Science.gov

Sample records for magnetic anisotropy field

  1. Anisotropy in MHD turbulence due to a mean magnetic field

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.

    1982-01-01

    The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.

  2. Electric Field Controlled Magnetic Anisotropy in a Single Molecule

    NASA Astrophysics Data System (ADS)

    Zyazin, Alexander S.; van den Berg, Johan W. G.; Osorio, Edgar A.; van der Zant, Herre S. J.; Konstantinidis, Nikolaos P.; Leijnse, Martin; Wegewijs, Maarten R.; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-09-01

    We have measured quantum transport through an individual Fe$_4$ single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties, and moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition / subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

  3. Electric field controlled magnetic anisotropy in a single molecule.

    PubMed

    Zyazin, Alexander S; van den Berg, Johan W G; Osorio, Edgar A; van der Zant, Herre S J; Konstantinidis, Nikolaos P; Leijnse, Martin; Wegewijs, Maarten R; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-09-01

    We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled. PMID:20687519

  4. Magnetic stress anisotropy field in plated cylindrical Permalloy films.

    NASA Technical Reports Server (NTRS)

    Lutes, O. S.

    1971-01-01

    An analysis is made of the magnetic stress anisotropy field (Hks) arising from internal and external stress sources in plated-wire memory elements. The analysis takes into consideration circumferential composition variation and cylindrical geometry of the Permalloy film. Expressions are derived relating Hks to uniaxial film stress, average composition, and amplitude of composition variation. A result of particular importance is that even for average zeromagnetostrictive composition (ZMC) films, Hks may still make an appreciable contribution to the total anisotropy field if the composition is not uniform. Calculated Hks characteristics are shown to correlate with anisotropy field changes observed in annealing experiments. Examples are given to show the importance of composition uniformity in determining the stability of the anisotropy field. The utility of the analysis is extended by the inclusion of data expressing the inverse relation between anisotropy field and easy-axis dispersion in the film.

  5. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  6. Anisotropy of photon production: initial eccentricity or magnetic field.

    PubMed

    Bzdak, Adam; Skokov, Vladimir

    2013-05-10

    Recent measurements of the azimuthal anisotropy of direct photons in heavy-ion collisions at the energies of Relativistic Heavy Ion Collider show that it is of the same order as the hadronic one. This finding appears to contradict the expected dominance of photon production from a quark-gluon plasma at an early stage of a heavy-ion collision. A possible explanation of the strong azimuthal anisotropy of the photons, given recently, is based on the presence of a large magnetic field in the early phase of a collision. In this Letter, we propose a method to experimentally measure the degree to which a magnetic field in heavy-ion collisions is responsible for the observed anisotropy of photon production. The experimental test proposed in this Letter may potentially change our understanding of the nonequilibrium stage and possible thermalization in heavy-ion collisions. PMID:23705700

  7. Anisotropies in magnetic field evolution and local Lyapunov exponents

    SciTech Connect

    Tang, X.Z.; Boozer, A.H.

    2000-01-13

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates.

  8. Banana regime pressure anisotropy in a bumpy cylinder magnetic field

    SciTech Connect

    Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.; Hegna, C.C.

    2006-01-15

    The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations ({epsilon}{identical_to}{delta}B/2B<<1). Solutions are obtained by integrating the drift-kinetic equation along field lines in steady state. A closure for the local value of the parallel viscous force B{center_dot}{nabla}{center_dot}{pi}{sub parallel} is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force by a factor of O(1/{epsilon}). A high-frequency limit ({omega}>>{nu}) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion in Cordey eigenfunctions.

  9. Magnetic Anisotropy and Crystalline Electric Field in Quaternary Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    All isostructural compounds RNi2B2C (R =Er, Ho, Dy) show some magnetic transitions in magnetization isotherms at certain applied magnetic fields and temperatures above and below Neel and superconducting temperatures (TN, TC) where TN/TC varies from 0.57 to 1.66 for ErNi2B2C and DyNi2B2C. By using theoretical group analysis of D4h (I4/mmm) to the energy level scheme of crystalline electric field of magnetization isotherms anisotropy at various temperatures, we have obtained some possible ground state energy levels such as singlet Γ4 and first excited doublet state Γ5 in addition to another excited singlet Γ1 . Our crystalline electric field energy scheme analysis shows some qualitative agreement between theoretical calculation and experiments at high magnetic fields regime only, which means the interplay between antiferromagnetsm and superconductivity should be included. Magnetic Anisotropy and Crystalline Electric Field in Quaternary Intermetallic Compounds.

  10. Solar Surface Anisotropy effect on the Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2015-10-01

    Within the literature there are at least 15 references indicating that the horizontal magnetic flux does not exactly balance vertical flux in sunspots, leading to the surprising result that div B would depart from zero. Intuitively, this has to be related to the stratification at the surface of the star, due to which horizontal and vertical typical lengths are different. This surface anisotropy results from gravity, but how does gravity influence the magnetic field? To answer this question, a scenario has been proposed in two recent publications, based on anisotropic Debye shielding. The presentation reported in this paper was devoted to investigate the possibility and causes of a non-zero div B. A scaling law associated with the anisotropy is able to reestablish the nullity of div B, which would lead to a renewed MHD in the solar photosphere layer. An eventual observation in the laboratory is also reported.

  11. Variance Anisotropy of Solar Wind Velocity and Magnetic Field Fluctuations

    NASA Astrophysics Data System (ADS)

    Oughton, S.; Matthaeus, W. H.; Wan, M.

    2015-12-01

    At MHD scales in the solar wind, velocity and magnetic fieldfluctuations are typically observed to have much more energy in thecomponents transverse to the mean magnetic field, relative to theparallel components [eg, 1,2]. This is often referred to asvariance anisotropy. Various explanations for it have been suggested,including that the fluctuations are predominantly shear Alfvén waves[1] and that turbulent dynamics leads to such states [eg, 3].Here we investigate the origin and strength of such varianceanisotropies, using spectral method simulations of thecompressible (polytropic) 3D MHD equations. We report on results from runs with several different classes ofinitial conditions. These classes include(i) fluctuations polarized only in the same sense as shear Alfvénwaves (aka toroidal polarization),(ii) randomly polarized fluctuations, and(iii) fluctuations restricted so that most of the energy is inmodes which have their wavevectors perpendicular, or nearly so, to thebackground magnetic field: quasi-2D modes. The plasma beta and Mach number dependence [4] of quantities like the variance anisotropy, Alfven ratio, and fraction of the energy in the toroidal fluctuations will be examined, along with the timescales for the development of any systematic features.Implications for solar wind fluctuations will be discussed. References:[1] Belcher & Davis 1971, J. Geophys. Res, 76, 3534.[2] Oughton et al 2015, Phil Trans Roy Soc A, 373, 20140152.[3] Matthaeus et al 1996, J. Geophys. Res, 101, 7619.[4] Smith et al 2006, J. Geophys. Res, 111, A09111.

  12. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1‑x)–[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  ‑4.2 kV cm‑1  ⩽  E  ⩽  4.2 kV cm‑1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  13. Two-dimensional field-sensing map and magnetic anisotropy dispersion in magnetic tunnel junction arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhe; Xiao, Gang; Carter, Matthew J.

    2011-04-01

    Due to the inherent disorder in local structures, anisotropy dispersion exists in almost all systems that consist of multiple magnetic tunnel junctions (MTJs). Aided by micromagnetic simulations based on the Stoner-Wohlfarth (S-W) model, we used a two-dimensional field-sensing map to study the effect of anisotropy dispersion in MTJ arrays. First, we recorded the field sensitivity value of an MTJ array as a function of the easy- and hard-axis bias fields, and then extracted the anisotropy dispersion in the array by comparing the experimental sensitivity map to the simulated map. Through a mean-square-error-based image processing technique, we found the best match for our experimental data, and assigned a pair of dispersion numbers (anisotropy angle and anisotropy constant) to the array. By varying each of the parameters one at a time, we were able to discover the dependence of field sensitivity on magnetoresistance ratio, coercivity, and magnetic anisotropy dispersion. The effects from possible edge domains are also discussed to account for a correction term in our analysis of anisotropy angle distribution using the S-W model. We believe this model is a useful tool for monitoring the formation and evolution of anisotropy dispersion in MTJ systems, and can facilitate better design of MTJ-based devices.

  14. Magnetic susceptibilities of V3+ in corundum: Magnetic anisotropy at high fields

    NASA Astrophysics Data System (ADS)

    Brumage, William H.; Quade, C. Richard; Dorman, C. Franklin

    1995-08-01

    We theoretically investigate the behavior of the V3+ ion as an impurity in Al2O3 under high magnetic fields, up to 20 T. In particular, we investigate the introduction of magnetic anisotropy that is lower than the trigonal symmetry of the host crystal. Two approaches are used for the calculations. First, fourth-order perturbation theory is used to develop quartic terms plus one sextic term in the susceptibility tensor that are good for fields up to 4 T. Then, the three-level energy matrix is reduced exactly to obtain the anisotropy at higher fields. It is found that the dominant contributions to the magnetic-induced anisotropy arise from the χxxxx term, while the χxxzz=χzxxz, χzzzz, and the χxxxxxx terms give a much lower contribution. Temperature-dependent effects are reported. There is a very small dependence of the magnetization upon the zero-field splitting.

  15. Field orientation dependence of magnetization reversal in thin films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Hovorka, Ondrej; Berger, Andreas

    2016-08-01

    The magnetization reversal process of hexagonal-close-packed (hcp) (0001) oriented Co and C o90R u10 thin films with perpendicular magnetic anisotropy (PMA) has been studied as a function of temperature and applied magnetic field angle. Room temperature pure cobalt exhibits two characteristic reversal mechanisms. For angles near in-plane field orientation, the magnetization reversal proceeds via instability of the uniform magnetic state, whereas in the vicinity of the out-of-plane (OP) orientation, magnetization inversion takes place by means of domain nucleation. Temperature dependent measurements enable the modification of the magnetocrystalline anisotropy and reveal a gradual disappearance of the domain nucleation process during magnetization reversal for elevated temperatures. Ultimately, this suppression of the domain nucleation process leads to the exclusive occurrence of uniform state instability reversal for all field orientations at sufficiently high temperature. Comparative magnetic measurements of C o90R u10 alloy samples allow the identification and confirmation of the high temperature remanent magnetization state of cobalt as an OP stripe domain state despite the reduction of magnetocrystalline anisotropy. Detailed micromagnetic simulations supplement the experimental results and corroborate the physical understanding of the temperature dependent behavior. Moreover, they enable a comprehensive identification of the complex energy balance in magnetic films with PMA, for which three different magnetic phases occur for sufficiently high anisotropy values, whose coexistence point is tricritical in nature.

  16. Exchange anisotropy determined by magnetic field dependence of ac susceptibility

    NASA Astrophysics Data System (ADS)

    Rodríguez-Suárez, R. L.; Vilela Leão, L. H.; de Aguiar, F. M.; Rezende, S. M.; Azevedo, A.

    2003-10-01

    ac susceptibility measurements of ferromagnetic/antiferromagnetic (FM/AF) bilayers are usually performed as a function of the temperature. In this work we describe measurements of transverse biased ac susceptibility (χt) of FM/AF bilayers as a function of the applied magnetic field H0. The measurements were carried out at room temperature by means of an ac magneto-optical Kerr effect susceptometer. The χt-1(H0) dependence, at the saturation magnetization regime, exhibits a linear behavior with the applied field parallel and perpendicular to the exchange bias direction. The linear extrapolation of χt-1 versus H0 cuts the abscissa at asymmetrical values of field due to the exchange bias coupling. The inverse susceptibility is calculated in the saturation regime by a model, which takes into account the free energy of both layers plus a term corresponding to the interfacial coupling. The exchange coupling field (HE) and uniaxial anisotropy (HU) are extracted from the best fit to the experimental results. The results obtained are crosschecked by those obtained from ferromagnetic resonance (FMR) and dc magnetometry. The measurements of the exchange bias and the uniaxial field in all of the three analyzed bilayers gave values that are consistently lower when measured by FMR than those obtained by ac and dc magnetometry. It is argued that the apparently discrepant values of HE and HU, obtained by different techniques, might be explained by existence of unstable AF grains at the AF/FM interface.

  17. A Way of Tailoring Magnetic Anisotropy of Co Nanowire Arrays: Magnetic Field Annealing.

    PubMed

    Ren, Yong; Qu, Li; Fan, Jiangxia; Dai, Bo; Wang, Jianbo

    2015-06-01

    Hexagonal close-packed Co nanowire arrays in anodic aluminum oxide template with the diameter of 50 nm have been fabricated using an ac electrodeposition method. The effect of magnetic field annealing on the thermal stability and magnetic properties of these nanwire arrays was studied. XRD measurements indicate the increase of diffraction intensity with the increase of heat-treatment temperature without magnetic field. Furthermore, the intensity of diffraction peak decreases rapidly if the sample undergoes the magnetic field annealing. Influence of different annealing process on the magnetic properties of Co nanowire arrays has also been studied. It is found that the magnetocrystalline anisotropy of hcp Co becomes weaker after magnetic field annealing, which lead to increase of the total anisotropy of Co nanowire arrays. PMID:26369071

  18. Manipulation of magnetic state in nanostructures by perpendicular anisotropy and magnetic field

    SciTech Connect

    Chen, J. P.; Xie, Y. L.; Chu, P.; Wang, Y. L.; Wang, Z. Q.; Gao, X. S.; Liu, J.-M.

    2014-06-28

    We investigate the transitions of spin configurations in ultrathin nanostructures by tuning the perpendicular anisotropy (K{sub z}) and out-of-plane magnetic field (H), using the Monte Carlo simulation. It is revealed that enhancing the anisotropy K{sub z} can drive the evolution of in-plane vortex state into intriguing saturated magnetization states under various H, such as the bubble domain state and quadruple-block-domain state etc. The spin configurations of these states exhibit remarkable H-dependence. In addition, the strong effects of geometry and size on the spin configurations of nanostructures are observed. In particular, a series of edged states occur in the circular disk-shaped lattices, and rich intricate saturated magnetization patterns appear in big lattices. It is suggested that the magnetic states can be manipulated by varying the perpendicular anisotropy, magnetic field, and geometry/size of the nanostructures. Furthermore, the stability (retention capacity) of the saturated magnetization states upon varying magnetic field is predicted, suggesting the potential applications of these saturated magnetization states in magnetic field-controlled data storages.

  19. Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy

    DOE PAGESBeta

    Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus; Ludtka, Gerard Michael; Rios, Orlando; Parish, Chad M

    2015-07-09

    During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.

  20. Method and means for measuring the anisotropy of a plasma in a magnetic field

    DOEpatents

    Shohet, J.L.; Greene, D.G.S.

    1973-10-23

    Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)

  1. Inner Core Anisotropy Due to the Magnetic Field--induced Preferred Orientation of Iron.

    PubMed

    Karato, S

    1993-12-10

    Anisotropy of the inner core of the Earth is proposed to result from the lattice preferred orientation of anisotropic iron crystals during their solidification in the presence of a magnetic field. The resultant seismic anisotropy is related to the geometry of the magnetic field in the core. This hypothesis implies that the observed anisotropy (fast velocity along the rotation axis) indicates a strong toroidal field in the core, which supports a strong field model for the geodynamo if the inner core is made of hexagonal close-packed iron. PMID:17781788

  2. Magnetic field-dependent shape anisotropy in small patterned films studied using rotating magnetoresistance

    PubMed Central

    Fan, Xiaolong; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng

    2015-01-01

    Based on the electric rotating magnetoresistance method, the shape anisotropy of a Co microstrip has been systematically investigated. We find that the shape anisotropy is dependent not only on the shape itself, but also on the magnetization distribution controlled by an applied magnetic field. Together with micro-magnetic simulations, we present a visualized picture of how non-uniform magnetization affects the values and polarities of the anisotropy constants and . From the perspective of potential appliantions, our results are useful in designing and understanding the performance of micro- and nano-scale patterned ferromagnetic units and the related device properties. PMID:26563520

  3. Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance

    SciTech Connect

    Zhang, Y.; Klein, J.-O.; Chappert, C.; Ravelosona, D.; Zhao, W. S.

    2014-01-20

    High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.

  4. Field Variation of Low-field Anisotropy of Magnetic Susceptibility of Rocks: Measurement Problems

    NASA Astrophysics Data System (ADS)

    Hrouda, F.

    Theory of low-field anisotropy of magnetic susceptibility (AMS) assumes linear rela- tionship between magnetization and magnetizing field. This assumption is precisely valid in diamagnetic and paramagnetic minerals by definition, while in ferrimagnetic and antiferromagnetic minerals this relationship is in general non-linear, represented by hysteresis loop, being linear only in very weak fields in which the initial suscep- tibility is measured. Recently, it has been shown that, in using common measuring fields, the initial susceptibility is always measured in magnetite, while in pyrrhotite, hematite, and titanomagnetite the measured susceptibility may often be outside the initial susceptibility range. The field variation of low-field AMS results in lowering the quality of the fit of the susceptibility ellipsoid to the measured data and in mis- estimating the degree of anisotropy. Fortunately, the orientations of the principal sus- ceptibilities are virtually field-independent. The problem can be solved in basically three ways. The simplest way is using very weak measuring fields (less than 10 A/m), but this can result in significant lowering sensitivity and precision. The other way is to respect the non-linearity and measure the susceptibility in so many directions that contour diagram of directional susceptibilities can be presented instead of suscepti- bility ellipsoid. The third way is to measure the AMS in at least two fields within the Rayleigh law range and calculate the initial directional susceptibilities from which the AMS can be correctly determined using linear theory.

  5. Field-dependent perpendicular magnetic anisotropy in CoFeB thin films

    SciTech Connect

    Barsukov, I. Krivorotov, I. N.; Fu, Yu; Gonçalves, A. M.; Sampaio, L. C.; Spasova, M.; Farle, M.; Arias, R. E.

    2014-10-13

    We report ferromagnetic resonance measurements of perpendicular magnetic anisotropy in thin films of Ta/Co{sub 20}Fe{sub 60}B{sub 20}/MgO as a function of the Co{sub 20}Fe{sub 60}B{sub 20} layer thickness. The first and second order anisotropy terms show unexpectedly strong dependence on the external magnetic field applied to the system during the measurements. We propose strong interfacial spin pinning as a possible origin of the field-dependent anisotropy. Our results imply that high-field anisotropy measurements cannot be directly used for quantitative evaluation of zero-field performance parameters of CoFeB-based devices such as spin torque memory.

  6. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    SciTech Connect

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.

  7. Leveraging intrinsic chain anisotropy to align coil-coil block copolymers with magnetic fields

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Zhang, Kai; Gopinadhan, Manesh; Larson, Steve; Majewski, Pawel; Yager, Kevin; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    Magnetic field alignment of block copolymers (BCPs) has typically relied on the presence of liquid crystalline or crystalline assemblies to provide sufficient magnetic anisotropy to drive alignment. Recent experiments however show that alignment is also possible in simple coil-coil BCPs. In particular, alignment of lamellae was observed in poly(styrene-b-4-vinylpyridine) (PS-P4VP) on cooling across the order-disorder transition at field strengths as low as 1 T, with alignment improving markedly with increasing field strength and decreasing cooling rate. Here we discuss the intrinsic chain anisotropy which drives the observed alignment, and its display as a net microdomain anisotropy due to chain tethering at the block interface. We use in-situ X-ray scattering to study the phase behavior and temperature-, time-, and field- dependent dynamics of magnetic alignment in coil-coil BCPs, highlighting the important roles of chain anisotropy and grain size in alignment. For the right combination of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly in other coil-coil systems, including cylinder-forming poly(styrene-b-dimethylsiloxane). Field alignment of PS-P4VP with PEO and other blends provides a route to form functional materials such as nanoporous films and ion conducting polymers.

  8. Measuring remanence anisotropy of hematite in red beds: anisotropy of high-field isothermal remanence magnetization (hf-AIR)

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario; Kodama, Kenneth P.

    2009-09-01

    The potential of using high-field anisotropy of isothermal remanence magnetization (hf-AIR) measurements for determining the origin of natural remanent magnetization in red beds and for identifying and correcting possible red-bed inclination shallowing was investigated for specimens of the Carboniferous Shepody Formation of New Brunswick and Nova Scotia, Canada. The technique makes it possible for a typical paleomagnetic laboratory to measure the remanence anisotropy of high-coercivity hematite. High-field (hf) AIR was used in conjunction with 100 mT alternating field (af) and 120°C thermal demagnetization to separate the contribution of hematite to the remanence anisotropy from that of magnetite/maghemite and goethite, respectively. A 5-T impulse DC magnetic field was used for the hf-AIR to reset the magnetic moment of high-coercivity hematite so that demagnetization between AIR orientations was not necessary. The ability of a 5-T field to reset the magnetization was tested by generating an isothermal remanent magnetization acquisition curve for hematite by using impulse DC magnetic fields up to 5 T in one orientation and followed by applying a field in the opposite direction at each step. Each field application was treated by 120°C heating and 100 mT af demagnetization before measurement. At 5 T, the difference between the magnetizations applied in opposite directions disappeared indicating that no magnetic memory persisted at this field strength. We performed a validity and reproducibility test of our hf-AIR measurement technique by measuring three specimens multiple times along two orthogonal coordinate systems. The method yielded highly reproducible results and, on rotating the specimen's coordinates, the fabric rotated by 90° as expected, showing that it is not an artifact of the technique. We also measured hf-AIR on samples that had previously been chemically demagnetized in 3N HCl to remove the secondary, chemically grown pigmentary hematite. The hf

  9. Investigations of cosmic ray anisotropies and their relationship to concurrent magnetic field data

    NASA Technical Reports Server (NTRS)

    Allum, F. R.

    1974-01-01

    Investigations of cosmic ray anisotropies and their relationship to concurrent magnetic field data are reported. These investigations range in scope from the examination of data very late in the decay phase of a solar particle event where long term (approximately 6 hour) averages are used and definite interplanetary effects sought after to an examination of the change in low energy particle anisotropy as the satellite approaches the bow shock and the magnetopause.

  10. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    SciTech Connect

    Zhou, Hengan; Fan, Xiaolong Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  11. Determination of the electric field induced anisotropy change in sub-100 nm perpendicularly magnetized devices

    NASA Astrophysics Data System (ADS)

    Huang, Jiancheng; Tran, Michael; Lim, Sze Ter; Huang, Aihong; Yang, Chuyi; Yap, Qi Jia; Han, Guchang

    2016-05-01

    We measure the voltage or electric field (EF) modulated change in anisotropy using two methods on the same nanometer sized device: 1) Directly using the area of the hard axis magnetization loop and 2) Indirectly using the switching field distribution method. Both methods yield similar values of efficiency. With the indirect method, the efficiency derived from the thermal stability was found to be more consistent than that from the anisotropy field. Our data also suggests that memory devices that rely solely on EF effects may benefit from larger device sizes.

  12. ANISOTROPY AS A PROBE OF THE GALACTIC COSMIC-RAY PROPAGATION AND HALO MAGNETIC FIELD

    SciTech Connect

    Qu, Xiao-bo; Zhang, Yi; Liu, Cheng; Hu, Hong-bo; Xue, Liang

    2012-05-01

    The anisotropy of cosmic rays (CRs) in the solar vicinity is generally attributed to CR streaming due to the discrete distribution of CR sources or local magnetic field modulation. Recently, the two-dimensional large-scale CR anisotropy has been measured by many experiments in the TeV-PeV energy range in both hemispheres. The tail-in excess along the tangential direction of the local spiral arm and the loss cone deficit pointing to the north Galactic pole direction agree with what have been obtained in tens to hundreds of GeV. The persistence of the two large-scale anisotropy structures in such a wide energy range suggests that the anisotropy might be due to global streaming of the Galactic CRs (GCRs). This work tries to extend the observed CR anisotropy picture from the solar system to the whole galaxy. In such a case, we can find a new interesting signature, a loop of GCR streaming, of the GCR propagation. We further calculate the overall GCR streaming induced magnetic field, and find a qualitative consistency with the observed structure of the halo magnetic field.

  13. Tuning of the nucleation field in nanowires with perpendicular magnetic anisotropy

    SciTech Connect

    Kimling, Judith; Gerhardt, Theo; Kobs, Andre; Vogel, Andreas; Peter Oepen, Hans; Merkt, Ulrich; Meier, Guido; Wintz, Sebastian; Im, Mi-Young; Fischer, Peter

    2013-04-28

    We report on domain nucleation in nanowires consisting of Co/Pt multilayers with perpendicular magnetic anisotropy that are patterned by electron-beam lithography, sputter deposition, and lift-off processing. It is found that the nucleation field can be tuned by changing the geometry of the wire ends. A reduction of the nucleation field by up to 60% is achieved when the wire ends are designed as tips. This contrasts with the behavior of wires with in-plane anisotropy where the nucleation field increases when triangular-pointed ends are used. In order to clarify the origin of the reduction of the nucleation field, micromagnetic simulations are employed. The effect cannot be explained by the lateral geometrical variation but is attributable to a local reduction of the perpendicular anisotropy caused by shadowing effects due to the resist mask during sputter deposition of the multilayer.

  14. On the alignment of plasma anisotropies and the magnetic field direction in the solar wind

    NASA Technical Reports Server (NTRS)

    Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Ness, N. F.

    1977-01-01

    One year's Imp 6 solar wind plasma and magnetic field data are examined to determine whether anisotropies in particle velocity distributions are aligned with the measured interplanetary magnetic field vector. Alignment of components in the analysis plane was generally found to be excellent whenever plasma parameter magnitudes were larger than determination uncertainties, although some spread exists (typical rms approximately equal to 10 deg). By assuming cylindrical symmetry about the simultaneously measured magnetic field vector during the 1-year interval under study, three-dimensional values of selected solar wind plasma thermal parameters were constructed from the two-dimensional plasma measurements, and the statistical properties of their distributions have been tabulated.

  15. In-plane magnetic anisotropy and coercive field dependence upon thickness of CoFeB

    NASA Astrophysics Data System (ADS)

    Kipgen, Lalminthang; Fulara, Himanshu; Raju, M.; Chaudhary, Sujeet

    2012-09-01

    The structural and magnetic properties of as-grown 5-50 nm thin ion-beam sputter deposited transition metal-metalloid Co20Fe60B20 (CFB) films are reported in this communication. A broad peak observed at 2θ∼45° in the glancing angle X-ray diffraction pattern revealed the formation of very fine nano-sized grains embedded in majority amorphous CFB matrix. Although no magnetic field is applied during deposition, the longitudinal magneto-optic Kerr effect measurements performed at 300 K in these as-grown films clearly established the presence of in-plane uniaxial magnetic anisotropy (Ku). It is argued that this observed anisotropy is strain-induced. This is supported by the observed dependence of direction of Ku on the angle between applied magnetic field and crystallographic orientation of the underlying Si(100) substrate, and increase in the coercivity with the increase of the film thickness.

  16. MAGNETIC FIELDS AND COSMIC-RAY ANISOTROPIES AT TeV ENERGIES

    SciTech Connect

    Battaner, Eduardo; Castellano, Joaquín; Masip, Manuel E-mail: jcastellano@correo.ugr.es

    2015-02-01

    Several cosmic-ray (CR) observatories have provided high-accuracy maps of the sky at TeV-PeV energies. The data reveal an O(0.1%) deficit from north galactic directions that peaks at 10 TeV and then evolves with the energy, together with other anisotropies at smaller angular scales. Using the Boltzmann equation, we derive expressions for the CR flux that fit these features. The anisotropies depend on the local interstellar magnetic field B{sub IS}, on the average galactic field B{sub R} in our vicinity, and on correlations between fluctuating quantities. We show that the initial dipole anisotropy along B{sub IS} can be modulated by changes in the global CR flow, and that a variation in the dipole direction would imply a given radius of coherence for the local B{sub IS}. We also show that small- and medium-scale anisotropies may appear when the full-sky anisotropy finds a field configuration acting as a magnetic lens.

  17. Alignment of iron nanoparticles in a magnetic field due to shape anisotropy

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, B.; Nicholson, D. M.; Eisenbach, M.; Parish, C.; Ludtka, G. M.; Rios, O.

    2015-11-01

    During high magnetic field solidification processing there is evidence for the alignment of nanoscale metallic particles with elongated morphologies that nucleate from a liquid metal. Such alignment occurs well above the Curie temperature of the particle where the magneto-crystalline anisotropy energy and exchange energy contributions are negligible. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with a scaling law for the dipole-dipole interaction energy as a function of the particle size to identify the conditions under which such alignment is possible.

  18. Effects of the galactic magnetic field upon large scale anisotropies of extragalactic cosmic rays

    SciTech Connect

    Harari, D.; Mollerach, S.; Roulet, E. E-mail: mollerach@cab.cnea.gov.ar

    2010-11-01

    The large scale pattern in the arrival directions of extragalactic cosmic rays that reach the Earth is different from that of the flux arriving to the halo of the Galaxy as a result of the propagation through the galactic magnetic field. Two different effects are relevant in this process: deflections of trajectories and (de)acceleration by the electric field component due to the galactic rotation. The deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the Earth from another direction. This applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar Compton-Getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. For an observer moving with the solar system, cosmic rays traveling through far away regions of the Galaxy also experience an electric force coming from the relative motion (due to the rotation of the Galaxy) of the local system in which the field can be considered as being purely magnetic. This produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux.

  19. Modification of the classical Heisenberg helimagnet by weak uniaxial anisotropy and magnetic field

    SciTech Connect

    Zaliznyak, I.A.; Zhitomirsky, M.E.

    1995-09-01

    A classical ground state of the isotropic Heisenberg spin Hamiltonian on a primitive Bravais lattice is known to be a single-Q plane helix. Additional uniaxial anisotropy and external magnetic field can greatly distort this structure by generating higher-order (at the wave vectors nQ) Fourier harmonics in the spatial spin configuration. These features are not captured within the usual formalism based on the Luttinger-Tisza theorem, when the classical ground state energy is minimized under the {open_quotes}weak{close_quotes} condition on the lengths of the spins. We discuss why the correct solution is lost in that approach and present another microscopic treatment of the problem. For easy-axis and easy-plane quadratic uniaxial anisotropy it allows one to find the classical ground state for general Q and for any orientation of the magnetic field considering the effect of anisotropy (but not the field) as a perturbation of the exchange structure. As a result, the classical ground state energy, the uniform magnetization, and the magnetic Bragg peak intensities that are measured in the experiments are calculated. 21 refs., 1 fig.

  20. Speed of field-driven domain walls in nanowires with large transverse magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Depassier, M. C.

    2015-07-01

    Recent analytical and numerical work on field-driven domain wall propagation in nanowires and thin films has shown that for large transverse anisotropy and sufficiently large applied fields the Walker profile becomes unstable before the breakdown field, giving way to a domain wall whose speed increases at a slower rate with the applied field. We perform an asymptotic expansion of the Landau-Lifshitz-Gilbert equation for large transverse magnetic anisotropy and show that the asymptotic dynamics reproduces this behavior. The appearance of a different regime in the asymptotic dynamics is due to a transition from a pushed to a pulled front of a reaction diffusion equation in which the speed of the domain wall increases with the square root of the applied field

  1. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  2. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  3. Hale cycle effects in cosmic ray east-west anisotropy and interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.

    1993-01-01

    We have reanalyzed diurnal anisotropy data obtained with the shielded ion chamber (IC) at Cheltenham/Fredericksburg and the neutron monitor (NM) at Swarthmore/Newark. IC data are for the 1936-1977 period and NM data are for the 1965-1988 period. We have corrected IC data for the diurnal temperature effect. Application of this correction results in a better agreement between IC and other data sets, thereby making it possible to study the long-term changes in the diurnal anisotropy using IC data. The behavior of the annual mean east-west anisotropy is studied for 53 years of observations. The period encompasses more than two solar magnetic (Hale) cycles. Its amplitude undergoes the expected 11 and 22 year variations, with the largest changes occurring near solar activity minima. Moreover, the data indicate the presence of the subsidiary maxima for the entire 53-year period, following the solar polar field reversals, during the declining phases of activity cycles when high-speed solar wind streams are present in the heliosphere. The data suggest that the amplitude of the subsidiary maximum is large when the solar polar magnetic field points toward the sun in the Northern Hemisphere, and radial anisotropy is absent.

  4. Anisotropy of the Vortex Magnetic Field Distribution in LuNi2B2

    NASA Astrophysics Data System (ADS)

    Eskildsen, M. R.; Debeer-Schmitt, L.; Rovira, K.; Jenkins, N.; Dewhurst, C. D.; Bud'Ko, S. L.; Canfield, P. C.

    2008-03-01

    It is well known that the vortex lattice (VL) symmetry and orientation in type-II superconductors is very sensitive to any anisotropy within the screening current plane. A classic example is the sequence of transitions from hexagonal to rhombic to square symmetry, which was first observed in the borocarbide superconductors and explained by a Fermi surface anisotropy coupled with the non-local electrodynamics responsible for vortex-vortex interactions. Recently, however, this is mounting experimental evidence for a strong gap anisotropy and possible point nodes in the basal plane of these materials. Here we report on small-angle neutron scattering studies of the VL in a carefully annealed, high quality LuNi2B2C single crystal, which permitted us to measure the VL form factor for a large number of reflections. These measurements allow a reconstruction of the real space profile of the magnetic field around the vortices, reflecting the basal plane anisotropy of the screening currents in LuNi2B2C. The results will be compared to predictions for both Fermi surface and gap anisotropies, and will serve as a valuable reference for more complicated compounds as e.g. Sr2RuO4, heavy fermions and high-Tc's.

  5. Effect of MgO/Fe Interface Oxidation State on Electric-Field Modulation of Interfacial Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Guan, X. W.; Cheng, X. M.; Wang, S.; Huang, T.; Xue, K. H.; Miao, X. S.

    2016-06-01

    The impact of the MgO/Fe interface oxidation state on the electric-field-modified magnetic anisotropy in MgO/Fe has been revealed by density functional calculations. It is shown that the influence of the interface oxidation is strong enough to dominate the effect of the electric field on the magnetic anisotropy of MgO/Fe-based films. The magnetoelectric coefficients are calculated to be positive for the ideal and overoxidized MgO/Fe interface, but an abnormal negative value emerges in the underoxidized case. By analyzing the interface states based on density of states and band structures, we demonstrate that the considerably different electronic structures of the three oxidized MgO/Fe interfaces lead to the strong discrepancy in the electric-field modulation of the interfacial magnetic anisotropy. These results are of considerable interest in the area of electric-field-controlled magnetic anisotropy and switching.

  6. Effect of MgO/Fe Interface Oxidation State on Electric-Field Modulation of Interfacial Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Guan, X. W.; Cheng, X. M.; Wang, S.; Huang, T.; Xue, K. H.; Miao, X. S.

    2016-03-01

    The impact of the MgO/Fe interface oxidation state on the electric-field-modified magnetic anisotropy in MgO/Fe has been revealed by density functional calculations. It is shown that the influence of the interface oxidation is strong enough to dominate the effect of the electric field on the magnetic anisotropy of MgO/Fe-based films. The magnetoelectric coefficients are calculated to be positive for the ideal and overoxidized MgO/Fe interface, but an abnormal negative value emerges in the underoxidized case. By analyzing the interface states based on density of states and band structures, we demonstrate that the considerably different electronic structures of the three oxidized MgO/Fe interfaces lead to the strong discrepancy in the electric-field modulation of the interfacial magnetic anisotropy. These results are of considerable interest in the area of electric-field-controlled magnetic anisotropy and switching.

  7. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1992-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the ransition temperature.

  8. Pressure-anisotropy-driven microturbulence and magnetic-field evolution in shearing, collisionless plasma

    NASA Astrophysics Data System (ADS)

    Melville, Scott; Schekochihin, Alexander A.; Kunz, Matthew W.

    2016-07-01

    The non-linear state of a high-beta collisionless plasma is investigated where an imposed shear amplifies or diminishes a uniform mean magnetic field, driving pressure anisotropies and, therefore, firehose or mirror instabilities. To mimic the local behaviour of a macroscopic flow, the shear is switched off or reversed after one shear time, so a new macroscale configuration is superimposed on previous microscale state. A threshold plasma beta is found: when β ≪ Ω/S (ion cyclotron frequency/shear rate), the emergence/disappearance of firehose or mirror fluctuations is quasi-instantaneous compared to the shear time (lending some credence to popular closures that assume this). This follows from the free decay of these fluctuations being constrained by the same marginal-stability conditions as their growth in the unstable regime, giving the decay time ˜β/Ω ≪ S-1. In contrast, when β ≳ Ω/S, the old microscale state only disappears on the shear time-scale. In this `ultra-high-beta' regime, driven firehose fluctuations grow secularly to order-unity amplitudes, compensating for the decrease of the mean field and thus pinning the pressure anisotropy at marginal stability without scattering particles - unlike what happens at moderate β. After the shear reverses, the shearing away of these fluctuations compensates for the increase of the mean field and thus prevents growth of the pressure anisotropy, so the system stays close to the firehose threshold, does not go mirror-unstable, the total magnetic energy barely changing at all. Implications for various astrophysical situations, especially the origin of cosmic magnetism, are discussed: collisionless effects appear mostly beneficial to fast magnetic-field generation.

  9. Anisotropy in Magnetism

    NASA Astrophysics Data System (ADS)

    Baberschke, Klaus

    The enormous research on magnetic properties of ultrathin films and nanostructures produces also new activities in the fundamental understanding of the magnetic anisotropy energy (MAE) and the anisotropy of the orbital magnetic momentapprox 0.05\\ Å. This small change in structure and symmetry increa ses the MAE by several orders of magnitude and lifts the quenching of the orbital moment. Increases of 20-30 % of the orbital moment mu _{L} are observed. This experimental finding is confirmed by full relativistic ab initio calculations. Various experiments deliver the full temperature dependence of all MAE contributions. The temperature dependence remains a challenge for the theory in itine rant magnetism.

  10. Anatomy of electric field control of perpendicular magnetic anisotropy at Fe/MgO interfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F.; Yang, H. X.; Hallal, A.; Dieny, B.; Chshiev, M.

    2016-01-01

    The charge-mediated effect of electric field on the perpendicular magnetic anisotropy (PMA) of Fe/MgO interfaces is investigated using first-principles calculations. We present an approach by discussing this effect in relation to the intrinsic dipole field existing at the Fe/MgO interface. A firm correlation between the PMA and the interfacial dipole is established and further verified in the absence of an applied electric field. The on-site projected PMA analysis not only elucidates that the effect of electric field on the PMA extends beyond the interfacial Fe layer, but also shows that the second Fe layer carries the largest contribution to the effect. This observation is interpreted in relation to the orbital hybridization changes induced by applying an electric field.

  11. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Moučka, R.; Sapurina, I.; Spivak, Yu. M.; Moshnikov, V. A.

    2012-01-01

    This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ*) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from -20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ*. It is established that, at high frequencies, the μ* of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ* in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.

  12. Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Roberts, D. Aaron

    2010-01-01

    We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.

  13. Petrophysical Characterization of Stony Meteorites Using Low Field Magnetic Susceptibility: Initial Results From Anisotropy Measurements

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Ernst, R. E.; Herd, R. K.; Claire, S.

    2004-05-01

    Low field magnetic susceptibility represents a fast, systematic and non-destructive technique of meteorite classification [1-4]. We previously reported measurements of bulk susceptibility, and its frequency dependence, along with a `proxy' measure of anisotropy, on 204 specimens from 108 different meteorites in the National Meteorite Collection of Canada [5,6]. Measurements were performed on a Sapphire Instruments Model 2B. Bulk susceptibility values followed expected trends, governed by metal content, with values increasing from LL, to L, to H, to E chondrites. Frequency dependence (19000 vs 825 Hz) was greatest in H and C chondrites. Aubrites (AUB) and Howardites (HOW) had the lowest. Anisotropy of magnetic susceptibility (AMS) was measured using a `proxy' approach: the mean value determined from a series of random sample orientations was compared with repeated measurements in one orientation. AUB, E chondrites and Martian SNCs had the largest inferred anisotropies, while LL and C chondrites had the lowest. Here we report initial results from a follow-up study. Quantitative measurements of the AMS were made on 67 stony meteorite specimens. AMS measurements [3,5,6,7,8,9] can provide information on the physical fabric of the meteorite, and may relate to its deformational history. Samples measured show significant degrees of anisotropy ranging from 1-50 % for an individual specimen (in parentheses is the number of specimens used in the class mean): AUB (5), Acapulcoites (1) and E chondrites (10) display the largest degrees of anisotropy, 40±11 (1 standard deviation), 34, and 24±10, respectively. These classes are followed by Diogenite (1) 20, H (13) 14±7 and L (10) 13±6 chondrites, Brachinite (1) 11, Ureilite (2) 8, Eucrite (4) 7±4, C chondrites (14) 6±3, and Rumurutiite (1) 4. These results match a similar trend based on the `proxy' method [5,6]: AUB and E chondrites were found to have the highest inferred anisotropies followed by tightly grouped H and L

  14. Orientational dynamics of ferrofluids with finite magnetic anisotropy of the particles: relaxation of magneto-birefringence in crossed fields.

    PubMed

    Raikher, Yu L; Stepanov, V I; Bacri, J-C; Perzynski, R

    2002-08-01

    Dynamic birefringence in a ferrofluid subjected to crossed bias (constant) and probing (pulse or ac) fields is considered, assuming that the nanoparticles have finite magnetic anisotropy. This is done on the basis of the general Fokker-Planck equation that takes into account both internal magnetic and external mechanical degrees of freedom of the particle. We describe the orientation dynamics in terms of the integral relaxation time of the macroscopic orientation order parameter. To account for an arbitrary relation between the bias (external) and anisotropy (internal) fields, an interpolation expression for the integral relaxation time is proposed and justified. A developed description is used to interpret the measurements of birefringence relaxation in magnetic fluids with nanoparticles of high (cobalt ferrite) and low (maghemite) anisotropy. The proposed theory appears to be in full qualitative agreement with all the experimental data available. PMID:12241160

  15. Anisotropy of 2G HTS racetrack coils in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Chudy, Michal; Chen, Yiran; Zhang, Min; Coombs, T. A.

    2013-07-01

    Pancake or racetrack coils wound with second generation high-temperature superconductors (2G HTSs) are important elements for numerous applications of HTS. The applications of these coils are primarily in rotating machines such as motors and generators where they must withstand external magnetic fields from various orientations. The characterization of 2G HTS coils is mostly focused on AC loss assessment, critical current and maximum magnetic field evaluation. In this study, racetrack coils will be placed in different orientations of external magnetic fields—Jc (Ic) versus angle measurements will be performed and interpreted. Full attention is paid to studies of anisotropy Jc versus angle curves for short samples of 2G HTS tapes. As will be shown, the shape of the Jc versus angle curves for tapes has a strong influence on the Jc (Ic) versus angle curves for coils. In this work, a unique and unpredicted behavior of the Jc versus angle curves for the 2G HTS racetrack coils was found. This will be analyzed and fully explained.

  16. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  17. Ru/FeCoB double layered film with high in-plane magnetic anisotropy field of 500 Oe

    NASA Astrophysics Data System (ADS)

    Hirata, Ken-ichiro; Hashimoto, Atsuto; Matsuu, Toshimitsu; Nakagawa, Shigeki

    2009-04-01

    FeCoB layers prepared on Ru underlayer possess a high saturation magnetization Ms and a high in-plane magnetic anisotropy filed Hk. Effects of preparation conditions were investigated. Low Ar gas pressure condition and thicker film thickness were effective to attain distortion of FeCo crystallite. As the crystallinity of Ru underlayer became higher, higher Hk was induced. The accumulation of anisotropic stress in the film caused by the oblique incidences of depositing atoms with high energy seems to be one of the important effects to attain high anisotropy field. It was succeeded to prepare the Ru/FeCoB film with high Hk of 500 Oe.

  18. Measurement of magnetostriction and induced magnetic anisotropy by SAMR method in Co-rich stress + field annealed amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Blanco, J. M.; González, J.; Vázquez, M.; Barandiarán, J. M.; Hernando, A.

    1991-10-01

    The saturation magnetostriction (λ s) and induced magnetic anisotropy ( Kind) in (Co 0.95Fe 0.05) 80Si 10B 10 annealed amorphous alloy ribbons have been measured at room temperature with the SAMR (small-angle magnetization rotation) method. The ribbons were annealed under simulataneous action of a stress and/or magnetic field. The variations of λ s and Kind show parallel trends in the cases of stress and stress+field annealings but not for single field annealing. These variations are connected with microstructural changes originated during the treatments.

  19. Magnetic anisotropy and crystalline electric field effects in RRh{sub 4}B{sub 4} single crystals.

    SciTech Connect

    Zhou, H.; Lambert, S. E.; Maple, M. B.; Dunlap, B. D.; Materials Science Division; Univ. of California at San Diego

    2009-08-01

    Research on polycrystalline RRh{sub 4}B{sub 4} samples has shown that crystalline electric field (CEF) effects play an important role in these compounds. The successful synthesis of single crystal samples of RRh{sub 4}B{sub 4} with R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu has provided an opportunity to further investigate CEF effects in these materials. Magnetization and magnetic susceptibility measurements on the RRh{sub 4}B{sub 4} single crystals revealed strong magnetic anisotropy, and the experimental results could be described well by CEF calculations based on the parameters derived from an analysis of experimental data for ErRh{sub 4}B{sub 4} single crystals. The easy directions of magnetization of these compounds are consistent with the signs of the Stevens factor {alpha}J of the CEF Hamiltonian. A strong influence of magnetic anisotropy on superconductivity was also observed.

  20. Intrinsic surface magnetic anisotropy in Y3Fe5O12 as the origin of low-magnetic-field behavior of the spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Uchida, Ken-ichi; Ohe, Jun-ichiro; Kikkawa, Takashi; Daimon, Shunsuke; Hou, Dazhi; Qiu, Zhiyong; Saitoh, Eiji

    2015-07-01

    The magnetic-field dependence of the longitudinal spin Seebeck effect (LSSE) in a Pt /Y3Fe5O12 (YIG)-slab junction system was found to deviate from a bulk magnetization curve of the YIG slab in a low field range. In this paper, we show that the deviation originates from the difference between surface and bulk magnetization processes in the YIG slab and that it appears even when removing possible extrinsic magnetic anisotropy due to surface roughness and replacing the Pt layer with different materials. This result indicates that the anomalous field dependence of the LSSE is due to an intrinsic magnetic property of the YIG surface. Our numerical calculation based on the Landau-Lifshitz-Gilbert equation shows that the deviation between the LSSE and bulk magnetization curves is qualitatively explained by introducing easy-axis perpendicular magnetic anisotropy near the surface of YIG.

  1. Electric field control of the magnetic anisotropy energy of double-vacancy graphene decorated by iridium atoms.

    PubMed

    Ge, Gui-Xian; Li, Ying-Bin; Wang, Guang-Hou; Wan, Jian-Guo

    2016-04-20

    To solve the fundamental dilemma in data storage applications, it is crucial to manipulate the magnetic anisotropy energy (MAE). Herein, using first-principles calculations, we predict that the system of double-vacancy graphene decorated by iridium atoms possesses high stability, giant MAE, perpendicular-anisotropy and long-range ferromagnetic coupling. More importantly, the amplitude of MAE can be manipulated by electric fields. This is due to the change in the occupation number of Ir-5d orbitals. The present hybrid system could be a high-performance nanoscale information storage device with ultralow energy consumption. PMID:27063394

  2. Broken symmetry approach to density functional calculation of magnetic anisotropy or zero field splittings for multinuclear complexes with antiferromagnetic coupling.

    PubMed

    van Wüllen, Christoph

    2009-10-29

    Antiferromagnetic coupling in multinuclear transition metal complexes usually leads to electronic ground states that cannot be described by a single Slater determinant and that are therefore difficult to describe by Kohn-Sham density functional methods. Density functional calculations in such cases are usually converged to broken symmetry solutions which break spin and, in many cases, also spatial symmetry. While a procedure exists to extract isotropic Heisenberg (exchange) coupling constants from such calculations, no such approach is yet established for the calculation of magnetic anisotropy energies or zero field splitting parameters. This work proposes such a procedure. The broken symmetry solutions are not only used to extract the exchange couplings but also single-ion D tensors which are then used to construct a (phenomenological) spin Hamiltonian, from which the magnetic anisotropy and the zero-field energy levels can be computed. The procedure is demonstrated for a bi- and a trinuclear Mn(III) model compound. PMID:19708660

  3. Direct measurement of the magnetic anisotropy field in Mn-Ga and Mn-Co-Ga Heusler films

    NASA Astrophysics Data System (ADS)

    Fowley, Ciarán; Ouardi, Siham; Kubota, Takahide; Yildirim, Oguz; Neudert, Andreas; Lenz, Kilian; Sluka, Volker; Lindner, Jürgen; Law, Joseph M.; Mizukami, Shigemi; Fecher, Gerhard H.; Felser, Claudia; Deac, Alina M.

    2015-04-01

    The static and dynamic magnetic properties of tetragonally distorted Mn-Ga based alloys were investigated. Static properties are determined in magnetic fields up to 6.5 T using SQUID magnetometry. For the pure Mn1.6Ga film, the saturation magnetisation is 0.36 MA m-1 and the coercivity is 0.29 T. Partial substitution of Mn by Co results in Mn2.6Co0.3Ga1.1. The saturation magnetisation of those films drops to 0.2 MA m-1 and the coercivity is increased to 1 T. The time-resolved magneto-optical Kerr effect (TR-MOKE) is used to probe the high-frequency dynamics of Mn-Ga. The ferromagnetic resonance frequency extrapolated to zero-field is found to be 125 GHz with a Gilbert damping, α, of 0.019. The anisotropy field is determined from both SQUID and TR-MOKE to be 4.5 T, corresponding to an effective anisotropy density of 0.81 MJ m-3. Given the large anisotropy field of the Mn2.6Co0.3Ga1.1 film, pulsed magnetic fields up to 60 T are used to determine the field strength required to saturate the film in the plane. For this, the extraordinary Hall effect was employed as a probe of the local magnetisation. By integrating the reconstructed in-plane magnetisation curve, the effective anisotropy energy density for Mn2.6Co0.3Ga1.1 is determined to be 1.23 MJ m-3.

  4. Periodic magnetic domain wall pinning in an ultrathin film with perpendicular anisotropy generated by the stray magnetic field of a ferromagnetic nanodot array

    NASA Astrophysics Data System (ADS)

    Metaxas, P. J.; Zermatten, P.-J.; Jamet, J.-P.; Ferré, J.; Gaudin, G.; Rodmacq, B.; Schuhl, A.; Stamps, R. L.

    2009-03-01

    The stray magnetic field of an array of hard ferromagnetic perpendicularly magnetized [Co/Pt]4 nanodots is used to nondestructively generate a periodic pinning potential for domain walls in an underlying [Pt/Co]2/Pt layer with perpendicular anisotropy. Pinning is evidenced using magneto-optical microscopy. The magnetic field (H) dependence of the average wall velocity in the presence of the periodic pinning potential is consistent with thermally activated creep, modified only by the addition of a uniform retarding field Hret, whose magnitude depends on the relative alignment of H and the dots' magnetizations.

  5. Irreversible magnetic processes under biaxial and uniaxial magnetic anisotropies

    NASA Astrophysics Data System (ADS)

    Pokharel, S.; Akioya, O.; Alqhtany, N. H.; Dickens, C.; Morgan, W.; Wuttig, M.; Lisfi, A.

    2016-05-01

    Irreversible magnetic processes have been investigated in magnetic systems with two different anisotropy symmetries (uniaxial and biaxial) through angular measurement of the switching field, the irreversible susceptibility and the magnetic viscosity. These two systems consist of two-dimensional cobalt ferrite hetero-structures epitaxially grown on (100) and (110) MgO substrate. It is found that for uniaxial anisotropy the irreversible characteristics of the magnetization are large and display a strong angular dependence, which exhibits its maximum at the easy axis and drops quickly to vanish at the hard axis. However, for biaxial anisotropy the magnetization irreversible characteristics are considerably reduced and are less sensitive to the field angle.

  6. Ru/FeCoB double layered film with high in-plane magnetic anisotropy field of 500 Oe

    SciTech Connect

    Hirata, Ken-ichiro; Hashimoto, Atsuto; Matsuu, Toshimitsu; Nakagawa, Shigeki

    2009-04-01

    FeCoB layers prepared on Ru underlayer possess a high saturation magnetization M{sub s} and a high in-plane magnetic anisotropy filed H{sub k}. Effects of preparation conditions were investigated. Low Ar gas pressure condition and thicker film thickness were effective to attain distortion of FeCo crystallite. As the crystallinity of Ru underlayer became higher, higher H{sub k} was induced. The accumulation of anisotropic stress in the film caused by the oblique incidences of depositing atoms with high energy seems to be one of the important effects to attain high anisotropy field. It was succeeded to prepare the Ru/FeCoB film with high H{sub k} of 500 Oe.

  7. Intrinsic anisotropy-defined magnetization reversal in submicron ring magnets

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Lew, W. S.; Bland, J. A. C.; Natali, M.; Lebib, A.; Chen, Y.

    2002-12-01

    We report a study of the effect of magnetocrystalline anisotropy in the magnetization reversal of submicron Co rings fabricated by nanoimprint lithography. For weak magnetocrystalline anisotropy, the complete reversal takes place via a transition from saturation at large negative fields, into a vortex configuration at small fields, and back to reverse saturation at large positive fields. When the anisotropy strength is increased to a critical value, the intermediate vortex configuration no longer exists in the magnetization reversal along the easy axis; instead, the reversal occurs through a rapid jump. However, when the applied field direction is far from the easy axis, the presence of the magnetocrystalline anisotropy favors local vortex nucleation, and this leads to a similar switching process as found for low anisotropy. Micromagnetic simulations indicate that the magnetization reversal process of the rings, starts from a buckling-like reverse domain nucleation, followed by local vortex formation and an avalanche process of local vortex nucleation.

  8. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    SciTech Connect

    Jedamzik, Karsten; Abel, Tom E-mail: tabel@slac.stanford.edu

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10{sup −11} Gauss by cosmic microwave background observations.

  9. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    NASA Astrophysics Data System (ADS)

    Xia, Zhenjun; He, Jun; Ou, Xiulong; Wang, Yu; He, Shuli; Zhao, Dongliang; Yu, Guanghua

    2016-05-01

    Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  10. CMB temperature anisotropy at large scales induced by a causal primordial magnetic field

    SciTech Connect

    Bonvin, Camille; Caprini, Chiara E-mail: camille.bonvin@cea.fr

    2010-05-01

    We present an analytical derivation of the Sachs Wolfe effect sourced by a primordial magnetic field. In order to consistently specify the initial conditions, we assume that the magnetic field is generated by a causal process, namely a first order phase transition in the early universe. As for the topological defects case, we apply the general relativistic junction conditions to match the perturbation variables before and after the phase transition which generates the magnetic field, in such a way that the total energy momentum tensor is conserved across the transition and Einstein's equations are satisfied. We further solve the evolution equations for the metric and fluid perturbations at large scales analytically including neutrinos, and derive the magnetic Sachs Wolfe effect. We find that the relevant contribution to the magnetic Sachs Wolfe effect comes from the metric perturbations at next-to-leading order in the large scale limit. The leading order term is in fact strongly suppressed due to the presence of free-streaming neutrinos. We derive the neutrino compensation effect dynamically and confirm that the magnetic Sachs Wolfe spectrum from a causal magnetic field behaves as l(l+1) C{sup B}{sub l}∝l{sup 2} as found in the latest numerical analyses.

  11. A correlation of energetic particle flux anisotropies with magnetic field variations in- and outside the coma of Comet Halley

    NASA Astrophysics Data System (ADS)

    Kirsch, E.; McKenna-Lawlor, S.; Ip, W.-H.; Daly, P. W.; Thompson, A.; O'Sullivan, D.; Neubauer, F. M.

    Anisotropies and energy spectra of cometary ions derived from the EPA/EPONA measurements on board of Giotto during the encounter with Comet Halley are used to study the acceleration processes taking place in the vicinity of the comet. Further evidence was found for the second order Fermi process. The intensity spikes observed outside the bowshock (outbound) can most likely be explained by the field line merging process at the frontside of the magnetic pileup region. The shock drift acceleration mechanism combined with the first order Fermi process seems to be responsible for the spike observed at 06:45 - 08:00 UT on March 14, 1986. The observed flux anisotropies are caused by the velocity transformation effect. Furthermore it can be concluded that the magnetic field lines were 'open' on the inbound side (19:00 - 23:00 UT on March 13), whereas a field line connection between cometary and interplanetary field lines must have existed on the outbound side until about 07:00 UT on March 14, 1986.

  12. SWAP operation in the two-qubit Heisenberg XXZ model: Effects of anisotropy and magnetic field

    SciTech Connect

    Zhou Yue; Yang Fuhua; Feng Songlin; Zhang Guofeng

    2007-06-15

    In this paper we study the SWAP operation in a two-qubit anisotropic XXZ model in the presence of an inhomogeneous magnetic field. We establish the range of anisotropic parameter {lambda} within which the SWAP operation is feasible. The SWAP errors caused by the inhomogeneous field are evaluated.

  13. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  14. Ru/FeCoB crystalline soft magnetic underlayers with high anisotropy field for CoPtCr-SiO2 granular perpendicular magnetic recording media

    NASA Astrophysics Data System (ADS)

    Matsuu, Toshimitsu; Hirata, Ken-ichiro; Hashimoto, Atsuto; Matsunuma, Satoshi; Inoue, Tetsutaro; Doi, Tsugihiro; Nakagawa, Shigeki

    2009-04-01

    Ru/FeCoB/Ru/CoPtCr-SiO2 films were fabricated as perpendicular magnetic recording media with crystalline soft magnetic underlayer (SUL). Ru/FeCoB layers possessed high in-plane anisotropy field Hk of 400 Oe and a bcc-FeCo (110) orientation. Crystalline orientation of the FeCoB in the SUL affected on a crystallite growth of a Ru intermediate layer deposited on it and on crystallite orientation of the CoPtCr-SiO2 film deposited on the Ru intermediate layer. Ru/CoPtCr-SiO2 films without Ru/FeCoB SULs exhibited a random orientation of Ru crystallites and the in-plane magnetic anisotropy. On the other hand, Ru/CoPtCr-SiO2 films deposited on the Ru/FeCoB SULs exhibited (001) preferential orientations of the CoPtCr as well as the Ru intermediate layer and possessed perpendicular magnetic anisotropy. It was confirmed that the improvement of a bcc-FeCo (110) orientation in the SUL was effective to the improvement of a hcp-Ru (001) orientation. At the media for an intermediate layer thickness of 5 nm, the similar magnetic properties as that of 30 nm were obtained. It indicated that the application of a crystalline SUL promoted the reduction in the intermediate layer thickness.

  15. Magnetocrystalline anisotropy and its electric-field-assisted switching of Heusler-compound-based perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bai, Zhaoqiang; Shen, Lei; Cai, Yongqing; Wu, Qingyun; Zeng, Minggang; Han, Guchang; Feng, Yuan Ping

    2014-10-01

    Employing density functional theory combined with the non-equilibrium Green's function formalism, we systematically investigate the structural, magnetic and magnetoelectric properties of the Co2FeAl(CFA)/MgO interface, as well as the spin-dependent transport characteristics of the CFA/MgO/CFA perpendicular magnetic tunnel junctions (p-MTJs). We find that the structure of the CFA/MgO interface with the oxygen-top FeAl termination has high thermal stability, which is protected by the thermodynamic equilibrium limit. Furthermore, this structure is found to have perpendicular magnetocrystalline anisotropy (MCA). Giant electric-field-assisted modifications of this interfacial MCA through magnetoelectric coupling are demonstrated with an MCA coefficient of up to 10-7 erg V-1 cm. In addition, our non-collinear spin transport calculations of the CFA/MgO/CFA p-MTJ predict a good magnetoresistance performance of the device.

  16. Recording performance and thermal stability in perpendicular media with enhancement of grain isolation as well as magnetic anisotropy field

    NASA Astrophysics Data System (ADS)

    Jung, H. S.; Ikeda, Y.; Choe, G.; Shi, Zhupei

    2012-04-01

    Magnetic clustering, thermal stability, and recording performance on perpendicular media with multilayered magnetic anisotropy field (Hk)-gradient CoPtCr-oxide/Cap layers with various Ru-oxide layer thicknesses (tRu-oxide) on top of Ru/NiW layers are investigated. With increasing tRu-oxide from 0 to 1.3 nm, Hc and Hs are enhanced but Hn is reduced. Magnetic correlation length (Dn) extracted from a set of major and minor loops significantly decreases but intrinsic switching field distribution remains unaffected. A short-time switching field (Ho) proportional to Hk increases linearly while KuV/kT remains unchanged. Similar KuV/kT is explained by compensation of the reduced Dn with the enhanced Ku induced by a thin Ru-oxide. However, thermal decay rate degrades from 0.06 to 0.32%/decade, which correlates well with Hn. Similar values of initial minor loop slopes indicate no change in magnetic switching behavior. A 1 nm-thick Ru-oxide layer as a well-defined granular template significantly improves recording performance: narrower MCW at 10 T by 8 nm and higher SNR at 2 T by 1.4 dB are observed even at lower OW by 8 dB compared to the media without Ru-oxide. All the recording parameters as a function of Dn correlate well.

  17. The effect of magnetization anisotropy and paramagnetic susceptibility on the magnetization process

    NASA Astrophysics Data System (ADS)

    Bolyachkin, A. S.; Neznakhin, D. S.; Bartashevich, M. I.

    2015-12-01

    The Sucksmith-Thompson method is a widespread technique for the accurate evaluation of magnetocrystalline anisotropy constants K1 and K2 of a single crystal with easy magnetization axis or basal plane type magnetic anisotropy. In this work, a generalized form of the method is represented. It takes into account several magnetization process features: spontaneous magnetization anisotropy, high-field differential susceptibility (paramagnetic process), and stray fields in terms of the demagnetizing factor. Corrected anisotropy field expressions for both magnetic anisotropy types are also established herein. The modified approach was verified by magnetization measurements of single crystalline LaCo5 and YFe3.

  18. Slow magnetic relaxation in octahedral cobalt(II) field-induced single-ion magnet with positive axial and large rhombic anisotropy.

    PubMed

    Herchel, Radovan; Váhovská, Lucia; Potočňák, Ivan; Trávníček, Zdeněk

    2014-06-16

    Pseudooctahedral mononuclear cobat(II) complex [Co(abpt)2(tcm)2] (1), where abpt = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole and tcm = tricyanomethanide anion, shows field-induced slow relaxation of magnetization with U = 86.2 K and large axial and rhombic single-ion zero-field-splitting parameters, D = +48(2) cm(-1) and E/D = 0.27(2) (D = +53.7 cm(-1) and E/D = 0.29 from ab initio CASSCF/NEVPT2 calculations), thus presenting a new example of a field-induced single-ion magnet with transversal magnetic anisotropy. PMID:24853769

  19. Magnetic anisotropy of strained epitaxial manganite films

    SciTech Connect

    Demidov, V. V. Borisenko, I. V.; Klimov, A. A.; Ovsyannikov, G. A.; Petrzhik, A. M.; Nikitov, S. A.

    2011-05-15

    The in-plane magnetic anisotropy of epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) films is studied at room temperature by the following three independent techniques: magnetooptical Kerr effect, ferromagnetic resonance at a frequency of 9.61 GHz, and recording of absorption spectra of electromagnetic radiation at a frequency of 290.6 MHz. The films are deposited onto NdGaO{sub 3} (NGO) substrates in which the (110)NGO plane is tilted at an angle of 0-25.7 Degree-Sign to the substrate plane. The uniaxial magnetic anisotropy induced by the strain of the film is found to increase with the tilt angle of the (110)NGO plane. A model is proposed to describe the change in the magnetic anisotropy energy with the tilt angle. A sharp increase in the radio-frequency absorption in a narrow angular range of a dc magnetic field near a hard magnetization axis is detected The anisotropy parameters of the LSMO films grown on (110)NGO, (001)SrTiO{sub 3}, and (001)[(LaAlO{sub 3}){sub 0.3} + (Sr{sub 2}AlTaO{sub 6}){sub 0.7}] substrates are compared.

  20. Cotton-mouton effects, magnetic hyperpolarizabilities, and magnetic anisotropies of the methyl halides. Comparison with molecular Zeeman and high-field NMR spectroscopic results

    SciTech Connect

    Coonan, M.H.; Ritchie, G.L.D. )

    1991-02-07

    Measurements of the vapor-phase Cotton-Mouton effects of methyl fluoride, methyl bromide, and methyl iodide are reported. Analysis of the results, in conjunction with those of an earlier study of methane and methyl chloride, shows that in the series CH{sub 3}X (X = H, F, Cl, Br, I) the magnetic hyperpolarizabiity anisotropy, which is related to the quadratic response of the molecular polarizability to a magnetic field, is positive in sign and roughly proportional in magnitude to the mean polarizability. The magnetic anisotropies (10{sup 29}{Delta}{sub {chi}}/J T{sup {minus}2}) found for methyl chloride,methyl bromide, and methyl iodide (CH{sub 3}Cl, {minus}15.0 {plus minus} 1.3; CH{sub 3}Br, -15.1 {plus minus} 0.8; CH{sub 3}I, {minus}18.0 {plus minus} 1.5) are compared with values obtained by the molecular Zeeman and high-field {sup 2}H NMR spectroscopic methods.

  1. Effects of external magnetic field and magnetic anisotropy on chiral spin structures of square nanodisks investigated with a quantum simulation approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2016-04-01

    We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.

  2. Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films with Perpendicular Magnetic Anisotropy

    NASA Technical Reports Server (NTRS)

    Skuza, J. R.; Clavero, C.; Yang, K.; Wincheski, B.; Lukaszew, R. A.

    2009-01-01

    L1(sub 0)-ordered FePd epitaxial thin films were prepared using dc magnetron sputter deposition on MgO (001) substrates. The films were grown with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.

  3. Electric field control of anisotropy and magnetization switching in CoFe and CoNi thin films for magnetoelectric memory devices

    NASA Astrophysics Data System (ADS)

    Jin, Tianli; Hao, Liang; Cao, Jiangwei; Liu, Mingfeng; Dang, Honggang; Wang, Ying; Wu, Dongping; Bai, Jianmin; Wei, Fulin

    2014-04-01

    We report on the marked change in magnetic anisotropy and magnetization reversal in Co50Fe50/[Pb(Mg1/3Nb2/3O3)]1-x-[PbTiO3]x (PMN-PT) and Co43Ni57/PMN-PT heterostructures under an electric field. For the Co50Fe50/PMN-PT structure, the electric-field-induced magnetic anisotropy field can be as large as 1.2 kOe at 12 kV/cm, corresponding to a magnetoelectric coefficient of 100 Oe cm/kV. In the Co43Ni57/PMN-PT heterostructure, the electric-field-induced anisotropy has a sign opposite to that in Co50Fe50/PMN-PT. As a result, in the [CoNi/Cu/CoFe/Cu]n/PMN-PT heterostructure, the parallel magnetic moment between two magnetic layers in the initial state may become perpendicular under an electric field. On the basis of these discussions, a voltage-write magnetoelectric memory device model is proposed.

  4. Electric field control of magnetic anisotropy in the easy cone state of Ta/Pt/CoFeB/MgO structures

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Woong; Park, June-Young; Baek, Seung-heon Chris; Kim, Dae-Hoon; Seo, Soo-Man; Chung, Sung-Woong; Park, Byong-Guk

    2016-07-01

    The electric-field control of magnetic anisotropy is of particular interest because it allows the manipulation of the magnetization direction in spintronic devices with high performance and low power consumption. In this work, we investigate the effect of an electric field on the magnetic anisotropy in Ta/Pt/CoFeB/MgO structures, whose easy axis of magnetization is canted from the z-axis, forming a cone state. When an electric field is applied to the sample, its anisotropy constants change, thus modulating the cone state. It is demonstrated that the cone angle is controlled between 22° and 32° by a bias field of 4 MV/cm and that it can persist even after removing the bias. Moreover, it fully recovers to the original value when a bias voltage with an opposite polarity is applied. The non-volatile and reversible control of the cone state paves the way towards the utilization of the magnetic cone state in spintronic devices.

  5. Magnetic anisotropy of ferrosmectic phases

    NASA Astrophysics Data System (ADS)

    Ponsinet, Virginie; Fabre, Pascale; Veyssié, Madeleine; Cabanel, Régis

    1994-10-01

    A new anisotropic magnetic fluid, called ferrosmectic, is obtained when using a colloidal suspension of submicronic magnetic particles (ferrofluid), as a component in a smectic phase of fluid membranes. These lamellar phases present specific magnetic properties. The anisotropy of their magnetic susceptilities as a function of particles concentration is studied and interpreted : a microscopic mechanism involving a steric hindrance between particles and membranes is used to understand the experimental results. Un nouveau fluide magnétique anisotrope, appelé ferrosmectique, est obtenu lorsque nous utilisons un ferrofluide, c'est-à-dire une suspension colloïdale de particules magnétiques de taille inférieure au micron, comme composant dans la fabrication d'une phase smectique de membranes fluides. Ces phases adoptent des comportements spécifiques sous champ magnétique, et nous présentons ici une étude de l'anisotropie de leur susceptibilité magnétique en fonction de la concentration en particules. Nous interprétons les résultats obtenus par un mécanisme microscopique basé sur l'existence d'une gêne stérique entre membranes et particules.

  6. Advanced magnetic anisotropy determination through isothermal remanent magnetization of nanoparticles

    NASA Astrophysics Data System (ADS)

    Hillion, A.; Tamion, A.; Tournus, F.; Gaier, O.; Bonet, E.; Albin, C.; Dupuis, V.

    2013-09-01

    We propose a theoretical framework enabling the simulation of isothermal remanence magnetization (IRM) curves, based on the Stoner-Wohlfarth model combined with the Néel macrospin relaxation time description. We show how low temperature IRM curves, which have many advantages compared to hysteresis loops, can be efficiently computed for realistic assemblies of magnetic particles with both a size and anisotropy constant distribution, and a biaxial anisotropy. The IRM curves, which probe the irreversible switching provoked by an applied field, are shown to be complementary to other usual measurements (in particular low-field susceptibility curves where a thermal switching is involved). As an application, the experimental IRM curve of Co clusters embedded in a carbon matrix is analyzed. We demonstrate how powerful such an analysis can be, which in the present case allows us to put into evidence an anisotropy constant dispersion among the Co nanoparticles.

  7. THE EFFECTS OF PLASMA BETA AND ANISOTROPY INSTABILITIES ON THE DYNAMICS OF RECONNECTING MAGNETIC FIELDS IN THE HELIOSHEATH

    SciTech Connect

    Schoeffler, K. M.; Drake, J. F.; Swisdak, M.

    2011-12-10

    The plasma {beta} (the ratio of the plasma pressure to the magnetic pressure) of a system can have a large effect on its dynamics as high {beta} enhances the effects of pressure anisotropies. We investigate the effects of {beta} in a system of stacked current sheets that break up into magnetic islands due to magnetic reconnection, which is analogous to the compressed heliospheric current sheet in the heliosheath. We find significant differences between systems with low and high initial values of {beta}. At low {beta}, growing magnetic islands are modestly elongated and become round as contraction releases magnetic stress and reduces magnetic energy. At high {beta}, the increase of the parallel pressure in contracting islands causes saturation of modestly elongated islands as island cores approach the marginal firehose condition. Only highly elongated islands reach finite size. The anisotropy within these islands prevents full contraction, leading to a final state of highly elongated islands in which further reconnection is suppressed. The elongation of islands at finite {beta} is further enhanced by reducing the electron-to-ion mass ratio to more realistic values. The results are directly relevant to reconnection in the sectored region of the heliosheath where there is evidence that elongated islands are present, and possibly to other high-{beta} systems such as astrophysical accretion flows and the magnetosphere of Saturn.

  8. Large electric-field control of perpendicular magnetic anisotropy in strained [Co/Ni] / PZT heterostructures

    NASA Astrophysics Data System (ADS)

    Gopman, Daniel; Dennis, Cindi; Chen, P. J.; Iunin, Yury; Shull, Robert

    We present a piezoelectric/ferromagnetic heterostructure with PMA - a Co/Ni multilayer sputtered directly onto a Pb(Zr,Ti)O3 (PZT) substrate. Chemical-mechanical polishing was used to reduce the roughness of PZT plates to below 2 nm rms, enabling optimal magnetoelectric coupling via the direct interface between PZT and sputtered Co/Ni films with large PMA (Keff = (95 +/-9 kJ/m3)) . We grew the following layer stack: Ta(3)/Pt(2)/[Co(0.15)/Ni(0.6)]x4/Co(0.15)/Pt(2)/Ta(3); numbers in parentheses indicate thicknesses in nm. Applied electric fields up to +/- 2 MV/m to the PZT generated 0.05% in-plane compression in the Co/Ni multilayer, enabling a large electric-field reduction of the PMA (ΔKeff >= 103 J/m3) and of the coercive field (35%). Our results demonstrate that: (i) heterostructures combining PZT and [Co/Ni] exhibit larger PMA (Keff ~105 J/m3) than previous magnetoelectric heterostructures based on Co/Pt and CoFeB, enabling thermally stable hybrid magnetoelectric/spintronic devices only tens of nm in diameter and (ii) electric-field control of the PMA is promising for more energy efficient switching of spintronic devices.

  9. Magnetic Domain Confinement by Anisotropy Modulation

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Lew, W. S.; Bland, J. A.; Lopez-Diaz, L.; Vaz, C. A.; Natali, M.; Chen, Y.

    2002-02-01

    The spin configuration in a magnet is in general a ``natural'' consequence of both the intrinsic properties of the material and the sample dimensions. We demonstrate that this limitation can be overcome in a homogeneous ferromagnetic film by engineering an anisotropy contrast. Substrates with laterally modulated single-crystal and polycrystalline surface regions were used to induce selective epitaxial growth of a ferromagnetic Ni film. The resulting spatially varying magnetic anisotropy leads to regular perpendicular and in-plane magnetic domains, separated by a new type of magnetic wall-the ``anisotropy constrained'' magnetic wall.

  10. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.

    2013-10-01

    Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  11. The influence of magnetic aftereffects on the magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mashukov, A.; Mashukova, A.

    2012-04-01

    There were investigated the time dependences of the magnetic anisotropy characteristics of artificial depositions received in the geomagnetic field. The content of magnetite in the nonmagnetic matrix of kaolin did not exceed 1%. The Co content in the grains of magnetite Fe3 O4 was 0.0018%. The viscous magnetization was created in the depositions with grain sizes of Fe3O4 in micrometers (0 ÷ 8), (9 ÷ 16), (17 ÷ 32), (33 ÷ 64), (65 ÷ 100), (101 ÷ 150). The X-ray method of direct pole figures indicates that the intensity of the ordering of the ferromagnetic grains in the depositions depends strongly on the grain size in the above-mentioned ranges, getting reduced from 1.9 to 1.1. Compared with the characteristics received immediately after drying the samples and after holding them for two years in the earth's magnetic field in the direction of In, one could observe increase in all the characteristics of the magnetic anisotropy. The magnitude Hd of the magnetic field having the periodicity change of Hd 2π to π increases. This indicates the stabilization of the new domain structure. The increase in the uniaxial anisotropy constant (K) is associated with the emergence of the large induced anisotropy due to the diffusion of Co ions. It was found out that the constant K decreases markedly with increasing particle size in the range from 8 mm to 40 microns. Based on the results of the X-ray analysis by using the method direct pole figures, it may be explained by the creation of the axial texture in the depositions with grains having the size less than 40 microns. The intensity of more than 40 microns decreases insignificantly - from 1.3 to 1.1. After creating the viscous magnetization in two years, the constant K has increased by 1.5 - 2 times. The influence of the magnetic after-effects on K in strong magnetic fields denotes the diffusion nature of the viscous magnetization. The losses of the rotational magnetic hysteresis (W) also rise in the presence of the

  12. Magnetic properties and anisotropy in magnetic thin films and superlattices

    NASA Astrophysics Data System (ADS)

    Guo, Wenli

    A systematic study of the magnetic properties and anisotropy in magnetic thin films as well as superlattices is presented in this thesis. The main objective is to investigate by means of the Green function technique the order-disorder phase transition and reorientation transition in a non-perturbative microscopic theory valid in the whole temperature range of interest. We consider the magnetic systems that may consist of an arbitrary number of layers with any spin. We start with a discussion of general properties and origins of anisotropies of the magnetic systems, and a list of questions that we are trying to answer. A comparison between different theoretical approaches follows. The Green function method is used to derive analytical expressions for various anisotropies. The energy spectrum and the spontaneous magnetization are obtained as well. Based on these results, the transition temperature and the Curie temperature are calculated as functions of the Fe film thickness. It is shown that the condition for the reorientation transition is equivalent to that for the zero energy gap at the bottom of the spin-wave spectrum. Special features under the influence of normal external field, anisotropic exchange couplings and next-nearest-neighbor couplings on the magnetization reorientation of magnetic thin films are then investigated in detail. It is demonstrated that the nature of perpendicular remanent (PR) depends primarily on the surface anisotropy and film thickness. The magnetic properties of Tb/Fe superlattices are also studied. It shows ferrimagnetic properties and normal uniaxial anisotropy. An approximation is proposed to treat magnetic Ni films of arbitrary thickness and arbitrary lattice structure for general spin. It is a much simpler way of calculation, in which one does not have to solve the determinant equation, especially the one with off-diagonal elements. The temperature and thickness dependence of various anisotropies are then investigated. There

  13. Anisotropy of MHD Turbulence at Low Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Zikanov, O.; Vorobev, A.; Thess, A.; Davidson, P. A.; Knaepen, B.

    2004-01-01

    Turbulent fluctuations in MHD flows are known to become dimensionally anisotropic under the action of a sufficiently strong magnetic field. We consider the technologically relevant case of low magnetic Reynolds number and apply the method of DNS of forced flow in a periodic box to generate velocity fields. The analysis based on different anisotropy characteristics shows that the dimensional anisotropy is virtually scale-independent. We also find that, except for the case of very strong magnetic field, the flow is componentally isotropic. Its kinetic energy is practically uniformly distributed among the velocity components.

  14. Temperature memory of the induced magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Vetcfinski, V. S.; Tunyi, I.

    2012-04-01

    Methods of higher harmonics applied to study the effects associated with the induced magnetic anisotropy (IMA) of ferro- and ferrimagnetic materials are considered. Physical processes causing the anisotropy and small value of these effects are analyzed. It is demonstrated that the IMA can remember the pressure at which it was formed.

  15. ANISOTROPY DETERMINATIONS IN EXCHANGE SPRING MAGNETS.

    SciTech Connect

    LEWIS,L.H.; HARLAND,C.L.

    2002-08-18

    Ferromagnetic nanocomposites, or ''exchange spring'' magnets, possess a nanoscaled microstructure that allows intergrain magnetic exchange forces to couple the constituent grains and alter the system's effective magnetic anisotropies. While the effects of the anisotropy alterations are clearly seen in macroscopic magnetic measurement, it is extremely difficult to determine the detailed effects of the system's exchange coupling, such as the interphase exchange length, the inherent domain wall widths or the effective anisotropies of the system. Clarification of these materials parameters may be obtained from the ''micromagnetic'' phenomenological model, where the assumption of magnetic reversal initiating in the magnetically-soft regions of the exchange-spring maqet is explicitly included. This approach differs from that typically applied by other researchers and allows a quantitative estimate of the effective anisotropies of an exchange spring system. Hysteresis loops measured on well-characterized nanocomposite alloys based on the composition Nd{sub 2}Fe{sub 14}B + {alpha}-Fe at temperatures above the spin reorientation temperature were analyzed within the framework of the micromagnetic phenomenological model. Preliminary results indicate that the effective anisotropy constant in the material is intermediate to that of bulk {alpha}-Fe and bulk Nd{sub 2}Fe{sub 14}B and increases with decreasing temperature. These results strongly support the idea that magnetic reversal in nanocomposite systems initiates in the lower-anisotropy regions of the system, and that the soft-phase regions become exchange-hardened by virtue of their proximity to the magnetically-hard regions.

  16. Slow shock formation and temperature anisotropy in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Higashimori, K.; Hoshino, M.

    2011-12-01

    We perform a two-dimensional simulation by using an electromagnetic hybrid code to study the formation of slow-mode shocks in collisionless magnetic reconnection in low beta plasmas, and we argue that one of important agents of the formation of slow shocks is the ion temperature anisotropy enhanced at the shock downstream region. As magnetic reconnection develops, it is known that the parallel temperature along the magnetic field becomes large in association with the anisotropic PSBL ion beams, and this temperature anisotropy has a tendency to suppress the formation of slow shock. Although preceding studies on magnetic reconnection with kinetic codes have shown such ion temperature anisotropy along the reconnection layer, the direct relation between formation of slow shocks and the ion temperature anisotropy has not been investigated. Based on our simulation result, we found that the slow shock formation is suppressed due to the large temperature anisotropy near the X-type region, but the downstream ion temperature anisotropy relaxes with increasing the distance from the magnetic neutral point. As a result, two pairs of current structures, which are the strong evidence of dissipation of magnetic field in slow shocks, are formed at the distance |x| > 115 λ i from the neutral point.

  17. Magnetic patterning using ion irradiation for highly ordered CoPt alloys with perpendicular anisotropy

    SciTech Connect

    Abes, M.; Venuat, J.; Muller, D.; Carvalho, A.; Schmerber, G.; Beaurepaire, E.; Dinia, A.; Pierron-Bohnes, V.

    2004-12-15

    We used a combination of ion irradiation and e-beam lithography to magnetically pattern an ordered CoPt alloy with strong perpendicular magnetic anisotropy. Ion irradiation disorders the alloy and strongly reduces the magnetic anisotropy. Magnetic force microscopy showed a regular array of 1 {mu}m{sup 2} square dots with perpendicular anisotropy separated by 1 {mu}m large ranges with in-plane anisotropy. This is further confirmed by magnetic measurements, which showed that arrays protected by a 200 nm Pt layer present the same coercive field and the same perpendicular anisotropy as before irradiation. This is promising for applications in magnetic recording technologies.

  18. Soliton collisions in soft magnetic nanotube with uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Usov, N. A.

    2016-05-01

    The structure of stable magnetic solitons of various orders in soft magnetic nanotube with uniaxial magnetic anisotropy has been studied using numerical simulation. Solitons of even order are immobile in axially applied magnetic field. Odd solitons show decreased mobility with respect to that of head-to head domain wall. Solitons of various orders can participate in nanotube magnetization reversal process. Various coalescence and decomposition processes in soliton assembly are considered. It is shown that the general magnetization state of magnetic nanotube consists of chains of magnetic solitons of various orders.

  19. Formation of Magnetic Anisotropy by Lithography.

    PubMed

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2-0.3 erg/cm(2) for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  20. Formation of Magnetic Anisotropy by Lithography

    PubMed Central

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2–0.3 erg/cm2 for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  1. Single-ion anisotropy and magnetic field response in the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7

    NASA Astrophysics Data System (ADS)

    Tomasello, Bruno; Castelnovo, Claudio; Moessner, Roderich; Quintanilla, Jorge

    2015-10-01

    Motivated by its role as a central pillar of current theories of the dynamics of spin ice in and out of equilibrium, we study the single-ion dynamics of the magnetic rare-earth ions in their local environments, subject to the effective fields set up by the magnetic moments with which they interact. This effective field has a transverse component with respect to the local easy axis of the crystal electric field, which can induce quantum tunneling. We go beyond the projective spin-1/2 picture and use instead the full crystal-field Hamiltonian. We find that the Kramers versus non-Kramers nature, as well as the symmetries of the crystal-field Hamiltonian, result in different perturbative behavior at small fields (≲1 T ), with transverse field effects being more pronounced in Ho2Ti2O7 than in Dy2Ti2O7 . Remarkably, the energy splitting range we find is consistent with time scales extracted from experiments. We also present a study of the static magnetic response, which highlights the anisotropy of the system in the form of an off-diagonal g tensor, and we investigate the effects of thermal fluctuations in the temperature regime of relevance to experiments. We show that there is a narrow but accessible window of experimental parameters where the anisotropic response can be observed.

  2. Interfacial magnetic anisotropy from a 3-dimensional Rashba substrate

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Haney, Paul M.

    2016-07-01

    We study the magnetic anisotropy which arises at the interface between a thin film ferromagnet and a 3-d Rashba material. We use a tight-binding model to describe the bilayer, and the 3-d Rashba material characterized by the spin-orbit strength α and the direction of broken bulk inversion symmetry n ̂ . We find an in-plane uniaxial anisotropy in the z ̂ × n ̂ direction, where z ̂ is the interface normal. For realistic values of α, the uniaxial anisotropy is of a similar order of magnitude as the bulk magnetocrystalline anisotropy. Evaluating the uniaxial anisotropy for a simplified model in 1-d shows that for small band filling, the in-plane easy axis anisotropy scales as α4 and results from a twisted exchange interaction between the spins in the 3-d Rashba material and the ferromagnet. For a ferroelectric 3-d Rashba material, n ̂ can be controlled with an electric field, and we propose that the interfacial magnetic anisotropy could provide a mechanism for electrical control of the magnetic orientation.

  3. Efficient enhancement of magnetic anisotropy by optimizing the ligand-field in a typically tetranuclear dysprosium cluster.

    PubMed

    Liu, Jiang; Chen, Yan-Cong; Jiang, Zhong-Xia; Liu, Jun-Liang; Jia, Jian-Hua; Wang, Long-Fei; Li, Quan-Wen; Tong, Ming-Liang

    2015-05-01

    The perturbation to the ligand field around the lanthanide ion may significantly contribute to the magnetic dynamics of single molecule magnets. This can be demonstrated by two typical Dy4 cluster-based single molecular magnets (SMMs), [Dy4X2(μ3-OH)2(μ-OH)2(2,2-bpt)4(H2O)4]X2·2H2O·4EtOH (X = Cl and Br for and , respectively), which were constructed by using 3,5-bis(pyridin-2-yl)-1,2,4-triazole (2,2-bptH) as the polynuclear-chelating ligand. Alternating-current (ac) magnetic susceptibility measurements show that the energy barriers in complexes and were immensely enhanced by comparing with our previous work due to the optimization of the ligand field around Dy(III) ions. Remarkably, their high thermal active barriers at 190 K () and 197 K () under a zero applied external dc magnetic field are also among the highest within the reported tetranuclear lanthanide-based SMMs. PMID:25837027

  4. Magnetic anisotropy of polycrystalline magnetoferritin investigated by SQUID and electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Moro, F.; de Miguel, R.; Jenkins, M.; Gómez-Moreno, C.; Sells, D.; Tuna, F.; McInnes, E. J. L.; Lostao, A.; Luis, F.; van Slageren, J.

    2014-06-01

    Magnetoferritin molecules with an average inorganic core diameter of 5.7±1.6 nm and polycrystalline internal structure were investigated by a combination of transmission electron microscopy, magnetic susceptibility, magnetization, and electron magnetic resonance (EMR) experiments. The temperature and frequency dependence of the magnetic susceptibility allowed for the determination of the magnetic anisotropy on an experimental time scale which spans from seconds to nanoseconds. In addition, angle-dependent EMR experiments were carried out for the determination of the nanoparticle symmetry and internal magnetic field. Due to the large surface to volume ratio, the nanoparticles show larger and uniaxial rather than cubic magnetic anisotropies compared to bulk maghemite and magnetite.

  5. Thermal behavior of hard-axis magnetization in noninteracting particles with uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Ilievski, F.; Cuchillo, A.; Nunes, W.; Knobel, M.; Ross, C. A.; Vargas, P.

    2009-11-01

    Experimental evidence is presented to support predictions made by an analytical model describing the temperature-dependent behavior of an assembly of noninteracting magnetic nanoparticles with uniaxial anisotropy under an external field. When the applied field is smaller than the anisotropy field of the particles and is oriented perpendicular to the easy axis, a maximum of the magnetization occurs at finite temperature. The theory shows good agreement with measurements of an array of CoCrPt nanoislands with uniaxial anisotropy. Deviations are discussed taking into account the thermal dependencies of the saturation magnetization and the anisotropy of the magnetic material.

  6. Magnetic Anisotropies in Samarium-Cobalt Thin Films

    NASA Astrophysics Data System (ADS)

    Chen, Kailai

    A systemic study of the deposition processes and magnetic properties for the Sm-Co film system has been carried out. Films of Sm-Co system with various magnetic anisotropies have been synthesized through sputter deposition in both crystalline and amorphous phases. The origins of various anisotropies have been studied. Thermallized sputter deposition process control was used to synthesize Fe enriched Sm-Co films with rhombohedral Th_2Zn_{17} type structure. The film exhibited unusually strong textures with the crystallographic c axes of the crystallites aligned in the film plane. A large anisotropy was resulted with easy axis in the film plane. A well defined and large in-the-film-plane anisotropy of exceptionally high value of 3.3 times 10^6 erg/cm^3 has been obtained in the amorphous SmCo films by applying a magnetic field in the film plane during deposition. It was found that the in-the-film-plane anisotropy depended essentially on the applied field and Sm concentration. For films not synthesized through thermallized sputtering, the easy axis of the film could be reoriented through post deposition annealing. In contrast, in-plane easy axes of films synthesized through thermallized sputtering deposition could not be reoriented. A perpendicular anisotropy was also presented in the film synthesized through thermallized sputtering deposition. A large in-plane anisotropy was obtained in films deposited above ambient temperatures. It was concluded that the surface induced short range ordering was the origin of the in-the-film-plane anisotropy observed in amorphous film deposited in the presence of a magnetic field. The formation mechanism was different from that of the short range ordering induced by field annealing. The perpendicular anisotropy was shown to be growth induced. Large in-plane anisotropy in amorphous films was resulted from partial crystallization in the film. Both the formation of growth induced structure and partial crystallization in the film

  7. Direct expressions for magnetic anisotropy constants

    NASA Astrophysics Data System (ADS)

    Miura, Daisuke; Sasaki, Ryo; Sakuma, Akimasa

    2015-11-01

    Direct expressions for the magnetic anisotropy constants are given at a finite temperature from a microscopic viewpoint. The present derivation assumes that the Hamiltonian is a linear function with respect to the magnetization direction. We discuss in detail the first-order anisotropy constant K1 and show that our present results reproduce previous results. We applied our method to Nd2Fe14B compounds and confirmed that the present method can reproduce the temperature dependence of the magnetocrystalline anisotoropy constants K1, K2, and K3 well.

  8. Random Field effects in perpendicular-anisotropy multilayer films

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Silevitch, Daniel; Rosenbaum, Thomas

    With the application of a magnetic field transverse to the magnetic easy axis, randomly-distributed 3D collections of dipole-coupled Ising spins form a realization of the Random-Field Ising Model. Tuning the strength of the site-specific random field, and hence the disorder, via the applied transverse field regulates the domain reversal energetics and hence the macroscopic hysteresis loop. We extend this approach to two dimensions, using sputtered Perpendicular Magnetic Anisotropy (PMA) Co/Pt multilayer thin films. We characterize the coercive fields and hysteresis loops at a series of temperatures and transverse fields.

  9. A comparative study of magnetic anisotropy measurement techniques in relation to rock-magnetic properties

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario; Jackson, Michael J.

    2014-08-01

    Magnetic anisotropy measurements are becoming increasingly common to many studies within the different disciplines of geology, involving sedimentary, igneous and metamorphic rocks. A plethora of techniques exists for measuring magnetic anisotropy of rocks. Some are rapid and non-destructive while others are more labor-intensive or may result in alteration of the magnetic minerals. All, however, have the potential of revealing a wealth of information when measured and interpreted correctly. In broad terms, anisotropy techniques subdivide into measurements of susceptibility, remanence and torque; here we consider the first two of these. Anisotropy of magnetic susceptibility (AMS) is by far the most utilized, and measures composite fabrics. Magnetic susceptibilities in high fields and low temperatures, however, are being increasingly used to isolate the paramagnetic contribution to the fabrics. When distinguishing between fabrics carried by different ferromagnetic phases, or to separate these from the diamagnetic and paramagnetic contributions to the fabric, then remanence anisotropy techniques become necessary. Anisotropies of thermal remanence (ATRMs), of anhysteretic remanence (AARM) and of isothermal remanence (AIRM) are the most common examples. Remanence anisotropy may be measured over the full spectrum of magnetic coercivities or over a targeted range (e.g. partial or ApARM). Moreover, anisotropies may be calculated using only the resolved field-parallel component of the vector, in which case a minimum of six different orientations is necessary to obtain a complete symmetric tensor, or using the three components (full vector) of the measured magnetic vectors (e.g. AvARM), in which case three orthogonal applied magnetizations are the minimum requirement. In this study we utilize a variety of magnetic remanence room temperature techniques to measure remanence anisotropy of selected coarse and finer grained gneiss-granulitic specimens with well-pronounced fabrics

  10. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-01-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53*10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals such as augite, hornblende or biotite often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that paleointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  11. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-04-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  12. Exotic skyrmion crystals in chiral magnets with compass anisotropy

    PubMed Central

    Chen, J. P.; Zhang, Dan-Wei; Liu, J. -M.

    2016-01-01

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC. PMID:27377149

  13. Exotic skyrmion crystals in chiral magnets with compass anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, J. P.; Zhang, Dan-Wei; Liu, J.-M.

    2016-07-01

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC.

  14. Exotic skyrmion crystals in chiral magnets with compass anisotropy.

    PubMed

    Chen, J P; Zhang, Dan-Wei; Liu, J-M

    2016-01-01

    The compass-type anisotropy appears naturally in diverse physical contexts with strong spin-orbit coupling (SOC) such as transition metal oxides and cold atomic gases etc, and it has been receiving substantial attention. Motivated by recent studies and particularly recent experimental observations on helimagnet MnGe, we investigate the critical roles of this compass-type anisotropy in modulating various spin textures of chiral magnets with strong SOC, by Monte Carlo simulations based on a classical Heisenberg spin model with Dzyaloshinsky-Moriya interaction and compass anisotropy. A phase diagram with emergent spin orders in the space of compass anisotropy and out-of-plane magnetic field is presented. In this phase diagram, we propose that a hybrid super-crystal structure consisting of alternating half-skyrmion and half-anti-skyrmion is the possible zero-field ground state of MnGe. The simulated evolution of the spin structure driven by magnetic field is in good accordance with experimental observations on MnGe. Therefore, this Heisenberg spin model successfully captures the main physics responsible for the magnetic structures in MnGe, and the present work may also be instructive to research on the magnetic states in other systems with strong SOC. PMID:27377149

  15. Random magnetic anisotropy in isotropic nanocrystalline composite permanent magnets

    NASA Astrophysics Data System (ADS)

    Sato, Suguru; Lee, S. J.; Mitsumata, Chiharu; Yanagihara, Hideto; Kita, Eiji

    2011-04-01

    In this study, the random magnetic anisotropy in isotropic nanocrystalline composite permanent magnets was investigated by means of numerical simulations. The magnetization reversal of randomly oriented hard-soft exchange-coupled grains was simulated using the Landau-Lifshitz-Gilbert equation in which the magnetization in a particular grain is assumed to align in the same direction (single-spin model). The calculations show that the energy product (BH)max of nanocomposite magnets has a peak value 50 MGOe at 6 nm. It is about 80% of that of single-crystal Nd2Fe14B. The coercivity HC exhibits a steep decrease toward smaller grain size, which is the result of the suppression of the random magnetic anisotropy by exchange interaction. Therefore, in isotropic nanocomposite magnets, the enhancement of energy product is limited by the suppression of the random magnetic anisotropy by exchange interaction.

  16. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.

    2016-05-01

    We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic-field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. The bubble crystal exhibits a quasicontinuous (devil's staircase) temperature-dependent ordering wave vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.

  17. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy

    DOE PAGESBeta

    Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.

    2016-05-12

    We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. Finally, the bubble crystal exhibits a quasi-continuous (devil’s staircase) temperature dependent ordering wave-vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.

  18. Magnetic anisotropy and domain patterning of amorphous films by He-ion irradiation

    SciTech Connect

    McCord, Jeffrey; Gemming, Thomas; Schultz, Ludwig; Fassbender, Juergen; Liedke, Maciej Oskar; Frommberger, Michael; Quandt, Eckhard

    2005-04-18

    The magnetic anisotropy in amorphous soft magnetic FeCoSiB films was modified by He-ion irradiation. A rotation of uniaxial anisotropy depending on the applied field direction in the irradiated areas is observed by magnetometry and complementary domain observation by Kerr microscopy. No significant degradation in magnetic properties relative to the as-deposited state is found from the magnetization loops on nonpatterned films. Using irradiation together with photolithography, the films were treated locally, resulting in 'anisotropy patterned' structures. Complicated periodic domain patterns form due to the locally varying anisotropy distribution. Overall magnetic properties and domain patterns are adjusted.

  19. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Paweł W.; Yager, Kevin G.

    2015-12-01

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ , that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈2 ×1 0-8. From field-dependent scattering data, we estimate that grains of ≈1.2 μ m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  20. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    SciTech Connect

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  1. Manipulating the magnetic anisotropy of 3d transition-metal films on Cu(001) and their alloys on Rh(001) by electric field

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Zhang, Yun; Cao, Juexian

    2013-08-01

    The mechanism of electric field (EF) effects on the magnetocrystalline anisotropy (MCA) in metallic films is investigated by first-principles calculations. Start with a simple system of Fe, Co and Ni monolayer on Cu(001) substrate, we show that the key factor for a large EF-induced MCA modification is that the energy bands cross of d and d (or d and d) is close to the Fermi level. In order to enhance the MCA modification by EF, 4d metal substrates (Rh, Pd) are also discussed. In particular, we find that the magnetization direction can be switched from out-of-plane to in-plane by a small EF for Fe1-xCox alloy films on Rh(001) substrate with x=0.5.

  2. Magnetic Anisotropy in UMn2Ge2

    NASA Astrophysics Data System (ADS)

    Berg, Morgann; de Lozanne, Alex; Baumbach, Ryan; Kim, Jeehoon; Bauer, Eric; Thompson, Joe; Ronning, Filip

    2015-03-01

    UMn2Ge2, a permanent magnet, is a ternary intermetallic compound with a tetragonal crystal structure of type ThCr2Si2 and with space group I4/mmm. Local U and Mn moments in UMn2Ge2 order on their respective sublattices at temperatures near 100 and 380 K, respectively. Previous x-ray diffraction, Kerr rotation angle, and SQUID magnetometry data support the commonly accepted notion that U moments order at low temperature and align Mn moments along the c-axis, introducing anisotropy. Previous results obtained using a multi-mode atomic force microscope in magnetic force microscopy (MFM) mode indeed confirmed that UMn2Ge2 displays uniaxial anisotropy with an easy axis coinciding with the c-axis of the material. However, the branching domains in UMn2Ge2 consistent with uniaxial anisotropy were observed all the way up to room temperature by MFM. This indicates that the effect of uranium moments on the magnetic microstructure of UMn2Ge2 is not limited to low temperatures near the ordering temperature of the uranium sublattice. We further investigate closure domains in the surface of UMn2Ge2 and report on characteristics and signatures of anisotropy revealed by the orientation and periodic structures of closure domains. Supported by NSF Grant DMR-0810119.

  3. Tuning the Magnetic Anisotropy of Single Molecules.

    PubMed

    Heinrich, Benjamin W; Braun, Lukas; Pascual, Jose I; Franke, Katharina J

    2015-06-10

    The magnetism of single atoms and molecules is governed by the atomic scale environment. In general, the reduced symmetry of the surrounding splits the d states and aligns the magnetic moment along certain favorable directions. Here, we show that we can reversibly modify the magnetocrystalline anisotropy by manipulating the environment of single iron(II) porphyrin molecules adsorbed on Pb(111) with the tip of a scanning tunneling microscope. When we decrease the tip-molecule distance, we first observe a small increase followed by an exponential decrease of the axial anisotropy on the molecules. This is in contrast to the monotonous increase observed earlier for the same molecule with an additional axial Cl ligand ( Nat. Phys. 2013 , 9 , 765 ). We ascribe the changes in the anisotropy of both species to a deformation of the molecules in the presence of the attractive force of the tip, which leads to a change in the d level alignment. These experiments demonstrate the feasibility of a precise tuning of the magnetic anisotropy of an individual molecule by mechanical control. PMID:25942560

  4. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy.

    PubMed

    Gopman, D B; Dennis, C L; Chen, P J; Iunin, Y L; Finkel, P; Staruch, M; Shull, R D

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  5. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-06-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices.

  6. Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy

    PubMed Central

    Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.

    2016-01-01

    Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638

  7. Scale-dependent Normalized Amplitude and Weak Spectral Anisotropy of Magnetic Field Fluctuations in the Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tu, Chuanyi; Marsch, Eckart; He, Jiansen; Wang, Linghua

    2016-01-01

    Turbulence in the solar wind was recently reported to be anisotropic, with the average power spectral index close to -2 when sampling parallel to the local mean magnetic field B0 and close to -5/3 when sampling perpendicular to the local B0. This result was widely considered to be observational evidence for the critical balance theory (CBT), which is derived by making the assumption that the turbulence strength is close to one. However, this basic assumption has not yet been checked carefully with observational data. Here we present for the first time the scale-dependent magnetic-field fluctuation amplitude, which is normalized by the local B0 and evaluated for both parallel and perpendicular sampling directions, using two 30-day intervals of Ulysses data. From our results, the turbulence strength is evaluated as much less than one at small scales in the parallel direction. An even stricter criterion is imposed when selecting the wavelet coefficients for a given sampling direction, so that the time stationarity of the local B0 is better ensured during the local sampling interval. The spectral index for the parallel direction is then found to be -1.75, whereas the spectral index in the perpendicular direction remains close to -1.65. These two new results, namely that the value of the turbulence strength is much less than one in the parallel direction and that the angle dependence of the spectral index is weak, cannot be explained by existing turbulence theories, like CBT, and thus will require new theoretical considerations and promote further observations of solar-wind turbulence.

  8. Ag induced enhancement of perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Shern, C. S.; Su, C. W.; Wu, Y. E.; Chen, S. H.

    2001-12-01

    Some interesting magnetic properties were observed after Ag ultrathin films were deposited on Co/Pt(1 1 1). The spin reversal of Co can be prevented when Ag atoms cap Co on Pt(1 1 1). The out-of-plane magnetization has a significant enhancement after annealing at high temperature. The Curie temperature increases from 625 to 710 K as 1 ML of Ag is deposited on 1 ML Co/Pt(1 1 1). The change of surface anisotropy and the formation of a Co-Pt alloy are possible mechanisms for the magnetization enhancement.

  9. Inkjet printing of magnetic materials with aligned anisotropy

    NASA Astrophysics Data System (ADS)

    Song, Han; Spencer, Jeremy; Jander, Albrecht; Nielsen, Jeffrey; Stasiak, James; Kasperchik, Vladek; Dhagat, Pallavi

    2014-05-01

    3-D printing processes, which use drop-on-demand inkjet printheads, have great potential in designing and prototyping magnetic materials. Unlike conventional deposition and lithography, magnetic particles in the printing ink can be aligned by an external magnetic field to achieve both high permeability and low hysteresis losses, enabling prototyping and development of novel magnetic composite materials and components, e.g., for inductor and antennae applications. In this work, we report an inkjet printing technique with magnetic alignment capability. Magnetic films with and without particle alignment are printed, and their magnetic properties are compared. In the alignment-induced hard axis direction, an increase in high frequency permeability and a decrease in hysteresis losses are observed. Our results suggest that unique magnetic structures with arbitrary controllable anisotropy, not feasible otherwise, may be fabricated via inkjet printing.

  10. Impact of magnetic surface anisotropy on the precessional switching of magnetization in Pt-alloy nanofilms

    NASA Astrophysics Data System (ADS)

    Daniel, M.; Arun, R.; Sabareesan, P.

    2012-09-01

    Precessional switching of magnetization in CoPt and FePt nanofilms is investigated by solving the Landau-Lifshitz-Gilbert (LLG) equation analytically and numerically. Switching in these films occurs only above a critical value of the magnetic field, and it further depends on the magnetocrystalline anisotropy and saturation magnetization of the film. The presence of magnetic surface anisotropy in these films reduces the switching time significantly. Also, the switching time in the case of Pt-alloys of Co and Fe is low compared to that in the case of pure Co and Fe films.

  11. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  12. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    NASA Astrophysics Data System (ADS)

    Perna, P.; Ajejas, F.; Maccariello, D.; Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Muñoz, M.; Prieto, J. L.; Miranda, R.; Camarero, J.

    2016-05-01

    We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  13. Magnetic Anisotropy of Maghemite Nanoparticles Probed by RF Transverse Susceptibility

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Bartolomé, J.; García, L. M.; Bartolomé, F.; Arauzo, A.; Millán, A.; Palacio, F.

    We present radio frequency magnetic transverse susceptibility measurements on γ-Fe2O3 nanoparticles, which yield an estimation of their effective anisotropy constant, Keff as a function of nanoparticle size. The resulting values range from 4 to 8 × 104 erg/cm3, being on the order of the magnetocrystalline anisotropy in bulk maghemite. Keff values increase as the particle diameter increases. Evidences of anisotropy field distribution given by the size distribution in the samples, and interparticle interactions that increase as the particle size increases, are also observed in the TS measurements. The effects of such interparticle interaction overcome those of thermal fluctuations, in contrast with the behavior of other iron oxide particles.

  14. Probing Magnetic Susceptibility Anisotropy of Large-Diameter Armchair Carbon Nanotubes via Magnetic Linear Dichroism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Haroz, Erik; Kono, Junichiro; Searles, Thomas; Tu, Xiaomin; Zheng, Ming; Fagan, Jeffrey; McGill, Stephen; Smirnov, Dmitry

    2012-02-01

    We studied magnetic susceptibility anisotropy, via magnetic linear dichroism spectroscopy, of aqueous suspensions of single-walled carbon nanotubes in high magnetic fields up to 22T using a unique magnet system (Split-Florida Helix magnet). Specifically, we measured magnetic susceptibility anisotropies, δχ, of several armchair species ranging from (5,5)-(13,13) at room temperature over an excitation wavelength range of 400-900 nm. For large diameter armchairs such as (12,12) and (13,13), we have observed some of the strongest alignment in a static magnetic field due to their large diameters. Results will be discussed in comparison with detailed calculations involving the Aharonov-Bohm effect.

  15. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGESBeta

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropymore » is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  16. Write operation in MRAM with voltage controlled magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Munira, Kamaram; Pandey, Sumeet; Sandhu, Gurtej

    In non-volatile Magnetic RAM, information is saved in the bistable configuration of the free layer in a magnetic tunnel junction (MTJ). New information can be written to the free layer through magnetic induction (Toggle MRAM) or manipulation of magnetization using electric currents (Spin Transfer Torque MRAM or STT-MRAM). Both of the writing methods suffer from a shortcoming in terms of energy efficiency. This limitation on energy performance is brought about by the need for driving relatively large electrical charge currents through the devices for switching. In STT-MRAM, the nonzero voltage drop across the resistive MTJ leads to significant power dissipation. An energy efficient way to write may be with the assistance of voltage controlled magnetic anisotropy (VCMA), where voltage applied across the MTJ creates an electric field that modulates the interfacial anisotropy between the insulator and free layer. However, VCMA cannot switch the free layer completely by 180 degree rotation of magnetization. It can lower the barrier between the two stable configurations or at best, cancel the barrier, allowing 90 degree rotation. A second mechanism, spin torque or magnetic field, is needed to direct the final switching destination.

  17. Reaching the magnetic anisotropy limit of a 3d metal atom.

    PubMed

    Rau, Ileana G; Baumann, Susanne; Rusponi, Stefano; Donati, Fabio; Stepanow, Sebastian; Gragnaniello, Luca; Dreiser, Jan; Piamonteze, Cinthia; Nolting, Frithjof; Gangopadhyay, Shruba; Albertini, Oliver R; Macfarlane, Roger M; Lutz, Christopher P; Jones, Barbara A; Gambardella, Pietro; Heinrich, Andreas J; Brune, Harald

    2014-05-30

    Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom's magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism. PMID:24812206

  18. Magnetic anisotropy in the frustrated spin-ladder system BiCu2PO6 from magnetostriction in pulsed fields

    NASA Astrophysics Data System (ADS)

    Uchida, Atsuko; Kohama, Yoshimitsu; Wang, Shuang; Jaime, Marcelo; Rüegg, Christian

    2012-02-01

    The spin interactions in BiCu2PO6 have been studied by inelastic neutron scattering, magnetic susceptibility, and numerical calculation. There is strong frustration between magnetic interactions along the ladder leg, JLeg and JNNN, and it has been pointed out that a spin gap persists in this frustrated system. Both Jleg and JNNN are intra-ladder and two-leg ladder is always gapped. Longitudinal magnetostriction (MS) measurements were performed using a fiber optic strain gauge in a 60 T pulsed magnet [1] . Specific heat (Cp) and magnetocaloric effect (MCE) measurements were performed in a 35 T DC magnet. Cp vs T was obtained using both a thermal relaxation time and dual slope techniques. We have in this way determined the (H,T) phase diagram of BiCu2PO6 up to 45 T. The 3D character of phase transitions is suggested by the observation of sharp anomalies in CM and δL/L. Our MCE and MS data provides direct evidence of first-order phase transitions for H//c, while phase transitions for H//a and H//b are characterized as second-order phase transitions. The anisotropic and complex phase boundaries will be discussed. [4pt] [1] Daou R et al., Rev. Sci. Instrum. 81, 033909 (2010).

  19. Modification of crystal anisotropy and enhancement of magnetic moment of Co-doped SnO2 thin films annealed under magnetic field.

    PubMed

    Loya-Mancilla, Sagrario M; Poddar, Pankaj; Das, Raja; Ponce, Hilda E Esparza; Templeton-Olivares, Ivan L; Solis-Canto, Oscar O; Ornelas-Gutierrez, Carlos E; Espinosa-Magaña, Francisco; Olive-Méndez, Sion F

    2014-01-01

    Co-doped SnO2 thin films were grown by sputtering technique on SiO2/Si(001) substrates at room temperature, and then, thermal treatments with and without an applied magnetic field (HTT) were performed in vacuum at 600°C for 20 min. HTT was applied parallel and perpendicular to the substrate surface. Magnetic M(H) measurements reveal the coexistence of a strong antiferromagnetic (AFM) signal and a ferromagnetic (FM) component. The AFM component has a Néel temperature higher than room temperature, the spin axis lies parallel to the substrate surface, and the highest magnetic moment m =7 μB/Co at. is obtained when HTT is applied parallel to the substrate surface. Our results show an enhancement of FM moment per Co(+2) from 0.06 to 0.42 μB/Co at. for the sample on which HTT was applied perpendicular to the surface. The FM order is attributed to the coupling of Co(+2) ions through electrons trapped at the site of oxygen vacancies, as described by the bound magnetic polaron model. Our results suggest that FM order is aligned along [101] direction of Co-doped SnO2 nanocrystals, which is proposed to be the easy magnetization axis. PMID:25489286

  20. Modification of crystal anisotropy and enhancement of magnetic moment of Co-doped SnO2 thin films annealed under magnetic field

    PubMed Central

    2014-01-01

    Co-doped SnO2 thin films were grown by sputtering technique on SiO2/Si(001) substrates at room temperature, and then, thermal treatments with and without an applied magnetic field (HTT) were performed in vacuum at 600°C for 20 min. HTT was applied parallel and perpendicular to the substrate surface. Magnetic M(H) measurements reveal the coexistence of a strong antiferromagnetic (AFM) signal and a ferromagnetic (FM) component. The AFM component has a Néel temperature higher than room temperature, the spin axis lies parallel to the substrate surface, and the highest magnetic moment m =7 μB/Co at. is obtained when HTT is applied parallel to the substrate surface. Our results show an enhancement of FM moment per Co+2 from 0.06 to 0.42 μB/Co at. for the sample on which HTT was applied perpendicular to the surface. The FM order is attributed to the coupling of Co+2 ions through electrons trapped at the site of oxygen vacancies, as described by the bound magnetic polaron model. Our results suggest that FM order is aligned along [101] direction of Co-doped SnO2 nanocrystals, which is proposed to be the easy magnetization axis. PMID:25489286

  1. Electroplated FeNi ring cores for fluxgates with field induced radial anisotropy

    NASA Astrophysics Data System (ADS)

    Butta, M.; Ripka, P.; Janosek, M.; Pribil, M.

    2015-05-01

    Being able to control the anisotropy of a magnetic core plays an important role in the development of a fluxgate sensor. Our aim is to induce anisotropy orthogonal to the direction of excitation because it generates a stable, low-noise fluxgate, as cited in the literature. In this paper, we present an original method for electroplating a ring core for a fluxgate with built-in radial anisotropy by performing the electroplating in a radial field produced by a novel yoke. The results show that the resulting anisotropy is homogeneously radial and makes the magnetization rotate, avoiding domain wall movement for low excitation fields.

  2. Giant induced magnetic anisotropy In strain annealed Co-based nanocomposite alloys

    NASA Astrophysics Data System (ADS)

    Kernion, Samuel J.; Ohodnicki, Paul. R.; Grossmann, Jane; Leary, Alex; Shen, Shen; Keylin, Vladimir; Huth, Joseph F.; Horwath, John; Lucas, Matthew S.; McHenry, Michael E.

    2012-09-01

    Low loss switching of soft magnetic materials at high frequencies benefits from tuning the induced anisotropy. We show induced anisotropies, Ku, as large as 1.89×104 J /m3, developed by strain annealing of Co-rich nanocomposite alloys. Crystalline phases in this alloy system have large negative magnetostrictive coefficients, leading to anisotropy fields per unit stress over twice those developed in FINEMET. Tunable permeability and reduced thicknesses achieved in this process can mitigate eddy-current losses. Giant induced magnetic anisotropies are discussed in light of models for the micromechanisms of amorphous metal deformation, stress-assisted transformations in the crystallites, and directional pair ordering.

  3. Measurement of the magnetic anisotropy energy constants for magneto-optical recording media

    NASA Technical Reports Server (NTRS)

    Hajjar, R. A.; Wu, T. H.; Mansuripur, M.

    1992-01-01

    Measurement of the magneto-optical polar Kerr effect is performed on rare earth-transition metal (RE-TM) amorphous films using in-plane fields. From this measurement and the measurement of the saturation magnetization using a vibrating sample magnetometer (VSM), the magnetic anisotropy constants are determined. The temperature dependence is presented of the magnetic anisotropy in the range of -175 to 175 C. The results show a dip in the anisotropy near magnetic compensation. This anomaly is explained based on the finite exchange coupling between the rare earth and transition metal subnetworks.

  4. Transfer matrices for magnetized CMB anisotropies

    SciTech Connect

    Giovannini, Massimo

    2006-05-15

    Large-scale magnetic fields can affect scalar cosmological perturbations whose evolution is described in the conformally Newtonian gauge and within the tight coupling approximation. The magnetized curvature perturbations present after matter-radiation equality (and prior to decoupling) are computed in terms of an appropriate transfer matrix allowing a general estimate of the Sachs-Wolfe plateau. From the observation that CMB initial conditions should be (predominantly) adiabatic, the contribution of the magnetic field intensity can be constrained.

  5. In-plane electric field controlled perpendicular magnetic anisotropy in an FePt/[Pb(Mg1/3Nb2/3)O3]0.7–(PbTiO3)0.3 heterostructure

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Xu, Xiaoguang; Feng, Julong; Liu, Pengfei; Wu, Yong; Ma, Li; Zhou, Shiming; Miao, Jun; Jiang, Yong

    2016-06-01

    We report the in-plane electric field controlled perpendicular magnetic anisotropy of L10-FePt films deposited on polarized [Pb(Mg1/3Nb2/3)O3]0.7–(PbTiO3)0.3 single crystal substrates. The out-of-plane coercivity (H c⊥) of FePt films exhibits a regular response to the in-plane electric field applied on substrates. The experimental change of H c⊥ is approximately 21.3% with the electric field varying from ‑10 to 10 kV/cm. The magnetization direction can be controlled by switching the electric field. The remanence of FePt films can also be manipulated by the electric field, so that a “W”-shaped sawtooth magnetic signal can be generated by a sawtooth electric field.

  6. Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ergeneman, Olgaç; Peters, Christian; Gullo, Maurizio R.; Jacot-Descombes, Loïc; Gervasoni, Simone; Özkale, Berna; Fatio, Philipe; Cadarso, Victor J.; Mastrangeli, Massimo; Pané, Salvador; Brugger, Jürgen; Hierold, Christofer; Nelson, Bradley J.

    2014-08-01

    We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this work superparamagnetic magnetite nanoparticles are dispersed in SU-8 to form magnetic hemispheres. Magnetically anisotropic hemispheres as well as standard SPMPC hemispheres are fabricated. Magnetic anisotropy is programmed by applying a magnetic field during curing. The distribution of nanoparticles inside the polymer matrix and magnetic characteristics of the SPMPC are investigated. Magnetic manipulation of hemispheres is demonstrated at liquid-liquid interfaces. Different assembly strategies to form lines or geometric shapes from hemispheres as well as their independent dynamic control are demonstrated. Finally, a two-interface assembly strategy is demonstrated to assemble hemispheres into complete spheres for advanced self-assembly tasks.We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this

  7. Manipulating magnetic anisotropy and ultrafast spin dynamics of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Zhao-Hua; He, Wei; Zhang, Xiang-Qun; Sun, Da-Li; Du, Hai-Feng; Wu, Qiong; Ye, Jun; Fang, Ya-Peng; Liu, Hao-Liang

    2015-07-01

    We present our extensive research into magnetic anisotropy. We tuned the terrace width of Si(111) substrate by a novel method: varying the direction of heating current and consequently manipulating the magnetic anisotropy of magnetic structures on the stepped substrate by decorating its atomic steps. Laser-induced ultrafast demagnetization of a CoFeB/MgO/CoFeB magnetic tunneling junction was explored by the time-resolved magneto-optical Kerr effect (TR-MOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electron tunneling current. This opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions. Furthermore, an all-optical TR-MOKE technique provides the flexibility for exploring the nonlinear magnetization dynamics in ferromagnetic materials, especially with metallic materials. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403, 2011CB921801, and 2012CB933101) and the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, 51201179, and 11274361).

  8. Study of YBCO tape anisotropy as a function of field, field orientation and operating temperature

    SciTech Connect

    Lombardo, v.; Barzi, E.; Turrioni, D.; Zlobin, A.V.

    2011-06-01

    Superconducting magnets with magnetic fields above 20 T will be needed for a Muon Collider and possible LHC energy upgrade. This field level exceeds the possibilities of traditional Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn and Nb{sub 3}Al. Presently the use of high field high temperature superconductors (HTS) is the only option available for achieving such field levels. Commercially available YBCO comes in tapes and shows noticeable anisotropy with respect to field orientation, which needs to be accounted for during magnet design. In the present work, critical current test results are presented for YBCO tape manufactured by Bruker. Short sample measurements results are presented up to 14 T, assessing the level of anisotropy as a function of field, field orientation and operating temperature.

  9. Second order anisotropy contribution in perpendicular magnetic tunnel junctions

    PubMed Central

    Timopheev, A. A.; Sousa, R.; Chshiev, M.; Nguyen, H. T.; Dieny, B.

    2016-01-01

    Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form −K2cos4θ must be added to the conventional uniaxial –K1cos2θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated −K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from “easy-axis” to “easy-cone” regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface. PMID:27246631

  10. Second order anisotropy contribution in perpendicular magnetic tunnel junctions.

    PubMed

    Timopheev, A A; Sousa, R; Chshiev, M; Nguyen, H T; Dieny, B

    2016-01-01

    Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form -K2cos(4)θ must be added to the conventional uniaxial -K1cos(2)θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated -K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from "easy-axis" to "easy-cone" regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface. PMID:27246631

  11. Second order anisotropy contribution in perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Timopheev, A. A.; Sousa, R.; Chshiev, M.; Nguyen, H. T.; Dieny, B.

    2016-06-01

    Hard-axis magnetoresistance loops were measured on perpendicular magnetic tunnel junction pillars of diameter ranging from 50 to 150 nm. By fitting these loops to an analytical model, the effective anisotropy fields in both free and reference layers were derived and their variations in temperature range between 340 K and 5 K were determined. It is found that a second-order anisotropy term of the form ‑K2cos4θ must be added to the conventional uniaxial –K1cos2θ term to explain the experimental data. This higher order contribution exists both in the free and reference layers. At T = 300 K, the estimated ‑K2/K1 ratios are 0.1 and 0.24 for the free and reference layers, respectively. The ratio is more than doubled at low temperatures changing the ground state of the reference layer from “easy-axis” to “easy-cone” regime. The easy-cone regime has clear signatures in the shape of the hard-axis magnetoresistance loops. The existence of this higher order anisotropy was also confirmed by ferromagnetic resonance experiments on FeCoB/MgO sheet films. It is of interfacial nature and is believed to be due to spatial fluctuations at the nanoscale of the first order anisotropy parameter at the FeCoB/MgO interface.

  12. Field dependence of the residual-resistivity anisotropy in sodium and potassium

    NASA Astrophysics Data System (ADS)

    Huberman, M.; Overhauser, A. W.

    1985-01-01

    Recent measurements of the low-field, induced torque in sodium and potassium by Elliott and Datars show that the resistivity anisotropy increases with increasing magnetic field. The zero-field resistivity anisotropy, unexpected for cubic symmetry, is explained by the charge-density-wave (CDW) structure. Due to the wave-function mixing caused by the CDW potential, the momentum transfer (by isotropic impurities) is much larger for electrons near the CDW energy gap. This is modeled by an anisotropic relaxation time in k--> space. The Boltzmann transport equation in a magnetic field can then be solved exactly. The computed resistivity anisotropy is higher for ωcτ>1 compared with its zero-field value. The effect of the magnetic field is to ``stir'' the electron distribution f(k-->) this feeds electrons into the region of rapid relaxation and thereby increases the resistivity anisotropy.

  13. Paleomagnetic, Anisotropy of Magnetic Susceptibility, and 40AR/39AR Data from the Cienega Volcano, Cerros del Rio Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Foucher, M. S.; Petronis, M. S.; Lindline, J.; Van Wyk de Vries, B.

    2012-12-01

    Cinder cone eruptions are typically interpreted to have formed by the ascension of magma through a simple conduit. Recent field work and laboratory studies on different excavated volcanoes around the world suggest that magma transport within cinder cones can involve a complex system of feeder geometries. We studied the Cienega volcano, a cinder cone in the Cerros del Rio volcanic field, northern New Mexico, in order to better understand the complexity and the evolution of volcanic plumbing systems in the development of cinder cone volcanoes. We hypothesized that cinder cone plumbing systems are inherently complex and involve numerous feeder geometries (e.g. dikes, sills) and flow patterns both towards and away from the central vent complex. The Cienega volcano comprises tephra fall deposits as well as several vents, multiple intrusions, and numerous lava flow sequences. We inspected the magmatic plumbing system using different laboratory methods including paleomagnetic, anisotropy of magnetic susceptibility (AMS), rock magnetic and thin section studies. We collected samples across each outcrop of the feeder system. The dikes are olivine porphyritic basalts with major clinopyroxene, calcic plagioclase feldspar, magnetite, and xenocrystic quartz. Most samples display a trachytic texture with plagioclase crystals showing a preferred orientation parallel to the dike margins. The magnetic information is held predominantly by a cubic phase magnetite with a low- to moderate-Ti composition of Single or Pseudo-Single Domain grains. The AMS results show various flow directions. Three of six dikes yielded magma flow directions away from the vent. The other dikes showed both a subvertical flow, which corresponds to the typical movement of magma in a dike originating from a deeper crustal level, and a downward flow direction. We concluded that magma initially flowed upward from the magma chamber until it encountered flow resistance. At this structural level (the current

  14. Anisotropy of hyperfine interactions as a tool for interpretation of NMR spectra in magnetic materials.

    PubMed

    Chlan, V; Stěpánková, H; Rezníček, R; Novák, P

    2011-07-01

    Approach for interpretation of nuclear magnetic resonance (NMR) spectra in magnetic materials is presented, consisting in employing the anisotropy of hyperfine interaction. The anisotropic parts of hyperfine magnetic fields on (57)Fe nuclei are calculated ab initio for a model example of lithium ferrite and utilized to assign the experimental NMR spectral lines to iron sites in the crystal structure. PMID:21536415

  15. Quantum theory of the anisotropy of the magnetic properties of ferrimagnetic holmium iron garnet single crystals.

    PubMed

    Yang, Jiehui; Ma, Shengcan; Xu, You

    2009-03-01

    The pronounced anisotropy of the magnetization caused by the Ho(3+) ions in the ferrimagnetic holmium iron garnet has been investigated based on quantum theory. The strong anisotropy of the magnetization of the Ho(3+) ions originates mainly from the effect of the crystal field upon the Ho(3+) ions and the anisotropic Ho(3+)-Fe(3+) superexchange interaction. Following the expression of the Yb(3+)-Fe(3+) exchange interaction used by Alben, the anisotropy of the Ho(3+)-Fe(3+) exchange interaction is defined by three principal values of the exchange tensor G. Because the six Ho(3+) sublattices are magnetically non-equivalent, we calculate the magnetic quantities of the Ho(3+) at the six sublattices and compare the average value of the so-obtained six quantities with the measured values. The calculated results are in good agreement with experiments. An interpretation on the anisotropy of the magnetic properties of HoIG is given. PMID:21817410

  16. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Zhou, Tie-ge; Shao, Bin; Zuo, Xu; Feng, Min

    2016-05-01

    Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ˜16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  17. Effects of domain, grain, and magnetic anisotropy distributions on magnetic permeability: Monte-Carlo approach

    SciTech Connect

    Chun, Jaehun; Jones, Anthony M.; McCloy, John S.

    2012-07-23

    Existing approaches for prediction of the tensor permeability of polycrystalline ferrites may not provide reasonable estimates of demagnetized permeability below the spin resonance (i.e., low-field loss region) or in cases of partial magnetization. We propose an approach which solves the coupled Landau-Lifshitz-Gilbert equation for the dynamic magnetic fields including the minimization of free energy to determine the equilibrium magnetization direction. Unlike previous models, we employ a Monte-Carlo approach to easily calculate the (ensemble) averages of permeability over various domain/grain structures and magnetic anisotropy conditions. Material differences, such as those resulting from different preparation methods, are expressed by using probability density functions (p.d.f.) for anisotropy angle (easy axis angle), grain demagnetization factor (ng), and domain demagnetization factor (nd). Effects on the permeability tensor of grain and domain demagnetization factors and anisotropy field relative to saturation magnetization are discussed for the partially magnetized states for polycrystalline ferrites. It is found that the grain structure (i.e., grain demagnetization distribution) has a smaller effect on the frequency dependent permeability than does the same distribution of domains (i.e., domain demagnetization distribution).

  18. Anomalous enhancement in interfacial perpendicular magnetic anisotropy through uphill diffusion

    NASA Astrophysics Data System (ADS)

    Das, Tanmay; Kulkarni, Prabhanjan D.; Purandare, S. C.; Barshilia, Harish C.; Bhattacharyya, Somnath; Chowdhury, Prasanta

    2014-06-01

    We observed interfacial chemical sharpening due to uphill diffusion in post annealed ultrathin multilayer stack of Co and Pt, which leads to enhanced interfacial perpendicular magnetic anisotropy (PMA). This is surprising as these elements are considered as perfectly miscible. This chemical sharpening was confirmed through quantitative energy dispersive x-ray (EDX) spectroscopy and intensity distribution of images taken on high angle annular dark field (HAADF) detector in Scanning Transmission Electron Microscopic (STEM) mode. This observation demonstrates an evidence of miscibility gap in ultrathin coherent Co/Pt multilayer stacks.

  19. Magnetic anisotropy in rapidly quenched amorphous glass-coated nanowires

    NASA Astrophysics Data System (ADS)

    Óvári, T.-A.; Rotărescu, C.; Atițoaie, A.; Corodeanu, S.; Lupu, N.; Chiriac, H.

    2016-07-01

    Results on the roles played by the magnetoelastic and magnetostatic anisotropy terms in the magnetic behavior of glass-coated magnetostrictive amorphous nanowires prepared by means of rapid solidification are reported. Their contributions have been analyzed both experimentally, through hysteresis loop measurements, and theoretically, using micromagnetic simulations. All the investigated samples exhibit a magnetically bistable behavior, characterized by a single-step magnetization reversal when the applied field reaches a critical threshold value, called switching field. The combined interpretation of the experimental and theoretical data allows one to understand the effect of the magnetoelastic term on the value of the switching field, on one hand, and the effect of the magnetostatic term on the nucleation mechanism on the other, both with an essential impact on the characteristics of the nanowires' magnetic bistability. The results are crucial for understanding the basic magnetic properties of these novel rapidly solidified ultrathin magnetic wires, as well as for tailoring their properties according to the specific requirements of various sensing applications.

  20. Interplay between magnetic anisotropy and vibron-assisted tunneling in a single-molecule magnet transistor

    NASA Astrophysics Data System (ADS)

    Park, Kyungwha; McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzuri, Enrique; van der Zant, Herre

    2015-03-01

    Molecules trapped in single-molecule devices vibrate with discrete frequencies characteristic to the molecules, and the molecular vibrations can couple to electronic charge and/or spin degrees of freedom. For a significant electron-vibron coupling, electrons may tunnel via the vibrational excitations unique to the molecules. Recently, electron transport via individual anisotropic magnetic molecules (referred to as single-molecule magnets) has been observed in single-molecule transistors. A single-molecule magnet has a large spin moment and a large magnetic anisotropy barrier. So far, studies of electron-vibron coupling effects in single-molecule devices, are mainly for isotropic molecules. Here we investigate how the electron-vibron coupling influences electron transport via a single-molecule magnet Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (arXiv:1411.2677). We show that the magnetic anisotropy of the Fe4 induces new features in vibrational conductance peaks and creates vibrational satellite peaks. The main and satellite peak heights have a strong, unusual dependence on the direction and magnitude of applied magnetic field, because the magnetic anisotropy barrier is comparable to vibrational energies. Funding from NSF DMR-1206354, EU FP7 program project 618082 ACMOL, advanced ERC grant (Mols@Mols). Computer resources from SDSC Trestles under DMR060009N and VT ARC.

  1. Direct observation of an anisotropic in-plane residual stress induced by B addition as an origin of high magnetic anisotropy field of Ru/FeCoB film

    NASA Astrophysics Data System (ADS)

    Hirata, Ken-ichiro; Gomi, Shunsuke; Mashiko, Yasuhiro; Nakagawa, Shigeki

    2010-05-01

    Although boron-free FeCo films prepared on a Ru underlayer exhibits isotropic in-plane magnetic property, boron added FeCoB films prepared on Ru underlayer revealed large in-plane magnetic anisotropy with a high anisotropy field of 500 Oe. The effect of boron addition on the in-plane anisotropic residual stress in FeCoB film was investigated using sin2 ψ method of x-ray diffraction analysis. Large isotropic compressive stress was observed in Ru/FeCo film. In contrast, anisotropic in-plane residual stress was observed in Ru/FeCoB film. The compressive stress along the easy axis of Ru/FeCoB film is released more than that along the hard axis. Such anisotropic residual stress is regarded as an origin of the in-plane magnetic anisotropy through inverse magnetostriction effect. Owing to the configuration of the facing targets sputtering system, boron atoms are sputtered and deposited anisotropically, and so they penetrate FeCo crystals and release the compressive stress along the incidence direction.

  2. Direct observation of an anisotropic in-plane residual stress induced by B addition as an origin of high magnetic anisotropy field of Ru/FeCoB film

    SciTech Connect

    Hirata, Ken-ichiro; Gomi, Shunsuke; Mashiko, Yasuhiro; Nakagawa, Shigeki

    2010-05-15

    Although boron-free FeCo films prepared on a Ru underlayer exhibits isotropic in-plane magnetic property, boron added FeCoB films prepared on Ru underlayer revealed large in-plane magnetic anisotropy with a high anisotropy field of 500 Oe. The effect of boron addition on the in-plane anisotropic residual stress in FeCoB film was investigated using sin{sup 2} {psi} method of x-ray diffraction analysis. Large isotropic compressive stress was observed in Ru/FeCo film. In contrast, anisotropic in-plane residual stress was observed in Ru/FeCoB film. The compressive stress along the easy axis of Ru/FeCoB film is released more than that along the hard axis. Such anisotropic residual stress is regarded as an origin of the in-plane magnetic anisotropy through inverse magnetostriction effect. Owing to the configuration of the facing targets sputtering system, boron atoms are sputtered and deposited anisotropically, and so they penetrate FeCo crystals and release the compressive stress along the incidence direction.

  3. Tuning the magnetic anisotropy in single-layer crystal structures

    NASA Astrophysics Data System (ADS)

    Torun, E.; Sahin, H.; Bacaksiz, C.; Senger, R. T.; Peeters, F. M.

    2015-09-01

    The effect of an applied electric field and the effect of charging are investigated on the magnetic anisotropy (MA) of various stable two-dimensional (2D) crystals such as graphene, FeCl2, graphone, fluorographene, and MoTe2 using first-principles calculations. We found that the magnetocrystalline anisotropy energy of Co-on-graphene and Os-doped-MoTe2 systems change linearly with electric field, opening the possibility of electric field tuning MA of these compounds. In addition, charging can rotate the easy-axis direction of Co-on-graphene and Os-doped-MoTe2 systems from the out-of-plane (in-plane) to in-plane (out-of-plane) direction. The tunable MA of the studied materials is crucial for nanoscale electronic technologies such as data storage and spintronics devices. Our results show that controlling the MA of the mentioned 2D crystal structures can be realized in various ways, and this can lead to the emergence of a wide range of potential applications where the tuning and switching of magnetic functionalities are important.

  4. Transition Ion Strikes Back: Large Magnetic Susceptibility Anisotropy in Cobalt(II) Clathrochelates.

    PubMed

    Novikov, Valentin V; Pavlov, Alexander A; Belov, Alexander S; Vologzhanina, Anna V; Savitsky, Anton; Voloshin, Yan Z

    2014-11-01

    Transition-metal complexes are rarely considered as paramagnetic tags for NMR spectroscopy due to them generally having relatively low magnetic anisotropy. Here we report cobalt(II) cage complexes with the largest (among the transition-metal complexes) axial anisotropy of magnetic susceptibility, reaching as high as 12.6 × 10(-32) m(3) at room temperature. This remarkable anisotropy, which results from an unusual trigonal prismatic geometry of the complexes and translates into large negative value of the zero-field splitting energy, is high enough to promote reliable paramagnetic pseudocontact shifts at the distance beyond 2 nm. Our finding paves the way toward the applications of cobalt(II) clathrochelates as future paramagnetic tags. Given the incredible stability and functionalization versatility of clathrochelates, the fine-tuning of the caging ligand may lead to new chemically stable mononuclear single-molecule magnets, for which magnetic anisotropy is of importance. PMID:26278750

  5. Phase diagram of a three-dimensional antiferromagnet with random magnetic anisotropy.

    PubMed

    Perez, Felio A; Borisov, Pavel; Johnson, Trent A; Stanescu, Tudor D; Trappen, Robbyn; Holcomb, Mikel B; Lederman, David; Fitzsimmons, M R; Aczel, Adam A; Hong, Tao

    2015-03-01

    Three-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean-field theory. Regions with uniaxial, oblique, and easy-plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs. PMID:25793845

  6. Phase Diagram of a Three-Dimensional Antiferromagnet with Random Magnetic Anisotropy

    SciTech Connect

    Perez, Felio A.; Borisov, Pavel; Johnson, Trent A.; Stanescu, Tudor D.; Trappen, Robbyn; Holcomb, Mikel B.; Lederman, David; Fitzsimmons, M. R.; Aczel, Adam A.; Hong, Tao

    2015-03-04

    Three-dimensional (3D) antiferromagnets with random magnetic anisotropy (RMA) that were experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of FexNi1-xF2 epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean field theory. Regions with uniaxial, oblique and easy plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs.

  7. Phase Diagram of a Three-Dimensional Antiferromagnet with Random Magnetic Anisotropy

    DOE PAGESBeta

    Perez, Felio A.; Borisov, Pavel; Johnson, Trent A.; Stanescu, Tudor D.; Trappen, Robbyn; Holcomb, Mikel B.; Lederman, David; Fitzsimmons, M. R.; Aczel, Adam A.; Hong, Tao

    2015-03-04

    Three-dimensional (3D) antiferromagnets with random magnetic anisotropy (RMA) that were experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of FexNi1-xF2 epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean field theory. Regions with uniaxial, oblique and easy plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs.

  8. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    NASA Astrophysics Data System (ADS)

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-04-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  9. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    PubMed Central

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-01-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line. PMID:27098108

  10. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    PubMed

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-01-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line. PMID:27098108

  11. Magnetic Properties of Single Crystal Clinopyroxenes: Anisotropy of Remanence

    NASA Astrophysics Data System (ADS)

    Scott, G. R.; Feinberg, J. M.; Renne, P. R.

    2002-12-01

    (also by a factor of 4), reaching a minimum whenever the applied field is most perpendicular to the X and Z arrays. The saturation magnetization (Ms) is less variable, but shows 30% variations when the applied field is perpendicular to the X and Z arrays. Microscopic coercivity has been measured using the detailed hysteresis method of FORC analysis (First Order Reversal Curves). Each array of magnetites can be measured separately by applying the field perpendicular to the other array. Differences in the microcoercivity can be determined for each array, e.g. X=75-100mT while Z=85-125mT. Extreme anisotropy can be seen whenever the applied field is perpendicular to the plane of the arrays (Y direction), such that no microcoercivity population can be detected (up to 700mT) in the Y direction. For IRM, the remanence also appears to be null in the Y direction. The current challenge is to overcome these extreme restrictions in remanence anisotropy, while utilizing the equally extreme remanence stability to decode paleomagnetic field directions and intensities.

  12. Anisotropy of the magnetic susceptibility of gallium

    USGS Publications Warehouse

    Pankey, T., Jr.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  13. Magnetic and structural anisotropies of Co2FeAl Heusler alloy epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Gabor, M. S.; Petrisor, T., Jr.; Tiusan, C.; Hehn, M.; Petrisor, T.

    2011-10-01

    This paper shows the correlation between chemical order, lattice strains, and magnetic properties of Heusler Co2FeAl films epitaxially grown on MgO(001). A detailed magnetic characterization is performed using vector-field magnetometery combined with a numerical Stoner-Wohlfarth analysis. We demonstrate the presence of three types of in-plane anisotropies: one biaxial, as expected for the cubic symmetry, and two uniaxial. The three anisotropies show different behavior with the annealing temperature. The biaxial anisotropy shows a monotonic increase. The uniaxial anisotropy that is parallel to the hard biaxial axes (related to chemical homogeneity) decreases, while the anisotropy that is supposed to have a magnetostatic origin remains constant.

  14. Artificially modified magnetic anisotropy in interconnected nanowire networks

    NASA Astrophysics Data System (ADS)

    Araujo, Elsie; Encinas, Armando; Velázquez-Galván, Yenni; Martínez-Huerta, Juan Manuel; Hamoir, Gaël; Ferain, Etienne; Piraux, Luc

    2015-01-01

    Interconnected or crossed magnetic nanowire networks have been fabricated by electrodeposition into a polycarbonate template with crossed cylindrical nanopores oriented +/-30° with respect to the surface normal. Tailor-made nanoporous polymer membranes have been designed by performing a double energetic heavy ion irradiation with fixed incidence angles. The Ni and Ni/NiFe nanowire networks have been characterized by magnetometry as well as ferromagnetic resonance and compared with parallel nanowire arrays of the same diameter and density. The most interesting feature of these nanostructured materials is a significant reduction of the magnetic anisotropy when the external field is applied perpendicular and parallel to the plane of the sample. This effect is attributed to the relative orientation of the nanowire axes with the applied field. Moreover, the microwave transmission spectra of these nanowire networks display an asymmetric linewidth broadening, which may be interesting for the development of low-pass filters. Nanoporous templates made of well-defined nanochannel network constitute an interesting approach to fabricate materials with controlled anisotropy and microwave absorption properties that can be easily modified by adjusting the relative orientation of the nanochannels, pore sizes and material composition along the length of the nanowire.

  15. An enhancement behavior of coercivity near TC in ferromagnetic films with uniaxial magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Dho, Joonghoe

    2012-08-01

    The temperature dependence of coercivity was investigated in CrO2 and La0.7Sr0.3MnO3 films with and without uniaxial magnetic anisotropy. When the magnetic field was applied along the uniaxial magnetic anisotropy axis, the coercivities of the CrO2 and La0.7Sr0.3MnO3 films showed remarkable enhancement behaviors near ferromagnetic transition temperature (TC). In contrast, CrO2 and La0.7Sr0.3MnO3 films without uniaxial magnetic anisotropy did not exhibit such an enhancement behavior. The temperature dependence of coercivity HC(T) for an aligned Stoner-Wohlfarth ferromagnet was theoretically studied based on a modified model of previously reported ones by He [Phys. Rev. B 75, 184424 (2007)] and Grimsditch [Phys. Rev. Lett. 90, 257201 (2003)]. Experimentally observed enhancement of coercivity near TC could be explained by an effect of a distribution of the local ordering temperatures ρ(TB) for magnetic grains. The qualitative behavior of HC(T) was investigated for three different types of uniaxial anisotropies: (i) magnetocrystalline anisotropy, (ii) strain-induced anisotropy, and (iii) shape anisotropy.

  16. Three tetracoordinate Co(II) complexes [Co(biq)X2] (X = Cl, Br, I) with easy-plane magnetic anisotropy as field-induced single-molecule magnets.

    PubMed

    Smolko, L; Černák, J; Dušek, M; Miklovič, J; Titiš, J; Boča, R

    2015-10-28

    Three mononuclear complexes [Co(biq)X2] (biq = 2,2'-biquinoline; X = Cl, Br, I) were prepared by a solvothermal method and characterized by single-crystal X-ray diffraction. In all three complexes the Co(ii) atom is tetrahedrally coordinated by one biq ligand bonded in a chelate manner and two halogenido ligands. Hydrogen bonding interactions (C-HX) along with the π-π interactions contribute to the stability of the formed packing. Magnetic measurements as well as ab initio calculations revealed that the complexes possess a sizable easy-plane magnetic anisotropy (D > 0). They display a superparamagnetic behaviour in an applied external field that culminates between BDC = 0.2-0.3 T. Two relaxation processes are observed; the faster can be analysed in terms of the direct and Orbach processes yielding U/kB = 42.6 K and τ0 = 1.9 × 10(-10) s for X = Cl, U/kB = 39.6 K and τ0 = 1.2 × 10(-10) s for X = Br and U/kB = 57.0 K and τ0 = 3.2 × 10(-13) s for X = I at BDC = 0.2 T. PMID:26391615

  17. Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates

    NASA Astrophysics Data System (ADS)

    Antropov, V. P.; Antonov, V. N.

    2014-09-01

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1-xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.

  18. Low-field susceptibility anisotropy of some biotite crystals

    NASA Astrophysics Data System (ADS)

    Zapletal, Karel

    1990-10-01

    The low-field magnetic susceptibility anisotropy (LMA) of weakly magnetic rocks is dominated by paramagnetic minerals among which micas, and mainly biotite, is important. For this reason, the LMA of biotite crystals was investigated in detail. Natural biotite crystals (from ten localities) having a wide range of iron concentration were also studied by other methods, including optical microscopy, X-ray microanalysis, Mössbauer spectroscopy and induced isothermal remanent magnetization. Ferromagnetic inclusions disturbing the magnetic properties of biotite were revealed in some crystals. The measured mean bulk susceptibility of pure crystals (four localities) ranges from 1.0 × 10 -3 to 1.8 × 10 -3 SI and agrees with the susceptibility calculated from the iron concentration (ranging from 12 to 20 wt.%) determined for each specimen. The susceptibility ellipsoid of pure biotite crystals is rotational about the minimum susceptibility direction parallel to the crystallographic c'-axis, and the anisotropy degree ranges from 1.34 to 1.36.

  19. Magnetism behaviours dominated by the interplay of magnetic anisotropy and exchange coupling in local Co discs.

    PubMed

    Yang, En-Cui; Liu, Zhong-Yi; Zhang, Lei; Yang, Na; Zhao, Xiao-Jun

    2016-05-10

    Disc-like Co core-derived (4,4)- and (3,6)-connected layers, {[Co7(C2H5OH)1.5(H2O)0.5(Hdatrz)2(μ3-OH)4(ip)5]·2.5H2O·C2H5OH}n () and [Co7(H2O)4(ade)2(μ3-OH)6(sip)2]n () (Hdatrz = 3,5-diamino-1,2,4-triazole, ade(-) = adeninate, ip(2-) = isophthalate and sip(3-) = 5-sulfoisophthalate) were solvothermally generated and structurally and magnetically characterized. The effect of magnetic anisotropy and exchange coupling from the local Co cores on the resulting magnetism properties are discussed. A crystallographically asymmetric Co core in exhibited an unusual single-molecule magnet (SMM)-like response under zero dc field resulting from strong anisotropy generated by two different types of Co(II) polyhedra and highly anisotropic exchange interactions. By contrast, a highly symmetric Co disc in belonging to the C2h point group showed only strong ferromagnetic exchange, to lead to an overall ST = 7/2 spin ground-state at low temperature. Thus, the interplay of magnetic anisotropy and exchange coupling has a great and complicated influence on the overall magnetic phenomena, which should be fully considered for the design and preparation of new Co(II)-SMMs. PMID:27089955

  20. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-02-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  1. Giant perpendicular magnetic anisotropy of an individual atom on two-dimensional transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj

    2016-08-01

    Exploring magnetism and magnetic anisotropy in otherwise nonmagnetic two-dimensional materials, such as graphene and transition metal dichalcogenides, is at the heart of spintronics research. Herein, using first-principles calculations we explore the possibility of reaching an atomic-scale perpendicular magnetic anisotropy by carefully exploring the large spin-orbit coupling, orbital magnetism, and ligand field in a suitable choice of a two-dimensional structure with transition metal adatoms. More specifically, we demonstrate perpendicular magnetic anisotropy energies up to an order of 100 meV per atom in individual ruthenium and osmium adatoms at a monosulfur vacancy in molybdenum disulfide. We further propose a phenomenological model where a spin state transition that involves hybridization between molybdenum a1 and adatomic e' orbitals is a possible mechanism for magnetization reversal from an in-plane to perpendicular orientation.

  2. Enhancement of perpendicular magnetic anisotropy thanks to Pt insertions in synthetic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bandiera, S.; Sousa, R. C.; Auffret, S.; Rodmacq, B.; Dieny, B.

    2012-08-01

    Synthetic antiferromagnets are of great interest as reference layers in magnetic tunnel junctions since they allow decreasing the dipolar coupling between the two magnetic electrodes and exhibit larger pinning fields than single reference layers. In this letter, we investigate the effect of the insertion of an ultrathin Pt layer in contact with the Ru spacer in synthetic antiferromagnets with perpendicular magnetic anisotropy. Surprisingly, for Ru thickness below 0.75 nm, the antiferromagnetic coupling amplitude through Ru first increases upon Pt insertion up to a critical Pt thickness (˜0.25 nm) above which coupling decreases. In addition, the corresponding increase of perpendicular magnetic anisotropy enhances the thermal stability of the structure.

  3. Magnetic anisotropy of the radula of chiton Acanthochiton rubrolinestus LISCHKE.

    PubMed

    Qian, Xia; Zhao, Jian-Gao; Liu, Chuan-Lin; Guo, Cheng-Hua

    2002-09-01

    The magnetic anisotropy of the whole radula, the major lateral radula teeth, and magnetic material in the major lateral radula teeth of the chiton Acanthochiton rubrolinestus LISCHKE have been studied by a magnetic torque meter and superconducting quantum interference device (SQUID) magnetometer. The length and width axes of the teeth are the easily magnetized axes, while the thickness axis is difficult to magnetize. The width and thickness axes of the radula are the easily magnetized axes, and the length axis is difficult to magnetize. The measurement results of the whole radula and the major lateral radula teeth agree well with each other. The magnetic anisotropy of the magnetic material is given as well as a possible distribution of the magnetic material in the major lateral radula teeth. PMID:12210567

  4. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  5. Pinned orbital moments – A new contribution to magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Audehm, P.; Schmidt, M.; Brück, S.; Tietze, T.; Gräfe, J.; Macke, S.; Schütz, G.; Goering, E.

    2016-05-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy.

  6. Induced Anisotropy in FeCo-Based Nanocrystalline Ferromagnetic Alloys (HITPERM) by Very High Field Annealing

    NASA Technical Reports Server (NTRS)

    Johnson, F.; Garmestani, H.; Chu, S.-Y.; McHenry, M. E.; Laughlin, D. E.

    2004-01-01

    Very high magnetic field annealing is shown to affect the magnetic anisotropy in FeCo-base nanocrystalline soft ferromagnetic alloys. Alloys of composition Fe(44.5)Co(44.5)Zr(7)B(4) were prepared by melt spinning into amorphous ribbons, then wound to form toroidal bobbin cores. One set of cores was crystallized in a zero field at 600 deg. C for 1 h, then, field annealed at 17 tesla (T) at 480 deg. C for 1 h. Another set was crystallized in a 17-T field at 480 deg. C for 1 h. Field orientation was transverse to the magnetic path of the toroidal cores. An induced anisotropy is indicated by a sheared hysteresis loop. Sensitive torque magnetometry measurements with a Si cantilever sensor indicated a strong, uniaxial, longitudinal easy axis in the zero-field-crystallized sample. The source is most likely magnetoelastic anisotropy, caused by the residual stress from nanocrystallization and the nonzero magnetostriction coefficient for this material. The magnetostrictive coefficient lambda(5) is measured to be 36 ppm by a strain gage technique. Field annealing reduces the magnitude of the induced anisotropy. Core loss measurements were made in the zero-field-crystallized, zero-field-crystallized- than-field-annealed, and field-crystallized states. Core loss is reduced 30%-50% (depending on frequency) by field annealing. X-ray diffraction reveals no evidence of crystalline texture or orientation that would cause the induced anisotropy. Diffusional pair ordering is thought to be the cause of the induced anisotropy. However, reannealing the samples in the absence of a magnetic field at 480 deg. C does not completely remove the induced anisotropy.

  7. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Leary, A. M.; Keylin, V.; Ohodnicki, P. R.; McHenry, M. E.

    2015-05-01

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to ˜2 kJ/m3. Higher anisotropies up to ˜10 kJ/m3 result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co80-x-yFexMnyNb4B14Si2 soft magnetic nanocomposites, where x and y < 8 at.% with close packed crystalline grains that show stress induced anisotropies up to ˜50 kJ/m3 and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis.

  8. Helicity, anisotropies, and their competition in a multiferroic magnet: Insight from the phase diagram

    NASA Astrophysics Data System (ADS)

    Gvozdikova, M. V.; Ziman, T.; Zhitomirsky, M. E.

    2016-07-01

    Motivated by the complex phase diagram of MnWO4, we investigate the competition between anisotropy, magnetic field, and helicity for the anisotropic next-nearest-neighbor Heisenberg model. Apart from two competing exchanges, which favor a spiral magnetic structure, the model features the biaxial single-ion anisotropy. The model is treated in the real-space mean-field approximation and the phase diagram containing various incommensurate and commensurate states is obtained for different field orientations. We discuss the similarities and differences of the theoretical phase diagram and the experimental diagram of MnWO4.

  9. Large E-field tunability of magnetic anisotropy and ferromagnetic resonance frequency of co-sputtered Fe50Co50-B film

    NASA Astrophysics Data System (ADS)

    Li, Shandong; Xue, Qian; Du, Honglei; Xu, Jie; Li, Qiang; Shi, Zhipeng; Gao, Xiaoyang; Liu, Ming; Nan, Tianxiang; Hu, Zhongqiang; Sun, Nian X.; Shao, Weiquan

    2015-05-01

    Fe27.45Co30.19B42.36 (referred to as FeCoB) films with 100 nm in thickness were co-sputtered on (011)-cut lead zinc niobate-lead titanate (PZN-PT) single crystal substrate under RF powers of 80 W for Fe50Co50 target and 120 W for B target, respectively. The anisotropy field HK of the FeCoB/PZN-PT multiferroic composite is increased by more than 10 times, from 56 to 663 Oe under the E-field from 0 to 7 kV/cm due to the strong magnetoelectric coupling, corresponding to a large tunability of HK of 86.7 Oe cm/kV. At the same time, the self-bias ferromagnetic resonance frequency fFMR is dramatically shifted upwards by an electric field from 2.57 to 9.02 GHz with an increment of 6.45 GHz, corresponding to E-field tunablity of fFMR 921.4 MHz.cm/kV. These features demonstrate that FeCoB/PZN-PT multiferroic laminates prepared under an integrated circuits process are promising in fabrication of E-field tunable monolithic microwave integrated circuits (MMIC) devices and their components.

  10. Ferromagnetism and strong magnetic anisotropy of the PbMnBO4 orthoborate single crystals

    NASA Astrophysics Data System (ADS)

    Pankrats, A.; Sablina, K.; Eremin, M.; Balaev, A.; Kolkov, M.; Tugarinov, V.; Bovina, A.

    2016-09-01

    The PbMnBO4 orthoborate single crystals were first grown and their magnetic properties and ferromagnetic resonance were studied. It was found that the ferromagnetic state below the Curie temperature TC=31 K is characterized by the strong magnetic anisotropy. The significant effective anisotropy fields of PbMnBO4 determine the energy gap in the FMR spectrum, which is extraordinary large for ferromagnets (112 GHz at T=4.2 K). It was shown that the static Jahn-Teller effect characteristic of the Mn3+ ion leads to both the ferromagnetic ordering and the strong magnetic anisotropy in the crystal. In the strong external magnetic field the induced ferromagnetic ordering is retained in the crystal above the Curie temperature up to the temperatures multiply higher than TC. A weak anomaly of the dielectric permittivity was observed in PbMnBO4 at the Curie temperature at which the long-range ferromagnetic order is established.

  11. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    SciTech Connect

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-08-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction.

  12. Anisotropy of electric resistance and upper critical field in magnetic superconductor Dy0.6Y0.4Rh3.85Ru0.15B4

    NASA Astrophysics Data System (ADS)

    Terekhov, A. V.; Zolochevskii, I. V.; Khristenko, E. V.; Ishchenko, L. A.; Bezuglyi, E. V.; Zaleski, A.; Khlybov, E. P.; Lachenkov, S. A.

    2016-05-01

    We have measured temperature dependencies of the electric resistance R and upper critical magnetic field Hc2 of a magnetic superconductor Dy0.6Y0.4Rh3.85Ru0.15B4. The measurements were made for different angles φ of the magnetic field inclination to the direction of measuring current and revealed strong anisotropy of the behavior of R(T) and the values of Hc2(T). By using the Werthamer-Gelfand-Hohenberg theory, we determined the Maki parameter α and the parameter of the spin-orbital interaction. For φ =0∘ and 90° both parameters are close to zero, thus the magnitude of Hc2(0) ≈ 38 kOe is basically limited by the orbital effect. At φ =45∘ , a large value of α = 4.2 indicates dominating role of the spin-paramagnetic effect in the suppression of Hc2(0) down to 8.8 kOe. We suggest that such behavior of R(T) and Hc2(T) is caused by internal magnetism of the Dy atoms which may strongly depend on the magnetic field orientation.

  13. Stabilization of Magnetic Antivortices and the role of Shape Anisotropy

    NASA Astrophysics Data System (ADS)

    Asmat-Uceda, Martin; Li, Lin; Shaw, Brian; Haldar, Arabinda; Buchanan, Kristen

    2014-03-01

    Magnetic vortices have attracted a great deal of interest in recent years due to their potential for applications such as data storage, microwave resonators, magnonic crystals, etc. Magnetic antivortices (AV) are expected to possess similarly interesting physical attributes; however, they have not been explored with the same intensity. The AV spin configuration may present some advantages over vortices, especially for channeling spin waves emitted from the dynamic core reversal and for de-coupling spin-transfer torque effects from parasitic Oersted fields. Currently only a few geometries have been identified that reliably promote the formation of an AV, thus limiting the study of their properties. We recently demonstrated a method to form AV's in pound-key-like structures made of Permalloy (Haldar et al. APL 102, 112401, 2013). Here we investigate the dependence of the reliability of the AV formation on the details of the geometry of these structures. Magneto-optical Kerr effect (MOKE) hysteresis and magnetic force microscopy measurements show that the coercive field is also the nucleation field for the AV's. Micromagnetic simulations agree well with the experiments and highlight the role of shape anisotropy in the AV formation.

  14. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Kopčanský, Peter; Timko, Milan

    2015-08-01

    The anisotropy of acoustic attenuation in transformer oil-based magnetic fluids upon the external magnetic field was studied to discover the structure of nanoparticles. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles leads to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids and the concentration of nanoparticles also have very important influence on the structural changes. The measurement of the dependence of the acoustic attenuation on the angle between the magnetic field direction and acoustic wave vector (anisotropy) can give the useful information about the structure of magnetic nanoparticles formations. In the present, the results of anisotropy measurements of the transformer oil-based magnetic fluids are described and using appropriate theory the basic parameters of clusters are calculated. On the basis of the performed calculations, the proportion of the acoustic wave energy used for excitation of the translational and rotational degrees of freedom was also established.

  15. Control of magnetic anisotropy in Pt/Co system using ionic liquid gating

    NASA Astrophysics Data System (ADS)

    Hirai, Takamasa; Koyama, Tomohiro; Obinata, Aya; Hibino, Yuki; Miwa, Kazumoto; Ono, Shimpei; Kohda, Makoto; Chiba, Daichi

    2016-06-01

    The magnetic anisotropy of the Pt/Co system under ionic liquid gating was studied. A comparison of results obtained using samples under the gating and those subjected to mild oxidization by oxygen plasma ashing suggested that the anodic oxidization of the Co layer could be one of the causes of the large modulation observed in the magnetic anisotropy. However, the charge accumulation effect was probably dominant when the Co layer was on the cathode side. The experiments presented here are expected to aid in elucidating the mechanism by which electric fields affect magnetism.

  16. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  17. Magnetic anisotropy and reversal mechanisms in dual layer exchanged coupled perpendicular media

    NASA Astrophysics Data System (ADS)

    Thomson, T.; Lengsfield, B.; Do, H.; Terris, B. D.

    2008-04-01

    We report the magnetic properties of perpendicular media with a layered structure in which a high anisotropy, segregated, granular CoCrPt-oxide base layer is capped by a lower anisotropy CoCrPt-based film. Anisotropy field (Hk) data show that for the thickness of oxide media studied here, the measured value of Hk remains constant as cap thickness increases. This provides strong evidence that the anisotropy of the composite grain is controlled by the hard oxide layer and is not a simple average of the anisotropy of the oxide and cap layers. The reversal mechanism is explored by determining the angle dependent switching as a function of cap thickness. In the absence of a cap layer, the media show a Stoner-Wohlfarth-like reversal which becomes more Kondorsky-like [1/cos(θ)] when a critical cap thickness is reach, which we interpret as indicating greater lateral exchange coupling.

  18. Giant magnetic anisotropy and quantum tunneling of the magnetization in Li2(Li1-xFex)N

    NASA Astrophysics Data System (ADS)

    Jesche, Anton; McCallum, R. William; Thimmaiah, Srinivasa; Jacobs, Jenee L.; Taufour, Valentin; Kreyssig, Andreas; Houk, Robert S.; Bud'Ko, Sergey L.; Canfield, Paul C.

    2014-03-01

    The magnetic anisotropy of 3 d transition metals is usually considered to be weak, mainly due to the widely known paradigm of orbital quenching. However, a rare interplay of crystal electric field effects and spin-orbit coupling causes a large orbital contribution to the magnetic moment of iron in Li2(Li1-xFex)N. This leads, not only to large magnetic moments of ~ 5 μB per iron atom but, also, to an enormous magnetic anisotropy field that extrapolates to more than 200 Tesla. Magnetic hysteresis emerges for T <= 50 K and the coercivity fields of more than 11 Tesla exceed even the hardest 4 f electron based ferromagnets. Li2(Li1-xFex)N not only has a clear and remarkable anisotropy, generally not associated with iron moments, but also shows time-dependence more consistent with molecular magnets. In particular for low iron concentrations x << 1 the spin-inversion is dominated by a macroscopic tunneling process rather than by thermal excitations. It is shown that the huge magnetic anisotropy makes Li2(Li1-xFex)N (i) an ideal model system to study macroscopic quantum effects at elevated temperatures and (ii) a basis for novel magnetic functional materials. This work is supported by the US DOE, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  19. Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy.

    PubMed

    Ryzhkov, Aleksandr V; Melenev, Petr V; Balasoiu, Maria; Raikher, Yuriy L

    2016-08-21

    The equilibrium structure and magnetic properties of a ferrogel object of small size (microferrogel(MFG)) are investigated by coarse-grained molecular dynamics. As a generic model of a microferrogel (MFG), a sample with a lattice-like mesh is taken. The solid phase of the MFG consists of magnetic (e.g., ferrite) nanoparticles which are mechanically linked to the mesh making some part of its nodes. Unlike previous models, the finite uniaxial magnetic anisotropy of the particles, as it is the case for real ferrogels, is taken into account. For comparison, two types of MFGs are considered: MFG-1, which dwells in virtually non-aggregated state independently of the presence of an external magnetic field, and MFG-2, which displays aggregation yet under zero field. The structure states of the samples are analyzed with the aid of angle-resolved radial distribution functions and cluster counts. The results reveal the crucial role of the matrix elasticity on the structure organization as well as on magnetization of both MFGs. The particle anisotropy, which plays insignificant role in MFG-1 (moderate interparticle magnetodipole interaction), becomes an important factor in MFG-2 (strong interaction). There, the restrictions imposed on the particle angular freedom by the elastic matrix result in notable diminution of the particle chain lengths as well as the magnetization of the sample. The approach proposed enables one to investigate a large variety of MFGs, including those of capsule type and to purposefully choose the combination of their magnetoelastic parameters. PMID:27544124

  20. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    SciTech Connect

    Dobrun, L. A. Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  1. Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Chaves-O'Flynn, Gabriel

    The scaling of the energy barrier to magnetization reversal in thin-film nanomagnets with perpendicular magnetization as a function of their lateral size is of great interest and importance for high-density magnetic random access memory devices. Experimental studies of such elements show either a quadratic or linear dependence of the energy barrier on element diameter. I will discuss a theoretical model we developed to determine the micromagnetic configurations that set the energy barrier for thermally activated reversal of a thin disk with perpendicular magnetic anisotropy as a function of disk diameter. We find a critical length in the problem that is set by the exchange and effective perpendicular magnetic anisotropy energies, with the latter including the size dependence of the demagnetization energy. For diameters smaller than this critical length, the reversal occurs by nearly coherent magnetization rotation and the energy barrier scales with the square of the diameter normalized to the critical length (for fixed film thickness), while for larger diameters, the transition state has a domain wall, and the energy barrier depends linearly on the normalized diameter. Simple analytic expressions are derived for these two limiting cases and verified using full micromagnetic simulations with the string method. Further, the effect of an applied field is considered and shown to lead to a plateau in the energy barrier versus diameter dependence at large diameters. Based on these finding I discuss the prospects and material challenges in the scaling of magnetic memory devices based on thin films with strong perpendicular magnetic anisotropy. In collaboration with G. Wolf, J. Z. Sun and A. D. Kent. Supported by NSF-DMR-1309202 and in part by Spin Transfer Technologies Inc. and the Nanoelectronics Research Initiative through the Institute for Nanoelectronics Discovery and Exploration.

  2. Hot-electron transport and magnetic anisotropy in epitaxial spin valves

    NASA Astrophysics Data System (ADS)

    Heindl, E.; Vancea, J.; Woltersdorf, G.; Back, C. H.

    2007-09-01

    We report on ballistic electron magnetic microscopy studies at room temperature using an epitaxially grown Fe34Co66/Au/Fe34Co66 trilayer. Local hysteresis loops are obtained as a function of the in-plane magnetic field angle. In order to understand the underlying local magnetization behavior, the magnetic anisotropies were determined by ferromagnetic resonance. These results served as input for simulations of the hysteresis loops, which are compared to magneto-optic Kerr effect and ballistic electron magnetic microscopy data of the spin valve. In doing so, the relative magnetization configuration of the spin valve can be calculated as a function of the external magnetic field, and the magnetization behavior during the reversal can be explained. Since different magnetization configurations of the spin valve are available, epitaxial spin valves allow multimagnetocurrent values, when the magnetic field is applied along different directions.

  3. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    SciTech Connect

    Morrison, C. Miles, J. J.; Thomson, T.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  4. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Miles, J. J.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.; Thomson, T.

    2015-05-01

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  5. Research Update: Magnetoionic control of magnetization and anisotropy in layered oxide/metal heterostructures

    NASA Astrophysics Data System (ADS)

    Duschek, K.; Pohl, D.; Fähler, S.; Nielsch, K.; Leistner, K.

    2016-03-01

    Electric field control of magnetization and anisotropy in layered structures with perpendicular magnetic anisotropy is expected to increase the versatility of spintronic devices. As a model system for reversible voltage induced changes of magnetism by magnetoionic effects, we present several oxide/metal heterostructures polarized in an electrolyte. Room temperature magnetization of Fe-O/Fe layers can be changed by 64% when applying only a few volts in 1M KOH. In a next step, the bottom interface of the in-plane magnetized Fe layer is functionalized by an L10 FePt(001) underlayer exhibiting perpendicular magnetic anisotropy. During subsequent electrocrystallization and electrooxidation, well defined epitaxial Fe3O4/Fe/FePt heterostructures evolve. The application of different voltages leads to a thickness change of the Fe layer sandwiched between Fe-O and FePt. At the point of transition between rigid magnet and exchange spring magnet regime for the Fe/FePt bilayer, this induces a large variation of magnetic anisotropy.

  6. Correlations, spin-charge separation, and magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Manchanda, Priyanka

    2015-03-01

    Much of the physics of condensed matter reflects electron-electron correlations. On an independent-electron level, correlations are described by a single Slater determinant with broken spin symmetry. This approach includes Hund's rule correlations as well the LSDA and LSDA+U approximations to density-functional theory (DFT). However, from Kondo and heavy-fermion systems it is known that the independent-electron approach fails to describe spin-charge separation in strongly correlated systems, necessitating the use of two or more Slater determinants. Using first-principle and model calculations, we show that spin-charge separation strongly affects the leading rare-earth anisotropy contribution in top-end permanent magnet materials such as Nd2Fe14B and SmCo5. Explicit correlation results are obtained for two limiting cases. First, we derive the density functional for tripositive rare-earth ions in a Bethe-type crystal field. The potential looks very different from the LSDA(+U) potentials, including gradient corrections. Second, we use a simple model to show that Kondo-type spin-charge separation yield a rare-earth anisotropy contribution absent in the independent-electron approach. This research is supported by DOE (DE-FG02-04ER46152).

  7. Magnetostriction of rare-earth random magnetic anisotropy spin glasses

    SciTech Connect

    del Moral, A.; Arnaudas, J.I.

    1989-05-01

    A model of magnetostriction for single-ion random magnetic anisotropy (RMA) spin glasses (SG) is developed, the calculation being based on the replica technique. An overall uniform strain is assumed and coupled to the local easy axis (or easy plane) by an adequate projection. The obtained bulk magnetostriction becomes proportional to the average quadrupolar moment, which depends upon the assumed ferromagnetic uniform exchange, J/sub 0/, and the RMA crystal field (CEF), D/sub 0/, strengths. Magnetostriction measurements parallel (lambda/sub X/) and perpendicular (lambda/sub perpendicular/) to the applied magnetic field (up to 7 T) have been performed between 4.2 and 150 K (much larger than the SG temperature, T/sub SG/) for the amorphous spin glasses R/sub 40/Y/sub 23/Cu/sub 37/ (R = Tb, Dy, Ho, and Er). Anisotropic magnetostriction is a forced effect, with no sign of saturation, and is quite large well above T/sub SG/. The developed model fits quantitatively and remarkably well the temperature variation of the anisotropic magnetostriction, lambda/sub t/ = lambda/sub X/-lambda/sub perpendicular/, in the case of Tb, Dy, and Ho alloys. The values obtained from the fit for D/sub 0/, respectively, are +3.0, +1.25, and +0.6 K. For Er, D/sub 0/ becomes -0.37 K. The signs of D/sub 0/ are in agreement with having local axial anisotropy for the Tb, Dy, and Ho compounds, and planar for the Er one, in good agreement with the signs of the ..cap alpha../sub J/ Stevens quadrupolar parameter.

  8. Magnetic tunnel junction sensor with Co/Pt perpendicular anisotropy ferromagnetic layer

    SciTech Connect

    Wei, H. X.; Qin, Q. H.; Wen, Z. C.; Han, Prof. X. F.; Zhang, Xiaoguang

    2009-01-01

    Linear magnetoresistance (MR) is an important attribute for magnetic sensor designs for space applications, three dimensional detection of the magnetic field, and high field measurements. Here we demonstrate that a large linear MR of up to 22% can be achieved in a magnetic tunnel junction that consists of two ferromagnetic layers, one with out of plane and one with in plane magnetic anisotropy. The tunnelling magnetoresistance (TMR) is measured with the electrical current perpendicular to the film plane. The magnetic configuration of the device is analyzed.

  9. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  10. Axial Magnetic Anisotropy from Two Systems Fe2B and Co2B with Planar Anisotropy

    NASA Astrophysics Data System (ADS)

    Taufour, Valentin; Lamichhane, Tej; Bud'Ko, Sergey L.; Jesche, Anton; Goldman, Alan I.; Dennis, Kevin W.; McCallum, R. William; Antropov, Vladimir; Canfield, Paul C.

    2015-03-01

    Growth of single crystals of (Fe1-xCox)2B (0 <= x <= 1) and detailed characterization of their magnetic properties will be presented. Despite the fact that both Fe2B and Co2B show a planar anisotropy at room temperature, we observe a uniaxial anisotropy at intermediate doping which makes (Fe,Co)2B a promising system for permanent magnet applications in a system without rare-earth element. Comparison with recent band structure calculations will be presented. The temperature dependence of the anisotropy measured on single crystals from 2 K to 1000 K shows some unusual variations with an increase of the magnetic anisotropy with increasing temperature at some specific substitution. This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the US DOE and by the Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the US DOE by Iowa State University under Contract No. DE-AC02-07CH11358.

  11. Proton resonant firehose instability: Temperature anisotropy and fluctuating field constraints

    NASA Astrophysics Data System (ADS)

    Gary, S. Peter; Li, Hui; O'Rourke, Sean; Winske, Dan

    1998-07-01

    The electromagnetic proton firehose instability may grow in a plasma if the proton velocity distribution is approximately bi-Maxwellian and T∥p>T⊥p, where the directional subscripts denote directions relative to the background magnetic field. Linear Vlasov dispersion theory in a homogeneous electron-proton plasma implies an instability threshold condition at constant maximum growth rate 1-T⊥p/T∥p=Sp/β∥pαp over 1<β∥p<=10 where β∥p≡8πnpT∥p/B02 and B0 is the background magnetic field. Here Sp and αp are fitting parameters and αp~=0.7. One- and two-dimensional initial value hybrid simulations of this growing mode are carried out under proton cyclotron resonant conditions in a homogeneous plasma on the initial domain 2<~β∥p<=100. The two-dimensional simulations show that enhanced fluctuations from this instability impose a bound on the proton temperature anisotropy of the form of the above equation with the fluid theory result αp~=1.0. On this domain both one- and two-dimensional simulations yield a new form for the upper bound on the fluctuating field energy density from the proton resonant firehose instability |δB|2/B02=SB+αBln(β∥p) where SB and αB are empirical parameters which are functions of the initial growth rate. This logarithmic behavior is qualitatively different from a fluid theory prediction and, like the anisotropy bound, should be subject to observational verification in any sufficiently homogeneous plasma in which the proton velocity distribution is approximately bi-Maxwellian.

  12. Effect of in-plane uniaxial anisotropy on self-organized magnetic structures generated by the Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Oh, S. W.; Kwon, H. Y.; Won, C.

    2013-03-01

    The influences of uniaxial in-plane anisotropy on the properties of ordered magnetic structures generated by the DM interaction were investigated by performing Monte-Carlo simulated annealing. The uniaxial anisotropy aligns the magnetic structure along a specific direction and helps to organize magnetic skyrmions to form either a horizontal or a vertical hexagonal structure, depending on the anisotropy strength. The uniaxial in-plane anisotropy not only enhances the ordering of the structure but also enriches the phases of the system, which include a rectangular lattice structure of skyrmions and 1D skyrmion arrays separated by stripe domains. We investigate the formation conditions of the anisotropy strength and the external field for various magnetic phases.

  13. Origin of easy magnetization switching in magnetic tunnel junctions with voltage-controlled interfacial anisotropy

    PubMed Central

    Pertsev, Nikolay A.

    2013-01-01

    Spin-polarized currents represent an efficient tool for manipulating ferromagnetic nanostructures but the critical current density necessary for the magnetization switching is usually too high for applications. Here we show theoretically that, in magnetic tunnel junctions having electric-field-dependent interfacial anisotropy, the critical density may reduce down to a very low level (~104 A cm−2) when the junction combines small conductance with the proximity of free layer to a size-driven spin reorientation transition. The theory explains easy magnetization switching recently discovered in CoFeB/MgO/CoFeB tunnel junctions, surprisingly showing that it happens when the spin-transfer torque is relatively small, and provides a recipe for the fabrication of magnetic tunnel junctions suitable for industrial memory applications. PMID:24067783

  14. Slow magnetic relaxation in mononuclear seven-coordinate cobalt(II) complexes with easy plane anisotropy.

    PubMed

    Chen, Lei; Chen, Shu-Yang; Sun, Yi-Chen; Guo, Yu-Mei; Yu, Lu; Chen, Xue-Tai; Wang, Zhenxing; Ouyang, Z W; Song, You; Xue, Zi-Ling

    2015-07-01

    Two mononuclear seven-coordinate cobalt(II) complexes [Co(L)3(NO3)2] (L = 4-tert-butylpyridine, 1; L = isoquinoline, 2) were prepared and structurally analyzed by single-crystal X-ray crystallography. The coordination spheres of 1 and 2 exhibit distorted pentagonal bipyramid geometry. Analysis of their direct-current magnetic data reveals the existence of easy plane anisotropy (D > 0) with a small transverse anisotropy (E), which was further confirmed by high-field electron paramagnetic resonance (HFEPR) spectroscopy. Field-induced slow magnetic relaxations were observed under the applied dc field in complexes 1 and 2 by alternating-current magnetic susceptibility measurements. Importantly, these complexes are new instances of mononuclear high-coordinate cobalt(II)-based single-molecule magnets. PMID:26027953

  15. Giant magnetic anisotropy and tunnelling of the magnetization in Li2(Li1-xFex)N

    SciTech Connect

    Jesche, A.; McCallum, R. W.; Thimmaiah, S.; Jacobs, J. L.; Taufour, V.; Kreyssig, A.; Houk, R. S.; Bud’ko, S. L.; Canfield, P. C.

    2014-02-25

    Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li2(Li1-xFex)N. An extrapolated, magnetic anisotropy field of 220 T and a coercivity field of over 11 T at 2 K outperform all known hard ferromagnets and single-molecular magnets. Steps in the hysteresis loops and relaxation phenomena in striking similarity to single-molecular magnets are particularly pronounced for x<<1 and indicate the presence of nanoscale magnetic centres. Quantum tunnelling, in the form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10 K. The simple crystal structure, the availability of large single crystals and the ability to vary the Fe concentration make Li2(Li1-xFex)N an ideal model system to study macroscopic quantum effects at elevated temperatures and also a basis for novel functional magnetic materials.

  16. Giant magnetic anisotropy and tunnelling of the magnetization in Li2(Li1-xFex)N

    NASA Astrophysics Data System (ADS)

    Jesche, A.; McCallum, R. W.; Thimmaiah, S.; Jacobs, J. L.; Taufour, V.; Kreyssig, A.; Houk, R. S.; Bud'Ko, S. L.; Canfield, P. C.

    2014-02-01

    Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li2(Li1-xFex)N. An extrapolated, magnetic anisotropy field of 220 T and a coercivity field of over 11 T at 2 K outperform all known hard ferromagnets and single-molecular magnets. Steps in the hysteresis loops and relaxation phenomena in striking similarity to single-molecular magnets are particularly pronounced for x≪1 and indicate the presence of nanoscale magnetic centres. Quantum tunnelling, in the form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10 K. The simple crystal structure, the availability of large single crystals and the ability to vary the Fe concentration make Li2(Li1-xFex)N an ideal model system to study macroscopic quantum effects at elevated temperatures and also a basis for novel functional magnetic materials.

  17. Magnetic anisotropy in strained manganite films and bicrystal junctions

    NASA Astrophysics Data System (ADS)

    Demidov, V. V.; Ovsyannikov, G. A.; Petrzhik, A. M.; Borisenko, I. V.; Shadrin, A. V.; Gunnarsson, R.

    2013-04-01

    Transport and magnetic properties of La0.67Sr0.33MnO3 (LSMO) manganite thin films and bicrystal junctions were investigated. Epitaxial manganite films were grown on SrTiO3, LaAlO3, NdGaO3 (NGO), and (LaAlO3)0.3 + (Sr2AlTaO6)0.7 substrates, and their magnetic anisotropy were determined by two independent techniques of magnetic resonance spectroscopy. It was demonstrated that by using these techniques, a small (0.3%) anisotropy of crystal structure at the (110) surface plane of the orthorhombic NGO substrate leads to uniaxial magnetic anisotropy of the films in the plane of the substrate at least at the room temperature. It was found that on vicinal NGO substrates, the value of magnetic anisotropy strength can be varied in the range 100-200 Oe at T = 295 K by changing the substrate vicinal angle from 0° to 25°. Measurement of the magnetic anisotropy of manganite bicrystal junction demonstrated the presence of two ferromagnetic spin subsystems for both types of bicrystal boundaries with tilting of basal plane of manganite tilted bicrystal (TB-junction) and with rotation of crystallographic axes (RB-junction) used for comparison. The magnetoresistance of TB-junctions increases with decreasing temperature and the misorientation angle. Variation of bicrystal misorientation angle does not lead to change of misorientation of easy magnetic axes in the film parts forming TB-junction. Analysis of the voltage dependencies of bicrystal junction conductivity show that the low value of the magnetoresistance for the LSMO bicrystal junctions can be caused by two scattering mechanisms. The first one is the spin-flip of spin-polarized carriers due to the strong electron-electron interactions in a disordered layer at the bicrystal boundary at low temperatures and the second one is spin-flip by antiferromagnetic magnons at high temperatures.

  18. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films.

    PubMed

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H B; Wang, J; Ma, B; Jin, Q Y

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  19. Resolving the controversy of a possible relationship between perpendicular magnetic anisotropy and the magnetic damping parameter

    SciTech Connect

    Shaw, Justin M.; Nembach, Hans T.; Silva, T. J.

    2014-08-11

    We use broadband ferromagnetic resonance spectroscopy to systematically measure the Landau-Lifshitz damping parameter, perpendicular anisotropy, and the orbital moment asymmetry in Co{sub 90}Fe{sub 10}/Ni multilayers. No relationship is found between perpendicular magnetic anisotropy and the damping parameter in this material. However, inadequate accounting for inhomogeneous linewidth broadening, spin-pumping, and two-magnon scattering could give rise to an apparent relationship between anisotropy and damping. In contrast, the orbital-moment asymmetry and the perpendicular anisotropy are linearly proportional to each other. These results demonstrate a fundamental mechanism by which perpendicular anisotropy can be varied independently of the damping parameter.

  20. Role of the substrate on the magnetic anisotropy of magnetite thin films grown by ion-assisted deposition

    NASA Astrophysics Data System (ADS)

    Prieto, Pilar; Prieto, José Emilio; Gargallo-Caballero, Raquel; Marco, José Francisco; de la Figuera, Juan

    2015-12-01

    Magnetite (Fe3O4) thin films were deposited on MgO (0 0 1), SrTiO3 (0 0 1), LaAlO3 (0 0 1) single crystal substrates as well on as silicon and amorphous glass in order to study the effect of the substrate on their magnetic properties, mainly the magnetic anisotropy. We have performed a structural, morphological and compositional characterization by X-ray diffraction, atomic force microscopy and Rutherford backscattering ion channeling in oxygen resonance mode. The magnetic anisotropy has been investigated by vectorial magneto-optical Kerr effect. The results indicate that the magnetic anisotropy is especially influenced by the substrate-induced microstructure. In-plane isotropy and uniaxial anisotropy behavior have been observed on silicon and glass substrates, respectively. The transition between both behaviors depends on grain size. For LaAlO3 substrates, in which the lattice mismatch between the Fe3O4 films and the substrate is significant, a weak in-plane fourfold magnetic anisotropy is induced. However when magnetite is deposited on MgO (0 0 1) and SrTiO3 (0 0 1) substrates, a well-defined fourfold in-plane magnetic anisotropy is observed with easy axes along [1 0 0] and [0 1 0] directions. The magnetic properties on these two latter substrates are similar in terms of magnetic anisotropy and coercive fields.

  1. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    DOE PAGESBeta

    S. -H. Baek; Gu, G. D.; Utz, Y.; Hucker, M.; Buchner, B.; Grafe, H. -J.

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T–11 sharply upturns at the charge-ordering temperature TCO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T–11 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥ [001], which are completely suppressed for largemore » fields along the CuO2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less

  2. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Utz, Y.; Hücker, M.; Gu, G. D.; Büchner, B.; Grafe, H.-J.

    2015-10-01

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal→low-temperature orthorhombic→low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T1-1 sharply upturns at the charge-ordering temperature TCO=54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T1-1 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥[001 ] , which are completely suppressed for large fields along the CuO2 planes. Our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.

  3. Magnetization reversal mechanism of Nd-Fe-B films with perpendicular magnetic anisotropy

    SciTech Connect

    Liu Xiaoxi; Ishida, Go; Morisako, Akimitsu

    2011-04-01

    The microstructure and magnetic properties of Nd-Fe-B films with thicknesses from 100 nm to 3 nm have been investigated. All the films show excellent perpendicular magnetic anisotropy with a squareness ratio of 1 in the perpendicular direction and almost zero coercivity in the in-plane direction. Of particular interest is that the initial magnetization curves sensitively depended on the film thickness. Films thicker than 15 nm show steep initial magnetization curve. Although the films have coercivities larger than 21 kOe, the films can be fully magnetized from the thermally demagnetized state with a field as small as 5 kOe. With the decrease of film thickness to 5 nm, the initial magnetization curve becomes flat. The evolution of initial magnetization curves with film thickness can be understood by the microstructure of the films. Films with thickness of 15 nm show close-packed grains without any intergranular phases. Such microstructures lead to steep initial magnetization curves. On the other hand, when the film thickness decreased to 3 nm, the film thickness became nonuniform. Such microstructure leads to flat initial magnetization curves.

  4. Probing of the pairing state of HTSCs utilizing a-b plane magnetization anisotropy (abstract)

    NASA Astrophysics Data System (ADS)

    Buan, J.; Israeloff, N. E.; Huang, C. C.; Goldman, A. M.; Liu, J. Z.; Shelton, R. N.

    1994-05-01

    We have performed measurements of the a-b plane longitudinal and transverse magnetization anisotropy on an untwinned, high quality single crystal of LuBa2Cu3O7-x in magnetic fields below Hc1 as a function of temperature, from 2 K to the transition temperature and the angle between the field and a fixed direction in the a-b plane. When the superconducting order parameter has nodes on the Fermi surface, such as the case of the spin-singlet dx2-y2 order parameter, nonlinear effects associated with low-energy quasiparticles should become important.1 It was pointed out by Yip and Sauls that these effects will be most important at low temperatures. They should be observable in a measurement of the anisotropy of the magnetization or the magnetic torque. The magnetization is predicted to develop an anisotropic component transverse to the applied field. Anisotropic transverse magnetization with dx2-y2 symmetry is not seen in the temperature regime 5 to 25 K. Our results set stringent limits on the anisotropy of the transverse magnetization in this range. Within the resolution of our experiment no evidence for d-wave pairing is observed.

  5. The relation between ion temperature anisotropy and formation of slow shocks in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Higashimori, K.; Hoshino, M.

    2012-01-01

    We perform a two-dimensional simulation by using an electromagnetic hybrid code to study the formation of slow-mode shocks in collisionless magnetic reconnection in low beta plasmas, and we focus on the relation between the formation of slow shocks and the ion temperature anisotropy enhanced at the shock downstream region. It is known that as magnetic reconnection develops, the parallel temperature along the magnetic field becomes large in association with the anisotropic plasma sheet boundary layer ion beams, and this temperature anisotropy has a tendency to suppress the formation of slow shocks. On the basis of our simulation result, we found that the slow shock formation is suppressed due to the large temperature anisotropy near the X-type region, but the ion temperature anisotropy relaxes with increasing the distance from the magnetic neutral point. As a result, two pairs of current structures, which are the strong evidence of dissipation of magnetic field in slow shocks, are formed at the distance ∣x∣ ≥ 115 λi from the neutral point.

  6. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO.

    PubMed

    Baumann, S; Donati, F; Stepanow, S; Rusponi, S; Paul, W; Gangopadhyay, S; Rau, I G; Pacchioni, G E; Gragnaniello, L; Pivetta, M; Dreiser, J; Piamonteze, C; Lutz, C P; Macfarlane, R M; Jones, B A; Gambardella, P; Heinrich, A J; Brune, H

    2015-12-01

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3  meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment. PMID:26684139

  7. Pinned orbital moments - A new contribution to magnetic anisotropy.

    PubMed

    Audehm, P; Schmidt, M; Brück, S; Tietze, T; Gräfe, J; Macke, S; Schütz, G; Goering, E

    2016-01-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy. PMID:27151436

  8. Pinned orbital moments – A new contribution to magnetic anisotropy

    PubMed Central

    Audehm, P.; Schmidt, M.; Brück, S.; Tietze, T.; Gräfe, J.; Macke, S.; Schütz, G.; Goering, E.

    2016-01-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy. PMID:27151436

  9. Pattern-induced magnetic anisotropy in FePt thin films by ion irradiation

    SciTech Connect

    Jaafar, M.; Sanz, R.; McCord, J.; Jensen, J.; Schaefer, R.; Vazquez, M.; Asenjo, A.

    2011-03-01

    The magnetic properties of FePt thin films have been modified by exposing the samples to irradiation of 4 MeV Cl{sup 2+} ions. Patterned magnetic films, without modified topographical profile, were fabricated by irradiating the films through a shadowing micrometric mask. The structural changes, ascribed to the ion-beam-induced amorphization of the thin films, promote the modification of the magnetic anisotropy. In particular, the out-of-plane component of the magnetization decreases simultaneously with an enhancement of in-plane anisotropy by increasing ion fluence. Moreover, the nonirradiated regions present unexpected anisotropic behavior owing to the stray field of the irradiated regions. The control of this effect, which can have unwished consequences for the patterning of magnetic properties by ion bombardment, needs to be suitably addressed.

  10. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  11. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy.

    PubMed

    Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; DeMann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J S; Porod, Wolfgang; Field, Stuart B; Tang, Jinke; Marconi, Mario C; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong

    2016-01-01

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field. PMID:27581060

  12. Control of magnetism by electric fields.

    PubMed

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field. PMID:25740132

  13. Primordial statistical anisotropies: the effective field theory approach

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Akhshik, Mohammad; Emami, Razieh; Firouzjahi, Hassan

    2016-03-01

    In this work we present the effective field theory of primordial statistical anisotropies generated during anisotropic inflation involving a background U(1) gauge field. Besides the usual Goldstone boson associated with the breaking of time diffeomorphism we have two additional Goldstone bosons associated with the breaking of spatial diffeomorphisms. We further identify these two new Goldstone bosons with the expected two transverse degrees of the U(1) gauge field fluctuations. Upon defining the appropriate unitary gauge, we present the most general quadratic action which respects the remnant symmetry in the unitary gauge. The interactions between various Goldstone bosons leads to statistical anisotropy in curvature perturbation power spectrum. Calculating the general results for power spectrum anisotropy, we recover the previously known results in specific models of anisotropic inflation. In addition, we present novel results for statistical anisotropy in models with non-trivial sound speed for inflaton fluctuations. Also we identify the interaction which leads to birefringence-like effects in anisotropic power spectrum in which the speed of gauge field fluctuations depends on the direction of the mode propagation and the two polarization of gauge field fluctuations contribute differently in statistical anisotropy. As another interesting application, our EFT approach naturally captures interactions generating parity violating statistical anisotropies.

  14. Anisotropy of the magnetoviscous effect in ferrofluids containing nanoparticles exhibiting magnetic dipole interaction.

    PubMed

    Gerth-Noritzsch, M; Borin, D Yu; Odenbach, S

    2011-08-31

    The aim of this work has been the investigation of the anisotropy of the viscosity of a ferrofluid with magnetically interacting particles which are able to form structures in an applied magnetic field. The results of the experiments show a significant deviation from the case of a fluid without strong dipolar interactions. Furthermore, we have determined the dependence of the ratio of the viscosity coefficients on shear rate providing an insight into the microstructural reasons for the observed effects. PMID:21841240

  15. Size and voltage dependence of effective anisotropy in sub-100-nm perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Piotrowski, Stephan K.; Bapna, Mukund; Oberdick, Samuel D.; Majetich, Sara A.; Li, Mingen; Chien, C. L.; Ahmed, Rizvi; Victora, R. H.

    2016-07-01

    Magnetic tunnel junctions with perpendicular magnetic anisotropy are investigated using a conductive atomic force microscope. The 1.23 -nm Co40Fe40B20 recording layer coercivity exhibits a size dependence which suggests single-domain behavior for diameters ≤100 nm. Focusing on devices with diameters smaller than 100 nm, we determine the effect of voltage and size on the effective device anisotropy Keff using two different techniques. Keff is extracted both from distributions of the switching fields of the recording and reference layers and from measurement of thermal fluctuations of the recording layer magnetization when a field close to the switching field is applied. The results from both sets of measurements reveal that Keff increases monotonically with decreasing junction diameter, consistent with the size dependence of the demagnetization energy density. We demonstrate that Keff can be controlled with a voltage down to the smallest size measured, 64 nm.

  16. Switching current density reduction in perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions

    SciTech Connect

    You, Chun-Yeol

    2014-01-28

    We investigate the switching current density reduction of perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions using micromagnetic simulations. We find that the switching current density can be reduced with elongated lateral shapes of the magnetic tunnel junctions, and additional reduction can be achieved by using a noncollinear polarizer layer. The reduction is closely related to the details of spin configurations during switching processes with the additional in-plane anisotropy.

  17. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    NASA Astrophysics Data System (ADS)

    Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo; Vavassori, Paolo; Sarella, Anandakumar; Bisero, Diego

    2016-05-01

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.

  18. An algorithm to extract effective magnetic parameters of thin film with in-plane uniaxial magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Neo, C. P.; Ding, J.

    2010-05-01

    The calculation of high frequency complex permeability of thin ferromagnetic film requires the measured values of its saturation magnetization, anisotropic magnetic field intensity, resistivity, and thickness. It is often observed that the calculated permeability using the Landau-Lifshitz-Gilbert (LLG) theory does not agree well with the measured permeability of thin film with in-plane uniaxial magnetic anisotropy, owing to the measured anisotropic magnetic field intensity, saturation magnetization, etc., are not effective values at high frequency. In this work, the Landau-Lifshitz ferromagnetic resonance model is modified to take the skin depth effect into consideration. In the comparison study, its calculated magnetic permeability curves (real and imaginary) agrees very well with those calculated from the LLG model. In addition, an algorithm process to extract effective magnetic parameters (saturation magnetization Ms, magnetic anisotropy field Ha, and damping factor α) has been developed. The algorithm process has been tested for the reported magnetic permeability curves of two magnetic films (Si/NiFe/FeCoB and CoZrRe). The extracted parameters are well agreed with those reported. It is also reported that the consideration of skin depth effect is necessary for samples with lower electrical resistivity.

  19. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets

    PubMed Central

    Singh, Saurabh Kumar; Rajaraman, Gopalan

    2016-01-01

    Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process. PMID:26883278

  20. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets.

    PubMed

    Singh, Saurabh Kumar; Rajaraman, Gopalan

    2016-01-01

    Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process. PMID:26883278

  1. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh Kumar; Rajaraman, Gopalan

    2016-02-01

    Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process.

  2. Hysteresis, critical fields and superferromagnetism of the film with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Kalita, V. M.; Kulyk, M. M.; Ryabchenko, S. M.

    2016-08-01

    This paper is focused on the analysis of hysteresis and critical phenomena of magnetization reversal of superferromagnetic (SFM) state in nanogranular (NG) Co/Al2O3 film with perpendicular anisotropy. It was demonstrated that the transition from the multidomain SFM state to the homogeneous SFM state, during the magnetization process, occurs critically. The value of the field of critical transition to the homogeneous state depends on the demagnetization field, granular anisotropy and interparticle exchange anisotropy. It turned out that the temperature dependence of the coercive force of the film, despite its SFM state, accords with the Neel-Brown formula for anisotropic single-domain ferromagnetic particles, but has an anomalous angular dependence. It was concluded that domain wall motion affects these features of the coercive field. The domain wall movement may occur due to the overturn of magnetic moments of particles in the boundaries between the superdomains. At the same time, the main factors influencing the coercivity are the anisotropy of the particles, which blocks their magnetic moment reorientation, and demagnetizing factor of the film. Together they lead to the anomalous angular dependence of the coercive field.

  3. Effects of the magneto-crystalline anisotropy on the magnetic properties of Fe/Cr/Fe (110) trilayer

    NASA Astrophysics Data System (ADS)

    Bezerra, C. G.; Chesman, C.; Albuquerque, E. L.; Azevedo, A.

    2004-06-01

    In this paper we present a theoretical study about the influence of the magneto-crystalline anisotropy on the magnetic properties of magnetic metallic trilayers Fe/Cr/Fe (110). The theory is based on a realistic phenomenological model which includes the following contributions to the free magnetic energy: Zeeman, cubic and uniaxial anisotropy, as well as bilinear and biquadratic exchange energies. The experimental parameters used here are based on experimental data known from the literature. We present numerical results of magnetization versus external applied field to illustrate the behavior of the system. Our numerical results show that in some situations the saturation field can not be correctly determined by magnetoresistance measures.

  4. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    PubMed Central

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the strain-induced anisotropy resulting from the anisotropic thermal expansion of the β-phase PVDF. The simulation based on modified Stoner-Wohlfarth model and the ferromagnetic resonance measurements confirms our results. The positive temperature coefficient of magnetic anisotropy is estimated to be 1.1 × 102 J m−3 K−1. Preparing the composite at low temperature can enlarge the temperature range where it shows the positive temperature coefficient of magnetic anisotropy. The present results may help to design magnetic devices with improved thermal stability and enhanced performance. PMID:25311047

  5. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  6. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  7. Magnetic anisotropy and high-spin effects in single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Zyazin, Alexander; van den Berg, Johan; Osorio, Edgar; Konstantinidis, Nikos; Leijnse, Martin; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea; Wegewijs, Maarten; van der Zant, Herre

    2011-03-01

    Fabrication of single-molecule transistors where electron transport occurs through an individual molecule has become possible due to the recent progress in molecular electronics. Three-terminal configuration allows charging molecules and performing transport spectroscopy in multiple redox states. Single-molecule magnets combining large spin with uniaxial anisotropy are of special interest as appealing candidates for high density memory applications and quantum information processing. We study single-molecule magnets Fe 4 . Three-terminal junctions are fabricated using electromigration of gold nanowires followed by a self-breaking. High-spin Kondo effect and inelastic cotunneling excitations show up in transport measurements. Several excitations feature the energy close to the energy of zero-field splitting (ZFS) of a ground spin multiplet in bulk. This splitting is caused by the anisotropy and is a hallmark of single-molecule magnets. We observe nonlinear Zeeman effect due to a misalignment of an anisotropy axis and a magnetic field direction. The ZFS energy is increased in oxidized and reduced states of the molecule indicating enhancement of the anisotropy in these states.

  8. Temperature dependent magnetization in Co-base nanowire arrays: Role of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Vázquez, M.; Vega, V.; García, J.; Rosa, W. O.; del Real, R. P.; Prida, V. M.

    2012-04-01

    Co, Co(1-x)Pdx, and Co(1-y)Niy nanowire arrays have been prepared by electrochemical template-assisted growth. Hcp, fcc or both phases are detected in Co nanowires depending on their length (300 nm to 40 μm) and on the content of Pd (0 ≤ x ≤ 0.4) and Ni (0 ≤ y ≤ 0.8). Their magnetic behavior has been studied under longitudinal and perpendicular applied fields. The effective magnetic anisotropy is mostly determined by the balance between the shape and the crystalline terms, the latter depending on the fractional volume of hcp phase with strong perpendicular anisotropy and fcc phase with weaker longitudinal anisotropy. The temperature dependence of remanence and coercivity and the eventual observation of compensation temperature is interpreted as due to the different temperature dependence of shape and hcp crystalline anisotropy. Optimum longitudinal magnetic anisotropy is achieved in low Pd-content CoPd nanowires and in short Co nanowires.

  9. Mapping of single-site magnetic anisotropy tensors in weakly coupled spin clusters by torque magnetometry.

    PubMed

    Rigamonti, Luca; Cornia, Andrea; Nava, Andrea; Perfetti, Mauro; Boulon, Marie-Emmanuelle; Barra, Anne-Laure; Zhong, Xiaoliang; Park, Kyungwha; Sessoli, Roberta

    2014-08-28

    Single-crystal torque magnetometry performed on weakly-coupled polynuclear systems provides access to a complete description of single-site anisotropy tensors. Variable-temperature, variable-field torque magnetometry was used to investigate triiron(III) complex [Fe3La(tea)2(dpm)6] (Fe3La), a lanthanum(III)-centred variant of tetrairon(III) single molecule magnets (Fe4) (H3tea = triethanolamine, Hdpm = dipivaloylmethane). Due to the presence of the diamagnetic lanthanoid, magnetic interactions among iron(III) ions (si = 5/2) are very weak (<0.1 cm(−1)) and the magnetic response of Fe3La is predominantly determined by single-site anisotropies. The local anisotropy tensors were found to have Di > 0 and to be quasi-axial with |Ei/Di| ~ 0.05. Their hard axes form an angle of approximately 70° with the threefold molecular axis, which therefore corresponds to an easy magnetic direction for the molecule. The resulting picture was supported by a High Frequency EPR investigation and by DFT calculations. Our study confirms that the array of peripheral iron(III) centres provides substantially noncollinear anisotropy contributions to the ground state of Fe4 complexes, which are of current interest in molecular magnetism and spintronics. PMID:25014192

  10. Thickness dependence of microwave magnetic properties in electrodeposited Fe-Co soft magnetic films with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Wei, Jian-Qiang; Li, Xing-Hua; Gong, Lu-Qian; Wang, Tao; Li, Fa-Shen

    2012-02-01

    In this work, the thickness effect of Fe 52Co 48 soft magnetic films with in-plane anisotropy on static and microwave magnetic properties was investigated. The hysteresis loop results indicated that the static in-plane uniaxial anisotropy field increased from almost 0-60 Oe with increasing film thickness from 100 to 540 nm and well-defined in-plane uniaxial magnetic anisotropy can be obtained as the thickness reached 540 nm or larger. Based on Landau-Lifshitz-Gilbert (LLG) equation, the microwave complex permeability spectra were analyzed and well fitted. The LLG curve-fitting results indicated that the initial permeability increased from 106 to 142 and the resonant frequency was shifted from 4.95 to 4.29 GHz as the film thickness was varied from 540 to 1500 nm. Moreover, it was found that there was a discrepancy between the static and the dynamically determined anisotropy field, which can be explained by introducing an additional effective isotropic ripple field. The decreased ripple field was suggested to result in a significant decrease of damping coefficient from 0.109 to 0.038.

  11. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-01

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp2s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the 3E2 g, 2E2 g, 1A1 g, 2E1 g, and 3A2 g states, respectively. The magnetizations of the CoCp2 and NiCp2 energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  12. Magnetic thermal stability of permalloy microstructures with shape-induced bi-axial anisotropy

    NASA Astrophysics Data System (ADS)

    Telepinsky, Yevgeniy; Sinwani, Omer; Mor, Vladislav; Schultz, Moty; Klein, Lior

    2016-02-01

    We study the thermal stability of the magnetization states in permalloy microstructures in the form of two crossing elongated ellipses, a shape which yields effective bi-axial magnetic anisotropy in the overlap area. We prepare the structure with the magnetization along one of the easy axes of magnetization and measure the waiting time for switching when a magnetic field favoring the other easy axis is applied. The waiting time for switching is measured as a function of the applied magnetic field and temperature. We determine the energy barrier for switching and estimate the thermal stability of the structures. The experimental results are compared with numerical simulations. The results indicate exceptional stability which makes such structures appealing for a variety of applications including magnetic random access memory based on the planar Hall effect.

  13. Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy.

    PubMed

    Lim, Jitkang; Yeap, Swee Pin; Leow, Chee Hoe; Toh, Pey Yi; Low, Siew Chun

    2014-05-01

    Magnetophoresis of iron oxide magnetic nanoparticle (IOMNP) under low magnetic field gradient (<100 T/m) is significantly enhanced by particle shape anisotropy. This unique feature of magnetophoresis is influenced by the particle concentration and applied magnetic field gradient. By comparing the nanosphere and nanorod magnetophoresis at different concentration, we revealed the ability for these two species of particles to achieve the same separation rate by adjusting the field gradient. Under cooperative magnetophoresis, the nanorods would first go through self- and magnetic field induced aggregation followed by the alignment of the particle clusters formed with magnetic field. Time scale associated to these two processes is investigated to understand the kinetic behavior of nanorod separation under low field gradient. Surface functionalization of nanoparticles can be employed as an effective strategy to vary the temporal evolution of these two aggregation processes which subsequently influence the magnetophoretic separation time and rate. PMID:24594047

  14. Easy-plane anisotropy stabilizes skyrmions in 2D chiral magnets

    NASA Astrophysics Data System (ADS)

    Rowland, James; Banerjee, Sumilan; Randeria, Mohit

    2014-03-01

    Experiments on two-dimensional (2D) chiral magnetic materials, like thin films of non-centrosymmetric helimagnets and metallic magnetic layers, have revealed interesting spatially modulated spin textures such as spirals and skyrmions. Motivated by this we study the ground-state phase diagram for a 2D chiral magnet in a magnetic field using a Ginzburg-Landau model, with Dzyaloshinskii-Moriya (DM) term, anisotropic exchange and single-ion anisotropy. The easy-axis anisotropy region of the phase diagram has been well-studied, whereas the easy-plane region has not been discussed. In the easy-plane region, we find an unexpectedly large stable skyrmion crystal (SkX) phase in a perpendicular magnetic field. We find re-entrant transitions between ferromagnetic and SkX phases, and intriguing internal structure of the skyrmion core with two-length scales. We argue that such an easy-plane anisotropy arises naturally from the compass terms induced by spin-orbit coupling that is also responsible for the DM term, as proposed recently in the context of oxide interfaces. We also discuss the phase diagram in a tilted field configuration, relevant for torque magnetometry experiments. JR and MR supported by NSF MRSEC DMR-0820414 and SB by DOE-BES DE-SC0005035.

  15. Magnetic anisotropy of metal functionalized phthalocyanine 2D networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guojun; Zhang, Yun; Xiao, Huaping; Cao, Juexian

    2016-06-01

    The magnetic anisotropy of metal including Cr, Mn, Fe, Co, Mo, Tc, Ru, Rh, W, Re, Os, Ir atoms functionalized phthalocyanine networks have been investigated with first-principles calculations. The magnetic moments can be expressed as 8-n μB with n the electronic number of outmost d shell in the transition metals. The huge magnetocrystalline anisotropy energy (MAE) is obtained by torque method. Especially, the MAE of Re functionalized phthalocyanine network is about 20 meV with an easy axis perpendicular to the plane of phthalocyanine network. The MAE is further manipulated by applying the external biaxial strain. It is found that the MAE is linear increasing with the external strain in the range of -2% to 2%. Our results indicate an effective approach to modulate the MAE for practical application.

  16. Anisotropy study of grain oriented steels with Magnetic Barkhausen Noise

    NASA Astrophysics Data System (ADS)

    de Campos, M. F.; Campos, M. A.; Landgraf, F. J. G.; Padovese, L. R.

    2011-07-01

    Grain oriented electrical steels present strong anisotropy, due to a {110} <001> texture (Goss), with [100] direction parallel to rolling direction (RD) and [110] direction parallel to transverse direction (TD). MBN (Magnetic Barkhausen Noise) were employed to measure magnetic properties in several angles towards RD using a 15° step. For 90° to the rolling direction (i.e., TD), the MBN signal changes, decreasing the MBNrms. It is found a connection between initial permeability and MBNrms. The lower initial permeability for the TD is related to a larger contribution of irreversible rotation in the hysteresis. The MBN procedure is non-destructive and provides rapid understanding of the anisotropy of the material, without the use of laborious methods like Epstein frame or toroidal coils.

  17. Magnetic irreversibility and magnetocrystalline anisotropy in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Prakash, P. V.; Madduri, Srinath, S.; Kaul, S. N.

    2015-06-01

    Magnetic properties of nanocrystalline Ni samples, with average grain sizes, d = 11(1) nm, 19(1) nm and 30(2) nm, synthesized by pulse electrodeposition, have been studied. We observed that (i) at low temperatures, the effective magneto-crystalline anisotropy constant, K1, increases with the crystallite size so as to reach the bulk value at d = 30 nm, and (ii) the rate of thermal decline of K1(T) slows down as the crystallite size reduces.

  18. Magnetization reversal of submicrometer Co rings with uniaxial anisotropy via scanning magnetoresistance microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong; Mazumdar, D.; Schrag, B. D.; Shen, W.; Xiao, Gang

    2004-07-01

    We have investigated the magnetization reversal mechanism of narrow submicrometer Co rings using scanning magnetoresistance microscopy. Thermal annealing in a magnetic field introduced a uniaxial anisotropy and significant structural changes in the samples. We have observed a complicated multidomain state at intermediate field ranges, and onion states at saturation, for samples annealed in a field. This observation is in contrast to the flux-closed vortex state for unannealed rings. Micromagnetic simulations have shown that the switching occurs through a gradual noncoherent buckling-like reversal process followed by coherent rotation.

  19. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy

    PubMed Central

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (Kueff) over 6 Merg/cm3 is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and Kueff of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory. PMID:25597496

  20. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy.

    PubMed

    Ma, Q L; Zhang, X M; Miyazaki, T; Mizukami, S

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (K(u)(eff)) over 6 Merg/cm(3) is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and K(u)(eff) of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory. PMID:25597496

  1. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (Kueff) over 6 Merg/cm3 is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and Kueff of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory.

  2. Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Weigand, Markus; Träger, Nick; Schütz, Gisela; Goering, Eberhard J.; Skripnik, Maxim; Nowak, Ulrich; Haering, Felix; Ziemann, Paul; Wiedwald, Ulf

    2016-03-01

    While the magnetic properties of nanoscaled antidot lattices in in-plane magnetized materials have widely been investigated, much less is known about the microscopic effect of hexagonal antidot lattice patterning on materials with perpendicular magnetic anisotropy. By using a combination of first-order reversal curve measurements, magnetic x-ray microscopy, and micromagnetic simulations we elucidate the microscopic origins of the switching field distributions that arise from the introduction of antidot lattices into out-of-plane magnetized GdFe thin films. Depending on the geometric parameters of the antidot lattice we find two regimes with different magnetization reversal processes. For small antidots, the reversal process is dominated by the exchange interaction and domain wall pinning at the antidots drives up the coercivity of the system. On the other hand, for large antidots the dipolar interaction is dominating which leads to fragmentation of the system into very small domains that can be envisaged as a basis for a bit patterned media.

  3. Role of magnetic anisotropy in spin-filter junctions

    SciTech Connect

    Chopdekar, R.V.; Wong, F.; Nelson-Cheeseman, B.B.; Liberati, M.; Arenholz, E.; Suzuki, Y.

    2011-01-10

    We have fabricated oxide-based spin-filter junctions in which we demonstrate that magnetic anisotropy can be used to tune the transport behavior of spin-filter junctions. We have demonstrated spin-filtering behavior in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/CoCr{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/MnCr{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} junctions where the interface anisotropy plays a significant role in determining transport behavior. Detailed studies of chemical and magnetic structure at the interfaces indicate that abrupt changes in magnetic anisotropy across the nonisostructural interface is the cause of the significant suppression of junction magnetoresistance in junctions with MnCr{sub 2}O{sub 4} barrier layers.

  4. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    SciTech Connect

    Hierro-Rodriguez, A. Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.; Teixeira, J. M.; Vélez, M.

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  5. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Hierro-Rodriguez, A.; Teixeira, J. M.; Vélez, M.; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.

    2014-09-01

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo5 thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  6. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    PubMed Central

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  7. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    NASA Astrophysics Data System (ADS)

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-07-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices.

  8. Mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films

    SciTech Connect

    Fu, Yu E-mail: cangcangzhulin@gmail.com; Meckenstock, R.; Farle, M.; Barsukov, I.; Lindner, J.; Raanaei, H.; Hjörvarsson, B.

    2014-02-17

    The mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films was investigated by ferromagnetic resonance (FMR) on samples deposited without an applied magnetic field, with an out-of-plane field and an in-plane field. Analysis of FMR spectra profiles, high frequency susceptibility calculations, and statistical simulations using a distribution of local uniaxial magnetic anisotropy reveal the presence of atomic configurations with local uniaxial anisotropy, of which the direction can be tailored while the magnitude remains at an intrinsically constant value of 3.0(2) kJ/m{sup 3}. The in-plane growth field remarkably sharpens the anisotropy distribution and increases the sample homogeneity. The results benefit designing multilayer spintronic devices based on highly homogeneous amorphous layers with tailored magnetic anisotropy.

  9. Two Polymorphic Forms of a Six-Coordinate Mononuclear Cobalt(II) Complex with Easy-Plane Anisotropy: Structural Features, Theoretical Calculations, and Field-Induced Slow Relaxation of the Magnetization.

    PubMed

    Roy, Subhadip; Oyarzabal, Itziar; Vallejo, Julia; Cano, Joan; Colacio, Enrique; Bauza, Antonio; Frontera, Antonio; Kirillov, Alexander M; Drew, Michael G B; Das, Subrata

    2016-09-01

    A mononuclear cobalt(II) complex [Co(3,5-dnb)2(py)2(H2O)2] {3,5-Hdnb = 3,5-dinitrobenzoic acid; py = pyridine} was isolated in two polymorphs, in space groups C2/c (1) and P21/c (2). Single-crystal X-ray diffraction analyses reveal that 1 and 2 are not isostructural in spite of having equal formulas and ligand connectivity. In both structures, the Co(II) centers adopt octahedral {CoN2O4} geometries filled by pairs of mutually trans terminal 3,5-dnb, py, and water ligands. However, the structures of 1 and 2 disclose distinct packing patterns driven by strong intermolecular O-H···O hydrogen bonds, leading to their 0D→2D (1) or 0D→1D (2) extension. The resulting two-dimensional layers and one-dimensional chains were topologically classified as the sql and 2C1 underlying nets, respectively. By means of DFT theoretical calculations, the energy variations between the polymorphs were estimated, and the binding energies associated with the noncovalent interactions observed in the crystal structures were also evaluated. The study of the direct-current magnetic properties, as well as ab initio calculations, reveal that both 1 and 2 present a strong easy-plane magnetic anisotropy (D > 0), which is larger for the latter polymorph (D is found to exhibit values between +58 and 117 cm(-1) depending on the method). Alternating current dynamic susceptibility measurements show that these polymorphs exhibit field-induced slow relaxation of the magnetization with Ueff values of 19.5 and 21.1 cm(-1) for 1 and 2, respectively. The analysis of the whole magnetic data allows the conclusion that the magnetization relaxation in these polymorphs mainly takes place through a virtual excited state (Raman process). It is worth noting that despite the notable difference between the supramolecular networks of 1 and 2, they exhibit almost identical magnetization dynamics. This fact suggests that the relaxation process is intramolecular in nature and that the virtual state involved in the

  10. Pressure anisotropy effects on nonlinear electrostatic excitations in magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Williams, Gina; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis

    2014-09-01

    The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose characteristics are investigated parametrically, focusing on the effect of superthermality of electrons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength. A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance) via a reductive perturbation method. The parametric role of superthermality, positron content, ion pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures is investigated. Following Allen and Rowlands [J. Plasma Phys. 53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to oblique perturbations, and have analytically traced the dependence of the instability growth rate on superthermality and ion pressure anisotropy.

  11. Magnetic anisotropy control in Ga1-x Mnx As magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Stagraczyński, S.; Jasiukiewicz, C.; Dugaev, V. K.; Berakdar, J.

    2016-08-01

    Using the six-band Kane model of the electron energy spectrum in the valence band of GaMnAs magnetic semiconductor we investigate the dependence of the crystalline magnetic anisotropy on the magnitude of magnetization and on the doping with holes. Our main focus is on the difference between two possible models related to the constraint on the total hole number or on the chemical potential. Our results show that the theoretical results for magnetic anisotropy can change dramatically with the use of different constraints.

  12. Three-terminal magnetic tunneling junction device with perpendicular anisotropy CoFeB sensing layer

    SciTech Connect

    Honjo, H. Nebashi, R.; Tokutome, K.; Miura, S.; Sakimura, N.; Sugibayashi, T.; Fukami, S.; Kinoshita, K.; Murahata, M.; Kasai, N.; Ishihara, K.; Ohno, H.

    2014-05-07

    We demonstrated read and write characteristics of a three terminal memory device with a perpendicular anisotropy-free layer of a strip of [Co/Ni] and a low-switching perpendicular-anisotropy CoFeB/MgO sensing layer. This new design of the cell results in a small cell area. The switching magnetic field of the sensing layer can be decreased by changing sputtering gas for the Ta-cap from Ar to Kr. An electron energy-loss spectroscopy analysis of the cross-section of the magnetic tunneling junction (MTJ) revealed that the boron content in CoFeB with a Kr-sputtered Ta-cap was smaller than that with an Ar-sputtered one. A change in resistance for the MTJ was observed that corresponded to the magnetic switching of the Co/Ni wire and its magnetoresistance ratio and critical current were 90% and 0.8 mA, respectively.

  13. Confined stripe structure in periodically grooved NdCo Films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Martin, Jose I.; Hierro-Rodriguez, Aurelio; Cid, Rosalia; Rodriguez-Rodriguez, Gabriel; Velez, Maria; Alvarez-Prado, Luis M.; Alameda, Jose M.

    2012-02-01

    Magnetic multilayers are broad research field with many interesting phenomena depending on interlayer coupling. Also, since the development of nanolithography techniques, magnetic nanowires and dots have been intensively investigated [1]. Recently, as a combination of these two fields, the concept of magnetic lateral superlattice has emerged: continuous magnetic films with a lateral modulation of their magnetic properties at submicrometric length scale [2]. In this work, we have fabricated amorphous Nd-Co films with perpendicular magnetic anisotropy and a periodic thickness modulation by e-beam lithography and ion milling. Lateral periods range from 2 μm - 500 nm and groove depths from 10 to 30 nm. MFM and Kerr magnetometry have been used for characterization. Lateral patterning modifies the interplay between magnetostatic energy, perpendicular and in plane anisotropy and exchange interaction resulting in confined magnetic stripe structures. The different regimes that appear depending on the size of the periodic thickness modulation relative to the magnetic stripe period will be discussed. [1] J.I Martin et al, JMMM, 256 (2003) 449 [2] S. P. Li et al, PRL 88 (2002) 087202; N. Martin et al, PRB 83 (2010) 174423

  14. Magnetic Anisotropy in Cyanide Complexes of First Row Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Atanasov, Mihail; Comba, Peter

    The relationship between structure and magnetic anisotropy in mono- and oligonuclear paramagnetic complexes, based on low-spin [Fe(CN)6]3 - and hexacoordinate NiII complexes with bridging CN - groups, are analyzed with special emphasis on the contributions of spin-orbit coupling and Jahn-Teller distortions as well as strain-induced distortions at the [Fe(CN)6]3 - subunit. The basic theoretical principles are described, which allow to treat the lowest multiplets of FeIII and NiII, due to the t2g ​5 and t2g ​6eg 2 electronic configurations, respectively, and their anisotropic exchange coupling. Examples are then presented, to show how small angular distortions of [Fe(CN)6]3 - lead to dramatic changes of the magnetic anisotropy of the corresponding oligonuclear complexes. The nature of the lowest spin multiplet and the spin-anisotropy gap are analyzed with a combination of density functional theory and ligand field theory (LFDFT). A general ab-initio approach is also proposed, which allows to calculate the magnetic anisotropy of oligonuclear complexes with transition metals in orbitally degenerate or nearly-degenerate electronic ground states.

  15. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    SciTech Connect

    Leary, AM; Keylin, V; Ohodnicki, PR; McHenry, ME

    2015-05-07

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to similar to 2 kJ/m(3). Higher anisotropies up to similar to 10 kJ/m(3) result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co80-x-yFexMnyNb4B14Si2 soft magnetic nanocomposites, where x and y < 8 at. % with close packed crystalline grains that show stress induced anisotropies up to similar to 50 kJ/m(3) and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis. (C) 2015 AIP Publishing LLC.

  16. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    SciTech Connect

    Leary, A. M. Keylin, V.; McHenry, M. E.; Ohodnicki, P. R.

    2015-05-07

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to ∼2 kJ/m{sup 3}. Higher anisotropies up to ∼10 kJ/m{sup 3} result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co{sub 80−x−y}Fe{sub x}Mn{sub y}Nb{sub 4}B{sub 14}Si{sub 2} soft magnetic nanocomposites, where x and y < 8 at.% with close packed crystalline grains that show stress induced anisotropies up to ∼50 kJ/m{sup 3} and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis.

  17. Current control of magnetic anisotropy via stress in a ferromagnetic metal waveguide

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Ma, Xin; Pai, Chi-Feng; Yang, Jusang; Olsson, Kevin S.; Erskine, James L.; Ralph, Daniel C.; Buhrman, Robert A.; Li, Xiaoqin

    2016-04-01

    We demonstrate that in-plane charge current can effectively control the spin precession resonance in an A l2O3/CoFeB /Ta heterostructure. Brillouin light scattering was used to detect the ferromagnetic resonance field under microwave excitation of spin waves at fixed frequencies. The current control of spin precession resonance originates from modification of the in-plane uniaxial magnetic anisotropy field Hk, which changes symmetrically with respect to the current direction. Numerical simulation suggests that the anisotropic stress introduced by joule heating plays an important role in controlling Hk. These results provide new insight into current manipulation of magnetic properties and have broad implications for spintronic devices.

  18. Spatial modulation of in-plane magnetic anisotropy in epitaxial Co(111) films grown on macrostep-bunched Si(111)

    SciTech Connect

    Davydenko, A. V. Kozlov, A. G.; Chebotkevich, L. A.

    2014-10-14

    We compared magnetic properties of epitaxial Co(111) films grown on microstep- and macrostep-bunched vicinal Si(111) substrates. A surface of the microstep-bunched Si(111) substrate represents regular array of step-bunches with height of 1.7 nm divided from each other by flat microterraces with a width of 34 nm. A surface of the macrostep-bunched Si(111) substrate is constituted by macrostep bunches with a height of 75–85 nm divided by atomically flat macroterraces. The average sum width of a macrostep bunch and a macroterrace is 2.3 μm. While in-plane magnetic anisotropy was spatially uniform in Co(111) films grown on the microstep-bunched Si(111), periodic macromodulation of the topography of the Si(111) substrate induced spatial modulation of in-plane magnetic anisotropy in Co(111) film grown on the macrostep-bunched Si(111) surface. The energy of uniaxial magnetic anisotropy in the areas of the Co(111) film deposited on the Si(111) macrosteps was higher more than by the order of magnitude than the energy of the magnetic anisotropy in the areas grown on macroterraces. Magnetization reversal in the areas with different energy of the magnetic anisotropy occurred in different magnetic fields. We showed the possibility of obtaining high density of domain walls in Co(111) film grown on the macrostep-bunched Si(111) by tuning the spatial step density of the Si(111) substrate.

  19. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe{sub 2}O{sub 4} spinel ferrite nanocrystallites

    SciTech Connect

    Rondinone, A.J.; Samia, A.C.S.; Zhang, Z.J.

    1999-08-19

    Superparamagnetism is a unique feature of magnetic nanoparticles. Spinel ferrite nanoparticles provide great opportunities for studying the mechanism of superparamagnetic properties. CoFe{sub 2}O{sub 4} nanocrystallites have been synthesized with a microemulsion method. The neutron diffraction studies and the temperature-dependent decay of magnetization show the superparamagnetic relaxation occurring in these nanoparticles. The neutron diffraction shows a high degree of inversion with the 78% tetrahedral sites occupied by Fe{sup 3+} cations. The nanoparticles with a 12 nm diameter have a blocking temperature around 320 K. The field-cooled and zero-field-cooled magnetization measurements display a divergence below the blocking temperature. The energy barrier distribution of magnetic anisotropy is derived from the temperature-dependent decay of magnetization. The magnetic anisotropy is clearly the origin of the divergence in the field-cooled and zero-field-cooled magnetization measurements. The energy barrier distribution function is used in a computer simulation of the zero-field-cooled magnetization, and the calculated magnetization has a great consistency with experimentally measured values. These studies on the magnetic anisotropy distribution elucidate the mechanism of superparamagnetic relaxation and facilitate the design and control of superparamagnetic properties in nanoparticles.

  20. Anisotropy and magnetism in the LSDA+U method

    NASA Astrophysics Data System (ADS)

    Ylvisaker, Erik R.; Pickett, Warren E.; Koepernik, Klaus

    2009-01-01

    Consequences of anisotropy (variation in orbital occupation) and magnetism, and their coupling, are analyzed for local-spin-density approximation (LSDA) plus interaction term U (LSDA+U) functionals, with both the commonly used ones as well as less commonly applied functionals. After reviewing and extending some earlier observations for an isotropic interaction, the anisotropies are examined more fully and related to use with the local-density approximation or with the LSDA. The total energies of all possible integer configurations of an open f shell are presented for three functionals, where some differences are found to be dramatic. Differences between how the commonly used “around mean-field” (AMF) and “fully localized limit” (FLL) functionals perform are traced to such differences. The LSDA+U interaction term, when applied self-consistently, usually enhances spin magnetic moments and orbital polarization, and the double-counting terms of both functionals provide an opposing moderating tendency (“suppressing the magnetic moment”). The AMF double-counting term gives magnetic states a significantly larger energy penalty than does the FLL counterpart.

  1. Spin-orbit coupling, compass anisotropy and skyrmions in 2D chiral magnets

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Erten, Onur; Rowland, James; Randeria, Mohit

    2014-03-01

    Spin-orbit coupling (SOC) gives rise to the chiral Dzyaloshinskii-Moriya (DM) interaction in systems that lack inversion symmetry like non-centrosymmetric helimagnets, and two-dimensional magnetism at surfaces and interfaces. We explore here the role of SOC in several microscopic exchange mechanisms - superexchange, double exchange and RKKY - in insulating and itinerant electron systems. We show that, in addition to giving rise to the DM interaction, SOC generically leads to compass anisotropy terms. Although seemingly negligible, the compass terms are energetically comparable to DM and play a crucial role in deciding the fate of the magnetic ground state. We demonstrate that the compass terms act as an effective easy-plane anisotropy in 2D chiral magnets and lead to extremely large region of stable skyrmion crystal (SkX) phase in a perpendicular magnetic field. We discuss the electronic properties of SkX in this hitherto unexplored region of the anisotropy-field plane for itinerant systems. We also comment on the possibility of realizing such SkX phase in the oxide interfaces. JR and MR supported by NSF MRSEC DMR-0820414 and SB by DOE-BES DE-SC0005035.

  2. Impact of orthogonal exchange coupling on magnetic anisotropy in antiferromagnetic oxides/ferromagnetic systems.

    PubMed

    Kuświk, Piotr; Gastelois, Pedro Lana; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen

    2016-10-26

    The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy. PMID:27589202

  3. Microwave assisted magnetization reversal in cylindrical antidot arrays with in-plane and perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Yumak, Mehmet; Ture, Kerim; Aktas, Gulen; Vega, Victor; Prida, Victor; Garcia, Carlos

    2012-02-01

    Porous anodic alumina is a particularly attractive self-ordered system used as template to fabricate nanostructures. The anodic film contains a self-ordered hexagonal array of parallel pores with tunable pore size and interpore distance, and whose pore locations can be templated. Deposition of magnetic films onto porous alumina leads to the formation of porous magnetic films, whose properties differ significantly from those of unpatterned films. The study of antidot arrays has both technological and fundamental importance. Although porous alumina films are typically synthesized in a planar geometry, in this work we deposited NiFe and Ti/CoCrPt magnetic films with in-plane and out-of-plane anisotropy onto cylindrical-geometry porous anodic alumina substrates to achieve cylindrical antidot arrays. The effect of both, the magnitude of the AC current and the circular magnetic field on the magnetization reversal has been studied for in-plane and perpendicular anisotropies. The level of reduction in the switching field was found to be dependent on the power, the frequency of the microwave pulses and the circular applied magnetic field. Such a reduction is associate with the competition between pumping and damping processes.

  4. Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO system

    PubMed Central

    Lee, Hwang-Rae; Lee, Kyujoon; Cho, Jaehun; Choi, Young-Ha; You, Chun-Yeol; Jung, Myung-Hwa; Bonell, Frédéric; Shiota, Yoichi; Miwa, Shinji; Suzuki, Yoshishige

    2014-01-01

    Spin-orbit torques, including the Rashba and spin Hall effects, have been widely observed and investigated in various systems. Since interesting spin-orbit torque (SOT) arises at the interface between heavy nonmagnetic metals and ferromagnetic metals, most studies have focused on the ultra-thin ferromagnetic layer with interface perpendicular magnetic anisotropy. Here, we measured the effective longitudinal and transverse fields of bulk perpendicular magnetic anisotropy Pd/FePd (1.54 to 2.43 nm)/MgO systems using harmonic methods with careful correction procedures. We found that in our range of thicknesses, the effective longitudinal and transverse fields are five to ten times larger than those reported in interface perpendicular magnetic anisotropy systems. The observed magnitude and thickness dependence of the effective fields suggest that the SOT do not have a purely interfacial origin in our samples. PMID:25293693

  5. Spin-flop transition on Gd5Ge4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy

    SciTech Connect

    Tan, L.; Kreyssig, A.; Nandi, S.; Jia, S.; Lee, Y. B.; Lang, J. C.; Islam, Z.; Lograsso, T.; Schlagel, D.; Pecharsky, V.; Gschneidner, K.; Canfield, P.; Harmon, B.; McQueeney, R.; Goldman, A.

    2008-02-21

    X-ray resonant magnetic scattering was employed to study a fully reversible spin-flop transition in orthorhombic Gd{sub 5}Ge{sub 4} and to elucidate details of the magnetic structure in the spin-flop phase. The orientation of the moments at the three Gd sites flop 90{sup o} from the c axis to the a axis when a magnetic field, H{sub sf} = 9 kOe, is applied along the c axis at T = 9 K. The magnetic space group changes from Pnm'a to Pn'm'a' for all three Gd sublattices. The magnetic anisotropy energy determined from experimental measurements is in good agreement with the calculations of the magnetic anisotropy based on the spin-orbit coupling of the conduction electrons and an estimation of the dipolar interactions anisotropy. No significant magnetostriction effects were observed at the spin-flop transition.

  6. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Pai, Chi-Feng; Mann, Maxwell; Tan, Aik Jun; Beach, Geoffrey S. D.

    2016-04-01

    We report that by measuring a current-induced hysteresis loop shift versus in-plane bias magnetic field, the spin-Hall effect (SHE) contribution of the current-induced effective field per current density χSHE can be estimated for Pt- and Ta-based magnetic heterostructures with perpendicular magnetic anisotropy. We apply this technique to a Pt-based sample with its ferromagnetic (FM) layer being wedged deposited and discover an extra effective field contribution χWedged due to the asymmetric nature of the deposited FM layer. We confirm the correlation between χWedged and the asymmetric depinning process in FM layer during magnetization switching by magneto-optical Kerr microscopy. These results indicate the possibility of engineering deterministic spin-orbit torque switching by controlling the symmetry of domain expansion through the materials growth process.

  7. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    SciTech Connect

    Nawa, Kenji Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp{sub 2}s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the {sup 3}E{sub 2g}, {sup 2}E{sub 2g}, {sup 1}A{sub 1g}, {sup 2}E{sub 1g}, and {sup 3}A{sub 2g} states, respectively. The magnetizations of the CoCp{sub 2} and NiCp{sub 2} energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  8. Quantum engineering of spin and anisotropy in magnetic molecular junctions

    PubMed Central

    Jacobson, Peter; Herden, Tobias; Muenks, Matthias; Laskin, Gennadii; Brovko, Oleg; Stepanyuk, Valeri; Ternes, Markus; Kern, Klaus

    2015-01-01

    Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy. PMID:26456084

  9. Quantum engineering of spin and anisotropy in magnetic molecular junctions.

    PubMed

    Jacobson, Peter; Herden, Tobias; Muenks, Matthias; Laskin, Gennadii; Brovko, Oleg; Stepanyuk, Valeri; Ternes, Markus; Kern, Klaus

    2015-01-01

    Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy. PMID:26456084

  10. Quantum engineering of spin and anisotropy in magnetic molecular junctions

    NASA Astrophysics Data System (ADS)

    Jacobson, Peter; Herden, Tobias; Muenks, Matthias; Laskin, Gennadii; Brovko, Oleg; Stepanyuk, Valeri; Ternes, Markus; Kern, Klaus

    2015-10-01

    Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy.

  11. Towards Detection of Magnetofossils in Sediments: Magnetostatic Interaction and Magnetic Anisotropy Effects

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Li, J.

    2012-12-01

    state of magnetofossils. Results show that intact MTB and well-dispersed magnetosome chains are characterized by strong magnetic anisotropy and weak magnetostatic interactions, but progressive chain breakup and particle clumping significantly increases the degree of the magnetostatic interaction and a change of magnetic signature towards the typical properties of interacting, single-domain particles. Specifically, the progressive chain breakup and particle clumping systematically decrease of the ratio of anhysteretic remanent magnetization to the saturation isothermal remanent magnetization (ARM/SIRM or χARM/SIRM), the crossing point of the Wohlfarth-Cisowski test, and the delta ratio (δFC/δZFC) between losses of field and zero-field cooled remanent magnetization across the Verwey transition. We hence propose a delta-plot (δFC/δZFC vs. δZFC) as a new approach to diagnose magnetosome chains of magnetosomes, and detect magnetofossils in sediments and rocks.

  12. Magnetic anisotropy and spin wave relaxation in CoFe/PtMn/CoFe trilayer films

    NASA Astrophysics Data System (ADS)

    Ren, Y. H.; Wu, C.; Gong, Y.; Pettiford, C.; Sun, N. X.

    2009-04-01

    We investigated the magnetic anisotropic properties and the spin wave relaxation in trilayer films of CoFe/PtMn/CoFe grown on the seed layer Ru or NiFeCr with CoFe compositions being Co-16 at. % Fe. The measurements were taken in samples with the ferromagnetic layers of CoFe varying from 10 to 500 Å by the ferromagnetic resonance (FMR) technique. The magnetic anisotropic parameters were investigated by rotating the field aligned axis with respect to the spectral field in the configurations of both in plane and out of plane. We determine the effective in-plane anisotropy field of ˜0.005 T, the uniaxial out-of-plane anisotropy of ˜-0.3 T, and the exchange stiffness D of ˜512 meV Å2. Moreover, spin wave damping was estimated by analyzing the FMR linewidth and line shape as a function of the angle between the external field and easy axis and as a function of the thickness of the CoFe layers. We identify an extrinsic contribution of the damping parameter dominated by two-magnon scattering in addition to the intrinsic Gilbert term with a damping parameter, α =0.012. Further, we reveal that a significant linewidth broadening could also be caused by the overlap of the surface and the uniform spin wave excitations. The FMR lines show a strong dependence of the surface anisotropy contribution of free energy in trilayer films.

  13. Magnetic ordering and slow dynamics in a Ho-based bulk metallic glass with moderate random magnetic anisotropy

    SciTech Connect

    Luo, Q.; Schwarz, B.; Mattern, N.; Eckert, J.

    2011-06-01

    Results of magnetic measurements are presented for a Ho-based bulk metallic glass, which shows similarities and differences with conventional spin glasses (SGs), and significant differences with weak random magnetic anisotropy (RMA) systems. Both ac and dc magnetic measurements indicate a single transition from paramagnetic to speromagnetic or spin glasslike state around 5.6 K. The moderate RMA prevents the formation of long- (or quasilong)-range magnetic order and slows down the spin dynamics in the critical region. Further its isothermal remnant magnetization exhibits a small maximum, instead of a gradual increase with field in SGs. The roles of RMA in the magnetic structure and dynamics of disordered and frustrated systems are discussed by comparisons between the weak RMA system, the moderate or strong RMA system, and conventional SG.

  14. Tri-axial magnetic anisotropies in RE{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15−y} superconductors

    SciTech Connect

    Horii, Shigeru Doi, Toshiya; Okuhira, Shota; Yamaki, Momoko; Kishio, Kohji; Shimoyama, Jun-ichi

    2014-03-21

    We report a novel quantification method of tri-axial magnetic anisotropy in orthorhombic substances containing rare earth (RE) ions using tri-axial magnetic alignment and tri-axial magnetic anisotropies depending on the type of RE in RE-based cuprate superconductors. From the changes in the axes for magnetization in magnetically aligned powders of (RE′{sub 1−x}RE″{sub x}){sub 2}Ba{sub 4}Cu{sub 7}O{sub y} [(RE′,RE″)247] containing RE ions with different single-ion magnetic anisotropies, the ratios of three-dimensional magnetic anisotropies between RE′247 and RE″247 could be determined. The results in (Y,Er)247, (Dy,Er)247, (Ho,Er)247, and (Y,Eu)247 systems suggest that magnetic anisotropies largely depended on the type of RE′ (or RE″), even in the heavy RE ions with higher magnetic anisotropies. An appropriate choice of RE ions in RE-based cuprate superconductors enables the reduction of the required magnetic field for the production of their bulks and thick films based on the tri-axial magnetic alignment technique using modulated rotation magnetic fields.

  15. Effect of thermal process on magnetic anisotropy in FeCoB soft underlayer

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Matsuu, T.; Ito, S.; Nakagawa, S.

    Relationship between magnetic anisotropy field Hk and thermal processes during the preparation has been studied for FeCoB thin films. The FeCoB films deposited on the glass substrates by facing targets sputtering successfully showed strong magnetic anisotropy when the substrate was heated at the substrate temperature Ts above 100 °C. Additionally, the lattice spacing of FeCo(1 1 0) in the perpendicular direction was found to decrease depending on the substrate temperature Ts. Among various temperature histories, the heating processes with a phase of increasing Ts revealed the further improvement of Hk. Meanwhile, high Hk in the films disappears after the post-deposition annealing at the temperature above 400 °C.

  16. Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy

    PubMed Central

    Ueno, Tetsuro; Sinha, Jaivardhan; Inami, Nobuhito; Takeichi, Yasuo; Mitani, Seiji; Ono, Kanta; Hayashi, Masamitsu

    2015-01-01

    We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectroscopy is used to evaluate the relative orbital moment, i.e. the ratio of the orbital to spin moments, of the magnetic elements constituting the heterostructures. We find that the relative orbital moment of Co in Pt/Co/Pt remains constant against its thickness whereas the moment increases with decreasing Co layer thickness for Pt/Co/AlOx, suggesting that a non-zero interface orbital moment exists for the latter system. For Ta/CoFeB/MgO, a non-zero interface orbital moment is found only for Fe. X-ray absorption spectra shows that a particular oxidized Co state in Pt/Co/AlOx, absent in other heterosturctures, may give rise to the interface orbital moment in this system. These results show element specific contributions to the interface orbital magnetic moments in ultrathin magnetic heterostructures. PMID:26456454

  17. A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier.

    PubMed

    Pugh, Thomas; Chilton, Nicholas F; Layfield, Richard A

    2016-09-01

    The single-molecule magnet (SMM) properties of the isocarbonyl-ligated dysprosium metallocene [Cp*2 Dy{μ-(OC)2 FeCp}]2 (1Dy ), which contains a rhombus-shaped Dy2 Fe2 core, are described. Combining a strong axial [Cp*](-) ligand field with a weak equatorial field consisting of the isocarbonyl ligands leads to an anisotropy barrier of 662 cm(-1) in zero applied field. The dominant thermal relaxation pathways in 1Dy involves at least the fourth-excited Kramers doublet, thus demonstrating that prominent SMM behavior can be observed for dysprosium in low-symmetry environments. PMID:27460170

  18. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  19. Enhancing the Magnetic Anisotropy of Linear Cr(II) Chain Compounds Using Heavy Metal Substitutions.

    PubMed

    Christian, Jonathan H; Brogden, David W; Bindra, Jasleen K; Kinyon, Jared S; van Tol, Johan; Wang, Jingfang; Berry, John F; Dalal, Naresh S

    2016-07-01

    Magnetic properties of the series of three linear, trimetallic chain compounds Cr2Cr(dpa)4Cl2, 1, Mo2Cr(dpa)4Cl2, 2, and W2Cr(dpa)4Cl2, 3 (dpa = 2,2'-dipyridylamido), have been studied using variable-temperature dc and ac magnetometry and high-frequency EPR spectroscopy. All three compounds possess an S = 2 electronic ground state arising from the terminal Cr(2+) ion, which exhibits slow magnetic relaxation under an applied magnetic field, as evidenced by ac magnetic susceptibility and magnetization measurements. The slow relaxation stems from the existence of an easy-axis magnetic anisotropy, which is bolstered by the axial symmetry of the compounds and has been quantified through rigorous high-frequency EPR measurements. The magnitude of D in these compounds increases when heavier ions are substituted into the trimetallic chain; thus D = -1.640, -2.187, and -3.617 cm(-1) for Cr2Cr(dpa)4Cl2, Mo2Cr(dpa)4Cl2, and W2Cr(dpa)4Cl2, respectively. Additionally, the D value measured for W2Cr(dpa)4Cl2 is the largest yet reported for a high-spin Cr(2+) system. While earlier studies have demonstrated that ligands containing heavy atoms can enhance magnetic anisotropy, this is the first report of this phenomenon using heavy metal atoms as "ligands". PMID:26881994

  20. First-order magnetization process as a tool of magnetic-anisotropy determination: Application to the uranium-based intermetallic U3C u4G e4

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V.; Skourski, Y.; Richter, M.; Havela, L.; Wosnitza, J.

    2016-02-01

    Uranium-based intermetallic compounds often display very strong magnetic anisotropies, the energy of which is usually not directly accessible by common experimental methods. Here, we report on static- and pulsed-field studies of U3C u4G e4 . This material orders ferromagnetically at TC=73 K with the easy magnetization direction along the a axis and a strong b c -plane anisotropy. The magnetization measured for fields along the hard b direction displays a first-order magnetization process that can be described well by use of a phenomenological theory yielding anisotropy constants up to the sixth order. This phenomenological description, working excellently for U3C u4G e4 , may also be applied for other uranium-based compounds.

  1. Magnetic anisotropy of elongated thin ferromagnetic nano-islands for artificial spin ice arrays

    NASA Astrophysics Data System (ADS)

    Wysin, G. M.; Moura-Melo, W. A.; Mól, L. A. S.; Pereira, A. R.

    2012-07-01

    The energetics of thin elongated ferromagnetic nano-islands is considered for some different shapes, aspect ratios and applied magnetic field directions. These nano-island particles are important for artificial spin ice materials. For low temperature, the magnetic internal energy of an individual particle is evaluated numerically as a function of the direction of a particle’s net magnetization. This leads to estimations of effective anisotropy constants for (1) the easy axis along the particle’s long direction, and (2) the hard axis along the particle’s thin direction. A spin relaxation algorithm together with fast Fourier transform for the demagnetization field is used to solve the micromagnetics problem for a thin system. The magnetic hysteresis is also found. The results indicate some possibilities for controlling the equilibrium and dynamics in spin ice materials by using different island geometries.

  2. Flux penetration in a ferromagnetic/superconducting bilayer utilizing perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Cieplak, Marta Z.; Adamus, Z.; Abal'Oshev, A.; Berkowski, M.; Konczykowski, M.; Cheng, X. M.; Zhu, L. Y.; Chien, C. L.

    2006-03-01

    The Hall sensor array is a useful tool for measuring local magnetic fields. An array of miniature Hall sensors has been used to study the flux penetration in a ferromagnetic/superconducting (F/S) bilayer consisting of Nb as the S layer and Co/Pt multilayer with perpendicular magnetic anisotropy as the F layer, separated by an amorphous Si layer to avoid proximity effect. The F layer is first premagnetized to different magnetization reversal stages to obtain various magnetic domain patterns. The effect of these domain patterns on the flux behavior in the S layer is then studied at various temperatures in the superconducting state. We have observed that, in addition to the vortex pinning enhancement, some domain patterns strongly increase the first penetration field and induce large thermomagnetic instabilities (flux jumps), which are not detectable by magnetometry. We also discuss the profiles of the flux distribution across these F/S bilayers.

  3. Magnetic structure and anisotropy of [Co/Pd ] 5/NiFe multilayers

    NASA Astrophysics Data System (ADS)

    Tryputen, Larysa; Guo, Feng; Liu, Frank; Nguyen, T. N. Anh; Mohseni, Majid S.; Chung, Sunjae; Fang, Yeyu; Ã kerman, Johan; McMichael, R. D.; Ross, Caroline A.

    2015-01-01

    The magnetization behavior, magnetic anisotropy, and domain configurations of Co/Pd multilayers with perpendicular magnetic anisotropy capped with permalloy is investigated using magnetometry, magnetic force microscopy, and ferromagnetic resonance. The thickness of the Ni80Fe20 layer in [Co/Pd ] 5/NiFe (t ) was varied from t =0 to 80 nm in order to study the interplay between the anisotropy and magnetization directions of Co/Pd and NiFe. By varying the thickness of the NiFe layer, the net anisotropy changes sign, but domains with plane-normal magnetization are present even for the thickest NiFe. Ferromagnetic resonance measurements show a decrease in damping with increasing NiFe thickness. The results demonstrate how the magnetic behavior of mixed-anisotropy thin films can be controlled.

  4. High Anisotropy CoPtCrB Magnetic Recording Media

    SciTech Connect

    Toney, Michael F

    2003-06-17

    We describe the synthesis, magnetism and structure of CoPtCrB alloys with Pt concentrations from 10-43%. The Cr concentration in the alloys was 15-17% and the B concentration was 9-11%. The magnetic anisotropy and coercivity increase with increasing Pt up to {approx} 30%, plateau at {approx} 35,000 Oe and {approx} 6000 Oe, respectively, and then decrease. Transmission electron microscopy results show the media form fine, isolated grains for all Pt concentrations. X-ray diffraction measurements show that with increasing Pt an fcc Co-alloy phase is progressively formed at the expense of the hcp Co-alloy and that this fraction becomes significant for > 35% Pt. The formation of the fcc phase likely causes the behavior in the anisotropy. No Pt concentration dependence is observed for the stacking fault density. The X-ray data show that with increasing Pt the CoPtCrB alloy lattice parameters exhibit two distinct regions with the slope changing at 16% Pt. The presence of these two regions is discussed.

  5. Magnetic anisotropy and anisotropic damping in LSMO/STO(001)

    NASA Astrophysics Data System (ADS)

    Lee, Hankyu; Barsukov, Igor; Yang, Liu; Swartz, Adrian; Kim, Bongju; Hwang, Harold; Krivorotov, Ilya

    2015-03-01

    La0.7Sr0.3MnO3 (LSMO) is a promising material for spintronics applications due to its half-metallic nature. To successively exploit LSMO, both the magnetic anisotropy (MA) and damping need to be well understood and, ultimately, controlled. Here, we study 30 nm epitaxial LSMO thin films grown by pulsed laser deposition on TiO2 terminated (001)SrTiO3. By means of angle- and frequency dependent ferromagnetic resonance (FMR) at room temperature, we separate various contributions to the in-plane MA: i) The four-fold magnetocrystalline anisotropy is present but negligibly small. ii) The strongest contribution Buni = 4.2 mT is uniaxial with EA along [010]. While uniaxial MA in LSMO systems is commonly related to terrace formation from the substrate miscut, we find that the terrace direction and the MA symmetry axes do not correlate, indicating a different origin of the MA. By evaluating the FMR linewidth, three nonlinear magnetic damping channels due to the two-magnon scattering are found: j) The dominant four-fold contribution with maxima along < 100 > axes emerges due to the crystalline defects. jj) A two-fold contribution with the maximum along [010] and jjj) a small two-fold contribution with maximum perpendicular to the terraces are identified.

  6. Improvement of in-plane anisotropy field in FeCoB/NiFe/Si thin films by Kr sputtering

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Ito, S.; Nakagawa, S.

    2007-03-01

    Deterioration of magnetic anisotropy field in the FeCoB/NiFe/Si trilayers deposited on glass substrates was investigated. It was found that the choice of Kr as sputtering gas instead of Ar was quite effective to improve the soft magnetic characteristics of FeCoB/NiFe/Si thin films deposited on glass substrates. Kr sputtering is effective to reduce compressive residual stress in the film. The rotatable magnetic anisotropy observed in the FeCoB/NiFe/Si films deposited by Ar sputtering disappeared in the film deposited by Kr sputtering, even though they are prepared on glass disk substrates.

  7. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  8. Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems.

    SciTech Connect

    Jimenez, E.; Camarero, J.; Sort, J.; Nogues, J.; Mikuszeit, N.; Garcia-Martin, J. M.; Hoffmann, A.; Dieny, B.; Miranda, R.; Univ. Autonoma de Madrid; Univ. Autonoma de Barcelona; Inst. de Microelectronica de Madrid; SPINTEC

    2009-01-01

    Exchange bias, referred to the interaction between a ferromagnet (FM) and an antiferromagnet (AFM), is a fundamental interfacial magnetic phenomenon, which is key to current and future applications. The effect was discovered half a century ago, and it is well established that the spin structures at the FM/AFM interface play an essential role. However, currently, ad hoc phenomenological anisotropies are often postulated without microscopic justification or sufficient experimental evidence to address magnetization-reversal behavior in exchange-bias systems. We advance toward a detailed microscopic understanding of the magnetic anisotropies in exchange-bias FM/AFM systems by showing that symmetry-breaking anisotropies leave a distinct fingerprint in the asymmetry of the magnetization reversal and we demonstrate how these emerging anisotropies are correlated with the intrinsic anisotropy. Angular and vectorial resolved Kerr hysteresis loops from FM/AFM bilayers with varying degree of ferromagnetic anisotropy reveal a noncollinear anisotropy, which becomes important for ferromagnets with vanishing intrinsic anisotropy. Numerical simulations show that this anisotropy naturally arises from the inevitable spin frustration at an atomically rough FM/AFM interface. As a consequence, we show in detail how the differences observed for different materials during magnetization reversal can be understood in general terms as originating from the interplay between interfacial frustration and intrinsic anisotropies. This understanding will certainly open additional avenues to tailor future advanced magnetic materials.

  9. Giant magnetic anisotropy in Li3-xFexN permanent magnets

    NASA Astrophysics Data System (ADS)

    Jesche, Anton; Thimmaiah, Srinivasa; Bud'Ko, Sergey; Canfield, Paul

    2013-03-01

    Single crystals of Li2(Li1-xFex)N were successfully grown out of Li-flux. Fe-concentrations and lattice parameters were determined by means of single crystal and powder diffraction which also confirmed the substitution of Fe on only one of the Li sites resulting in Li1-xFex layers separated by Li2N layers. Magnetization measurements revealed a ferromagnetically ordered ground state with Curie temperatures of ~ 60 K for Fe concentrations of x ~ 20 %. Large saturation moments of up to 5 μB per Fe atom were found along the hexagonal crystallographic c-axis. These values exceed the spin-only contribution of Fe and are also reflected in correspondingly large effective moments at room temperature. The anisotropy field at T = 2 K, defined as intersection of the magnetization for M ∥ c and M ⊥ c , can be estimated to lie well beyond 100 Tesla. Electrical resistivity measurements show insulating behavior and raise questions about the nature of the underlying magnetic exchange mechanism. This work is supported by the US DOE, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  10. How to probe transverse magnetic anisotropy of a single-molecule magnet by electronic transport?

    NASA Astrophysics Data System (ADS)

    Misiorny, M.; Burzuri, E.; Gaudenzi, R.; Park, K.; Leijnse, M.; Wegewijs, M.; Paaske, J.; Cornia, A.; van der Zant, H.

    We propose an approach for in-situ determination of the transverse magnetic anisotropy (TMA) of an individual molecule by electronic transport measurements, see Phys. Rev. B 91, 035442 (2015). We study a Fe4 single-molecule magnet (SMM) captured in a gateable junction, a unique tool for addressing the spin in different redox states of a molecule. We show that, due to mixing of the spin eigenstates of the SMM, the TMA significantly manifests itself in transport. We predict and experimentally observe the pronounced intensity modulation of the Coulomb peak amplitude with the magnetic field in the linear-response transport regime, from which the TMA parameter E can be estimated. Importantly, the method proposed here does not rely on the small induced tunnelling effects and, hence, works well at temperatures and electron tunnel broadenings by far exceeding the tunnel splittings and even E itself. We deduce that the TMA for a single Fe4 molecule captured in a junction is substantially larger than the bulk value. Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.

  11. Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.

    1985-01-01

    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.

  12. Effects of anisotropy and stress on the non-linear magnetic susceptibility of ferromagnets

    NASA Astrophysics Data System (ADS)

    Melikhov, Yevgen; Hauser, Hans; Li, Lu; Jiles, David; Grossinger, Roland

    2004-03-01

    The magnetic susceptibility of ferromagnetic materials changes if mechanical stress is applied. This arises mainly because of the changes in the effective anisotropy arising from the magnetoelastic coupling. In order to correctly describe these changes theoretically by non-linear hysteresis modeling, the variation of these parameters with both anisotropy and stress must be understood. The interpretation of the underlying physics behind these variations as well as the means for determining the changes in theoretical parameters are important issues in hysteresis modeling. We report studies undertaken using two non-linear hysteresis models, namely the Jiles-Atherton model and the Hauser energetic model. The study examined the initial magnetization curve at low magnetic fields - where domain wall displacements are dominant and the anhysteretic (hysteresis-free) magnetization at high fields - where most of the magnetization processes taking place are reversible. The results were verified by comparison with experimental results taken on amorphous Co77B23 ribbon under applied tensile stress. This research was supported by the US DoE, office of Basic Energy Science, Materials Science Division. Ames Laboratory is operated for the US DoE by ISU under contract number W-7405-ENG-82.

  13. Aligning Paramecium caudatum with static magnetic fields.

    PubMed

    Guevorkian, Karine; Valles, James M

    2006-04-15

    As they negotiate their environs, unicellular organisms adjust their swimming in response to various physical fields such as temperature, chemical gradients, and electric fields. Because of the weak magnetic properties of most biological materials, however, they do not respond to the earth's magnetic field (5 x 10(-5) Tesla) except in rare cases. Here, we show that the trajectories of Paramecium caudatum align with intense static magnetic fields >3 Tesla. Otherwise straight trajectories curve in magnetic fields and eventually orient parallel or antiparallel to the applied field direction. Neutrally buoyant immobilized paramecia also align with their long axis in the direction of the field. We model this magneto-orientation as a strictly passive, nonphysiological response to a magnetic torque exerted on the diamagnetically anisotropic components of the paramecia. We have determined the average net anisotropy of the diamagnetic susceptibility, Deltachi(p), of a whole Paramecium: Deltachi(p) = (6.7+/- 0.7) x 10(-23) m(3). We show how the measured Deltachi(p) compares to the anisotropy of the diamagnetic susceptibilities of the components in the cell. We suggest that magnetic fields can be exploited as a novel, noninvasive, quantitative means to manipulate swimming populations of unicellular organisms. PMID:16461406

  14. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  15. Properties of easy-plane/perpendicular magnetic anisotropy bilayers with varied interlayer exchange coupling

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Sluka, Volker; Kardasz, Bartek; Pinarbasi, Mustafa; Kent, Andrew D.

    We explore the possibility of an easy-cone ground state in coupled easy plane/easy axis magnetic bilayers. The samples consist of a Co/Ni multilayer with perpendicular magnetic anisotropy and a CoFe layer with easy-plane anisotropy separated by a variable thickness Ru layer. Using ferromagnetic resonance spectroscopy, we characterize the magnetic behavior of the coupled thin films for different Ru thicknesses by determining the resonance fields for both the acoustic and optical FMR modes. In particular, we observe a gap in the resonance field opening up between the two modes in angular-dependent FMR, which is direct evidence for the presence of interlayer coupling. Quantitative comparisons with a theoretical model indicate that by varying the Ru thickness the coupling strength can be tuned continuously from ferromagnetic to the anti-ferromagnetic. These results are consistent with a canted magnetic ground state in zero field, a state of interest for applications in spin-torque devices, such as current tunable spin-torque oscillators. Supported by NSF-DMR1309202 and Spin-Transfer Technologies Inc.

  16. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    SciTech Connect

    Arranz, Miguel A.; Colino, Jose M.; Palomares, Francisco J.

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative agreement

  17. Relaxation Dynamics and Magnetic Anisotropy in a Low-Symmetry Dy(III) Complex.

    PubMed

    Lucaccini, Eva; Briganti, Matteo; Perfetti, Mauro; Vendier, Laure; Costes, Jean-Pierre; Totti, Federico; Sessoli, Roberta; Sorace, Lorenzo

    2016-04-11

    The magnetic behaviour of a Dy(LH)3 complex (LH(-) is the anion of 2-hydroxy-N'-[(E)-(2-hydroxy-3-methoxyphenyl)methylidene]benzhydrazide) was analysed in depth from both theoretical and experimental points of view. Cantilever torque magnetometry indicated that the complex has Ising-type anisotropy, and provided two possible directions for the easy axis of anisotropy due to the presence of two magnetically non-equivalent molecules in the crystal. Ab initio calculations confirmed the strong Ising-type anisotropy and disentangled the two possible orientations. The computed results obtained by using ab initio calculations were then used to rationalise the composite dynamic behaviour observed for both pure Dy(III) phase and Y(III) diluted phase, which showed two different relaxation channels in zero and non-zero static magnetic fields. In particular, we showed that the relaxation behaviour at the higher temperature range can be correctly reproduced by using a master matrix approach, which suggests that Orbach relaxation is occurring through a second excited doublet. PMID:26960531

  18. Giant in-plane magnetic anisotropy in epitaxial bcc Co/Fe(110) bilayers

    NASA Astrophysics Data System (ADS)

    Ślezak, M.; Ślezak, T.; Matlak, K.; Matlak, B.; DróŻdŻ, P.; Giela, T.; Wilgocka-Ślezak, D.; Pilet, N.; Raabe, J.; Kozioł-Rachwał, A.; Korecki, J.

    2016-07-01

    We report on in-plane magnetic anisotropy in epitaxial bcc Co/Fe(110) bilayers on W(110). The magnetic surface anisotropy in the Co/Fe(110) bilayers exhibited a strong nonmonotonic dependence on Co coverage. Magneto-optical studies revealed a sharp maximum of the magnetic surface anisotropy, 2.44 mJ /m2 , at dCo=5 Å . This giant interfacial magnetic anisotropy allowed a small fraction of a Co monolayer to reorient the magnetization of the bulk-like Fe film. We conclude that the mono- and double-layer bcc Co(110) exhibited in-plane magnetic anisotropy with a [1 1 ¯0 ] easy axis.

  19. Determination of the Fe magnetic anisotropies and the CoO frozen spins in epitaxial CoO/Fe/Ag(001)

    SciTech Connect

    Meng, J. Li, Y.; Park, J. S.; Jenkins, C. A.; Arenholz, E.; Scholl, A.; Tan, A.; Son, H.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-04-28

    CoO/Fe/Ag(001) films were grown epitaxially and studied by X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD). After field cooling along the Fe[100] axis to 80 K, exchange bias, uniaxial anisotropy, and 4-fold anisotropy of the films were determined by hysteresis loop and XMCD measurements by rotating the Fe magnetization within the film plane. The CoO frozen spins were determined by XMLD measurement as a function of CoO thickness.We find that among the exchange bias, uniaxial anisotropy, and 4-fold anisotropy, only the uniaxial magnetic anisotropy follows thickness dependence of the CoO frozen spins.

  20. Buffer influence on magnetic dead layer, critical current, and thermal stability in magnetic tunnel junctions with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Frankowski, Marek; Żywczak, Antoni; Czapkiewicz, Maciej; Zietek, Sławomir; Kanak, Jarosław; Banasik, Monika; Powroźnik, Wiesław; Skowroński, Witold; Checiński, Jakub; Wrona, Jerzy; Głowiński, Hubert; Dubowik, Janusz; Ansermet, Jean-Philippe; Stobiecki, Tomasz

    2015-06-01

    We present a detailed study of Ta/Ru-based buffers and their influence on features crucial from the point of view of applications of Magnetic Tunnel Junctions (MTJs) such as critical switching current and thermal stability. We study buffer/FeCoB/MgO/Ta/Ru and buffer/MgO/FeCoB/Ta/Ru layers, investigating the crystallographic texture, the roughness of the buffers, the magnetic domain pattern, the magnetic dead layer thickness, and the perpendicular magnetic anisotropy fields for each sample. Additionally, we examine the effect of the current induced magnetization switching for complete nanopillar MTJs with lateral dimensions of 270 × 180 nm. Buffer Ta 5/Ru 10/Ta 3 (thicknesses in nm), which has the thickest dead layer, exhibits a much larger thermal stability factor (63 compared to 32.5) while featuring a slightly lower critical current density value (1.25 MA/cm2 compared to 1.5 MA/cm2) than the buffer with the thinnest dead layer Ta 5/Ru 20/Ta 5. We can account for these results by considering the difference in damping which compensates for the difference in the switching barrier heights.

  1. Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy

    SciTech Connect

    Vazquez, M.; Kurlyandskaya, G.V.; Garcia-Beneytez, J.M.; Sinnecker, J.P.; Barandiaran, J.M.; Lukshina, V.A.; Potapov, A.P.

    1999-09-01

    Stress-annealed nanocrystalline FeCuNbSiB ribbons show correlation between induced magnetic anisotropy and magnetoimpedance. Two types of crystallization process were used in order to induce a transverse magnetic anisotropy: the first one was performed submitting the original amorphous samples to an applied tensile stress of {sigma} = 150 MPa. In the second one, samples are nanocrystallized in a first stage and submitted to stress annealing at {sigma} = 290 MPa afterwards. The maximum of the magnetoimpedance can be obtained for dc fields larger than the anisotropy field of the sample of close to the irreversibility field. This behavior can be explained based in the simultaneous switching of two different magnetization processes taking place in the samples with high transverse magnetic anisotropy.

  2. Magnetic susceptibility curves of a nanoparticle assembly, I: Theoretical model and analytical expressions for a single magnetic anisotropy energy

    NASA Astrophysics Data System (ADS)

    Tournus, F.; Bonet, E.

    2011-05-01

    We study a model system made of non-interacting monodomain ferromagnetic nanoparticles, considered as macrospins, with a randomly oriented uniaxial magnetic anisotropy. We derive a simple differential equation governing the magnetic moment evolution in an experimental magnetic susceptibility measurement, at low field and as a function of temperature, following the well-known Zero-Field Cooled/Field Cooled (ZFC/FC) protocol. Exact and approximate analytical solutions are obtained, together for the ZFC curve and the FC curve. The notion of blocking temperature is discussed and the influence of various parameters on the curves is investigated. A crossover temperature is defined and a comparison is made between our progressive crossover model (PCM) and the crude "two states" or abrupt transition model (ATM), where the particles are assumed to be either fully blocked or purely superparamagnetic. We consider here the case of a single magnetic anisotropy energy (MAE), which is a prerequisite before considering the more realistic and experimentally relevant case of an assembly of particles with a MAE distribution (cf. part II that follows).

  3. Magnetic dispersion and anisotropy in multiferroic BiFeO3

    SciTech Connect

    Matsuda, Masaaki; Fishman, Randy Scott; Hong, Tao; Lee, C. H.; Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Ito, T.

    2012-01-01

    We have determined the full magnetic dispersion relations of multiferroic BiFeO3. In particular, two excitation gaps originating from magnetic anisotropies have been clearly observed. The direct observation of the gaps enables us to accurately determine the Dzyaloshinskii-Moriya (DM) interaction and the single ion anisotropy. The DM interaction supports a sizable magneto-electric coupling in this compound.

  4. Determination of magnetic anisotropies, interlayer coupling, and magnetization relaxation in FeCoB/Cr/FeCoB

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Cevher, Z.; Ebrahim, M.; Lou, J.; Pettiford, C.; Sun, N. X.; Ren, Y. H.

    2009-09-01

    We studied magnetic anisotropic properties, interlayer coupling, and spin wave relaxation in ten periods of CoFeB/Cr/CoFeB films grown on seed layers of Cu with a Co:Fe:B composition ratio of 2:2:1. The measurements were taken in samples with 50 Å layers of CoFeB using the ferromagnetic resonance technique. The thickness of the Cr interlayers was varied from 4 to 40 Å for understanding the mechanisms of interlayer coupling. We investigated the magnetic anisotropy parameters by rotating the sample with respect to the microwave magnetic field from in plane to perpendicular to the plane. We identify both the acoustic branch and the optical branch in the spin wave resonance spectra. The effective interlayer coupling constant and the out-of-plane anisotropy show an oscillatory change, while the uniaxial in-plane anisotropy increases monotonically with increasing the thickness of the spacing layers. Moreover, we show that the spin wave relaxation can be optimized by adjusting the interlayer exchange interactions.

  5. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  6. Strain-induced perpendicular magnetic anisotropy in L a2CoMn O6 -ɛ thin films and its dependence on film thickness

    NASA Astrophysics Data System (ADS)

    Galceran, Regina; López-Mir, Laura; Bozzo, Bernat; Cisneros-Fernández, José; Santiso, José; Balcells, Lluís; Frontera, Carlos; Martínez, Benjamín

    2016-04-01

    Ferromagnetic insulating L a2CoMn O6 -ɛ (LCMO) epitaxial thin films grown on top of SrTi O3 (001) substrates present a strong magnetic anisotropy favoring the out-of-plane (OP) orientation of the magnetization with a large anisotropy field (˜70 kOe for film thickness of about 15 nm). Diminishing oxygen off-stoichiometry of the film enhances the anisotropy. We attribute this to the concomitant shrinkage of the OP cell parameter and to the increasing of the tensile strain of the films. Consistently, LCMO films grown on (LaAlO3)0.3(Sr2AlTaO6) 0.7 and LaAl O3 substrates (with a larger OP lattice parameter and compressive stress) display in-plane (IP) magnetic anisotropy. Thus, we link the strong magnetic anisotropy observed in LCMO to the film stress: tensile strain favors perpendicular anisotropy, and compressive stress favors IP anisotropy. We also report on the thickness dependence of the magnetic properties. Perpendicular anisotropy, saturation magnetization, and Curie temperature are maintained over a large range of film thickness.

  7. Anisotropy Effect on Levitation Performance of Bulk High-Tc Superconductors Above a Permanent Magnet Guideway

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Liao, Xinglin; Jing, Hailian; Lin, Qunxu; Ma, Guangtong; Yen, Fei; Wang, Suyu; Wang, Jiasu

    The anisotropy properties of bulk high-temperature superconductors (HTSCs) are taken into consideration for the application of high-temperature superconducting (HTS) Maglev systems, which are especially based on the different flux-trapping capabilities as well as critical current density, Jc, values between the growth section boundary (GSB) and the growth sections (GS) in bulk superconductors. By adjusting the angle between the GSB of bulk HTSCs and the strongest magnetic field position of a permanent magnet guideway (PMG), the levitation force and its relaxation processes are compared at different field-cooling conditions. Experimental results show that the levitation capability and the suppression of levitation force decay can be enhanced by optimizing the GS/GSB alignment of every bulk HTSC above the PMG. Meanwhile, our conclusions may provide references to other HTS maglev systems with small levitation gaps, i.e., superconducting magnetic bearings.

  8. Magnetic anisotropy in isotropic and nanopatterned strongly exchange-coupled nanolayers

    NASA Astrophysics Data System (ADS)

    Vergara, José; Favieres, Cristina; Madurga, Vicente

    2012-10-01

    In this study, the fabrication of magnetic multilayers with a controlled value of the in-plane uniaxial magnetic anisotropy field in the range of 12 to 72 kA/m was achieved. This fabrication was accomplished by the deposition of bilayers consisting of an obliquely deposited (54°) 8-nm-thick anisotropic Co layer and a second isotropic Co layer that was deposited at a normal incidence over the first layer. By changing the thickness value of this second Co layer ( X) by modifying the deposition time, the value of the anisotropy field of the sample could be controlled. For each sample, the thickness of each bilayer did not exceed the value of the exchange correlation length calculated for these Co bilayers. To increase the volume of the magnetic films without further modification of their magnetic properties, a Ta spacer layer was deposited between successive Co bilayers at 54° to prevent direct exchange coupling between consecutive Co bilayers. This step was accomplished through the deposition of multilayered films consisting of several (Co8 nm-54°/Co X nm-0°/Ta6 nm-54°) trilayers.

  9. Magnetic anisotropy in isotropic and nanopatterned strongly exchange-coupled nanolayers

    PubMed Central

    2012-01-01

    In this study, the fabrication of magnetic multilayers with a controlled value of the in-plane uniaxial magnetic anisotropy field in the range of 12 to 72 kA/m was achieved. This fabrication was accomplished by the deposition of bilayers consisting of an obliquely deposited (54°) 8-nm-thick anisotropic Co layer and a second isotropic Co layer that was deposited at a normal incidence over the first layer. By changing the thickness value of this second Co layer (X) by modifying the deposition time, the value of the anisotropy field of the sample could be controlled. For each sample, the thickness of each bilayer did not exceed the value of the exchange correlation length calculated for these Co bilayers. To increase the volume of the magnetic films without further modification of their magnetic properties, a Ta spacer layer was deposited between successive Co bilayers at 54° to prevent direct exchange coupling between consecutive Co bilayers. This step was accomplished through the deposition of multilayered films consisting of several (Co8 nm-54°/CoX nm-0°/Ta6 nm-54°) trilayers. PMID:23088782

  10. Statistical anisotropy of the curvature perturbation from vector field perturbations

    SciTech Connect

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co

    2009-05-15

    The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.

  11. Electronic structure and magnetic anisotropy of Sm2Fe17Nx

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2014-03-01

    Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  12. Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain.

    PubMed

    Shepley, P M; Rushforth, A W; Wang, M; Burnell, G; Moore, T A

    2015-01-01

    The perpendicular magnetic anisotropy K(eff), magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85-1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. K(eff), measured by the extraordinary Hall effect, is reduced by 10 kJ/m(3) by tensile strain out-of-plane ε(z) = 9 × 10(-4), independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2-4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity. PMID:25605499

  13. Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain

    NASA Astrophysics Data System (ADS)

    Shepley, P. M.; Rushforth, A. W.; Wang, M.; Burnell, G.; Moore, T. A.

    2015-01-01

    The perpendicular magnetic anisotropy Keff, magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85-1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. Keff, measured by the extraordinary Hall effect, is reduced by 10 kJ/m3 by tensile strain out-of-plane ɛz = 9 × 10-4, independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2-4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity.

  14. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  15. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  16. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes.

    PubMed

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [Co(II)(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  17. The Role of Pressure Anisotropy on Particle Acceleration during Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Drake, J. F.; Swisdak, M.; Knizhnik, K.

    2013-02-01

    Voyager spacecraft observations have revealed that contrary to expectations, the source of anomalous cosmic rays (ACRs) is not at the local termination shock. A possible mechanism of ACR acceleration is magnetic reconnection in the heliosheath. Using a particle-in-cell code, we investigate the effects of β on reconnection-driven particle acceleration by studying island growth in multiple interacting Harris current sheets. Many islands are generated, and particles are dominantly heated through Fermi reflection in contracting islands during island growth and merging. There is a striking difference between the heating of electrons versus the heating of ions. There is a strong dependence of β on electron heating, while the ion heating is insensitive to β. Anisotropies develop with T ∥ ≠ T for both electrons and ions. The electron anisotropies support the development of a Weibel instability that suppresses the Fermi acceleration of the electrons. Since the Weibel instability develops at a larger T ∥/T in lower β systems, electrons are able to accelerate more efficiently by the Fermi mechanism at low β. The variance in anisotropy implies less electron acceleration in higher β systems, and thus less heating. This study sheds light on particle acceleration mechanisms within the sectored magnetic field regions of the heliosheath and the dissipation of turbulence such as that produced by the magnetorotational instability in accreting systems.

  18. Magnetic anisotropy and anisotropic magnetoresistance in strongly phase separated manganite thin films

    NASA Astrophysics Data System (ADS)

    Kandpal, Lalit M.; Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Gupta, Anurag; Awana, V. P. S.; Singh, H. K.

    2016-06-01

    The present study reports the impact of magnetic anisotropy (MA) on magnetotransport properties such as the magnetic transitions, magnetic liquid behavior, glass transition and anisotropic magnetoresistance (AMR) in epitaxial film (thickness 42 nm) of strongly phase separated manganite La5/8-yPryCa3/8MnO3 (y≈0.4). Angle dependent magnetization measurement confirms the out-of-plane magnetic anisotropy with the magnetic easy axes aligned in the plane of the film and the magnetic hard axis along the normal to the film plane. The more prominent divergence between the zero filed cooled (ZFC) and field cooled warming (FCW) and the stronger hysteresis between the field cooled cooling (FCC) and FCW magnetization for H ∥ shows the weakening of the magnetic liquid along the magnetic hard axis. The peak at Tp≈42 K in FCW magnetization, which characterizes the onset of spin freezing shifts down to Tp≈18 K as the field direction is switched from the easy axes (H ∥) to the hard axis (H ⊥). The glass transition, which appears at Tg≈28 K for H ∥ disappears for H ⊥. The easy axis magnetization (M∣∣) appears to saturate around H~20 kOe, but the hard axis counterpart (M⊥) does not show such tendency even up to H=50 kOe. MA appears well above the ferromagnetic (FM) transition at T≈170 K, which is nearly the same as the Neel temperature (TN) of M⊥ - T . The temperature dependent resistivity measured at H=10 kOe applied along the easy axis (ρ|| - T) and the hard axis (ρ⊥ - T) shows insulator metal transition (IMT) at ≈106 K and ≈99 K in the cooling cycle, respectively. The large difference between ρ⊥ - T and ρ|| - T during the cooling cycle and in the vicinity of IMT results in huge AMR of ≈-142% and -115%. The observed properties have been explained in terms of the MA induced variation in the relative fraction of the coexisting magnetic phases.

  19. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    SciTech Connect

    Li, J.; Hu, J.; Wang, H.; Wu, R. Q.

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  20. Domain wall motion driven by spin Hall effect—Tuning with in-plane magnetic anisotropy

    SciTech Connect

    Rushforth, A. W.

    2014-04-21

    This letter investigates the effects of in-plane magnetic anisotropy on the current induced motion of magnetic domain walls in systems with dominant perpendicular magnetic anisotropy, where accumulated spins from the spin Hall effect in an adjacent heavy metal layer are responsible for driving the domain wall motion. It is found that that the sign and magnitude of the domain wall velocity in the uniform flow regime can be tuned significantly by the in-plane magnetic anisotropy. These effects are sensitive to the ratio of the adiabatic and non-adiabatic spin transfer torque parameters and are robust in the presence of pinning and thermal fluctuations.

  1. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    PubMed

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications. PMID:27067737

  2. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2016-04-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  3. Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field

    PubMed Central

    Bhattacharya, Dhritiman; Al-Rashid, Md Mamun; Atulasimha, Jayasimha

    2016-01-01

    Using micromagnetic simulations we demonstrate core reversal of a fixed magnetic skyrmion by modulating the perpendicular magnetic anisotropy of a nanomagnet with an electric field. We can switch reversibly between two skyrmion states and two ferromagnetic states, i.e. skyrmion states with the magnetization of the core pointing down/up and periphery pointing up/down, and ferromagnetic states with magnetization pointing up/down, by sequential increase and decrease of the perpendicular magnetic anisotropy. The switching between these states is explained by the fact that the spin texture corresponding to each of these stable states minimizes the sum of the magnetic anisotropy, demagnetization, Dzyaloshinskii-Moriya interaction (DMI) and exchange energies. This could lead to the possibility of energy efficient nanomagnetic memory and logic devices implemented with fixed skyrmions without using a magnetic field and without moving skyrmions with a current. PMID:27506159

  4. Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field.

    PubMed

    Bhattacharya, Dhritiman; Al-Rashid, Md Mamun; Atulasimha, Jayasimha

    2016-01-01

    Using micromagnetic simulations we demonstrate core reversal of a fixed magnetic skyrmion by modulating the perpendicular magnetic anisotropy of a nanomagnet with an electric field. We can switch reversibly between two skyrmion states and two ferromagnetic states, i.e. skyrmion states with the magnetization of the core pointing down/up and periphery pointing up/down, and ferromagnetic states with magnetization pointing up/down, by sequential increase and decrease of the perpendicular magnetic anisotropy. The switching between these states is explained by the fact that the spin texture corresponding to each of these stable states minimizes the sum of the magnetic anisotropy, demagnetization, Dzyaloshinskii-Moriya interaction (DMI) and exchange energies. This could lead to the possibility of energy efficient nanomagnetic memory and logic devices implemented with fixed skyrmions without using a magnetic field and without moving skyrmions with a current. PMID:27506159

  5. Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dhritiman; Al-Rashid, Md Mamun; Atulasimha, Jayasimha

    2016-08-01

    Using micromagnetic simulations we demonstrate core reversal of a fixed magnetic skyrmion by modulating the perpendicular magnetic anisotropy of a nanomagnet with an electric field. We can switch reversibly between two skyrmion states and two ferromagnetic states, i.e. skyrmion states with the magnetization of the core pointing down/up and periphery pointing up/down, and ferromagnetic states with magnetization pointing up/down, by sequential increase and decrease of the perpendicular magnetic anisotropy. The switching between these states is explained by the fact that the spin texture corresponding to each of these stable states minimizes the sum of the magnetic anisotropy, demagnetization, Dzyaloshinskii-Moriya interaction (DMI) and exchange energies. This could lead to the possibility of energy efficient nanomagnetic memory and logic devices implemented with fixed skyrmions without using a magnetic field and without moving skyrmions with a current.

  6. Magnetic Pinning in Nb and YBCO Thin Films by Co/Pt Multilayers with Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Cheng, X. M.; Zhu, L. Y.; Chien, C. L.; Cieplak, Marta Z.; Adamus, Z.; Abal'Oshev, A.; Berkowski, M.

    2006-03-01

    Magnetic pinning of vortices has the advantage over intrinsic pinning in that the superconducting critical current can be reversibly tuned by the magnetic field (H). Magnetic pinning by Co/Pt multilayers with perpendicular magnetic anisotropy has been studied in two ferromagnetic/superconducting bilayers of Nb and YBCO with different superconducting properties (e.g. penetration depth λ). Magnetic force microscopy reveals similar magnetization (M) reversal process in the two cases, both exhibiting a large density of narrow residual domains but with different domain width w at the final reversal stage. However, the magnetic pinning, revealed by the M-H loop shape in the superconducting state, is different. The Nb film exhibits an enhancement of M with the strongest effect during the final reversal stage, while the YBCO film shows a suppression of M in the vicinity of central M peak and an enhancement of M in large magnetic fields. These different behaviors are related to the different λ/w ratio in the two cases.

  7. Inter-grain interaction in random magnetic anisotropy simulation in magnetic nanocrystals

    SciTech Connect

    Lee, S.-J.; Yanagihara, Hideto; Kita, Eiji; Inami, Nobuhito; Ono, Kanta; Mitsumata, Chiharu

    2015-05-07

    Effect of inter-grain exchange interaction on the coercive forces was analyzed with a numerical simulation in magnetic materials with random magnetic anisotropy. The magnetization of an assembly of magnetically interacting grains with randomly oriented uniaxial anisotropy was calculated using the Landau-Lifshitz-Gilbert equation. We supposed a single spin model where the magnetizations in a grain were aligned in the same direction, for simplicity. Calculations were carried out for an N×N×N system, where the number of grains on a side, N ranged from 16 to 128. The relation between the coercive forces H{sub C} and the grain size D is represented by H{sub C}∝D{sup k}. With the increase of N, k decreased gradually and tended to reach a saturated value around k = 4.5–5, which dose not correspond to the primitive theory of the random anisotropy model where k = 6. The deviation was discussed in terms of the inter-grain interaction, essentially proportional to the inverse of D.

  8. Inter-grain interaction in random magnetic anisotropy simulation in magnetic nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, S.-J.; Inami, Nobuhito; Yanagihara, Hideto; Kita, Eiji; Mitsumata, Chiharu; Ono, Kanta

    2015-05-01

    Effect of inter-grain exchange interaction on the coercive forces was analyzed with a numerical simulation in magnetic materials with random magnetic anisotropy. The magnetization of an assembly of magnetically interacting grains with randomly oriented uniaxial anisotropy was calculated using the Landau-Lifshitz-Gilbert equation. We supposed a single spin model where the magnetizations in a grain were aligned in the same direction, for simplicity. Calculations were carried out for an N ×N ×N system, where the number of grains on a side, N ranged from 16 to 128. The relation between the coercive forces HC and the grain size D is represented by HC∝Dk . With the increase of N, k decreased gradually and tended to reach a saturated value around k = 4.5-5, which dose not correspond to the primitive theory of the random anisotropy model where k = 6. The deviation was discussed in terms of the inter-grain interaction, essentially proportional to the inverse of D.

  9. Dielectric anisotropy in polar solvents under external fields

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2015-08-01

    We investigate dielectric saturation and increment in polar liquids under external fields. We couple a previously introduced dipolar solvent model to a uniform electric field and derive the electrostatic kernel of interacting dipoles. This procedure allows an unambiguous definition of the liquid dielectric permittivity embodying non-linear dielectric response and correlation effects. We find that the presence of the external field results in a dielectric anisotropy characterized by a two-component dielectric permittivity tensor. The increase of the electric field amplifies the permittivity component parallel to the field direction, i.e. dielectric increment is observed along the field. However, the perpendicular component is lowered below the physiological permittivity {{\\varepsilon}w}≈ 77 , indicating dielectric saturation perpendicular to the field. By comparison with Molecular Dynamics simulations from the literature, we show that the mean-field level dielectric response theory underestimates dielectric saturation. The inclusion of dipolar correlations at the weak-coupling level intensify the mean-field level dielectric saturation and improves the agreement with simulation data at weak electric fields. The correlation-corrected theory predicts as well the presence of a metastable configuration corresponding to the antiparallel alignment of dipoles with the field. This prediction can be verified by solvent-explicit simulations where solvent molecules are expected to be trapped transiently in this metastable state.

  10. Parametric excitation of magnetization by electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya

    Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.

  11. Magnetic anisotropy study of a columnar basalt from San Anton, Morelos, Mexico

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, J.

    1982-03-01

    Anisotrophy of magnetic susceptibility (AMS) results from 27 specimens drilled from the top and two sides of a single columnar basalt segment are presented. The magnetic foliation plane is nearly horizontal for all parts of the column, which is consistent with a primary magma flow pattern, without evidence of local convection or differentiative processes. The shape of AMS ellipsoids is however predominantly prolate, which may be indicative of increased magnetic grain elongation due to crystal growth or grain realignment normal to a vertical stress field (due to thermal contraction). Apparent systematic variations related to column shape are found in bulk susceptibility, anisotropy degree and degree of lineation and foliation; some of the variation may also be related to weathering effects. The results are consistent with a primary AMS pattern resulting from thermal contractive stresses during column formation. Comparison of results from previous studies of columnar basalts reveals that there is a relatively large variation in AMS properties. There appears to exist a number of factors which may locally control the magnetic anisotropy of columns and very likely some of their other characteristics.

  12. Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure.

    PubMed

    Merk, Vivian; Chanana, Munish; Gierlinger, Notburga; Hirt, Ann M; Burgert, Ingo

    2014-06-25

    Anisotropic and hierarchical structures are bound in nature and highly desired in engineered materials, due to their outstanding functions and performance. Mimicking such natural features with synthetic materials and methods has been a highly active area of research in the last decades. Unlike these methods, we use the native biomaterial wood, with its intrinsic anisotropy and hierarchy as a directional scaffold for the incorporation of magnetic nanoparticles inside the wood material. Nanocrystalline iron oxide particles were synthesized in situ via coprecipitation of ferric and ferrous ions within the interconnected pore network of bulk wood. Imaging with low-vacuum and cryogenic electron microscopy as well as spectral Raman mapping revealed layered nanosize particles firmly attached to the inner surface of the wood cell walls. The mineralogy of iron oxide was identified by XRD powder diffraction and Raman spectroscopy as a mixture of the spinel phases magnetite and maghemite. The intrinsic structural architecture of native wood entails a three-dimensional assembly of the colloidal iron oxide which results in direction-dependent magnetic features of the wood-mineral hybrid material. This superinduced magnetic anisotropy, as quantified by direction-dependent magnetic hysteresis loops and low-field susceptibility tensors, allows for directional lift, drag, alignment, (re)orientation, and actuation, and opens up novel applications of the natural resource wood. PMID:24873330

  13. Voltage-Controlled Magnetic Anisotropy in Heavy Metal/Ferromagnet/Insulator-Based Structures

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    Electric-field assisted writing of magnetic memory that exploits the voltage-controlled magnetic anisotropy (VCMA) effect offers a great potential for high density and low power applications. Magnetoelectric Random Access Memory (MeRAM) has been investigated due to its lower switching current, compared with traditional current-controlled devices utilizing spin transfer torque (STT) or spin-orbit torque (SOT) for magnetization switching. It is of great promise to integrate MeRAM into the advanced CMOS back-end-of-line (BEOL) processes for on-chip embedded applications, and enable non-volatile electronic systems with low static power dissipation and instant-on operation capability. In this thesis, different heavy metal|ferromagnet|insulator-based structures are grown by magnetron sputtering to improve the VCMA effect over the traditional Ta|CoFeB|MgO-based structures. We also established an accurate measurement technique for VCMA characterization. An improved thermal annealing stability of VCMA over 400°C is achieved in Mo|CoFeB|MgO-based structures. In addition, we observed a weak CoFeB thickness dependence of both VCMA coefficient and interfacial perpendicular magnetic anisotropy (PMA) in both Ta|CoFeB|MgO and Mo|CoFeB|MgO-based structures.

  14. Tailoring of SmCo5 for optimal structure, magnetic anisotropy, and reduced criticality

    NASA Astrophysics Data System (ADS)

    Paudyal, Durga; Chouhan, R.; Gschneidner, K. A., Jr.

    SmCo5 orms hexagonal CaCu5-type structure with three non-equivalent sites: Sm (1a), Co (2c), and Co (3g). Sm lies in the middle of the Co (2c) hexagonal layers. Advanced density functional theory calculations employing Hubbard model show crystal field split localized Sm 4f states, which are responsible for the large part of the magnetic anisotropy exhibited by this system. In addition, the hexagonal Co (2c) layers help enhancing the anisotropy. Due to the partially quenched Sm 4f orbital moment, there is a net Sm 4f moment, which also helps enhancing magnetic moment. The substitution of some of the Sm sites by Nd adds Nd 4f multiplet thereby enhancing crystal field split 4f states and overall magnetic moment. The substitution of Co (2c) by Fe is preferred over Co (3g) but the compound becomes chemically unstable. The criticality issues could be addressed by substituting abundant Ce. This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  15. Magnetic anisotropy of [Mo(CN)7]4- anions and fragments of cyano-bridged magnetic networks.

    PubMed

    Chibotaru, Liviu F; Hendrickx, Marc F A; Clima, Sergiu; Larionova, Joulia; Ceulemans, Arnout

    2005-08-18

    Quantum chemistry calculations of CASSCF/CASPT2 level together with ligand field analysis are used for the investigation of magnetic anisotropy of [Mo(CN)7]4- complexes. We have considered three types of heptacyano environments: two ideal geometries, a pentagonal bipyramid and a capped trigonal prism, and the heptacyanomolybdate fragment of the cyano-bridged magnetic network K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O. At all geometries the first excited Kramers doublet is found remarkably close to the ground one due to a small orbital energy gap in the ligand field spectrum, which ranges between a maximal value in the capped trigonal prism (800 cm(-1)) and zero in the pentagonal bipyramid. The small value of this gap explains (i) the axial form of the g tensor and (ii) the strong magnetic anisotropy even in strongly distorted complexes. Comparison with available experimental data for the g tensor of the mononuclear precursors reveals good agreement with the present calculations for the capped trigonal prismatic complex and a significant discrepancy for the pentagonal bipyramidal one. The calculations for the heptacyanomolybdate fragment of K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O give g(perpendicular)/g(parallel) approximately 0.5 and the orientation of the local anisotropy axis close to the symmetry axis of an idealized pentagonal bipyramid. These findings are expected to be important for the understanding of the magnetism of anisotropic Mo(III)-Mn(II) cyano-bridged networks based on the [Mo(CN)7]4- building block. PMID:16834090

  16. Magnetic anisotropy of embedded Co nanoparticles: Influence of the surrounding matrix

    NASA Astrophysics Data System (ADS)

    Tamion, Alexandre; Raufast, Cécile; Hillenkamp, Matthias; Bonet, Edgar; Jouanguy, J.; Canut, Bruno; Bernstein, Estella; Boisron, Olivier; Wernsdorfer, Wolfgang; Dupuis, Véronique

    2010-04-01

    We report on the magnetic properties of Co clusters embedded in four different matrices (Ag, Au, Si, and amorphous carbon). The recently developed “triple fit” method for treating conventional magnetometry data allows, together with micro-superconducting quantum interference device ( μ -SQUID) investigations, the detailed study of the influence of the surrounding matrix on the magnetic volume and the magnetic anisotropy of Co nanoparticles. While interdiffusion between matrix and Co atoms cannot be excluded in Si and amorphous C matrices, the structure of clusters embedded in the metallic matrices remains intact. Ag and Au matrices increase significantly the magnetic anisotropy energy of the Co clusters. μ -SQUID experiments indicate that the magnetic anisotropy of embedded clusters is not affected by a magnetically dead layer and that an anisotropy dispersion must be taken into account for size-selected nanoparticles.

  17. Anisotropies and spin dynamics in ultrathin magnetic multilayer structures

    NASA Astrophysics Data System (ADS)

    Kardasz, Bartlomiej

    High quality magnetic films were prepared by Molecular Beam Epitaxy (MBE) using Thermal Deposition (TD) and Pulse Laser Deposition (PLD) techniques. Ferromagnetic Resonance (FMR) and Mossbauer studies have shown that the Fe films prepared by PLD exhibited a more intermixed interface lattice structure than those prepared by TD. Dramatic decrease of the in-plane interface uniaxial anisotropy for the PLD films compared to those prepared by TD has shown that the in-plane uniaxial anisotropy is caused by magnetoelasticity driven by the Fe/GaAs(001) interface lattice shear. Magnetization dynamics of the ultrathin Fe/Au,Ag/Fe films was studied using Time-Resolved Magneto-Optical Kerr Effect (TRMOKE) and FMR in the frequency range from 1 to 73 GHz. The Gilbert damping was studied in the Au/Fe/GaAs(001) structures as a function of the Fe and Au layer thickness, respectively. The observed increase in magnetic damping in the Fe film covered with thick Au capping layers was explained by spin pumping at the Fe/Au interface accompanied by spin relaxation and diffusion of the accumulated spin density in the Au layer. The spin diffusion length in Au was found to be 34 nm at room temperature. Significant increase of the Gilbert damping was observed in the Au/Fe/GaAs structures with decreasing Fe film thickness. Its origin lies in the additional damping at the Fe/GaAs interface. Direct detection of the spin current propagating across the Ag spacer in Fe/Ag,Au/Fe/GaAs(001) structures was carried out with stroboscopic TRMOKE measurements. The Fe layer grown on GaAs served as a spin pumping source and the Fe layer grown on the Au,Ag spacer was used as a probe for detection of the spin current propagating across the Au and Ag spacers. The experimental results were interpreted using selfconsistent solution of the Landau Lifshitz Gilbert (LLG) equations of motion with the spin diffusion equation for the accumulated spin density in the Au and Ag spacers. The spin diffusion length in Ag was

  18. Electron theory of perpendicular magnetic anisotropy of Co-ferrite thin films

    SciTech Connect

    Inoue, Jun-ichiro; Yanagihara, Hideto; Kita, Eiji; Niizeki, Tomohiko; AIMR, Tohoku University, Sendai 980-8577 ; Itoh, Hiroyoshi

    2014-02-15

    We develop an electron theory for the t{sub 2g} electrons of Co{sup 2+} ions to clarify the perpendicular magnetic anisotropy (PMA) mechanism of Co-ferrite thin films by considering the spin-orbit interaction (SOI) and crystal-field (CF) potentials induced by the local symmetry around the Co ions and the global tetragonal symmetry of the film. Uniaxial and in-plane MA constants K{sub u} and K{sub 1} at 0 K, respectively, are calculated for various values of SOI and CF. We show that reasonable parameter values explain the observed PMA and that the orbital moment for the in-plane magnetization reduces to nearly half of that of the out-of-plane magnetization.

  19. Effect of sputtering pressure on stacking fault density and perpendicular magnetic anisotropy of CoPt alloys

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Woong; Oh, Young-Wan; Kim, Dae-Hoon; Kim, Jai-Young; Park, Byong-Guk

    2016-09-01

    We report the effects of Ar sputtering pressure on perpendicular magnetic anisotropy in disordered CoPt alloys via the modulation of stacking fault density. The coercivity and anisotropy field of CoPt alloys are gradually enlarged with an increase in Ar sputtering pressure from 3 mTorr to 30 mTorr. Structural analyses using transmission electron microscopy, atomic force microscopy and x-ray reflectivity show that the structural properties of the samples, such as roughness or grain size, are not significantly changed by variations in Ar sputtering pressure. On the other hand, in-plane x-ray diffraction measurements reveal that the stacking fault density is reduced in films grown under higher pressure, and instead favors HCP stacking. Our results suggest that perpendicular magnetic anisotropy in CoPt alloys can be enhanced by the growth of the sample under a high Ar sputtering pressure, which decreases stacking fault density.

  20. Magnetic anisotropy, unusual hysteresis and putative "up-up-down" magnetic structure in EuTAl4Si2 (T = Rh and Ir).

    PubMed

    Maurya, Arvind; Thamizhavel, A; Dhar, S K; Bonville, P

    2015-01-01

    We present detailed investigations on single crystals of quaternary EuRhAl4Si2 and EuIrAl4Si2. The two compounds order antiferromagnetically at TN1 = 11.7 and 14.7 K, respectively, each undergoing two magnetic transitions. The magnetic properties in the ordered state present a large anisotropy despite Eu(2+)being an S-state ion for which the single-ion anisotropy is expected to be weak. Two features in the magnetization measured along the c-axis are prominent. At 1.8 K, a ferromagnetic-like jump occurs at very low field to a value one third of the saturation magnetization (1/3 M0) followed by a wide plateau up to 2 T for Rh and 4 T for Ir-compound. At this field value, a sharp hysteretic spin-flop transition occurs to a fully saturated state (M0). Surprisingly, the magnetization does not return to origin when the field is reduced to zero in the return cycle, as expected in an antiferromagnet. Instead, a remnant magnetization 1/3 M0 is observed and the magnetic loop around the origin shows hysteresis. This suggests that the zero field magnetic structure has a ferromagnetic component, and we present a model with up to third neighbor exchange and dipolar interaction which reproduces the magnetization curves and hints to an "up-up-down" magnetic structure in zero field. PMID:26156410

  1. Systematic study of in-plane magnetic anisotropy in CoCrPtB/Cr media

    NASA Astrophysics Data System (ADS)

    Yu, Mingjun; Choe, Geon; Johnson, Kenneth E.

    2002-05-01

    Circumferential texturing in longitudinal recording media induces in-plane magnetic anisotropy. It is characterized by orientation ratio (OR), which is an important parameter affecting media performance. Our work shows that among the media with different OR values (including isotropic media with OR=1), the ones with higher OR have both better thermal stability and better recording performance. Therefore, it is important to have a better understanding of the mechanism for in-plane anisotropy so that OR can be further increased. Several mechanisms for in-plane anisotropy have been proposed through micromagnetic analysis or empirical methods. A systematic study of OR in CoCrPtB/Cr media was performed to explore the mechanism of in-plane magnetic anisotropy. Circumferential texture roughness has the most effect on OR, but OR is also strongly affected by magnetic alloy composition and sputtering process parameters such as substrate temperature, underlayer thickness, and magnetic-layer thickness. Higher substrate temperature, thinner underlayer thickness, and thinner magnetic-layer thickness all lead to higher OR. These results suggest that the in-plane magnetic anisotropy comes from stress anisotropy via the inverse magnetostriction effect. The stress is induced at the magnetic-layer/underlayer and underlayer/substrate interfaces, while the anisotropy is suggested to arise from the topology of the circumferential texture lines.

  2. Magnetic anisotropy graded media and iron-platinum alloy thin films

    NASA Astrophysics Data System (ADS)

    Lu, Zhihong

    Anisotropy graded media are promising to overcome the writability problem in achieving ultrahigh areal density for magnetic recording media. To more conveniently study and compare various media with regard to a particular figure of merit, a new energy landscape method of analysis is suggested. Using this method, the theoretical limit of the figure of merit for a graded medium is found to be 4. This limit can be approached by a graded medium with anisotropy quadratically increasing from zero to its maximum value. In order to characterize the anisotropy distribution of a graded medium, hard axis loops of graded media with various anisotropy profiles are simulated and analyzed. It is found that the second derivative of the hard axis loop can give useful information on the anisotropy distribution in a graded medium. Fe50Pt 50 with the L10 structure, as one of the magnetically hardest materials, has great potential for media application. By using a first-principles calculation method, the magnetic and electronic structures of L10 structured Fe50Pt50 have been studied. These calculations show that although the ferromagnetic phase is the most stable phase for Fe 50Fe50 with the L10 structure, there is a competition between the antiferromagnetic and the ferromagnetic phases when the ratio of lattice constants, c/a, decreases. Experimental investigations of Fe 50Pt50 films with graded order parameter fabricated by varying the growth temperature during deposition demonstrate that these films have much smaller switching field than fully ordered Fe50Pt50, which suggests it is possible to make graded media by using this kind of films. Fe100-xPtx films with compositional gradient were also studied; however, the large easy axis dispersion in these films makes them unsuitable for the fabrication of graded media. Films with [FePt3(ordered)/FePt 3(disordered)]n superlattices were deposited on MgO substrates and sapphire substrates. It was found that the superlattices deposited on Mg

  3. Temperature dependence of magnetization and anisotropy in uniaxial NiFe₂O₄ nanomagnets: Deviation from the Callen-Callen power law

    SciTech Connect

    Chatterjee, Biplab K.; Ghosh, C. K.; Chattopadhyay, K. K.

    2014-10-21

    The thermal variation of magnetic anisotropy (K) and saturation magnetization (M{sub S}) for uniaxial nickel ferrite (NiFe₂O₄) nanomagnets are investigated. Major magnetic hysteresis loops are measured for the sample at temperatures over the range 5–280 K using a vibrating sample magnetometer. The high-field regimes of the hysteresis loops are modeled using the law of approach to saturation, based on the assumption that at sufficiently high field only direct rotation of spin-moment take place, with an additional forced magnetization term that is linear with applied field. The uniaxial anisotropy constant K is calculated from the fitting of the data to the theoretical equation. As temperature increases from 5 K to 280 K, a 49% reduction of K, accompanied by an 85% diminution of M{sub S} is observed. Remarkably, K is linearly proportional to M{sub S}₂.₆ in the whole temperature range violating the existing theoretical model by Callen and Callen. The unusual power-law behavior for the NiFe₂O₄ uniaxial nanomagnets is ascribed to the non-negligible contributions from inter-sublattice pair interactions, Neel surface anisotropy, and higher order anisotropies. A complete realization of the unusual anisotropy-magnetization scaling behavior for nanoscale two-sublattice magnetic materials require a major modification of the existing theory by considering the exact mechanism of each contributions to the effective anisotropy.

  4. Magnetic tunnel junctions for low magnetic field sensing

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyong

    In this thesis, we did a comprehensive investigation on the relationship between spin-dependent tunneling and structural variation in junction devices. Magnetic, microstructural, and transport studies have shown a significant improvement in exchange-bias, a reduced barrier roughness, and an enhanced magnetoresistance for samples after magnetic annealing. We have examined different magnetic configurations required for sensing applications and presented some results of using MTJ sensors to detect AC magnetic fields created by electrical current flow and DC stray field distributions of patterned magnetic materials. We have studied the low frequency noise in MTJ sensors. We have found that the 1/f noise in MTJs has magnetic as well as electrical origins, and is strongly affected by the junction's internal structure. The magnetic noise comes from magnetization fluctuations in the free FM layer and can be understood using the fluctuation-dissipation theorem. While the field-independent electrical noise due to charge trapping in the barrier, is observed in the less optimized MTJs sensors, and has an amplitude at least one order of magnitude higher than the noise component due to magnetization fluctuations. In addition, we have studied the magnetization switching of Cobalt rings with varying anisotropy utilizing scanning magnetoresistive microscopy. We have for the first time observed a complicated multi-domain intermediate phase during the transition between onion states for samples with strong anisotropy. This is in contrast to as deposited samples, which reverse by simple domain wall motion and feature an intermediate vortex state. The result is further analyzed by micro magnetic simulations.

  5. Giant Magnetic Anisotropy of Co, Ru, and Os Adatoms on MgO (001) Surface.

    PubMed

    Ou, Xuedong; Wang, Hongbo; Fan, Fengren; Li, Zhengwei; Wu, Hua

    2015-12-18

    Large magnetic anisotropy energy (MAE) is desirable and critical for nanoscale magnetic devices. Here, using ligand-field level diagrams and density functional calculations, we well explain the very recent discovery [I. G. Rau et al., Science 344, 988 (2014)] that an individual Co adatom on a MgO (001) surface has a large MAE of more than 60 meV. More importantly, we predict that a giant MAE up to 110 meV could be realized for Ru adatoms on MgO (001), and even more for the Os adatoms (208 meV). This is a joint effect of the special ligand field, orbital multiplet, and significant spin-orbit interaction, in the intermediate-spin state of the Ru or Os adatoms on top of the surface oxygens. The giant MAE could provide a route to atomic scale memory. PMID:26722941

  6. Giant Magnetic Anisotropy of Co, Ru, and Os Adatoms on MgO (001) Surface

    NASA Astrophysics Data System (ADS)

    Ou, Xuedong; Wang, Hongbo; Fan, Fengren; Li, Zhengwei; Wu, Hua

    2015-12-01

    Large magnetic anisotropy energy (MAE) is desirable and critical for nanoscale magnetic devices. Here, using ligand-field level diagrams and density functional calculations, we well explain the very recent discovery [I. G. Rau et al., Science 344, 988 (2014)] that an individual Co adatom on a MgO (001) surface has a large MAE of more than 60 meV. More importantly, we predict that a giant MAE up to 110 meV could be realized for Ru adatoms on MgO (001), and even more for the Os adatoms (208 meV). This is a joint effect of the special ligand field, orbital multiplet, and significant spin-orbit interaction, in the intermediate-spin state of the Ru or Os adatoms on top of the surface oxygens. The giant MAE could provide a route to atomic scale memory.

  7. Development of an identification method of pressure anisotropy based on equilibrium analysis and magnetics

    SciTech Connect

    Asahi, Y.; Suzuki, Y.; Watanabe, K. Y.; Cooper, W. A.

    2013-02-15

    We evaluate the fluxes measured by the magnetic flux loops installed in LHD by using a three dimensional MHD equilibrium analysis code, ANIMEC, which enable us to directly determine the calibration function between the anisotropic pressure and the measured fluxes for the non-axisymmetric plasmas for the first time. The result indicates that the diamagnetic flux represents a nearly single-valued function of the beta perpendicular with respect to the field, and the saddle loop flux represents a nearly single-valued function of an equally weighted average of the beta values parallel and perpendicular to the field, regardless of the pressure anisotropy or the amount of energetic trapped particles. The values of the beta perpendicular to the field and the equal weighting averaged beta estimated by the single-valued functions (calibration functions) are investigated in order to clarify the magnitude of deviation from those original values, and the range of anisotropy where the beta value evaluated by the magnetic flux measurement is calculated within a 10% error.

  8. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  9. Coercivity and magnetic anisotropy of sintered Sm{sub 2}Co{sub 17}-type permanent magnets

    SciTech Connect

    Tellez-Blanco, J.C.; Kou, X.C.; Groessinger, R.; Estevez-Rams, E.; Fidler, J.; Ma, B.M.

    1997-10-01

    Anisotropic and isotropic Sm{sub 2}Co{sub 17}-type permanent magnets have been prepared by using the conventional sintering technique. Transmission electron microscopy was used to characterize the cellular structure within the Sm{sub 2}(Fe,Co){sub 17} grains. Hysteresis loops (M{approximately}H) were measured in the temperature range from 4.2 to about 1000 K by using a pulsed-field magnetometer with a maximum field strength up to 24 MA/m. The magnetocrystalline anisotropy field H{sub A} has been measured up to 1000 K by using the singular point detection technique on anisotropic samples with external fields applied perpendicular to the magnetic alignment direction. The saturation magnetization M{sub s} has been measured on anisotropic samples with external fields applied parallel to the magnetic alignment direction. From studies of the coercivity mechanism by using a micromagnetic analysis of the temperature dependence of the coercivity field, it follows that the coercivity of Sm(Co,Fe,Cu,Zr){sub z} is controlled at elevated temperature (above 520 K) by a nucleation process of reversal domains. {copyright} {ital 1997 American Institute of Physics.}

  10. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  11. Strong uniaxial magnetic anisotropy in triangular wave-like ferromagnetic NiFe thin films

    NASA Astrophysics Data System (ADS)

    Ki, Sanghoon; Dho, Joonghoe

    2015-05-01

    Triangular wave-like NiFe films were synthesized on m-plane Al2O3 with a triangularly rippled surface and their uniaxial magnetic anisotropies were investigated as a function of the average wavelength (λ). The ratio of the oscillation height to λ was approximately maintained at ˜0.133. A large magnetic anisotropy energy of 80-150 kJ/m3, which is up to ten times larger than the reported values, was observed with the variation of λ. The increasing tendency of the anisotropy energy with decreasing λ is likely due to a change in the shape anisotropy, while the anisotropy energy generated by surface magnetic charges slightly increased with increasing λ.

  12. Perpendicular magnetic anisotropy in Ta/Co2FeAl/MgO multilayers

    NASA Astrophysics Data System (ADS)

    Gabor, M. S.; Petrisor, T.; Tiusan, C.; Petrisor, T.

    2013-08-01

    In this paper, we demonstrate the stabilization of perpendicular magnetic anisotropy (PMA) in Ta/Co2FeAl/MgO multilayers sputtered on thermally oxidized Si(100) substrates. The magnetic analysis points out that these films show significant interfacial anisotropy even in the as-deposited state, KS=0.67 erg/cm2, enough to provide PMA for the as-deposited films with thicknesses below 1.5 nm. Moreover, the interfacial anisotropy is enhanced by thermal annealing up to 300 °C. The presence of a magnetic dead layer, whose thickness increases with annealing temperature, was also identified.

  13. Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates

    NASA Astrophysics Data System (ADS)

    Qiao, Xinyu; Wang, Baomin; Tang, Zhenhua; Shen, Yuan; Yang, Huali; Wang, Junling; Zhan, Qingfeng; Mao, Sining; Xu, Xiaohong; Li, Run-Wei

    2016-05-01

    We have investigated the magnetic properties of amorphous Co40Fe40B20 (CoFeB) thin films grown on flexible polyimide (PI) substrates, which were fixed on convex molds with different curvatures during the magnetron sputtering deposition. When the flexible substrates were changed from convex to flat state after fabrication, a uniaxial magnetic anisotropy was induced in the CoFeB film due to magnetostrictive effect. Furthermore, the anisotropy also depends on the thicknesses of the film and substrate. Our results demonstrate a convenient method to tune the anisotropy of magnetic thin films grown on flexible substrates.

  14. Magnetic multilayer interface anisotropy. Technical progress report, January 1, 1992--December 31, 1992

    SciTech Connect

    Pechan, M.J.

    1992-12-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the ransition temperature.

  15. Voltage-controlled magnetic anisotropy in Fe|MgO tunnel junctions studied by x-ray absorption spectroscopy

    SciTech Connect

    Miwa, Shinji Matsuda, Kensho; Tanaka, Kazuhito; Goto, Minori; Suzuki, Yoshishige; Kotani, Yoshinori; Nakamura, Tetsuya

    2015-10-19

    In this study, voltage-controlled magnetic anisotropy (VCMA) in Fe|MgO tunnel junctions was investigated via the magneto-optical Kerr effect, soft x-ray absorption spectroscopy, and magnetic circular dichroism spectroscopy. The Fe|MgO tunnel junctions showed enhanced perpendicular magnetic anisotropy under external negative voltage, which induced charge depletion at the Fe|MgO interface. Despite the application of voltages of opposite polarity, no trace of chemical reaction such as a redox reaction attributed to O{sup 2−} migration was detected in the x-ray absorption spectra of the Fe. The VCMA reported in the Fe|MgO-based magnetic tunnel junctions must therefore originate from phenomena associated with the purely electric effect, that is, surface electron doping and/or redistribution induced by an external electric field.

  16. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  17. Evaluation of Microcracks orientation at Stromboli volcano using a Magnetic Ferrofluid and the Method of Anisotropy of Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Lewis, O.; Benson, P. M.; Vinciguerra, S.; Meredith, P. G.

    2005-12-01

    Most crustal rocks are anisotropic. In volcanic areas, anisotropy primarily results due to preferred directions of microcracks as magma cools. This effect is, in turn, enhanced due to local stress fields during deposition. The combined effects of these processes may thus give rise to a complex anisotropic fabric. Such fabrics can play crucial roles when enhancing the formation of slip surfaces which can lead to sector collapses of volcanic edifices, as is the case of Stromboli volcano (Italy) which experienced 4 sector collapses in the past 13ka. However, the rapid analysis of anisotropic microcrack fabrics (in terms of magnitude and principal direction) remains non-trivial. Current methods range from time consuming microcrack analysis of thin sections to the preparation of oriented cores for elastic-wave velocity measurement. To further our understanding of how microcrack fabrics influence the bulk properties of volcanic basalt, we employ a novel method which rapidly evaluates the 3-D microcrack orientation using technique of Anisotropy of Magnetic Susceptibility (AMS). First, we determine the rock matrix AMS (mAMS) using standard methods (via a Agico KLY-4 Kappabridge). Samples are then saturated with a magnetic ferrofluid, filling the microcrack network with a magnetically susceptible suspension of microscopic (10nm) magnetite particles. The AMS is then re-measured, with the matrix susceptibility values subtracted from these readings to yield the average 3-D pore space shape, size and orientation (pAMS). We describe the use of this method using basalt from Stromboli and comparing to a granite (Takidani) from the Japanese Alps in order to verify the technique and to investigate the relationship between the basalt microcrack geometry and field scale observation. For Takidani granite we find the structural anisotropy formed by the void space, as measured by pAMS, is well described by elastic wave velocity measurement; exhibiting anisotropy values of 19.1% and 7

  18. Magnetization kinetics in tension and field annealed Fe-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryusuke; Takahashi, Kengo; Francoeur, Bruno; Couture, Pierre

    2013-05-01

    Magnetization kinetics in tension-annealed and field-annealed amorphous magnetic materials indicates that strain and magnetic fields are equally effective in inducing and relaxing local structural and magnetic anisotropy changes. This observation is based on the thermomagnetic aging of the magnetic properties obtained in the materials studied.

  19. Large magnetic anisotropy enhancement in size controlled Ni nanowires electrodeposited into nanoporous alumina templates.

    PubMed

    Medina, J De La Torre; Hamoir, G; Velázquez-Galván, Y; Pouget, S; Okuno, H; Vila, L; Encinas, A; Piraux, L

    2016-04-01

    A large enhancement of the magnetic anisotropy of Ni nanowires (NWs) embedded in anodic aluminium oxide porous membranes is obtained as a result of an induced magnetoelastic (ME) anisotropy contribution. This unusual large anisotropy enhancement depends on the diameter of the NWs and exceeds the magnetostatic (MS) contribution. As a consequence, it leads to effective magnetic anisotropy energies as large as 1.4 × 10(6) erg cm(-3), which are of the same order of magnitude and comparable to the MS energies of harder magnetic materials like Co NWs. Specifically, from ferromagnetic resonance experiments, the magnetic anisotropy of the NWs has been observed to increase as its diameter is decreased, leading to values that are about four times larger than the corresponding value when only the MS anisotropy is present. Our results are consistent with the recently proposed growth mechanism of Ni NWs that proceeds via a poly-crystalline stage at the bottom followed by a single-crystalline stage with texture [110] parallel to the axis of the NWs. A strong correlation between reducing the diameter of the NWs with the decrease of the length of the poly-crystalline segment and the enhancement of the effective magnetic anisotropy has been shown. Magnetization curves obtained from alternating gradient magnetometry experiments show that the average ME anisotropy results from the competition between the magnetic anisotropies of both crystalline segments of the NWs. Understanding the influence of size and confinement effects on the magnetic properties of nanocomposites is of prime interest for the development of novel and agile devices. PMID:26906237

  20. Pressure-Induced Enhanced Magnetic Anisotropy in Mn(N(CN)2)2

    SciTech Connect

    Quintero, P. A.; Rajan, D.; Peprah, M. K.; Brinzari, T. V.; Fishman, Randy Scott; Talham, Daniel R.; Meisel, Mark W.

    2015-01-01

    Using DC and AC magnetometry, the pressure dependence of the magnetization of the threedimensional antiferromagnetic coordination polymer Mn(N(CN)2)2 was studied up to 12 kbar and down to 8 K. The magnetic transition temperature, Tc, increases dramatically with applied pressure (P), where a change from Tc(P = ambient) = 16:0 K to Tc(P = 12:1 kbar) = 23:5 K was observed. In addition, a marked difference in the magnetic behavior is observed above and below 7.1 kbar. Specifically, for P < 7:1 kbar, the differences between the field-cooled and zero-field-cooled (fc-zfc) magnetizations, the coercive field, and the remanent magnetization decrease with increasing pressure. However, for P > 7:1 kbar, the behavior is inverted. Additionally, for P > 8:6 kbar, minor hysteresis loops are observed. All of these effects are evidence of the increase of the superexchange interaction and the appearance of an enhanced exchange anisotropy with applied pressure.

  1. Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix.

    PubMed

    Bertini, I; Janik, M B; Lee, Y M; Luchinat, C; Rosato, A

    2001-05-01

    similarity of the coordination environment for all lanthanides. Bleaney's theory is in excellent qualitative agreement with the observed pattern of axial anisotropies. Its quantitative agreement is substantially better than that suggested by previous analyses performed on more limited sets of PCS data for small lanthanide complexes, the so-called crystal field parameter varying only within +/-30% from one lanthanide to another. These variations are even smaller (+/-15%) if a reasonable T(-3) correction is taken into consideration. A knowledge of magnetic susceptibility anisotropy properties of lanthanides is essential in determining the self-orienting properties of lanthanide complexes in solution when immersed in magnetic fields. PMID:11457182

  2. Magnetic anisotropy of C and N doped bulk FeCo alloy: A first principles study

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Hong, Jisang

    2015-08-01

    Using the full potential linearized augmented plane wave (FLAPW) method, we investigated the magnetocrystalline anisotropy of carbon and nitrogen doped FeCo in the interstitial site. Here, we have considered 3.125% impurity doping concentration. The impurity doping induces a tetragonal distortion in the FeCo lattice, and both carbon and nitrogen impurities play a similar role for lattice distortion. The local magnetic moment of Fe atom around the impurity site was greatly reduced, whereas the Co had rather robust magnetic moment. We found a uniaxial magnetocrystalline anisotropy constant of 0.65 and 0.58 MJ/m3 for C and N doped bulk FeCo, and this was mainly due to the tetragonal distortion induced by C and N impurity, not from the hybridization effect with Fe or Co. Additionally, the estimated maximum energy product and coercive field were 81.4, 72.5 MGOe and 600, 530 kA m-1 for C and N doped bulk FeCo, respectively. These results may imply that the interstitial C or N doped FeCo can be used for potential rare earth free permanent magnet although those values are likely to be suppressed in real samples due to micromagnetic factors such as structural defects, geometrical effect, or grain boundary effect.

  3. High magnetic anisotropy of Fe+ ions in KTaO3 and SrCl2

    NASA Astrophysics Data System (ADS)

    Trueba, A.; Garcia-Fernandez, P.; Senn, F.; Daul, C. A.; Aramburu, J. A.; Barriuso, M. T.; Moreno, M.

    2010-02-01

    The zero-field splitting constant, D , and the gyromagnetic tensor of the off-center systems KTaO3:Fe+ and SrCl2:Fe+ have been explored by means of calculations based on the density-functional theory at the C4v local equilibrium geometry. The calculated D values for KTaO3:Fe+ (9cm-1) and SrCl2:Fe+ (53cm-1) are found to be much higher than typical figures measured for insulating compounds containing common 3d Kramers ions with a spin S>1/2 in the ground state. This result together with the calculated g⊥ and g∥ values concur with available experimental information. The high magnetic anisotropy derived for Fe+ in KTaO3 and SrCl2 is shown to be strongly related to the existence of a E4 excited state lying only at about 3000 and 600cm-1 , respectively, above the ground state. Implications of present findings in the search of new molecular magnets with high values of the magnetic anisotropy are discussed in some detail.

  4. Diffusion of charged particles in a random magnetic field

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1972-01-01

    When charged particles move in a random magnetic field superimposed upon a relatively large constant field, their pitch angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.

  5. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  6. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  7. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes

  8. Magnetic anisotropy in the frustrated spin-chain compound β -TeVO4

    NASA Astrophysics Data System (ADS)

    Weickert, F.; Harrison, N.; Scott, B. L.; Jaime, M.; Leitmäe, A.; Heinmaa, I.; Stern, R.; Janson, O.; Berger, H.; Rosner, H.; Tsirlin, A. A.

    2016-08-01

    Isotropic and anisotropic magnetic behavior of the frustrated spin-chain compound β -TeVO4 is reported. Three magnetic transitions observed in zero magnetic field are tracked in fields applied along different crystallographic directions using magnetization, heat capacity, and magnetostriction measurements. Qualitatively different temperature-field diagrams are obtained below 10 T for the field applied along a or b and along c , respectively. In contrast, a nearly isotropic high-field phase emerges above 18 T and persists up to the saturation that occurs around 22.5 T. Upon cooling in low fields, the transitions at TN 1 and TN 2 toward the spin-density-wave and stripe phases are of the second order, whereas the transition at TN 3 toward the helical state is of the first order and entails a lattice component. Our microscopic analysis identifies frustrated J1-J2 spin chains with a sizable antiferromagnetic interchain coupling in the b c plane and ferromagnetic couplings along the a direction. The competition between these ferromagnetic interchain couplings and the helical order within the chain underlies the incommensurate order along the a direction, as observed experimentally. While a helical state is triggered by the competition between J1 and J2 within the chain, the plane of the helix is not uniquely defined because of competing magnetic anisotropies. Using high-resolution synchrotron diffraction and 125Te nuclear magnetic resonance, we also demonstrate that the crystal structure of β -TeVO4 does not change down to 10 K, and the orbital state of V4 + is preserved.

  9. Cap-Induced Magnetic Anisotropy in Ultra-thin Fe/MgO(001) Films

    NASA Astrophysics Data System (ADS)

    Brown-Heft, Tobias; Pendharkar, Mihir; Lee, Elizabeth; Palmstrom, Chris

    Magnetic anisotropy plays an important role in the design of spintronic devices. Perpendicular magnetic anisotropy (PMA) is preferred for magnetic tunnel junctions because the resulting energy barrier between magnetization states can be very high and this allows enhanced device scalability suitable for magnetic random access memory applications. Interface induced anisotropy is often used to control magnetic easy axes. For example, the Fe/MgO(001) system has been predicted to exhibit PMA in the ultrathin Fe limit. We have used in-situ magneto optic Kerr effect and ex-situ SQUID to study the changes in anisotropy constants between bare Fe/MgO(001) films and those capped with MgO, Pt, and Ta. In some cases in-plane anisotropy terms reverse sign after capping. We also observe transitions from superparamagnetic to ferromagnetic behavior induced by capping layers. Perpendicular anisotropy is observed for Pt/Fe/MgO(001) films after annealing to 300°C. These effects are characterized and incorporated into a magnetic simulation that accurately reproduces the behavior of the films. This work was supported in part by the Semiconductor Research Corporation programs (1) MSR-Intel, and (2) C-SPIN.

  10. Influence of intermittency on the anisotropy of magnetic structure functions of solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Pei, Zhongtian; He, Jiansen; Wang, Xin; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua; Yan, Limei

    2016-02-01

    Intermittency appears to be connected with the spectral anisotropy of solar wind turbulence. We use the Local Intermittency Measure to identify and remove intermittency from the magnetic field data measured by the Ulysses spacecraft in fast solar wind. Structure functions are calculated based on the time sequences as obtained before and after removing intermittency and arranged by time scale (τ) and ΘRB (the angle between local mean magnetic field B0 and radial direction R). Thus, the scaling exponent (ξ(p, ΘRB)) of every structure function of order (p) is obtained for different angles. Before removing intermittency, ξ(p, ΘRB) shows a distinctive dependence on ΘRB: from monofractal scaling law at ΘRB ~0° to multifractal scaling law at ΘRB ~90°. In contrast after eliminating the intermittency, ξ(p, ΘRB) is found to be more monofractal for all ΘRB. The extended structure-function model is applied to ξ(p, ΘRB), revealing differences of its fitting parameters α (a proxy of the power spectral index) and P1 (fragmentation fraction) for the cases with and without intermittency. Parameter α shows an evident angular trend falling from 1.9 to 1.6 for the case with intermittency but has a relatively flat profile around 1.8 for the case without intermittency. Parameter P1 rises from around 0.5 to above 0.8 with increasing ΘRB for the intermittency case and is located between 0.5 and 0.8 for the case lacking intermittency. Therefore, we may infer that it is the anisotropy of intermittency that causes the scaling anisotropy of energy spectra and the unequal fragmentation of energy cascading.

  11. Magnetic anisotropy and spin-glass behavior in single crystalline U2PdSi3

    NASA Astrophysics Data System (ADS)

    Li, D. X.; Kimura, A.; Haga, Y.; Nimori, S.; Shikama, T.

    2011-02-01

    We present the magnetic and transport properties of single crystalline U2PdSi3 measured with the magnetic field (H) (or measuring current, I) applied along two typical crystallographic directions, i.e. H\\perp c -axis and H\\parallel c -axis (or I\\perp c -axis and I\\parallel c -axis). For both directions, a spin-glass state is confirmed to form at low temperature with the same spin freezing temperature Tf (= 11.5 K), initial frequency shift δTf (= 0.023) and activation energy Ea/kB (= 90.15 K) in zero dc field. Strong anisotropy in magnetic and transport behavior is found to be a significant feature of U2PdSi3. The unusual ferromagnetic-like anomaly in ac susceptibility and dc magnetization curves around Tm = 71 K is observed in the case of H\\parallel c -axis but not in the cases of H \\perp c -axis. The characteristic temperature Tir, below which evident irreversible magnetism originated from random spin freezing can be observed, shows much stronger field dependence for H \\perp c -axis than for H\\parallel c -axis. Moreover, an unusual finding is that the electrical resistivity measurements indicate the formation of magnetic Brillouin-zone boundary gaps and much larger magnetic scattering for I \\perp c -axis, while the coherent-Kondo-effect-like behavior is obvious for I\\parallel c -axis. We also emphasize that no resistivity minimum can be detected down to 2.5 K for either direction. The observed magnetic and transport behaviors are compared with those in polycrystalline U2PdSi3 and other 2:1:3 intermetallic compounds.

  12. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    SciTech Connect

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.

    2007-07-01

    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  13. Magnetic anisotropy of rare-earth magnets calculated by SIC and OEP

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    We have pointed out in our previous study that the chemical bonding between N and Sm plays an important role in the magnetic anisotropy change of Sm2Fe17 from in-plane to uniaxial ones caused by the introducing of N. This effect of N insertion was discussed in terms of change in the electronic structure calculated in the framework of LDA+SIC. The main issue here is whether the 4f states are dealt with properly in SIC. In the present study, we examine the applicability of SIC for the evaluation of the magnetic anisotropy of rare-earth (RE) magnets by comparing the results with various methods, in particular, the optimized effective potential (OEP) method. In this study, OEP is applied only on the RE sites. Admittedly, this is a drawback from the viewpoint of the consistent treatment of uncertainly inherent in the so-called KLI (Krieger-Li-Iafrate) constants. Putting this aside for the moment, we have calculated the electronic structure of RE magnets R2Fe17Nx and RCo5 (R=light RE), by OEP with exact-exchange (EXX) combined with Colle-Salvetti correlation. Our preliminary results have shown considerable differences between the SIC and OEP calculations. We will discuss the meaning of this discrepancy. This work was supported by the Elements Strategy Initiative Center for Magnetic Materials under the outsourcing project of MEXT and by a Grant-in-Aid for Scientific Research (No. 26400330) from MEXT.

  14. Perpendicular magnetic anisotropy of amorphous [CoSiB/Pt]N thin films

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Choi, Y. H.; Lee, K. J.; Yoon, J. B.; Cho, J. H.; You, C.-Y.; Jung, M. H.

    2015-05-01

    Materials with perpendicular magnetic anisotropy (PMA) have been intensively studied for high-density nonvolatile memory such as spin-transfer-torque magnetic random access memory with low switching current density and high thermal stability. Compared with crystalline PMA multilayers, considerable works have been done on amorphous PMA multilayers because the amorphous materials are expected to have lower pinning site density as well as smaller domain wall width. This study is an overview of the PMA properties of amorphous [CoSiB/Pt]N multilayers with varying N, where the energy contribution is changed from domain wall energy to magnetostatic energy around N = 6. By measuring the field-induced domain wall motion, we obtain the creep exponent of μ = 1/4. These results in the amorphous PMA multilayers of [CoSiB/Pt]N demonstrate possible potential as a free layer for PMA-based memory devices.

  15. Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Lu, Jiwei; Wolf, Stuart A.

    2013-04-01

    B2-ordered Co2FeAl films were synthesized using an ion beam deposition tool. A high degree of chemical ordering ˜81.2% with a low damping parameter (α) less than 0.004 was obtained in a 50 nm thick film via rapid thermal annealing at 600 °C. The perpendicular magnetic anisotropy (PMA) was optimized in ultra thin Co2FeAl films annealed at 350 °C without an external magnetic field. The reduced thickness and annealing temperature to achieve PMA introduced extrinsic factors thus increasing α significantly. However, the observed damping of Co2FeAl films was still lower than that of Co60Fe20B20 films prepared at the same thickness and annealing temperature.

  16. Interfacial perpendicular magnetic anisotropy in CoFeB/MgO structure with various underlayers

    NASA Astrophysics Data System (ADS)

    Oh, Young-Wan; Lee, Kyeong-Dong; Jeong, Jong-Ryul; Park, Byong-Guk

    2014-05-01

    Interfacial perpendicular magnetic anisotropy (PMA) in CoFeB/MgO structures was investigated and found to be critically relied on underlayer material and annealing temperature. With Ta or Hf underlayer, clear PMA is observed in as-deposited samples while no PMA was shown in those with Pt or Pd. This may be attributed to smaller saturation magnetization of the films with Ta or Hf underlayer, which makes the PMA of CoFeB/MgO interface dominates over demagnetization field. On the contrary, samples with Pt or Pd demonstrate PMA only after annealing, which might be due to the CoPt (or CoPd) alloy formation that enhances PMA.

  17. Perpendicular magnetic anisotropy of amorphous [CoSiB/Pt]{sub N} thin films

    SciTech Connect

    Kim, T. W.; Choi, Y. H.; Lee, K. J.; Jung, M. H.; Yoon, J. B.; Cho, J. H.; You, C.-Y.

    2015-05-07

    Materials with perpendicular magnetic anisotropy (PMA) have been intensively studied for high-density nonvolatile memory such as spin-transfer-torque magnetic random access memory with low switching current density and high thermal stability. Compared with crystalline PMA multilayers, considerable works have been done on amorphous PMA multilayers because the amorphous materials are expected to have lower pinning site density as well as smaller domain wall width. This study is an overview of the PMA properties of amorphous [CoSiB/Pt]{sub N} multilayers with varying N, where the energy contribution is changed from domain wall energy to magnetostatic energy around N = 6. By measuring the field-induced domain wall motion, we obtain the creep exponent of μ = 1/4. These results in the amorphous PMA multilayers of [CoSiB/Pt]{sub N} demonstrate possible potential as a free layer for PMA-based memory devices.

  18. Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface

    PubMed Central

    Oyarzún, Simón; Tamion, Alexandre; Tournus, Florent; Dupuis, Véronique; Hillenkamp, Matthias

    2015-01-01

    Strong size-dependent variations of the magnetic anisotropy of embedded cobalt clusters are evidenced quantitatively by combining magnetic experiments and advanced data treatment. The obtained values are discussed in the frame of two theoretical models that demonstrate the decisive role of the shape in larger nanoparticles and the predominant role of the surface anisotropy in clusters below 3 nm diameter. PMID:26439626

  19. Magnetic anisotropy energy and effective exchange interactions in Co intercalated graphene on Ir(1 1 1).

    PubMed

    Shick, A B; Hong, S C; Maca, F; Lichtenstein, A I

    2014-11-26

    The electronic structure, magnetic moments, effective exchange interaction parameter and the magnetic anisotropy energy of [monolayer Co]/Ir(1 1 1) and Co intercalated graphene on Ir(1 1 1) are studied making use of the first-principles density functional theory calculations. A large positive magnetic anisotropy of 1.24 meV/Co is found for [monolayer Co]/Ir(1 1 1), and a high Curie temperature of 1190 K is estimated. These findings show the Co/Ir(1 1 1) system is a promising candidate for perpendicular ultra-high density magnetic recording applications. The magnetic moments, exchange interactions and the magnetic anisotropy are strongly affected by graphene. Reduction of the magnetic anisotropy and the Curie temperature are found for graphene/[monolayer Co]/Ir(1 1 1). It is shown that for graphene placed in the hollow-hexagonal positions over the monolayer Co, the magnetic anisotropy remains positive, while for the placements with one of the C atoms on the top of Co it becomes negative. These findings may be important for assessing the use of graphene for magnetic recording and magnetoelectronic applications. PMID:25351898

  20. Impact of reduced symmetry on magnetic anisotropy of a single iron phthalocyanine molecule on a Cu substrate

    NASA Astrophysics Data System (ADS)

    Tsukahara, Noriyuki; Kawai, Maki; Takagi, Noriaki

    2016-01-01

    We study the magnetic anisotropy of a single iron phthalocyanine (FePc) molecule on a Cu(110) (2 × 1)-O by using inelastic electron tunneling spectroscopy (IETS) with low-temperature scanning tunneling microscopy. Two inelastic excitations derived from the splitting of the molecular triplet spin state appear as two pairs of steps symmetrically with respect to zero sample voltage. We measured IETS spectra with external magnetic fields perpendicular and parallel to the molecular plane, and we analyzed the spectral evolution with the effective spin Hamiltonian approach. We determined all parameters related with magnetic anisotropy at a single-molecule level, both the easy- and hard-magnetization directions, zero-field splitting constant, D = - 4.0 meV and E = 1.1 meV, the Lande g-tensor (" separators=" g xx , g yy , g zz ) = ( 1 . 82 , 2 . 02 , 2 . 34 ) , and the constant of spin-orbit coupling λ = - 19.1 meV. We stress that the symmetry breaking caused by the adsorption of FePc on the oxidized Cu(110) significantly impacts the magnetic anisotropy.

  1. Impact of reduced symmetry on magnetic anisotropy of a single iron phthalocyanine molecule on a Cu substrate.

    PubMed

    Tsukahara, Noriyuki; Kawai, Maki; Takagi, Noriaki

    2016-01-28

    We study the magnetic anisotropy of a single iron phthalocyanine (FePc) molecule on a Cu(110) (2 × 1)-O by using inelastic electron tunneling spectroscopy (IETS) with low-temperature scanning tunneling microscopy. Two inelastic excitations derived from the splitting of the molecular triplet spin state appear as two pairs of steps symmetrically with respect to zero sample voltage. We measured IETS spectra with external magnetic fields perpendicular and parallel to the molecular plane, and we analyzed the spectral evolution with the effective spin Hamiltonian approach. We determined all parameters related with magnetic anisotropy at a single-molecule level, both the easy- and hard-magnetization directions, zero-field splitting constant, D = - 4.0 meV and E = 1.1 meV, the Lande g-tensor gxx, gyy, gzz=(1.82, 2.02, 2.34), and the constant of spin-orbit coupling λ = - 19.1 meV. We stress that the symmetry breaking caused by the adsorption of FePc on the oxidized Cu(110) significantly impacts the magnetic anisotropy. PMID:26827222

  2. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Sánchez-Tejerina, L.; Alejos, Ó.; Martínez, E.; Muñoz, J. M.

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii-Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current.

  3. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Le, Ari; Daughton, William

    2013-06-01

    From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution f¯(v∥,v⊥) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, βe∞, the pressure anisotropy becomes large with p∥≫p⊥ and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and, therefore, become important for

  4. Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Tamion, Alexandre; Hillenkamp, Matthias; Tournus, Florent; Bonet, Edgar; Dupuis, Véronique

    2009-08-01

    The simultaneous triple adjustment of experimental magnetization curves under different conditions is shown to allow the unambiguous and consistent determination of both the magnetic particle size distribution and anisotropy for granular nanostructures of Co clusters embedded in protective matrices. The importance of interface effects resulting in magnetically dead layers is demonstrated.

  5. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    SciTech Connect

    Guihéry, Nathalie; Ruamps, Renaud; Maurice, Rémi

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

  6. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    NASA Astrophysics Data System (ADS)

    Guihéry, Nathalie; Ruamps, Renaud; Maurice, Rémi; de Graaf, Coen

    2015-12-01

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

  7. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  8. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-01

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  9. Magnetic anisotropy and organization of nanoparticles in heads and antennae of neotropical leaf-cutter ants, Atta colombica

    NASA Astrophysics Data System (ADS)

    Alves, Odivaldo C.; Srygley, Robert B.; Riveros, Andre J.; Barbosa, Marcia A.; Esquivel, Darci M. S.; Wajnberg, Eliane

    2014-10-01

    Oriented magnetic nanoparticles have been suggested as a good candidate for a magnetic sensor in ants. Behavioural evidence for a magnetic compass in neotropical leaf-cutter ants, Atta colombica (Formicidae: Attini), motivated a study of the arrangement of magnetic particles in the ants’ four major body parts by measuring the angular dependence of the ferromagnetic resonance spectra at room temperature. Spectra of the thoraces and those of the abdomens showed no significant angular dependence, while those of the antennae and those of the heads exhibited a periodic dependence relative to the magnetic field. Fitting of the angular dependence of the resonant field resulted in an unexpected magnetic anisotropy with uniaxial symmetry. High values of the first order anisotropy constant were observed for the magnetic material in antennae (-2.9  ×  105 erg cm-3) and heads (-1  ×  106 erg cm-3) as compared to body parts of other social insects. In addition, the magnitude of the anisotropy in the heads was comparable to that observed in magnetite nanoparticles of 4-5 nm diameter. For the antennae, the mean angle of the particles’ easy magnetization axis (EA) was estimated to be 41° relative to the straightened antenna’s long axis. For the heads, EA was approximately 60° relative to the head’s axis running from midway between the spines to the clypeus. These physical characteristics indicate organized magnetic nanoparticles with a potential for directional sensitivity, which is an important feature of magnetic compasses.

  10. Engineering Magnetic Anisotropy in Nanostructured 3d and 4f Ferromagnets

    NASA Astrophysics Data System (ADS)

    Hsu, Chin-Jui

    Due to the increased demand for clean energy in recent years, there is a need for the scientific community to develop technology to harvest thermal energy which is ubiquitous but mostly wasted in our environment. However, there is still no efficient approach to harvest thermal energy to date. In this study, the theory of thermomagnetic energy harvesting is reviewed and unique applications of multiferroics (ferromagnetic plus ferroelectric) are introduced. Based on an efficiency analysis using experimentally measured magneto-thermal properties of 3d transitional and 4f rare earth ferromagnetic elements, the idea of using single domain ferromagnetic elements to obtain higher thermomagnetic conversion efficiencies is proposed. In order to fabricate a ferromagnetic single domain, the magnetic anisotropy of gadolinium (Gd) and nickel (Ni) is engineered at the nanoscale. Both thin films and nanostructures are fabricated and characterized with a focus on the change of magnetic anisotropy governed by shape, crystal structure, and strain. The fabrication processes include sputtering, e-beam lithography (writing and evaporation), and focused ion beam milling. Characterization techniques involving atomic/magnetic force microscopy, energy dispersive X-ray spectroscopy, magneto-optical Kerr effect magnetometry, superconducting quantum interference device magnetometry, scanning/transmission electron microscopy, and X-ray diffraction will also be discussed. Experimental results show that the magnetic domain structure of nanostructured Ni can be stably controlled with geometric constraints or by strain induced via electric field. The magnetic properties of nanostructured Gd, on the other hand, is sensitive to crystal structure. These results provide critical information toward the use of ferromagnetic nanostructures in thermomagnetic energy harvesting and multiferroic applications.

  11. Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings.

    PubMed

    Li, Wei; Wu, Bing; Avram, Alexandru V; Liu, Chunlei

    2012-02-01

    Frequency shift of gradient-echo MRI provides valuable information for assessing brain tissues. Recent studies suggest that the frequency and susceptibility contrast depend on white matter fiber orientation. However, the molecular underpinning of the orientation dependence is unclear. In this study, we investigated the orientation dependence of susceptibility of human brain in vivo and mouse brains ex vivo. The source of susceptibility anisotropy in white matter is likely to be myelin as evidenced by the loss of anisotropy in the dysmyelinating shiverer mouse brain. A biophysical model is developed to investigate the effect of the molecular susceptibility anisotropy of myelin components, especially myelin lipids, on the bulk anisotropy observed by MRI. This model provides a consistent interpretation of the orientation dependence of macroscopic magnetic susceptibility in normal mouse brain ex vivo and human brain in vivo and the microscopic origin of anisotropic susceptibility. It is predicted by the theoretical model and illustrated by the experimental data that the magnetic susceptibility of the white matter is least diamagnetic along the fiber direction. This relationship allows an efficient extraction of fiber orientation using susceptibility tensor imaging. These results suggest that anisotropy on the molecular level can be observed on the macroscopic level when the molecules are aligned in a highly ordered manner. Similar to the utilization of magnetic susceptibility anisotropy in elucidating molecular structures, imaging magnetic susceptibility anisotropy may also provide a useful tool for elucidating the microstructure of ordered biological tissues. PMID:22036681

  12. Magnetic field-controlled hysteresis loop bias in orthogonal exchange-spring coupling composite magnetic films

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Yu, Tian; Pan, Rui; Zhang, Qin-Tong; Liu, Pan; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Han, Xiufeng

    2016-06-01

    The exchange bias (EB) is an effective fundamental and applicational method to realize magnetic hysteresis loop shifting. However, further manipulation of EB unidirectional anisotropy is difficult after setup using either field deposition or post-annealing. In this work, we experimentally show a new approach to control the magnetic hysteresis loop bias in a [Co(0.2)/Pd(1)]5/CoFeB orthogonal exchange-spring (ES) coupling system, where the direction and strength of unidirectional anisotropy can be easily manipulated by applying an external magnetic field.

  13. Determination of magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film by anisotropic magnetoresistance

    PubMed Central

    Hu, Bo; He, Wei; Ye, Jun; Tang, Jin; Zhang, Yong-Sheng; Ahmad, Syed Sheraz; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2015-01-01

    It is challenging to determine domain wall pinning energy and magnetic anisotropy since both coherent rotation and domain wall displacement coexist during magnetization switching process. Here, angular dependence anisotropic magnetoresistance (AMR) measurements at different magnetic fields were employed to determine magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film. The AMR curves at magnetic fields which are high enough to ensure the coherent rotation of magnetization indicate a smooth behavior without hysteresis between clockwise (CW) and counter-clockwise (CCW) rotations. By analyzing magnetic torque, the magnetic anisotropy constants can be obtained. On the other hand, the AMR curves at low fields show abrupt transitions with hysteresis between CW and CCW rotations, suggesting the presence of multi-domain structures. The domain wall pinning energy can be obtained by analyzing different behaviors of AMR. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of magnetic anisotropy and domain wall pinning energy, which is still a critical issue for spintronics. PMID:26369572

  14. Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films

    NASA Astrophysics Data System (ADS)

    Kats, V. N.; Linnik, T. L.; Salasyuk, A. S.; Rushforth, A. W.; Wang, M.; Wadley, P.; Akimov, A. V.; Cavill, S. A.; Holy, V.; Kalashnikova, A. M.; Scherbakov, A. V.

    2016-06-01

    Ultrafast optical excitation of a metal ferromagnetic film results in a modification of the magnetocrystalline anisotropy and induces the magnetization precession. We consider two main contributions to these processes: an effect of noncoherent phonons, which modifies the temperature dependent parameters of the magnetocrystalline anisotropy and coherent phonons in the form of a strain contributing via inverse magnetostriction. Contrary to earlier experiments with high-symmetry ferromagnetic structures, where these mechanisms could not be separated, we study the magnetization response to femtosecond optical pulses in the low-symmetry magnetostrictive galfenol film so that it is possible to separate the coherent and noncoherent phonon contributions. By choosing certain experimental geometry and external magnetic fields, we can distinguish the contribution from a specific mechanism. Theoretical analysis and numerical calculations are used to support the experimental observations and proposed model.

  15. A distinct magnetic anisotropy enhancement in mononuclear dysprosium-sulfur complexes by controlling the Dy-ligand bond length.

    PubMed

    Liu, Shan-Shan; Lang, Ke; Zhang, Yi-Quan; Yang, Qian; Wang, Bing-Wu; Gao, Song

    2016-05-10

    In a field-induced single-ion magnet [(dtc)3Dy(phen)] (dtc(-) = diethyldithiocarbamate anion), replacing two of the S-based dtc(-) ligands with O-based dbm(-) ligands (dbm(-) = dibenzoylmethanoate anion) leads to a significant enhancement of magnetic anisotropy, yielding a rarely reported sulfur-ligated lanthanide-based single-ion magnet [(dbm)2Dy(dtc)(phen)]. Ab initio calculations reveal that the gz value of [(dbm)2Dy(dtc)(phen)] is much larger than that of [(dtc)3Dy(phen)], consistent with the experimental results. PMID:27090361

  16. Enhancement of perpendicular magnetic anisotropy by compressive strain in alternately layered FeNi thin films.

    PubMed

    Sakamaki, M; Amemiya, K

    2014-04-23

    The effect of the lattice strain on magnetic anisotropy of alternately layered FeNi ultrathin films grown on a substrate, Cu(tCu = 0-70 ML)/Ni(48)Cu(52)(124 ML)/Cu(0 0 1) single crystal, is systematically studied by means of in situ x-ray magnetic circular dichroism (XMCD) and reflection high-energy electron diffraction (RHEED) analyses. To investigate the magnetic anisotropy of the FeNi layer itself, a non-magnetic substrate is adopted. From the RHEED analysis, the in-plane lattice constant, ain, of the substrate is found to shrink by 0.8% and 0.5% at tCu = 0 and 10 ML as compared to that of bulk Cu, respectively. Fe L-edge XMCD analysis is performed for n ML FeNi films grown on various ain, and perpendicular magnetic anisotropy (PMA) is observed at n = 3 and 5, whereas the film with n = 7 shows in-plane magnetic anisotropy. Moreover, it is found that PMA is enhanced with decreasing ain, in the case where a Cu spacer layer is inserted. We suppose that magnetic anisotropy in the FeNi films is mainly carried by Fe, and the delocalization of the in-plane orbitals near the Fermi level increases the perpendicular orbital magnetic moment, which leads to the enhancement of PMA. PMID:24695244

  17. Probing boundary magnetization through exchange bias in heterostructures with competing anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Binek, Christian

    2013-03-01

    Cr2O3 (chromia) is a magnetoelectric antiferromagnet with a bulk TN of 307 K. It has been utilized for electrically controlled exchange bias (EB) by taking advantage of voltage-controllable boundary magnetization (BM) occurring as a generic property in magnetoelectric single domain antiferromagnets.[2] In the perpendicular Cr2O3(0001)/CoPd EB system the EB-field shows an order parameter type T-dependence close to TN reflecting the T-dependence of the BM. At about 150 K a decrease of the EB-field sets in with decreasing temperature suggesting canting of the BM. To evidence this mechanism we use EB as a probe. Specifically, we investigate EB in Permalloy(5nm)/Cr2O3 (0001)(100nm) with Permalloy and chromia having competing anisotropies. We measure easy axis magnetic hysteresis loops via longitudinal magneto-optical Kerr effect for various temperatures after perpendicular and in-plane magnetic field-cooling. The T-dependence of the EB field supports the canting mechanism. In addition to the all thin film EB system, we explore a Permalloy(10nm)/Cr2O3(0001 single crystal) heterostructure where magnetoelectric annealing allows selecting Cr2O3 single domain states. Here the effect of T-dependent canting of the BM is compared with findings in the complementary perpendicular EB system. Financial support by NSF through MRSEC and the Nanoelectronic Research Initiative.

  18. Epitaxial thin film deposition of magnetostrictive materials and its effect on magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    McClure, Adam Marc

    Magnetostriction means that the dimensions of a material depend on its magnetization. The primary goal of this dissertation was to understand the effect of magnetostriction on the magnetic anisotropy of single crystal magnetostrictive thin films, where the epitaxial pinning of the material to a substrate could inhibit its conversion to new dimensions. In order to address this goal, several Fe-based binary alloys were deposited onto various substrates by molecular beam epitaxy. The samples were characterized by an array of techniques including electron diffraction, Rutherford backscattering, vibrating sample magnetometry, ferromagnetic resonance, and x-ray absorption spectroscopies. The attempted growths of crystalline magnetostrictive thin films resulted in successful depositions of Fe1-xGax and Fe1-x Znx. Depositions onto MgO(001) substrates result in an in-plane cubic magnetic anisotropy, as expected from the cubic symmetry of the Fe-based thin films, and a strong out-of-plane uniaxial anisotropy that forces the magnetization to lie in the plane of the films. Depositions onto ZnSe/GaAs(001) substrates feature an additional in-plane uniaxial anisotropy. The magnitudes and signs of the in-plane anisotropies depend on the Ga content. Furthermore, the cubic anisotropy constant of Fe1-xGax samples deposited onto MgO substrates switches sign at a lower Ga concentration than is seen in bulk Fe1-xGax. The effect on the magnetic anisotropy of depositing a magnetostrictive material as an epitaxial thin film is influenced by the material's magnetostrictive properties and the substrate upon which it is deposited. In particular, pinning a magnetoelastic material to a substrate will modify its cubic anisotropy, and depositions on substrates compliant to an anisotropic strain relaxation may result in a strong in-plane uniaxial anisotropy.

  19. Consistency relation for cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Jain, Rajeev Kumar; Sloth, Martin S.

    2012-12-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.

  20. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  1. Ultra Low Energy Switching of Ferromagnet with Perpendicular Anisotropy on Topological Insulator by Voltage Controlled Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Ghosh, Bahniman; Pramanik, Tanmoy; Dey, Rik; Roy, Urmimala; Register, Leonard; Banerjee, Sanjay

    2015-03-01

    We propose and demonstrate, through simulation, an ultra low energy memory device on a topological insulator thin film. The device consists of a thin layer of Fe deposited on the surface of a topological insulator, Bi2Se3. The top surface of Fe is covered with MgO so that the ferromagnetic layer has perpendicular anisotropy. Current is passed on the surface of the topological insulator which switches the magnetization of the Fe ferromagnet through strong exchange interaction, between electrons contributing to the surface current on the Bi2Se3 and the d electrons in the ferromagnet, and spin transfer torque due to shunting of current through the ferromagnet. Voltage controlled magnetic anisotropy enables ultra low energy switching. Our micromagnetic simulations, predict switching time of the order of 2.4 ns and switching energy of the order of 0.16 fJ for a ferromagnetic bit with thermal stability of 90 kBT. The proposed structure combines the advantages of both large spin torque from topological insulators and those of perpendicular anisotropy materials. This work is supported by NRI SWAN and NSF NASCENT Center.

  2. Parametric Excitation of Spin Waves by Voltage-Controlled Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Verba, Roman; Tiberkevich, Vasil; Krivorotov, Ilya; Slavin, Andrei

    2014-05-01

    A theory of parametric excitation of spin waves (SWs) in ultrathin ferromagnetic strips by a microwave electric field is developed. The excitation uses the effect of voltage-controlled magnetic anisotropy in ferromagnet-dielectric heterostuctures. The characteristic values of the electric field necessary for parametric excitation of propagating SWs of 5-10 GHz frequency in Fe /MgO structure are found to be 0.1-1.5 V/nm. The minimum excitation threshold is achieved in narrow strip (strip width wx˜10-20 nm) for relatively long dipole-dominated SWs. In wider strips (wx≳100 nm) electric parametric pumping excites mostly short exchange-dominated SWs having higher excitation thresholds, but substantially wider range of possible SW frequencies.

  3. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  4. Creep and Flow Regimes of Magnetic Domain-Wall Motion in Ultrathin Pt/Co/Pt Films with Perpendicular Anisotropy

    NASA Astrophysics Data System (ADS)

    Metaxas, P. J.; Jamet, J. P.; Mougin, A.; Cormier, M.; Ferré, J.; Baltz, V.; Rodmacq, B.; Dieny, B.; Stamps, R. L.

    2007-11-01

    We report on magnetic domain-wall velocity measurements in ultrathin Pt/Co(0.5 0.8nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain-wall motion, analysis of which yields values for the damping parameter, α.

  5. Giant Perpendicular Magnetic Anisotropy of Graphene-Co Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Hallal, Ali; Chshiev, Mairbek; Spintec theory Team

    We report strongly enhanced perpendicular anisotropy (PMA) of Co films by graphene coating via ab-initio calculations. The results show that graphene coating can improve the surface anisotropy of Co film up to twice large of the bare Co case and keep the film effective anisotropy being out-of-plane till 25 Å of Co, in agreement with experiments. Our layer resolved analysis reveals that PMA of Co (Co/Gr) films mainly originates from the adjacent 3 Co layers close to surface (interface) and can be strongly influenced by graphene. Furthermore, orbital hybridization analysis uncovers the origin of the PMA enhancement which is due to graphene-Co bonding causing an inversion of Co 3dz 2 and 3dx 2 - y 2 Bloch states close to Fermi level. Finally, we propose to design Co-graphene heterostructures which possess a linearly increasing surface anisotropy and a constant effective anisotropy. These findings point towards a possible engineering graphene-Co junctions with giant anisotropy, which stands as a hallmark for future spintronic information processing. This work was supported by European Graphene Flagship, European Union-funded STREP project CONCEPT-GRAPHENE, French ANR Projects NANOSIM-GRAPHENE and NMGEM

  6. Perpendicular magnetic anisotropy in thin ferromagnetic films adjacent to high-k oxides

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Bi, Chong; Rosales, Marcus; Newhouse-Illige, Ty; Almasi, Hamid; Wang, Weigang

    2015-03-01

    Perpendicular magnetic anisotropy (PMA) in thin ferromagnetic films has attracted a great deal of attention due to interesting physics and promising application in spintronic devices. The strength of PMA is often found to be strongly influenced by the adjacent heavy metal layer and oxide layer. A strong interest has emerged recently to control the PMA of these ultra-thin films by electric fields. Here we report the fabrication and characterization of perpendicularly magnetized 3d transitional metal films next to high-k oxides such as HfO2 and ZrO2. We have investigated structural, magnetic and transport properties of these films. The PMA strongly depends on the thickness of the ferromagnetic layers and the interfacial oxidation level of the bilayers. We will also discuss electric field controlled magnetic properties in these systems. This work was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  7. Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(ii) Schiff base complexes.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Svoboda, Ingrid; Boča, Roman; Trávníček, Zdeněk

    2015-05-28

    A series of pentacoordinate Ni(ii) complexes of the general formula [Ni(L5)] () with various pentadentate Schiff base ligands H2L5 (originating in a condensation of aromatic ortho-hydroxy-aldehydes and aliphatic triamines) was synthesized and characterized by X-ray structure analysis and magnetometry. The alternations of substituents on the H2L parent ligand resulted in the complexes with the geometry varying between the square-pyramid and trigonal-bipyramid. In the compounds whose chromophore geometry is closer to a trigonal-bipyramid, a large and negative uniaxial anisotropy (D = -64 cm(-1)) was identified. Moreover, the simple linear expression for the axial zero-field splitting (ZFS) parameter, D/cm(-1) = 32.7(4.8) - 151(10)τ, was proposed, where τ (in degrees) stands for the Addison parameter. The results of magnetic analysis were also supported by ab initio CASSCF/NEVPT2 calculations of the ZFS splitting parameters D and E, and g tensors. Despite large and negative D-values of the reported compounds, slow relaxation of magnetization was not observed either in zero or non-zero static magnetic field, thus no single-molecule magnetic behaviour was detected. PMID:25919125

  8. Effects of magnetocrystalline anisotropy and magnetization saturation on the mechanically induced switching in nanomagnets

    NASA Astrophysics Data System (ADS)

    Yi, Min; Xu, Bai-Xiang; Shen, Zhigang

    2015-03-01

    The effects of magnetocrystalline anisotropy (Ku) and magnetization saturation (Ms) on the mechanically induced switching in nanomagnets are studied using a constraint-free phase field model, which allows explicit magneto-mechanical coupling and strictly constant magnetization magnitude. The effects of Ku and Ms on the transition boundary between the coherent and incoherent switching modes are presented in terms of the nanomagnet geometry. It is found that Ms rather than Ku can affect the transition boundary between the two switching modes. In the coherent mode, there exists a critical strain ( ɛc ) to induce a deterministic 90° switching. By using the dynamic nature and overrun behavior of the magnetization, a deterministic 180° switching can occur if the mechanical strain is removed once the magnetization rotates to the largest achievable angle ( ϑ1m ). For 90° switching, increasing Ku can enhance both ɛc and ϑ1m , whereas Ms incurs no noticeable changes. For 180° switching, the switching time (ts) increases with Ms linearly, but initially decreases with increasing Ku and then saturates. The results for ts suggest that moderate Ku and Ms are advisable to simultaneously obtain relatively low ɛc , quick switching, high storage density, and high magnetization-state stability in nanomagnets. This work provides insight on tuning mechanically assisted nanomagnet-based logic and memory devices through Ms and Ku.

  9. Effects of auroral-particle anisotropies and mirror forces on high-latitude electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Cornwall, J. M.

    1981-01-01

    It is noted that, for most of the mechanisms for the strong electric fields that characterize the narrow regions in which there is acceleration and precipitation of ring current and/or plasma-sheet plasma, certain effects must be taken into account in simulations of auroral electric fields. The effects are those of auroral particle anisotropy, of mirror forces due to the inhomogeneous geomagnetic field, of auroral electron backscatter by the atmosphere, and of electron trapping by the combination of magnetic mirroring and electrostatic forces. What is more, the effects of the very strong perpendicular electric field must also be taken into account in a kinetic description of the Poisson equation in order to achieve a unified theory of the auroral electrostatic structure. Progress in these areas during the past few years is reviewed. It is shown that particle anisotropies and mirror forces can account for some basic electrostatic features of the quiet arc, while additional effects may be occurring in strong events in which the parallel potential drop is more than about 10 kV.

  10. Ab initio modelling of magnetic anisotropy in Sr3NiPtO6.

    PubMed

    Pradipto, A-M; Broer, R; Picozzi, S

    2016-02-01

    First principles calculations in the framework of Density Functional Theory (DFT) and wavefunction-based correlated methods have been performed to investigate in detail the magnetic anisotropy in Sr3NiPtO6. This material is known for the easy-plane anisotropy with a large anisotropy constant of about 7.5-9.3 meV. We find that by properly choosing the onsite Coulomb repulsion and exchange parameters, DFT can correctly explain the easy-plane magnetocrystalline anisotropy of the material, but the magnitude of the anisotropy constant is underestimated. On the other hand, a quantitative agreement with respect to experiments, both in the magnitude and direction of the magnetic anisotropy, can be recovered by using the wavefunction-based approach which is able to fully describe the multiplet physics. We also show that the presence of structural distortions of the local NiO6 coordination is crucial for stabilizing the magnetic anisotropy in this compound. PMID:26778078

  11. Effect of electron thermal anisotropy on the kinetic cross-field streaming instability

    NASA Technical Reports Server (NTRS)

    Tsai, S. T.; Tanaka, M.; Gaffey, J. D., Jr.; Wu, C. S.; Da Jornada, E. H.; Ziebell, L. F.

    1984-01-01

    The investigation of the kinetic cross-field streaming instability, motivated by the research of collisionless shock waves and previously studied by Wu et al. (1983), is discussed more fully. Since in the ramp region of a quasi-perpendicular shock electrons can be preferentially heated in the direction transverse to the ambient magnetic field, it is both desirable and necessary to include the effect of the thermal anisotropy on the instability associated with a shock. It is found that Te-perpendicular greater than Te-parallel can significantly enhance the peak growth rate of the cross-field streaming instability when the electron beta is sufficiently high. Furthermore, the present analysis also improves the analytical and numerical solutions previously obtained.

  12. Induced magnetic anisotropy in Si-free nanocrystalline soft magnetic materials: A transmission x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Yanai, T.; Kishimoto, H.; Kato, A.; Ohnuma, M.; Suzuki, K.

    2015-05-01

    In order to better understand the origin of field-induced anisotropy (Ku) in Si-free nanocrystalline soft magnetic alloys, the lattice spacing of the bcc-Fe phase in nanocrystalline Fe94-xNb6Bx (x = 10, 12, 14) alloys annealed under an applied magnetic field has been investigated by X-ray diffraction in transmission geometry (t-XRD) with the diffraction vector parallel and perpendicular to the field direction. The saturation magnetostriction (λs) of nanocrystalline Fe94-xNb6Bx was found to increase linearly with the volume fraction of the residual amorphous phase and is well described by taking into account the volume-weighted average of two local λs values for the bcc-Fe nanocrystallites (-5 ± 2 ppm) and the residual amorphous matrix (+8 ± 2 ppm). The lattice distortion required to produce the measured Ku values (˜100 J/m3) was estimated via the inverse magnetostrictive effect using the measured λs values and was compared to the lattice spacing estimations made by t-XRD. The lattice strain required to produce Ku under the magnetoelastic model was not observed by the t-XRD experiments and so the findings of this study suggest that the origin of magnetic field induced Ku cannot be explained through the magnetoelastic effect.

  13. Correlated oscillations of the magnetic anisotropy energy and orbital moment anisotropy in thin films: The role of quantum well states

    NASA Astrophysics Data System (ADS)

    Sandratskii, L. M.

    2015-10-01

    We report the first-principles study of the correlated behavior of the magnetic anisotropy energy (MAE) and orbital moment anisotropy (OMA) as the functions of the thickness N of the Fe film. The work is motivated by recent experimental studies combining photoemission, x-ray magnetic circular dichroism, and magnetic anisotropy measurements. In agreement with experiment, the correlated oscillations of MAE (N ) and OMA (N ) are obtained that have their origin in the formation of the 3d quantum well states (QWS) confined in the films. The main contribution to the oscillation amplitude comes from the surface layer. This is an interesting feature of the phenomenon consisting in the peculiar dependence of the physical quantities on the thickness of the film. We demonstrate that the band structure of the bulk Fe does not reflect adequately the properties of the 3d QWS in thin films and, therefore, does not provide the basis for understanding the oscillations of MAE (N ) and OMA (N ) . A detailed point-by-point analysis in the two-dimensional (2D) Brillouin zone (BZ) of the film shows that the contribution of the Γ point, contrary to a rather common expectation, does not play an important role in the formation of the oscillations. Instead, the most important contributions come from a broad region of the 2D BZ distant from the center of the BZ. Combining symmetry arguments and direct calculations we show that orbital moments of the electronic states possess nonzero transverse components orthogonal to the direction of the spin magnetization. The account for this feature is crucial in the point-by-point analysis of the OMA. On the basis of the calculations for noncollinear spin configurations we suggest interpretations of two interesting experimental findings: fast temperature decay of the oscillation amplitude in MAE (N ) and unexpectedly strong spin mixing of the initial states of the photoemission process.

  14. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Le, Anh-Tuan; Duy Giang, Chu; Thi Tam, Le; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; Ángel García, José; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-01

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ˜17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications.

  15. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures.

    PubMed

    Le, Anh-Tuan; Giang, Chu Duy; Tam, Le Thi; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; García, José Ángel; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-15

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ∼17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications. PMID:26933975

  16. Four Point Magnetic Field Measurements of Magnetosheath Fluctuations

    NASA Astrophysics Data System (ADS)

    Horbury, T. S.; Lucek, E. A.; Balogh, A.; Dunlop, M. W.; Dandouras, I.

    Using magnetic field measurements made at the four Cluster spacecraft separated by several hundred km, it is possible to measure the three dimensional correlation tensor of waves, turbulence and structures in the magnetosheath. In this way, their correlation scales, anisotropy and three dimensional power spectra can be estimated. As an exam- ple, we present such measurements of mirror mode structures and estimate their corre- lation lengths along and across the magnetic field direction. We also present an analy- sis of broadband magnetosheath MHD turbulence, and in particular its anisotropy, and compare the results to the properties of solar wind MHD turblence.

  17. A co-crystal of polyoxometalates exhibiting single-molecule magnet behavior: the structural origin of a large magnetic anisotropy

    SciTech Connect

    Fang, Xikui; McCallum, Kendall; Pratt III, Harry D.; Anderson, Travis M.; Dennis, Kevin; Luban, Marshall

    2012-03-29

    A polyoxometalate-based {MnIII3MnIV} single-molecule magnet exhibits a large axial anisotropy (D = −0.86 cm−1) resulting from a near-parallel alignment of Jahn–Teller axes. Its rigorous three-fold symmetry (i.e. rhombicity E → 0) and increased intercluster separation via co-crystallization effectively hamper quantum tunnelling of the magnetization. Graphical abstract: A co-crystal of polyoxometalates exhibiting single-molecule magnet behavior: the structural origin of a large magnetic anisotropy

  18. Effects of magnetic anisotropy and exchange in Tm{sub 2}Fe{sub 17}

    SciTech Connect

    Pirogov, A. N. Bogdanov, S. G.; Rosenfeld, E. V.; Park, J.-G.; Choi, Y. N.; Lee, Seongsu; Prokes, K.; Golosova, N. O.; Sashin, I. L.; Kudrevatykh, N. V.; Skryabin, Yu. N.; Vokhmyanin, A. P.

    2012-11-15

    Neutron diffraction experiments have been carried out to study the magnetocrystalline anisotropy of two (2b and 2d) Tm sublattices and four (4f, 6g, 12j, and 12k) Fe sublattices in ferrimagnetic compound Tm{sub 2}Fe{sub 17} (space group P6{sub 3}/mmc). We have determined the temperature dependence of the magnitude and orientation of magnetization for each of the thulium and iron sublattices in the range (10-300) K. A spontaneous rotation (at about 90 K) of the Tm and Fe sublattice magnetizations from the c-axis to the basal plane is accompanied by a drastic change in the magnetization magnitude, signifying a large magnetization anisotropy. Both Tm sublattices exhibit an easy-axis type of the magnetocrystalline anisotropy. The Fe sublattices manifest both the uniaxial and planar anisotropy types. The sublattice formed by Fe atoms at the 4f position reveals the largest planar anisotropy constant. The Fe atoms at the 12j position show a uniaxial anisotropy. We find that the inelastic neutron scattering spectra measured below and above the spin-reorientation transition are remarkably different.

  19. Ferromagnetic resonance in exchange coupled bilayer films with stress anisotropy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Rong, Jianhong; Yun, Guohong; Wang, Dong; Bao, Lingbo

    2016-07-01

    Ferromagnetic resonance frequency and magnetic susceptibility in ferromagnetic/antiferromagnetic bilayer films with stress anisotropy are investigated using a ferromagnetic resonance method. In-plane anisotropy, weak and strong perpendicular anisotropy are taken into account in this theoretical model. The effect of stress anisotropy has been investigated; it was found that the resonance frequencies all increase for in-plane and weak perpendicular anisotropy, as the stress anisotropy field increases. In addition, the stress anisotropy field does not obviously affect the magnetic susceptibility for saturation field.

  20. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    NASA Astrophysics Data System (ADS)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  1. A Dzyaloshinskii-Moriya Anisotropy in nanomagnets with in-plane magnetization

    NASA Astrophysics Data System (ADS)

    Cubukcu, M.; Sampaio, J.; Khvalkovskiy, A. V.; Apalkov, D.; Cros, V.; Reyren, N.

    The Dzyaloshinskii-Moriya interaction (DMI) is known to be a direct manifestation of spin-orbit coupling in systems with broken inversion symmetry. We present a new anisotropy for in-plane-magnetized nanomagnets which is due to the interfacial DMI. This new anisotropy depends on the shape of the magnet, and is perpendicular to the demagnetization shape anisotropy. The DMI anisotropy term that we introduce here results from the DMI energy reduction due to an out-of-plane tilt of the spins at the edges that are oriented perpendicular to the magnetization. For large enough DMI, the reduction of the DMI and anisotropy energies takes over the demagnetization energy cost when magnetization lies along the minor axis of a structure. Our experimental, numerical and analytical results demonstrate this prediction in magnets of elongated shape for small enough volume (and thus quasi-uniform magnetization). Our results also provide the first experimental evidence of the interfacial DMI-induced tilt of the spins at the borders. This work was supported by the Samsung Global MRAM Innovation Program.

  2. Full 180° Magnetization Reversal with Electric Fields

    PubMed Central

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  3. Surface anisotropy broadening of the energy barrier distribution in magnetic nanoparticles.

    PubMed

    Pérez, N; Guardia, P; Roca, A G; Morales, M P; Serna, C J; Iglesias, O; Bartolomé, F; García, L M; Batlle, X; Labarta, A

    2008-11-26

    The effect of surface anisotropy on the distribution of energy barriers in magnetic fine particles of nanometer size is discussed within the framework of the Tln(t/τ(0)) scaling approach. The comparison between the distributions of the anisotropy energy of the particle cores, calculated by multiplying the volume distribution by the core anisotropy, and of the total anisotropy energy, deduced by deriving the master curve of the magnetic relaxation with respect to the scaling variable Tln(t/τ(0)), enables the determination of the surface anisotropy as a function of the particle size. We show that the contribution of the particle surface to the total anisotropy energy can be well described by a size-independent value of the surface energy per unit area which permits the superimposition of the distributions corresponding to the particle core and effective anisotropy energies. The method is applied to a ferrofluid composed of non-interacting Fe(3-x)O(4) particles of 4.9 nm average size and x about 0.07. Even though the size distribution is quite narrow in this system, a relatively small value of the effective surface anisotropy constant K(s) = 2.9 × 10(-2) erg cm(-2) gives rise to a dramatic broadening of the total energy distribution. The reliability of the average value of the effective anisotropy constant, deduced from magnetic relaxation data, is verified by comparing it to that obtained from the analysis of the shift of the ac susceptibility peaks as a function of the frequency. PMID:21836285

  4. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  5. Interfacial magnetic anisotropy of Co90Zr10 on Pt layer.

    PubMed

    Kil, Joon Pyo; Bae, Gi Yeol; Suh, Dong Ik; Choi, Won Joon; Noh, Jae Sung; Park, Wanjun

    2014-11-01

    Spin Transfer Torque (STT) is of great interest in data writing scheme for the Magneto-resistive Random Access Memory (MRAM) using Magnetic Tunnel Junction (MTJ). Scalability for high density memory requires ferromagnetic electrodes having the perpendicular magnetic easy axis. We investigated CoZr as the ferromagnetic electrode. It is observed that interfacial magnetic anisotropy is preferred perpendicular to the plane with thickness dependence on the interfaces with Pt layer. The anisotropy energy (K(u)) with thickness dependence shows a change of magnetic-easy-axis direction from perpendicular to in-plane around 1.2 nm of CoZr. The interfacial anisotropy (K(i)) as the directly related parameters to switching and thermal stability, are estimated as 1.64 erg/cm2 from CoZr/Pt multilayered system. PMID:25958513

  6. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic

  7. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    SciTech Connect

    Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.; Negri, R. Martín; Perez, Oscar E.; Butera, Alejandro; Jorge, Guillermo; Oliveira, Cristiano L. P.

    2013-12-07

    possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR field, and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials.

  8. Fabrication of tunable Janus microspheres with dual anisotropy of porosity and magnetism.

    PubMed

    Ning, Yin; Wang, Chaoyang; Ngai, To; Tong, Zhen

    2013-04-30

    This work presents a facile approach to produce a novel type of Janus microspheres with dual anisotropy of porosity and magnetism based on Pickering-type double emulsion templates. A stable aqueous Fe3O4 dispersion-in-oil-in-water (WF/O/W) double Pickering emulsion is first generated by using hydrophobic silica and hydrophilic mesoporous silica particles as stabilizers. Janus microspheres with multihollow structure possessing magnetite nanoparticles concentrated on one side of the microspheres are obtained after polymerization of the middle oil phase of the double emulsion under a magnetic field. The resultant Janus microspheres are characterized by optical microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX). Moreover, we have systematically investigated the influences of Fe3O4 particle concentration, hydrophobic silica particle content, and volume ratio of the inner water phase to middle oil phase (WF/O) on the double emulsion formation and consequently on the structure of the resulting Janus microspheres. Our results show that the distribution of the multihollow structures within the prepared microspheres can be accurately tailored by adjusting the ratio of WF/O. In addition, the obtained Janus microsphere can be fairly orientated under a magnetic field, making them a potential candidate for synthesizing Janus membrane. PMID:23565899

  9. Scaling Laws for Magnetic Reconnection when Electron Pressure Anisotropy is near the Firehose Threshold

    NASA Astrophysics Data System (ADS)

    Ohia, Obioma; Egedal, Jan; Lukin, Vyacheslav S.; Daughton, William; Le, Ari

    2015-11-01

    Magnetic reconnection in weakly-collisional, a process linked to solar flares, coronal mass ejections, and magnetic substorms, has been widely studied through fluid and kinetic simulations. While two-fluid models often reproduce the fast reconnection rate of kinetic simulations, significant differences are observed in the structure of the reconnection regions. Recently, new equations of state that accurately account for the development of anisotropic electron pressure due to the electric and magnetic trapping of electrons have been developed. Guide-field, fluid simulations using these equations of state have been shown to reproduce the detailed reconnection region observed in kinetic simulations. Implementing this two-fluid simulation using the HiFi framework, we describe a mechanism for regulation of electron pressure anisotropy as well as study force balance of the electron layers in guide-field reconnection. Scaling laws for the heating observed in these layers based on upstream conditions are derived. Formerly of U.S. Naval Research Laboratory. Any opinions, findings, conclusions and/or recommendations are those of author and do not necessarily reflect the views of the National Science Foundation.

  10. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  11. Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth

    NASA Astrophysics Data System (ADS)

    de Visser, Pieter J.; Levallois, Julien; Tran, Michaël K.; Poumirol, Jean-Marie; Nedoliuk, Ievgeniia O.; Teyssier, Jérémie; Uher, Ctirad; van der Marel, Dirk; Kuzmenko, Alexey B.

    2016-07-01

    We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13 ±1 %, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light.

  12. Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth.

    PubMed

    de Visser, Pieter J; Levallois, Julien; Tran, Michaël K; Poumirol, Jean-Marie; Nedoliuk, Ievgeniia O; Teyssier, Jérémie; Uher, Ctirad; van der Marel, Dirk; Kuzmenko, Alexey B

    2016-07-01

    We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13±1%, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light. PMID:27419590

  13. Capping layer-tailored interface magnetic anisotropy in ultrathin Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Gabor, M. S.; Petrisor, T.; Zighem, F.; Chérif, S. M.; Tiusan, C.

    2015-01-01

    Co2FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of -0.46 erg/cm2 and 0.74 erg/cm2 for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  14. Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2015-07-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  15. Magnetic anisotropy and crystalline orientation in high Hk FeCoB thin films

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsuto; Matsuu, Toshimitsu; Tada, Masaru; Nakagawa, Shigeki

    2008-04-01

    FeCoB thin films with a high magnetic anisotropy field Hk were studied. Crystal structure of the FeCo was investigated by using x-Ray diffraction with particular interest for understanding the scheme to produce a high Hk in the FeCoB films. The as-deposited film with a high Hk of 280Oe showed a well-crystallized bcc (110) texture of FeCo and an asymmetric profile in the rocking curve measured along the easy axis. The pole figure profile revealed that the maximum diffraction intensity was observed at the point other than the original point, namely, the tilted crystal orientation to the substrate plane. In addition, elliptical contour lines of diffraction intensity were observed and their major axis aligned with the direction of the peak shift. These results indicated the correlation among the crystal orientation and the easy axis direction and also the incident direction of the sputtering particles to the substrate.

  16. Perpendicular magnetic anisotropy in CoxMn4-xN (x = 0 and 0.2) epitaxial films and possibility of tetragonal Mn4N phase

    NASA Astrophysics Data System (ADS)

    Ito, Keita; Yasutomi, Yoko; Kabara, Kazuki; Gushi, Toshiki; Higashikozono, Soma; Toko, Kaoru; Tsunoda, Masakiyo; Suemasu, Takashi

    2016-05-01

    We grow 25-nm-thick Mn4N and Co0.2Mn3.8N epitaxial films on SrTiO3(001) by molecular beam epitaxy. These films show the tetragonal structure with a tetragonal axial ratio c/a of approximately 0.99. Their magnetic properties are measured at 300 K, and perpendicular magnetic anisotropy is confirmed in both films. There is a tendency that as the Co composition increases, an anisotropy field increases, whereas saturation magnetization and uniaxial magnetic anisotropy energy decrease. First-principles calculation predicts the existence of tetragonal Mn4N phase. This explains the c/a ˜ 0.99 in the Mn4N films regardless of their film thickness and lattice mismatch with substrates used.

  17. Perpendicular magnetic anisotropy in ultrathin Co|Ni multilayer films studied with ferromagnetic resonance and magnetic x-ray microspectroscopy

    NASA Astrophysics Data System (ADS)

    Macià, F.; Warnicke, P.; Bedau, D.; Im, M.-Y.; Fischer, P.; Arena, D. A.; Kent, A. D.

    2012-11-01

    Ferromagnetic resonance (FMR) spectroscopy, x-ray magnetic circular dichroism (XMCD) spectroscopy and magnetic transmission soft x-ray microscopy (MTXM) experiments have been performed to gain insight into the magnetic anisotropy and domain structure of ultrathin Co|Ni multilayer films with a thin permalloy layer underneath. MTXM images with a spatial resolution better than 25 nm were obtained at the Co L3 edge down to an equivalent thickness of Co of only 1 nm, which establishes a new lower boundary on the sensitivity limit of MTXM. Domain sizes are shown to be strong functions of the anisotropy and thickness of the film.

  18. Ferromagnetic resonance, magnetic susceptibility, and transformation of domain structure in CoFeB film with growth induced anisotropy

    NASA Astrophysics Data System (ADS)

    Manuilov, S. A.; Grishin, A. M.; Munakata, M.

    2011-04-01

    Field dependence of magnetic susceptibility in nanocrystalline CoFeB film was studied in a wide frequency range from 500 kHz to 15 GHz. Anomalies of the susceptibility were detected exciting CoFeB film with a solenoidal coil, microwave strip line, in the tunable microwave cavity as well as employing magneto-optical domains imaging. Critical spin fluctuations in the form of "soft" modes were observed in a whole range of orientations of magnetic field perpendicular to the "easy" magnetic axis. A sequence of domain structure transformations was extensively examined in a "hard" direction in in-plane magnetic field reduced below the field of uniaxial anisotropy Hp = 535 Oe. At first, uniformly magnetized state in CoFeB film transforms to stripe domains separated by low angle Néel domain walls (DWs) parallel to the "hard"-axis. Then, at critical field Hcr = 232 Oe, Néel DWs gradually convert to the"easy"-axis oriented Bloch DWs loaded with vertical Bloch lines (VBLs). After field reversal at H = -Hcr, backward conversion of VBL-loaded Bloch DWs to Néel DWs results in instantaneous energy release and sharp anomaly of magnetic susceptibility. Appearance of critical spin fluctuations accomplishes domains transformation to the uniformly magnetized state at H = -535 Oe.

  19. Enhancement of perpendicular magnetic anisotropy of Co layer in exchange-biased Au/Co/NiO/Au polycrystalline system

    NASA Astrophysics Data System (ADS)

    Kuświk, P.; Szymański, B.; Anastaziak, B.; Matczak, M.; Urbaniak, M.; Ehresmann, A.; Stobiecki, F.

    2016-06-01

    The perpendicular exchange bias in NiO(antiferromagnet)/Co(ferromagnet) polycrystalline layer films is studied. It is found that the NiO layer forces the Co layer magnetization to be oriented perpendicular to the film plane in a greater thickness range than is found in the Au/Co/Au system. Simultaneously, a large coercivity and a significant perpendicular exchange bias field were observed that are owing to the interlayer exchange bias coupling between NiO and Co, which supports the perpendicular magnetic anisotropy of the Co layer. These findings are confirmed by magnetometry and magnetoresistance measurements.

  20. Magnetic anisotropy, unusual hysteresis and putative “up-up-down” magnetic structure in EuTAl4Si2 (T = Rh and Ir)

    PubMed Central

    Maurya, Arvind; Thamizhavel, A.; Dhar, S. K.; Bonville, P.

    2015-01-01

    We present detailed investigations on single crystals of quaternary EuRhAl4Si2 and EuIrAl4Si2. The two compounds order antiferromagnetically at TN1 = 11.7 and 14.7 K, respectively, each undergoing two magnetic transitions. The magnetic properties in the ordered state present a large anisotropy despite Eu2+being an S-state ion for which the single-ion anisotropy is expected to be weak. Two features in the magnetization measured along the c-axis are prominent. At 1.8 K, a ferromagnetic-like jump occurs at very low field to a value one third of the saturation magnetization (1/3 M0) followed by a wide plateau up to 2 T for Rh and 4 T for Ir-compound. At this field value, a sharp hysteretic spin-flop transition occurs to a fully saturated state (M0). Surprisingly, the magnetization does not return to origin when the field is reduced to zero in the return cycle, as expected in an antiferromagnet. Instead, a remnant magnetization 1/3 M0 is observed and the magnetic loop around the origin shows hysteresis. This suggests that the zero field magnetic structure has a ferromagnetic component, and we present a model with up to third neighbor exchange and dipolar interaction which reproduces the magnetization curves and hints to an “up-up-down” magnetic structure in zero field. PMID:26156410

  1. Copper dusting effects on perpendicular magnetic anisotropy in Pt/Co/Pt tri-layers

    NASA Astrophysics Data System (ADS)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S.

    2016-05-01

    The effect of Cu dusting on perpendicular magnetic anisotropy of sputter grown Pt/Co/Pt stack in which the Cu layer is in proximity with that of Co is investigated in this work. We used magneto optic Kerr effect microscopy measurements to study the variation in the reversal mechanisms in films with Co thicknesses below 0.8nm by systematically varying their perpendicular magnetic anisotropy using controlled Cu dusting. Cu dusting was done separately above and below the cobalt layer in order to understand the role of bottom and top Pt layers in magnetization reversal mechanisms of sputtered Pt/Co/Pt stack. The introduction of even 0.3nm thick Cu layer below the cobalt layer drastically affected the perpendicular magnetic anisotropy as evident from the nucleation behavior. On the contrary, even a 4nm thick top Cu layer had little effect on the reversal mechanism. These observations along with magnetization data was used to estimate the role of top and bottom Pt in the origin of perpendicular magnetic anisotropy as well as magnetization switching mechanism in Pt/Co/Pt thin films. Also, with an increase in the bottom Cu dusting from 0.2 to 0.4nm there was an increase in the number of nucleation sites resulting in the transformation of domain wall patterns from a smooth interface type to a finger like one and finally to maze type.

  2. Enhanced nucleation fields due to dipolar interactions in nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Fischbacher, Johann; Bance, Simon; Exl, Lukas; Gusenbauer, Markus; Oezelt, Harald; Reichel, Franz; Schrefl, Thomas

    2013-03-01

    One approach to construct powerful permanent magnets while using less rare-earth elements is to combine a hard magnetic material having a high coercive field with a soft magnetic material having a high saturation magnetization at the nanometer scale and create so-called nanocomposite magnets. If both materials are strongly coupled, exchange forces will form a stable magnet. We use finite element micromagnetics simulations to investigate the changing hysteresis properties for varying arrays of soft magnetic spherical inclusions in a hard magnetic body. We show that the anisotropy arising from dipolar interactions between soft magnetic particles in a hard magnetic matrix can enhance the nucleation field by more than 10% and strongly depends on the arrangement of the inclusions.

  3. Evaporated CoPt alloy films with strong perpendicular magnetic anisotropy (abstract)

    NASA Astrophysics Data System (ADS)

    Lin, C.-J.; Gorman, G. L.

    1993-05-01

    Co/Pt multilayers with large Kerr rotations at short wavelengths and the magnetic and material properties desired for magneto-optical (MO) recording have been studied extensively as potential future MO materials. Very good recording performance has been demonstrated.1 However, the typical constituent layers in Co/Pt multilayers are very thin, 0.2-0.4 nm Co layers and about 1 nm/Pt layers. To manufacture Co/Pt multilayers consisting of 10-30 periods of such thin Co and Pt layers is certainly quite a challenge. One would prefer to deal with CoPt alloys if the alloys can be made to have large perpendicular magnetic anisotropy and coercivity. Previously no one was able to directly deposit CoPt alloy films with large perpendicular magnetic anisotropy and saturated remanence. Here we will demonstrate for the first time that CoPt alloy films with large perpendicular magnetic anisotropy and coercivity, and saturated remanence can be directly deposited by e-beam evaporation onto heated substrates, at 200 °C or above. Furthermore, we will demonstrate that the perpendicular magnetic anisotropy of CoPt alloy films can be dramatically enhanced by well (111)-textured Pt underlayers. The key to this success appears to be in controlling the crystallographic orientation of these alloy films such that the CoPt(111) lattice plane is parallel to the film surface. CoPt alloys with wide composition range, e.g., 25-57 at. % Co, have been obtained with saturated perpendicular magnetic remanence, indicating that the perpendicular magnetic anisotropy obtained in these alloy films is not related to the ordered tetragonal Co50Pt50 phase. Further work, however, is needed to clarify the anisotropy mechanism in these CoPt alloy films.

  4. Magnetostrictive behaviors of Fe-Si(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Aida, Takuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-01

    Magnetostrictive behaviors under rotating magnetic fields are investigated for bcc(001) single-crystal films of Fe100-x-Six(x = 0, 6, 10 at. %). The magnetostriction observation directions are along bcc[100] and bcc[110] of the films. The magnetostriction waveform varies greatly depending on the observation direction. For the observation along [100], the magnetostriction waveform of all the films is bathtub-like and the amplitude stays at almost constant even when the magnetic field is increased up to the anisotropy field. On the other hand, the waveform along [110] is triangular and the amplitude increases with increasing magnetic field up to the anisotropy field and then saturates. In addition, the waveform of Fe90Si10 film is distorted triangular when the applied magnetic fields are less than its anisotropy field. These magnetostrictive behaviors under rotating magnetic fields are well explained by employing a proposed modified coherent rotation model where the anisotropy field and the magnetization reversal field are determined by using measured magnetization curves. The results show that magnetocrystalline anisotropy plays important role on magnetostrictive behavior under rotating magnetic fields.

  5. Towards an understanding of magnetic interactions and anisotropies in iron superconductors

    NASA Astrophysics Data System (ADS)

    Bascones, Elena

    2012-02-01

    The itinerant or strong coupling origin of magnetism in iron pnictides is still unsettled. The localized description generally assumes AF exchange constants satisfying 2J2>J1, withJ1 and J2 referring to first and second nearest neighbors respectively. The itinerant picture relies on the nesting of the Fermi surface. Both descriptions reproduce the columnar ordering found experimentally. The role played by the Hund's coupling JH and the orbital degree of freedom are also highly debated. Orbital ordering has been invoked to explain the anisotropic resistivity and optical conductivity. We make connection between these two pictures by studying the same five-orbital model within Heisenberg and mean field descriptions [1]. We have found that J2/J1 strongly depends on the charge and orbital filling what results in an unexpected sensitivity of the AF ordering to crystal field parameters. J1 and J2 can become ferromagnetic at large JH. Consistent results are obtained in the mean field description. We also analyze the resistivity and optical conductivity anisotropies and show that they are a consequence of magnetism and not of orbital ordering [2].[4pt] [1] M.J. Calder'on et al, arXiv:1107.2279. E. Bascones et al, PRL 104, 227201 (2010).[0pt] [2] B. Valenzuela et al, PRL 105, 207202 (2010).

  6. Asymptotic dependence of the relaxation time of the magnetization of a ferromagnetic particle on the anisotropy of the particle

    NASA Astrophysics Data System (ADS)

    Scully, C. N.; Cregg, P. J.; Crothers, D. S. F.

    1992-01-01

    It is known that the direction of the magnetization vector of very fine single-domain ferromagnetic particles fluctuates under the influence of thermal agitation. Perturbation theory is applied rigorously to a singular integral equation to derive an asymptotic formula for the relaxation time of the magnetization, for the case of uniaxial anisotropy and an applied magnetic field. The result agrees with that of Brown [Phys. Rev. 130, 1677 (1963)] as described succinctly by Aharoni [Phys. Rev. 177, 793 (1969)]. It should be emphasized that both Gilbert's equation and the earlier Landau-Lifshitz equation are merely phenomenological equations, which are used to explain the time decay of the average magnetization. Brown suggested that the Gilbert equation should be augmented by a white-noise driving term in order to explain the effect of thermal fluctuations of the surroundings on the magnetization.

  7. Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy

    SciTech Connect

    Stebliy, Maxim E. Kolesnikov, Alexander G.; Davydenko, Alexander V.; Ognev, Alexey V.; Samardak, Alexander S.; Chebotkevich, Ludmila A.

    2015-05-07

    Formation and existence of magnetic skyrmion-like configurations in bilayer nanodisks (Ta(3 nm)/[Co(0.37 nm)/Ni(0.58 nm)]{sub 10}){sub 2} with perpendicular magnetic anisotropy are shown experimentally at room temperature. Magnetization reversal through the skyrmion state is studied using magnetic hysteresis measurements. An evolution of skyrmion configurations in the nanodisk structure is analyzed. Experimental methods and micromagnetic simulations help to understand the magnetization reversal processes occurring through the stable skyrmion-like configurations. Formation of the intermediate C-states during magnetization reversal is demonstrated. The skyrmion number for all possible spin configurations is calculated.

  8. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  9. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  10. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  11. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  12. Structural anisotropy of magnetically aligned single wall carbon nanotube films

    SciTech Connect

    Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E.

    2000-07-31

    Thick films of aligned single wall carbon nanotubes and ropes have been produced by filtration/deposition from suspension in strong magnetic fields. We measured mosaic distributions of rope orientations in the film plane, for samples of different thicknesses. For an {approx}1 {mu}m film the full width at half maximum (FWHM) derived from electron diffraction is 25 degree sign -28 degree sign . The FWHM of a thicker film ({approx}7 {mu}m) measured by x-ray diffraction is slightly broader, 35{+-}3 degree sign . Aligned films are denser than ordinary filter-deposited ones, and much denser than as-grown material. Optimization of the process is expected to yield smaller FWHMs and higher densities. (c) 2000 American Institute of Physics.

  13. Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films

    SciTech Connect

    Di, N.; Maroun, F. Allongue, P.; Kubal, J.; Zeng, Z.; Greeley, J.

    2015-03-23

    We studied the influence of controlled surface-limited oxidation of electrodeposited epitaxial Co(0001)/Au(111) films on their magnetic anisotropy energy using real time in situ magneto optical Kerr effect and density functional theory (DFT) calculations. We investigated the Co first electrochemical oxidation step which we demonstrate to be completely reversible and determined the structure of this oxide layer. We show that the interface magnetic anisotropy of the Co film increases by 0.36 erg/cm{sup 2} upon Co surface oxidation. We performed DFT calculations to determine the different surface structures in a wide potential range as well as the charge transfer at the Co surface. Our results suggest that the magnetic anisotropy change is correlated with a positive charge increase of 0.54 e{sup −} for the Co surface atom upon oxidation.

  14. Tuning magnetic anisotropies of Fe films on Si(111) substrate via direction variation of heating current.

    PubMed

    Wu, Qiong; He, Wei; Liu, Hao-Liang; Ye, Jun; Zhang, Xiang-Qun; Yang, Hai-Tao; Chen, Zi-Yu; Cheng, Zhao-Hua

    2013-01-01

    We adopted a novel method to tune the terrace width of Si(111) substrate by varying the direction of heating current. It was observed that the uniaxial magnetic anisotropy (UMA) of Fe films grown on the Si(111) substrate enhanced with decreasing the terrace width and superimposed on the weak six-fold magnetocrystalline anisotropy. Furthermore, on the basis of the scanning tunneling microscopy (STM) images, self-correlation function calculations confirmed that the UMA was attributed mainly from the long-range dipolar interaction between the spins on the surface. Our work opens a new avenue to manipulate the magnetic anisotropy of magnetic structures on the stepped substrate by the decoration of its atomic steps. PMID:23529097

  15. Study of anisotropy in nuclear magnetic resonance relaxation times of water protons in skeletal muscle.

    PubMed Central

    Kasturi, S R; Chang, D C; Hazlewood, C F

    1980-01-01

    The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530

  16. Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Hardoň, Štefan; Kopčanský, Peter; Timko, Milan

    2015-07-01

    The properties of magnetic fluids depend on the nanoparticle diameter, their concentration and the carrier liquid. The structural changes in magnetic fluids with different nanoparticle diameter based on transformer oils TECHNOL and MOGUL under the effect of a magnetic field and temperature were studied by acoustic spectroscopy. At a linear and jump changes of the magnetic field at various temperatures a continuous change was observed of acoustic attenuation caused by aggregation of the magnetic nanoparticles to structures. From the anisotropy of acoustic attenuation and using the Taketomi theory the basic parameters of the structures are calculated and the impact of nanoparticle diameters on the size of structures is confirmed.

  17. Anisotropy of the sublattice magnetization and magnetoresistance in Co/Re superlattices on Al{sub 2}O(1120).

    SciTech Connect

    Charloton, T.

    1998-09-29

    [Co(20 {angstrom})/Re(6{angstrom})]{sub 20} superlattices were grown on a (11{bar 2}0) surface of a Al{sub 2}O{sub 3} single crystal, with the [0001] direction of their hcp structure in the plane of the film. The Co layers were found to be antiferromagnetically coupled (AF), with a saturating field of 6 kOe. Polarized neutron reflectivityy was used to determine the direction of the sublattice magnetization. In zero applied field, the AF moments are aligned along the Co [0001] axis. In a magnetic field H perpendicular to the Co [0001] axis, the sublattices moments evolve to a canted arrangement, with the AF component always perpendicular to the field. With H along the Co[0001] axis, the AF moments flop in a direction perpendicular to Co[0001] axis. The spin flop transition is not abrupt, but can be described as a gradual rotation that is completed at 2 kOe. The anisotropy of the sublattice magnetization is related to the anisotropy of the magnetoresistance. This has the conventional dumbbell behavior with the field applied perpendicular to the Co[0001] axis, but exhibits an extended plateau near H = 0, and a slight increase up to H {approximately} 2 kOe, when H is parallel to Co[0001] axis.

  18. The adjustable anisotropy field in FeCoTiO/SiO2/FeCoTiO trilayer films by oblique sputtering and stripe patterning

    NASA Astrophysics Data System (ADS)

    Wang, Yicheng; Zhang, Huaiwu; Wang, Luo; Bai, Feiming

    2016-05-01

    A series of FeCoTiO thin films were deposited on Si (100) substrates using oblique sputtering and stripe patterning at the same time and the static and high frequency magnetic properties were studied in details. For the single-layered films, if the anisotropy fields induced by the two methods are in the same direction, the effective anisotropy field will be greatly enhanced, closed to 300 Oe. But if the two anisotropy fields are perpendicular to each other, there will be an opposite result. In the FM/NM/FM sandwich structures, the influence of shape anisotropy will be suppressed by the exchange coupling effect between the two FM layers. The resonance frequency and permeability are still above 3.5 GHz and 75 even the width of stripes change from 40 µm to 10 µm.

  19. Tunable magnetic anisotropy in perpendicular exchange-coupled CoFeB/(Co/Pt) films

    NASA Astrophysics Data System (ADS)

    You, Long; Lee, Oukjae; Glenn, Terrell; Abdel-Raziq, Haron; Salahuddin, Sayeef

    2015-03-01

    Spintronic materials with strong perpendicular magnetic anisotropy (PMA), such as Co/Pd, Co/Pt and Co/Ni multilayers, have been introduced to improve the functional performance of STT devices (e.g. enhanced thermal stability, scalability and switching speeds of spin memory/logic). Furthermore, by coupling magnetic layers with PMA and longitudinal magnetic anisotropy (LMA), added benefits such as a variable magnetization tilt angle and tunable damping have been shown. In our study, we discuss how to precise control the anisotropy tilt angle by coupling the PMA hard layer (Co/Pt) with an in-plane soft layer (IMA, CoFeB). Due to the competition between the PMA and IMA, the tilted angle can be tuned by varying thickness of IMA. The stack of Pt(5nm)/Co (1nm)/CoFeB(Xnm)/MgO (2nm) (x varied from 0 to 1nm) was deposited by magneto-sputtering system. The magnetic properties were investigated by vibrating sample magnetometer and anomalous Hall effect . The electric transport of microscale devices comprised of that stack were also studied by our probe station with electromagnet. The experiments show the magnetic anisotropy can be tuned well by changing thickness of in plane layer and open a promising new avenue to next generation spintronics devices.

  20. Comparison between planar magnetocrystaline and shape anisotropies in the magnetic vortex configuration of nanostructured particles

    NASA Astrophysics Data System (ADS)

    Parreiras, Sofia; Souza, Rafael; Martins, Maximiliano

    2015-03-01

    Soft ferromagnetic dots with sub-micrometer size can exhibit in the ground state a curling spin configuration known as magnetic vortex. In the case of soft ferromagnetic materials in micron and submicron scales, small changes in shape, size and material's anisotropy can modify the energy equilibrium that defines the stable spin structure. In this work, we investigated the magnetic configuration of micron-sized Co60Fe40 and Permalloy disks and elipses, prepared by lift-off lithography process, by comparing the results of micromagnetic simulations and magnetic force microscopy (MFM) measurements. By comparing the results for Co60Fe40 and Permalloy it is possible to elucidate the effect of the planar magnetocrystaline anisotropy in the stability of the magnetic vortex configuration and this effect is compared with the effect of the shape anisotropy induced by the elliptical shape. The results for disks with diameters between 0.5 and 8 μm showed that the anisotropy favors spins alignment and domains division, reducing vortex stability. The results showed different magnetic configurations for each disk diameter. Additionally, a statistical analysis of the magnetic configuration distribution observed in MFM experiments was performed and compared with the simulation results. Acknowledgements: CAPES, CNPq and FAPEMIG.

  1. Electric-field control and effect of Pd capping on interface magnetocrystaline anisotropy of FePd-based thin films

    NASA Astrophysics Data System (ADS)

    Ong, Phuong-Vu; Kioussis, Nicholas; Khalili Amiri, P.; Wang, K. L.; Carman, Gregory P.; Wu, Ruqian

    2014-03-01

    Using ab initio electronic structure calculations, we investigate effects of electric field and heavy metal cap of Pd on magnetocrystalline anisotropy (MCA) of FePd ultrathin film. It is revealed that while Pd ions favor in-plan MCA, perpendicular MCA of the thin film is mainly due to the spin-orbit coupling between unoccupied Fe dxy and occupied Fe dx2 -y2 states. The sensitivity of the surface anisotropy energy to applied electric field is 18 fJ.V-1.m-1. By mapping distributions of d-orbital characters over electronic states, mechanism of the field control of anisotropy is elucidated. Furthermore, MCA of the thin film is shown to be strongly affected by Pd capping and a switching from perpendicular to in-plane anisotropy can be obtained by tuning the capping thickness. The effect is explained by spin-orbit couplings of the spin-polarized quantum well states induced by the Pd cap. These results are of practical importance since in magnetic junctions the ferromagnetic layer is mostly capped by a heavy metal electrode.

  2. A new magnetic bar code system based on a magnetic anisotropy detection (abstract)

    NASA Astrophysics Data System (ADS)

    Sasada, I.; Watanabe, N.

    1996-04-01

    Magnetic bar codes can be used in unclean environments, where widely used optical bar code systems cannot be applied. Readout system for magnetic bar codes can also be made much simpler than optical ones. A new magnetic bar code system is proposed, in which binary information is coded in the sign of tilted angles of magnetic strips from a given standard direction. This scheme is unique compared to the conventional optical bar code, where width or space of the parallel pattern carries information, or an already reported magnetic bar code, where cross sectional shapes of pattern engraved in a ferromagnetic body carries information. Each of the magnetic strips brings about magnetic anisotropy due to its shape effect, hence angular dependent permeability in the proximity of the strip. The sign of the tilted angle of each magnetic strip is detected inductively through the angular dependent permeability by using a magnetic pickup head with a pair of cross-coupled figure-eight coils, where the sign of mutual inductance between the primary and the secondary figure-eight coil has one to one relationship to the sign of the tilted angle. Because the detection of the tilted angle is independent of scanning speed, variation in the scanning speed of the readout head does not affect the performance. In our preliminary study, the proposed magnetic bar code system was examined using pickup head consisting of a pair of cross-coupled 10-turn figure-eight coils which was embedded in a rectangular ferrite rod with cross-shape groove on the top surface of 6.5×3 mm dimension. The head was made thinner in the scanning direction to allow dense alignment of the pattern. Two kinds of pattern were made: the one was by aligning short amorphous wires (5 mm in length and 120 μm in diameter) on the plastic film and the other by using a thin (10 μm in thickness) copper film with tilted slits backed by an amorphous ribbon. These samples of magnetic bar code patterns were scanned with lift-off of

  3. Anisotropy of Magnetic Suscetibility of the Aquidauana Formation (PARANÁ Basin): Preliminary Results

    NASA Astrophysics Data System (ADS)

    Raposo, M. B.; Paranhos, A.

    2013-12-01

    The magnetic studies were performed on sites of reddish-brown sandstones, siltites, and mudstones, which crop out mainly in Mato Grosso do Sul State. Magnetic fabrics were determined on oriented cylindrical specimens (2.54 cm x 2.2 cm) using anisotropy of low-field magnetic susceptibility (AMS). Considering the eingenvector orientations, the sites usually gave good results. The analysis at the individual-site scale defines two AMS fabric types. The first type shows Kmin perpendicular to the bedding plane, while Kmax and Kint are scattered within the bedding plane itself. This fabric is usually interpreted as primary (sedimentary-compactional), typical of undeformed sediments and is dominant among the sites. The second type shows good clustering of the AMS principal axes with Kmin still either perpendicular or sub-perpendicular to the bedding plane. This fabric type could be interpreted as a combination of sedimentary-compactional and tectonic contributions if some strain markers or evidence for tectonic deformation had been found in the studied area. However, the tight Kmax grouping in this fabric type could be explained by the action of currents since they cause Kmax to be aligned sub-parallel to the paleocurrent direction.

  4. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

    PubMed Central

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V.; Samant, Mahesh G.; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn–Ge termination layers that are oppositely magnetized to the higher moment Mn–Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible. PMID:26776829

  5. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K.; Chshiev, Mairbek

    2016-01-01

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25~\\AA. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis which help understanding the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose super-exchange stabilized Co-graphene heterostructures with a robust out-of-plane constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point towards possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20 times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies.

  6. Perpendicular magnetic anisotropy in FePt/AlN layered structure

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Sannomiya, Takumi; Muraishi, Shinji; Shi, Ji; Nakamura, Yoshio

    2014-09-01

    FePt/AlN layered structures were deposited onto fused quartz substrate by magnetron sputtering method and found to show in-plane anisotropy. However, annealing of the films leads to a transition of magnetic anisotropy from in-plane to perpendicular direction, and the perpendicular anisotropy gets stronger as the annealing temperature increases. Structural analysis shows that the FePt and AlN layers are textured with (111) and (002) orientations, respectively, along the film normal, and no ordering transformation is found for FePt alloy. To study the origin of the developed anisotropy, stress condition was analyzed with an equal biaxial stress model using X-ray diffraction 2 θ- ω scan method and interface quality was evaluated by X-ray reflectivity measurement and transmission electron microscopy observation. The results reveal that perpendicular magnetic anisotropy of the annealed FePt/AlN layered structure can be attributed to the enhanced interface anisotropy, which is due to flattening of the interfaces through annealing.

  7. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures.

    PubMed

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K; Chshiev, Mairbek

    2016-01-13

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25 Å. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis, which help understanding of the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose superexchange stabilized Co-graphene heterostructures with a robust constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point toward possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20-times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies. PMID:26641927

  8. Domain-wall structure in thin films with perpendicular anisotropy: Magnetic force microscopy and polarized neutron reflectometry study

    NASA Astrophysics Data System (ADS)

    Navas, David; Redondo, Carolina; Badini Confalonieri, Giovanni A.; Batallan, Francisco; Devishvili, Anton; Iglesias-Freire, Óscar; Asenjo, Agustina; Ross, Caroline A.; Toperverg, Boris P.

    2014-08-01

    Ferromagnetic domain patterns and three-dimensional domain-wall configurations in thin CoCrPt films with perpendicular magnetic anisotropy were studied in detail by combining magnetic force microscopy and polarized neutron reflectometry with micromagnetic simulations. With the first method, lateral dimension of domains with alternative magnetization directions normal to the surface and separated by domain walls in 20-nm-thick CoCrPt films were determined in good agreement with micromagnetic simulations. Quantitative analysis of data on reflectometry shows that domain walls consist of a Bloch wall in the center of the thin film, which is gradually transformed into a pair of Néel caps at the surfaces. The width and in-depth thickness of the Bloch wall element, transition region, and Néel caps are found consistent with micromagnetic calculations. A complex structure of domain walls serves to compromise a competition between exchange interactions, keeping spins parallel, magnetic anisotropy orienting magnetization normal to the surface, and demagnetizing fields, promoting in-plane magnetization. It is shown that the result of such competition strongly depends on the film thickness, and in the thinner CoCrPt film (10 nm thick), simple Bloch walls separate domains. Their lateral dimensions estimated from neutron scattering experiments agree with micromagnetic simulations.

  9. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  10. Magnetic fields and stardust

    NASA Technical Reports Server (NTRS)

    Hildebrand, Roger H.

    1988-01-01

    The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.

  11. Perpendicular magnetic anisotropy in Co2Fe0.4Mn0.6Si

    NASA Astrophysics Data System (ADS)

    Ludbrook, B. M.; Ruck, B. J.; Granville, S.

    2016-07-01

    We report perpendicular magnetic anisotropy (PMA) in the half-metallic ferromagnetic Heusler alloy Co2Fe0.4Mn0.6Si (CFMS) in a MgO/CFMS/Pd trilayer stack. PMA is found for CFMS thicknesses between 1 and 2 nm, with a magnetic anisotropy energy density of KU=1.5 ×106 erg/cm3 for tCFMS=1.5 nm. Both the MgO and Pd layer are necessary to induce the PMA. We measure a tunable anomalous Hall effect, where its sign and magnitude vary with both the CFMS and Pd thickness.

  12. Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy

    SciTech Connect

    Huang, Kuo-Feng; Wang, Ding-Shuo; Lai, Chih-Huang; Lin, Hsiu-Hau

    2015-12-07

    To address thermal stability issues for spintronic devices with a reduced size, we investigate spin-orbit torque in Co/Pt multilayers with strong perpendicular magnetic anisotropy. Note that the spin-orbit torque arises from the global imbalance of the spin currents from the top and bottom interfaces for each Co layer. By inserting Ta or Cu layers to strengthen the top-down asymmetry, the spin-orbit torque efficiency can be greatly modified without compromised perpendicular magnetic anisotropy. Above all, the efficiency builds up as the number of layers increases, realizing robust thermal stability and high spin-orbit-torque efficiency simultaneously in the multilayers structure.

  13. Uniaxial magnetic anisotropy of quasi-one-dimensional Fe chains on Pb /Si

    NASA Astrophysics Data System (ADS)

    Sun, Da-Li; Wang, De-Yong; Du, Hai-Feng; Ning, Wei; Gao, Jian-Hua; Fang, Ya-Peng; Zhang, Xiang-Qun; Sun, Young; Cheng, Zhao-Hua; Shen, Jian

    2009-01-01

    We fabricated quasi-one-dimensional Fe chains on a 4° miscut Si (111) substrate with a Pb film as a buffer layer. The magnetic properties and morphology of Fe chains were investigated by means of scanning tunneling microscope (STM) and surface magneto-optical Kerr effect (SMOKE). STM images show that Fe chains are formed by Fe random islands along the steps of the Pb film due to step decoration. SMOKE data indicate that the Fe chains exhibit in-plane uniaxial magnetic anisotropy along the step direction. The effective in-plane uniaxial anisotropy constant at room temperature was determined by means of electron spin resonance.

  14. Uniaxial magnetic anisotropy of quasi-one-dimensional Fe chains on Pb/Si

    SciTech Connect

    Sun, Da-li; Wang, De-yong; Du, Hai-Feng; Ning, Wei; Gao, Jian-Hua; Fang, Ya-Peng; Zhang, Xiang-Qun; Sun, Young; Cheng, Zhao-Hua; Shen, Jian

    2009-01-01

    We fabricated quasi-one-dimensional Fe chains on a 4{sup o} miscut Si (111) substrate with a Pb film as a buffer layer. The magnetic properties and morphology of Fe chains were investigated by means of scanning tunneling microscope (STM) and surface magneto-optical Kerr effect (SMOKE). STM images show that Fe chains are formed by Fe random islands along the steps of the Pb film due to step decoration. SMOKE data indicate that the Fe chains exhibit in-plane uniaxial magnetic anisotropy along the step direction. The effective in-plane uniaxial anisotropy constant at room temperature was determined by means of electron spin resonance.

  15. Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy

    DOE PAGESBeta

    Le, A.; Daughton, W.; Karimabadi, H.; Egedal, J.

    2016-03-16

    We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor.Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropicequations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fullymore » kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Here, implications for global modeling are discussed.« less

  16. Strategies for Assessing Diffusion Anisotropy on the Basis of Magnetic Resonance Images: Comparison of Systematic Errors

    PubMed Central

    Boujraf, Saïd

    2014-01-01

    Diffusion weighted imaging uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive a number of parameters that reflect the translational mobility of the water molecules in tissues. With a suitable experimental set-up, it is possible to calculate all the elements of the local diffusion tensor (DT) and derived parameters describing the behavior of the water molecules in each voxel. One of the emerging applications of the information obtained is an interpretation of the diffusion anisotropy in terms of the architecture of the underlying tissue. These interpretations can only be made provided the experimental data which are sufficiently accurate. However, the DT results are susceptible to two systematic error sources: On one hand, the presence of signal noise can lead to artificial divergence of the diffusivities. In contrast, the use of a simplified model for the interaction of the protons with the diffusion weighting and imaging field gradients (b matrix calculation), common in the clinical setting, also leads to deviation in the derived diffusion characteristics. In this paper, we study the importance of these two sources of error on the basis of experimental data obtained on a clinical magnetic resonance imaging system for an isotropic phantom using a state of the art single-shot echo planar imaging sequence. Our results show that optimal diffusion imaging require combining a correct calculation of the b-matrix and a sufficiently large signal to noise ratio. PMID:24761372

  17. Strategies for assessing diffusion anisotropy on the basis of magnetic resonance images: comparison of systematic errors.

    PubMed

    Boujraf, Saïd

    2014-04-01

    Diffusion weighted imaging uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive a number of parameters that reflect the translational mobility of the water molecules in tissues. With a suitable experimental set-up, it is possible to calculate all the elements of the local diffusion tensor (DT) and derived parameters describing the behavior of the water molecules in each voxel. One of the emerging applications of the information obtained is an interpretation of the diffusion anisotropy in terms of the architecture of the underlying tissue. These interpretations can only be made provided the experimental data which are sufficiently accurate. However, the DT results are susceptible to two systematic error sources: On one hand, the presence of signal noise can lead to artificial divergence of the diffusivities. In contrast, the use of a simplified model for the interaction of the protons with the diffusion weighting and imaging field gradients (b matrix calculation), common in the clinical setting, also leads to deviation in the derived diffusion characteristics. In this paper, we study the importance of these two sources of error on the basis of experimental data obtained on a clinical magnetic resonance imaging system for an isotropic phantom using a state of the art single-shot echo planar imaging sequence. Our results show that optimal diffusion imaging require combining a correct calculation of the b-matrix and a sufficiently large signal to noise ratio. PMID:24761372

  18. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  19. Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films

    SciTech Connect

    Yanagihara, H. Utsumi, Y.; Niizeki, T. Inoue, J.; Kita, Eiji

    2014-05-07

    We investigated the dependencies of both the magnetization characteristics and the perpendicular magnetic anisotropy of Co{sub x}Fe{sub 3–x}O{sub 4}(001) epitaxial films (x = 0.5 and 0.75) on the growth conditions of the reactive magnetron sputtering process. Both saturation magnetization and the magnetic uniaxial anisotropy constant K{sub u} are strongly dependent on the reactive gas (O{sub 2}) flow rate, although there is little difference in the surface structures for all samples observed by reflection high-energy electron diffraction. In addition, certain dead-layer-like regions were observed in the initial stage of the film growth for all films. Our results suggest that the magnetic properties of Co{sub x}Fe{sub 3–x}O{sub 4} epitaxial films are governed by the oxidation state and the film structure at the vicinity of the interface.

  20. Tuning the magnetic anisotropy of CoFeB grown on flexible substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Yuan-Yuan; Yang, Mei-Yin; Zhang, Bao; Yang, Guang; Wang, Shou-Guo; Wang, Kai-You

    2015-07-01

    The magnetic properties of CoFeB thin films grown on flexible polyimide substrates were investigated using a magneto-optical Kerr effect magnetometer. In-plane uniaxial magnetic anisotropy was observed in the virgin state. The strain induced by bending the flexible substrate was applied on the sample to change the magnetic properties of CoFeB. The strain induced uniaxial magnetic anisotropy changed linearly with the deformation by about 8.41 × 1041 erg/cm3 at 1% of deformation. Our results prove the magnetic properties of CoFeB grown on flexible polyimide substrate can be tuned effectively by bending, which could be important for future flexible spintronics. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922201 and 2015CB921401) and the National Natural Science Foundation of China (Grant Nos. 11174272, 11474272, 11274371, 51431009, and 61225021).