shortening of 2-hydroxy long-chain fatty acids so that they can be degraded further by beta oxidation. The downstream effects of a lack of efficiency in this enzyme would be expected to be critical in normal brain metabolism. Although TD has been shown experimentally to produce reversible damage to mitochondria and there are many other causes of mitochondrial dysfunction, finding TD as the potential biochemical lesion would help in differential diagnosis. Stresses imposed by infection, head injury or inoculation can initiate intermittent cerebellar ataxia in thiamine deficiency/dependency. Medication or vaccine reactions appear to be more easily initiated in the more intelligent individuals when asymptomatic marginal malnutrition exists. Erythrocyte transketolase testing has shown that thiamine deficiency is widespread. It is hypothesized that the massive consumption of empty calories, particularly those derived from carbohydrate and fat, results in

  20. Severe hyperkalaemia peripartum with magnesium sulphate

    PubMed Central

    Morton, Adam

    2012-01-01

    A case of severe hyperkalaemia peripartum in the setting of magnesium sulphate infusion is presented. Health professionals involved in the care of high-risk pregnancies should be aware of this rare association.

  1. The USAMP magnesium powertrain cast components project

    NASA Astrophysics Data System (ADS)

    Powell, Bob R.

    2002-02-01

    Despite the demonstrated ability of magnesium alloys to significantly reduce weight at acceptable costs in many areas of an automobile, powertrain components have not benefited from this metal, primarily because the high-temperature alloys that are required for engines and transmissions are too expensive. However, the U.S. Department of Energy and the U.S. Automotive Materials Partnership have launched a project to evaluate several new, potentially low-cost magnesium alloys, design several pre-competitive power-train components for the best alloy properties, cast and dynamometer or vehicle test the components in assembled powertrains, develop a powertrain magnesium alloy design database and common alloy specification, and identify andpromote the funding of fundamental research into improved magnesium alloys and casting processes.

  2. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 179, which is incorporated by reference. Magnesium phosphate, tribasic, meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which...

  3. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 179, which is incorporated by reference. Magnesium phosphate, tribasic, meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which...

  4. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... phosphoric acid. (b) Magnesium phosphate, dibasic, meets the specifications of the Food Chemicals Codex, 3d... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which is incorporated by reference. Copies...

  5. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 179, which is incorporated by reference. Magnesium phosphate, tribasic, meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which...

  6. Hydrogen in magnesium palladium thin layer structures

    NASA Astrophysics Data System (ADS)

    Kruijtzer, G. L.

    2008-02-01

    In this thesis, the study of hydrogen storage, absorption and desorption in magnesium layers is described. The magnesium layers have a thickness of 50-500 nm and are covered by a palladium layer which acts as a hydrogen dissociation/association catalyst. The study was preformed under ultra high vacuum conditions to avoid oxygen contamination. The main analysis techniques were RBS, ERD and TDS.

  7. Immunological Response to Biodegradable Magnesium Implants

    NASA Astrophysics Data System (ADS)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  8. Mitigating Electronic Current in Molten Flux for the Magnesium SOM Process

    NASA Astrophysics Data System (ADS)

    Gratz, Eric S.; Guan, Xiaofei; Milshtein, Jarrod D.; Pal, Uday B.; Powell, Adam C.

    2014-08-01

    The solid oxide membrane (SOM) process has been used at 1423 K to 1473 K (1150 °C to 1200 °C) to produce magnesium metal by the direct electrolysis of magnesium oxide. MgO is dissolved in a molten MgF2-CaF2 ionic flux. An oxygen-ion-conducting membrane, made from yttria-stabilized zirconia (YSZ), separates the cathode and the flux from the anode. During electrolysis, magnesium ions are reduced at the cathode, and Mg(g) is bubbled out of the flux into a separate condenser. The flux has a small solubility for magnesium metal which imparts electronic conductivity to the flux. The electronic conductivity decreases the process current efficiency and also degrades the YSZ membrane. Operating the electrolysis cell at low total pressures is shown to be an effective method of reducing the electronic conductivity of the flux. A two steel electrode method for measuring the electronic transference number in the flux was used to quantify the fraction of electronic current in the flux before and after SOM process operation. Potentiodynamic scans, potentiostatic electrolyses, and AC impedance spectroscopy were also used to characterize the SOM process under different operating conditions.

  9. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  10. Magnesium isotopic composition of achondrites

    NASA Astrophysics Data System (ADS)

    Sedaghatpour, Fatemeh; Teng, Fang-Zhen

    2016-02-01

    Magnesium isotopic compositions of 22 well-characterized differentiated meteorites including 7 types of achondrites and pallasite meteorites were measured to estimate the average Mg isotopic composition of their parent bodies and evaluate Mg isotopic heterogeneity of the solar system. The δ26Mg values are -0.236‰ and -0.190‰ for acapulcoite-lodranite and angrite meteorites, respectively and vary from -0.267‰ to -0.222‰ in the winonaite-IAB-iron silicate group, -0.369‰ to -0.292‰ in aubrites, -0.269‰ to -0.158‰ in HEDs, -0.299‰ to -0.209‰ in ureilites, -0.307‰ to -0.237‰ in mesosiderites, and -0.303‰ to -0.238‰ in pallasites. Magnesium isotopic compositions of most achondrites and pallasite meteorites analyzed here are similar and reveal no significant isotopic fractionation. However, Mg isotopic compositions of D‧Orbigny (angrite) and some HEDs are slightly heavier than chondrites and the other achondrites studied here. The slightly heavier Mg isotopic compositions of angrites and some HEDs most likely resulted from either impact-induced evaporation or higher abundance of clinopyroxene with the Mg isotopic composition slightly heavier than olivine and orthopyroxene. The average Mg isotopic composition of achondrites (δ26Mg = -0.246 ± 0.082‰, 2SD, n = 22) estimated here is indistinguishable from those of the Earth (δ26Mg = -0.25 ± 0.07‰; 2SD, n = 139), chondrites (δ26Mg = -0.28 ± 0.06‰; 2SD, n = 38), and the Moon (δ26Mg = -0.26 ± 0.16‰; 2SD, n = 47) reported from the same laboratory. The chondritic Mg isotopic composition of achondrites, the Moon, and the Earth further reflects homogeneity of Mg isotopes in the solar system and the lack of Mg isotope fractionation during the planetary accretion process and impact events.

  11. Powering Earth's dynamo with magnesium precipitation from the core.

    PubMed

    O'Rourke, Joseph G; Stevenson, David J

    2016-01-21

    Earth's global magnetic field arises from vigorous convection within the liquid outer core. Palaeomagnetic evidence reveals that the geodynamo has operated for at least 3.4 billion years, which places constraints on Earth's formation and evolution. Available power sources in standard models include compositional convection (driven by the solidifying inner core's expulsion of light elements), thermal convection (from slow cooling), and perhaps heat from the decay of radioactive isotopes. However, recent first-principles calculations and diamond-anvil cell experiments indicate that the thermal conductivity of iron is two or three times larger than typically assumed in these models. This presents a problem: a large increase in the conductive heat flux along the adiabat (due to the higher conductivity of iron) implies that the inner core is young (less than one billion years old), but thermal convection and radiogenic heating alone may not have been able to sustain the geodynamo during earlier epochs. Here we show that the precipitation of magnesium-bearing minerals from the core could have served as an alternative power source. Equilibration at high temperatures in the aftermath of giant impacts allows a small amount of magnesium (one or two weight per cent) to partition into the core while still producing the observed abundances of siderophile elements in the mantle and avoiding an excess of silicon and oxygen in the core. The transport of magnesium as oxide or silicate from the cooling core to underneath the mantle is an order of magnitude more efficient per unit mass as a source of buoyancy than inner-core growth. We therefore conclude that Earth's dynamo would survive throughout geologic time (from at least 3.4 billion years ago to the present) even if core radiogenic heating were minimal and core cooling were slow. PMID:26791727

  12. Pulsed laser cleaning of aluminium-magnesium alloys: effect of surface modifications on adhesion

    NASA Astrophysics Data System (ADS)

    Autric, Michel; Oltra, Roland

    2008-05-01

    Surface cleaning is a key step in many industrial processes and especially in laser surface treatments. During laser cleaning of metallic alloys using pulsed lasers, surface modification can be induced due to transient thermal effect. In ambient atmospheric conditions, an oxidation of the cleaned surface can be detected. The aim of this work was to characterize this transient oxidation that can occur below the laser energy domain leading to any phase change (melting, ablation) of the cleaned substrate. A Q-switched Nd:YAG laser (1.06 μm) with 10 ns pulse duration was used for this study. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy were used for surface analysis of irradiated samples. Thermal oxidation took place on the aluminium-magnesium alloy (5000 series) during the irradiation in air (fluence range 0.6-1.4 Jcm-2). It has been demonstrated that this 10 ns laser thermal oxidation and the steady state thermal oxidation have the same mechanism. When the laser fluence reached 1 J cm -2 , the oxide formed by the thermal oxidation became in a large extent crystalline and its outer part was entirely covered by a continuous magnesium oxide layer.

  13. Corrosion resistance enhancement of magnesium ZK60/SiC composite by Nd:YAG laser cladding

    SciTech Connect

    Yue, T.M.; Wang, A.H.; Man, H.C.

    1999-01-08

    Magnesium-based metal matrix composites (MMCs) which possess high specific stiffness and strength are attractive in applications where it is advantageous to employ low density structural materials, such as in aerospace, automotive and sports industries. However, it is well known that magnesium is one of the most active structural metals, and is usually susceptible to galvanic corrosion when in contact with other materials, especially, in wet and salt-laden environments. The corrosion is enhanced when an additional phase is added to magnesium alloys because most of the magnesium/reinforcement systems are electrochemically unstable. Previous investigations have revealed that high power laser surface treatment is an efficient way to improve the corrosion resistance of magnesium alloys and their composite materials, without resulting in significant adverse effects on the properties of the bulk materials. In the present study, laser cladding of an Al-Si eutectic alloy on magnesium ZK60/SiC composite was performed using a multiwave Nd:YAG laser. In order to avoid excessive oxidation, argon shielding gas was blown directly into the laser-generated molten pool instead of using a vacuum condition.

  14. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

    NASA Astrophysics Data System (ADS)

    Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong

    2016-03-01

    The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

  15. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

    NASA Astrophysics Data System (ADS)

    Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong

    2016-06-01

    The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

  16. 40 CFR 461.60 - Applicability; description of the magnesium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries....

  17. 40 CFR 461.60 - Applicability; description of the magnesium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries....

  18. 40 CFR 461.60 - Applicability; description of the magnesium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... magnesium subcategory. 461.60 Section 461.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Magnesium Subcategory § 461.60 Applicability; description of the magnesium subcategory. This subpart applies... treatment works from the manufacturing of magnesium anode batteries....

  19. Grosnaja ABCs: Magnesium isotope compositions

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.; Srinivasan, G.; Ulyanov, A. A.

    1993-01-01

    Three CAI's from the Grosnaja CV3 chondrite were analyzed for their magnesium isotopic compositions by the ion microprobe. The selected CAI's represent three distinct types: GR4(compact Type A), GR7(Type B) and GR2(Type C). Petrographic studies indicate that all three Grosnaja inclusions were subjected to secondary alterations. The Type A CAI GR4 is primarily composed of melilite with spinel and pyroxene occurring as minor phases. The rim of the inclusion does not exhibit distinct layered structure and secondary alteration products (garnet, Fe-rich olivine and Na-rich plagioclase) are present in some localized areas near the rim region. The average major element compositions of different mineral phases in GR4 are given. Preliminary REE data suggest a depletion of HREE relative to LREE by about a factor of 3 without any clear indication of interelement fractionation. The CAI GR7 has textural and minerological characteristics similar to Type B inclusions. The REE data show a pattern that is similar to Group 6 with enrichment in Eu and Yb. In addition, a depletion of HREE compared to LREE is also evident in this object. Melilite composition shows a broad range of akermanite content (Ak(sub 15-55)). Detailed petrographic study is in progress. GR2 is a anorthite-rich Type C inclusion with large plagioclase laths intergrown with Ti-rich pyroxene. The average plagioclase composition is close to pure anorthite (An99).

  20. The influence of oral magnesium sulfate on skin microvasculature blood flow in diabetic rats.

    PubMed

    Heidarianpour, Ali; Sadeghian, Efat; Gorzi, Ali; Nazem, Farzad

    2011-10-01

    Microvascular disease is a major feature of type1 diabetes and results from long-standing structural and functional changes especially in the skin microvasculature. Magnesium (Mg) deficiency has recently been proposed as a novel factor implicated in the pathogenesis of diabetes complications such as vascular disturbance, but its mechanism of action is not completely elucidated. The present study was designed to determine whether chronic magnesium sulfate administration could control streptozocin-induced diabetes and improve endothelium-dependent and endothelium-independent dilatation, and identify its probable mechanism in the skin microvasculature of diabetic rats. Fifty male Wistar rats (220 ± 10 g) were divided into two diabetic and one control groups. One subgroup of diabetic received magnesium sulfate (10 g/l) in their drinking water, while two other groups had only tap water. Laser Doppler flow meter with iontophoresis was used to measure the relative changes in skin blood flow. We used acetylcholine (Ach), sodium nitroprusside (SNP), and N (w)-nitro-L-arginine (LNNA; NO synthase inhibitor) with magnesium sulfate (0.1 M) in control and experimental animal by microsyringe pump microinjection. SNP- and Ach-induced cutaneous perfusion increased significantly by Mg treatment in the diabetic groups, and local microinjection of magnesium sulfate (0.1 M) increased cutaneous blood flow in all groups (p < 0.01). However, the administration of LNNA prior to magnesium sulfate attenuated (p < 0.05) but not abolished the increase in cutaneous blood flow in diabetic and normal rats. From the results of this study, it may be concluded that Mg could improve skin microvasculature of diabetic rats with potentiation of nitric oxide pathway. PMID:20857343

  1. Combustion of a single magnesium particle in water vapor

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ya; Xia, Zhi-Xun; Zhang, Wei-Hua; Huang, Xu; Hu, Jian-Xin

    2015-09-01

    The combustion of magnesium particles in water vapor is of interest for underwater propulsion and hydrogen production. In this work, the combustion process of a single magnesium particle in water vapor is studied both experimentally and theoretically. Combustion experiments are conducted in a combustor filled with motionless water vapor. Condensation of gas-phase magnesia on the particle surface is confirmed and gas-phase combustion flame characteristics are observed. With the help of an optical filter and a neutral optical attenuator, flame structures are captured and determined. Flame temperature profiles are measured by an infrared thermometer. Combustion residue is a porous oxide shell of disordered magnesia crystal, which may impose a certain influence on the diffusivity of gas phases. A simplified one-dimensional, spherically symmetric, quasi-steady combustion model is then developed. In this model, the condensation of gas-phase magnesia on the particle surface and its influence on the combustion process are included, and the Stefan problem on the particle surface is also taken into consideration. With the combustion model, the parameters of flame temperature, flame diameter, and the burning time of the particle are solved analytically under the experimental conditions. A reasonable agreement between the experimental and modeling results is demonstrated, and several features to improve the model are identified. Project supported by the National Natural Science Foundation of China (Grant No. 51406231).

  2. Preparation and characterization of a degradable magnesium phosphate bone cement.

    PubMed

    Yu, Ying; Xu, Chao; Dai, Honglian

    2016-12-01

    A kind of degradable magnesium phosphate bone cement (MPBC) was fabricated by using the mixed powders of magnesium oxide (MgO), potassium dihydrogen phosphate (KH2PO4) and calcium dihydrogen phosphate (Ca(H2PO4)2.H2O). As MgKPO4, the main product of MgO and KH2PO4 was alkaline, the Ca(H2PO4)2.H2O was added to neutralize the alkali of the system. And the effects of Ca(H2PO4)2.H2O on the performance of MPBC were discussed. The results showed that the adding of Ca(H2PO4)2.H2O extended the setting time, which was about 6 min to 18 min. The compressive strength increased first and then decreased, and maximum value reached 31.2 MPa after setting for 24 h without any additional pressure. The MPBC was degradable in Tris-HCl solution, and the extracts of the cytotoxicity assay showed that the MPBC had good biocompatibility, indicating that the MPBC had good biodegradable and biocompatible properties. PMID:27482465

  3. Preparation and characterization of a degradable magnesium phosphate bone cement

    PubMed Central

    Yu, Ying; Xu, Chao; Dai, Honglian

    2016-01-01

    A kind of degradable magnesium phosphate bone cement (MPBC) was fabricated by using the mixed powders of magnesium oxide (MgO), potassium dihydrogen phosphate (KH2PO4) and calcium dihydrogen phosphate (Ca(H2PO4)2.H2O). As MgKPO4, the main product of MgO and KH2PO4 was alkaline, the Ca(H2PO4)2.H2O was added to neutralize the alkali of the system. And the effects of Ca(H2PO4)2.H2O on the performance of MPBC were discussed. The results showed that the adding of Ca(H2PO4)2.H2O extended the setting time, which was about 6 min to 18 min. The compressive strength increased first and then decreased, and maximum value reached 31.2 MPa after setting for 24 h without any additional pressure. The MPBC was degradable in Tris–HCl solution, and the extracts of the cytotoxicity assay showed that the MPBC had good biocompatibility, indicating that the MPBC had good biodegradable and biocompatible properties. PMID:27482465

  4. Magnesium and anabolic hormones in older men

    PubMed Central

    Maggio, M.; Ceda, G. P.; Lauretani, F.; Cattabiani, C.; Avantaggiato, E.; Morganti, S.; Ablondi, F.; Bandinelli, S.; Dominguez, L. J.; Barbagallo, M.; Paolisso, G.; Semba, R. D.; Ferrucci, L.

    2015-01-01

    Summary Optimal nutritional and hormonal statuses are determinants of successful ageing. The age associated decline in anabolic hormones such as testosterone and insulin-like growth factor 1 (IGF-1) is a strong predictor of metabolic syndrome, diabetes and mortality in older men. Studies have shown that magnesium intake affects the secretion of total IGF-1 and increase testosterone bioactivity. This observation suggests that magnesium can be a modulator of the anabolic/catabolic equilibrium disrupted in the elderly people. However, the relationship between magnesium and anabolic hormones in men has not been investigated. We evaluated 399 ≥65-year-old men of CHIANTI in a study population representative of two municipalities of Tuscany (Italy) with complete data on testosterone, total IGF-1, sex hormone binding globulin (SHBG), dehydroepiandrosterone sulphate (DHEAS) and serum magnesium levels. Linear regression models were used to test the relationship between magnesium and testosterone and IGF-1. Mean age of the population was 74.18 ± 6.43 (years ± SD, age range 65.2–92.4). After adjusting for age, magnesium was positively associated with total testosterone (β ± SE, 34.9 ± 10.3; p = 0.001) and with total IGF-1 (β ± SE, 15.9 ± 4.8; p = 0.001). After further adjustment for body mass index (BMI), log (IL-6), log (DHEAS), log (SHBG), log (insulin), total IGF-1, grip strength, Parkinson’s disease and chronic heart failure, the relationship between magnesium and total testosterone remained strong and highly significant (β ± SE, 48.72 ± 12.61; p = 0.001). In the multivariate analysis adjusted for age, BMI, log (IL-6), liver function, energy intake, log (insulin), log (DHEAS), selenium, magnesium levels were also still significantly associated with IGF-1 (β ± SE, 16.43 ± 4.90; p = 0.001) and remained significant after adjusting for total testosterone (β ± SE, 14.4 ± 4.9; p = 0.01). In a cohort of older men, magnesium levels are strongly and

  5. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  6. Magnesium reduces carotid intima-media thickness in a mouse model of pseudoxanthoma elasticum: a novel treatment biomarker.

    PubMed

    Kupetsky-Rincon, Erine A; Li, Qiaoli; Uitto, Jouni

    2012-06-01

    Pseudoxanthoma elasticum (PXE), which demonstrates progressive build-up of calcium phosphate and proteoglycan deposits in skin, eye, and arteries, has been associated with myocardial infarctions, stroke, and blindness. In a mouse model of PXE, a magnesium-enriched diet prevents mineralization of the vibrissae capsule, an early biomarker for PXE. However, biomarkers for therapeutic responses in PXE have not been identified in humans. Because PXE patients have an increased carotid intima-media thickness (CIMT), a risk factor for cardiovascular disease and stroke, we analyzed the feasibility of CIMT as a treatment endpoint before and after magnesium supplementation in a mouse model of PXE (Abcc6(-/-) ). CIMT was measured in 1-year-old Abcc6(-/-) and Abcc6(+/+) mice fed either standard rodent diet with or without magnesium oxide supplementation for 2 months. Baseline CIMT in Abcc6(-/-) versus Abcc6(+/+) mice was increased (p value = 0.009), whereas CIMT in magnesium-treated versus untreated Abcc6(-/-) mice was reduced (p value = 0.024). CIMT is a novel treatment endpoint in this mouse model and may serve as a predictive biomarker of therapeutic response in PXE patients. In that context, magnesium oxide significantly reduced CIMT in PXE mice, and may be useful for disease prevention in PXE patients. PMID:22686203

  7. Blood plasma magnesium, potassium, glucose, and immunoreactive insulin changes in cows moved abruptly from barn feeding to early spring pasture

    SciTech Connect

    Miller, J.K.; Madsen, F.C.; Lentz, D.E.; Wong, W.O.; Ramsey, N.; Tysinger, C.E.; Hansard, S.L.

    1980-07-01

    Cations and immunoreactive insulin in plasma were measured in 35 lactating cows moved abruptly to early spring pasture. After change of cows from grass-clover hay to fescue-bluegrass pasture containing 22 to 31 g potassium/kg dry matter, immunoreactive insulin of 5 Holstein cows increased 30% in 5 days and averaged 45% above prepasture concentrations for 40 days. Magnesium averaged 44% below prepasture content of plasma during this period and was correlated negatively with potassium -.17 and immunoreactive insulin -.37. Thirty Hereford cows were changed from corn silage and grass-clover hay to wheat-rye pasture containing 3.06% potassium in the dry matter. Each day on pasture, 10 cows each were fed 2.3 kg cornmeal, 10 were given 30 g magnesium oxide by capsule, and 10 were given no supplement. After unsupplemented cows were moved to pasture, immunoreactive insulin rose 51% in 8 days and plasma magnesium fell 24%. Both supplements reduced immunoreactive insulin, but magnesium was maintained higher by magnesium oxide than by cornmeal. Injection of two Holstein cows with insulin (2 IU/kg body weight) reduced plasma concentrations of both potassium and mgnesium 20% below that of two cows injected with only physiological saline. Whether elevated plasma insulin may accelerate development of hypomagnesemia in cattle on spring pasture with relatively high potassium content has not been established.

  8. Magnesium deficiency is associated with periodontal disease.

    PubMed

    Meisel, P; Schwahn, C; Luedemann, J; John, U; Kroemer, H K; Kocher, T

    2005-10-01

    In the multifactorial pathogenesis of periodontitis, there are still unknown factors influencing the outcome of the disease. An association between magnesium and periodontitis has been suggested by preliminary studies. However, relevant clinical data are lacking. We investigated the association between magnesium status and periodontal health in a population-based analysis. We conducted a cross-sectional epidemiological investigation involving 4290 subjects aged 20-80 yrs. We recorded periodontal risk factors and determined concentrations of serum magnesium and calcium, relating them to periodontal parameters. In a matched-pair study, 60 subjects using oral magnesium-containing drugs and 120 without were compared. In subjects aged 40 yrs and older, increased serum Mg/Ca was significantly associated with reduced probing depth (p<0.001), less attachment loss (p=0.006), and a higher number of remaining teeth (p=0.005). Subjects taking Mg drugs showed less attachment loss (p<0.01) and more remaining teeth than did their matched counterparts. These results suggest that nutritional magnesium supplementation may improve periodontal health. PMID:16183794

  9. 77 FR 46030 - Pure Magnesium in Granular Form From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ..., hydrocarbons, graphite, coke, silicon, rare earth metals/mischmetal, cryolite, silica/fly ash, magnesium oxide... Countervailing Duty Administrative Reviews and Request for Revocation In Part, 76 FR 82268 (December 30, 2011... FR 67413 (November 1, 2011). \\3\\ See Initiation. In the Initiation, the Department stated that if...

  10. Magnesium-lithium alloys developed for low temperature use

    NASA Technical Reports Server (NTRS)

    Dunkerley, F. J.; Leavenworth, H. W., Jr.

    1967-01-01

    Three new magnesium-lithium alloys have been developed for application at cryogenic temperatures. These lightweight alloys have approximately doubled the tensile and yield strengths at room temperature of previously described magnesium-lithium alloys.

  11. Ice-melting characteristics of calcium magnesium acetate

    NASA Astrophysics Data System (ADS)

    Schenk, R. U.

    1986-01-01

    The objectives of the study are to determine the pertinent properties of Calcium/Magnesium Acetate and to determine the pH and ratio of calcium to magnesium that provide optimum road deicing characteristics.

  12. Alkalization is responsible for antibacterial effects of corroding magnesium.

    PubMed

    Rahim, Muhammad Imran; Eifler, Rainer; Rais, Bushra; Mueller, Peter P

    2015-11-01

    Magnesium alloys are presently investigated as potential medical implant materials for temporary applications. Magnesium has been reported to have antibacterial activities and could therefore be used to prevent antibiotic treatment-resistant bacterial implant infections. For characterizing the effects of magnesium on infectious bacteria, bioluminescent S. aureus or P. aeruginosa were employed. The proliferation of both types of bacteria was suppressed in the presence of metallic magnesium and also in aqueous magnesium corrosion extracts. Of the two soluble corrosion products, magnesium ions were well tolerated while antibacterial activities correlated with increased pH levels of the supernatants. The alkaline pH alone was sufficient for the antibacterial effects which were completely abolished when the pH of the corrosion supernatants was neutralized. These results demonstrate that pH increases are necessary and sufficient for the antibacterial activity of metallic magnesium. In an animal model magnesium implants showed an enhanced but variable resistance to bacterial colonization. PMID:25974048

  13. Simulating the dynamic response of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Lloyd, Jeffrey; Becker, Richard

    Unlike several conventional metals, the mechanical response of magnesium is severely anisotropic for quasistatic and dynamic loading conditions. In this work we present a crystal-based strength model that is the same order of magnitude in computational cost as rate-dependent isotropic strength models, yet is able to capture essential features exhibited by textured magnesium polycrystals. The model demarcates plastic deformation into contributions from basal slip, extension twinning, and non-basal slip mechanisms. Comparisons are made between model predictions and experiments for two magnesium alloys with differing processing histories. The model is then used to explore and quantify the dependence of metallurgical and processing variations for several dynamic experiments that probe propensity for localization and failure under complex loading conditions.

  14. Solubility of magnesium carbonate in natural waters

    USGS Publications Warehouse

    Wells, R.C.

    1915-01-01

    (1) Under atmospheric conditions it appears possible to attain practically the same state in a solution saturated with MgCO33H2O, whether one starts with a solution containing an excess of magnesium bicarbonate or with the pure trihydrate and water, but the adjustment occurs very slowly. The solution finally contains 0.36 g. magnesium and 1.01 g. carbon dioxide per liter at 20??. (2) The solubility found for magnesite, however, is much smaller, viz., 0.02 g. magnesium and 0.07 g. carbon dioxide per liter. (3) Certain natural waters, freely exposed to the atmosphere, appear to be supersaturated with respect to magnesite but none approaches very closely to the point of saturation of the trihydrate MgCO3.3H2O.

  15. Magnesium sulfate administration in subarachnoid hemorrhage.

    PubMed

    Suarez, Jose I

    2011-09-01

    Magnesium offers theoretic vascular and neuroprotective benefits for patients with subarachnoid hemorrhage. An electronic literature search was conducted to identify original research studies describing intravenous magnesium treatment in patients with SAH published in English between January 1990 and October 2010. Seventeen articles were identified and reviewed, including one phase III randomized-controlled clinical trial and six phase II randomized-controlled trials. Study quality was low for most of the included studies, with the phase III trial considered to be of moderate quality. Due to inconsistently reported benefits and the occurrence of side effects, phase II data suggested that intravenous magnesium for SAH provided either no overall net benefit or uncertain trade-offs. Benefit was likewise not supported in the single phase III clinical trial. PMID:21748496

  16. Organochlorine formation in magnesium electrowinning cells.

    PubMed

    Deutscher, R L; Cathro, K J

    2001-04-01

    The formation of organochlorines during the electrolytic production of magnesium was investigated using a laboratory-scale electrolytic cell having a graphite anode, a liquid aluminium alloy cathode, and a molten chloride electrolyte. The cell was operated at current densities ranging from 3000 to 10,000 A m(-2) and at temperatures ranging from 660 degrees C to 750 degrees C. Organochlorines were adsorbed from the cell off-gases onto silica gel, extracted with hexane, and determined by gas chromatography. All compounds identified were fully chlorinated aliphatic and aromatic compounds, the major components being hexachlorobutadiene, hexachlorobenzene, hexachloroethylene, and octachlorostyrene. The total amount of organochlorines per tonne of magnesium produced decreased with electrolysis time and with current density and increased with operating temperature; it was also dependent on the type of graphite employed. The output of organochlorines varied from 5 to 20 g t(-1) of magnesium. PMID:11297394

  17. Magnesium sulfate as a key mineral for the detection of organic molecules on Mars using pyrolysis

    NASA Astrophysics Data System (ADS)

    François, P.; Szopa, C.; Buch, A.; Coll, P.; McAdam, A. C.; Mahaffy, P. R.; Freissinet, C.; Glavin, D. P.; Navarro-Gonzalez, R.; Cabane, M.

    2016-01-01

    Pyrolysis of soil or rock samples is the preferred preparation technique used on Mars to search for organic molecules up today. During pyrolysis, oxichlorines present in the soil of Mars release oxidant species that alter the organic molecules potentially contained in the samples collected by the space probes. This process can explain the difficulty experienced by in situ exploration probes to detect organic materials in Mars soil samples until recently. Within a few months, the Curiosity rover should reach and analyze for the first time soils rich in sulfates which could induce a different behavior of the organics during the pyrolysis compared with the types of soils analyzed up today. For this reason, we systematically studied the pyrolysis of organic molecules trapped in magnesium sulfate, in the presence or absence of calcium perchlorate. Our results show that organics trapped in magnesium sulfate can undergo some oxidation and sulfuration during the pyrolysis. But these sulfates are also shown to protect organics trapped inside the crystal lattice and/or present in fluid inclusions from the oxidation induced by the decomposition of calcium perchlorate and probably other oxychlorine phases currently detected on Mars. Trapped organics may also be protected from degradation processes induced by other minerals present in the sample, at least until these organics are released from the pyrolyzed sulfate mineral (~700°C in our experiment). Hence, we suggest magnesium sulfate as one of the minerals to target in priority for the search of organic molecules by the Curiosity and ExoMars 2018 rovers.

  18. Borosilicate glass alteration driven by magnesium carbonates

    NASA Astrophysics Data System (ADS)

    Debure, M.; Frugier, P.; De Windt, L.; Gin, S.

    2012-01-01

    The alteration of simplified synthetic glass, representative of the French reference nuclear glass R7T7, in presence of hydromagnesite has been experimentally investigated and modeled. Magnesium in solution is known to potentially enhance glass alteration; nuclear glass clayed host rocks contain magnesium and can dissolve to maintain the concentration of magnesium in solution. For modeling purposes, it was suitable to study a simple system. Hydromagnesite was therefore chosen as a simple model mineral in order to check the influence of an Mg-rich mineral on glass alteration. Since the models use thermodynamic and kinetic parameters measured in pure water and pH-buffered solutions, changing the solution composition or adding minerals is a key step towards the validation of the modeling assumptions before using the model for predictive purposes. Experiments revealed that glass alteration is enhanced in presence of hydromagnesite. Modeling was performed using the GRAAL model implemented within the CHESS/HYTEC reactive transport code. Modeling proved useful both for explaining the mechanisms involved and quantifying the impact on glass alteration: Mg coming from hydromagnesite dissolution reacts with Si provided by the glass in order to form magnesium silicates. This reaction decreases the pH down to neutral conditions where magnesium silicates are more soluble than at the natural alkali pH imposed by glass or hydromagnesite dissolution. The driving force of the magnesium silicate precipitation is eventually the interdiffusion of alkali within the altered amorphous glass layer as this mechanism consumes protons. The model's ability to describe the concentrations of elements in solution and formed solids whatever the glass/hydromagnesite ratio strongly supports the basic modeling hypothesis.

  19. Magnesium and Carbon Dioxide - A Rocket Propellant for Mars Missions

    NASA Technical Reports Server (NTRS)

    Shafirovich, E. IA.; Shiriaev, A. A.; Goldshleger, U. I.

    1993-01-01

    A rocket engine for Mars missions is proposed that could utilize CO2 accumulated from the Martian atmosphere as an oxidizer. For use as possible fuel, various metals, their hydrides, and mixtures with hydrogen compounds are considered. Thermodynamic calculations show that beryllium fuels ensure the most impulse but poor inflammability of Be and high toxicity of its compounds put obstacles to their applications. Analysis of the engine performance for other metals together with the parameters of ignition and combustion show that magnesium seems to be the most promising fuel. Ballistic estimates imply that a hopper with the chemical rocket engine on Mg + CO2 propellant could be readily developed. This vehicle would be able to carry out 2-3 ballistic flights on Mars before the final ascent to orbit.

  20. Electrodeposition of aluminium, aluminium/magnesium alloys, and magnesium from organometallic electrolytes

    SciTech Connect

    Mayer, A.

    1988-01-01

    The electrodeposition of aluminum, magnesium, and the combination of these metals from nonaqueous media is discussed. Plating baths for depositing Al/Mg alloys or for plating essentially pure Mg were developed. These solutions contain alkali meal fluoride or quaternary ammonium halide/aluminium alkyl complexes and dialkyl magnesium dissolved in aromatic hydrocarbons. Alloy deposits over the whole composition range can be plated from these solutions by varying the relative quantities of the aluminium and magnesium alkyls and by changing the bath-operating parameters. 18 refs., 4 figs.

  1. Preparation of petaloid microspheres of basic magnesium carbonate.

    PubMed

    Ohkubo, Takahiro; Suzuki, Sei; Mitsuhashi, Kohei; Ogura, Taku; Iwanaga, Shinichi; Sakai, Hideki; Koishi, Masumi; Abe, Masahiko

    2007-05-22

    The synthesis of basic magnesium carbonate was examined under ultrasonic irradiation and was performed by the soda ash method using magnesium sulfate and sodium carbonate as starting materials. The particulate product was evaluated using SEM observations. Ultrasonic irradiation in the preparation of basic magnesium carbonate was found to give fine petaloid microspheres of about 3 mum in primary particle size. PMID:17458985

  2. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  3. Magnesium Intake and Prevalence of Metabolic Syndrome in Older Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher dietary intake of magnesium (Mg) may protect against development of type 2 diabetes. The aim of this study was to examine the association between dietary magnesium intake and metabolic syndrome risk factors in elderly men and women. We examined cross-sectional associations between magnesium i...

  4. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section...

  5. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  6. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  7. 40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section...

  8. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  9. Magnesium retention in 12 to 48 month-old children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In adults, adaptation to changes in magnesium intake is largely due to changes in fractional magnesium absorption and urinary magnesium excretion. We sought to examine whether these homeostatic mechanisms also occur in young children. Children, 12–48 m old, were studied (n=30). They were adapted to ...

  10. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  11. Upper critical field of cellular magnesium diboride

    NASA Astrophysics Data System (ADS)

    Grinenko, V. A.

    2007-08-01

    A cellular superconducting material consisting of thin (1 20 μm) MgB2-x layers and magnesium granules of about 100 μm has been produced. The critical temperature T c of this superconductor decreases with the thickness of the MgB2-x layers. In unalloyed magnesium diboride, the curvature of the temperature dependence of the upper critical field H c2(T) changes gradually from downward to pronounced upward as the temperature T c decreases from 38 to 36 K.

  12. SOLID STATE JOINING OF MAGNESIUM TO STEEL

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva Prasad; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.

    2012-06-04

    Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.

  13. Mobility of cations in magnesium aluminate spinel

    NASA Astrophysics Data System (ADS)

    Martinelli, J. R.; Sonder, E.; Weeks, R. A.; Zuhr, R. A.

    1986-04-01

    Transport of cations in magnesium aluminate spinel due to an applied electric field at approximately 1000 °C has been measured by observing changes in elemental concentrations near the cathode and anode surfaces using ion backscattering techniques. The results indicate that magnesium ions are the mobile species at 1000 °C and that these ions combine with ambient oxygen at the cathode surface to form a MgO layer. Quantitative interpretation of the data leads to the conclusion that the ionic transference number of spinel becomes approximately 0.5 after treatment in an electric field.

  14. New insights into the fundamental chemical nature of ionic liquid film formation on magnesium alloy surfaces.

    PubMed

    Forsyth, Maria; Neil, Wayne C; Howlett, Patrick C; Macfarlane, Douglas R; Hinton, Bruce R W; Rocher, Nathalie; Kemp, Thomas F; Smith, Mark E

    2009-05-01

    Ionic liquids (ILs) based on trihexyltetradecylphosphonium coupled with either diphenylphosphate or bis(trifluoromethanesulfonyl)amide have been shown to react with magnesium alloy surfaces, leading to the formation a surface film that can improve the corrosion resistance of the alloy. The morphology and microstructure of the magnesium surface seems critical in determining the nature of the interphase, with grain boundary phases and intermetallics within the grain, rich in zirconium and zinc, showing almost no interaction with the IL and thereby resulting in a heterogeneous surface film. This has been explained, on the basis of solid-state NMR evidence, as being due to the extremely low reactivity of the native oxide films on the intermetallics (ZrO2 and ZnO) with the IL as compared with the magnesium-rich matrix where a magnesium hydroxide and/or carbonate inorganic surface is likely. Solid-state NMR characterization of the ZE41 alloy surface treated with the IL based on (Tf)2N(-) indicates that this anion reacts to form a metal fluoride rich surface in addition to an organic component. The diphenylphosphate anion also seems to undergo an additional chemical process on the metal surface, indicating that film formation on the metal is not a simple chemical interaction between the components of the IL and the substrate but may involve electrochemical processes. PMID:20355890

  15. The art of magnesium transport.

    PubMed

    de Baaij, Jeroen H F

    2015-01-01

    Patients with hypomagnesemia suffer from a wide range of symptoms including muscle cramps, cardiac arrhythmias and epilepsy. Disturbances in body Mg(2+) homeostasis can often be attributed to increased Mg(2+) excretion by the kidney. Within the kidney, the distal convoluted tubule (DCT) segment determines the final Mg(2+) excretion, since no reabsorption takes place beyond this segment of the nephron. On 21(st) of January 2015, Jeroen de Baaij defended his thesis "The Distal Convoluted Tubule: the Art of Magnesium Transport", in which he aimed to identify new genes involved in Mg(2+) reabsorption in the DCT. This review summarizes the main findings of his graduate research. TRPM6 mediates apical Mg(2+) entry into the DCT cell and is highly regulated by EGF, insulin and pH. ATP and flavagline compounds have been characterized as new regulators of TRPM6 activity, providing novel pathways to target Mg(2+) disturbances. Using isolated primary DCT cells from mice, PCBD1 was identified as a new transcriptional regulator of Mg(2+) transport in the DCT. Indeed, patients with PCBD1 mutations were shown to suffer hypomagnesemia and MODY5-like diabetes. Subsequently, the work presented in the thesis focused on the elucidation of the basolateral Mg(2+) extrusion of the DCT cell. In vivo studies using SLC41A3-knockout mice suggest that SLC41A3 may act as Mg(2+) extrusion mechanism. CNNM2 has long been hypothesized to transport Mg(2+) at the basolateral membrane of the DCT. However, by determining the protein topology and homology modeling of the CBS domains, it was argued that CNNM2 is rather an Mg(2+)-sensing mechanism. Follow-up studies using (25)Mg(2+) isotopes showed that CNNM2 increases Mg(2+) uptake when overexpressed in HEK293 cells. Additionally, by knocking down cnnm2 in zebrafish, CNNM2 was demonstrated to be essential for brain development and Mg(2+) homeostasis. Mutations in CNNM2 were shown to cause hypomagnesemia, seizures and intellectual disability. Altogether

  16. Corrosion resistant performances of alkanoic and phosphonic acids derived self-assembled monolayers on magnesium alloy AZ31 by vapor-phase method.

    PubMed

    Ishizaki, Takahiro; Okido, Masazumi; Masuda, Yoshitake; Saito, Naobumi; Sakamoto, Michiru

    2011-05-17

    Alkanoic and phosphonic acid derived self-assembled monolayers (SAMs) were formed on magnesium alloy by the vapor phase method. AFM and XPS studies showed that SAMs were formed on Mg alloy. The chemical and anticorrosive properties of the SAMs prepared on magnesium alloys were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. Water contact angle measurements revealed that, although SA and ISA have the same headgroup to anchor to the magnesium alloy surface, the packing density on the magnesium alloy surface could be considerably different. The contact angle hysteresis of SAMs with a carboxylate headgroup is much larger than that of SAMs with a phosphonic acid group. The XPS O 1s peaks indicated more likely a mix of mono-, bi-, or tridentate binding of phosphonic acid SAM to the oxide or hydroxide surface of the Mg alloy. The electrochemical measurements showed that the phosphonic acid derived SAM had better corrosion resistance compared to alkanoic acid derived SAM. The chemical stability of SAMs modified magnesium alloy was investigated using water contact angle and XPS measurements. The water contact angle and XPS measurements revealed that the molecular density of OP and PFEP on magnesium alloy would be higher than those of SA and ISA on magnesium alloy. PMID:21504153

  17. Magnesium status and association with diabetes in the Taiwanese elderly.

    PubMed

    Wang, Jui-Line; Shaw, Ning-Sing; Yeh, Hsiang-Yu; Kao, Mei-Ding

    2005-01-01

    The average dietary intake of magnesium is below recommended dietary allowances in many affluent Western countries. Prolonged low magnesium intake tends to result in hypomagnesaemia which might increase the risk of chronic diseases in elderly people. A national population-based cross-sectional nutrition survey, the Elderly Nutrition and Health Survey in Taiwan (1999-2000), was used to investigate the magnesium status and association with diabetes in the Taiwanese elderly. Dietary magnesium intake was based on 24-hour dietary recalls. Blood biochemical parameters including plasma magnesium and blood glucose were also measured. Average magnesium intake was 250 mg in men and 216 mg in women, which is equivalent to 68-70% of relevant Taiwanese Dietary Reference Intakes. The mean plasma magnesium concentration was 0.903 mmol/L in men and 0.906 mmol/L in women. The prevalence of a plasma magnesium level of <0.7 mmol/L was 0.7-0.9% in the elderly, and that of <0.8 mmol/L was 8.0-9.1%. Elderly vegans had a significantly lower magnesium intake than ovo-lacto vegetarians and non-vegetarians. Diabetic men and women had significantly higher blood glucose levels than non-diabetics. The risk of diabetes was elevated 3.25 times at plasma magnesium levels<0.863 mmol/L. There was an inverse association between plasma magnesium concentration and the prevalence of diabetes. However, no association was found between diabetes and low dietary magnesium. Taiwanese elderly persons had suboptimal levels of dietary magnesium intake, which although may be sufficient to avoid overt magnesium deficiency, may not be sufficient to reduce the risk of diabetes in the elderly. Further prospective study is required to help explain the differential results between dietary and plasma magnesium levels. PMID:16169838

  18. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites.

    PubMed

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg(+2) and Ca(+2) ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg(+2) and Ca(+2) ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg(+2), calcium magnesium phosphates (CMPs) which release Mg(+2) and Ca(+2), and hydroxyapatites (HAs) which release Ca(+2) were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg(+2) and Ca(+2) ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. PMID:25953534

  19. Direct Hydrogenation Magnesium Boride to Magnesium Borohydride: Demonstration of >11 Weight Percent Reversible Hydrogen Storage

    SciTech Connect

    Severa, Godwin; Ronnebro, Ewa; Jensen, Craig M.

    2010-11-16

    We here for the first time demonstrate direct hydrogenation of magnesium boride, MgB2, to magnesium borohydride, Mg(BH4)2 at 900 bar H2-pressures and 400°C. Upon 14.8wt% hydrogen release, the end-decomposition product of Mg(BH4)2 is MgB2, thus, this is a unique reversible path here obtaining >11wt% H2 which implies promise for a fully reversible hydrogen storage material.

  20. 21 CFR 184.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium carbonate. 184.1425 Section 184.1425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  1. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  2. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  3. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  4. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  5. 21 CFR 201.71 - Magnesium labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL... introduced or initially delivered for introduction into interstate commerce after the following dates is... over-the-counter (OTC) drug products intended for oral ingestion shall contain the magnesium...

  6. 21 CFR 201.71 - Magnesium labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL... introduced or initially delivered for introduction into interstate commerce after the following dates is... over-the-counter (OTC) drug products intended for oral ingestion shall contain the magnesium...

  7. 21 CFR 201.71 - Magnesium labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL... introduced or initially delivered for introduction into interstate commerce after the following dates is... over-the-counter (OTC) drug products intended for oral ingestion shall contain the magnesium...

  8. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  9. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  10. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  11. Calcium, magnesium, and potassium in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biochemical and physiological functions and consequences of deficient intakes, which show the nutritional importance of calcium, magnesium and potassium for humans, are reviewed. The dietary recommendations and food sources for these essential mineral elements for humans are presented. Factors t...

  12. Preparation of thorium magnesium-zinc reduction

    NASA Technical Reports Server (NTRS)

    Hariharan, A. V.; Knighton, J. B.; Steunenberg, R. K.

    1969-01-01

    Magnesium-zinc reduction of thorium dioxide is used for the preparation of thorium metal. Potential economic advantages of this technique include use of relatively inexpensive reagents for the metal and flux phases, and production of metal of acceptable quality in good yield.

  13. Effect of magnesium ion on human osteoblast activity

    PubMed Central

    He, L.Y.; Zhang, X.M.; Liu, B.; Tian, Y.; Ma, W.H.

    2016-01-01

    Magnesium, a promising biodegradable metal, has been reported in several studies to increase bone formation. Although there is some information regarding the concentrations of magnesium ions that affect bone remodeling at a cellular level, little is known about the effect of magnesium ions on cell gap junctions. Therefore, this study aimed to systematically investigate the effects of different concentrations of magnesium on bone cells, and further evaluate its effect on gap junctions of osteoblasts. Cultures of normal human osteoblasts were treated with magnesium ions at concentrations of 1, 2 and 3 mM, for 24, 48 and 72 h. The effects of magnesium ions on viability and function of normal human osteoblasts and on gap junction intercellular communication (GJIC) in osteoblasts were investigated. Magnesium ions induced significant (P<0.05) increases in cell viability, alkaline phosphate activity and osteocalcin levels of human osteoblasts. These stimulatory actions were positively associated with the concentration of magnesium and the time of exposure. Furthermore, the GJIC of osteoblasts was significantly promoted by magnesium ions. In conclusion, this study demonstrated that magnesium ions induced the activity of osteoblasts by enhancing GJIC between cells, and influenced bone formation. These findings may contribute to a better understanding of the influence of magnesium on bone remodeling and to the advance of its application in clinical practice. PMID:27383121

  14. Effect of magnesium deficiency on erythrocyte aging in rats.

    PubMed Central

    Elin, R. J.; Utter, A.; Tan, H. K.; Corash, L.

    1980-01-01

    Rats placed on a magnesium-deficient diet show decreased erythrocyte magnesium concentration, shortened erythrocyte survival, and erythrocyte membrane ultrastructure defects and become progressively anemic. Whether these pathologic processes are due to abnormal erythropoiesis or occur in the peripheral circulation is unknown. In the present study, magnesium and hemoglobin concentrations, reticulocyte count, erythrocyte pyrophosphatase, and pyruvate kinase activities were determined at weekly intervals for 6 weeks in whole blood and age-dependent erythrocyte fractions isolated from inbred Fisher rats fed a diet deficient in magnesium or the same diet with added magnesium. Freeze-fracture electron microscopic examinations were performed on age-dependent erythrocyte fractions to evaluate the membrane defect. The youngest red cells from magnesium-deficient rats were similar to those of control animals with respect to erythrocyte magnesium concentrations, pyrophosphatase activities, and membrane morphology. The older erythrocyte fractions from magnesium-deficient rats showed significant decreases in magnesium concentrations, pyrophosphatase activity, and the presence of membrane abnormalities. Thus, new erythrocytes produced in magnesium-deficient rats appear to be normal but rapidly develop biochemical and morphologic abnormalities with aging in a magnesium-deficient plasma environment. Images Figure 1 PMID:6106388

  15. Assessment of magnesium status for diagnosis and therapy.

    PubMed

    Elin, Ronald J

    2010-12-01

    Magnesium is an essential element needed for health. Even though only 1% of the total body magnesium is present in blood, the serum magnesium concentration (SMC) is the predominant test used by medicine to assess magnesium status in patients. The traditional method to establish a reference interval for the SMC is flawed by the large number of "normal" individuals who have a subtle chronic negative magnesium balance due to a significant decrease in magnesium intake over the past century. Evidence-based medicine should be used to establish the appropriate lower limit of the reference interval for health and I recommend 0.85 mmol/L based on current literature. The decrease in magnesium in the diet has led to chronic latent magnesium deficiency in a large number of people since their SMC is still within the reference interval due to primarily the bone magnesium supplementing the SMC. These individuals need adjustment of their diet or magnesium supplementation to achieve a normal magnesium status for health. PMID:20736141

  16. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    PubMed Central

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  17. Fabrication and characterization of AZ91/CNT magnesium matrix composites

    NASA Astrophysics Data System (ADS)

    Park, Yong-Ha; Park, Yong-Ho; Park, Ik-Min; Oak, Jeong-jung; Kimura, Hisamichi; Cho, Kyung-Mox

    2008-12-01

    Carbon Nano Tube (CNT) reinforced AZ91 metal matrix composites (MMC) were fabricated by the squeeze infiltrated method. Properties of magnesium alloys have been improved by impurity reduction, surface treatment and alloy design, and thus the usage for the magnesium alloys has been extended recently. However there still remain barriers for the adaption of magnesium alloys for engineering materials. In this study, we report light-weight, high strength heat resistant magnesium matrix composites. Microstructural study and tensile test were performed for the squeeze infiltrated magnesium matrix composites. The wear properties were characterized and the possibility for the application to automotive power train and engine parts was investigated. It was found that the squeeze infiltration technique is a proper method to fabricate magnesium matrix composites reducing casting defects such as pores and matrix/reinforcement interface separation etc. Improved tensile and mechanical properties were obtained with CNT reinforcing magnesium alloys

  18. Assessment of the magnesium primary production technology. Final report

    SciTech Connect

    Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

    1981-02-01

    At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

  19. Effect of magnesium on the lead induced corrosion and SCC of alloy 800 in neutral crevice solution at high temperature

    NASA Astrophysics Data System (ADS)

    Palani, A.; Lu, B. T.; Tian, L. P.; Luo, J. L.; Lu, Y. C.

    2010-01-01

    Dissolved magnesium species in the feed water reduce the incidence of lead-induced stress corrosion cracking (PbSCC) of Alloy 800. The passivity of material was improved by replacing a part of chlorides in the lead-contaminated chemistry with magnesium chloride, as indicated by: (1) a higher pitting potential; (2) lower passive current densities; (3) a film structure with less defects and more spinel oxides. According to the constant extension rate tensile (CERT) tests conducted in the neutral crevice solutions at 300 °C, lead contamination would reduce the ultimate tensile strength (UTS) and elongation of material. The CERT test results were in agreement with the fracture morphology observations. Magnesium addition significantly reduced the detrimental effect of lead contamination.

  20. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin