Science.gov

Sample records for magnetic anisotropy field

  1. Anisotropy in MHD turbulence due to a mean magnetic field

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.

    1982-01-01

    The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.

  2. Studying the Interstellar Magnetic Field from Anisotropies in Velocity Channels

    NASA Astrophysics Data System (ADS)

    Esquivel, A.; Lazarian, A.; Pogosyan, D.

    2015-11-01

    Turbulence in the interstellar medium is anisotropic due to the ubiquitous magnetic fields. This anisotropy depends on the strength of the magnetic field and leaves an imprint on observations of spectral line maps. We use a grid of ideal magnetohydrodynamic simulations of driven turbulence and produce synthetic position-position-velocity maps to study the turbulence anisotropy in velocity channels of various resolutions. We found that the average structure function of velocity channels is aligned with the projection of the magnetic field on the plane of the sky. We also found that the degree of such anisotropy increases with the magnitude of the magnetic field. For thick velocity channels (low velocity resolution), the anisotropy is dominated by density, and the degree of anisotropy in these maps allows one to distinguish sub-Alfvénic and super-Alfvénic turbulence regimes, but it also depends strongly on the sonic Mach number. For thin channels (high velocity resolution), we find that the anisotropy depends less on the sonic Mach number. An important limitation of this technique is that it only gives a lower limit on the magnetic field strength because the anisotropy is related only to the magnetic field component on the plane of the sky. It can, and should, be used in combination with other techniques to estimate the magnetic field, such as the Fermi-Chandrasekhar method, anisotropies in centroids, Faraday rotation measurements, or direct line-of-sight determinations of the field from Zeeman effect observations.

  3. Anisotropy in MHD turbulence due to a mean magnetic field

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.

    1983-01-01

    The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers. Previously announced in STAR as N83-12998

  4. Magnetic stress anisotropy field in plated cylindrical Permalloy films.

    NASA Technical Reports Server (NTRS)

    Lutes, O. S.

    1971-01-01

    An analysis is made of the magnetic stress anisotropy field (Hks) arising from internal and external stress sources in plated-wire memory elements. The analysis takes into consideration circumferential composition variation and cylindrical geometry of the Permalloy film. Expressions are derived relating Hks to uniaxial film stress, average composition, and amplitude of composition variation. A result of particular importance is that even for average zeromagnetostrictive composition (ZMC) films, Hks may still make an appreciable contribution to the total anisotropy field if the composition is not uniform. Calculated Hks characteristics are shown to correlate with anisotropy field changes observed in annealing experiments. Examples are given to show the importance of composition uniformity in determining the stability of the anisotropy field. The utility of the analysis is extended by the inclusion of data expressing the inverse relation between anisotropy field and easy-axis dispersion in the film.

  5. Anisotropies in magnetic field evolution and local Lyapunov exponents

    SciTech Connect

    Tang, X.Z.; Boozer, A.H.

    2000-01-13

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates.

  6. Banana regime pressure anisotropy in a bumpy cylinder magnetic field

    SciTech Connect

    Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.; Hegna, C.C.

    2006-01-15

    The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations ({epsilon}{identical_to}{delta}B/2B<<1). Solutions are obtained by integrating the drift-kinetic equation along field lines in steady state. A closure for the local value of the parallel viscous force B{center_dot}{nabla}{center_dot}{pi}{sub parallel} is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force by a factor of O(1/{epsilon}). A high-frequency limit ({omega}>>{nu}) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion in Cordey eigenfunctions.

  7. Magnetic Anisotropy and Crystalline Electric Field in Quaternary Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Lee, W. C.

    All isostructural compounds RNi2B2C (R =Er, Ho, Dy) show some magnetic transitions in magnetization isotherms at certain applied magnetic fields and temperatures above and below Neel and superconducting temperatures (TN, TC) where TN/TC varies from 0.57 to 1.66 for ErNi2B2C and DyNi2B2C. By using theoretical group analysis of D4h (I4/mmm) to the energy level scheme of crystalline electric field of magnetization isotherms anisotropy at various temperatures, we have obtained some possible ground state energy levels such as singlet Γ4 and first excited doublet state Γ5 in addition to another excited singlet Γ1 . Our crystalline electric field energy scheme analysis shows some qualitative agreement between theoretical calculation and experiments at high magnetic fields regime only, which means the interplay between antiferromagnetsm and superconductivity should be included. Magnetic Anisotropy and Crystalline Electric Field in Quaternary Intermetallic Compounds.

  8. Solar Surface Anisotropy effect on the Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2015-10-01

    Within the literature there are at least 15 references indicating that the horizontal magnetic flux does not exactly balance vertical flux in sunspots, leading to the surprising result that div B would depart from zero. Intuitively, this has to be related to the stratification at the surface of the star, due to which horizontal and vertical typical lengths are different. This surface anisotropy results from gravity, but how does gravity influence the magnetic field? To answer this question, a scenario has been proposed in two recent publications, based on anisotropic Debye shielding. The presentation reported in this paper was devoted to investigate the possibility and causes of a non-zero div B. A scaling law associated with the anisotropy is able to reestablish the nullity of div B, which would lead to a renewed MHD in the solar photosphere layer. An eventual observation in the laboratory is also reported.

  9. Magnetic Anisotropy and the Orientation of Retinal Rods in a Homogeneous Magnetic Field

    PubMed Central

    Hong, Felix T.; Mauzerall, David; Mauro, Alexander

    1971-01-01

    The reported orientation of retinal rods in a homogeneous magnetic field can be explained by the magnetic anisotropy of oriented molecules in the disc membranes of the rods. The energy of a single rod as a function of orientation in the magnetic field, the time required for alingment of the rod in a viscous medium, and the fluctuations of orientation are calculated. Arguments that rhodopsin is the constituent responsible for the effect are given. The possibility of orientation due to inhomogeneity of the magnetic field is ruled out. The application of magnetic anisotropy as an experimental tool in biology is indicated. PMID:5288376

  10. Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

    2001-07-01

    We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified.

  11. Field-dependent perpendicular magnetic anisotropy in CoFeB thin films

    NASA Astrophysics Data System (ADS)

    Barsukov, I.; Fu, Yu; Gonçalves, A. M.; Spasova, M.; Farle, M.; Sampaio, L. C.; Arias, R. E.; Krivorotov, I. N.

    2014-10-01

    We report ferromagnetic resonance measurements of perpendicular magnetic anisotropy in thin films of Ta/Co20Fe60B20/MgO as a function of the Co20Fe60B20 layer thickness. The first and second order anisotropy terms show unexpectedly strong dependence on the external magnetic field applied to the system during the measurements. We propose strong interfacial spin pinning as a possible origin of the field-dependent anisotropy. Our results imply that high-field anisotropy measurements cannot be directly used for quantitative evaluation of zero-field performance parameters of CoFeB-based devices such as spin torque memory.

  12. Correlation between proton anisotropy and magnetic field direction in the distant geotail

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Scholer, M.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Smith, E. J.; Tsurutani, B. T.

    1984-01-01

    A statistical analysis has been conducted of the anisotropy of suprathermal protons and the polarity of the magnetic field during April 10-16, 1983. At this time, ISEE-3 was at lunar distances in the geomagnetic tail of the earth, and well within the nominal magnetopause. The first-order anisotropy is presently correlated with the latitude angle and the z-component of the magnetic field. The anisotropy direction's frequency distribution is strongly peaked in the earthward and tailward direction, indicating fast earthward and tailward flows. For large anisotropies, and within 5 earth radii of the nominal neutral sheet position, a strong correlation is found between the earthward-streaming suprathermal protons and the northward polarity of the magnetic field; large tailward anisotropies are generally correlated with southward magnetic field polarity. This correlation is most simply interpreted in terms of a neutral line or reconnection model.

  13. Dynamic Behavior Analysis of Crystal with Magnetic Anisotropy under Imposition of Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Iwai, Kazuhiko

    2010-12-01

    The alignment behavior of a crystal with a magnetic anisotropy of χc < χa under the imposition of a rotating magnetic field has been investigated by numerical calculation. The promotion of the crystal alignment when the projection of the magnetically hard axis on the magnetic field rotating plane is parallel to the magnetic field direction and its suppression when the magnetically hard axis is perpendicular to the magnetic field direction can be explained by the fact that the direction of the driving torque acting on the crystal minimizes the magnetic energy. Non dimensional alignment time normalized by the alignment time under the imposition of a static field is constant in the out-of-step region where the crystal cannot follow the magnetic field rotation during its alignment. The initial phase difference between the projection of the magnetically hard axis on the magnetic field rotating plane and its direction hardly affects the alignment time in the out-of-step region but strongly affects that in the synchronous region where the crystal rotation synchronous with the magnetic field rotation. A crystal aligns quickly if the initial phase difference is between 0 and 90° in the synchronous region. The minimum alignment time is the same as that under the imposition of a static field.

  14. Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus; Ludtka, Gerard Michael; Rios, Orlando; Parish, Chad M

    2015-07-09

    During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.

  15. Method and means for measuring the anisotropy of a plasma in a magnetic field

    DOEpatents

    Shohet, J.L.; Greene, D.G.S.

    1973-10-23

    Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)

  16. Magnetic field-dependent shape anisotropy in small patterned films studied using rotating magnetoresistance

    NASA Astrophysics Data System (ADS)

    Fan, Xiaolong; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng

    2015-11-01

    Based on the electric rotating magnetoresistance method, the shape anisotropy of a Co microstrip has been systematically investigated. We find that the shape anisotropy is dependent not only on the shape itself, but also on the magnetization distribution controlled by an applied magnetic field. Together with micro-magnetic simulations, we present a visualized picture of how non-uniform magnetization affects the values and polarities of the anisotropy constants and . From the perspective of potential appliantions, our results are useful in designing and understanding the performance of micro- and nano-scale patterned ferromagnetic units and the related device properties.

  17. Magnetic field-dependent shape anisotropy in small patterned films studied using rotating magnetoresistance.

    PubMed

    Fan, Xiaolong; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng

    2015-01-01

    Based on the electric rotating magnetoresistance method, the shape anisotropy of a Co microstrip has been systematically investigated. We find that the shape anisotropy is dependent not only on the shape itself, but also on the magnetization distribution controlled by an applied magnetic field. Together with micro-magnetic simulations, we present a visualized picture of how non-uniform magnetization affects the values and polarities of the anisotropy constants K1 and K2. From the perspective of potential appliantions, our results are useful in designing and understanding the performance of micro- and nano-scale patterned ferromagnetic units and the related device properties. PMID:26563520

  18. Magnetic field-dependent shape anisotropy in small patterned films studied using rotating magnetoresistance

    PubMed Central

    Fan, Xiaolong; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng

    2015-01-01

    Based on the electric rotating magnetoresistance method, the shape anisotropy of a Co microstrip has been systematically investigated. We find that the shape anisotropy is dependent not only on the shape itself, but also on the magnetization distribution controlled by an applied magnetic field. Together with micro-magnetic simulations, we present a visualized picture of how non-uniform magnetization affects the values and polarities of the anisotropy constants and . From the perspective of potential appliantions, our results are useful in designing and understanding the performance of micro- and nano-scale patterned ferromagnetic units and the related device properties. PMID:26563520

  19. Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance

    SciTech Connect

    Zhang, Y.; Klein, J.-O.; Chappert, C.; Ravelosona, D.; Zhao, W. S.

    2014-01-20

    High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.

  20. The effect of magnetic field on the anisotropy of the ultrasonic attenuation in magnetic liquids

    NASA Astrophysics Data System (ADS)

    Skumiel, A.; Labowski, M.; Hornowski, T.

    1997-01-01

    Experimental results for the DC magnetic field influence on the anisotropy of attenuation of ultrasound in ferrofluids are presented. The measurements were performed for the frequency 1.18 MHz, at the temperatures 10 and 0022-3727/30/1/005/img1, with magnetic field strengths H = 39.8, 79.58 and 0022-3727/30/1/005/img2. Comparison of the experimental results with the Taketomi theory allowed the determination of the cluster radius and the number density of the colloidal particles.

  1. Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism

    PubMed Central

    Barnes, Stewart E.; Ieda, Jun'ichi; Maekawa, Sadamichi

    2014-01-01

    The control of the magnetism of ultra-thin ferromagnetic layers using an electric field, rather than a current, has many potential technologically important applications. It is usually insisted that such control occurs via an electric field induced surface charge doping that modifies the magnetic anisotropy. However, it remains the case that a number of key experiments cannot be understood within such a scenario. Much studied is the spin-splitting of the conduction electrons of non-magnetic metals or semi-conductors due to the Rashba spin-orbit coupling. This reflects a large surface electric field. For a magnet, this same splitting is modified by the exchange field resulting in a large magnetic anisotropy energy via the Dzyaloshinskii-Moriya mechanism. This different, yet traditional, path to an electrically induced anisotropy energy can explain the electric field, thickness, and material dependence reported in many experiments. PMID:24531151

  2. Field-dependent perpendicular magnetic anisotropy in CoFeB thin films

    SciTech Connect

    Barsukov, I. Krivorotov, I. N.; Fu, Yu; Gonçalves, A. M.; Sampaio, L. C.; Spasova, M.; Farle, M.; Arias, R. E.

    2014-10-13

    We report ferromagnetic resonance measurements of perpendicular magnetic anisotropy in thin films of Ta/Co{sub 20}Fe{sub 60}B{sub 20}/MgO as a function of the Co{sub 20}Fe{sub 60}B{sub 20} layer thickness. The first and second order anisotropy terms show unexpectedly strong dependence on the external magnetic field applied to the system during the measurements. We propose strong interfacial spin pinning as a possible origin of the field-dependent anisotropy. Our results imply that high-field anisotropy measurements cannot be directly used for quantitative evaluation of zero-field performance parameters of CoFeB-based devices such as spin torque memory.

  3. Anisotropy in the Cosmic Microwave background As a Probe for early Universe magnetic field

    NASA Astrophysics Data System (ADS)

    Duorah, H. L.

    2015-08-01

    The cosmic background radiation is the remnant of the Big Bang stretched into the microwave region characterized by a temperature of 2.725K. The fluctuation in the background produces anisotropies and it is detected with amplitude of △T/T≈10-5 . Various effects like the Sachs-Wolfe effect, Sunyaev-Zel’ dovich effect are imprinted in this background. The effect of a primordial magnetic field in the plasma at the last scattering surface is examined here. The high magnetic field generated during the phase transition in the early universe is found to be too small to produce the observed anisotropy. However it can be surmised that the magnetic field being ubiquitous can be found in the plasma at the last scattering surface to contribute to the anisotropy. A magnetic field of about 10-2G may produce the desired effect.

  4. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    SciTech Connect

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.

  5. Approach to fabricating Co nanowire arrays with perpendicular anisotropy: Application of a magnetic field during deposition

    NASA Astrophysics Data System (ADS)

    Ge, Shihui; Li, Chao; Ma, Xiao; Li, Wei; Xi, Li; Li, C. X.

    2001-07-01

    Cobalt (Co) nanowire arrays were electrodeposited into the pores of polycarbonate membranes. A magnetic field parallel or perpendicular to the membrane plane was applied during deposition to control the wire growth. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer were employed to investigate the structure as well as the magnetic properties of the nanowire arrays. The results show that the magnetic field applied during deposition strongly influences the growth of Co nanowires, inducing variations in their crystalline structure and magnetic properties. The sample deposited with the field perpendicular to the membrane plane exhibits a perpendicular magnetic anisotropy with greatly enhanced coercivity and squareness as a result of the preferred growth of Co grains with the c axis perpendicular to the film plane. In contrast, the deposition in a parallel magnetic field forces Co grains to grow with the c axis parallel to the film plane, resulting in in-plane anisotropy.

  6. Leveraging intrinsic chain anisotropy to align coil-coil block copolymers with magnetic fields

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Zhang, Kai; Gopinadhan, Manesh; Larson, Steve; Majewski, Pawel; Yager, Kevin; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    Magnetic field alignment of block copolymers (BCPs) has typically relied on the presence of liquid crystalline or crystalline assemblies to provide sufficient magnetic anisotropy to drive alignment. Recent experiments however show that alignment is also possible in simple coil-coil BCPs. In particular, alignment of lamellae was observed in poly(styrene-b-4-vinylpyridine) (PS-P4VP) on cooling across the order-disorder transition at field strengths as low as 1 T, with alignment improving markedly with increasing field strength and decreasing cooling rate. Here we discuss the intrinsic chain anisotropy which drives the observed alignment, and its display as a net microdomain anisotropy due to chain tethering at the block interface. We use in-situ X-ray scattering to study the phase behavior and temperature-, time-, and field- dependent dynamics of magnetic alignment in coil-coil BCPs, highlighting the important roles of chain anisotropy and grain size in alignment. For the right combination of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly in other coil-coil systems, including cylinder-forming poly(styrene-b-dimethylsiloxane). Field alignment of PS-P4VP with PEO and other blends provides a route to form functional materials such as nanoporous films and ion conducting polymers.

  7. Measuring remanence anisotropy of hematite in red beds: anisotropy of high-field isothermal remanence magnetization (hf-AIR)

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario; Kodama, Kenneth P.

    2009-09-01

    The potential of using high-field anisotropy of isothermal remanence magnetization (hf-AIR) measurements for determining the origin of natural remanent magnetization in red beds and for identifying and correcting possible red-bed inclination shallowing was investigated for specimens of the Carboniferous Shepody Formation of New Brunswick and Nova Scotia, Canada. The technique makes it possible for a typical paleomagnetic laboratory to measure the remanence anisotropy of high-coercivity hematite. High-field (hf) AIR was used in conjunction with 100 mT alternating field (af) and 120°C thermal demagnetization to separate the contribution of hematite to the remanence anisotropy from that of magnetite/maghemite and goethite, respectively. A 5-T impulse DC magnetic field was used for the hf-AIR to reset the magnetic moment of high-coercivity hematite so that demagnetization between AIR orientations was not necessary. The ability of a 5-T field to reset the magnetization was tested by generating an isothermal remanent magnetization acquisition curve for hematite by using impulse DC magnetic fields up to 5 T in one orientation and followed by applying a field in the opposite direction at each step. Each field application was treated by 120°C heating and 100 mT af demagnetization before measurement. At 5 T, the difference between the magnetizations applied in opposite directions disappeared indicating that no magnetic memory persisted at this field strength. We performed a validity and reproducibility test of our hf-AIR measurement technique by measuring three specimens multiple times along two orthogonal coordinate systems. The method yielded highly reproducible results and, on rotating the specimen's coordinates, the fabric rotated by 90° as expected, showing that it is not an artifact of the technique. We also measured hf-AIR on samples that had previously been chemically demagnetized in 3N HCl to remove the secondary, chemically grown pigmentary hematite. The hf-AIR fabric of leached samples is similar to that of untreated samples, but shows a better-defined magnetic lineation and imbrication. We interpret the fabric observed for the Shepody Formation to be a compactional fabric that has been reoriented by strain during folding following a flexural-slip model.

  8. Secondary CMB anisotropies from bulk motions in the presence of stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kunze, Kerstin E.

    2014-05-01

    Bulk motions of electrons along the line of sight induce secondary temperature fluctuations in the postdecoupling, reionized Universe. In the presence of a magnetic field not only the scalar mode but also the vector mode act as a source for the bulk motion. The resulting angular power spectrum of temperature anisotropies of the cosmic microwave background is calculated assuming a simple model of reionization. Contributions from the standard adiabatic, curvature mode and a nonhelical magnetic field are included. The contribution due to magnetic fields with field strengths of order nG and negative magnetic spectral indices becomes important for multipoles larger than ℓ˜104.

  9. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    SciTech Connect

    Zhou, Hengan; Fan, Xiaolong Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  10. Determination of the electric field induced anisotropy change in sub-100 nm perpendicularly magnetized devices

    NASA Astrophysics Data System (ADS)

    Huang, Jiancheng; Tran, Michael; Lim, Sze Ter; Huang, Aihong; Yang, Chuyi; Yap, Qi Jia; Han, Guchang

    2016-05-01

    We measure the voltage or electric field (EF) modulated change in anisotropy using two methods on the same nanometer sized device: 1) Directly using the area of the hard axis magnetization loop and 2) Indirectly using the switching field distribution method. Both methods yield similar values of efficiency. With the indirect method, the efficiency derived from the thermal stability was found to be more consistent than that from the anisotropy field. Our data also suggests that memory devices that rely solely on EF effects may benefit from larger device sizes.

  11. Effects of the magnetic field direction and anisotropy on the interband light absorption of an asymmetric quantum dot

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2013-06-01

    In this paper, the direct interband transition and the threshold frequency of absorption in a two-dimensional anisotropic quantum dot are studied under the influence of a tilted external magnetic field. We first calculate the analytical wave functions and energy levels using a transformation to simplify the Hamiltonian of the system. Then, we obtain the analytical expressions for the light interband absorption coefficient and the threshold frequency of absorption as a function of the magnetic field, magnetic field direction, and anisotropy of the system. According to the results obtained from the present work, we find that (i) the absorption threshold frequency (ATF) increases when the magnetic field increases for all directions. (ii) When anisotropy is increased, ATF increases. (iii) At small anisotropy, the magnetic field direction has no important effect on the ATF. In brief, the magnetic field, magnetic field direction, and anisotropy play important roles in the ATF and absorption coefficient.

  12. On the alignment of plasma anisotropies and the magnetic field direction in the solar wind

    NASA Technical Reports Server (NTRS)

    Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Ness, N. F.

    1977-01-01

    One year's Imp 6 solar wind plasma and magnetic field data are examined to determine whether anisotropies in particle velocity distributions are aligned with the measured interplanetary magnetic field vector. Alignment of components in the analysis plane was generally found to be excellent whenever plasma parameter magnitudes were larger than determination uncertainties, although some spread exists (typical rms approximately equal to 10 deg). By assuming cylindrical symmetry about the simultaneously measured magnetic field vector during the 1-year interval under study, three-dimensional values of selected solar wind plasma thermal parameters were constructed from the two-dimensional plasma measurements, and the statistical properties of their distributions have been tabulated.

  13. MAGNETIC FIELDS AND COSMIC-RAY ANISOTROPIES AT TeV ENERGIES

    SciTech Connect

    Battaner, Eduardo; Castellano, Joaquín; Masip, Manuel E-mail: jcastellano@correo.ugr.es

    2015-02-01

    Several cosmic-ray (CR) observatories have provided high-accuracy maps of the sky at TeV-PeV energies. The data reveal an O(0.1%) deficit from north galactic directions that peaks at 10 TeV and then evolves with the energy, together with other anisotropies at smaller angular scales. Using the Boltzmann equation, we derive expressions for the CR flux that fit these features. The anisotropies depend on the local interstellar magnetic field B{sub IS}, on the average galactic field B{sub R} in our vicinity, and on correlations between fluctuating quantities. We show that the initial dipole anisotropy along B{sub IS} can be modulated by changes in the global CR flow, and that a variation in the dipole direction would imply a given radius of coherence for the local B{sub IS}. We also show that small- and medium-scale anisotropies may appear when the full-sky anisotropy finds a field configuration acting as a magnetic lens.

  14. Anisotropy of the solar network magnetic field around the average supergranule

    NASA Astrophysics Data System (ADS)

    Langfellner, J.; Gizon, L.; Birch, A. C.

    2015-07-01

    Supergranules in the quiet Sun are outlined by a web-like structure of enhanced magnetic field strength, the so-called magnetic network. We aim to map the magnetic network field around the average supergranule near disk center. We use observations of the line-of-sight component of the magnetic field from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The average supergranule is constructed by coaligning and averaging over 3000 individual supergranules. We determine the positions of the supergranules with an image segmentation algorithm that we apply to maps of the horizontal flow divergence measured using time-distance helioseismology. In the center of the average supergranule, the magnetic (intranetwork) field is weaker by about 2.2 Gauss than the background value (3.5 Gauss), whereas it is enhanced in the surrounding ring of horizontal inflows (by about 0.6 Gauss on average). We find that this network field is significantly stronger west (prograde) of the average supergranule than in the east (by about 0.3 Gauss). With time-distance helioseismology, we find a similar anisotropy. The observed anisotropy of the magnetic field adds to the mysterious dynamical properties of solar supergranulation.

  15. Engineering the magnetic anisotropy of atomic-scale nanostructure under electric field

    NASA Astrophysics Data System (ADS)

    Zhu, Wanjiao; Ding, Hang-Chen; Tong, Wen-Yi; Gong, Shi-Jing; Wan, Xiangang; Duan, Chun-Gang

    2015-02-01

    Atomic-scale magnetic nanostructures are promising candidates for future information processing devices. Utilizing external electric field to manipulate their magnetic properties is an especially thrilling project. Here, by carefully identifying the different contributions of each atomic orbital to the magnetic anisotropy energy (MAE) of the ferromagnetic metal films, we argue that it is possible to engineer both the MAE and the magnetic response to the electric field of atomic-scale magnetic nanostructures. Taking the iron monolayer as a matrix, we propose several interesting iron nanostructures with dramatically different magnetic properties. Such nanostructures could exhibit a strong magnetoelectric effect. Our work may open new avenues to the artificial design of electrically controlled magnetic devices.

  16. Effects of the galactic magnetic field upon large scale anisotropies of extragalactic cosmic rays

    SciTech Connect

    Harari, D.; Mollerach, S.; Roulet, E. E-mail: mollerach@cab.cnea.gov.ar

    2010-11-01

    The large scale pattern in the arrival directions of extragalactic cosmic rays that reach the Earth is different from that of the flux arriving to the halo of the Galaxy as a result of the propagation through the galactic magnetic field. Two different effects are relevant in this process: deflections of trajectories and (de)acceleration by the electric field component due to the galactic rotation. The deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the Earth from another direction. This applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar Compton-Getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. For an observer moving with the solar system, cosmic rays traveling through far away regions of the Galaxy also experience an electric force coming from the relative motion (due to the rotation of the Galaxy) of the local system in which the field can be considered as being purely magnetic. This produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux.

  17. Modification of the classical Heisenberg helimagnet by weak uniaxial anisotropy and magnetic field

    SciTech Connect

    Zaliznyak, I.A.; Zhitomirsky, M.E.

    1995-09-01

    A classical ground state of the isotropic Heisenberg spin Hamiltonian on a primitive Bravais lattice is known to be a single-Q plane helix. Additional uniaxial anisotropy and external magnetic field can greatly distort this structure by generating higher-order (at the wave vectors nQ) Fourier harmonics in the spatial spin configuration. These features are not captured within the usual formalism based on the Luttinger-Tisza theorem, when the classical ground state energy is minimized under the {open_quotes}weak{close_quotes} condition on the lengths of the spins. We discuss why the correct solution is lost in that approach and present another microscopic treatment of the problem. For easy-axis and easy-plane quadratic uniaxial anisotropy it allows one to find the classical ground state for general Q and for any orientation of the magnetic field considering the effect of anisotropy (but not the field) as a perturbation of the exchange structure. As a result, the classical ground state energy, the uniform magnetization, and the magnetic Bragg peak intensities that are measured in the experiments are calculated. 21 refs., 1 fig.

  18. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  19. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  20. Enhancement of electric-field-induced change of magnetic anisotropy by interface engineering of MgO magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bonaedy, Taufik; Choi, Jun Woo; Jang, Chaun; Min, Byoung-Chul; Chang, Joonyeon

    2015-06-01

    Electric-field-induced modification of magnetic anisotropy is studied using tunnel magnetoresistance of the Co40Fe40B20/ MgO/ Co40Fe40B20 and Co40Fe40B20/ Hf (0.08 nm)/ MgO/ Co40Fe40B20 magnetic tunnel junctions. In both systems, the interfacial perpendicular magnetic anisotropy is increased with increasing electron density at the MgO interface. A quantitative comparison between the two systems reveals that the change of magnetic anisotropy energy with electric field is significantly enhanced in Co40Fe40B20/ Hf/ MgO/ Co40Fe40B20 compared to Co40Fe40B20/ MgO/ Co40Fe40B20. The sub-monolayer Hf insertion at the Co40Fe40B20/MgO interface turns out to be critical to the enhanced electric field control of the magnetic anisotropy, indicating the interface sensitive nature of the effect.

  1. Effects of the applied magnetic field and anisotropy on the spin wave gap in ultrathin magnetic films at zero temperature

    NASA Astrophysics Data System (ADS)

    Kaplan, B.; Kaplan, R.

    2014-12-01

    We investigate the calculated spin wave gap of two-dimensional magnetic films under the combined influence of the in-plane direction of the applied magnetic field and different kinds of magnetic anisotropies. We also compute the spin wave gap as a function of the applied magnetic field at zero temperature. We discuss the results in connection with experimental data reported for epitaxial Fe-deficient yttrium garnet (YIG) films grown by pulsed laser deposition (PLD) technique onto the different faces of the Gd3Ga5O12 single crystal.

  2. Effect of MgO/Fe Interface Oxidation State on Electric-Field Modulation of Interfacial Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Guan, X. W.; Cheng, X. M.; Wang, S.; Huang, T.; Xue, K. H.; Miao, X. S.

    2016-03-01

    The impact of the MgO/Fe interface oxidation state on the electric-field-modified magnetic anisotropy in MgO/Fe has been revealed by density functional calculations. It is shown that the influence of the interface oxidation is strong enough to dominate the effect of the electric field on the magnetic anisotropy of MgO/Fe-based films. The magnetoelectric coefficients are calculated to be positive for the ideal and overoxidized MgO/Fe interface, but an abnormal negative value emerges in the underoxidized case. By analyzing the interface states based on density of states and band structures, we demonstrate that the considerably different electronic structures of the three oxidized MgO/Fe interfaces lead to the strong discrepancy in the electric-field modulation of the interfacial magnetic anisotropy. These results are of considerable interest in the area of electric-field-controlled magnetic anisotropy and switching.

  3. Pressure-anisotropy-driven microturbulence and magnetic-field evolution in shearing, collisionless plasma

    NASA Astrophysics Data System (ADS)

    Melville, Scott; Schekochihin, Alexander A.; Kunz, Matthew W.

    2016-04-01

    The nonlinear state of a high-beta collisionless plasma is investigated where an imposed shear amplifies or diminishes a uniform mean magnetic field, driving pressure anisotropies and, therefore, firehose or mirror instabilities. To mimic the local behaviour of a macroscopic flow, the shear is switched off or reversed after one shear time, so a new macroscale configuration is superimposed on previous microscale state. A threshold plasma beta is found: when β ≪ Ω/S (ion cyclotron frequency/shear rate), the emergence/disappearance of firehose or mirror fluctuations are quasi-instantaneous compared to the shear time (lending some credence to popular closures that assume this). This follows from the free decay of these fluctuations being constrained by the same marginal-stability conditions as their growth in the unstable regime, giving the decay time ˜β/Ω ≪ S-1. In contrast, when β ≳ Ω/S, the old microscale state only disappears on the shear timescale. In this "ultra-high-beta" regime, driven firehose fluctuations grow secularly to order-unity amplitudes, compensating for the decrease of the mean field and thus pinning the pressure anisotropy at marginal stability without scattering particles-unlike what happens at moderate β. After the shear reverses, the shearing away of these fluctuations compensates for the increase of the mean field and thus prevents growth of the pressure anisotropy, so the system stays close to the firehose threshold, does not go mirror-unstable, the total magnetic energy barely changing at all. Implications for various astrophysical situations, especially the origin of cosmic magnetism, are discussed: collisionless effects appear mostly beneficial to fast magnetic-field generation.

  4. POWER ANISOTROPY IN THE MAGNETIC FIELD POWER SPECTRAL TENSOR OF SOLAR WIND TURBULENCE

    SciTech Connect

    Wicks, R. T.; Horbury, T. S.; Forman, M. A.; Oughton, S.

    2012-02-10

    We observe the anisotropy of the power spectral tensor of magnetic field fluctuations in the fast solar wind for the first time. In heliocentric RTN coordinates, the power in each element of the tensor has a unique dependence on the angle between the magnetic field and velocity of the solar wind ({theta}{sub B}) and the angle of the vector in the plane perpendicular to the velocity ({phi}{sub B}). We derive the geometrical effect of the high speed flow of the solar wind past the spacecraft on the power spectrum in the frame of the plasma P(k) to arrive at the observed power spectrum P(f, {theta}{sub B}, {phi}{sub B}) based on a scalar field description of turbulence theory. This allows us to predict the variation in the {phi}{sub B} direction and compare it to the data. We then transform the observations from RTN coordinates to magnetic-field-aligned coordinates. The observed reduced power spectral tensor matches the theoretical predictions we derive in both RTN and field-aligned coordinates, which means that the local magnetic field we calculate with wavelet envelope functions is an accurate representation of the physical axis of symmetry for the turbulence and implies that on average the turbulence is axisymmetric. We also show that we can separate the dominant toroidal component of the turbulence from the smaller but significant poloidal component and that these have different power anisotropy. We also conclude that the magnetic helicity is anisotropic and mostly two dimensional, arising from wavevectors largely confined to the plane perpendicular to B .

  5. Anisotropy in Magnetism

    NASA Astrophysics Data System (ADS)

    Baberschke, Klaus

    The enormous research on magnetic properties of ultrathin films and nanostructures produces also new activities in the fundamental understanding of the magnetic anisotropy energy (MAE) and the anisotropy of the orbital magnetic momentapprox 0.05\\ Å. This small change in structure and symmetry increa ses the MAE by several orders of magnitude and lifts the quenching of the orbital moment. Increases of 20-30 % of the orbital moment mu _{L} are observed. This experimental finding is confirmed by full relativistic ab initio calculations. Various experiments deliver the full temperature dependence of all MAE contributions. The temperature dependence remains a challenge for the theory in itine rant magnetism.

  6. Anatomy of electric field control of perpendicular magnetic anisotropy at Fe/MgO interfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F.; Yang, H. X.; Hallal, A.; Dieny, B.; Chshiev, M.

    2016-01-01

    The charge-mediated effect of electric field on the perpendicular magnetic anisotropy (PMA) of Fe/MgO interfaces is investigated using first-principles calculations. We present an approach by discussing this effect in relation to the intrinsic dipole field existing at the Fe/MgO interface. A firm correlation between the PMA and the interfacial dipole is established and further verified in the absence of an applied electric field. The on-site projected PMA analysis not only elucidates that the effect of electric field on the PMA extends beyond the interfacial Fe layer, but also shows that the second Fe layer carries the largest contribution to the effect. This observation is interpreted in relation to the orbital hybridization changes induced by applying an electric field.

  7. Alignment Behavior of Crystal with Magnetic Anisotropy of χc < χa under Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Iwai, Kazuhiko; Niimi, Masahiro; Kohama, Takenori

    2009-10-01

    The alignment behavior of a crystal has been investigated by numerical calculation and an in situ observation experiment with a process combining magnetic field imposition and sample rotation to form unidirectionally aligned crystals with a magnetic anisotropy of χc < χa. The experimentally observed alignment behavior of a polymeric fiber and its alignment time agreed with the numerically calculated ones. Crystal alignment under the out-of-step condition alternately repeats the alignment duration and the keeping of a constant duration, and finally the crystal aligns in a specific direction. The alignment time under the synchronous condition is longer than that under the out-of-step condition if the magnetic field intensity is constant. To reduce the alignment time, a strong magnetic field under the out-of-step condition is desirable in this process.

  8. Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese-zinc ferrite composites

    NASA Astrophysics Data System (ADS)

    Babayan, V.; Kazantseva, N. E.; Moučka, R.; Sapurina, I.; Spivak, Yu. M.; Moshnikov, V. A.

    2012-01-01

    This work is devoted to the analysis of factors responsible for the high-frequency shift of the complex permeability (μ*) dispersion region in polymer composites of manganese-zinc (MnZn) ferrite, as well as to the increase in their thermomagnetic stability. The magnetic spectra of the ferrite and its composites with polyurethane (MnZn-PU) and polyaniline (MnZn-PANI) are measured in the frequency range from 1 MHz to 3 GHz in a longitudinal magnetization field of up to 700 Ое and in the temperature interval from -20 °С to +150 °С. The approximation of the magnetic spectra by a model, which takes into account the role of domain wall motion and magnetization rotation, allows one to determine the specific contribution of resonance processes associated with domain wall motion and the natural ferromagnetic resonance to the μ*. It is established that, at high frequencies, the μ* of the MnZn ferrite is determined solely by magnetization rotation, which occurs in the region of natural ferromagnetic resonance when the ferrite is in the “single domain” state. In the polymer composites of the MnZn ferrite, the high-frequency permeability is also determined mainly by the magnetization rotation; however, up to high values of magnetizing fields, there is a contribution of domain wall motion, thus the “single domain” state in ferrite is not reached. The frequency and temperature dependence of μ* in polymer composites are governed by demagnetizing field and the induced magnetic anisotropy. The contribution of the induced magnetic anisotropy is crucial for MnZn-PANI. It is attributed to the elastic stresses that arise due to the domain wall pinning by a polyaniline film adsorbed on the surface of the ferrite during in-situ polymerization.

  9. Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Roberts, D. Aaron

    2010-01-01

    We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.

  10. Petrophysical Characterization of Stony Meteorites Using Low Field Magnetic Susceptibility: Initial Results From Anisotropy Measurements

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Ernst, R. E.; Herd, R. K.; Claire, S.

    2004-05-01

    Low field magnetic susceptibility represents a fast, systematic and non-destructive technique of meteorite classification [1-4]. We previously reported measurements of bulk susceptibility, and its frequency dependence, along with a `proxy' measure of anisotropy, on 204 specimens from 108 different meteorites in the National Meteorite Collection of Canada [5,6]. Measurements were performed on a Sapphire Instruments Model 2B. Bulk susceptibility values followed expected trends, governed by metal content, with values increasing from LL, to L, to H, to E chondrites. Frequency dependence (19000 vs 825 Hz) was greatest in H and C chondrites. Aubrites (AUB) and Howardites (HOW) had the lowest. Anisotropy of magnetic susceptibility (AMS) was measured using a `proxy' approach: the mean value determined from a series of random sample orientations was compared with repeated measurements in one orientation. AUB, E chondrites and Martian SNCs had the largest inferred anisotropies, while LL and C chondrites had the lowest. Here we report initial results from a follow-up study. Quantitative measurements of the AMS were made on 67 stony meteorite specimens. AMS measurements [3,5,6,7,8,9] can provide information on the physical fabric of the meteorite, and may relate to its deformational history. Samples measured show significant degrees of anisotropy ranging from 1-50 % for an individual specimen (in parentheses is the number of specimens used in the class mean): AUB (5), Acapulcoites (1) and E chondrites (10) display the largest degrees of anisotropy, 40±11 (1 standard deviation), 34, and 24±10, respectively. These classes are followed by Diogenite (1) 20, H (13) 14±7 and L (10) 13±6 chondrites, Brachinite (1) 11, Ureilite (2) 8, Eucrite (4) 7±4, C chondrites (14) 6±3, and Rumurutiite (1) 4. These results match a similar trend based on the `proxy' method [5,6]: AUB and E chondrites were found to have the highest inferred anisotropies followed by tightly grouped H and L chondrites, with C and LL chondrites having the lowest inferred anisotropies. The magnitudes of the ellipsoid shape varied significantly within meteorite class, and there is variability between classes. The mean ellipsoid shape and standard deviation for each class follows. Prolate ellipsoids: AUB (+17±15), Diogenite (+8), E chondrites (+4±13), and Ureilite (+4). Oblate ellipsoids dominate the remaining classes: Acapulcoite (-31), Brachinite (-15), L chondrites (-7±10), H (-5±12), Eucrite (-6±4), C (4±3) and Rumurutiite (-3). There is consistency of AMS among multiple specimens of the same meteorite. Future work on samples from the National Meteorite Collection of Canada will also include measurements of the intensity of natural remanent magnetization, and of bulk density. These techniques, measuring several physical properties non-destructively, show great promise for characterizing meteorites. References: [1] Kukkonen I.T. & Pesonen L.J. (1983) Bull. Geol. Soc. Finland 55: 157-177. [2] Terho M. et al. (1993) Studia geoph. et geod. 37: 65-82. [3] Rochette P. et al. (2001) Quaderni di Geofisica, 18, 30 p. [4] Rochette P. et al. (2003) Meteor. Planet. Sci. 2002, 38(2). [5] Smith D.L. et al. (2003) Abstract 1939, Lunar Planet. Sci. XXXIV. [6] Smith D.L. (2003). B.Sc. Thesis, Carleton U., Ottawa. [7] Sneed et al. (1988) Meteoritics. 23, 139-149. [8] Morden S.J & Collinson D.W. (1992) Earth Planet Sci. Lett. 109, 185-204. [9] Smith D.L. et al. (2003) Abstract 5275, Met. Soc. 66.

  11. Strain-induced Electric Field Switching of Magnetic Anisotropy in Ferromagnetic/Ferroelectric Interface

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj; Ong, P. V.; Tsevelmaa, T.; Kioussis, N.

    2015-03-01

    Multifunctionality of the magnetoelectric materials, simultaneous electric and magnetic orders, would offer a great opportunity in memory applications, in which switching the magnetization direction with an electric field is the main prerequisite. Ab initio calculations were carried out to reveal the importance of an epitaxial strain on magnetoelectric effects, possibly the spin reorientation of magnetization by ferroelectric polarization, in the interface between ferroelectric and ferromagnetic films. As a generic example, we show that the compressive strains larger than 1% that imposed to the in-plane lattice of SrTiO3 (001) underneath the Fe (001) overlayers result in a phase transition in magnetocrystalline anisotropy (MCA) from an in-plane to perpendicular magnetization with polarization reversal. A considerably large sensitivity of MCA with ferroelectric polarization is also found in the strained Fe/SrTiO3 (001), a factor of greater than those of well-studied multiferroic heterostructures. This switching of magnetization pertains to a competition of spin-orbit coupling states between t2 g bands, driven by the mutual mechanisms of the electrostatic screening with the spin-polarized carriers and the orbital hybridization at the interface. This work was supported by NSF Grant No. ERCTANMS- 1160504.

  12. Anisotropy of 2G HTS racetrack coils in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Chudy, Michal; Chen, Yiran; Zhang, Min; Coombs, T. A.

    2013-07-01

    Pancake or racetrack coils wound with second generation high-temperature superconductors (2G HTSs) are important elements for numerous applications of HTS. The applications of these coils are primarily in rotating machines such as motors and generators where they must withstand external magnetic fields from various orientations. The characterization of 2G HTS coils is mostly focused on AC loss assessment, critical current and maximum magnetic field evaluation. In this study, racetrack coils will be placed in different orientations of external magnetic fields—Jc (Ic) versus angle measurements will be performed and interpreted. Full attention is paid to studies of anisotropy Jc versus angle curves for short samples of 2G HTS tapes. As will be shown, the shape of the Jc versus angle curves for tapes has a strong influence on the Jc (Ic) versus angle curves for coils. In this work, a unique and unpredicted behavior of the Jc versus angle curves for the 2G HTS racetrack coils was found. This will be analyzed and fully explained.

  13. Energetic ion anisotropies in the geomagnetic tail. I - A statistical survey. II - Magnetic field and substorm characteristics

    NASA Technical Reports Server (NTRS)

    Kettmann, Georg; Fritz, Theodore A.; Hones, Edward W., Jr.; Daly, Patrick W.

    1993-01-01

    A comprehensive data set from the ISEE 2 spacecraft is used here to perform a statistical study of events in the earth's central magnetotail that are characterized by high anisotropies of energetic ions. In about 75 percent of the cases the anisotropy vector deviates no more than 45 deg from the tidal axis. High-anisotropy samples within 45 deg of the tidal axis are dominated by the earthward fraction. High ion anisotropies are observed continuously for longer than 1 min only in a few cases. The probability of observing high ion anisotropies is significantly enhanced beyond about 16 R(E) downtail distance within a few earth radii of the neutral sheet and on the duskside of the magnetotail. The analysis is extended with respect to the local magnetic field and to the relationship between energetic ion anisotropies and substorm phases. It is found that the events can be well organized in terms of substorm expansion phase and substorm recovery. These relations and the magnetic field characteristics during the events support the notion that the near-earth source of tailward streaming ions is identical with a substorm neutral line.

  14. Effect of metal-to-metal interface states on the electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal

    NASA Astrophysics Data System (ADS)

    Guan, X. W.; Cheng, X. M.; Huang, T.; Wang, S.; Xue, K. H.; Miao, X. S.

    2016-04-01

    The impact of metal-to-metal interface on electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal (Ta, Pt, Au) is revealed by density functional calculations. We demonstrate that the contribution from the metal-to-metal interface can be strong enough to dominate the electric field effect on magnetic anisotropy of Fe/MgO-based films, and the strain could also effectively tune the electric field effect. By analyzing the interface states by density of states and band structures, the dependence of the magnetoelectric effect on metal-to-metal interface is elucidated. These results are of considerable interest in the area of electric field controlled magnetic anisotropy and switching.

  15. Magnetic anisotropy and crystalline electric field effects in RRh{sub 4}B{sub 4} single crystals.

    SciTech Connect

    Zhou, H.; Lambert, S. E.; Maple, M. B.; Dunlap, B. D.; Materials Science Division; Univ. of California at San Diego

    2009-08-01

    Research on polycrystalline RRh{sub 4}B{sub 4} samples has shown that crystalline electric field (CEF) effects play an important role in these compounds. The successful synthesis of single crystal samples of RRh{sub 4}B{sub 4} with R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu has provided an opportunity to further investigate CEF effects in these materials. Magnetization and magnetic susceptibility measurements on the RRh{sub 4}B{sub 4} single crystals revealed strong magnetic anisotropy, and the experimental results could be described well by CEF calculations based on the parameters derived from an analysis of experimental data for ErRh{sub 4}B{sub 4} single crystals. The easy directions of magnetization of these compounds are consistent with the signs of the Stevens factor {alpha}J of the CEF Hamiltonian. A strong influence of magnetic anisotropy on superconductivity was also observed.

  16. Anisotropy of magnetic susceptibility in diamagnetic limestones reveals deflection of the strain field near the Dead Sea Fault, northern Israel

    NASA Astrophysics Data System (ADS)

    Issachar, R.; Levi, T.; Marco, S.; Weinberger, R.

    2015-08-01

    To exploit the potential of anisotropy of magnetic susceptibility (AMS) as a tool to estimate the strain field around major faults, we measured the AMS of calcite-bearing diamagnetic rocks that crop out next to the Dead Sea Fault (DSF) in northern Israel. Through integrated magnetic and geochemical methods we found that the rocks are almost pure calcite rocks and therefore the magnetic fabric is primarily controlled by preferred crystallographic orientation (PCO) with the minimum principal AMS axes (k3) parallel to calcite c-axes. We applied a separation procedure in several samples with high Fe content in order to calculate the AMS anisotropy parameters and compare them to pure diamagnetic rocks. AARM, thermo-susceptibility curves and IRM were used to characterize the magnetic phases. We found that for Fe content below 500 ppm the AMS is mostly controlled by the diamagnetic phase and showed that differences in the degree of anisotropy P' up to 3% (P' = 1.005 to 1.023) and in anisotropy difference Δk (up to ~ 0.25 × 10- 6 SI) in diamagnetic rocks are related to differences of strain magnitudes. The spatial distribution of the magnetic fabrics indicates ~ N-S maximum shortening parallel to the strike of the Hula Western Border fault (HWBF), one of the main strands of the DSF in northern Israel. The anisotropy parameters suggest that the strain magnitudes increase eastward with the proximity to the HWBF. These results suggest that the strain field near the HWBF is locally deflected as a consequence of the DSF activity. In light of the "fault weakness" model and geological setting of the study area, we suggest that the area accommodates dominant transtension during the Pleistocene. The present study demonstrates the useful application of AMS measurements in "iron-free" limestones as recorders of the strain field near plate boundaries.

  17. Electric field control of the magnetic anisotropy energy of double-vacancy graphene decorated by iridium atoms.

    PubMed

    Ge, Gui-Xian; Li, Ying-Bin; Wang, Guang-Hou; Wan, Jian-Guo

    2016-04-20

    To solve the fundamental dilemma in data storage applications, it is crucial to manipulate the magnetic anisotropy energy (MAE). Herein, using first-principles calculations, we predict that the system of double-vacancy graphene decorated by iridium atoms possesses high stability, giant MAE, perpendicular-anisotropy and long-range ferromagnetic coupling. More importantly, the amplitude of MAE can be manipulated by electric fields. This is due to the change in the occupation number of Ir-5d orbitals. The present hybrid system could be a high-performance nanoscale information storage device with ultralow energy consumption. PMID:27063394

  18. Roles of the magnetic field and electric current in thermally activated domain wall motion in a submicrometer magnetic strip with perpendicular magnetic anisotropy.

    PubMed

    Emori, Satoru; Beach, Geoffrey S D

    2012-01-18

    We have experimentally studied micrometer-scale domain wall (DW) motion driven by a magnetic field and an electric current in a Co/Pt multilayer strip with perpendicular magnetic anisotropy. The thermal activation energy for DW motion, along with its scaling with the driving field and current, has been extracted directly from the temperature dependence of the DW velocity. The injection of DC current resulted in an enhancement of the DW velocity independent of the current polarity, but produced no measurable change in the activation energy barrier. Through this analysis, the observed current-induced DW velocity enhancement can be entirely and unambiguously attributed to Joule heating. PMID:22173476

  19. Tailoring magnetic anisotropy gradients by ion bombardment for domain wall positioning in magnetic multilayers with perpendicular anisotropy

    PubMed Central

    2014-01-01

    Graded anisotropy magnetic materials possess a coercive field changing laterally with position. A simple fabrication procedure to produce such an anisotropy gradient in a polycrystalline Au/Co layer system without lateral thickness variation and with perpendicular magnetic anisotropy, prototypical for a large variety of thin film systems, is shown. The procedure uses light-ion bombardment without the use of a mask. Magnetization reversal in this polycrystalline layer system takes place by unidirectional movement of a single domain wall only in regions with larger anisotropies and anisotropy gradients. In this anisotropy/anisotropy gradient regime, the domain wall is oriented perpendicular to the coercive field gradient, and it can be positioned along the gradient by an appropriate magnetic field pulse. For smaller anisotropies/anisotropy gradients, the natural anisotropy fluctuations of the polycrystalline layer system induce magnetization reversal dominated by domain nucleation. PACS 75.30.Gw; 75.70.Cn; 75.60.Ch PMID:25232291

  20. Tailoring magnetic anisotropy gradients by ion bombardment for domain wall positioning in magnetic multilayers with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Matczak, Michał; Szymański, Bogdan; Kuświk, Piotr; Urbaniak, Maciej; Stobiecki, Feliks; Kurant, Zbigniew; Maziewski, Andrzej; Lengemann, Daniel; Ehresmann, Arno

    2014-08-01

    Graded anisotropy magnetic materials possess a coercive field changing laterally with position. A simple fabrication procedure to produce such an anisotropy gradient in a polycrystalline Au/Co layer system without lateral thickness variation and with perpendicular magnetic anisotropy, prototypical for a large variety of thin film systems, is shown. The procedure uses light-ion bombardment without the use of a mask. Magnetization reversal in this polycrystalline layer system takes place by unidirectional movement of a single domain wall only in regions with larger anisotropies and anisotropy gradients. In this anisotropy/anisotropy gradient regime, the domain wall is oriented perpendicular to the coercive field gradient, and it can be positioned along the gradient by an appropriate magnetic field pulse. For smaller anisotropies/anisotropy gradients, the natural anisotropy fluctuations of the polycrystalline layer system induce magnetization reversal dominated by domain nucleation.

  1. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy.

    PubMed

    You, Long; Lee, OukJae; Bhowmik, Debanjan; Labanowski, Dominic; Hong, Jeongmin; Bokor, Jeffrey; Salahuddin, Sayeef

    2015-08-18

    Spin orbit torque (SOT) provides an efficient way to significantly reduce the current required for switching nanomagnets. However, SOT generated by an in-plane current cannot deterministically switch a perpendicularly polarized magnet due to symmetry reasons. On the other hand, perpendicularly polarized magnets are preferred over in-plane magnets for high-density data storage applications due to their significantly larger thermal stability in ultrascaled dimensions. Here, we show that it is possible to switch a perpendicularly polarized magnet by SOT without needing an external magnetic field. This is accomplished by engineering an anisotropy in the magnets such that the magnetic easy axis slightly tilts away from the direction, normal to the film plane. Such a tilted anisotropy breaks the symmetry of the problem and makes it possible to switch the magnet deterministically. Using a simple Ta/CoFeB/MgO/Ta heterostructure, we demonstrate reversible switching of the magnetization by reversing the polarity of the applied current. This demonstration presents a previously unidentified approach for controlling nanomagnets with SOT. PMID:26240358

  2. Irreversible magnetic processes under biaxial and uniaxial magnetic anisotropies

    NASA Astrophysics Data System (ADS)

    Pokharel, S.; Akioya, O.; Alqhtany, N. H.; Dickens, C.; Morgan, W.; Wuttig, M.; Lisfi, A.

    2016-05-01

    Irreversible magnetic processes have been investigated in magnetic systems with two different anisotropy symmetries (uniaxial and biaxial) through angular measurement of the switching field, the irreversible susceptibility and the magnetic viscosity. These two systems consist of two-dimensional cobalt ferrite hetero-structures epitaxially grown on (100) and (110) MgO substrate. It is found that for uniaxial anisotropy the irreversible characteristics of the magnetization are large and display a strong angular dependence, which exhibits its maximum at the easy axis and drops quickly to vanish at the hard axis. However, for biaxial anisotropy the magnetization irreversible characteristics are considerably reduced and are less sensitive to the field angle.

  3. Field-dependent perpendicular magnetic anisotropy and interfacial metal-insulator transition in CoFeB/MgO systems

    NASA Astrophysics Data System (ADS)

    Barsukov, Igor; Fu, Yu; Safranski, C.; Chen, Yu-Jin; Youngblood, B.; Goncalves, A.; Sampaio, L.; Arias, R.; Spasova, M.; Farle, M.; Krivorotov, I.

    2015-03-01

    The CoFeB/MgO systems play a central role in magnetic tunnel junction devices due to the high tunneling magnetoresistance ratio. A strong perpendicular anisotropy (PMA) and voltage-controlled anisotropy are beneficial for spintronics application. We study PMA in thin films of Ta/Co20Fe60B20/MgO in the thickness range of 0.9-2.5 nm and find that it can be best described by the first two order terms. Surprisingly, we find PMA to be strongly field-dependent. Our results show that the field dependence has significant implications for determining and customizing magnetic anisotropy in spintronic applications. Our data suggest that it can be caused by an inhomogeneous interfacial spin pinning with a possibly ferrimagnetic phase at the CoFeB/MgO interface. We perform magnetometry and transport measurements and find a magnetization peak and resistance transitions at 160K, which are consistent with the presence of an interfacial oxide phase undergoing a Morin-like transition.

  4. Magnetic anisotropy at material interfaces

    NASA Astrophysics Data System (ADS)

    Greene, Peter Kevin

    In this dissertation, a comprehensive set of depth dependent magnetic measurements, as well as structural characterizations, were carried out on the Co/Pd multilayer system. The first-order reversal curve (FORC) technique is applied extensively to identify reversal mechanisms and different reversal phases within the material. In particular, the extension of the FORC technique to x-ray magnetic circular dichroism (XMCD) as a surface sensitive technique that identifies reversible magnetization change was performed for the first time. Polarized neutron reflectivity (PNR) was also used to directly measure the magnetization as a function of depth. The effects of deposition pressure grading within the Co/Pd multilayers were investigated. Structures were graded with three distinct pressure regions. FORC analysis shows that not only does increasing the deposition pressure increase the coercivity and effective anisotropy within that region, but also the order in which the pressure is changed also affects the entire structure. Layers grown at high sputtering pressures tend to reverse via domain wall pinning and rotation while those grown at lower pressures reverse via rapid domain wall propagation laterally across the film. Having high pressure layers underneath low pressure layers causes disorder to vertically propagate and lessen the induced anisotropy gradient. This analysis is confirmed by depth dependent magnetization profiles obtain from PNR. Continuously pressure-graded Co/Pd multilayers were then sputtered at two incident angles onto porous aluminum oxide templates with different pore aspect ratios. The effects of pressure grading versus uniform low pressure deposition is studied, as well as the effect of the angle of the incident deposition flux. The coercivity of the pressure graded perpendicular flux sample is compared to the low pressure sample. Additionally the effect of deposition angle and pore sidewall deposition is investigated. It is shown that sidewall deposition strongly affects the reversal behavior. As another way to induce a vertical anisotropy gradient, Co/Pd multilayers were bombarded with Ar+ ions at different energies and fluences. The effects of the depth dependent structural damage as a function of irradiation conditions were investigated. It is shown that the structural damage weakens the perpendicular anisotropy of the surface layers, causing a tilting of the surface magnetic moment into the plane of the film. The surface behavior is explicitly measured and shown to have a significant tilting angle in the top 5 nm depending on irradiation energy and fluence. Continuing the study of vertical anisotropy gradients in Co/Pd multilayers, multilayers with varied Co thickness were studied. Four films with varying Co thickness profiles were created and then patterned into nanodot arrays with diameters between 700 nm and 70 nm. The different films were graded continuously, or in stacks with varying Co thicknesses. An anisotropy gradient is shown to be established in the graded samples, and the switching field is lowered as a result. Furthermore, in the continuously graded samples the magnetization reversal behavior is fundamentally different from all other samples. The thermal energy barriers are measured in the uniform and continuously graded samples, yielding similar results. Finally, the establishment of exchange anisotropy at the ferromagnet / antiferromagnet (FM/AFM) interface in the epitaxial Fe/CoO system is investigated as a function of AFM thickness. The establishment of frozen AFM moments is analyzed using the FORC technique. The FORC technique combined with vector coil measurements also shows the transition from rotatable AFM to pinned AFM moments and suggests a mechanism of winding domain walls within the bulk AFM. (Abstract shortened by UMI.).

  5. Magnetic anisotropies of quantum dots

    NASA Astrophysics Data System (ADS)

    Vyborny, Karel; Han, J. E.; Oszwaldowski, Rafal; Zutic, Igor; Petukhov, A. G.

    2012-02-01

    Magnetic anisotropies in quantum dots (QDs) doped by magnetic ions are discussed in terms of two frameworks: anisotropic g-factors and magnetocrystalline anisotropy energy [1]. Two examples, related to zinc-blende p-doped materials, are given of how these frameworks are utilized: four-level Hamiltonian of a flat QD and a cuboid infinite-well QD containing a single hole. The latter model, despite being an idealization of a real QD, displays a rich phenomenology of anisotropies. We quantify the anisotropy constants for ZnSe and CdTe QDs, confirming that the Ising-like effective Hamiltonians apply to magnetic QDs [2]. Compared to bulk systems, confinement tuning offers a new way to control easy axes in magnetic QDs. [1] K. Vyborny et al., preprint (2011). [2] C. Le Gall et al., Phys. Rev. Lett. 107, 057401 (2011).

  6. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    SciTech Connect

    Jedamzik, Karsten; Abel, Tom E-mail: tabel@slac.stanford.edu

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10{sup −11} Gauss by cosmic microwave background observations.

  7. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    NASA Astrophysics Data System (ADS)

    Xia, Zhenjun; He, Jun; Ou, Xiulong; Wang, Yu; He, Shuli; Zhao, Dongliang; Yu, Guanghua

    2016-05-01

    Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  8. A correlation of energetic particle flux anisotropies with magnetic field variations in- and outside the coma of Comet Halley

    NASA Astrophysics Data System (ADS)

    Kirsch, E.; McKenna-Lawlor, S.; Ip, W.-H.; Daly, P. W.; Thompson, A.; O'Sullivan, D.; Neubauer, F. M.

    Anisotropies and energy spectra of cometary ions derived from the EPA/EPONA measurements on board of Giotto during the encounter with Comet Halley are used to study the acceleration processes taking place in the vicinity of the comet. Further evidence was found for the second order Fermi process. The intensity spikes observed outside the bowshock (outbound) can most likely be explained by the field line merging process at the frontside of the magnetic pileup region. The shock drift acceleration mechanism combined with the first order Fermi process seems to be responsible for the spike observed at 06:45 - 08:00 UT on March 14, 1986. The observed flux anisotropies are caused by the velocity transformation effect. Furthermore it can be concluded that the magnetic field lines were 'open' on the inbound side (19:00 - 23:00 UT on March 13), whereas a field line connection between cometary and interplanetary field lines must have existed on the outbound side until about 07:00 UT on March 14, 1986.

  9. Magnetic anisotropy and spin disorder in textured MnBi crystals synthesized by a field-inducing approach at a high temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yongsheng; Zhang, Jincang; Cao, Shixun; Ren, Zhongming

    2008-08-01

    Textured MnBi crystals in a Bi matrix are fabricated by quenching at a high temperature (˜653 K) in a magnetic field of 10 T. Microstructure observations reveal that MnBi grains are aligned along their c-axis. Magnetization measurements show a pronounced magnetic anisotropy in directions normal and parallel to the fabrication field resulting from the alignment. MnBi crystals display spin-disorder behaviors in ac magnetization, which may emerge due to the quenching processing.

  10. Magnetic anisotropy of the visual pigment rhodopsin.

    PubMed Central

    Hong, F T

    1980-01-01

    A new estimate of diamagnetic anisotropy of the frog rhodopsin is reported. The estimate is obtained by combining the data of magnetic field induced orientation of isolated frog rod outer segments as measured by Chagneux and Chalazonitis (1972) and the data of diamagnetic anisotropy of lecithin membranes as recently reported by Boroske and Helfrich (1978). The anisotropy of the volume susceptibilities of frog rhodopsin is calculated to be 4.4 X 10(-8) cgs unit/cm3, which corresponds to 1.5 X 10(-27) cgs unit/molecule, or 9.0 X 10(-4) cgs unit/mol. PMID:7260258

  11. Pentlandite and Magnetic Anisotropy in Allende CV3 Chondrite

    NASA Technical Reports Server (NTRS)

    Funaki, M.; Wasilewski, P.

    2000-01-01

    The representative Natural Remanent Magnetization (NRM) carrier of Allende is nonstoichiometric pentlandite forming in a magnetic field.The magnetic anisotropy results suggest that the constituent particles were compressed before solidification and then compressed or extended in a different direction.

  12. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  13. Intrinsic anisotropy of the superconductivity in FeSe1-xTex (x = 0.6) observed by specific heat in magnetic fields

    NASA Astrophysics Data System (ADS)

    Konno, T.; Adachi, T.; Imaizumi, M.; Noji, T.; Kawamata, T.; Koike, Y.

    2014-12-01

    Low-temperature specific heat measurements in various magnetic fields parallel and perpendicular to the c-axis for annealed single crystals of the iron-chalcogenide superconductor FeSe1-xTex have revealed that the anisotropy of the enhancement of the residual electronic- specific-heat-coefficient in the ground state by the application of magnetic field, namely, the anisotropy of the upper critical field, Hc2, is 2.2 for x = 0.6, which is different from the anisotropy of Hc2 estimated from the resistivity measurements in non-annealed single crystals of x = 0.6 [Khim et al. 2010 Phys. Rev. B 81 184511]. It appears that the anisotropy of Hc2 strongly depends on the content of excess iron included in a crystal.

  14. Effect of electric-field on the perpendicular magnetic anisotropy and strain properties in CoFeB/MgO magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Naik, V. B.; Meng, H.; Xiao, J. X.; Liu, R. S.; Kumar, A.; Zeng, K. Y.; Luo, P.; Yap, S.

    2014-08-01

    In this article, we investigate the effect of electric-field on the perpendicular magnetic anisotropy (PMA) and strain properties in nanoscaled CoFeB/MgO magnetic tunnel junction using tunnel magnetoresistance and piezoresponse force microscopy (PFM) measurements, respectively. We show that while the PMA change under electric-field is consistent with the previous reports, the PFM data show that the applied electric-field induces strain in a nanoscaled MgO. We demonstrate that the development of compressive and tensile strains corresponding to different polarities of applied electric-field. We discuss the interplay between the electric-field controlled PMA and strain properties. Our results may accelerate the development of magnetoelectrically controlled spintronic devices for low-power and high-density magnetic data storage applications.

  15. The thickness, electric field, and strain effects on the magnetic anisotropy of FeCo/MgO(001) thin films: A first principles study

    NASA Astrophysics Data System (ADS)

    He, K. H.; Chen, J. S.

    2012-04-01

    The magnetic anisotropy of the FeCo/MgO(001) thin films with the effects of thickness, the electric field, and the strain of the in-plane lattice constant were investigated by first-principles calculations. The thickness dependence of the magnetic anisotropy of FeCo ultrathin films in the range of one to four monolayers was explored, and the films with one, three, and four FeCo monolayers preferred the in-plane easy axis of magnetization, while the film with two FeCo monolayers occupied the perpendicular anisotropy. In the presence of an electric field, the magnetic anisotropy energies for all four films could be enhanced; moreover, the transition of the easy axis of magnetization from in-plane to out-of-plane also could be obtained, and the transition electric field was related with their thickness. It could be found that the variation of the in-plane lattice constant resulted in the switching from the perpendicular to in-plane anisotropy for the film with two FeCo monolayers.

  16. Anisotropy of Iron-Series Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Skomski, Ralph; Hadjipanayis, G. C.; Sellmyer, D. J.

    2010-03-01

    Element-strategic considerations have sparked renewed interest in rare-earth-free permanent magnets, but the prediction of the magnetocrystalline anisotropy from the atomic structure is still in its infancy, and there are no rules predicting the d anisotropy as function of the atomic structure. We have obtained tight-binding estimates for a variety of clusters and etxtended structures of different symmetry and d-band filling. A expected, the anisotropy strongly oscillates as a function of the d-band filling. Our calculations indicate that nearly filled d bands tend to yield anisotropy parallel to the pair axis. Sites with trigonal symmetry support bigger anisotropies than cubic and tetragonal environments, but this is a crystal- field effect similar to that in BaFe12O19 rather than a band-structure effect. Shape anisotropy is important in alnico- type nanostructured permanent magnets. We find a maximum of the energy product as a function of packing fraction, namely a maximum value of μoMs^2/12 realized at a volume fraction of 2/3. For Fe65Co35, this yields an upper limit of 390 kJ/m^3 [49 MGOe].

  17. Three-dimensional dynamics of a particle with a finite energy of magnetic anisotropy in a rotating magnetic field.

    PubMed

    Cīmurs, J; Cēbers, A

    2013-12-01

    A model of a single ferromagnetic particle with a finite coupling energy of the magnetic moment with the body of the particle is formulated, and regimes of its motion in a rotating magnetic field are investigated. Regimes are possible that are synchronous and asynchronous with the field. In a synchronous regime the easy axis of the particle is in the plane of the rotating magnetic field at low frequencies (a planar regime) and on the cone at high frequencies (a precession regime). The stability of these regimes is investigated, and it is shown that the precession regime is stable for field strengths below the critical value. In a particular range of field strength value, irreversible jumps of the magnetic moment take place in the asynchronous planar regime. The stability of this regime is investigated, and it is shown that it is stable for field strengths above the critical value, which depends on the frequency. The implications of these results for the energy dissipation in a rotating field are analyzed, and it is shown that the maximum of the heat production near the transition to the synchronous regime is flattened out by the transition to the precession regime. PMID:24483452

  18. Magnetic anisotropy of strained epitaxial manganite films

    SciTech Connect

    Demidov, V. V. Borisenko, I. V.; Klimov, A. A.; Ovsyannikov, G. A.; Petrzhik, A. M.; Nikitov, S. A.

    2011-05-15

    The in-plane magnetic anisotropy of epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) films is studied at room temperature by the following three independent techniques: magnetooptical Kerr effect, ferromagnetic resonance at a frequency of 9.61 GHz, and recording of absorption spectra of electromagnetic radiation at a frequency of 290.6 MHz. The films are deposited onto NdGaO{sub 3} (NGO) substrates in which the (110)NGO plane is tilted at an angle of 0-25.7 Degree-Sign to the substrate plane. The uniaxial magnetic anisotropy induced by the strain of the film is found to increase with the tilt angle of the (110)NGO plane. A model is proposed to describe the change in the magnetic anisotropy energy with the tilt angle. A sharp increase in the radio-frequency absorption in a narrow angular range of a dc magnetic field near a hard magnetization axis is detected The anisotropy parameters of the LSMO films grown on (110)NGO, (001)SrTiO{sub 3}, and (001)[(LaAlO{sub 3}){sub 0.3} + (Sr{sub 2}AlTaO{sub 6}){sub 0.7}] substrates are compared.

  19. Influence of microstructure on the enhancement of soft magnetic character and the induced anisotropy of field annealed HITPERM-type alloys

    NASA Astrophysics Data System (ADS)

    Blázquez, J. S.; Marcin, J.; Varga, M.; Franco, V.; Conde, A.; Skorvanek, I.

    2015-05-01

    Hitperm-type rapidly quenched ribbons were submitted to field annealing, both longitudinal field (LF) and transversal field (TF) to the axis of the ribbon. LF annealing yields a reduction of the magnetic anisotropy and results can be explained in the frame of random anisotropy model. A coercivity of 3 A/m is obtained for Fe39Co39Nb6B15Cu1 alloy. The addition of Cu to these Nb-containing Hitperm-type alloys is a key factor to refine the microstructure in order to reach this very low coercivity value. TF annealing produces samples with sheared hysteresis loops suitable for sensor and high frequency applications.

  20. Tailored magnetic anisotropy in an amorphous trilayer

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Barsukov, I.; Raanaei, H.; Spasova, M.; Lindner, J.; Meckenstock, R.; Farle, M.; Hjörvarsson, B.

    2011-06-01

    An amorphous Co68Fe24Zr8(3 nm)/Al70Zr30(3 nm)/Co68Fe24Zr8(3 nm) trilayer system has been investigated using in-plane and out-of-plane angular dependent ferromagnetic resonance at different frequencies. The in-plane magnetic anisotropy is uniaxial, retaining its value of (2.9 ± 0.1) × 103 J/m3 for each magnetic layer, whereas its direction was tailored independently in an arbitrary manner by applying an external magnetic field during the film deposition. The perpendicular anisotropy constant, supposed to reflect the interface quality, is nearly identical for both layers. Furthermore, the magnetic layers act independently upon each other due to the absence of interlayer coupling.

  1. Tailored magnetic anisotropy in an amorphous trilayer

    SciTech Connect

    Fu Yu; Barsukov, I.; Spasova, M.; Lindner, J.; Meckenstock, R.; Farle, M.; Raanaei, H.; Hjoervarsson, B.

    2011-06-01

    An amorphous Co{sub 68}Fe{sub 24}Zr{sub 8}(3 nm)/Al{sub 70}Zr{sub 30}(3 nm)/Co{sub 68}Fe{sub 24}Zr{sub 8}(3 nm) trilayer system has been investigated using in-plane and out-of-plane angular dependent ferromagnetic resonance at different frequencies. The in-plane magnetic anisotropy is uniaxial, retaining its value of (2.9 {+-} 0.1) x 10{sup 3} J/m{sup 3} for each magnetic layer, whereas its direction was tailored independently in an arbitrary manner by applying an external magnetic field during the film deposition. The perpendicular anisotropy constant, supposed to reflect the interface quality, is nearly identical for both layers. Furthermore, the magnetic layers act independently upon each other due to the absence of interlayer coupling.

  2. Scaling and anisotropy in magnetohydrodynamic turbulence in a strong mean magnetic field.

    PubMed

    Grappin, Roland; Müller, Wolf-Christian

    2010-08-01

    We present an analysis of the anisotropic spectral energy distribution in incompressible magnetohydrodynamic turbulence permeated by a strong mean magnetic field. The turbulent flow is generated by high-resolution pseudospectral direct numerical simulations with large-scale isotropic forcing. Examining the radial energy distribution for various angles θ with respect to B0 reveals a specific structure which remains hidden when not taking axial symmetry with respect to B0 into account. For each direction, starting at the forced large scales, the spectrum first exhibits an amplitude drop around a wave number k0 which marks the start of a scaling range and goes on up to a dissipative wave number k(d)(θ). The three-dimensional spectrum for k≥k0 is described by a single θ-independent functional form F(k/k(d)), with the scaling law being the same in every direction. The previous properties still hold when increasing the mean field from B0=5 up to B0=10b(rms), as well as when passing from resistive to ideal flows. We conjecture that at fixed B0 the direction-independent scaling regime is reached when increasing the Reynolds number above a threshold which raises with increasing B0. Below that threshold critically balanced turbulence is expected. PMID:20866925

  3. Scaling and anisotropy in magnetohydrodynamic turbulence in a strong mean magnetic field

    SciTech Connect

    Grappin, Roland; Mueller, Wolf-Christian

    2010-08-15

    We present an analysis of the anisotropic spectral energy distribution in incompressible magnetohydrodynamic turbulence permeated by a strong mean magnetic field. The turbulent flow is generated by high-resolution pseudospectral direct numerical simulations with large-scale isotropic forcing. Examining the radial energy distribution for various angles {theta} with respect to B{sub 0} reveals a specific structure which remains hidden when not taking axial symmetry with respect to B{sub 0} into account. For each direction, starting at the forced large scales, the spectrum first exhibits an amplitude drop around a wave number k{sub 0} which marks the start of a scaling range and goes on up to a dissipative wave number k{sub d}({theta}). The three-dimensional spectrum for k{>=}k{sub 0} is described by a single {theta}-independent functional form F(k/k{sub d}), with the scaling law being the same in every direction. The previous properties still hold when increasing the mean field from B{sub 0}=5 up to B{sub 0}=10b{sub rms}, as well as when passing from resistive to ideal flows. We conjecture that at fixed B{sub 0} the direction-independent scaling regime is reached when increasing the Reynolds number above a threshold which raises with increasing B{sub 0}. Below that threshold critically balanced turbulence is expected.

  4. Effects of external magnetic field and magnetic anisotropy on chiral spin structures of square nanodisks investigated with a quantum simulation approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2016-04-01

    We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.

  5. The theoretical account of the ligand field bonding regime and magnetic anisotropy in the DySc2N@C80 Single Ion Magnet endohedral fullerene.

    PubMed

    Cimpoesu, Fanica; Dragoe, Nita; Ramanantoanina, Harry; Urland, Werner; Daul, Claude

    2014-06-21

    Considering the DySc2N@C80 system as a prototype for Single Ion Magnets (SIMs) based on endohedral fullerenes, we present methodological advances and state-of-the art computations analysing the electronic structure and its relationship with the magnetic properties due to the Dy(III) ion. The results of the quantum chemical calculations are quantitatively decrypted in the framework of ligand field (LF) theory, extracting the full parametric sets and interpreting in heuristic key the outcome. An important result is the characterization of the magnetic anisotropy in the ground and excited states, drawing the polar maps of the state-specific magnetization functions that offer a clear visual image of the easy axes and account for the pattern of response to perturbations by the magnetic field applied from different space directions. The state-specific magnetization functions are derivatives with respect to the magnetic field, taken for a given eigenvalue of the computed spectrum. The methodology is based on the exploitation of the data from the black box of the ab initio spin-orbit (SO) calculations. The ground state is characterized by the Jz = ±15/2 quantum numbers with easy axis along the Dy-N bond. The implemented dependence on the magnetic field allowed the first-principles simulation of the magnetic properties. The computational approach to the properties of endohedral fullerenes is an important goal, helping to complement the scarcity of the experimental data on such systems, determined by the limited amount of samples. PMID:24789320

  6. Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films with Perpendicular Magnetic Anisotropy

    NASA Technical Reports Server (NTRS)

    Skuza, J. R.; Clavero, C.; Yang, K.; Wincheski, B.; Lukaszew, R. A.

    2009-01-01

    L1(sub 0)-ordered FePd epitaxial thin films were prepared using dc magnetron sputter deposition on MgO (001) substrates. The films were grown with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.

  7. Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wesselinowa, J. M.

    2010-01-01

    Based on the Heisenberg model taking into account single-ion anisotropy and using a Green's function technique we have studied the influence of size and anisotropy effects on magnetization M, Neel temperature TN, coercive field Hc and spin excitation energy of antiferromagnetic nanoparticles. The properties are compared with those of ferromagnetic nanoparticles. We have shown that the enhanced magnetization M and coercive field Hc of antiferromagnetic nanoparticles is a surface effect, which is due to uncompensated surface spins. Moreover, the shape of the coercive field curve can be significantly influenced by surface magnetic anisotropy.

  8. THE EFFECTS OF PLASMA BETA AND ANISOTROPY INSTABILITIES ON THE DYNAMICS OF RECONNECTING MAGNETIC FIELDS IN THE HELIOSHEATH

    SciTech Connect

    Schoeffler, K. M.; Drake, J. F.; Swisdak, M.

    2011-12-10

    The plasma {beta} (the ratio of the plasma pressure to the magnetic pressure) of a system can have a large effect on its dynamics as high {beta} enhances the effects of pressure anisotropies. We investigate the effects of {beta} in a system of stacked current sheets that break up into magnetic islands due to magnetic reconnection, which is analogous to the compressed heliospheric current sheet in the heliosheath. We find significant differences between systems with low and high initial values of {beta}. At low {beta}, growing magnetic islands are modestly elongated and become round as contraction releases magnetic stress and reduces magnetic energy. At high {beta}, the increase of the parallel pressure in contracting islands causes saturation of modestly elongated islands as island cores approach the marginal firehose condition. Only highly elongated islands reach finite size. The anisotropy within these islands prevents full contraction, leading to a final state of highly elongated islands in which further reconnection is suppressed. The elongation of islands at finite {beta} is further enhanced by reducing the electron-to-ion mass ratio to more realistic values. The results are directly relevant to reconnection in the sectored region of the heliosheath where there is evidence that elongated islands are present, and possibly to other high-{beta} systems such as astrophysical accretion flows and the magnetosphere of Saturn.

  9. Large electric-field control of perpendicular magnetic anisotropy in strained [Co/Ni] / PZT heterostructures

    NASA Astrophysics Data System (ADS)

    Gopman, Daniel; Dennis, Cindi; Chen, P. J.; Iunin, Yury; Shull, Robert

    We present a piezoelectric/ferromagnetic heterostructure with PMA - a Co/Ni multilayer sputtered directly onto a Pb(Zr,Ti)O3 (PZT) substrate. Chemical-mechanical polishing was used to reduce the roughness of PZT plates to below 2 nm rms, enabling optimal magnetoelectric coupling via the direct interface between PZT and sputtered Co/Ni films with large PMA (Keff = (95 +/-9 kJ/m3)) . We grew the following layer stack: Ta(3)/Pt(2)/[Co(0.15)/Ni(0.6)]x4/Co(0.15)/Pt(2)/Ta(3); numbers in parentheses indicate thicknesses in nm. Applied electric fields up to +/- 2 MV/m to the PZT generated 0.05% in-plane compression in the Co/Ni multilayer, enabling a large electric-field reduction of the PMA (ΔKeff >= 103 J/m3) and of the coercive field (35%). Our results demonstrate that: (i) heterostructures combining PZT and [Co/Ni] exhibit larger PMA (Keff ~105 J/m3) than previous magnetoelectric heterostructures based on Co/Pt and CoFeB, enabling thermally stable hybrid magnetoelectric/spintronic devices only tens of nm in diameter and (ii) electric-field control of the PMA is promising for more energy efficient switching of spintronic devices.

  10. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.

    2013-10-01

    Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  11. The influence of magnetic aftereffects on the magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mashukov, A.; Mashukova, A.

    2012-04-01

    There were investigated the time dependences of the magnetic anisotropy characteristics of artificial depositions received in the geomagnetic field. The content of magnetite in the nonmagnetic matrix of kaolin did not exceed 1%. The Co content in the grains of magnetite Fe3 O4 was 0.0018%. The viscous magnetization was created in the depositions with grain sizes of Fe3O4 in micrometers (0 ÷ 8), (9 ÷ 16), (17 ÷ 32), (33 ÷ 64), (65 ÷ 100), (101 ÷ 150). The X-ray method of direct pole figures indicates that the intensity of the ordering of the ferromagnetic grains in the depositions depends strongly on the grain size in the above-mentioned ranges, getting reduced from 1.9 to 1.1. Compared with the characteristics received immediately after drying the samples and after holding them for two years in the earth's magnetic field in the direction of In, one could observe increase in all the characteristics of the magnetic anisotropy. The magnitude Hd of the magnetic field having the periodicity change of Hd 2π to π increases. This indicates the stabilization of the new domain structure. The increase in the uniaxial anisotropy constant (K) is associated with the emergence of the large induced anisotropy due to the diffusion of Co ions. It was found out that the constant K decreases markedly with increasing particle size in the range from 8 mm to 40 microns. Based on the results of the X-ray analysis by using the method direct pole figures, it may be explained by the creation of the axial texture in the depositions with grains having the size less than 40 microns. The intensity of more than 40 microns decreases insignificantly - from 1.3 to 1.1. After creating the viscous magnetization in two years, the constant K has increased by 1.5 - 2 times. The influence of the magnetic after-effects on K in strong magnetic fields denotes the diffusion nature of the viscous magnetization. The losses of the rotational magnetic hysteresis (W) also rise in the presence of the structural defects and internal stresses. The value of the maximum loss (Wm) increases the more the smaller the grain size Fe3O4.The greatest influence of magnetic viscosity is exercised on the depositions having d < 40 microns. It is shown that there is a correlation between the dependence of the temporal variation of Wm and the dependence of the coefficients of the magnetic viscosity on the ferromagnetic grain size. The magnitude of the magnetic field (HW), corresponding to the maximum losses and characterizing the beginning of the transition of the spins from the connection with the crystal lattice to the connection with the external magnetic field, does not change. So, the magnetic field HW can be considered as an indicator of the composition of the ferromagnetic fraction. Depending on the composition of the ferromagnetic, value HW has a wide range of values. For the depositions, containing magnetite grains, the value of HW makes up 1.8 kOe, and for the grains of hematite it is 9 kOe. Thus, the contribution to the effective anisotropy of rocks containing large particles of the ferromagnetic fraction, can not be explained by the energy of crystallographic anisotropy. Diffusion magnetic anisotropy is a widely spread phenomenon in the rocks.

  12. Anisotropy of MHD Turbulence at Low Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Zikanov, O.; Vorobev, A.; Thess, A.; Davidson, P. A.; Knaepen, B.

    2004-01-01

    Turbulent fluctuations in MHD flows are known to become dimensionally anisotropic under the action of a sufficiently strong magnetic field. We consider the technologically relevant case of low magnetic Reynolds number and apply the method of DNS of forced flow in a periodic box to generate velocity fields. The analysis based on different anisotropy characteristics shows that the dimensional anisotropy is virtually scale-independent. We also find that, except for the case of very strong magnetic field, the flow is componentally isotropic. Its kinetic energy is practically uniformly distributed among the velocity components.

  13. Magnetic patterning using ion irradiation for highly ordered CoPt alloys with perpendicular anisotropy

    SciTech Connect

    Abes, M.; Venuat, J.; Muller, D.; Carvalho, A.; Schmerber, G.; Beaurepaire, E.; Dinia, A.; Pierron-Bohnes, V.

    2004-12-15

    We used a combination of ion irradiation and e-beam lithography to magnetically pattern an ordered CoPt alloy with strong perpendicular magnetic anisotropy. Ion irradiation disorders the alloy and strongly reduces the magnetic anisotropy. Magnetic force microscopy showed a regular array of 1 {mu}m{sup 2} square dots with perpendicular anisotropy separated by 1 {mu}m large ranges with in-plane anisotropy. This is further confirmed by magnetic measurements, which showed that arrays protected by a 200 nm Pt layer present the same coercive field and the same perpendicular anisotropy as before irradiation. This is promising for applications in magnetic recording technologies.

  14. Magnetic anisotropy due to the Casimir effect

    SciTech Connect

    Metalidis, G.; Bruno, P.

    2010-02-15

    We consider the Casimir interaction between a ferromagnetic and a nonmagnetic mirror and show how the Casimir effect gives rise to a magnetic anisotropy in the ferromagnetic layer. The anisotropy is out of plane if the nonmagnetic plate is optically isotropic. If the nonmagnetic plate shows a uniaxial optical anisotropy (with optical axis in the plate plane), we find an in-plane magnetic anisotropy. In both cases, the energetically most favorable magnetization orientation is given by the competition between polar, longitudinal, and transverse contributions to the magneto-optical Kerr effect and will therefore depend on the interplate distance. Numerical results will be presented for a magnetic plate made out of Fe and nonmagnetic plates of Au (optically isotropic), quartz, calcite, and barium titanate (all uniaxially birefringent).

  15. Electric-field-induced angular dependence of magnetic anisotropy in a FeCo/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Yang, Chengcheng; Wang, Fenglong; Dong, Chunhui; Sui, Wenbo; Jiang, Changjun; Xue, Desheng

    2015-04-01

    To understand the distribution of the in-plane magnetic anisotropy under a dc electric field, FeCo films deposited onto Pb(Mg1/3Nb2/3)O3-PbTiO3 (011)-orientated substrates by RF-magnetron sputtering were investigated. Vibrating sample magnetometer was performed and the occurrence of switching was demonstrated of the magnetization easy axis in FeCo films upon applying solely a dc electric field. A theoretical calculation was performed to provide a simplified account of the magnetoelastic contribution to the magnetic anisotropy. Quantification of the angular distribution of the magnetic anisotropy field under various electric fields was obtained, which can contribute to realizing low-loss electric-field-turning devices.

  16. Soliton collisions in soft magnetic nanotube with uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Usov, N. A.

    2016-05-01

    The structure of stable magnetic solitons of various orders in soft magnetic nanotube with uniaxial magnetic anisotropy has been studied using numerical simulation. Solitons of even order are immobile in axially applied magnetic field. Odd solitons show decreased mobility with respect to that of head-to head domain wall. Solitons of various orders can participate in nanotube magnetization reversal process. Various coalescence and decomposition processes in soliton assembly are considered. It is shown that the general magnetization state of magnetic nanotube consists of chains of magnetic solitons of various orders.

  17. Carrier-dependent magnetic anisotropy of cobalt doped titanium dioxide

    PubMed Central

    Shao, Bin; Feng, Min; Zuo, Xu

    2014-01-01

    Using first-principles calculations, we predict that the magnetic anisotropy energy of Co-doped TiO2 sensitively depends on carrier accumulation. This magnetoelectric phenomenon provides a potential route to a direct manipulation of the magnetization direction in diluted magnetic semiconductor by external electric-fields. We calculate the band structures and reveal the origin of the carrier-dependent magnetic anisotropy energy in k-space. It is shown that the carrier accumulation shifts the Fermi energy, and consequently, regulates the competing contributions to the magnetic anisotropy energy. The calculations provide an insight to understanding this magnetoelectric phenomenon, and a straightforward way to search prospective materials for electrically controllable spin direction of carriers. PMID:25510846

  18. Single-ion anisotropy and magnetic field response in the spin-ice materials Ho2Ti2O7 and Dy2Ti2O7

    NASA Astrophysics Data System (ADS)

    Tomasello, Bruno; Castelnovo, Claudio; Moessner, Roderich; Quintanilla, Jorge

    2015-10-01

    Motivated by its role as a central pillar of current theories of the dynamics of spin ice in and out of equilibrium, we study the single-ion dynamics of the magnetic rare-earth ions in their local environments, subject to the effective fields set up by the magnetic moments with which they interact. This effective field has a transverse component with respect to the local easy axis of the crystal electric field, which can induce quantum tunneling. We go beyond the projective spin-1/2 picture and use instead the full crystal-field Hamiltonian. We find that the Kramers versus non-Kramers nature, as well as the symmetries of the crystal-field Hamiltonian, result in different perturbative behavior at small fields (≲1 T ), with transverse field effects being more pronounced in Ho2Ti2O7 than in Dy2Ti2O7 . Remarkably, the energy splitting range we find is consistent with time scales extracted from experiments. We also present a study of the static magnetic response, which highlights the anisotropy of the system in the form of an off-diagonal g tensor, and we investigate the effects of thermal fluctuations in the temperature regime of relevance to experiments. We show that there is a narrow but accessible window of experimental parameters where the anisotropic response can be observed.

  19. On the magnetic anisotropy of superduplex stainless steel

    NASA Astrophysics Data System (ADS)

    ElMassalami, M.; Palatnik-de-Sousa, I.; Areiza, M. C. L.; Rebello, J. M. A.; Elzubair, A.

    2011-10-01

    The austenite-ferrite superduplex stainless steel (SDSS) is essentially an Fe-Cr-Ni alloy to which additional elements (e.g. Mo, Mn, Si, Cu, C, P, S) were added so as to confer additional advantageous characteristics such as higher mechanical strength and resistance to corrosion. Many of its applications require the process of rolling which, due to the two-phase character, induces a marked texturing, elongation of grains, and directional ordering in each of the constituent phases. This, in turn, imprints a strong anisotropic features in the mechanical, magnetic, and other properties. Using various experimental techniques, such as magnetization and ac susceptibility, this work investigated the induced magnetic anisotropy. An easy axis (parallel to the rolling direction) anisotropy was observed. The nature of the magnetic anisotropy, manifested during low and high applied magnetic fields, will be discussed in terms of the combined influences of two main anisotropies, namely shape anisotropy (arising from demagnetizing forces) and texture anisotropy (arising from the induced preferred orientation).

  20. Atomic scale evolution of magnetic anisotropies

    NASA Astrophysics Data System (ADS)

    Bland, J. A. C.; Hope, S.; Tselepi, M.; Choi, B.

    1998-03-01

    The results of in situ studies of the evolution of the magnetic anisotropy of Co(100) and Co(110) epitaxial films are discussed. It is shown that uniaxial magnetic anisotropies are the generic signature of symmetry breaking atomic and nm scale structures, e.g. steps, clusters, islands revealed by scanning tunnelling microscopy (STM) studies, and are strongly affected by nonmagnetic overlayers. However, the thickness dependent behaviour is surprisingly complex, with strong changes in anisotropy behaviour occurring with submonolayer depositions of nonmagnetic overlayers. These effects cannot be understood within the usual framework of the Nel model but are discussed in terms of several contributing mechanisms, e.g. strain, dipolar interactions and edge and surface anisotropies.

  1. Direct expressions for magnetic anisotropy constants

    NASA Astrophysics Data System (ADS)

    Miura, Daisuke; Sasaki, Ryo; Sakuma, Akimasa

    2015-11-01

    Direct expressions for the magnetic anisotropy constants are given at a finite temperature from a microscopic viewpoint. The present derivation assumes that the Hamiltonian is a linear function with respect to the magnetization direction. We discuss in detail the first-order anisotropy constant K1 and show that our present results reproduce previous results. We applied our method to Nd2Fe14B compounds and confirmed that the present method can reproduce the temperature dependence of the magnetocrystalline anisotoropy constants K1, K2, and K3 well.

  2. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-01-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53*10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals such as augite, hornblende or biotite often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that paleointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  3. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-04-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  4. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.

    2016-05-01

    We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic-field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. The bubble crystal exhibits a quasicontinuous (devil's staircase) temperature-dependent ordering wave vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.

  5. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Paweł W.; Yager, Kevin G.

    2015-12-01

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ , that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈2 ×1 0-8. From field-dependent scattering data, we estimate that grains of ≈1.2 μ m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  6. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    PubMed

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers. PMID:26722950

  7. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    SciTech Connect

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  8. Understanding the source of magnetic and seismic anisotropy in peridotites

    NASA Astrophysics Data System (ADS)

    Hirt, Ann; Biedermann, Andrea; Wang, Qin; Zappone, Alba

    2013-04-01

    Peridotite, a rock consisting of more than 90% olivine, orthopyroxene and clinopyroxene, is the dominant component in the Earth's upper mantle. Olivine, which is more abundant than pyroxene in general, and rheologically weaker, controls the deformation behavior and seismic anisotropy of the Earth's upper mantle. The majority of naturally deformed peridotites develop a [100](010) olivine fabric, and this fabric is the major contributor to physical anisotropies in these rocks. Seismic anisotropy is often determined from the crystallographic-preferred orientation (CPO) of olivine and its intrinsic anisotropy in elastic properties. The relationship of the anisotropy of magnetic susceptibility (AMS), determined in low field (LF), to deformation fabrics in peridotites is more coplicated. This is due to the presence of ferromagnetic minerals that may form late in the deformation history. The isolated paramagnetic fabric, however, is controlled by the texture of the paramagnetic minerals, olivine and pyroxene. We have studied the texture, as determined by EBSD or X-ray texture goniometry, and relate this to magnetic and seismic anisotropy in a series of peridotites from Norway and northern Italy. Our peridotite samples show different olivine fabrics, e.g., weakly deformed and strongly sheared peridotites develop [100](010) and [001](010) fabrics, respectively. The LF-AMS, which is controlled by ferromagnetic minerals, is often not significant. The paramagnetic anisotropy, which is isolated using high-field torque magnetometry, shows a well-defined magnetic fabric. Often the paramagnetic anisotropy agrees with the olivine texture. When more than one mineral phase contributes to the AMS, interpretation becomes more complicated, because of the different orientation of the AMS principal axes of the intrinsic minerals with respect to their crystallographic axes. The AMS of olivine has the maximum susceptibility (k1) parallel to the c-crystallographic axis, whereas the orientation of the intermediate (k2) and minimum (k3) axes is dependent on the mineral composition; i.e., k3 is along the a-axis and k2 along the b-axis for 3 to 5 wt% FeO, but with higher iron oxide content, 7 to 9 wt%, k3 is along the b-axis. For clinopyroxene, k2 lies close to the b-crystallographic axis, independent of composition, and the k1 and k3 axes lie slightly off the a-c-plane. The orientation of the principal axes of the AMS in orthopyroxene is strongly dependent on composition; e.g., enstatite has a triaxial anisotropy with k1 along the crystallographic c-axis, k2 along the a-axis and k3 along the b-axis. Therefore contributions from different phases may weaken the net magnetic fabric. We compare magnetic anisotropy that is calculated from the CPO of the major mineral constituents in the peridotites with the measured anisotropy to gain a better understanding of the factors that control magnetic anisotropy. Further, we use the CPO of the samples together with the elastic properties of constituent minerals in a rock to calculate the seismic anisotropy. It is also possible to show under what conditions the magnetic anisotropy can be related to seismic anisotropy. Results from this work will help improve our understanding about in situ deformation mechanisms and physical fabrics of the upper mantle.

  9. Anisotropy of Magnetic Susceptibility (AMS) of Carbonate Rocks as a Proxy for the Strain Field near the Dead Sea Transform in Northern Israel

    NASA Astrophysics Data System (ADS)

    Issachar, Ran; Levi, Tsafrir; Weinberger, Ram; Marco, Shmuel

    2014-05-01

    To exploit the potential of anisotropy of magnetic susceptibility (AMS) axes (k1, k2, k3) and magnitudes as a tool to estimate the strain field around major faults, the AMS of calcite-bearing diamagnetic rocks that crop out next to the Dead Sea Transform (DST) were measured. The low-field bulk-susceptibility of Bar-Kokhba limestone formation is -10.67±1.69 [µSI], very close to the value of a single calcite crystal. Thermomagnetic curves show temperature independent and reversible behavior. Chemical composition analysis indicates minor amounts of Fe contents <300 ppm. Results of XRD diffraction and petrofabric study of thin-sections and SEM images indicate that the Bar-Kokhba rocks are calcite mono-mineralic rocks. The magnetic fabrics are solely controlled by the alignment of c-axes of almost pure calcite crystals and help to assess the direction of the maximum shortening prevailing post-deposition and during the tectonic evolution of the DST. In one studied site, high Fe contents <6000 ppm were found, which are associated with young morphological processes of chemical alteration. In this site, thermomagnetic curves indicate temperature dependency and irreversibility. IRM curves show saturation around 200 mT, evidence of ferro/ferimagnetic minerals. AARM measurements reveal isotropic fabric which suggesting that the ferro/ferimagnetic minerals are contributing no anisotropy to the AMS. The AMS of the diamagnetic fabric is masked by a paramagnetic fabric of Fe-bearing minerals. Using liner correlation between Fe content and bulk susceptibility we applied a novel tensor subtraction method and successfully isolated the diamagnetic fabric from the total AMS. The paramagnetic fabric has characteristics of sedimentary fabrics, while that of the diamagnetic fabric has tectonic characteristics. The isolation process indicates that the AMS of carbonate rocks is mostly controlled by the diamagnetic phase, where the Fe content is below 500 ppm. Differences in the degree of anisotropy parameters of the Bar-Kohkba rocks are probably related to differences in strain magnitudes accumulated in the rocks. Based on the AMS measurements one major group of AMS k3 axes are defined, showing maximum horizontal shortening parallel to the N-S striking DST. The present study demonstrates the useful application of AMS measurements in "Fe-free" limestones, which serve as recorders of the strain field next to plate-bounding faults. This opens a new frontier in using AMS as a proxy for strain.

  10. Tuning the Magnetic Anisotropy of Single Molecules.

    PubMed

    Heinrich, Benjamin W; Braun, Lukas; Pascual, Jose I; Franke, Katharina J

    2015-06-10

    The magnetism of single atoms and molecules is governed by the atomic scale environment. In general, the reduced symmetry of the surrounding splits the d states and aligns the magnetic moment along certain favorable directions. Here, we show that we can reversibly modify the magnetocrystalline anisotropy by manipulating the environment of single iron(II) porphyrin molecules adsorbed on Pb(111) with the tip of a scanning tunneling microscope. When we decrease the tip-molecule distance, we first observe a small increase followed by an exponential decrease of the axial anisotropy on the molecules. This is in contrast to the monotonous increase observed earlier for the same molecule with an additional axial Cl ligand ( Nat. Phys. 2013 , 9 , 765 ). We ascribe the changes in the anisotropy of both species to a deformation of the molecules in the presence of the attractive force of the tip, which leads to a change in the d level alignment. These experiments demonstrate the feasibility of a precise tuning of the magnetic anisotropy of an individual molecule by mechanical control. PMID:25942560

  11. Scale-dependent Normalized Amplitude and Weak Spectral Anisotropy of Magnetic Field Fluctuations in the Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tu, Chuanyi; Marsch, Eckart; He, Jiansen; Wang, Linghua

    2016-01-01

    Turbulence in the solar wind was recently reported to be anisotropic, with the average power spectral index close to -2 when sampling parallel to the local mean magnetic field B0 and close to -5/3 when sampling perpendicular to the local B0. This result was widely considered to be observational evidence for the critical balance theory (CBT), which is derived by making the assumption that the turbulence strength is close to one. However, this basic assumption has not yet been checked carefully with observational data. Here we present for the first time the scale-dependent magnetic-field fluctuation amplitude, which is normalized by the local B0 and evaluated for both parallel and perpendicular sampling directions, using two 30-day intervals of Ulysses data. From our results, the turbulence strength is evaluated as much less than one at small scales in the parallel direction. An even stricter criterion is imposed when selecting the wavelet coefficients for a given sampling direction, so that the time stationarity of the local B0 is better ensured during the local sampling interval. The spectral index for the parallel direction is then found to be -1.75, whereas the spectral index in the perpendicular direction remains close to -1.65. These two new results, namely that the value of the turbulence strength is much less than one in the parallel direction and that the angle dependence of the spectral index is weak, cannot be explained by existing turbulence theories, like CBT, and thus will require new theoretical considerations and promote further observations of solar-wind turbulence.

  12. Magnetic Anisotropy of Single Crystals: Amphiboles, Pyroxenes and Feldspars

    NASA Astrophysics Data System (ADS)

    Biedermann, A. R.; Hirt, A. M.; Pettke, T.; Bender Koch, C.

    2013-12-01

    Anisotropy of magnetic susceptibility (AMS) is often used qualitatively as a proxy for the mineral fabric in a rock. It is only possible to make a quantitative correlation when the mineral(s), which are responsible for the AMS, are known. At present too little is known about the intrinsic magnetic anisotropy of rock forming minerals. All minerals in a rock, be they diamagnetic, paramagnetic or ferromagnetic, contribute to its susceptibility and anisotropy. The paramagnetic component of the AMS can be attributed to the distribution of paramagnetic atoms, especially Fe, in the lattice structure and thus reflects crystal orientation, which in turn can be related to rock fabric. We investigate and characterize the AMS in minerals from the amphibole, pyroxene and feldspar groups. This leads to a better understanding of the carriers of magnetic fabrics in rocks. Crystal chemistry was determined using laser ablation inductively coupled plasma mass spectrometry, and Mssbauer spectroscopy was used to obtain Fe(II):Fe(III). Measurements of magnetic anisotropy were performed in high magnetic fields and at 293 K and 77 K in order to allow for separation of the magnetic contributions. AMS properties can thus be linked to the orientation of the crystal lattice as well as the chemical composition. In amphibole the minimum susceptibility is always normal to the b-c plane and the degree of anisotropy increases linearly with bulk iron content for each mineral. Actinolite and ferroactinolite show a higher anisotropy degree for a given Fe content than hornblende. In clinopyroxene, the intermediate susceptibility aligns with the b-axis, whereas the minimum and maximum susceptibilities are in the a-c plane. The maximum susceptibility in orthopyroxene is parallel to the c-axis. The anisotropy becomes stronger with increasing iron content for both mineral groups. An exception to this general trend is aegirine, whose anisotropy is weak given its high iron content, which may be related to Fe(II):Fe(III). Feldspars show very weak susceptibility and anisotropy and the signal-to-noise ratio is larger at low temperature. This is opposite to what is expected for a purely paramagnetic mineral and indicates that the AMS of feldspars is characterized by a superposition of competing diamagnetic and paramagnetic fabrics. These new results enable us to obtain a deeper understanding about AMS and how it arises in rocks. Further, they offer the possibility to model bulk rock AMS once the composition and orientation distribution of the constituent minerals are known.

  13. Magnetic anisotropy in Fe nanocrystals fabricated by GDM

    NASA Astrophysics Data System (ADS)

    Kita, E.; Sato, H.; Tsukahara, N.; Lee, S. J.; Yanagihara, H.; Tanimoto, H.

    2010-01-01

    Ferromagnetic nanocrystals composed of nano-sized grains show excellent soft magnetic characteristics and their mechanism is explained by a random anisotropy model(RAM). We have been studied nanocrystal systems with ferromagnetic 3d elements to understand the RAM. Fe nanocryatals were fabricated with a gas condensation and deposition method(GDM). The oxygen content in an as-deposited Fe nanocryatal was about 20 %. Hysteresis loop shifts observed in magnetic field cool measurements suggest the presence of antiferromagentic oxides. Dependence of room temperature coercive forces on the grain size(D) is not D6 but D3.4. Magnetization curves often seen in thin films with stripe domain structures were observed at room temperature irrespective to the sort of substrates. The presence of perpendicular magnetic anisotropy was suggested.

  14. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  15. Magnetic anisotropies in Ni-Mn-Ga films on MgO(001) substrates

    NASA Astrophysics Data System (ADS)

    Chernenko, V. A.; Golub, V.; Barandiarán, J. M.; Salyuk, O. Y.; Albertini, F.; Righi, L.; Fabbrici, S.; Ohtsuka, M.

    2010-01-01

    Ferromagnetic resonance was used to study the influence of temperature and film thickness on magnetic properties of Ni-Mn-Ga films deposited on single crystal MgO(001) substrates. It has been shown that depending on the film thickness and preparation condition, three configurations of magnetic anisotropy can be realized in these films. The temperature dependence of the anisotropy field is determined.

  16. Mechanism of tailored magnetic anisotropy in amorphous Co68Fe24Zr8 thin films

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Barsukov, I.; Meckenstock, R.; Lindner, J.; Raanaei, H.; Hjörvarsson, B.; Farle, M.

    2014-02-01

    The mechanism of tailored magnetic anisotropy in amorphous Co68Fe24Zr8 thin films was investigated by ferromagnetic resonance (FMR) on samples deposited without an applied magnetic field, with an out-of-plane field and an in-plane field. Analysis of FMR spectra profiles, high frequency susceptibility calculations, and statistical simulations using a distribution of local uniaxial magnetic anisotropy reveal the presence of atomic configurations with local uniaxial anisotropy, of which the direction can be tailored while the magnitude remains at an intrinsically constant value of 3.0(2) kJ/m3. The in-plane growth field remarkably sharpens the anisotropy distribution and increases the sample homogeneity. The results benefit designing multilayer spintronic devices based on highly homogeneous amorphous layers with tailored magnetic anisotropy.

  17. Anisotropy in the equation of state of magnetized quark matter

    NASA Astrophysics Data System (ADS)

    Menezes, Débora P.; Pinto, Marcus B.; Providência, Constança

    2015-06-01

    The anisotropies in the pressure obtained from the energy-momentum tensor are studied for magnetized quark matter within the su(3) Nambu-Jona-Lasinio model for both β -equilibrium matter and quark matter with equal quark chemical potentials. The effect of the magnetic field on the particle polarization, magnetization, and quark matter constituents is discussed. It is shown that the onset of the s quark after chiral symmetry restoration of the u and d quarks gives rise to a special effect on the magnetization in the corresponding density range: A quite small magnetization just before the s onset is followed by a strong increase of this quantity as soon as the s quark sets in. It is also demonstrated that for B <1018 G within the two scenarios discussed, always considering a constant magnetic field, the two components of pressure are practically coincident.

  18. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    NASA Astrophysics Data System (ADS)

    Perna, P.; Ajejas, F.; Maccariello, D.; Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Muñoz, M.; Prieto, J. L.; Miranda, R.; Camarero, J.

    2016-05-01

    We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  19. Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Bender Koch, Christian; Hirt, Ann M.

    2015-03-01

    Pyroxenes constitute an important component in mafic igneous and metamorphic rocks. They often possess a prismatic habit, and their long axis, the crystallographic c axis, helps define a lineation in a textured rock. Anisotropy of magnetic susceptibility (AMS) serves as a fabric indicator in igneous and metamorphic rocks. If a rock's AMS is carried by pyroxenes, it can be related to their crystallographic preferred orientation and degree of alignment. This requires knowing the intrinsic AMS of pyroxene single crystals. This study provides a comprehensive low-field and high-field AMS investigation of chemically diverse orthopyroxene and clinopyroxene crystals in relation to crystal structure, chemical composition, oxidation state of Fe, and the possible presence of ferromagnetic inclusions. The paramagnetic anisotropy, extracted from high-field data, shows clear relationships to crystallographic directions and Fe concentration both in clinopyroxene and orthopyroxene. In the diopside-augite series, the intermediate susceptibility is parallel to b, and the maximum is at 45° to the c axis. In aegirine, the intermediate axis remains parallel to b, while the maximum susceptibility is parallel to c. The AMS of spodumene depends on Fe concentration. In enstatite, the maximum susceptibility aligns with c and the minimum with b, and in the case of hypersthene, the maximum susceptibility is normal to the exsolution lamellae. Magnetite inclusions within augite possess a ferromagnetic anisotropy with consistent orientation of the principal susceptibilities, which dominates the low-field anisotropy. These results provide better understanding of magnetic anisotropy in pyroxenes and form a solid basis for interpretation of magnetic fabrics in pyroxene-bearing rocks.

  20. Accelerating the switching of magnetic nanoclusters by anisotropy-driven magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Etz, Corina; Costa, Marcio; Eriksson, Olle; Bergman, Anders

    2012-12-01

    In this work, the magnetization dynamics of clusters supported on nonmagnetic substrates is shown to exhibit a complex response when subjected to external magnetic fields. The field-driven magnetization reversal of small Co clusters deposited on a Cu(111) surface has been studied by means of first-principles calculations and atomistic spin dynamics simulations. For applied fields ranging from 1 to 10 Tesla, we observe a coherent magnetization reversal with switching times in the range of several tenths of picoseconds to several nanoseconds, depending on the field strength. We find a nonmonotonous dependence of the switching times with respect to the strength of the applied field, which we prove has its origin in the complex magnetic anisotropy landscape of these low-dimensional systems. This effect is shown to be stable for temperatures around 10 K, and is possible to realize over a range of exchange interactions and anisotropy landscapes. Possible experimental routes to achieve this unique switching behavior are discussed.

  1. Magnetic Anisotropy of Maghemite Nanoparticles Probed by RF Transverse Susceptibility

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Bartolomé, J.; García, L. M.; Bartolomé, F.; Arauzo, A.; Millán, A.; Palacio, F.

    We present radio frequency magnetic transverse susceptibility measurements on γ-Fe2O3 nanoparticles, which yield an estimation of their effective anisotropy constant, Keff as a function of nanoparticle size. The resulting values range from 4 to 8 × 104 erg/cm3, being on the order of the magnetocrystalline anisotropy in bulk maghemite. Keff values increase as the particle diameter increases. Evidences of anisotropy field distribution given by the size distribution in the samples, and interparticle interactions that increase as the particle size increases, are also observed in the TS measurements. The effects of such interparticle interaction overcome those of thermal fluctuations, in contrast with the behavior of other iron oxide particles.

  2. Spin splitting anisotropy in single diluted magnetic nanowire heterostructures.

    PubMed

    Szymura, Małgorzata; Wojnar, Piotr; Kłopotowski, Łukasz; Suffczyński, Jan; Goryca, Mateusz; Smoleński, Tomasz; Kossacki, Piotr; Zaleszczyk, Wojciech; Wojciechowski, Tomasz; Karczewski, Grzegorz; Wojtowicz, Tomasz; Kossut, Jacek

    2015-03-11

    We study the impact of the nanowire shape anisotropy on the spin splitting of excitonic photoluminescence. The experiments are performed on individual ZnMnTe/ZnMgTe core/shell nanowires as well as on ZnTe/ZnMgTe core/shell nanowires containing optically active magnetic CdMnTe insertions. When the magnetic field is oriented parallel to the nanowire axis, the spin splitting is several times larger than for the perpendicular field. We interpret this pronounced anisotropy as an effect of mixing of valence band states arising from the strain present in the core/shell geometry. This interpretation is further supported by theoretical calculations which allow to reproduce experimental results. PMID:25710186

  3. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGESBeta

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropymore » is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  4. Reaching the magnetic anisotropy limit of a 3d metal atom.

    PubMed

    Rau, Ileana G; Baumann, Susanne; Rusponi, Stefano; Donati, Fabio; Stepanow, Sebastian; Gragnaniello, Luca; Dreiser, Jan; Piamonteze, Cinthia; Nolting, Frithjof; Gangopadhyay, Shruba; Albertini, Oliver R; Macfarlane, Roger M; Lutz, Christopher P; Jones, Barbara A; Gambardella, Pietro; Heinrich, Andreas J; Brune, Harald

    2014-05-30

    Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom's magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism. PMID:24812206

  5. Modification of crystal anisotropy and enhancement of magnetic moment of Co-doped SnO2 thin films annealed under magnetic field

    PubMed Central

    2014-01-01

    Co-doped SnO2 thin films were grown by sputtering technique on SiO2/Si(001) substrates at room temperature, and then, thermal treatments with and without an applied magnetic field (HTT) were performed in vacuum at 600°C for 20 min. HTT was applied parallel and perpendicular to the substrate surface. Magnetic M(H) measurements reveal the coexistence of a strong antiferromagnetic (AFM) signal and a ferromagnetic (FM) component. The AFM component has a Néel temperature higher than room temperature, the spin axis lies parallel to the substrate surface, and the highest magnetic moment m =7 μB/Co at. is obtained when HTT is applied parallel to the substrate surface. Our results show an enhancement of FM moment per Co+2 from 0.06 to 0.42 μB/Co at. for the sample on which HTT was applied perpendicular to the surface. The FM order is attributed to the coupling of Co+2 ions through electrons trapped at the site of oxygen vacancies, as described by the bound magnetic polaron model. Our results suggest that FM order is aligned along [101] direction of Co-doped SnO2 nanocrystals, which is proposed to be the easy magnetization axis. PMID:25489286

  6. Electroplated FeNi ring cores for fluxgates with field induced radial anisotropy

    NASA Astrophysics Data System (ADS)

    Butta, M.; Ripka, P.; Janosek, M.; Pribil, M.

    2015-05-01

    Being able to control the anisotropy of a magnetic core plays an important role in the development of a fluxgate sensor. Our aim is to induce anisotropy orthogonal to the direction of excitation because it generates a stable, low-noise fluxgate, as cited in the literature. In this paper, we present an original method for electroplating a ring core for a fluxgate with built-in radial anisotropy by performing the electroplating in a radial field produced by a novel yoke. The results show that the resulting anisotropy is homogeneously radial and makes the magnetization rotate, avoiding domain wall movement for low excitation fields.

  7. Strong uniaxial magnetic anisotropy in CoFe films on obliquely sputtered Ru underlayer

    SciTech Connect

    Fukuma, Y.; Lu, Z.; Fujiwara, H.; Mankey, G. J.; Butler, W. H.; Matsunuma, S.

    2009-10-01

    Co{sub 90}Fe{sub 10} films with an in-plane uniaxial magnetic anisotropy have been grown on an obliquely sputtered thin Ru underlayer. The anisotropy field can be increased up to 200 Oe. The hysteresis curves show a very high squareness in the easy axis direction and almost no hysteresis in the hard axis direction, suggesting that the induced uniaxial anisotropy is uniform throughout the films. The switching characteristics of the nanoelements fabricated from the films by e-beam lithography are also investigated. There is no degradation of the magnetic anisotropy after the annealing and lithographical process.

  8. Giant induced magnetic anisotropy In strain annealed Co-based nanocomposite alloys

    NASA Astrophysics Data System (ADS)

    Kernion, Samuel J.; Ohodnicki, Paul. R.; Grossmann, Jane; Leary, Alex; Shen, Shen; Keylin, Vladimir; Huth, Joseph F.; Horwath, John; Lucas, Matthew S.; McHenry, Michael E.

    2012-09-01

    Low loss switching of soft magnetic materials at high frequencies benefits from tuning the induced anisotropy. We show induced anisotropies, Ku, as large as 1.89×104 J /m3, developed by strain annealing of Co-rich nanocomposite alloys. Crystalline phases in this alloy system have large negative magnetostrictive coefficients, leading to anisotropy fields per unit stress over twice those developed in FINEMET. Tunable permeability and reduced thicknesses achieved in this process can mitigate eddy-current losses. Giant induced magnetic anisotropies are discussed in light of models for the micromechanisms of amorphous metal deformation, stress-assisted transformations in the crystallites, and directional pair ordering.

  9. Measurement of the magnetic anisotropy energy constants for magneto-optical recording media

    NASA Technical Reports Server (NTRS)

    Hajjar, R. A.; Wu, T. H.; Mansuripur, M.

    1992-01-01

    Measurement of the magneto-optical polar Kerr effect is performed on rare earth-transition metal (RE-TM) amorphous films using in-plane fields. From this measurement and the measurement of the saturation magnetization using a vibrating sample magnetometer (VSM), the magnetic anisotropy constants are determined. The temperature dependence is presented of the magnetic anisotropy in the range of -175 to 175 C. The results show a dip in the anisotropy near magnetic compensation. This anomaly is explained based on the finite exchange coupling between the rare earth and transition metal subnetworks.

  10. Contribution of Eu 4f states to the magnetic anisotropy of EuO

    SciTech Connect

    Arenholz, E.; Schmehl, A.; Schlom, D.G.; van der Laan, G.

    2008-09-11

    Anisotropic x-ray magnetic linear dichroism (AXMLD) provides a novel element-, site-, shell-, and symmetry-selective techniques to study the magnetic anisotropy induced by a crystalline electric field. The weak Eu2+ M4,5 AXMLD observed in EuO(001) indicates that the Eu 4f states are not rotationally invariant and hence contribute weakly to the magnetic anisotropy of EuO. The results are contrasted with those obtained for 3d transition metal oxides.

  11. Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ergeneman, Olgaç; Peters, Christian; Gullo, Maurizio R.; Jacot-Descombes, Loïc; Gervasoni, Simone; Özkale, Berna; Fatio, Philipe; Cadarso, Victor J.; Mastrangeli, Massimo; Pané, Salvador; Brugger, Jürgen; Hierold, Christofer; Nelson, Bradley J.

    2014-08-01

    We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this work superparamagnetic magnetite nanoparticles are dispersed in SU-8 to form magnetic hemispheres. Magnetically anisotropic hemispheres as well as standard SPMPC hemispheres are fabricated. Magnetic anisotropy is programmed by applying a magnetic field during curing. The distribution of nanoparticles inside the polymer matrix and magnetic characteristics of the SPMPC are investigated. Magnetic manipulation of hemispheres is demonstrated at liquid-liquid interfaces. Different assembly strategies to form lines or geometric shapes from hemispheres as well as their independent dynamic control are demonstrated. Finally, a two-interface assembly strategy is demonstrated to assemble hemispheres into complete spheres for advanced self-assembly tasks.We present the fabrication and characterization of large arrays of inkjet-printed superparamagnetic polymer composite (SPMPC) hemispherical microstructures. SPMPCs are appealing for applications in microsystems and nanorobotics due to the added functionality of polymers and the significant magnetic attributes of embedded nanostructures. SPMPC-based microarchitectures can be used to perform different functions wirelessly in various media (e.g. water, solvents) using external magnetic fields: handling and assembling small objects, delivering drugs or biomass, or sensing specific physical or chemical changes. In this work superparamagnetic magnetite nanoparticles are dispersed in SU-8 to form magnetic hemispheres. Magnetically anisotropic hemispheres as well as standard SPMPC hemispheres are fabricated. Magnetic anisotropy is programmed by applying a magnetic field during curing. The distribution of nanoparticles inside the polymer matrix and magnetic characteristics of the SPMPC are investigated. Magnetic manipulation of hemispheres is demonstrated at liquid-liquid interfaces. Different assembly strategies to form lines or geometric shapes from hemispheres as well as their independent dynamic control are demonstrated. Finally, a two-interface assembly strategy is demonstrated to assemble hemispheres into complete spheres for advanced self-assembly tasks. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06442e

  12. Single-crystal magnetic anisotropies of rock-forming minerals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas

    2013-04-01

    Anisotropy of magnetic susceptibility (AMS) is often used as an indicator of mineral fabric in rocks. For a quantitative estimate of mineral fabric, it is necessary to know and understand the intrinsic magnetic anisotropy of each mineral in the rock. Susceptibility, and thus AMS, is a superposition of paramagnetic and ferromagnetic components. In general, the paramagnetic contribution can be related to silicates, whereas the ferromagnetic component arises from iron oxide inclusions. We determined single-crystal AMS in both low and high magnetic fields for a series of olivine, amphibole, clinopyroxene and orthopyroxene compositions. Analysis of high-field data allows for separation of ferromagnetic and paramagnetic contributions to the magnetic anisotropy. Acquisition of isothermal remanent magnetization (IRM) was measured in order to further characterize the ferromagnetic inclusions. Often, the iron oxides grow epitaxially on the silicate structure and have specific orientations with respect to the silicate. The ferromagnetic component of the AMS can provide information on the orientation or shape of the inclusions. The paramagnetic AMS in a single crystal is related to the distribution of cations with a strong magnetic moment, e.g. ferric and ferrous iron, in the lattice structure. Relationships between the anisotropy, e.g. the anisotropy degree (delta k) or principal susceptibility directions, and iron content were thus established for each mineral group. For example, the orientation of the intermediate and minimum susceptibility axes in olivine depends on the iron content - the minimum susceptibility is parallel to the crystallographic a-axis for 3-5 wt.% FeO and parallel to b for 7-9 wt.% FeO at room temperature; and for amphiboles, the degree of AMS increases linearly with increasing iron content. AMS in a rock depends on the single-crystal properties, which are influenced by lattice structure and composition, as well as the crystallographic preferred orientation of crystals. Information on single crystal AMS can thus be used to predict bulk AMS of ultrabasic rocks, when the orientation distribution function of the constituent minerals is known.

  13. Study of YBCO tape anisotropy as a function of field, field orientation and operating temperature

    SciTech Connect

    Lombardo, v.; Barzi, E.; Turrioni, D.; Zlobin, A.V.

    2011-06-01

    Superconducting magnets with magnetic fields above 20 T will be needed for a Muon Collider and possible LHC energy upgrade. This field level exceeds the possibilities of traditional Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn and Nb{sub 3}Al. Presently the use of high field high temperature superconductors (HTS) is the only option available for achieving such field levels. Commercially available YBCO comes in tapes and shows noticeable anisotropy with respect to field orientation, which needs to be accounted for during magnet design. In the present work, critical current test results are presented for YBCO tape manufactured by Bruker. Short sample measurements results are presented up to 14 T, assessing the level of anisotropy as a function of field, field orientation and operating temperature.

  14. Manipulating magnetic anisotropy and ultrafast spin dynamics of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Zhao-Hua; He, Wei; Zhang, Xiang-Qun; Sun, Da-Li; Du, Hai-Feng; Wu, Qiong; Ye, Jun; Fang, Ya-Peng; Liu, Hao-Liang

    2015-07-01

    We present our extensive research into magnetic anisotropy. We tuned the terrace width of Si(111) substrate by a novel method: varying the direction of heating current and consequently manipulating the magnetic anisotropy of magnetic structures on the stepped substrate by decorating its atomic steps. Laser-induced ultrafast demagnetization of a CoFeB/MgO/CoFeB magnetic tunneling junction was explored by the time-resolved magneto-optical Kerr effect (TR-MOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electron tunneling current. This opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions. Furthermore, an all-optical TR-MOKE technique provides the flexibility for exploring the nonlinear magnetization dynamics in ferromagnetic materials, especially with metallic materials. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403, 2011CB921801, and 2012CB933101) and the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, 51201179, and 11274361).

  15. Experimental investigation of magnetic anisotropy in spin vortex discs

    SciTech Connect

    Garraud, N. Arnold, D. P.

    2014-05-07

    We present experimental 2D vector vibrating sample magnetometer measurements to demonstrate the shape anisotropy effects occurring in micrometer-diameter supermalloy spin vortex discs. Measurements made for different disc sizes and orientations confirm the out-of-plane susceptibility is several orders of magnitude smaller than the in-plane susceptibility. These results validate with a high certitude that spin vortices with high diameter to thickness ratio retain in-plane-only magnetization, even when subjected to fields in the out-of-plane direction. These results contribute to further computational simulations of the dynamics of spin vortex structures in colloidal suspensions where external fields may be applied in any arbitrary direction.

  16. The peculiarities of magnetization reversal process in magnetic nanotube with helical anisotropy

    NASA Astrophysics Data System (ADS)

    Usov, N. A.; Serebryakova, O. N.

    2014-10-01

    The magnetization reversal process in a soft magnetic nanotube with a weak helical magnetic anisotropy is studied by means of numerical simulation. The origin of a helical anisotropy is a small off-diagonal correction to the magneto-elastic energy density. The change of the external magnetic field parallel to the nanotube axis is shown to initiate a magnetic hysteresis associated with the jumps of the circular magnetization component of the nanotube at a critical magnetic field Hs. For a uniform nanotube, the critical magnetic field Hs is investigated as a function of geometrical and magnetic parameters of the nanotube. Using 2D micromagnetic simulation, we study the behavior of a nanotube having magnetic defects in its middle part. In this case, the jump of the circular magnetization component starts at the defect. As a result, two bamboo domain walls appear near the defect and propagate to the nanotube ends. Similar effect may explain the appearance of the bamboo domain walls in a slightly non uniform amorphous ferromagnetic microwire with negative magnetostriction during magnetization reversal process.

  17. Manifestation of coherent magnetic anisotropy in a carbon nanotube matrix with low ferromagnetic nanoparticle content

    NASA Astrophysics Data System (ADS)

    Danilyuk, A. L.; Komissarov, I. V.; Labunov, V. A.; Le Normand, F.; Derory, A.; Hernandez, J. M.; Tejada, J.; Prischepa, S. L.

    2015-02-01

    The influence of the magnetic medium can lead to peculiar interaction between ferromagnetic nanoparticles (NPs). Most research in this area involves analysis of the interplay between magnetic anisotropy and exchange coupling. Increasing the average interparticle distance leads to the dominant role of the random magnetic anisotropy. Here we study the interparticle interaction in a carbon nanotube (CNT) matrix with low ferromagnetic NP content. Samples were synthesized by floating catalyst chemical vapor deposition. We found that below some critical NP concentration, when NPs are intercalated only inside CNTs, and at low temperatures, the extended magnetic order, of up to 150 nm, presents in our samples. It is shown by analyzing the correlation functions of the magnetic anisotropy axes that the extended order is not simply due to random anisotropy but is associated with the coherent magnetic anisotropy, which is strengthened by the CNT alignment. With increasing temperature the extended magnetic order is lost. Above the critical NP concentration, when NPs start to be intercalated not only into inner CNT channels, but also outside CNTs, the coherent anisotropy weakens and the exchange coupling dominates in the whole temperature range. We can make a connection with the various correlation functions using the generalized expression for the law of the approach to saturation and show that these different correlation functions reflect the peculiarities in the interparticle interaction inside CNTs. Moreover, we can extract such important micromagnetic parameters like the exchange field, local fields of random and coherent anisotropies, as well as their temperature and NP concentration dependencies.

  18. Electric polarization in bi-layered ferromagnetic film with combined magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Gareeva, Z. V.; Doroshenko, R. A.; Mazhitova, F. A.; Shulga, N. V.

    2015-07-01

    Magnetoelectric phenomena become one of the most attractive fields of magnetism. One of discussable items is inhomogeneous magnetoelectricity leading to appearance of electric polarization of magnetic domain walls, improper polarization of multiferroics etc. In our article we attract attention to the modulation of electric polarization by magnetic inhomogeneity in exchange coupled ferromagnetic film whose layers differ by magnetic anisotropy. Our goal is to explore the influence of combined magnetic anisotropy (especially its cubic component) on the behavior of electric polarization of bi-layered film placed in magnetic field. We perform theoretical analysis in a frame of phenomenological modeling of spins structures considering two geometries of magnetic field (magnetic field oriented perpendicular to a film plane and magnetic field oriented in a film plane along "hard magnetization" axis). Our results show that the presence of cubic magnetic anisotropy (Kc<0) in the layers allocates the planes of magnetic inhomogeneities and correspondingly the directions of electric polarization. We demonstrate that magnetic field applied along the "hard magnetization" axis leads to the rotation of electric polarization in the 45° range and magnetic field applied along normal to a film influences the magnitude of electric polarization leading to the lowering of polarization after attaining the maximum value.

  19. Magnetic anisotropy of epitaxial Cu/Ni/Cu nanolines

    NASA Astrophysics Data System (ADS)

    Lyons, E. S.; O'Handley, R. C.; Ross, C. A.

    2004-06-01

    Continuous nickel films grown pseudoepitaxially between copper layers have been shown to have strong perpendicular magnetic anisotropy due to large magnetoelastic and interface magnetocrystalline anisotropy energies. These Cu/Ni/Cu films with tNi=6.9 nm have been patterned into lines approximately 200 nm wide using interferometric lithography and ion milling. Torque magnetometer measurements show the anisotropy of the nanolines to be significantly different from that of the continuous films. The magnetoelastic anisotropy (favoring perpendicular magnetization) decreases in the patterned films due to strain relaxation at the line edges. Although the anisotropy change for this line width is most likely due to shape anisotropy, we anticipate observation of magnetoelastic anisotropy due to strain relief at the edges of the lines at narrower line widths in future work.

  20. Perpendicular magnetic anisotropy of Tb magnetic moments in Tb/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Trhlík, M.; De Moor, P.; Mibu, K.; Severijns, N.; Shinjo, T.; Van Geert, A.; Vanneste, L.

    1997-01-01

    The direction of the magnetic moment of Tb in Fe(40 Å)/Tb( x Å) ( x = 10 and 20) multilayers has been studied using the low-temperature nuclear orientation technique in the temperature range 5-50 mK and in the external magnetic field range Bext = 0-8.5 T, with Bext applied along the sample plane. The anisotropy of the 299 keV 160Tb γ-line was monitored in three directions with respect to Bext and the sample plane. The perpendicular magnetic anisotropy (PMA) of the Tb magnetic moments has been found at zero Bext for both systems. The PMA effect is increased when the Tb layers are thinner. An application of Bext turned the Tb magnetic moments towards the sample plane, without reaching a full alignment even at Bext = 8.5 T.

  1. Paleomagnetic, Anisotropy of Magnetic Susceptibility, and 40AR/39AR Data from the Cienega Volcano, Cerros del Rio Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Foucher, M. S.; Petronis, M. S.; Lindline, J.; Van Wyk de Vries, B.

    2012-12-01

    Cinder cone eruptions are typically interpreted to have formed by the ascension of magma through a simple conduit. Recent field work and laboratory studies on different excavated volcanoes around the world suggest that magma transport within cinder cones can involve a complex system of feeder geometries. We studied the Cienega volcano, a cinder cone in the Cerros del Rio volcanic field, northern New Mexico, in order to better understand the complexity and the evolution of volcanic plumbing systems in the development of cinder cone volcanoes. We hypothesized that cinder cone plumbing systems are inherently complex and involve numerous feeder geometries (e.g. dikes, sills) and flow patterns both towards and away from the central vent complex. The Cienega volcano comprises tephra fall deposits as well as several vents, multiple intrusions, and numerous lava flow sequences. We inspected the magmatic plumbing system using different laboratory methods including paleomagnetic, anisotropy of magnetic susceptibility (AMS), rock magnetic and thin section studies. We collected samples across each outcrop of the feeder system. The dikes are olivine porphyritic basalts with major clinopyroxene, calcic plagioclase feldspar, magnetite, and xenocrystic quartz. Most samples display a trachytic texture with plagioclase crystals showing a preferred orientation parallel to the dike margins. The magnetic information is held predominantly by a cubic phase magnetite with a low- to moderate-Ti composition of Single or Pseudo-Single Domain grains. The AMS results show various flow directions. Three of six dikes yielded magma flow directions away from the vent. The other dikes showed both a subvertical flow, which corresponds to the typical movement of magma in a dike originating from a deeper crustal level, and a downward flow direction. We concluded that magma initially flowed upward from the magma chamber until it encountered flow resistance. At this structural level (the current exposure level), the magma flowed laterally away from the ascent location. Magma transport was, therefore, not solely directed into the central conduit but actually involved numerous conduits away from the vent area. The in situ results for eight paleomagnetic sites provide a group mean of D=354.2°, I=19.7°, α95= 4.8°, 5/8. The virtual geomagnetic pole dispersion of the group mean yields a value of 1.19, significantly lower than the predicted VGP dispersion estimate of 15° for the paleolatitude of the site (35.7°N). The results indicate that the different dikes were emplaced within a short period of time (<100 years) relative to a secular variation of the geomagnetic field. Four new whole rock 40Ar/39Ar age determinations from both vent and dike facies are indistinguishable at 2.75 Ma. These ages place the eruptive events in the latest Pliocene and indicate rapid magma injections and cone construction relative to secular variation.

  2. Anisotropy of hyperfine interactions as a tool for interpretation of NMR spectra in magnetic materials.

    PubMed

    Chlan, V; Stěpánková, H; Rezníček, R; Novák, P

    2011-07-01

    Approach for interpretation of nuclear magnetic resonance (NMR) spectra in magnetic materials is presented, consisting in employing the anisotropy of hyperfine interaction. The anisotropic parts of hyperfine magnetic fields on (57)Fe nuclei are calculated ab initio for a model example of lithium ferrite and utilized to assign the experimental NMR spectral lines to iron sites in the crystal structure. PMID:21536415

  3. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Zhou, Tie-ge; Shao, Bin; Zuo, Xu; Feng, Min

    2016-05-01

    Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ˜16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  4. Anomalous enhancement in interfacial perpendicular magnetic anisotropy through uphill diffusion

    PubMed Central

    Das, Tanmay; Kulkarni, Prabhanjan D.; Purandare, S. C.; Barshilia, Harish C.; Bhattacharyya, Somnath; Chowdhury, Prasanta

    2014-01-01

    We observed interfacial chemical sharpening due to uphill diffusion in post annealed ultrathin multilayer stack of Co and Pt, which leads to enhanced interfacial perpendicular magnetic anisotropy (PMA). This is surprising as these elements are considered as perfectly miscible. This chemical sharpening was confirmed through quantitative energy dispersive x-ray (EDX) spectroscopy and intensity distribution of images taken on high angle annular dark field (HAADF) detector in Scanning Transmission Electron Microscopic (STEM) mode. This observation demonstrates an evidence of miscibility gap in ultrathin coherent Co/Pt multilayer stacks. PMID:24937637

  5. Anomalous enhancement in interfacial perpendicular magnetic anisotropy through uphill diffusion.

    PubMed

    Das, Tanmay; Kulkarni, Prabhanjan D; Purandare, S C; Barshilia, Harish C; Bhattacharyya, Somnath; Chowdhury, Prasanta

    2014-01-01

    We observed interfacial chemical sharpening due to uphill diffusion in post annealed ultrathin multilayer stack of Co and Pt, which leads to enhanced interfacial perpendicular magnetic anisotropy (PMA). This is surprising as these elements are considered as perfectly miscible. This chemical sharpening was confirmed through quantitative energy dispersive x-ray (EDX) spectroscopy and intensity distribution of images taken on high angle annular dark field (HAADF) detector in Scanning Transmission Electron Microscopic (STEM) mode. This observation demonstrates an evidence of miscibility gap in ultrathin coherent Co/Pt multilayer stacks. PMID:24937637

  6. Local magnetic turbulence and TeV-PeV cosmic ray anisotropies.

    PubMed

    Giacinti, Gwenael; Sigl, Günter

    2012-08-17

    In the energy range from ∼10(12)  eV to ∼10(15)  eV, the Galactic cosmic ray flux has anisotropies both on large scales, with an amplitude of the order of 0.1%, and on scales between ≃10° and ≃30°, with amplitudes smaller by a factor of a few. With a diffusion coefficient inferred from Galactic cosmic ray chemical abundances, the diffusion approximation predicts a dipolar anisotropy of comparable size, but does not explain the smaller scale anisotropies. We demonstrate here that energy dependent smaller scale anisotropies naturally arise from the local concrete realization of the turbulent magnetic field within the cosmic ray scattering length. We show how such anisotropies could be calculated if the magnetic field structure within a few tens of parsecs from Earth were known. PMID:23006354

  7. Anisotropy-Tuned Magnetic Order in Pyrochlore Iridates.

    PubMed

    Lefranois, E; Simonet, V; Ballou, R; Lhotel, E; Hadj-Azzem, A; Kodjikian, S; Lejay, P; Manuel, P; Khalyavin, D; Chapon, L C

    2015-06-19

    The magnetic behavior of polycrystalline samples of Er(2)Ir(2)O(7) and Tb(2)Ir(2)O(7) pyrochlores is studied by magnetization measurements and neutron diffraction. Both compounds undergo a magnetic transition at 140 and 130 K, respectively, associated with an ordering of the Ir sublattice, signaled by thermomagnetic hysteresis. In Tb(2)Ir(2)O(7), we show that the Ir molecular field leads the Tb magnetic moments to order below 40 K in the all-in-all-out magnetic arrangement. No sign of magnetic long-range order on the Er sublattice is evidenced in Er(2)Ir(2)O(7) down to 0.6 K where a spin freezing is detected. These contrasting behaviors result from the competition between the Ir molecular field and the different single-ion anisotropy of the rare-earth elements on which it is acting. Additionally, this strongly supports the all-in-all-out iridium magnetic order. PMID:26197002

  8. Direct observation of an anisotropic in-plane residual stress induced by B addition as an origin of high magnetic anisotropy field of Ru/FeCoB film

    SciTech Connect

    Hirata, Ken-ichiro; Gomi, Shunsuke; Mashiko, Yasuhiro; Nakagawa, Shigeki

    2010-05-15

    Although boron-free FeCo films prepared on a Ru underlayer exhibits isotropic in-plane magnetic property, boron added FeCoB films prepared on Ru underlayer revealed large in-plane magnetic anisotropy with a high anisotropy field of 500 Oe. The effect of boron addition on the in-plane anisotropic residual stress in FeCoB film was investigated using sin{sup 2} {psi} method of x-ray diffraction analysis. Large isotropic compressive stress was observed in Ru/FeCo film. In contrast, anisotropic in-plane residual stress was observed in Ru/FeCoB film. The compressive stress along the easy axis of Ru/FeCoB film is released more than that along the hard axis. Such anisotropic residual stress is regarded as an origin of the in-plane magnetic anisotropy through inverse magnetostriction effect. Owing to the configuration of the facing targets sputtering system, boron atoms are sputtered and deposited anisotropically, and so they penetrate FeCo crystals and release the compressive stress along the incidence direction.

  9. Direct observation of an anisotropic in-plane residual stress induced by B addition as an origin of high magnetic anisotropy field of Ru/FeCoB film

    NASA Astrophysics Data System (ADS)

    Hirata, Ken-ichiro; Gomi, Shunsuke; Mashiko, Yasuhiro; Nakagawa, Shigeki

    2010-05-01

    Although boron-free FeCo films prepared on a Ru underlayer exhibits isotropic in-plane magnetic property, boron added FeCoB films prepared on Ru underlayer revealed large in-plane magnetic anisotropy with a high anisotropy field of 500 Oe. The effect of boron addition on the in-plane anisotropic residual stress in FeCoB film was investigated using sin2 ψ method of x-ray diffraction analysis. Large isotropic compressive stress was observed in Ru/FeCo film. In contrast, anisotropic in-plane residual stress was observed in Ru/FeCoB film. The compressive stress along the easy axis of Ru/FeCoB film is released more than that along the hard axis. Such anisotropic residual stress is regarded as an origin of the in-plane magnetic anisotropy through inverse magnetostriction effect. Owing to the configuration of the facing targets sputtering system, boron atoms are sputtered and deposited anisotropically, and so they penetrate FeCo crystals and release the compressive stress along the incidence direction.

  10. Interplay between magnetic anisotropy and vibron-assisted tunneling in a single-molecule magnet transistor

    NASA Astrophysics Data System (ADS)

    Park, Kyungwha; McCaskey, Alexander; Yamamoto, Yoh; Warnock, Michael; Burzuri, Enrique; van der Zant, Herre

    2015-03-01

    Molecules trapped in single-molecule devices vibrate with discrete frequencies characteristic to the molecules, and the molecular vibrations can couple to electronic charge and/or spin degrees of freedom. For a significant electron-vibron coupling, electrons may tunnel via the vibrational excitations unique to the molecules. Recently, electron transport via individual anisotropic magnetic molecules (referred to as single-molecule magnets) has been observed in single-molecule transistors. A single-molecule magnet has a large spin moment and a large magnetic anisotropy barrier. So far, studies of electron-vibron coupling effects in single-molecule devices, are mainly for isotropic molecules. Here we investigate how the electron-vibron coupling influences electron transport via a single-molecule magnet Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (arXiv:1411.2677). We show that the magnetic anisotropy of the Fe4 induces new features in vibrational conductance peaks and creates vibrational satellite peaks. The main and satellite peak heights have a strong, unusual dependence on the direction and magnitude of applied magnetic field, because the magnetic anisotropy barrier is comparable to vibrational energies. Funding from NSF DMR-1206354, EU FP7 program project 618082 ACMOL, advanced ERC grant (Mols@Mols). Computer resources from SDSC Trestles under DMR060009N and VT ARC.

  11. Large magnetic anisotropy in canted antiferromagnetic Sr2IrO4 single crystals

    NASA Astrophysics Data System (ADS)

    Hong, Yunjeong; Jo, Younjung; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Kang, Woun

    2016-03-01

    The magnetocrystalline contribution to magnetic anisotropy was studied in the canted antiferromagnetic state of layered Sr2IrO4 single crystals. We performed torque measurements in magnetic fields up to 9 T under various magnetic field orientations. The strong dependence of torque on the magnetic field revealed that the magnetic easy axis is along the in-plane direction and that the observed field-induced weak ferromagnetic order is attributed only to the in-plane component of the external magnetic field. The dependence of torque on the angle produces a twofold symmetric sawtoothlike shape. A simple model consisting of canted antiferromagnetic and magnetic induction terms showed good agreement with the measured torque. These results show that magnetic anisotropy is closely related to the anisotropy of the exchange between antiferromagnetic moments whose canting is mediated by the Dzyaloshinsky-Moriya interaction. Our study demonstrates that torque magnetometry can be extended to the investigation of the magnetic anisotropy of complex magnetic phases.

  12. Tuning the magnetic anisotropy in single-layer crystal structures

    NASA Astrophysics Data System (ADS)

    Torun, E.; Sahin, H.; Bacaksiz, C.; Senger, R. T.; Peeters, F. M.

    2015-09-01

    The effect of an applied electric field and the effect of charging are investigated on the magnetic anisotropy (MA) of various stable two-dimensional (2D) crystals such as graphene, FeCl2, graphone, fluorographene, and MoTe2 using first-principles calculations. We found that the magnetocrystalline anisotropy energy of Co-on-graphene and Os-doped-MoTe2 systems change linearly with electric field, opening the possibility of electric field tuning MA of these compounds. In addition, charging can rotate the easy-axis direction of Co-on-graphene and Os-doped-MoTe2 systems from the out-of-plane (in-plane) to in-plane (out-of-plane) direction. The tunable MA of the studied materials is crucial for nanoscale electronic technologies such as data storage and spintronics devices. Our results show that controlling the MA of the mentioned 2D crystal structures can be realized in various ways, and this can lead to the emergence of a wide range of potential applications where the tuning and switching of magnetic functionalities are important.

  13. Evidence of magnetic anisotropy and spin-reorientation in the textured MnBi crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yongsheng; Peng, Lin; Zhang, Jincang; Ren, Zhongming; Yang, Jingjing; Yang, Zhenglong; Cao, Shixun; Fang, Wenjian

    2011-10-01

    Magnetic anisotropy is investigated systematically for the textured MnBi crystal. The magnetic anisotropy exists in magnetization behaviors, hysteresis loops, and remnant magnetization. An abnormal coercivity field Hc is found in the textured MnBi: Hc perpendicular to the c-axis is larger than that parallel to the c-axis. The mechanism of anisotropy is discussed based on magnetocrystalline anisotropy in MnBi. The behavior of a.c. susceptibility has similar trends with frequency variation, not displaying a spin-disorder characteristic. The MnBi with ferromagnetic order has a higher loss under high frequencies than under low frequencies. Some spin-reorientation evidence in the MnBi is also obtained.

  14. Phase diagram of a three-dimensional antiferromagnet with random magnetic anisotropy.

    PubMed

    Perez, Felio A; Borisov, Pavel; Johnson, Trent A; Stanescu, Tudor D; Trappen, Robbyn; Holcomb, Mikel B; Lederman, David; Fitzsimmons, M R; Aczel, Adam A; Hong, Tao

    2015-03-01

    Three-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean-field theory. Regions with uniaxial, oblique, and easy-plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs. PMID:25793845

  15. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    PubMed Central

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-01-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line. PMID:27098108

  16. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    PubMed

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-01-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line. PMID:27098108

  17. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    NASA Astrophysics Data System (ADS)

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-04-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  18. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    NASA Astrophysics Data System (ADS)

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-10-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the strain-induced anisotropy resulting from the anisotropic thermal expansion of the β-phase PVDF. The simulation based on modified Stoner-Wohlfarth model and the ferromagnetic resonance measurements confirms our results. The positive temperature coefficient of magnetic anisotropy is estimated to be 1.1 × 102 J m-3 K-1. Preparing the composite at low temperature can enlarge the temperature range where it shows the positive temperature coefficient of magnetic anisotropy. The present results may help to design magnetic devices with improved thermal stability and enhanced performance.

  19. Anisotropy of the magnetic susceptibility of gallium

    USGS Publications Warehouse

    Pankey, T., Jr.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  20. Artificially modified magnetic anisotropy in interconnected nanowire networks.

    PubMed

    Araujo, Elsie; Encinas, Armando; Velázquez-Galván, Yenni; Martínez-Huerta, Juan Manuel; Hamoir, Gaël; Ferain, Etienne; Piraux, Luc

    2015-01-28

    Interconnected or crossed magnetic nanowire networks have been fabricated by electrodeposition into a polycarbonate template with crossed cylindrical nanopores oriented ±30° with respect to the surface normal. Tailor-made nanoporous polymer membranes have been designed by performing a double energetic heavy ion irradiation with fixed incidence angles. The Ni and Ni/NiFe nanowire networks have been characterized by magnetometry as well as ferromagnetic resonance and compared with parallel nanowire arrays of the same diameter and density. The most interesting feature of these nanostructured materials is a significant reduction of the magnetic anisotropy when the external field is applied perpendicular and parallel to the plane of the sample. This effect is attributed to the relative orientation of the nanowire axes with the applied field. Moreover, the microwave transmission spectra of these nanowire networks display an asymmetric linewidth broadening, which may be interesting for the development of low-pass filters. Nanoporous templates made of well-defined nanochannel network constitute an interesting approach to fabricate materials with controlled anisotropy and microwave absorption properties that can be easily modified by adjusting the relative orientation of the nanochannels, pore sizes and material composition along the length of the nanowire. PMID:25501534

  1. Artificially modified magnetic anisotropy in interconnected nanowire networks

    NASA Astrophysics Data System (ADS)

    Araujo, Elsie; Encinas, Armando; Velázquez-Galván, Yenni; Martínez-Huerta, Juan Manuel; Hamoir, Gaël; Ferain, Etienne; Piraux, Luc

    2015-01-01

    Interconnected or crossed magnetic nanowire networks have been fabricated by electrodeposition into a polycarbonate template with crossed cylindrical nanopores oriented +/-30° with respect to the surface normal. Tailor-made nanoporous polymer membranes have been designed by performing a double energetic heavy ion irradiation with fixed incidence angles. The Ni and Ni/NiFe nanowire networks have been characterized by magnetometry as well as ferromagnetic resonance and compared with parallel nanowire arrays of the same diameter and density. The most interesting feature of these nanostructured materials is a significant reduction of the magnetic anisotropy when the external field is applied perpendicular and parallel to the plane of the sample. This effect is attributed to the relative orientation of the nanowire axes with the applied field. Moreover, the microwave transmission spectra of these nanowire networks display an asymmetric linewidth broadening, which may be interesting for the development of low-pass filters. Nanoporous templates made of well-defined nanochannel network constitute an interesting approach to fabricate materials with controlled anisotropy and microwave absorption properties that can be easily modified by adjusting the relative orientation of the nanochannels, pore sizes and material composition along the length of the nanowire.

  2. Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates

    SciTech Connect

    Antropov, Vladimir P; Antonov, Victor N

    2014-09-01

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1-xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.

  3. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-02-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  4. Magnetism behaviours dominated by the interplay of magnetic anisotropy and exchange coupling in local Co discs.

    PubMed

    Yang, En-Cui; Liu, Zhong-Yi; Zhang, Lei; Yang, Na; Zhao, Xiao-Jun

    2016-05-10

    Disc-like Co core-derived (4,4)- and (3,6)-connected layers, {[Co7(C2H5OH)1.5(H2O)0.5(Hdatrz)2(μ3-OH)4(ip)5]·2.5H2O·C2H5OH}n () and [Co7(H2O)4(ade)2(μ3-OH)6(sip)2]n () (Hdatrz = 3,5-diamino-1,2,4-triazole, ade(-) = adeninate, ip(2-) = isophthalate and sip(3-) = 5-sulfoisophthalate) were solvothermally generated and structurally and magnetically characterized. The effect of magnetic anisotropy and exchange coupling from the local Co cores on the resulting magnetism properties are discussed. A crystallographically asymmetric Co core in exhibited an unusual single-molecule magnet (SMM)-like response under zero dc field resulting from strong anisotropy generated by two different types of Co(II) polyhedra and highly anisotropic exchange interactions. By contrast, a highly symmetric Co disc in belonging to the C2h point group showed only strong ferromagnetic exchange, to lead to an overall ST = 7/2 spin ground-state at low temperature. Thus, the interplay of magnetic anisotropy and exchange coupling has a great and complicated influence on the overall magnetic phenomena, which should be fully considered for the design and preparation of new Co(II)-SMMs. PMID:27089955

  5. Anisotropic Magnetism in Field-Structured Composites

    SciTech Connect

    Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene

    1999-06-24

    Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.

  6. Induced Anisotropy in FeCo-Based Nanocrystalline Ferromagnetic Alloys (HITPERM) by Very High Field Annealing

    NASA Technical Reports Server (NTRS)

    Johnson, F.; Garmestani, H.; Chu, S.-Y.; McHenry, M. E.; Laughlin, D. E.

    2004-01-01

    Very high magnetic field annealing is shown to affect the magnetic anisotropy in FeCo-base nanocrystalline soft ferromagnetic alloys. Alloys of composition Fe(44.5)Co(44.5)Zr(7)B(4) were prepared by melt spinning into amorphous ribbons, then wound to form toroidal bobbin cores. One set of cores was crystallized in a zero field at 600 deg. C for 1 h, then, field annealed at 17 tesla (T) at 480 deg. C for 1 h. Another set was crystallized in a 17-T field at 480 deg. C for 1 h. Field orientation was transverse to the magnetic path of the toroidal cores. An induced anisotropy is indicated by a sheared hysteresis loop. Sensitive torque magnetometry measurements with a Si cantilever sensor indicated a strong, uniaxial, longitudinal easy axis in the zero-field-crystallized sample. The source is most likely magnetoelastic anisotropy, caused by the residual stress from nanocrystallization and the nonzero magnetostriction coefficient for this material. The magnetostrictive coefficient lambda(5) is measured to be 36 ppm by a strain gage technique. Field annealing reduces the magnitude of the induced anisotropy. Core loss measurements were made in the zero-field-crystallized, zero-field-crystallized- than-field-annealed, and field-crystallized states. Core loss is reduced 30%-50% (depending on frequency) by field annealing. X-ray diffraction reveals no evidence of crystalline texture or orientation that would cause the induced anisotropy. Diffusional pair ordering is thought to be the cause of the induced anisotropy. However, reannealing the samples in the absence of a magnetic field at 480 deg. C does not completely remove the induced anisotropy.

  7. Magnetic anisotropy and reduced neodymium magnetic moments in N d3R u4A l12

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V.; Eigner, V.; Gukasov, A.; Fabrèges, X.; Skourski, Y.; Petříček, V.; Wosnitza, J.

    2016-01-01

    This paper addresses the electronic properties of N d3R u4A l12 (hexagonal crystal structure) with focus on its magnetic anisotropy that allows a comparison between single-ion and two-ion mechanisms when comparing to U3R u4A l12 . We performed magnetization measurements on a single crystal in static and pulsed magnetic fields as well as neutron-diffraction experiments. N d3R u4A l12 is a strongly anisotropic uniaxial ferromagnet with a Curie temperature of 39 K. The magnetic moments are aligned collinearly along the [001] axis. The magnetic structure of N d3R u4A l12 has orthorhombic symmetry for which the crystallographic Nd site is split into two magnetically inequivalent positions, Nd1 and Nd2. The Nd1 and Nd2 atoms exhibit reduced magnetic moments, 0.95 and 2.66 μB , as compared to the free N d3 + -ion value (3.28 μB ). We discuss this finding in terms of crystal-field effects and competing exchange and anisotropy interactions. Since the single-ion mechanism in N d3R u4A l12 leads to uniaxial anisotropy and the two-ion mechanism of the actinide analog U3R u4A l12 is known to lead to planar anisotropy, this paper demonstrates the decisive influence of these different mechanisms on the magnetic anisotropy.

  8. Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection

    SciTech Connect

    Divin, A.; Markidis, S.; Lapenta, G.; Semenov, V. S.; Erkaev, N. V.; Biernat, H. K.

    2010-12-15

    A new model of the electron pressure anisotropy in the electron diffusion region in collisionless magnetic reconnection is presented for the case of antiparallel configuration of magnetic fields. The plasma anisotropy is investigated as source of collisionless dissipation. By separating electrons in the vicinity of the neutral line into two broad classes of inflowing and accelerating populations, it is possible to derive a simple closure for the off-diagonal electron pressure component. The appearance of these two electron populations near the neutral line is responsible for the anisotropy and collisionless dissipation in the magnetic reconnection. Particle-in-cell simulations verify the proposed model, confirming first the presence of two particle populations and second the analytical results for the off-diagonal electron pressure component. Furthermore, test-particle calculations are performed to compare our approach with the model of electron pressure anisotropy in the inner electron diffusion region by Fujimoto and Sydora [Phys. Plasmas 16, 112309 (2009)].

  9. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Leary, A. M.; Keylin, V.; Ohodnicki, P. R.; McHenry, M. E.

    2015-05-01

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to ˜2 kJ/m3. Higher anisotropies up to ˜10 kJ/m3 result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co80-x-yFexMnyNb4B14Si2 soft magnetic nanocomposites, where x and y < 8 at.% with close packed crystalline grains that show stress induced anisotropies up to ˜50 kJ/m3 and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis.

  10. Enhanced magnetic anisotropy in cobalt-carbide nanoparticles

    SciTech Connect

    El-Gendy, AA; Qian, MC; Huba, ZJ; Khanna, SN; Carpenter, EE

    2014-01-13

    An outstanding problem in nano-magnetism is to stabilize the magnetic order in nanoparticles at room temperatures. For ordinary ferromagnetic materials, reduction in size leads to a decrease in the magnetic anisotropy resulting in superparamagnetic relaxations at nanoscopic sizes. In this work, we demonstrate that using wet chemical synthesis, it is possible to stabilize cobalt carbide nanoparticles which have blocking temperatures exceeding 570 K even for particles with magnetic domains of 8 nm. First principles theoretical investigations show that the observed behavior is rooted in the giant magnetocrystalline anisotropies due to controlled mixing between C p- and Co d-states. (C) 2014 AIP Publishing LLC.

  11. Anisotropy of electric resistance and upper critical field in magnetic superconductor Dy0.6Y0.4Rh3.85Ru0.15B4

    NASA Astrophysics Data System (ADS)

    Terekhov, A. V.; Zolochevskii, I. V.; Khristenko, E. V.; Ishchenko, L. A.; Bezuglyi, E. V.; Zaleski, A.; Khlybov, E. P.; Lachenkov, S. A.

    2016-05-01

    We have measured temperature dependencies of the electric resistance R and upper critical magnetic field Hc2 of a magnetic superconductor Dy0.6Y0.4Rh3.85Ru0.15B4. The measurements were made for different angles φ of the magnetic field inclination to the direction of measuring current and revealed strong anisotropy of the behavior of R(T) and the values of Hc2(T). By using the Werthamer-Gelfand-Hohenberg theory, we determined the Maki parameter α and the parameter of the spin-orbital interaction. For φ =0∘ and 90° both parameters are close to zero, thus the magnitude of Hc2(0) ≈ 38 kOe is basically limited by the orbital effect. At φ =45∘ , a large value of α = 4.2 indicates dominating role of the spin-paramagnetic effect in the suppression of Hc2(0) down to 8.8 kOe. We suggest that such behavior of R(T) and Hc2(T) is caused by internal magnetism of the Dy atoms which may strongly depend on the magnetic field orientation.

  12. Specific Heat in Zero and Applied Magnetic Field of Overdoped Ba1-xKxFe2As2: Analysis of The Multigap Behavior and Anisotropies

    NASA Astrophysics Data System (ADS)

    Stewart, G. R.; Kim, J. S.; Liu, Yong; Lograsso, Thomas A.

    2015-03-01

    Specific heat measurements down to 0.4 K and up to Hc2 on single crystals of two different compositions of overdoped Ba1-xKxFe2As2 with Tc values of 5.9 K (x ~0.93) and 8.9 K (x ~0.85) are reported. The possibility of mixed/crossover behavior in the pairing symmetry in this composition range has been discussed in the literature. The zero field data analysis for both samples results in essentially the same two gap values: 2 ?/kTc = 0.9 and 3.5 while the field data indicate pronounced non-linearity in ? vs H both as the lower gap is suppressed by about 1 T but also in higher fields up to Hc2 ~ 5.5 T. Analysis of the field data to investigate the gap anisotropies will be presented. Work at Florida supported by US DOE, BES Contract No. DE-FG02-86ER45268 and at Ames by US DOE, BES Contract No. DE-AC02-07CH11358.

  13. Magnetic anisotropy and thermodynamic anomaly in the superconducting mixed state of UBe13 probed by static dc magnetization measurements

    NASA Astrophysics Data System (ADS)

    Shimizu, Yusei; Haga, Yoshinori; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2016-01-01

    Static dc magnetization M (H ) measurements were performed for a single crystal of UBe13 down to 0.1 K in magnetic fields up to 80 kOe for H ∥<100 > and H ∥<110 > . For both field directions, an unusual magnetic anomaly was observed at HMag*˜20 -30 kOe in the superconducting mixed state. This anomaly was seen in the thermal-equilibrium-magnetization curves as well as the increasing- and decreasing-field processes of the raw magnetization curves, implying a change of the thermodynamic property at HMag*. Furthermore, the magnetic anisotropy of the superconducting diamagnetic response is found to be significant above HMag*, possibly associated with the anisotropy of the upper critical field Hc 2. Considering the suppression of reduced upper critical field h* and the dramatic decrease of Maki parameter κ2 around 0.9 Tc , the paramagnetic effect is present in UBe13. The paramagnetic effect in UBe13 could become anisotropic at low temperature below ˜Tc/2 . An alternative explanation of the magnetic anisotropy is however that the anisotropy of the nonlinear susceptibility for the heavy electrons in the vortex cores becomes significant below ˜Tc/2 .

  14. Stabilization of Magnetic Antivortices and the role of Shape Anisotropy

    NASA Astrophysics Data System (ADS)

    Asmat-Uceda, Martin; Li, Lin; Shaw, Brian; Haldar, Arabinda; Buchanan, Kristen

    2014-03-01

    Magnetic vortices have attracted a great deal of interest in recent years due to their potential for applications such as data storage, microwave resonators, magnonic crystals, etc. Magnetic antivortices (AV) are expected to possess similarly interesting physical attributes; however, they have not been explored with the same intensity. The AV spin configuration may present some advantages over vortices, especially for channeling spin waves emitted from the dynamic core reversal and for de-coupling spin-transfer torque effects from parasitic Oersted fields. Currently only a few geometries have been identified that reliably promote the formation of an AV, thus limiting the study of their properties. We recently demonstrated a method to form AV's in pound-key-like structures made of Permalloy (Haldar et al. APL 102, 112401, 2013). Here we investigate the dependence of the reliability of the AV formation on the details of the geometry of these structures. Magneto-optical Kerr effect (MOKE) hysteresis and magnetic force microscopy measurements show that the coercive field is also the nucleation field for the AV's. Micromagnetic simulations agree well with the experiments and highlight the role of shape anisotropy in the AV formation.

  15. The magnetic anisotropy of samarium-alnico pseudobinary alloys

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.; Weng, C. I.; Hsu, T. K.

    1984-01-01

    The anisotropy properties of samarium-Alnico V pseudobinary alloys have been investigated. With alloys containing less than 12.0 mol% samarium, the K1 values are negative at 77 K and increase with increasing temperature to approximately zero at room temperature. The K2 values remain positive at all temperatures. We do not find the easy cone that has long been thought to be existed in those alloys with K1 < 0 and K2 #62; 0. In alloys with samarium contents between 13.3 and 19.0 mol%, the K1 and K2 values are positive at all temperatures. The anisotropy fields are not changed monotonically in the whole range of 10.1 to 19.0 mol% of samarium. It is concluded that the alloys are characteristics in thermodynamically of first-order transition. We have found that the "hard cone" exists in each of those alloys with samarium content more than 16.0 mol% and at temperatures above 77 K. The alloys with samarium less that 13.4 mol% also have "hard cone" under 77 K. However, the observed "hard cone" is different from the well known one in the first-order magnetization process, and it will collapse to the easy axis when the measuring field and temperature increase while under room temperature.

  16. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  17. Structure of nanoparticles in transformer oil-based magnetic fluids, anisotropy of acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Kopčanský, Peter; Timko, Milan

    2015-08-01

    The anisotropy of acoustic attenuation in transformer oil-based magnetic fluids upon the external magnetic field was studied to discover the structure of nanoparticles. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles leads to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids and the concentration of nanoparticles also have very important influence on the structural changes. The measurement of the dependence of the acoustic attenuation on the angle between the magnetic field direction and acoustic wave vector (anisotropy) can give the useful information about the structure of magnetic nanoparticles formations. In the present, the results of anisotropy measurements of the transformer oil-based magnetic fluids are described and using appropriate theory the basic parameters of clusters are calculated. On the basis of the performed calculations, the proportion of the acoustic wave energy used for excitation of the translational and rotational degrees of freedom was also established.

  18. Local stress engineering of magnetic anisotropy in soft magnetic thin films

    SciTech Connect

    Martin, Norbert; McCord, Jeffrey; Gemming, Thomas; Moench, Ingolf; Schaefer, Rudolf; Schultz, Ludwig; Gerber, Andreas; Quandt, Eckhard; Strache, Thomas; Fassbender, Juergen; Farag, Nayel

    2009-02-09

    The magnetic anisotropy of amorphous thin films was modified laterally by masked ion irradiation without alteration of the intrinsic magnetic properties. The changes were introduced by local ion implantation in a protection layer, causing additional stress-induced magnetic anisotropy in the magnetostrictive layer. The underlying local variation in magnetic anisotropy was modeled and confirmed experimentally. The described method, relying purely on magnetoelastics, introduces a new path to the alteration of magnetic properties subsequent to magnetic film preparation. With the use of the resulting artificial magnetization patterns, it is possible to tailor the ferromagnetic thin film structure used in magnetoelectronic applications.

  19. Deterministic Magnetization Control by Magnetoelastic Anisotropy and its Dependence on Geometry and Scale

    NASA Astrophysics Data System (ADS)

    Hockel, Joshua Leon

    The recent interest in non-volatile memory and logic devices has encouraged the scientific community to develop improved magnetic control mechanisms. In the present work, control of magnets by magnetoelastic anisotropy is investigated within the context of magnetoelectric (ME) heterostructures of different geometry and scale. The ME heterostructure is an artificial multiferroic material which exhibits both a coexistence and coupling of ferromagnetic and ferroelectric ordering. This device architecture provides a route to control magnetism with electric fields via interfacial mechanical stress. In the present work, the initial magnetization morphology and behavior under mechanical stress is investigated for bulk laminate composites, thin film heterostructures, patterned single domain nanostructures, and ring shaped nanostructures. Significant differences were observed in the magnets' response to magnetoelastic anisotropy depending on the scale and or geometry of the magnetic material. Generally speaking, as the scale and aspect ratio of a magnetic system is reduced, the intrinsic magnetostatic and shape anisotropy energies are also reduced thus increasing the relative magnitude (and influence) of magnetoelastic anisotropy. The unambiguous control of a magnet's easy axis is here called deterministic control and this is achieved experimentally in single domain and ring shaped magnets. The magnetization of these nanostructures is shown to rotate 90° with an applied electric field, an important proof of concept for the proposed strain-based magnetic writing devices. The experimental results are confirmed by multiple characterization techniques including magnetic force microscopy (MFM), magneto optic Kerr effect (MOKE), photo emission electron microscopy (PEEM), and Lorentz transmission electron microscopy (TEM). This work thus provides significant evidence of the viability of magnetoelastic anisotropy as a means to control magnetoelectric heterostructures in future spintronic device research.

  20. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    SciTech Connect

    Dobrun, L. A. Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  1. Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Chaves-O'Flynn, Gabriel

    The scaling of the energy barrier to magnetization reversal in thin-film nanomagnets with perpendicular magnetization as a function of their lateral size is of great interest and importance for high-density magnetic random access memory devices. Experimental studies of such elements show either a quadratic or linear dependence of the energy barrier on element diameter. I will discuss a theoretical model we developed to determine the micromagnetic configurations that set the energy barrier for thermally activated reversal of a thin disk with perpendicular magnetic anisotropy as a function of disk diameter. We find a critical length in the problem that is set by the exchange and effective perpendicular magnetic anisotropy energies, with the latter including the size dependence of the demagnetization energy. For diameters smaller than this critical length, the reversal occurs by nearly coherent magnetization rotation and the energy barrier scales with the square of the diameter normalized to the critical length (for fixed film thickness), while for larger diameters, the transition state has a domain wall, and the energy barrier depends linearly on the normalized diameter. Simple analytic expressions are derived for these two limiting cases and verified using full micromagnetic simulations with the string method. Further, the effect of an applied field is considered and shown to lead to a plateau in the energy barrier versus diameter dependence at large diameters. Based on these finding I discuss the prospects and material challenges in the scaling of magnetic memory devices based on thin films with strong perpendicular magnetic anisotropy. In collaboration with G. Wolf, J. Z. Sun and A. D. Kent. Supported by NSF-DMR-1309202 and in part by Spin Transfer Technologies Inc. and the Nanoelectronics Research Initiative through the Institute for Nanoelectronics Discovery and Exploration.

  2. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Miles, J. J.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; kerman, J.; Thomson, T.

    2015-05-01

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  3. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    SciTech Connect

    Morrison, C. Miles, J. J.; Thomson, T.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  4. Research Update: Magnetoionic control of magnetization and anisotropy in layered oxide/metal heterostructures

    NASA Astrophysics Data System (ADS)

    Duschek, K.; Pohl, D.; Fähler, S.; Nielsch, K.; Leistner, K.

    2016-03-01

    Electric field control of magnetization and anisotropy in layered structures with perpendicular magnetic anisotropy is expected to increase the versatility of spintronic devices. As a model system for reversible voltage induced changes of magnetism by magnetoionic effects, we present several oxide/metal heterostructures polarized in an electrolyte. Room temperature magnetization of Fe-O/Fe layers can be changed by 64% when applying only a few volts in 1M KOH. In a next step, the bottom interface of the in-plane magnetized Fe layer is functionalized by an L10 FePt(001) underlayer exhibiting perpendicular magnetic anisotropy. During subsequent electrocrystallization and electrooxidation, well defined epitaxial Fe3O4/Fe/FePt heterostructures evolve. The application of different voltages leads to a thickness change of the Fe layer sandwiched between Fe-O and FePt. At the point of transition between rigid magnet and exchange spring magnet regime for the Fe/FePt bilayer, this induces a large variation of magnetic anisotropy.

  5. LETTER TO THE EDITOR: Anisotropy of ion temperature in a reversed-field-pinch plasma

    NASA Astrophysics Data System (ADS)

    Sasaki, K.; Hörling, P.; Fall, T.; Brzozowski, J. H.; Brunsell, P.; Hokin, S.; Tennfors, E.; Sallander, J.; Drake, J. R.; Inoue, N.; Morikawa, J.; Ogawa, Y.; Yoshida, Z.

    1997-03-01

    Anomalous heating of ions has been observed in the EXTRAP-T2 reversed-field-pinch (RFP) plasma. Ions are heated primarily in the parallel direction (with respect to the magnetic field), resulting in an appreciable anisotropy of the ion temperature. This observation suggests that the magnetohydrodynamic fluctuations are dissipated primarily by the ion viscosity.

  6. Influence of surface anisotropy on the magnetization precessional switching in nanoparticles

    NASA Astrophysics Data System (ADS)

    Dimian, M.; Mayergoyz, I. D.

    2005-05-01

    A study of surface anisotropy effects on the precessional switching of nanoparticles is presented. Spherical nanoparticles with uniaxial anisotropy in the bulk and radial anisotropy for spins on the boundary are considered. The multispin dynamics is found by using the Landau-Lifshitz equation with the effective field derived from a Heisenberg-type Hamiltonian. The expressions for critical magnetic fields that guarantee the precessional switching are derived analytically for the case of very strong exchange and weak surface anisotropy. These analytical results are also used to test the numerical approach that is applied to the general case of the problem. The distinct features of the precessional switching in nanoparticles are examined and their dependence on various parameters of the problem is discussed.

  7. High Steady Magnetic Field Processing of Functional Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Rivoirard, Sophie

    2013-07-01

    The materials science community has been enriched for some decades now by the "magneto-science" approach, which consists of applying a magnetic field during material processing. The development of anisotropic properties by applying a steady magnetic field is now a well-established effect in the material processing of magnetic substances, which benefits from the unidirectional and static nature of the field delivered by superconducting magnets. Among other effects, magnetic anisotropy in functional magnetic materials, which arises from the alignment of magnetic moments under external field, can be developed at various structural scales. Magnetic ordering, magnetic patterning, and texturation are at the origin of this anisotropy development. Texture is developed in materials from magnetic orientation due to magnetic forces and torques or from stored energy. In metals and alloys, for instance, this effect can occur either in their liquid state or during solid-state thermomagnetic treatments and can thus impact significantly the material functional magnetic properties. Today's improved superconducting magnet technology allows higher field intensities to be delivered more easily (1 T up to several tens of Teslas) and enables researchers to gather evidence on magnetic field effects that were formerly thought to be negligible. The magneto-thermodynamic effect is one of them and involves the magnetization energy as an additional parameter to tailor microstructures. Control of functional properties can thus result from magnetic monitoring of the phase transformation, and kinetics can be impacted by the magnetic energy contribution.

  8. Axial Magnetic Anisotropy from Two Systems Fe2B and Co2B with Planar Anisotropy

    NASA Astrophysics Data System (ADS)

    Taufour, Valentin; Lamichhane, Tej; Bud'Ko, Sergey L.; Jesche, Anton; Goldman, Alan I.; Dennis, Kevin W.; McCallum, R. William; Antropov, Vladimir; Canfield, Paul C.

    2015-03-01

    Growth of single crystals of (Fe1-xCox)2B (0 <= x <= 1) and detailed characterization of their magnetic properties will be presented. Despite the fact that both Fe2B and Co2B show a planar anisotropy at room temperature, we observe a uniaxial anisotropy at intermediate doping which makes (Fe,Co)2B a promising system for permanent magnet applications in a system without rare-earth element. Comparison with recent band structure calculations will be presented. The temperature dependence of the anisotropy measured on single crystals from 2 K to 1000 K shows some unusual variations with an increase of the magnetic anisotropy with increasing temperature at some specific substitution. This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the US DOE and by the Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the US DOE by Iowa State University under Contract No. DE-AC02-07CH11358.

  9. Constituents of magnetic anisotropy and a screening of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Ke, Liqin; Wysocki, Aleksander; van Schilfgaarde, Mark; Antropov, Vladimir

    2014-03-01

    Using perturbation theory (PT) we analyze how the different orders of perturbation affect the energy in solids. We test the validity of PT analysis by considering spin-orbit coupling (SOC) as a perturbation. We show how the atomic SOC is screened in different magnets and how it affects the magnetic anisotropy. The dependence of magnetic anisotropy on the ratio between the strengths of SOC and crystal field is studied using an impurity model. We carried out density functional calculations for FePt, CoPt, FePd, MnAl, MnGa, FeNi, and tetragonally strained FeCo. The relativistic energy and magnetic anisotropy in those compounds from the perturbation approach and self-consistent relativistic calculations had been compared. In addition using decomposition of anisotropy into contributions from individual sites and different spin components we explain the microscopic origin of high anisotropy in most popular magnets. This research is supported in part by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy through the Ames Laboratory. Ames Laboratory is operated by Iowa Sta.

  10. Control of anisotropy and magnetism of MnBi nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyong; Sellmyer, David

    2015-03-01

    High-anisotropy MnBi nanostructures have been fabricated by in-situ annealing of Bi/Mn/Bi multilayers and magnetic-field annealing of melt-spun MnxBi100-x ribbons. The ratio of Mn to Bi affects the concentration of NiAs-type MnBi, the degree of c-axis orientation, and phase distribution. For x = 50, the MnxBi100-x film exhibits the optimum nanostructure in which MnBi grains are uniformly separated by a thin layer of Bi. This has produced a record value of (BH)max = 16.3 MGOe for this compound. A good c-axis texture has been developed for Mn50Bi50 ribbons with a remanence ratio of 0.94 after magnetic-field annealing and this result subsequently leads to (BH)max = 9.2 MGOe, the highest value for bulk MnBi materials. The reason for the much higher energy product for the Mn50Bi50 film compared to the Mn50Bi50 ribbon is that the ribbon has a comparatively lower coercivity induced by inhomogeneous distribution of intergranular Bi. The effect of element doping, optimization of preparation parameters, and temperature dependence of properties also will be discussed. This work was supported by US DOE/BES (DE-FG2-04ER46152) and NCMN.

  11. Control of magnetic anisotropy and magnetic patterning of perpendicular Co/Pt multilayers by laser irradiation

    SciTech Connect

    Schuppler, C.; Habenicht, A.; Guhr, I.L.; Maret, M.; Leiderer, P.; Boneberg, J.; Albrecht, M.

    2006-01-02

    We report an approach to altering the magnetic properties of (111) textured Co/Pt multilayer films grown on sapphire (0001) substrates in a controlled way using single-pulse laser irradiation. The as-grown films reveal a strong perpendicular magnetic anisotropy induced by interfacial anisotropy. We show that laser irradiation can chemically mix the multilayer structure particularly at the interfaces, hence reducing the perpendicular magnetic anisotropy and coercivity in a controlled manner depending on laser fluence. As a result, perpendicular films can also be magnetically patterned into hard and soft magnetic regions using a regular two-dimensional lattice of polystyrene particles acting as an array of microlenses.

  12. Polymeric films with electric and magnetic anisotropy due to magnetically assembled functional nanofibers.

    PubMed

    Fragouli, Despina; Das, Arindam; Innocenti, Claudia; Guttikonda, Yogita; Rahman, Syed; Liu, Lei; Caramia, Vincenzo; Megaridis, Constantine M; Athanassiou, Athanassia

    2014-03-26

    We demonstrate the fabrication of free-standing polymeric nanocomposite films, which present magnetic and electrically conductive anisotropic properties. Magnetically functionalized carbon nanofibers are dispersed in a polymeric solution and, upon casting under a weak external magnetic field, are easily oriented and permanently assembled in a head-to-tail orientation in the polymer film during solvent evaporation. Magnetic and conductive property studies reveal that the resulting films have a high degree of anisotropy in both cases, thus allowing their use in functional complex devices. As a proof of concept, we demonstrate the potential application of these films as flexible THz polarizers. The detailed study shows that very high attenuation values per unit film thickness and fiber mass concentration are achieved, paving thus the way for cost-effective fabrication of substrate-free systems that have advantage over conventional devices realized so far. PMID:24625104

  13. Ultrafast precessional switching in a permalloy thin film with magnetic surface anisotropy.

    PubMed

    Daniel, M; Sabareesan, P

    2009-09-01

    Analytical and numerical analysis of ultrafast precessional switching dynamics, in a uniformly magnetized anisotropic permalloy thin film, described by the Landau-Lifshitz (LL) equation is presented. Precessional switching is realized in the film by applying a uniform pulsed magnetic field normal to the easy axis of magnetocrystalline anisotropy. The analytical solution of the LL equation is expressed in terms of the Jacobi elliptic function, the period of which is related to the period of the precessional motion. It is shown that switching occurs in the film above a critical value of the applied field. The switching time decreases steadily when the strength of the applied magnetic field is increased and further it reduces significantly when the film has magnetic surface anisotropy in it. PMID:21828620

  14. Giant magnetic anisotropy and tunnelling of the magnetization in Li?(Li(1-x)Fe(x))N.

    PubMed

    Jesche, A; McCallum, R W; Thimmaiah, S; Jacobs, J L; Taufour, V; Kreyssig, A; Houk, R S; Bud'ko, S L; Canfield, P C

    2014-01-01

    Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li?(Li(1-x)Fe(x))N. An extrapolated, magnetic anisotropy field of 220?T and a coercivity field of over 11?T at 2?K outperform all known hard ferromagnets and single-molecular magnets. Steps in the hysteresis loops and relaxation phenomena in striking similarity to single-molecular magnets are particularly pronounced for x?1 and indicate the presence of nanoscale magnetic centres. Quantum tunnelling, in the form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10?K. The simple crystal structure, the availability of large single crystals and the ability to vary the Fe concentration make Li?(Li(1-x)Fe(x))N an ideal model system to study macroscopic quantum effects at elevated temperatures and also a basis for novel functional magnetic materials. PMID:24566374

  15. Influence of magnetic surface anisotropy on spin wave reflection from the edge of ferromagnetic film

    NASA Astrophysics Data System (ADS)

    Gruszecki, P.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.; Romero-Vivas, J.; Guslienko, K. Y.; Krawczyk, M.

    2015-08-01

    We study propagation of the Gaussian beam of spin waves and its reflection from the edge of thin yttrium-iron-garnet film with in-plane magnetization perpendicular to this edge. We have performed micromagnetic simulations supported by analytical calculations to investigate the influence of the surface magnetic anisotropy present at the film edge on the reflection, especially in the context of the Goos-Hänchen effect. We have shown the appearance of a negative lateral shift between reflected and incident spin wave beams' spots. This shift is particularly sensitive to the surface magnetic anisotropy value and is a result of the Goos-Hänchen shift which is sensitive to the magnitude of the anisotropy and of the bending of the spin wave beam. We have demonstrated that the demagnetizing field provided a graded increase of the refractive index for spin waves, which is responsible for the bending.

  16. Magnetic anisotropy in strained manganite films and bicrystal junctions

    NASA Astrophysics Data System (ADS)

    Demidov, V. V.; Ovsyannikov, G. A.; Petrzhik, A. M.; Borisenko, I. V.; Shadrin, A. V.; Gunnarsson, R.

    2013-04-01

    Transport and magnetic properties of La0.67Sr0.33MnO3 (LSMO) manganite thin films and bicrystal junctions were investigated. Epitaxial manganite films were grown on SrTiO3, LaAlO3, NdGaO3 (NGO), and (LaAlO3)0.3 + (Sr2AlTaO6)0.7 substrates, and their magnetic anisotropy were determined by two independent techniques of magnetic resonance spectroscopy. It was demonstrated that by using these techniques, a small (0.3%) anisotropy of crystal structure at the (110) surface plane of the orthorhombic NGO substrate leads to uniaxial magnetic anisotropy of the films in the plane of the substrate at least at the room temperature. It was found that on vicinal NGO substrates, the value of magnetic anisotropy strength can be varied in the range 100-200 Oe at T = 295 K by changing the substrate vicinal angle from 0° to 25°. Measurement of the magnetic anisotropy of manganite bicrystal junction demonstrated the presence of two ferromagnetic spin subsystems for both types of bicrystal boundaries with tilting of basal plane of manganite tilted bicrystal (TB-junction) and with rotation of crystallographic axes (RB-junction) used for comparison. The magnetoresistance of TB-junctions increases with decreasing temperature and the misorientation angle. Variation of bicrystal misorientation angle does not lead to change of misorientation of easy magnetic axes in the film parts forming TB-junction. Analysis of the voltage dependencies of bicrystal junction conductivity show that the low value of the magnetoresistance for the LSMO bicrystal junctions can be caused by two scattering mechanisms. The first one is the spin-flip of spin-polarized carriers due to the strong electron-electron interactions in a disordered layer at the bicrystal boundary at low temperatures and the second one is spin-flip by antiferromagnetic magnons at high temperatures.

  17. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films.

    PubMed

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H B; Wang, J; Ma, B; Jin, Q Y

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  18. Resolving the controversy of a possible relationship between perpendicular magnetic anisotropy and the magnetic damping parameter

    SciTech Connect

    Shaw, Justin M.; Nembach, Hans T.; Silva, T. J.

    2014-08-11

    We use broadband ferromagnetic resonance spectroscopy to systematically measure the Landau-Lifshitz damping parameter, perpendicular anisotropy, and the orbital moment asymmetry in Co{sub 90}Fe{sub 10}/Ni multilayers. No relationship is found between perpendicular magnetic anisotropy and the damping parameter in this material. However, inadequate accounting for inhomogeneous linewidth broadening, spin-pumping, and two-magnon scattering could give rise to an apparent relationship between anisotropy and damping. In contrast, the orbital-moment asymmetry and the perpendicular anisotropy are linearly proportional to each other. These results demonstrate a fundamental mechanism by which perpendicular anisotropy can be varied independently of the damping parameter.

  19. Electric field induced magnetic anisotropy transition from fourfold to twofold symmetry in (001) 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3/Fe0.86Si0.14 epitaxial heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Xiaobin; Han, Xuemeng; Zuo, Yalu; Zhang, Junwei; Li, Dong; Cui, Baoshan; Wu, Kai; Yun, Jijun; Wang, Tao; Peng, Yong; Xi, Li

    2016-04-01

    The epitaxial growth of FeSi film on (001) 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-0.32PT) was fabricated by sputtering and confirmed by high-resolution transmission electron microscopy. A fourfold symmetric angular remanent magnetization curve of as-deposited FeSi thin film is well fitted theoretically by considering the cubic magnetocrystalline anisotropy. We found that the fourfold anisotropy decreases slightly when an electric field (E) is applied on the Pt/PMN-0.32PT/FeSi/Ta heterostructures with Pt layer as the positive electrode. However, a magnetic anisotropy transition from fourfold anisotropy to twofold anisotropy occurs under negative E. The strain-electric field curve suggests that the observed different variation trend of magnetic anisotropy results from the asymmetric strain response on the polarity of E. Moreover, once the transition happens, it was irreversible unless the heterostructures are heated above the phase transition temperature of PMN-0.32PT.

  20. Role of the substrate on the magnetic anisotropy of magnetite thin films grown by ion-assisted deposition

    NASA Astrophysics Data System (ADS)

    Prieto, Pilar; Prieto, José Emilio; Gargallo-Caballero, Raquel; Marco, José Francisco; de la Figuera, Juan

    2015-12-01

    Magnetite (Fe3O4) thin films were deposited on MgO (0 0 1), SrTiO3 (0 0 1), LaAlO3 (0 0 1) single crystal substrates as well on as silicon and amorphous glass in order to study the effect of the substrate on their magnetic properties, mainly the magnetic anisotropy. We have performed a structural, morphological and compositional characterization by X-ray diffraction, atomic force microscopy and Rutherford backscattering ion channeling in oxygen resonance mode. The magnetic anisotropy has been investigated by vectorial magneto-optical Kerr effect. The results indicate that the magnetic anisotropy is especially influenced by the substrate-induced microstructure. In-plane isotropy and uniaxial anisotropy behavior have been observed on silicon and glass substrates, respectively. The transition between both behaviors depends on grain size. For LaAlO3 substrates, in which the lattice mismatch between the Fe3O4 films and the substrate is significant, a weak in-plane fourfold magnetic anisotropy is induced. However when magnetite is deposited on MgO (0 0 1) and SrTiO3 (0 0 1) substrates, a well-defined fourfold in-plane magnetic anisotropy is observed with easy axes along [1 0 0] and [0 1 0] directions. The magnetic properties on these two latter substrates are similar in terms of magnetic anisotropy and coercive fields.

  1. Edge-modulated perpendicular magnetic anisotropy in [Co/Pd]n and L10-FePt thin film wires

    NASA Astrophysics Data System (ADS)

    Zhang, Jinshuo; Ho, Pin; Currivan-Incorvia, Jean Anne; Siddiqui, Saima A.; Baldo, Marc A.; Ross, Caroline A.

    2015-11-01

    Thickness modulation at the edges of nanostructured magnetic thin films is shown to have important effects on their perpendicular magnetic anisotropy. Thin film wires with tapered edges were made from [Co/Pd]20 multilayers or L10-FePt films using liftoff with a double-layer resist. The effect of edge taper on the reversal process was studied using magnetic force microscopy and micromagnetic modeling. In [Co/Pd]20, the anisotropy was lower in the tapered edge regions which switched at a lower reverse field compared to the center of the wire. The L10-FePt wires showed opposite behavior with the tapered regions exhibiting higher anisotropy.

  2. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    DOE PAGESBeta

    S. -H. Baek; Gu, G. D.; Utz, Y.; Hucker, M.; Buchner, B.; Grafe, H. -J.

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T–11 sharply upturns at the charge-ordering temperature TCO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T–11 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥ [001], which are completely suppressed for largemore » fields along the CuO2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less

  3. Magnetization reversal mechanism of Nd-Fe-B films with perpendicular magnetic anisotropy

    SciTech Connect

    Liu Xiaoxi; Ishida, Go; Morisako, Akimitsu

    2011-04-01

    The microstructure and magnetic properties of Nd-Fe-B films with thicknesses from 100 nm to 3 nm have been investigated. All the films show excellent perpendicular magnetic anisotropy with a squareness ratio of 1 in the perpendicular direction and almost zero coercivity in the in-plane direction. Of particular interest is that the initial magnetization curves sensitively depended on the film thickness. Films thicker than 15 nm show steep initial magnetization curve. Although the films have coercivities larger than 21 kOe, the films can be fully magnetized from the thermally demagnetized state with a field as small as 5 kOe. With the decrease of film thickness to 5 nm, the initial magnetization curve becomes flat. The evolution of initial magnetization curves with film thickness can be understood by the microstructure of the films. Films with thickness of 15 nm show close-packed grains without any intergranular phases. Such microstructures lead to steep initial magnetization curves. On the other hand, when the film thickness decreased to 3 nm, the film thickness became nonuniform. Such microstructure leads to flat initial magnetization curves.

  4. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO

    NASA Astrophysics Data System (ADS)

    Baumann, S.; Donati, F.; Stepanow, S.; Rusponi, S.; Paul, W.; Gangopadhyay, S.; Rau, I. G.; Pacchioni, G. E.; Gragnaniello, L.; Pivetta, M.; Dreiser, J.; Piamonteze, C.; Lutz, C. P.; Macfarlane, R. M.; Jones, B. A.; Gambardella, P.; Heinrich, A. J.; Brune, H.

    2015-12-01

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0 ±0.3 meV /atom . This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

  5. Magnetic critical properties and basal-plane anisotropy of Sr2IrO4.

    PubMed

    Fruchter, L; Colson, D; Brouet, V

    2016-03-31

    The anisotropic magnetic properties of Sr2IrO4 are investigated, using longitudinal and torque magnetometry. The critical scaling across [Formula: see text] of the longitudinal magnetization is that expected for the 2D XY universality class. Modeling the torque for a magnetic field in the basal plane, and taking into account all in-plane and out-of-plane magnetic couplings, we derive the effective fourfold anisotropy [Formula: see text] erg mol(-1). Although larger than for the cuprates, it is found to be too small to account for a significant departure from the isotropic 2D XY model. The in-plane torque also allows us to set an upper bound for the anisotropy of a field-induced shift of the antiferromagnetic ordering temperature. PMID:26934633

  6. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO.

    PubMed

    Baumann, S; Donati, F; Stepanow, S; Rusponi, S; Paul, W; Gangopadhyay, S; Rau, I G; Pacchioni, G E; Gragnaniello, L; Pivetta, M; Dreiser, J; Piamonteze, C; Lutz, C P; Macfarlane, R M; Jones, B A; Gambardella, P; Heinrich, A J; Brune, H

    2015-12-01

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3  meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment. PMID:26684139

  7. Magnetic critical properties and basal-plane anisotropy of Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Fruchter, L.; Colson, D.; Brouet, V.

    2016-03-01

    The anisotropic magnetic properties of Sr2IrO4 are investigated, using longitudinal and torque magnetometry. The critical scaling across {{T}\\text{c}} of the longitudinal magnetization is that expected for the 2D XY universality class. Modeling the torque for a magnetic field in the basal plane, and taking into account all in-plane and out-of-plane magnetic couplings, we derive the effective fourfold anisotropy {{K}4}≈ 1× {{10}5} erg mol-1. Although larger than for the cuprates, it is found to be too small to account for a significant departure from the isotropic 2D XY model. The in-plane torque also allows us to set an upper bound for the anisotropy of a field-induced shift of the antiferromagnetic ordering temperature.

  8. Pinned orbital moments - A new contribution to magnetic anisotropy.

    PubMed

    Audehm, P; Schmidt, M; Brück, S; Tietze, T; Gräfe, J; Macke, S; Schütz, G; Goering, E

    2016-01-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy. PMID:27151436

  9. Pinned orbital moments – A new contribution to magnetic anisotropy

    PubMed Central

    Audehm, P.; Schmidt, M.; Brück, S.; Tietze, T.; Gräfe, J.; Macke, S.; Schütz, G.; Goering, E.

    2016-01-01

    Reduced dimensionality and symmetry breaking at interfaces lead to unusual local magnetic configurations, such as glassy behavior, frustration or increased anisotropy. The interface between a ferromagnet and an antiferromagnet is such an example for enhanced symmetry breaking. Here we present detailed X-ray magnetic circular dichroism and X-ray resonant magnetic reflectometry investigations on the spectroscopic nature of uncompensated pinned magnetic moments in the antiferromagnetic layer of a typical exchange bias system. Unexpectedly, the pinned moments exhibit nearly pure orbital moment character. This strong orbital pinning mechanism has not been observed so far and is not discussed in literature regarding any theory for local magnetocrystalline anisotropy energies in magnetic systems. To verify this new phenomenon we investigated the effect at different temperatures. We provide a simple model discussing the observed pure orbital moments, based on rotatable spin magnetic moments and pinned orbital moments on the same atom. This unexpected observation leads to a concept for a new type of anisotropy energy. PMID:27151436

  10. Primordial statistical anisotropies: the effective field theory approach

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Akhshik, Mohammad; Emami, Razieh; Firouzjahi, Hassan

    2016-03-01

    In this work we present the effective field theory of primordial statistical anisotropies generated during anisotropic inflation involving a background U(1) gauge field. Besides the usual Goldstone boson associated with the breaking of time diffeomorphism we have two additional Goldstone bosons associated with the breaking of spatial diffeomorphisms. We further identify these two new Goldstone bosons with the expected two transverse degrees of the U(1) gauge field fluctuations. Upon defining the appropriate unitary gauge, we present the most general quadratic action which respects the remnant symmetry in the unitary gauge. The interactions between various Goldstone bosons leads to statistical anisotropy in curvature perturbation power spectrum. Calculating the general results for power spectrum anisotropy, we recover the previously known results in specific models of anisotropic inflation. In addition, we present novel results for statistical anisotropy in models with non-trivial sound speed for inflaton fluctuations. Also we identify the interaction which leads to birefringence-like effects in anisotropic power spectrum in which the speed of gauge field fluctuations depends on the direction of the mode propagation and the two polarization of gauge field fluctuations contribute differently in statistical anisotropy. As another interesting application, our EFT approach naturally captures interactions generating parity violating statistical anisotropies.

  11. Pattern-induced magnetic anisotropy in FePt thin films by ion irradiation

    SciTech Connect

    Jaafar, M.; Sanz, R.; McCord, J.; Jensen, J.; Schaefer, R.; Vazquez, M.; Asenjo, A.

    2011-03-01

    The magnetic properties of FePt thin films have been modified by exposing the samples to irradiation of 4 MeV Cl{sup 2+} ions. Patterned magnetic films, without modified topographical profile, were fabricated by irradiating the films through a shadowing micrometric mask. The structural changes, ascribed to the ion-beam-induced amorphization of the thin films, promote the modification of the magnetic anisotropy. In particular, the out-of-plane component of the magnetization decreases simultaneously with an enhancement of in-plane anisotropy by increasing ion fluence. Moreover, the nonirradiated regions present unexpected anisotropic behavior owing to the stray field of the irradiated regions. The control of this effect, which can have unwished consequences for the patterning of magnetic properties by ion bombardment, needs to be suitably addressed.

  12. Scaling laws for magnetic reconnection, set by regulation of the electron pressure anisotropy to the firehose threshold

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Egedal, J.; Lukin, V. S.; Daughton, W.; Le, A.

    2015-12-01

    Magnetic reconnection in a weakly collisional plasma, such as in the Earth's magnetosphere, is known to be accompanied by electron pressure anisotropy. For reconnection scenarios including moderate guide magnetic field, electrons are magnetized throughout the reconnection region, and the anisotropy drives extended electron current layers. Along these layers, the anisotropy nears the firehose threshold. We describe how the anisotropy stagnates at this threshold by a mechanism that does not involve pitch-angle mixing. Using previously established anisotropic equations of state and by imposing the marginal firehose condition, scaling laws are obtained for quantities along the current layers as functions of plasma parameters upstream of the reconnection region. The predicted reconnection region quantities include the magnetic field strength, plasma density, and the parallel and perpendicular electron pressures, allowing for a characterization of electron energization solely as a function of the upstream plasma conditions. This characterization is in agreement with simulations and spacecraft observations.

  13. Switching current density reduction in perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions

    SciTech Connect

    You, Chun-Yeol

    2014-01-28

    We investigate the switching current density reduction of perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions using micromagnetic simulations. We find that the switching current density can be reduced with elongated lateral shapes of the magnetic tunnel junctions, and additional reduction can be achieved by using a noncollinear polarizer layer. The reduction is closely related to the details of spin configurations during switching processes with the additional in-plane anisotropy.

  14. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh Kumar; Rajaraman, Gopalan

    2016-02-01

    Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process.

  15. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets

    PubMed Central

    Singh, Saurabh Kumar; Rajaraman, Gopalan

    2016-01-01

    Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process. PMID:26883278

  16. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets.

    PubMed

    Singh, Saurabh Kumar; Rajaraman, Gopalan

    2016-01-01

    Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process. PMID:26883278

  17. Controlling magnetic anisotropy in epitaxial FePt(001) films

    SciTech Connect

    Lu Zhihong; Walock, M. J.; LeClair, P.; Butler, W. H.; Mankey, G. J.

    2009-07-15

    Epitaxial equiatomic Fe{sub 50}Pt{sub 50} thin films with a variable order parameter ranging from 0 to 0.9 and Fe{sub 100-x}Pt{sub x} thin films with x ranging from 33 to 50 were deposited on MgO (001) substrates by dc sputtering. A seed layer consisting of nonmagnetic Cr (4 nm)/Pt (12 nm) was used to promote the crystallinity of the magnetic films. The crystal structure and magnetic properties were gauged using x-ray diffraction and magnetometry. The magnetic anisotropy can be controlled by changing the order parameter. For Fe{sub 100-x}Pt{sub x} films, the increase in Fe composition leads to an increase in coercivity in the hard axis loop and causes a loss of perpendicular anisotropy.

  18. Large magnetic anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles

    NASA Astrophysics Data System (ADS)

    Duarte, E. L.; Itri, R.; Lima, E., Jr.; Baptista, M. S.; Berquó, T. S.; Goya, G. F.

    2006-11-01

    Six-line ferrihydrite (FH) nanoparticles have been synthesized in the core of reverse micelles, used as nanoreactors to obtain average particle sizes \\langle d\\rangle \\approx 2 \\mbox {--} 4~\\mathrm {nm} . The blocking temperatures TBm extracted from magnetization data increased from ap10 to 20 K for increasing particle size. Low-temperature Mössbauer measurements allowed us to observe the onset of differentiated contributions from the particle core and surface as the particle size increases. The magnetic properties measured in the liquid state of the original emulsion showed that the ferrihydrite phase is not present in the liquid precursor, but precipitates in the micelle cores after the free water is freeze-dried. Systematic susceptibility χac(f,T) measurements showed the dependence of the effective magnetic anisotropy energies Ea with particle volume, and yielded an effective anisotropy value of Keff = 312 ± 10 kJ m-3.

  19. Anisotropy of magnetic properties of Fe1+yTe

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.; Panfilov, A. S.; Fedorchenko, A. V.; Lyogenkaya, A. A.; Zhuravleva, I. P.; Chareev, D. A.; Nekrasov, A. N.; Mitrofanova, E. S.; Volkova, O. S.; Vasiliev, A. N.; Eriksson, O.

    2014-10-01

    The magnetic properties of Fe1+yTe single crystals (y ≃ 0.1 ÷ 0.18) were studied at temperatures 4.2 ÷ 300 K. At an ambient pressure, with decreasing temperature a drastic drop in χ(T) was confirmed at T ≃ 60 ÷ 65 K, which appears to be closely related to the antiferromagnetic (AFM) ordering. It is found that the magnitudes of the anisotropy of magnetic susceptibility Δχ in the AFM phase are close in the studied samples, whereas the sign of the anisotropy apparently depends on the small variations of the excess iron y in Fe1+yTe samples. The performed DFT calculations of the electronic structure and magnetic properties for the stoichiometric FeTe compound indicate the presence of frustrated AFM ground states. There are very close energies and magnetic moments for the double stripe configurations, with the AFM axes oriented either on the basal plane or along the [0 0 1] direction. Presumably, both these configurations can be realized in Fe1+yTe single crystals, depending on the variations of the excess iron. This can provide different signs of magnetic anisotropy in the AFM phase, presently observed in the Fe1+yTe samples. For these types of AFM configuration, the calculations for the FeTe values of Δχ are consistent with our experimental data.

  20. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    PubMed Central

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the strain-induced anisotropy resulting from the anisotropic thermal expansion of the β-phase PVDF. The simulation based on modified Stoner-Wohlfarth model and the ferromagnetic resonance measurements confirms our results. The positive temperature coefficient of magnetic anisotropy is estimated to be 1.1 × 102 J m−3 K−1. Preparing the composite at low temperature can enlarge the temperature range where it shows the positive temperature coefficient of magnetic anisotropy. The present results may help to design magnetic devices with improved thermal stability and enhanced performance. PMID:25311047

  1. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  2. Rotatable magnetic anisotropy in Si/SiO2/(Co2Fe)(x)Ge(1-x) Heusler alloy films.

    PubMed

    Ryabchenko, S M; Kalita, V M; Kulik, M M; Lozenko, A F; Nevdacha, V V; Pogorily, A N; Kravets, A F; Podyalovskiy, D Y; Vovk, A Ya; Borges, R P; Godinho, M; Korenivski, V

    2013-10-16

    Polycrystalline (Co2Fe)(x)Ge(1-x) Heusler alloy films are fabricated by sputtering on amorphous substrates and shown to possess three types of magnetic anisotropy. The nearly stoichiometric composition of x = 50 m.f.% shows a rectangular hysteresis loop and isotropic coercive and ferromagnetic resonance fields when the film is field-magnetized along any in-plane direction, thus predominantly possessing rotatable in-plane magnetic anisotropy. Higher-x compositions show evidence of two- and fourfold in-plane anisotropy superposed on the rotatable one. A qualitative model of the observed anisotropic magnetic properties is proposed. The model explains the rotatable anisotropy by taking into account dry friction for the in-plane rotation of the magnetization direction in a fine-grained polycrystalline film with the magnetic grain size smaller than the correlation length of the inter-grain exchange interaction. The observed two- and fourfold magnetic anisotropy contributions are attributed to partial texturing of the fine-grained films, even though the films are grown on amorphous SiO2 substrates. These results should be valuable for understanding and controlling the magnetic behaviour of highly spin-polarized Heusler alloy films used in various magnetic nanodevices. PMID:24025408

  3. Magnetic anisotropy of metal functionalized phthalocyanine 2D networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guojun; Zhang, Yun; Xiao, Huaping; Cao, Juexian

    2016-06-01

    The magnetic anisotropy of metal including Cr, Mn, Fe, Co, Mo, Tc, Ru, Rh, W, Re, Os, Ir atoms functionalized phthalocyanine networks have been investigated with first-principles calculations. The magnetic moments can be expressed as 8-n μB with n the electronic number of outmost d shell in the transition metals. The huge magnetocrystalline anisotropy energy (MAE) is obtained by torque method. Especially, the MAE of Re functionalized phthalocyanine network is about 20 meV with an easy axis perpendicular to the plane of phthalocyanine network. The MAE is further manipulated by applying the external biaxial strain. It is found that the MAE is linear increasing with the external strain in the range of -2% to 2%. Our results indicate an effective approach to modulate the MAE for practical application.

  4. Anisotropy study of grain oriented steels with Magnetic Barkhausen Noise

    NASA Astrophysics Data System (ADS)

    de Campos, M. F.; Campos, M. A.; Landgraf, F. J. G.; Padovese, L. R.

    2011-07-01

    Grain oriented electrical steels present strong anisotropy, due to a {110} <001> texture (Goss), with [100] direction parallel to rolling direction (RD) and [110] direction parallel to transverse direction (TD). MBN (Magnetic Barkhausen Noise) were employed to measure magnetic properties in several angles towards RD using a 15° step. For 90° to the rolling direction (i.e., TD), the MBN signal changes, decreasing the MBNrms. It is found a connection between initial permeability and MBNrms. The lower initial permeability for the TD is related to a larger contribution of irreversible rotation in the hysteresis. The MBN procedure is non-destructive and provides rapid understanding of the anisotropy of the material, without the use of laborious methods like Epstein frame or toroidal coils.

  5. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    NASA Astrophysics Data System (ADS)

    Enemark, Søren; Santos, Ilmar F.

    2016-02-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved in the frequency domain by the methods of Finite Difference and pseudo-arclength continuation. The theoretical findings are validated against experiments carried out using a dedicated test-rig and a special device for characterisation of the magnetic anisotropy. The characterisation of the magnetic anisotropy shows that it can be quantified as magnetic eccentricities having an amplitude and a phase, which result in linear and parametric excitation. The magnetic eccentricities are also determined using the steady-state response of the rotor-bearing system due to forcing from the magnetic anisotropies and several levels of mass imbalance. Discrepancies in the results from the two methods in terms of magnetic eccentricity magnitude are due to additional geometric eccentricities in the shaft. The steady-state system response shows clear nonlinear phenomena, e.g. bent resonance peaks, jump phenomena and nonlinear cross-coupling between the two orthogonal directions, especially during counter-phase motion between shaft and bearings. The clear nonlinear behaviour is facilitated by the lack of damping resulting in relatively large vibrations. The overall nonlinear dynamic behaviour is well captured by the theoretical model, thereby validating the modelling approach.

  6. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy

    PubMed Central

    Ma, Q. L.; Zhang, X. M.; Miyazaki, T.; Mizukami, S.

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (Kueff) over 6 Merg/cm3 is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and Kueff of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory. PMID:25597496

  7. Artificially engineered Heusler ferrimagnetic superlattice exhibiting perpendicular magnetic anisotropy.

    PubMed

    Ma, Q L; Zhang, X M; Miyazaki, T; Mizukami, S

    2015-01-01

    To extend density limits in magnetic recording industry, two separate strategies were developed to build the storage bit in last decade, introduction of perpendicular magnetic anisotropy (PMA) and adoption of ferrimagnetism/antiferromagnetism. Meanwhile, these properties significantly improve device performance, such as reducing spin-transfer torque energy consumption and decreasing signal-amplitude-loss. However, materials combining PMA and antiferromagnetism rather than transition-metal/rare-earth system were rarely developed. Here, we develop a new type of ferrimagnetic superlattice exhibiting PMA based on abundant Heusler alloy families. The superlattice is formed by [MnGa/Co2FeAl] unit with their magnetizations antiparallel aligned. The effective anisotropy (K(u)(eff)) over 6 Merg/cm(3) is obtained, and the SL can be easily built on various substrates with flexible lattice constants. The coercive force, saturation magnetization and K(u)(eff) of SLs are highly controllable by varying the thickness of MnGa and Co2FeAl layers. The SLs will supply a new choice for magnetic recording and spintronics memory application such as magnetic random access memory. PMID:25597496

  8. Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Weigand, Markus; Träger, Nick; Schütz, Gisela; Goering, Eberhard J.; Skripnik, Maxim; Nowak, Ulrich; Haering, Felix; Ziemann, Paul; Wiedwald, Ulf

    2016-03-01

    While the magnetic properties of nanoscaled antidot lattices in in-plane magnetized materials have widely been investigated, much less is known about the microscopic effect of hexagonal antidot lattice patterning on materials with perpendicular magnetic anisotropy. By using a combination of first-order reversal curve measurements, magnetic x-ray microscopy, and micromagnetic simulations we elucidate the microscopic origins of the switching field distributions that arise from the introduction of antidot lattices into out-of-plane magnetized GdFe thin films. Depending on the geometric parameters of the antidot lattice we find two regimes with different magnetization reversal processes. For small antidots, the reversal process is dominated by the exchange interaction and domain wall pinning at the antidots drives up the coercivity of the system. On the other hand, for large antidots the dipolar interaction is dominating which leads to fragmentation of the system into very small domains that can be envisaged as a basis for a bit patterned media.

  9. Role of magnetic anisotropy in spin-filter junctions

    SciTech Connect

    Chopdekar, R.V.; Wong, F.; Nelson-Cheeseman, B.B.; Liberati, M.; Arenholz, E.; Suzuki, Y.

    2011-01-10

    We have fabricated oxide-based spin-filter junctions in which we demonstrate that magnetic anisotropy can be used to tune the transport behavior of spin-filter junctions. We have demonstrated spin-filtering behavior in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/CoCr{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/MnCr{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} junctions where the interface anisotropy plays a significant role in determining transport behavior. Detailed studies of chemical and magnetic structure at the interfaces indicate that abrupt changes in magnetic anisotropy across the nonisostructural interface is the cause of the significant suppression of junction magnetoresistance in junctions with MnCr{sub 2}O{sub 4} barrier layers.

  10. Microwave background radiation anisotropy from scalar field gradients

    SciTech Connect

    Stebbins, A. ); Veeraraghavan, S. Steward Observatory, University of Arizona, Tucson, Arizona 85721 )

    1993-09-15

    Analytic calculations of the cosmological density fluctuations and microwave background radiation anisotropies induced by gradients in a topologically trivial scalar field are presented. This anlaytic solution should provide a good test for numerical simulations of microwave anisotropy from scalar fields. To the extent that these results generalize to other scalar field models and configurations, they imply that (1) MBR measurements limit large-scale primordial variations greater than about 5[times]10[sup 16] GeV within our horizon, (2) the total scalar field variation is a fair predictor of the magnitude of the MBR anisotropy, but is only accurate to within a factor of about three, (3) scalar fields as well as other models of seeded perturbations produce a few times more anisotropy [Delta][ital T]/[ital T] for a given density fluctuation [delta][rho]/[rho] (on the same scale) than do primordial adiabatic perturbations, (4) models of scalar field seeds which produce a scale-invariant spectrum of perturbations seem to require galaxies to be more clustered than the mass on small scales, and (5) scalar fields do not tilt'' the Universe.

  11. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    SciTech Connect

    Hierro-Rodriguez, A. Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M.; Teixeira, J. M.; Vélez, M.

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  12. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    NASA Astrophysics Data System (ADS)

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-07-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices.

  13. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    PubMed Central

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  14. Magnetic switching in ultrashort field pulses (abstract)

    NASA Astrophysics Data System (ADS)

    Back, C. H.; Weller, D.; Heidmann, J.; Mauri, D.; Garwin, E. L.; Siegmann, H. C.

    1997-04-01

    The Ginzburg-Landau-Lifshitz (GLL) equation, which describes the time dependence of spin precesssion in an external magnetic field1 relates the minimal field required to reverse the magnetization at fixed pulse length to the anisotropy field of the sample.23 We have systematically varied this parameter between 1.3 and about 5.0 T in a series of perpendicularly magnetized Co/Pt multilayer films and studied the magnetization reversal in picosecond in plane field pulses. Such pulses of several Tesla field strength and ultrashort duration were obtained in the final focus test beam section of the Stanford Linear Accelerator Center. The resulting magnetization pattern, which is reminiscent of the field during exposure, is subsequently analyzed with Kerr microscopy2 (see Fig. 1). As a prominent feature, we observe a beam field related switching radius from up to down magnetization which we compare to the theoretically expected field within the GLL formalism.

  15. Mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films

    SciTech Connect

    Fu, Yu E-mail: cangcangzhulin@gmail.com; Meckenstock, R.; Farle, M.; Barsukov, I.; Lindner, J.; Raanaei, H.; Hjörvarsson, B.

    2014-02-17

    The mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films was investigated by ferromagnetic resonance (FMR) on samples deposited without an applied magnetic field, with an out-of-plane field and an in-plane field. Analysis of FMR spectra profiles, high frequency susceptibility calculations, and statistical simulations using a distribution of local uniaxial magnetic anisotropy reveal the presence of atomic configurations with local uniaxial anisotropy, of which the direction can be tailored while the magnitude remains at an intrinsically constant value of 3.0(2) kJ/m{sup 3}. The in-plane growth field remarkably sharpens the anisotropy distribution and increases the sample homogeneity. The results benefit designing multilayer spintronic devices based on highly homogeneous amorphous layers with tailored magnetic anisotropy.

  16. Origin of petrofabrics and magnetic anisotropy in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Sneyd, Deana S.; Mcsween, Harry Y., Jr.; Sugiura, Naoji; Strangway, David W.; Nord, Gordon L., Jr.

    1988-01-01

    Three-dimensional finite strain and magnetic susceptibility anisotropy have been determined for 15 ordinary chondrites. The axes of strain and magnetic ellipsoids roughly correlate in both magnitude and orientation. The shapes of these ellipsoids are generally oblate spheroids that define a dominant foliation and a weak lineation. These characteristics suggest deformation involving uniaxial compaction. The degree of uniaxial deformation correlates with intensity of shock, as indicated by optical, TEM and chemical criteria. These data, plus the lack of a relationship between foliation and metamorphic history, indicate that dynamic processes, i.e., impacts, produced planar deformation fabrics in chondrites.

  17. Three-terminal magnetic tunneling junction device with perpendicular anisotropy CoFeB sensing layer

    SciTech Connect

    Honjo, H. Nebashi, R.; Tokutome, K.; Miura, S.; Sakimura, N.; Sugibayashi, T.; Fukami, S.; Kinoshita, K.; Murahata, M.; Kasai, N.; Ishihara, K.; Ohno, H.

    2014-05-07

    We demonstrated read and write characteristics of a three terminal memory device with a perpendicular anisotropy-free layer of a strip of [Co/Ni] and a low-switching perpendicular-anisotropy CoFeB/MgO sensing layer. This new design of the cell results in a small cell area. The switching magnetic field of the sensing layer can be decreased by changing sputtering gas for the Ta-cap from Ar to Kr. An electron energy-loss spectroscopy analysis of the cross-section of the magnetic tunneling junction (MTJ) revealed that the boron content in CoFeB with a Kr-sputtered Ta-cap was smaller than that with an Ar-sputtered one. A change in resistance for the MTJ was observed that corresponded to the magnetic switching of the Co/Ni wire and its magnetoresistance ratio and critical current were 90% and 0.8 mA, respectively.

  18. Magnetic anisotropy of Co2+ as signature of intrinsic ferromagnetism in ZnO:Co.

    PubMed

    Sati, P; Hayn, R; Kuzian, R; Régnier, S; Schäfer, S; Stepanov, A; Morhain, C; Deparis, C; Laügt, M; Goiran, M; Golacki, Z

    2006-01-13

    We report on the magnetic properties of thoroughly characterized Zn(1-x)Co(x)O epitaxial thin films, with low Co concentration, x = 0.003-0.005. Magnetic and EPR measurements, combined with crystal field theory, reveal that isolated Co2+ ions in ZnO possess a strong single ion anisotropy which leads to an "easy plane" ferromagnetic state when the ferromagnetic Co-Co interaction is considered. We suggest that the peculiarities of the magnetization process of this state can be viewed as a signature of intrinsic ferromagnetism in ZnO:Co materials. PMID:16486509

  19. Giant voltage modulation of magnetic anisotropy in strained heavy metal/magnet/insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Ong, P. V.; Kioussis, Nicholas; Odkhuu, D.; Khalili Amiri, P.; Wang, K. L.; Carman, Gregory P.

    2015-07-01

    Ab initio electronic structure calculations reveal that epitaxial strain has a dramatic effect on the voltage-controlled magnetic anisotropy (VCMA) in Ta/FeCo/MgO junctions. Strain can give rise to a wide range of novel VCMA behaviors where the MA can change from a ∨- to a ∧-shape electric-field dependence with giant VCMA coefficients which are asymmetric under voltage reversal. The underlying mechanism is the interplay of the strain- and electric-field-induced changes in the spin-orbit coupled d states at the interfaces and the strain-induced modification of the dielectric constant of MgO. These findings demonstrate the feasibility of highly sensitive VCMA through strain engineering, which may provide a viable avenue for tailoring magnetoelectric properties for spintronic applications.

  20. Transition-metal dimers and physical limits on magnetic anisotropy.

    PubMed

    Strandberg, Tor O; Canali, Carlo M; MacDonald, Allan H

    2007-09-01

    Recent advances in nanoscience have raised interest in the minimum bit size required for classical information storage. This bit size is determined by the necessity for bistability with suppressed quantum tunnelling and energy barriers that exceed ambient temperatures. In the case of magnetic information storage, much attention has centred on molecular magnets with bits consisting of about 100 atoms, magnetic uniaxial anisotropy energy barriers of about 50 K and very slow relaxation at low temperatures. Here, we draw attention to the remarkable magnetic properties of some transition-metal dimers, which have energy barriers approaching 500 K with only two atoms. The spin dynamics of these ultrasmall nanomagnets is strongly affected by a Berry phase, which arises from quasi-degeneracies at the electronic highest occupied molecular orbital energy. In a giant-spin approximation, this Berry phase makes the effective reversal barrier thicker. PMID:17660824

  1. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    SciTech Connect

    Leary, A. M. Keylin, V.; McHenry, M. E.; Ohodnicki, P. R.

    2015-05-07

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to ∼2 kJ/m{sup 3}. Higher anisotropies up to ∼10 kJ/m{sup 3} result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co{sub 80−x−y}Fe{sub x}Mn{sub y}Nb{sub 4}B{sub 14}Si{sub 2} soft magnetic nanocomposites, where x and y < 8 at.% with close packed crystalline grains that show stress induced anisotropies up to ∼50 kJ/m{sup 3} and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis.

  2. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    SciTech Connect

    Leary, AM; Keylin, V; Ohodnicki, PR; McHenry, ME

    2015-05-07

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to similar to 2 kJ/m(3). Higher anisotropies up to similar to 10 kJ/m(3) result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co80-x-yFexMnyNb4B14Si2 soft magnetic nanocomposites, where x and y < 8 at. % with close packed crystalline grains that show stress induced anisotropies up to similar to 50 kJ/m(3) and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis. (C) 2015 AIP Publishing LLC.

  3. Current control of magnetic anisotropy via stress in a ferromagnetic metal waveguide

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Ma, Xin; Pai, Chi-Feng; Yang, Jusang; Olsson, Kevin S.; Erskine, James L.; Ralph, Daniel C.; Buhrman, Robert A.; Li, Xiaoqin

    2016-04-01

    We demonstrate that in-plane charge current can effectively control the spin precession resonance in an A l2O3/CoFeB /Ta heterostructure. Brillouin light scattering was used to detect the ferromagnetic resonance field under microwave excitation of spin waves at fixed frequencies. The current control of spin precession resonance originates from modification of the in-plane uniaxial magnetic anisotropy field Hk, which changes symmetrically with respect to the current direction. Numerical simulation suggests that the anisotropic stress introduced by joule heating plays an important role in controlling Hk. These results provide new insight into current manipulation of magnetic properties and have broad implications for spintronic devices.

  4. Spatial modulation of in-plane magnetic anisotropy in epitaxial Co(111) films grown on macrostep-bunched Si(111)

    SciTech Connect

    Davydenko, A. V. Kozlov, A. G.; Chebotkevich, L. A.

    2014-10-14

    We compared magnetic properties of epitaxial Co(111) films grown on microstep- and macrostep-bunched vicinal Si(111) substrates. A surface of the microstep-bunched Si(111) substrate represents regular array of step-bunches with height of 1.7 nm divided from each other by flat microterraces with a width of 34 nm. A surface of the macrostep-bunched Si(111) substrate is constituted by macrostep bunches with a height of 75–85 nm divided by atomically flat macroterraces. The average sum width of a macrostep bunch and a macroterrace is 2.3 μm. While in-plane magnetic anisotropy was spatially uniform in Co(111) films grown on the microstep-bunched Si(111), periodic macromodulation of the topography of the Si(111) substrate induced spatial modulation of in-plane magnetic anisotropy in Co(111) film grown on the macrostep-bunched Si(111) surface. The energy of uniaxial magnetic anisotropy in the areas of the Co(111) film deposited on the Si(111) macrosteps was higher more than by the order of magnitude than the energy of the magnetic anisotropy in the areas grown on macroterraces. Magnetization reversal in the areas with different energy of the magnetic anisotropy occurred in different magnetic fields. We showed the possibility of obtaining high density of domain walls in Co(111) film grown on the macrostep-bunched Si(111) by tuning the spatial step density of the Si(111) substrate.

  5. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe{sub 2}O{sub 4} spinel ferrite nanocrystallites

    SciTech Connect

    Rondinone, A.J.; Samia, A.C.S.; Zhang, Z.J.

    1999-08-19

    Superparamagnetism is a unique feature of magnetic nanoparticles. Spinel ferrite nanoparticles provide great opportunities for studying the mechanism of superparamagnetic properties. CoFe{sub 2}O{sub 4} nanocrystallites have been synthesized with a microemulsion method. The neutron diffraction studies and the temperature-dependent decay of magnetization show the superparamagnetic relaxation occurring in these nanoparticles. The neutron diffraction shows a high degree of inversion with the 78% tetrahedral sites occupied by Fe{sup 3+} cations. The nanoparticles with a 12 nm diameter have a blocking temperature around 320 K. The field-cooled and zero-field-cooled magnetization measurements display a divergence below the blocking temperature. The energy barrier distribution of magnetic anisotropy is derived from the temperature-dependent decay of magnetization. The magnetic anisotropy is clearly the origin of the divergence in the field-cooled and zero-field-cooled magnetization measurements. The energy barrier distribution function is used in a computer simulation of the zero-field-cooled magnetization, and the calculated magnetization has a great consistency with experimentally measured values. These studies on the magnetic anisotropy distribution elucidate the mechanism of superparamagnetic relaxation and facilitate the design and control of superparamagnetic properties in nanoparticles.

  6. Spin-flop transition on Gd5Ge4 observed by x-ray resonant magnetic scattering and first-principles calculations of magnetic anisotropy

    SciTech Connect

    Tan, L.; Kreyssig, A.; Nandi, S.; Jia, S.; Lee, Y. B.; Lang, J. C.; Islam, Z.; Lograsso, T.; Schlagel, D.; Pecharsky, V.; Gschneidner, K.; Canfield, P.; Harmon, B.; McQueeney, R.; Goldman, A.

    2008-02-21

    X-ray resonant magnetic scattering was employed to study a fully reversible spin-flop transition in orthorhombic Gd{sub 5}Ge{sub 4} and to elucidate details of the magnetic structure in the spin-flop phase. The orientation of the moments at the three Gd sites flop 90{sup o} from the c axis to the a axis when a magnetic field, H{sub sf} = 9 kOe, is applied along the c axis at T = 9 K. The magnetic space group changes from Pnm'a to Pn'm'a' for all three Gd sublattices. The magnetic anisotropy energy determined from experimental measurements is in good agreement with the calculations of the magnetic anisotropy based on the spin-orbit coupling of the conduction electrons and an estimation of the dipolar interactions anisotropy. No significant magnetostriction effects were observed at the spin-flop transition.

  7. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Pai, Chi-Feng; Mann, Maxwell; Tan, Aik Jun; Beach, Geoffrey S. D.

    2016-04-01

    We report that by measuring a current-induced hysteresis loop shift versus in-plane bias magnetic field, the spin-Hall effect (SHE) contribution of the current-induced effective field per current density χSHE can be estimated for Pt- and Ta-based magnetic heterostructures with perpendicular magnetic anisotropy. We apply this technique to a Pt-based sample with its ferromagnetic (FM) layer being wedged deposited and discover an extra effective field contribution χWedged due to the asymmetric nature of the deposited FM layer. We confirm the correlation between χWedged and the asymmetric depinning process in FM layer during magnetization switching by magneto-optical Kerr microscopy. These results indicate the possibility of engineering deterministic spin-orbit torque switching by controlling the symmetry of domain expansion through the materials growth process.

  8. Quantum engineering of spin and anisotropy in magnetic molecular junctions.

    PubMed

    Jacobson, Peter; Herden, Tobias; Muenks, Matthias; Laskin, Gennadii; Brovko, Oleg; Stepanyuk, Valeri; Ternes, Markus; Kern, Klaus

    2015-01-01

    Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy. PMID:26456084

  9. Giant magnetic anisotropy in tetragonal FeCo alloys.

    PubMed

    Burkert, Till; Nordström, Lars; Eriksson, Olle; Heinonen, Olle

    2004-07-01

    In order to further increase the recording density in hard disk drives, new media materials are required. Two essential parameters of future recording media are a large uniaxial magnetic anisotropy energy (MAE) K(u) and a large saturation magnetization M(s). Based on first-principles theory, we predict that very specific structural distortions of FeCo alloys possess these desired properties. The discovered alloy has a saturation magnetization that is about 50% larger than that of FePt--a compound that has received considerable attention lately-with a uniaxial MAE that can easily be tailored reaching a maximum value that is 50% larger than that of FePt. PMID:15323948

  10. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    SciTech Connect

    Nawa, Kenji Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp{sub 2}s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the {sup 3}E{sub 2g}, {sup 2}E{sub 2g}, {sup 1}A{sub 1g}, {sup 2}E{sub 1g}, and {sup 3}A{sub 2g} states, respectively. The magnetizations of the CoCp{sub 2} and NiCp{sub 2} energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  11. Quantum engineering of spin and anisotropy in magnetic molecular junctions

    NASA Astrophysics Data System (ADS)

    Jacobson, Peter; Herden, Tobias; Muenks, Matthias; Laskin, Gennadii; Brovko, Oleg; Stepanyuk, Valeri; Ternes, Markus; Kern, Klaus

    2015-10-01

    Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy.

  12. Quantum engineering of spin and anisotropy in magnetic molecular junctions

    PubMed Central

    Jacobson, Peter; Herden, Tobias; Muenks, Matthias; Laskin, Gennadii; Brovko, Oleg; Stepanyuk, Valeri; Ternes, Markus; Kern, Klaus

    2015-01-01

    Single molecule magnets and single spin centres can be individually addressed when coupled to contacts forming an electrical junction. To control and engineer the magnetism of quantum devices, it is necessary to quantify how the structural and chemical environment of the junction affects the spin centre. Metrics such as coordination number or symmetry provide a simple method to quantify the local environment, but neglect the many-body interactions of an impurity spin coupled to contacts. Here, we utilize a highly corrugated hexagonal boron nitride monolayer to mediate the coupling between a cobalt spin in CoHx (x=1,2) complexes and the metal contact. While hydrogen controls the total effective spin, the corrugation smoothly tunes the Kondo exchange interaction between the spin and the underlying metal. Using scanning tunnelling microscopy and spectroscopy together with numerical simulations, we quantitatively demonstrate how the Kondo exchange interaction mimics chemical tailoring and changes the magnetic anisotropy. PMID:26456084

  13. Kinetic growth of nanoclusters with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Heinrichs, S.; Dieterich, W.; Maass, P.

    2006-07-01

    The growth of binary-alloy clusters on a weakly interacting substrate through codeposition of two atomic species is studied by kinetic Monte Carlo simulation. Our model describes salient features of CoPt3 nanoclusters, as obtained recently by the molecular-beam epitaxy technique. The clusters display perpendicular magnetic anisotropy (PMA) in a temperature window of growth favorable for applications. This temperature window is found to arise from the interplay of Pt surface segregation and aspect ratio for cluster shapes. Conclusions are drawn on how to optimize growth parameters with respect to PMA.

  14. Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Li, Shandong; Zhou, Ziyao; Beguhn, Shawn; Lou, Jing; Xu, Feng; Jian Lu, Tian; Sun, Nian X.

    2012-09-01

    Electric field (E-field) tunable multiferroic devices such as tunable RF devices and memory storage mediums require strong magnetoelectric interactions. In this paper, we demonstrated a Terfenol-D/lead zinc niobate-lead titanate composite bilayer structure with an E-field-induced magnetic anisotropy field of 3500 Oe and a magnetoelectric coefficient of 580 Oe cm/kV. This is the largest E-field induced anisotropy reported to date, resulting in a strong dependence of magnetization process and tunable ferromagnetic resonance in both amorphous and crystalline Terfenol-D films. In addition, the magnetostriction constants of crystalline and amorphous Terfenol-D were estimated to be 420 ppm and 320 ppm, respectively, which are close to report values. Electrically manipulating magnetic performance holds great potential for future ultra-low power, lightweight, tunable magnetic devices, and memory storage.

  15. Magnetic ordering and slow dynamics in a Ho-based bulk metallic glass with moderate random magnetic anisotropy

    SciTech Connect

    Luo, Q.; Schwarz, B.; Mattern, N.; Eckert, J.

    2011-06-01

    Results of magnetic measurements are presented for a Ho-based bulk metallic glass, which shows similarities and differences with conventional spin glasses (SGs), and significant differences with weak random magnetic anisotropy (RMA) systems. Both ac and dc magnetic measurements indicate a single transition from paramagnetic to speromagnetic or spin glasslike state around 5.6 K. The moderate RMA prevents the formation of long- (or quasilong)-range magnetic order and slows down the spin dynamics in the critical region. Further its isothermal remnant magnetization exhibits a small maximum, instead of a gradual increase with field in SGs. The roles of RMA in the magnetic structure and dynamics of disordered and frustrated systems are discussed by comparisons between the weak RMA system, the moderate or strong RMA system, and conventional SG.

  16. Tri-axial magnetic anisotropies in RE{sub 2}Ba{sub 4}Cu{sub 7}O{sub 15−y} superconductors

    SciTech Connect

    Horii, Shigeru Doi, Toshiya; Okuhira, Shota; Yamaki, Momoko; Kishio, Kohji; Shimoyama, Jun-ichi

    2014-03-21

    We report a novel quantification method of tri-axial magnetic anisotropy in orthorhombic substances containing rare earth (RE) ions using tri-axial magnetic alignment and tri-axial magnetic anisotropies depending on the type of RE in RE-based cuprate superconductors. From the changes in the axes for magnetization in magnetically aligned powders of (RE′{sub 1−x}RE″{sub x}){sub 2}Ba{sub 4}Cu{sub 7}O{sub y} [(RE′,RE″)247] containing RE ions with different single-ion magnetic anisotropies, the ratios of three-dimensional magnetic anisotropies between RE′247 and RE″247 could be determined. The results in (Y,Er)247, (Dy,Er)247, (Ho,Er)247, and (Y,Eu)247 systems suggest that magnetic anisotropies largely depended on the type of RE′ (or RE″), even in the heavy RE ions with higher magnetic anisotropies. An appropriate choice of RE ions in RE-based cuprate superconductors enables the reduction of the required magnetic field for the production of their bulks and thick films based on the tri-axial magnetic alignment technique using modulated rotation magnetic fields.

  17. Giant Uniaxial Anisotropy in the Magnetic and Transport Properties of CePd5Al2

    NASA Astrophysics Data System (ADS)

    Onimaru, Takahiro; Inoue, Yukihiro F.; Shigetoh, Keisuke; Umeo, Kazunori; Kubo, Hirokazu; Ribeiro, Raquel A.; Ishida, Akihiro; Avila, Marcos A.; Ohoyama, Kenji; Sera, Masafumi; Takabatake, Toshiro

    2008-07-01

    Electrical resistivity ρ, magnetic susceptibility χ, magnetization M, and specific heat measurements are reported on a singlecrystalline sample of CePd5Al2, showing successive antiferromagnetic orderings at TN1=4.1 K and TN2=2.9 K. The temperature dependence of ρ shows a Kondo metal behavior with large anisotropy, ρc/ρa=3.2 at 20 K, and opening of a superzone gap along the tetragonal c-direction below TN1. Both TN1 and TN2 gradually increase with applying pressure up to 2.5 GPa. The data of χ(T) and M(B) in the paramagnetic state were analyzed using a crystalline electric field (CEF) model. It led to a Kramers doublet ground state with wave functions consisting primarily of |± 5/2>, whose energy level is isolated from the excited states by 230 and 300 K. This CEF effect gives rise to the large anisotropy in the paramagnetic state. In the ordered state, the uniaxial magnetic anisotropy is manifested as Mc/Ma=20 in B=5 T and at 1.9 K, and χc/χa=25 in B=0.1 T and at 4 K. In powder neutron diffraction experiments, magnetic reflections were observed owing to the antiferromagnetic ordered states below TN1, whereas no additional reflection was found below TN2.

  18. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  19. Intense magnetic field phenomena

    SciTech Connect

    Weisheit, J.

    1994-12-31

    This article surveys three of the many challenging problems involving quantum phenomena in plasmas with magnetic fields B in the range 10{sup 8}--10{sup 10} Gauss: magnetic white dwarf stars, spectroscopic effects of motional (v {times} B) electric fields, and statistical models of many-electron atoms in strong B fields. It has proved difficult to make progress in this regime of field strengths, where Coulomb and magnetic interactions are comparable.

  20. Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ueno, Tetsuro; Sinha, Jaivardhan; Inami, Nobuhito; Takeichi, Yasuo; Mitani, Seiji; Ono, Kanta; Hayashi, Masamitsu

    2015-10-01

    We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectroscopy is used to evaluate the relative orbital moment, i.e. the ratio of the orbital to spin moments, of the magnetic elements constituting the heterostructures. We find that the relative orbital moment of Co in Pt/Co/Pt remains constant against its thickness whereas the moment increases with decreasing Co layer thickness for Pt/Co/AlOx, suggesting that a non-zero interface orbital moment exists for the latter system. For Ta/CoFeB/MgO, a non-zero interface orbital moment is found only for Fe. X-ray absorption spectra shows that a particular oxidized Co state in Pt/Co/AlOx, absent in other heterosturctures, may give rise to the interface orbital moment in this system. These results show element specific contributions to the interface orbital magnetic moments in ultrathin magnetic heterostructures.

  1. First-order magnetization process as a tool of magnetic-anisotropy determination: Application to the uranium-based intermetallic U3C u4G e4

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V.; Skourski, Y.; Richter, M.; Havela, L.; Wosnitza, J.

    2016-02-01

    Uranium-based intermetallic compounds often display very strong magnetic anisotropies, the energy of which is usually not directly accessible by common experimental methods. Here, we report on static- and pulsed-field studies of U3C u4G e4 . This material orders ferromagnetically at TC=73 K with the easy magnetization direction along the a axis and a strong b c -plane anisotropy. The magnetization measured for fields along the hard b direction displays a first-order magnetization process that can be described well by use of a phenomenological theory yielding anisotropy constants up to the sixth order. This phenomenological description, working excellently for U3C u4G e4 , may also be applied for other uranium-based compounds.

  2. Enhanced current-induced domain wall motion by tuning perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Emori, Satoru; Beach, Geoffrey S. D.

    2011-03-01

    The effect of perpendicular magnetic anisotropy (PMA) on current-induced domain wall (DW) motion is investigated by micromagnetic simulations. The critical current density JC to drive DWs into periodic transformation and continuous motion by adiabatic spin transfer torque decreases with increasing PMA. Also, with optimized PMA that almost exactly compensates the demagnetizing field, the adiabatic displacement of DWs driven by currents less than JC is strongly enhanced. Since PMA can be controlled easily in magnetic multilayer films, this technique of enhancing current-induced DW motion may be practical for device applications.

  3. Solar wind turbulence: anisotropy, anisotropy, anisotropy!

    NASA Astrophysics Data System (ADS)

    Wicks, R.; Forman, M. A.; Summerlin, E. J.; Roberts, D. A.; Salem, C. S.

    2014-12-01

    Turbulence heats the solar wind as it expands away from the Sun, but where and how does heating of ions and electrons occur? In order to understand this we must first look at the fluctuations making up the cascade, the properties and anisotropies of which will determine whether ions or electrons are heated and whether field-parallel or -perpendicular heating will occur, all of which amounts to a lot of different anisotropies! With this in mind, we present a review of recent advances in the observation of plasma turbulence in the solar wind and comparison with simulations; which features of solar wind turbulence are well reproduced and which need to be captured better? The first anisotropy is that of the fluctuations making up the turbulent cascade itself, fluctuations are known to be highly transverse, meaning that the perpendicular magnetic field components are dominant over the field-parallel component. The second anisotropy is that of the scaling of amplitude towards smaller scales with steeper spectra parallel to the local magnetic field direction. Observations of the anisotropy of the full power spectral tensor will be discussed, in particular with reference to Alfvenic and pseudo-Alfvenic fluctuations (effectively two different polarizations of Alfven waves), the next step beyond the traditional "slab + 2D" approach to incompressible MHD turbulence. The third anisotropy is that of the ion and electron distributions. Both sets of charged particles frequently show non-Maxwellian distributions with higher temperatures found either perpendicular to or parallel to the magnetic field direction. Proton distributions often show beams and the heavier alpha particles are often hotter than the protons. Localized structures such as current sheets and magnetic discontinuities are shown to be sites of intense and anisotropic heating. Small scale fluctuations filling the space between such discontinuities may also dissipate energy into ions and electrons, either through electric fields intrinsic to the modes generated by the turbulence or through resonant or stochastic processes. Observations show that kinetic Alfven waves are the dominant mode.

  4. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.

    2011-08-01

    The origin and evolution of magnetic fields in the Universe is a cosmological problem. Although exotic mechanisms for magneotgenesis cannot be ruled out, galactic magnetic fields could have been seeded by magnetic fields from stars and accretion disks, and must be continuously regenerated due to the ongoing replacement of the interstellar medium. Unlike stellar dynamos, galactic dynamos operate in a multicomponent gas at low collisionality and high magnetic Prandtl number. Their background turbulence is highly compressible, the plasma β ~ 1, and there has been time for only a few large exponentiation times at large scale over cosmic time. Points of similarity include the importance of magnetic buoyancy, the large range of turbulent scales and tiny microscopic scales, and the coupling between the magnetic field and certain properties of the flow. Understanding the origin and maintenance of the large scale galactic magnetic field is the most challenging aspect of the problem.

  5. Magnetic structure and anisotropy of [Co/Pd ] 5/NiFe multilayers

    NASA Astrophysics Data System (ADS)

    Tryputen, Larysa; Guo, Feng; Liu, Frank; Nguyen, T. N. Anh; Mohseni, Majid S.; Chung, Sunjae; Fang, Yeyu; Ã kerman, Johan; McMichael, R. D.; Ross, Caroline A.

    2015-01-01

    The magnetization behavior, magnetic anisotropy, and domain configurations of Co/Pd multilayers with perpendicular magnetic anisotropy capped with permalloy is investigated using magnetometry, magnetic force microscopy, and ferromagnetic resonance. The thickness of the Ni80Fe20 layer in [Co/Pd ] 5/NiFe (t ) was varied from t =0 to 80 nm in order to study the interplay between the anisotropy and magnetization directions of Co/Pd and NiFe. By varying the thickness of the NiFe layer, the net anisotropy changes sign, but domains with plane-normal magnetization are present even for the thickest NiFe. Ferromagnetic resonance measurements show a decrease in damping with increasing NiFe thickness. The results demonstrate how the magnetic behavior of mixed-anisotropy thin films can be controlled.

  6. Impurity-induced enhancement of perpendicular magnetic anisotropy in Fe/MgO tunnel junctions

    NASA Astrophysics Data System (ADS)

    Hallal, A.; Dieny, B.; Chshiev, M.

    2014-08-01

    Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated, using layer resolved anisotropy calculation technique, that while the impurity near the interface has a drastic effect in decreasing the perpendicular magnetic anisotropy (PMA), its position within the bulk allows maintaining high interfacial PMA while reducing the bulk magnetization and correlatively the easy-plane demagnetizing energy. As a result, the effective magnetic anisotropy tends to increase as a function of the Cr or V concentration resulting in an increase in the critical magnetic thickness at which the crossover from out-of-plane to in-plane anisotropy takes place. At the same time, the interfacial spin polarization is not affected by the magnetic layer bulk doping by Cr or V impurities and even enhanced in most situations thus favoring an increase of tunnel magnetoresistance (TMR) amplitude.

  7. Magnetic anisotropy and anisotropic damping in LSMO/STO(001)

    NASA Astrophysics Data System (ADS)

    Lee, Hankyu; Barsukov, Igor; Yang, Liu; Swartz, Adrian; Kim, Bongju; Hwang, Harold; Krivorotov, Ilya

    2015-03-01

    La0.7Sr0.3MnO3 (LSMO) is a promising material for spintronics applications due to its half-metallic nature. To successively exploit LSMO, both the magnetic anisotropy (MA) and damping need to be well understood and, ultimately, controlled. Here, we study 30 nm epitaxial LSMO thin films grown by pulsed laser deposition on TiO2 terminated (001)SrTiO3. By means of angle- and frequency dependent ferromagnetic resonance (FMR) at room temperature, we separate various contributions to the in-plane MA: i) The four-fold magnetocrystalline anisotropy is present but negligibly small. ii) The strongest contribution Buni = 4.2 mT is uniaxial with EA along [010]. While uniaxial MA in LSMO systems is commonly related to terrace formation from the substrate miscut, we find that the terrace direction and the MA symmetry axes do not correlate, indicating a different origin of the MA. By evaluating the FMR linewidth, three nonlinear magnetic damping channels due to the two-magnon scattering are found: j) The dominant four-fold contribution with maxima along < 100 > axes emerges due to the crystalline defects. jj) A two-fold contribution with the maximum along [010] and jjj) a small two-fold contribution with maximum perpendicular to the terraces are identified.

  8. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  9. Spin-transfer-torque switching in spin valve structures with perpendicular, canted, and in-plane magnetic anisotropies

    NASA Astrophysics Data System (ADS)

    Roy, U.; Seinige, H.; Ferdousi, F.; Mantey, J.; Tsoi, M.; Banerjee, S. K.

    2012-04-01

    We exploit canted anisotropies as possible means to enhance spin-transfer-torque (STT) and reduce switching currents. The STTs in spin-valve structures with perpendicular, canted, and, as a reference, in-plane magnetic anisotropies were studied. For perpendicular magnetic anisotropy and canted spin valves the thicknesses and number of Co and Pt layers were varied to obtain different angles of the magnetic anisotropy with respect to the sample plane. Point contact measurements were used to measure the change in the switching-field of the magnetization with the change in the bias current applied to the point contact. A larger STT effect, as evidenced by a larger change in the switching magnetic field for the unit change in the dc bias current, was observed for the sample with 45° tilt in magnetization compared to a sample with 12° tilt. Tilted magnetization of the reference layer causes precessional switching, decreasing the switching energy and time. Micromagnetic simulations were performed to explain the experimental observations.

  10. How to probe transverse magnetic anisotropy of a single-molecule magnet by electronic transport?

    NASA Astrophysics Data System (ADS)

    Misiorny, M.; Burzuri, E.; Gaudenzi, R.; Park, K.; Leijnse, M.; Wegewijs, M.; Paaske, J.; Cornia, A.; van der Zant, H.

    We propose an approach for in-situ determination of the transverse magnetic anisotropy (TMA) of an individual molecule by electronic transport measurements, see Phys. Rev. B 91, 035442 (2015). We study a Fe4 single-molecule magnet (SMM) captured in a gateable junction, a unique tool for addressing the spin in different redox states of a molecule. We show that, due to mixing of the spin eigenstates of the SMM, the TMA significantly manifests itself in transport. We predict and experimentally observe the pronounced intensity modulation of the Coulomb peak amplitude with the magnetic field in the linear-response transport regime, from which the TMA parameter E can be estimated. Importantly, the method proposed here does not rely on the small induced tunnelling effects and, hence, works well at temperatures and electron tunnel broadenings by far exceeding the tunnel splittings and even E itself. We deduce that the TMA for a single Fe4 molecule captured in a junction is substantially larger than the bulk value. Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.

  11. Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems.

    SciTech Connect

    Jimenez, E.; Camarero, J.; Sort, J.; Nogues, J.; Mikuszeit, N.; Garcia-Martin, J. M.; Hoffmann, A.; Dieny, B.; Miranda, R.; Univ. Autonoma de Madrid; Univ. Autonoma de Barcelona; Inst. de Microelectronica de Madrid; SPINTEC

    2009-01-01

    Exchange bias, referred to the interaction between a ferromagnet (FM) and an antiferromagnet (AFM), is a fundamental interfacial magnetic phenomenon, which is key to current and future applications. The effect was discovered half a century ago, and it is well established that the spin structures at the FM/AFM interface play an essential role. However, currently, ad hoc phenomenological anisotropies are often postulated without microscopic justification or sufficient experimental evidence to address magnetization-reversal behavior in exchange-bias systems. We advance toward a detailed microscopic understanding of the magnetic anisotropies in exchange-bias FM/AFM systems by showing that symmetry-breaking anisotropies leave a distinct fingerprint in the asymmetry of the magnetization reversal and we demonstrate how these emerging anisotropies are correlated with the intrinsic anisotropy. Angular and vectorial resolved Kerr hysteresis loops from FM/AFM bilayers with varying degree of ferromagnetic anisotropy reveal a noncollinear anisotropy, which becomes important for ferromagnets with vanishing intrinsic anisotropy. Numerical simulations show that this anisotropy naturally arises from the inevitable spin frustration at an atomically rough FM/AFM interface. As a consequence, we show in detail how the differences observed for different materials during magnetization reversal can be understood in general terms as originating from the interplay between interfacial frustration and intrinsic anisotropies. This understanding will certainly open additional avenues to tailor future advanced magnetic materials.

  12. First-principles prediction of enhanced magnetic anisotropy in FeCo alloys

    NASA Astrophysics Data System (ADS)

    Wu, Dangxin; Zhang, Qiming; Liu, J. Ping; Yuan, Dingwang; Wu, Ruqian

    2008-02-01

    The structural, electronic, and magnetic properties of FeCo alloys were studied by first-principles calculations. It has been found that the alloys prefer chemically noncubic geometries in a wide composition range. This produces appreciable uniaxial magnetic anisotropy, which facilitates interphase magnetic interaction and enhances the overall magnetization in exchange-coupled nanocomposite systems. Large magnetostrictive coefficients provide another venue for manipulations of magnetic anisotropy energies.

  13. High-field magnetization of magnetic graphite intercalation compounds

    NASA Astrophysics Data System (ADS)

    Nicholls, J. T.; McNiff, E. J., Jr.; Dresselhaus, G.

    1990-09-01

    We report low-temperature, high-field (T<=4.2 K, H=0-18 teslas) magnetization measurements of CoCl2- and NiCl2-graphite intercalation compounds (GIC's), both parallel (M) and perpendicular (M⊥) to the c axis. From the saturation magnetization values of the stage-1 and stage-2 CoCl2-GIC's, we have been able to measure the anisotropy of the g values, and thus calculate the amount of XY spin anisotropy in these compounds. Magnetization measurements show that upon intercalation, the Co2+ ions retain their anisotropic magnetic behavior. In addition, the state-1 CoCl2-GIC's exhibit unusual hysteresis phenomena when the magnetization is measured along the c axis. Upon doping of the stage-1 CoCl2-GIC's with nonmagnetic Mg2+ ions, the magnitude of the hysteresis in M(H) decreases and the magnetization saturates. In contrast to the behavior of the stage-1 CoCl2-GIC's, state-1 NiCl2-GIC's exhibit a very small XY spin anisotropy. The magnetization M(H) is featureless for magnetic fields H>1 tesla and exhibits no high-field hysteresis. The high-field c-axis magnetization of unintercalated highly oriented pyrolytic graphite was also examined; the susceptibility was χ==M/H=-28.5×10-6 emu/g, and low-field de Haas-van Alphen oscillations were observed with a frequency consistent with previously identified majority hole carriers.

  14. The relationship of thermal expansion to magnetocrystalline anisotropy, spontaneous magnetization, and Tc for permanent magnets

    NASA Astrophysics Data System (ADS)

    Chen, Christina H.; Walmer, Marlin S.; Walmer, Michael H.; Gong, Wei; Ma, Bao-Min

    1999-04-01

    The materials studied here include SmCo5, GdCo5, Sm2TM17, Gd2TM17, Nd9.4Pr4.6Fe80B6, Alnico, SrFe12O19, and PtCo (TM=transition metal). For the first time, the thermal expansion data α(⊥) and α(∥) for the eight materials from as low as -180 °C to as high as 1250 °C have been reported. α(⊥) is the thermal expansion coefficient in the base plane and α(∥) is the coefficient in the c axis. All anisotropic materials tested show thermal expansion anisotropy (TEA). The degree of TEA is defined as γ=α(⊥)/α(∥). The γ has been observed to be related to the degree of magnetocrystalline anisotropy field HA. SmCo5 has the highest HA (350 kOe) and the highest γ (2.5). All the materials show thermal anomaly with a changing slope for α(∥) near Tc and near phase transformation temperatures. The magnitude of thermal anomaly has been observed to be related to the magnitude of spontaneous magnetization (SMZ). The most distinct thermal anomalies are observed for Nd9.4Pr4.6Fe80B6, in which both α(⊥) and α(∥) show a deep valley near Tc, and a peak at around the spin-tilt temperature. Nd-Fe-B type material has the highest SMZ and the largest thermal anomaly of all the permanent magnets. Spontaneous magnetostriction occurs mainly in the c axis for RE-Co alloys (RE=rare earth), and in all directions for Nd-Fe-B type alloys. A rubber band model is used to describe the spontaneous magnetostriction force.

  15. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    SciTech Connect

    Arranz, Miguel A.; Colino, Jose M.; Palomares, Francisco J.

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative agreement with Schlömann's prediction for a surface anisotropy entirely ruled by dipolar interaction. The limits of UMA tuning by a ripple pattern are discussed in terms of the surface local angle with respect to the mean surface and of the onset of ripple detachment.

  16. Relaxation Dynamics and Magnetic Anisotropy in a Low-Symmetry Dy(III) Complex.

    PubMed

    Lucaccini, Eva; Briganti, Matteo; Perfetti, Mauro; Vendier, Laure; Costes, Jean-Pierre; Totti, Federico; Sessoli, Roberta; Sorace, Lorenzo

    2016-04-11

    The magnetic behaviour of a Dy(LH)3 complex (LH(-) is the anion of 2-hydroxy-N'-[(E)-(2-hydroxy-3-methoxyphenyl)methylidene]benzhydrazide) was analysed in depth from both theoretical and experimental points of view. Cantilever torque magnetometry indicated that the complex has Ising-type anisotropy, and provided two possible directions for the easy axis of anisotropy due to the presence of two magnetically non-equivalent molecules in the crystal. Ab initio calculations confirmed the strong Ising-type anisotropy and disentangled the two possible orientations. The computed results obtained by using ab initio calculations were then used to rationalise the composite dynamic behaviour observed for both pure Dy(III) phase and Y(III) diluted phase, which showed two different relaxation channels in zero and non-zero static magnetic fields. In particular, we showed that the relaxation behaviour at the higher temperature range can be correctly reproduced by using a master matrix approach, which suggests that Orbach relaxation is occurring through a second excited doublet. PMID:26960531

  17. Magnetic anisotropy energy in disordered Ge1-xMnx Te

    NASA Astrophysics Data System (ADS)

    Łusakowski, A.; Bogusławski, P.; Story, T.

    2016-03-01

    We theoretically analyze the influence of chemical disorder on magnetic anisotropy in Ge1-xMnx Te semiconductor layers known to exhibit carrier-induced ferromagnetism and ferroelectric distortion of rhombohedral crystal lattice. Using DFT method we determine the local changes in the crystal structure due to Mn ions substitution for Ge and due to the presence in Ge1-xMnx Te of very high concentration of cation vacancies. We calculate the effect of this structural and chemical disorder on single ion magnetic anisotropy mechanism and show that its contribution is of the order of magnitude smaller as compared to magnetic anisotropy mechanism originating from the spin polarization induced by Mn ions into neighboring Te and Ge ions. We also discuss magnetic anisotropy effects due to pairs of Mn ions differently allocated in the lattice. The spatial averaging over chemical disorder strongly reduces the strength of this magnetic anisotropy mechanism and restores the global rhombohedral symmetry of magnetic system.

  18. Time-dependent domain wall nucleation probability in field-coupled nanomagnets with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Breitkreutz, Stephan; Fischer, Andreas; Kaffah, Silmi; Weigl, Stephanie; Eichwald, Irina; Ziemys, Grazvydas; Schmitt-Landsiedel, Doris; Becherer, Markus

    2015-05-01

    In this paper, the domain wall (DW) nucleation time and the DW nucleation probability of field-coupled magnets with perpendicular magnetic anisotropy are measured by experiment. A well-established Arrhenius model based on thermally activated magnetization reversal is applied to describe the time-dependent DW nucleation probability. Magneto-optical microscopy(MOKE) is used in the experiments to determine the DW nucleation time and the DW nucleation probability in a pNML inverter structure. The DW propagation speed is measured in order to calculate the required DW propagation time for entire magnetization reversal of pNML logic gates. Experimental results are compared to the derived model. Our results show that the interaction in pNML logic gates plays a significant role for the time-dependent DW nucleation probability and therefore for the reliability of field-coupled circuits.

  19. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  20. Magnetic dispersion and anisotropy in multiferroic BiFeO3

    SciTech Connect

    Matsuda, Masaaki; Fishman, Randy Scott; Hong, Tao; Lee, C. H.; Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Ito, T.

    2012-01-01

    We have determined the full magnetic dispersion relations of multiferroic BiFeO3. In particular, two excitation gaps originating from magnetic anisotropies have been clearly observed. The direct observation of the gaps enables us to accurately determine the Dzyaloshinskii-Moriya (DM) interaction and the single ion anisotropy. The DM interaction supports a sizable magneto-electric coupling in this compound.

  1. Bifurcation of magnetic anisotropy caused by small addition of Sm in (Nd1-xSmxDy)(FeCo)B magnetic alloy

    NASA Astrophysics Data System (ADS)

    Kablov, E. N.; Ospennikova, O. G.; Kablov, D. E.; Piskorskii, V. P.; Kunitsyna, E. I.; Dmitriev, A. I.; Valeev, R. A.; Korolev, D. V.; Rezchikova, I. I.; Talantsev, A. D.; Morgunov, R. B.

    2015-06-01

    In sintered (Nd1-xSmxDy)(FeCo)B magnets, the contributions of "soft" (Nd1-xSmxDy)2(FeCo)2B and "hard" (Nd1-xSmxDy)2(FeCo)14B phases to the temperature and field dependences of magnetization have been distinguished. The increase in Sm concentration up to 3% provides stronger interlattice RE-TM (RE—rare-earth metals, TM—transition metals) exchange interaction. Contributions of the NdDy and Sm to magnetic anisotropy have been determined. The competition between the positive contribution of Nd and Dy and the negative contribution of Sm ions results in non-monotonous temperature and Sm concentration dependencies of anisotropy field. Anisotropy of the studied alloys is intermediate between "easy axis" and "easy plane" symmetry.

  2. Statistical anisotropy of the curvature perturbation from vector field perturbations

    SciTech Connect

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co

    2009-05-15

    The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.

  3. Anisotropy Effect on Levitation Performance of Bulk High-Tc Superconductors Above a Permanent Magnet Guideway

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Liao, Xinglin; Jing, Hailian; Lin, Qunxu; Ma, Guangtong; Yen, Fei; Wang, Suyu; Wang, Jiasu

    The anisotropy properties of bulk high-temperature superconductors (HTSCs) are taken into consideration for the application of high-temperature superconducting (HTS) Maglev systems, which are especially based on the different flux-trapping capabilities as well as critical current density, Jc, values between the growth section boundary (GSB) and the growth sections (GS) in bulk superconductors. By adjusting the angle between the GSB of bulk HTSCs and the strongest magnetic field position of a permanent magnet guideway (PMG), the levitation force and its relaxation processes are compared at different field-cooling conditions. Experimental results show that the levitation capability and the suppression of levitation force decay can be enhanced by optimizing the GS/GSB alignment of every bulk HTSC above the PMG. Meanwhile, our conclusions may provide references to other HTS maglev systems with small levitation gaps, i.e., superconducting magnetic bearings.

  4. Strain-induced perpendicular magnetic anisotropy in L a2CoMn O6 -ɛ thin films and its dependence on film thickness

    NASA Astrophysics Data System (ADS)

    Galceran, Regina; López-Mir, Laura; Bozzo, Bernat; Cisneros-Fernández, José; Santiso, José; Balcells, Lluís; Frontera, Carlos; Martínez, Benjamín

    2016-04-01

    Ferromagnetic insulating L a2CoMn O6 -ɛ (LCMO) epitaxial thin films grown on top of SrTi O3 (001) substrates present a strong magnetic anisotropy favoring the out-of-plane (OP) orientation of the magnetization with a large anisotropy field (˜70 kOe for film thickness of about 15 nm). Diminishing oxygen off-stoichiometry of the film enhances the anisotropy. We attribute this to the concomitant shrinkage of the OP cell parameter and to the increasing of the tensile strain of the films. Consistently, LCMO films grown on (LaAlO3)0.3(Sr2AlTaO6) 0.7 and LaAl O3 substrates (with a larger OP lattice parameter and compressive stress) display in-plane (IP) magnetic anisotropy. Thus, we link the strong magnetic anisotropy observed in LCMO to the film stress: tensile strain favors perpendicular anisotropy, and compressive stress favors IP anisotropy. We also report on the thickness dependence of the magnetic properties. Perpendicular anisotropy, saturation magnetization, and Curie temperature are maintained over a large range of film thickness.

  5. Determination of magnetic anisotropy in the LnTRENSAL complexes (Ln = Tb, Dy, Er) by torque magnetometry.

    PubMed

    Perfetti, Mauro; Lucaccini, Eva; Sorace, Lorenzo; Costes, Jean Pierre; Sessoli, Roberta

    2015-04-01

    We report here a study about the magnetic anisotropy of the LnTRENSAL complexes (Ln = Tb, Dy, Er) performed by using cantilever torque magnetometry and electron paramagnetic resonance. For all of the compounds, we extracted a set of crystal-field parameters to obtain the energy-level splitting of the ground-state multiplet. PMID:25756362

  6. Low-field behavior of an X Y pyrochlore antiferromagnet: Emergent clock anisotropies

    NASA Astrophysics Data System (ADS)

    Maryasin, V. S.; Zhitomirsky, M. E.; Moessner, R.

    2016-03-01

    Using Er2Ti2O7 as motivation, we investigate finite-field properties of X Y pyrochlore antiferromagnets. In addition to a fluctuation-induced six-fold anisotropy present in zero field, an external magnetic field induces a combination of two-, three-, and six-fold clock terms as a function of its orientation, providing for rich and controllable magnetothermodynamics. For Er2Ti2O7 , we predict a phase transition in a weak magnetic field H ∥[001 ] . Re-entrant transitions are also found for H ∥[111 ] . We extend these results to the whole family the X Y pyrochlore antiferromagnets and show that presence and number of low-field transitions for different orientations can be used for locating a given material in the parameter space of anisotropic pyrochlores. Finite-temperature classical Monte Carlo simulations serve to confirm and illustrate these analytic predictions.

  7. Anisotropy of the field-induced kinetic energy density in Bi2212

    NASA Astrophysics Data System (ADS)

    Peña, J. P.; da Silva, R. R.; Pureur, P.

    2014-01-01

    We present an experimental study of the in-field kinetic energy density in two Bi2Sr2CaCu2O8+δ single crystals. The kinetic energy density is determined from magnetization measurements performed above the irreversibility line. Anisotropy effects are observed when an external magnetic field is applied in the direction perpendicular or parallel to the superconducting Cu-O2 planes. When the field is applied parallel to the c-axis, the most relevant contribution to the kinetic energy comes from the Abrikosov vortices. At low fields, an additional term related to granularity is also observed. A kink in the kinetic energy density associated to the decoupling of the superconducting layers is identified when the field is applied parallel to the ab planes.

  8. Electronic structure and magnetic anisotropy of Sm2Fe17Nx

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2014-03-01

    Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  9. Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain

    PubMed Central

    Shepley, P. M.; Rushforth, A. W.; Wang, M.; Burnell, G.; Moore, T. A.

    2015-01-01

    The perpendicular magnetic anisotropy Keff, magnetization reversal, and field-driven domain wall velocity in the creep regime are modified in Pt/Co(0.85–1.0 nm)/Pt thin films by strain applied via piezoelectric transducers. Keff, measured by the extraordinary Hall effect, is reduced by 10 kJ/m3 by tensile strain out-of-plane εz = 9 × 10−4, independently of the film thickness, indicating a dominant volume contribution to the magnetostriction. The same strain reduces the coercive field by 2–4 Oe, and increases the domain wall velocity measured by wide-field Kerr microscopy by 30-100%, with larger changes observed for thicker Co layers. We consider how strain-induced changes in the perpendicular magnetic anisotropy can modify the coercive field and domain wall velocity. PMID:25605499

  10. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.

  11. Influence of cutting strains and magnetic anisotropy of electrical steel on the air gap flux distribution of an induction motor

    NASA Astrophysics Data System (ADS)

    Hribernik, Božo

    1984-02-01

    This paper describes an iterative algorithm for the simulation of various real magnetic materials in a small induction motor and their influence on the flux distribution in the air gap. Two standard materials, fully-, and semi-processed steel strips were used. The nonlinearity of the magnetization curve, the influence of cutting strains and magnetic anisotropy are also considered. All these influences bring out the facts that the uniformly rotated and sine form exitation causes a nonuniformly rotated and deformed magnetic field in the air gap of the machine and that the magnetization current is winding place dependent.

  12. Electric-field guiding of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  13. Investigation of magnetic properties in thick CoFeB alloy films for controllable anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Huang, Ya; Chen, Ruofei; Xu, Zhan

    2016-02-01

    CoFeB alloy material has attracted interest for its wide uses in magnetic memory devices and sensors. We investigate magnetic properties of thick Co40Fe40B20 films in the thickness range from 10 to 100 nm sandwiched by MgO and Ta layers. Strong in-plane uniaxial magnetic anisotropy is revealed in the as-deposited amorphous films by angular dependent magnetic measurements, and the growth-induced anisotropy is found to strongly depend on the film thickness. A fourfold cubic magnetic anisotropy develops with annealing, as a result of improved crystalline structure in films confirmed by X-ray diffraction measurements. The observed magnetic properties can be explained by the superposition of the uniaxial and additional cubic magnetic anisotropy, tuned by annealing temperature.

  14. Collective oscillations of the magnetic moments of a chain of spherical magnetic nanoparticles with uniaxial magnetic anisotropy

    SciTech Connect

    Dzian, S. A.; Ivanov, B. A.

    2013-06-15

    Magnetic particles moving freely in a fluid can organize dense phases (3D clusters or linear chains). We analyze the spectrum of magnetic oscillations of a chain of spherical magnetic particles taking into account the magnetic anisotropy of an individual particle for an arbitrary relation between the anisotropy energy and the energy of the dipole interaction of particles. For any relation between these energies, the spectrum contains three branches of collective oscillations: a high-frequency branch and a weakly split doublet of low-frequency branches. The frequency of the high-frequency branch is determined by a stronger interaction, while the frequencies of the low-frequency branches are determined by the weakest interaction. Accordingly, the dispersion is maximal for oscillations formed by the dipole-dipole interaction of particles, which have high frequencies in the case of a strong dipole interaction or low frequencies in the case of a strong anisotropy.

  15. Giant magnetic anisotropy and tunnelling of the magnetization in Li2(Li1-xFex)N

    SciTech Connect

    Jesche, Anton; McCallum, Ralph W.; Thimmaiah, Srinivasa; Jacobs, Jenee L.; Taufour, V.; Kreyssig, Andreas; Houk, Robert S.; Bud'ko, Sergey L.; Canfield, Paul C.

    2014-02-25

    Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li2(Li1-xFex)N. An extrapolated, magnetic anisotropy field of 220 T and a coercivity field of over 11 T at 2 K outperform all known hard ferromagnets and single-molecular magnets. Steps in the hysteresis loops and relaxation phenomena in striking similarity to single-molecular magnets are particularly pronounced for x<<1 and indicate the presence of nanoscale magnetic centres. Quantum tunnelling, in the form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10 K. The simple crystal structure, the availability of large single crystals and the ability to vary the Fe concentration make Li2(Li1-xFex)N an ideal model system to study macroscopic quantum effects at elevated temperatures and also a basis for novel functional magnetic materials.

  16. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  17. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes.

    PubMed

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [Co(II)(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  18. Magnetic anisotropy and anisotropic magnetoresistance in strongly phase separated manganite thin films

    NASA Astrophysics Data System (ADS)

    Kandpal, Lalit M.; Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Gupta, Anurag; Awana, V. P. S.; Singh, H. K.

    2016-06-01

    The present study reports the impact of magnetic anisotropy (MA) on magnetotransport properties such as the magnetic transitions, magnetic liquid behavior, glass transition and anisotropic magnetoresistance (AMR) in epitaxial film (thickness 42 nm) of strongly phase separated manganite La5/8-yPryCa3/8MnO3 (y≈0.4). Angle dependent magnetization measurement confirms the out-of-plane magnetic anisotropy with the magnetic easy axes aligned in the plane of the film and the magnetic hard axis along the normal to the film plane. The more prominent divergence between the zero filed cooled (ZFC) and field cooled warming (FCW) and the stronger hysteresis between the field cooled cooling (FCC) and FCW magnetization for H ∥ shows the weakening of the magnetic liquid along the magnetic hard axis. The peak at Tp≈42 K in FCW magnetization, which characterizes the onset of spin freezing shifts down to Tp≈18 K as the field direction is switched from the easy axes (H ∥) to the hard axis (H ⊥). The glass transition, which appears at Tg≈28 K for H ∥ disappears for H ⊥. The easy axis magnetization (M∣∣) appears to saturate around H~20 kOe, but the hard axis counterpart (M⊥) does not show such tendency even up to H=50 kOe. MA appears well above the ferromagnetic (FM) transition at T≈170 K, which is nearly the same as the Neel temperature (TN) of M⊥ - T . The temperature dependent resistivity measured at H=10 kOe applied along the easy axis (ρ|| - T) and the hard axis (ρ⊥ - T) shows insulator metal transition (IMT) at ≈106 K and ≈99 K in the cooling cycle, respectively. The large difference between ρ⊥ - T and ρ|| - T during the cooling cycle and in the vicinity of IMT results in huge AMR of ≈-142% and -115%. The observed properties have been explained in terms of the MA induced variation in the relative fraction of the coexisting magnetic phases.

  19. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2016-04-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  20. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    PubMed

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications. PMID:27067737

  1. Negative remanent magnetization of fine particles with competing cubic and uniaxial anisotropies

    NASA Astrophysics Data System (ADS)

    Geshev, J.; Viegas, A. D. C.; Schmidt, J. E.

    1998-08-01

    The magnetic properties of noninteracting single-domain particles whose anisotropy is made up of a cubic magnetocrystalline and a uniaxial components were investigated. Various directions of the uniaxial anisotropy were considered and the dependencies of the reduced remanence as a function of the ratio between the two anisotropies were obtained. It was found that for sufficiently strong uniaxial anisotropy and random arrangement of the particle orientations, reduced remanence lower than 0.5 is, in general, an intrinsic property of the system due to the negative remanent magnetization of some of the particles.

  2. Domain wall motion driven by spin Hall effect—Tuning with in-plane magnetic anisotropy

    SciTech Connect

    Rushforth, A. W.

    2014-04-21

    This letter investigates the effects of in-plane magnetic anisotropy on the current induced motion of magnetic domain walls in systems with dominant perpendicular magnetic anisotropy, where accumulated spins from the spin Hall effect in an adjacent heavy metal layer are responsible for driving the domain wall motion. It is found that that the sign and magnitude of the domain wall velocity in the uniform flow regime can be tuned significantly by the in-plane magnetic anisotropy. These effects are sensitive to the ratio of the adiabatic and non-adiabatic spin transfer torque parameters and are robust in the presence of pinning and thermal fluctuations.

  3. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    SciTech Connect

    Li, J.; Hu, J.; Wang, H.; Wu, R. Q.

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  4. Dielectric anisotropy in polar solvents under external fields

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2015-08-01

    We investigate dielectric saturation and increment in polar liquids under external fields. We couple a previously introduced dipolar solvent model to a uniform electric field and derive the electrostatic kernel of interacting dipoles. This procedure allows an unambiguous definition of the liquid dielectric permittivity embodying non-linear dielectric response and correlation effects. We find that the presence of the external field results in a dielectric anisotropy characterized by a two-component dielectric permittivity tensor. The increase of the electric field amplifies the permittivity component parallel to the field direction, i.e. dielectric increment is observed along the field. However, the perpendicular component is lowered below the physiological permittivity {{\\varepsilon}w}≈ 77 , indicating dielectric saturation perpendicular to the field. By comparison with Molecular Dynamics simulations from the literature, we show that the mean-field level dielectric response theory underestimates dielectric saturation. The inclusion of dipolar correlations at the weak-coupling level intensify the mean-field level dielectric saturation and improves the agreement with simulation data at weak electric fields. The correlation-corrected theory predicts as well the presence of a metastable configuration corresponding to the antiparallel alignment of dipoles with the field. This prediction can be verified by solvent-explicit simulations where solvent molecules are expected to be trapped transiently in this metastable state.

  5. Structural origins of diamagnetic anisotropy in proteins.

    PubMed Central

    Worcester, D L

    1978-01-01

    Magnetic anisotropy in proteins and polypeptides can be attributed to the diamagnetic anisotropy of the planar peptide bonds. The alpha helix in particular has large anisotropy due to the axial alignment of the peptide bonds. The regular arrangements of the peptide bonds in beta pleated sheet and collagen structures also produce substantial anisotropy, but less than for alpha helix. The anisotropy permits orientation of small structures of these types in magnetic fields of several kilogauss. PMID:281695

  6. Inter-grain interaction in random magnetic anisotropy simulation in magnetic nanocrystals

    SciTech Connect

    Lee, S.-J.; Yanagihara, Hideto; Kita, Eiji; Inami, Nobuhito; Ono, Kanta; Mitsumata, Chiharu

    2015-05-07

    Effect of inter-grain exchange interaction on the coercive forces was analyzed with a numerical simulation in magnetic materials with random magnetic anisotropy. The magnetization of an assembly of magnetically interacting grains with randomly oriented uniaxial anisotropy was calculated using the Landau-Lifshitz-Gilbert equation. We supposed a single spin model where the magnetizations in a grain were aligned in the same direction, for simplicity. Calculations were carried out for an N×N×N system, where the number of grains on a side, N ranged from 16 to 128. The relation between the coercive forces H{sub C} and the grain size D is represented by H{sub C}∝D{sup k}. With the increase of N, k decreased gradually and tended to reach a saturated value around k = 4.5–5, which dose not correspond to the primitive theory of the random anisotropy model where k = 6. The deviation was discussed in terms of the inter-grain interaction, essentially proportional to the inverse of D.

  7. Voltage-Controlled Magnetic Anisotropy in Heavy Metal/Ferromagnet/Insulator-Based Structures

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    Electric-field assisted writing of magnetic memory that exploits the voltage-controlled magnetic anisotropy (VCMA) effect offers a great potential for high density and low power applications. Magnetoelectric Random Access Memory (MeRAM) has been investigated due to its lower switching current, compared with traditional current-controlled devices utilizing spin transfer torque (STT) or spin-orbit torque (SOT) for magnetization switching. It is of great promise to integrate MeRAM into the advanced CMOS back-end-of-line (BEOL) processes for on-chip embedded applications, and enable non-volatile electronic systems with low static power dissipation and instant-on operation capability. In this thesis, different heavy metal|ferromagnet|insulator-based structures are grown by magnetron sputtering to improve the VCMA effect over the traditional Ta|CoFeB|MgO-based structures. We also established an accurate measurement technique for VCMA characterization. An improved thermal annealing stability of VCMA over 400°C is achieved in Mo|CoFeB|MgO-based structures. In addition, we observed a weak CoFeB thickness dependence of both VCMA coefficient and interfacial perpendicular magnetic anisotropy (PMA) in both Ta|CoFeB|MgO and Mo|CoFeB|MgO-based structures.

  8. Enhanced current-induced domain wall motion by tuning perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Emori, Satoru; Beach, Geoffrey

    2011-03-01

    The effect of perpendicular magnetic anisotropy (PMA) on current-induced domain wall (DW) motion is investigated by micromagnetic simulations. The critical current density Jc to drive DWs into periodic transformation and continuous motion by adiabatic spin transfer torque decreases with increasing PMA. Also, with optimized PMA that almost exactly compensates the demagnetizing field, the adiabatic displacement of DWs driven by currents less than Jc is strongly enhanced. Since PMA can be controlled easily in multilayer films (e.g. Co/Pt), this technique of enhancing current-induced DW motion may be practical for device applications.

  9. Elucidating the Magnetic Anisotropy and Relaxation Dynamics of Low-Coordinate Lanthanide Compounds.

    PubMed

    Zhang, Peng; Jung, Julie; Zhang, Li; Tang, Jinkui; Le Guennic, Boris

    2016-02-15

    The magnetic relaxation and anisotropy of 3- and 4-coordinate lanthanide complexes were systematically investigated, and the change of SMM behavior originating from the equatorially coordinating ligand field was successfully elucidated through combined experimental and theoretical studies. Remarkably, a novel approach taking into account the different contributions of atomic charges, dipole moments, and quadrupole moments was used to map the electrostatic potential around the metal center in the Dy(III) derivatives, revealing the key role played by the ligands as a whole and not just by the coordinating donor atoms as often considered. PMID:26812039

  10. Perpendicular magnetic anisotropy and complex magnetotransport behavior of cobalt nanoparticles in silver matrix

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2015-05-01

    A cobalt concentration dependent transition from usual magnetoresistance (MR) to complex MR behavior is reported in the co-sputtered Co-Ag thin films containing cobalt nanoparticles. At 20 K, the MR behavior of 32.6% film consists of three contributions superparamagnetic (SPM), ferromagnetic (FM), and perpendicular magnetic anisotropy (PMA), which are, respectively, operative at high, intermediate, and low fields. Magnetic force microscopy (MFM) provides the supporting evidence for the existence of a magnetic microstructure with magnetization perpendicular to the film plane for a threshold of 32.6% cobalt concentration. MFM images show the presence of regions with perpendicular magnetization having sizes much larger than the particle size. In addition, the magnetization measurements also substantiate the presence of PMA in films above 25.2% cobalt. The observed complex magnetotransport behavior and associated PMA are interpreted in terms of inter-particle (FM-SPM-FM) interactions in which local magnetic fields of the nearby FM particles align the SPM particles out of film plane.

  11. Tailoring of SmCo5 for optimal structure, magnetic anisotropy, and reduced criticality

    NASA Astrophysics Data System (ADS)

    Paudyal, Durga; Chouhan, R.; Gschneidner, K. A., Jr.

    SmCo5 orms hexagonal CaCu5-type structure with three non-equivalent sites: Sm (1a), Co (2c), and Co (3g). Sm lies in the middle of the Co (2c) hexagonal layers. Advanced density functional theory calculations employing Hubbard model show crystal field split localized Sm 4f states, which are responsible for the large part of the magnetic anisotropy exhibited by this system. In addition, the hexagonal Co (2c) layers help enhancing the anisotropy. Due to the partially quenched Sm 4f orbital moment, there is a net Sm 4f moment, which also helps enhancing magnetic moment. The substitution of some of the Sm sites by Nd adds Nd 4f multiplet thereby enhancing crystal field split 4f states and overall magnetic moment. The substitution of Co (2c) by Fe is preferred over Co (3g) but the compound becomes chemically unstable. The criticality issues could be addressed by substituting abundant Ce. This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  12. Magnetic fields in the early Universe

    NASA Astrophysics Data System (ADS)

    Grasso, D.; Rubinstein, H. R.

    2001-07-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing the reader with a short overview of the current state of the art of observations of cosmic magnetic fields. We then illustrate the arguments in favor of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle-physics-inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise anyhow. Among these effects, we discuss the consequences of strong magnetic fields on the big-bang nucleosynthesis, on the masses and couplings of the matter constituents, on the electroweak phase transition, and on the baryon and lepton number violating sphaleron processes. Several intriguing common aspects, and possible interplay, of magnetogenesis and baryogenesis are also discussed.

  13. Electron theory of perpendicular magnetic anisotropy of Co-ferrite thin films

    SciTech Connect

    Inoue, Jun-ichiro; Yanagihara, Hideto; Kita, Eiji; Niizeki, Tomohiko; AIMR, Tohoku University, Sendai 980-8577 ; Itoh, Hiroyoshi

    2014-02-15

    We develop an electron theory for the t{sub 2g} electrons of Co{sup 2+} ions to clarify the perpendicular magnetic anisotropy (PMA) mechanism of Co-ferrite thin films by considering the spin-orbit interaction (SOI) and crystal-field (CF) potentials induced by the local symmetry around the Co ions and the global tetragonal symmetry of the film. Uniaxial and in-plane MA constants K{sub u} and K{sub 1} at 0 K, respectively, are calculated for various values of SOI and CF. We show that reasonable parameter values explain the observed PMA and that the orbital moment for the in-plane magnetization reduces to nearly half of that of the out-of-plane magnetization.

  14. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V.; Samant, Mahesh G.; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible.

  15. Polar magnetic field reversal.

    NASA Astrophysics Data System (ADS)

    Benevolenskaya, E. E.

    2006-08-01

    The polar magnetic fields on the Sun have been an attractive subject for solar researches since Babcocks measured them in solar cycle 19 (Babcock and Babcock, 1955). One of the remarkable features of the polar magnetic fields is their reversal during the maxima of 11-year sunspot cycles (Babcock and Livingston, 1958; Babcock, 1959). I have present results of the investigations of the polar magnetic field using MDI data. It is found, that the polar magnetic field reversal is detected with SOHO/MDI data for polar region within 78deg - 88deg. The North Pole has changed polarity in CR1975 (April 2001). The South reversed later in CR1980 (September 2001). The total unsigned magnetic flux does not show the dramatic decreasing during the polar reversals due to omnipresent bi-polar small-scale magnetic elements (Severnyi 1965, Lin et al. 1994, Benevolenskaya 2004). The observational and theoretical aspects of the polar magnetic field reversals are discussed. References Babcock, H. W., and Babcock, H. D. 1955, ApJ, 121, 349 Babcock, H. W., Livingston W. C., 1958, Science, 127, 1058 Babcock, H. D., 1959, ApJ, 130, 364 Benevolenskaya, E. E. 2004, Astron. Astrophys., 428, L5 Lin, H., Varsik, J., Zirin, H., 1994, Solar Phys., 155, 243 Severnyi A. B., 1965, Soviet Astron. Letters, 9, 171

  16. Temperature dependence of magnetization and anisotropy in uniaxial NiFe₂O₄ nanomagnets: Deviation from the Callen-Callen power law

    SciTech Connect

    Chatterjee, Biplab K.; Ghosh, C. K.; Chattopadhyay, K. K.

    2014-10-21

    The thermal variation of magnetic anisotropy (K) and saturation magnetization (M{sub S}) for uniaxial nickel ferrite (NiFe₂O₄) nanomagnets are investigated. Major magnetic hysteresis loops are measured for the sample at temperatures over the range 5–280 K using a vibrating sample magnetometer. The high-field regimes of the hysteresis loops are modeled using the law of approach to saturation, based on the assumption that at sufficiently high field only direct rotation of spin-moment take place, with an additional forced magnetization term that is linear with applied field. The uniaxial anisotropy constant K is calculated from the fitting of the data to the theoretical equation. As temperature increases from 5 K to 280 K, a 49% reduction of K, accompanied by an 85% diminution of M{sub S} is observed. Remarkably, K is linearly proportional to M{sub S}₂.₆ in the whole temperature range violating the existing theoretical model by Callen and Callen. The unusual power-law behavior for the NiFe₂O₄ uniaxial nanomagnets is ascribed to the non-negligible contributions from inter-sublattice pair interactions, Neel surface anisotropy, and higher order anisotropies. A complete realization of the unusual anisotropy-magnetization scaling behavior for nanoscale two-sublattice magnetic materials require a major modification of the existing theory by considering the exact mechanism of each contributions to the effective anisotropy.

  17. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  18. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi

    The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.

  19. Giant Magnetic Anisotropy of Co, Ru, and Os Adatoms on MgO (001) Surface

    NASA Astrophysics Data System (ADS)

    Ou, Xuedong; Wang, Hongbo; Fan, Fengren; Li, Zhengwei; Wu, Hua

    2015-12-01

    Large magnetic anisotropy energy (MAE) is desirable and critical for nanoscale magnetic devices. Here, using ligand-field level diagrams and density functional calculations, we well explain the very recent discovery [I. G. Rau et al., Science 344, 988 (2014)] that an individual Co adatom on a MgO (001) surface has a large MAE of more than 60 meV. More importantly, we predict that a giant MAE up to 110 meV could be realized for Ru adatoms on MgO (001), and even more for the Os adatoms (208 meV). This is a joint effect of the special ligand field, orbital multiplet, and significant spin-orbit interaction, in the intermediate-spin state of the Ru or Os adatoms on top of the surface oxygens. The giant MAE could provide a route to atomic scale memory.

  20. Giant Magnetic Anisotropy of Co, Ru, and Os Adatoms on MgO (001) Surface.

    PubMed

    Ou, Xuedong; Wang, Hongbo; Fan, Fengren; Li, Zhengwei; Wu, Hua

    2015-12-18

    Large magnetic anisotropy energy (MAE) is desirable and critical for nanoscale magnetic devices. Here, using ligand-field level diagrams and density functional calculations, we well explain the very recent discovery [I.?G. Rau etal., Science 344, 988 (2014)] that an individual Co adatom on a MgO (001) surface has a large MAE of more than 60meV. More importantly, we predict that a giant MAE up to 110meV could be realized for Ru adatoms on MgO (001), and even more for the Os adatoms (208meV). This is a joint effect of the special ligand field, orbital multiplet, and significant spin-orbit interaction, in the intermediate-spin state of the Ru or Os adatoms on top of the surface oxygens. The giant MAE could provide a route to atomic scale memory. PMID:26722941

  1. Development of an identification method of pressure anisotropy based on equilibrium analysis and magnetics

    SciTech Connect

    Asahi, Y.; Suzuki, Y.; Watanabe, K. Y.; Cooper, W. A.

    2013-02-15

    We evaluate the fluxes measured by the magnetic flux loops installed in LHD by using a three dimensional MHD equilibrium analysis code, ANIMEC, which enable us to directly determine the calibration function between the anisotropic pressure and the measured fluxes for the non-axisymmetric plasmas for the first time. The result indicates that the diamagnetic flux represents a nearly single-valued function of the beta perpendicular with respect to the field, and the saddle loop flux represents a nearly single-valued function of an equally weighted average of the beta values parallel and perpendicular to the field, regardless of the pressure anisotropy or the amount of energetic trapped particles. The values of the beta perpendicular to the field and the equal weighting averaged beta estimated by the single-valued functions (calibration functions) are investigated in order to clarify the magnitude of deviation from those original values, and the range of anisotropy where the beta value evaluated by the magnetic flux measurement is calculated within a 10% error.

  2. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  3. Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates

    NASA Astrophysics Data System (ADS)

    Qiao, Xinyu; Wang, Baomin; Tang, Zhenhua; Shen, Yuan; Yang, Huali; Wang, Junling; Zhan, Qingfeng; Mao, Sining; Xu, Xiaohong; Li, Run-Wei

    2016-05-01

    We have investigated the magnetic properties of amorphous Co40Fe40B20 (CoFeB) thin films grown on flexible polyimide (PI) substrates, which were fixed on convex molds with different curvatures during the magnetron sputtering deposition. When the flexible substrates were changed from convex to flat state after fabrication, a uniaxial magnetic anisotropy was induced in the CoFeB film due to magnetostrictive effect. Furthermore, the anisotropy also depends on the thicknesses of the film and substrate. Our results demonstrate a convenient method to tune the anisotropy of magnetic thin films grown on flexible substrates.

  4. Dzyaloshinskii-Moriya anisotropy in nanomagnets with in-plane magnetization

    NASA Astrophysics Data System (ADS)

    Cubukcu, M.; Sampaio, J.; Bouzehouane, K.; Apalkov, D.; Khvalkovskiy, A. V.; Cros, V.; Reyren, N.

    2016-01-01

    We report on a source of in-plane anisotropy in nanomagnets due to the presence of Dzyaloshinskii-Moriya interaction (DMI). This anisotropy depends on the shape of the magnet, and is orthogonal to the demagnetization shape anisotropy. This effect originates from the DMI energy reduction due to an out-of-plane tilt of the spins at edges oriented perpendicular to the magnetization. Our numerical and analytical investigations demonstrate that this energy reduction can compensate the demagnetization shape anisotropy energy in magnets of elongated shape, provided that their volumes are small enough and thus that their magnetization is quasiuniform. Our model agrees quantitatively with magnetic force microscopy observations on preliminary sub-100-nm structures.

  5. Voltage-controlled magnetic anisotropy in Fe|MgO tunnel junctions studied by x-ray absorption spectroscopy

    SciTech Connect

    Miwa, Shinji Matsuda, Kensho; Tanaka, Kazuhito; Goto, Minori; Suzuki, Yoshishige; Kotani, Yoshinori; Nakamura, Tetsuya

    2015-10-19

    In this study, voltage-controlled magnetic anisotropy (VCMA) in Fe|MgO tunnel junctions was investigated via the magneto-optical Kerr effect, soft x-ray absorption spectroscopy, and magnetic circular dichroism spectroscopy. The Fe|MgO tunnel junctions showed enhanced perpendicular magnetic anisotropy under external negative voltage, which induced charge depletion at the Fe|MgO interface. Despite the application of voltages of opposite polarity, no trace of chemical reaction such as a redox reaction attributed to O{sup 2−} migration was detected in the x-ray absorption spectra of the Fe. The VCMA reported in the Fe|MgO-based magnetic tunnel junctions must therefore originate from phenomena associated with the purely electric effect, that is, surface electron doping and/or redistribution induced by an external electric field.

  6. Pressure-Induced Enhanced Magnetic Anisotropy in Mn(N(CN)2)2

    SciTech Connect

    Quintero, P. A.; Rajan, D.; Peprah, M. K.; Brinzari, T. V.; Fishman, Randy Scott; Talham, Daniel R.; Meisel, Mark W.

    2015-01-01

    Using DC and AC magnetometry, the pressure dependence of the magnetization of the threedimensional antiferromagnetic coordination polymer Mn(N(CN)2)2 was studied up to 12 kbar and down to 8 K. The magnetic transition temperature, Tc, increases dramatically with applied pressure (P), where a change from Tc(P = ambient) = 16:0 K to Tc(P = 12:1 kbar) = 23:5 K was observed. In addition, a marked difference in the magnetic behavior is observed above and below 7.1 kbar. Specifically, for P < 7:1 kbar, the differences between the field-cooled and zero-field-cooled (fc-zfc) magnetizations, the coercive field, and the remanent magnetization decrease with increasing pressure. However, for P > 7:1 kbar, the behavior is inverted. Additionally, for P > 8:6 kbar, minor hysteresis loops are observed. All of these effects are evidence of the increase of the superexchange interaction and the appearance of an enhanced exchange anisotropy with applied pressure.

  7. Large magnetic anisotropy enhancement in size controlled Ni nanowires electrodeposited into nanoporous alumina templates.

    PubMed

    Medina, J De La Torre; Hamoir, G; Velázquez-Galván, Y; Pouget, S; Okuno, H; Vila, L; Encinas, A; Piraux, L

    2016-04-01

    A large enhancement of the magnetic anisotropy of Ni nanowires (NWs) embedded in anodic aluminium oxide porous membranes is obtained as a result of an induced magnetoelastic (ME) anisotropy contribution. This unusual large anisotropy enhancement depends on the diameter of the NWs and exceeds the magnetostatic (MS) contribution. As a consequence, it leads to effective magnetic anisotropy energies as large as [Formula: see text] erg cm(-3), which are of the same order of magnitude and comparable to the MS energies of harder magnetic materials like Co NWs. Specifically, from ferromagnetic resonance experiments, the magnetic anisotropy of the NWs has been observed to increase as its diameter is decreased, leading to values that are about four times larger than the corresponding value when only the MS anisotropy is present. Our results are consistent with the recently proposed growth mechanism of Ni NWs that proceeds via a poly-crystalline stage at the bottom followed by a single-crystalline stage with texture [110] parallel to the axis of the NWs. A strong correlation between reducing the diameter of the NWs with the decrease of the length of the poly-crystalline segment and the enhancement of the effective magnetic anisotropy has been shown. Magnetization curves obtained from alternating gradient magnetometry experiments show that the average ME anisotropy results from the competition between the magnetic anisotropies of both crystalline segments of the NWs. Understanding the influence of size and confinement effects on the magnetic properties of nanocomposites is of prime interest for the development of novel and agile devices. PMID:26906237

  8. Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix.

    PubMed

    Bertini, I; Janik, M B; Lee, Y M; Luchinat, C; Rosato, A

    2001-05-01

    The full series of lanthanide ions (except the radioactive promethium and the S-state gadolinium) has been incorporated into the C-terminal calcium binding site of the dicalcium protein calbindin D(9k). A fairly constant coordination environment is maintained throughout the series. At variance with several lanthanide complexes with small chelating ligands investigated in the past, the large protein moiety provides a large number of NMR signals whose hyperfine shifts can be exclusively ascribed to pseudocontact shifts (PCS). The chemical shifts of 1H and 15N backbone and side chain amide NH groups were accurately measured through HSQC experiments. 1097 PCS were estimated from these by subtracting the diamagnetic contributions measured on HSQC spectra of either the 4f(0) lanthanum(III) or the 4f(14) lutetium(III) derivatives and used to define a quality factor for the structure. The differences in diamagnetic chemical shifts between the two diamagnetic blanks were relatively small, although some were not negligible especially for the nuclei closest to the metal center. These differences were used as a tolerance for the PCS. The magnetic susceptibility tensor anisotropies for each paramagnetic lanthanide ion were obtained as the result of the solution structure determination performed by using the NOEs of the cerium(III) derivative and the PCS of all lanthanides simultaneously. This set of reliable magnetic data permits an experimental assessment of Bleaney's theory relative to the magnetic properties for an extended series of lanthanide complexes in solution. All of the obtained tensors show some rhombicity, as could be expected from the lack of symmetry of the protein environment. The directions of the largest magnetic susceptibility component for Ce, Pr, Nd, Sm, Tb, Dy, and Ho and of the smallest magnetic susceptibility component for Eu, Er, Tm, and Yb were found to be all within 15 degrees from their average (within 20 degrees for Sm), confirming the essential similarity of the coordination environment for all lanthanides. Bleaney's theory is in excellent qualitative agreement with the observed pattern of axial anisotropies. Its quantitative agreement is substantially better than that suggested by previous analyses performed on more limited sets of PCS data for small lanthanide complexes, the so-called crystal field parameter varying only within +/-30% from one lanthanide to another. These variations are even smaller (+/-15%) if a reasonable T(-3) correction is taken into consideration. A knowledge of magnetic susceptibility anisotropy properties of lanthanides is essential in determining the self-orienting properties of lanthanide complexes in solution when immersed in magnetic fields. PMID:11457182

  9. Effect of deposition technique of Ni on the perpendicular magnetic anisotropy in Co/Ni multilayers

    NASA Astrophysics Data System (ADS)

    Akbulut, S.; Akbulut, A.; Özdemir, M.; Yildiz, F.

    2015-09-01

    The perpendicular magnetic anisotropy (PMA) of Si/Pt 3.5/(Co 0.3/Ni 0.6)n /Co 0.3/ Pt 3 (all thicknesses are nm) multilayers were investigated for two different sample sets by using ferromagnetic resonance (FMR) and magnetooptic Kerr effect (MOKE) techniques. In the first sample set all layers (buffer, cap, Co and Ni) were grown by magnetron sputtering technique while in the second sample set Ni sub-layers were grown by molecular beam epitaxy (MBE) at high vacuum. Apart from deposition technique of Ni, all other parameters like thicknesses and growth rates of each layers are same for both sample sets. Multilayers in these two sample sets display PMA in the as grown state until a certain value of bilayer repetition (n) and the strength of PMA decreases with increasing n. Magnetic easy axis's of the multilayered samples switched from film normal to the film plane when n is 9 and 5 for the first and second sample sets, respectively. The reason for that, PMA was decreased due to increasing roughness with increasing n. This was confirmed by X Ray Reflectivity (XRR) measurements for both sample sets. Moreover, in the first sample set coercive field values are smaller than the second sample set, which means magnetic anisotropy is lower than the latter one. This stronger PMA is arising due to existence of stronger Pt (111) and Co/Ni (111) textures in the second sample set.

  10. Magnetic anisotropy of C and N doped bulk FeCo alloy: A first principles study

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Hong, Jisang

    2015-08-01

    Using the full potential linearized augmented plane wave (FLAPW) method, we investigated the magnetocrystalline anisotropy of carbon and nitrogen doped FeCo in the interstitial site. Here, we have considered 3.125% impurity doping concentration. The impurity doping induces a tetragonal distortion in the FeCo lattice, and both carbon and nitrogen impurities play a similar role for lattice distortion. The local magnetic moment of Fe atom around the impurity site was greatly reduced, whereas the Co had rather robust magnetic moment. We found a uniaxial magnetocrystalline anisotropy constant of 0.65 and 0.58 MJ/m3 for C and N doped bulk FeCo, and this was mainly due to the tetragonal distortion induced by C and N impurity, not from the hybridization effect with Fe or Co. Additionally, the estimated maximum energy product and coercive field were 81.4, 72.5 MGOe and 600, 530 kA m-1 for C and N doped bulk FeCo, respectively. These results may imply that the interstitial C or N doped FeCo can be used for potential rare earth free permanent magnet although those values are likely to be suppressed in real samples due to micromagnetic factors such as structural defects, geometrical effect, or grain boundary effect.

  11. Diffusion of charged particles in a random magnetic field

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1972-01-01

    When charged particles move in a random magnetic field superimposed upon a relatively large constant field, their pitch angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.

  12. Magnetic Field Measurement System

    SciTech Connect

    Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter

    2007-01-19

    A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.

  13. Magnetic fields at neptune.

    PubMed

    Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1989-12-15

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator. PMID:17756002

  14. Magnetic tunnel junctions using Co/Ni multilayer electrodes with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Lytvynenko, Ia.; Deranlot, C.; Andrieu, S.; Hauet, T.

    2015-02-01

    Magnetic and magneto-transport properties of amorphous Al2O3-based magnetic tunnel junctions (MTJ) having two Co/Ni multilayer electrodes exhibiting perpendicular magnetic anisotropy (PMA) are presented. An additional Co/Pt multilayer is required to maintain PMA in the top Co/Ni electrode. Slight stacking variations lead to dramatic magnetic changes due to dipolar interactions between the top and bottom electrodes. Tunnel magneto-resistance (TMR) of up to 8% at 300 K is measured for the MTJ with two PMA electrodes. The TMR value increases when the top PMA electrode is replaced by an in-plane magnetized Co layer. These observations can be attributed to significant intermixing in the top Co/Ni electrode.

  15. Strain-induced reversible modulation of the magnetic anisotropy in perpendicularly magnetized metals deposited on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Ota, Shinya; Hibino, Yuki; Bang, Do; Awano, Hiroyuki; Kozeki, Takahiro; Akamine, Hirokazu; Fujii, Tatsuya; Namazu, Takahiro; Takenobu, Taishi; Koyama, Tomohiro; Chiba, Daichi

    2016-04-01

    In this study, the strain-induced change in the magnetic anisotropy of perpendicularly magnetized thin metals (TbFeCo and Pt/Co/Pt) deposited on a polyethylene naphthalate flexible substrate was investigated. The in-plane uniaxial tensile strain was reversibly applied up to 2%. The magnetic anisotropy was reversibly changed in both samples with applied stress. In the TbFeCo film, a marked change in magnetic anisotropy energy of 1.2 × 105 J/m3 was observed. In the Pt/Co/Pt film, where the thickness of Co was 2-4 monolayers, the stress-induced changes in interface and volume contributions to magnetic anisotropy were individually determined.

  16. Magnetic anisotropy of SrO(La_1-xSr_xMnO_3)_2

    NASA Astrophysics Data System (ADS)

    Osgood, R. M., III; Mitchell, J. F.; Miller, D. J.; Argyriou, D. N.; Bader, S. D.

    1998-03-01

    Single crystal, two-layered Ruddlesden-Popper phase SrO(La_1-xSr_xMnO_3)2 exhibits a magnetic anisotropy which is strongly composition-dependent and a high-temperature (T) magnetization (M) plateau due to extrinsic intergrowth defects between the Curie temperature (T_C) and T ~ 300 K. The T-dependence of the magnetic anisotropy of nominal x=0.3, 0.32, and 0.4 samples have been measured with SQUID magnetometry. Measurements indicate an easy axis close to the c-axis for x = 0.3, and in the a-b plane for x > 0.32, in agreement with Kimura et al.^2 For x=0.32, the difference between the saturation fields (H_s) in the a-b plane and along the c-axis is ~ 2000 Oe, while for x=0.4, the difference in Hs > 25000 Oe, at 60 K. M is allel a-b for T>TC due to the shape anisotropy of the intergrowths. The magnetic anisotropy of these materials (within the a-b plane and along the c-axis) will be discussed in conjunction with their zero-remanence M vs. H curves, and with neutron scattering results. ^* Work supported by US DOE BES-MS contract # W-31-109-ENG-38. ^1 M. Lujan Neutron Center, Los Alamos National Laboratory ^2 T. Kimura et al., Science 274 1698 (1996).

  17. Optical and electronic properties of anisotropic parabolic quantum disks in the presence of tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Khordad, R.; Tafaroji, S.; Katebi, R.; Ghanbari, A.

    2012-02-01

    In the present work, the electronic and optical properties of anisotropic parabolic quantum disks are studied in the presence of an applied magnetic field. For this goal, we first obtain the electron energy levels of an anisotropic parabolic quantum disk under axial, tilted, and in-plane magnetic fields. According to the results obtained for the energy levels reveal that there is no degeneracy at zero magnetic field due to symmetry breaking. With increasing the anisotropy, the energy level spacing increases. At a constant anisotropy, the energy levels splitting decreases with increasing tilt angle of magnetic field. The total refractive index changes decrease when the tilt angle of magnetic field and the anisotropy increase. Also, the total absorption coefficients increase as the tilt angle of magnetic field and anisotropy increase.

  18. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    SciTech Connect

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.

    2007-07-01

    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  19. Influence of intermittency on the anisotropy of magnetic structure functions of solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Pei, Zhongtian; He, Jiansen; Wang, Xin; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua; Yan, Limei

    2016-02-01

    Intermittency appears to be connected with the spectral anisotropy of solar wind turbulence. We use the Local Intermittency Measure to identify and remove intermittency from the magnetic field data measured by the Ulysses spacecraft in fast solar wind. Structure functions are calculated based on the time sequences as obtained before and after removing intermittency and arranged by time scale (τ) and ΘRB (the angle between local mean magnetic field B0 and radial direction R). Thus, the scaling exponent (ξ(p, ΘRB)) of every structure function of order (p) is obtained for different angles. Before removing intermittency, ξ(p, ΘRB) shows a distinctive dependence on ΘRB: from monofractal scaling law at ΘRB ~0° to multifractal scaling law at ΘRB ~90°. In contrast after eliminating the intermittency, ξ(p, ΘRB) is found to be more monofractal for all ΘRB. The extended structure-function model is applied to ξ(p, ΘRB), revealing differences of its fitting parameters α (a proxy of the power spectral index) and P1 (fragmentation fraction) for the cases with and without intermittency. Parameter α shows an evident angular trend falling from 1.9 to 1.6 for the case with intermittency but has a relatively flat profile around 1.8 for the case without intermittency. Parameter P1 rises from around 0.5 to above 0.8 with increasing ΘRB for the intermittency case and is located between 0.5 and 0.8 for the case lacking intermittency. Therefore, we may infer that it is the anisotropy of intermittency that causes the scaling anisotropy of energy spectra and the unequal fragmentation of energy cascading.

  20. Strain engineering of magnetic anisotropy: The epitaxial growth of cobalt-manganese-gallium Heusler alloy films on III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Carr, David Michael

    This research is the first step towards manipulating thin film magnetic anisotropy through control of uniform epitaxial strain. Pseudomorphic Co 2MnGa films with thicknesses of 300 A have been grown on several III-V semiconductors to generate coherently-strained epitaxial films. Growth of Co2MnGa films at 200°C both directly on GaAs substrates and on thermodynamically stable Sc0.3Er0.7As interlayers resulted in similar physical and magnetic properties. The epitaxial strain generated an induced perpendicular anisotropy and magnetic stripe domains. This resulted in a reduced in-plane remnant magnetization, high coercivity, and a relatively low saturation field for the out-of-plane magnetization. For higher temperature growths, the interlayer was required to minimize interfacial reactions and maintain the magnetic properties of the films. When the growth temperature on the Sc0.3Er0.7As interlayers was increased from 0 to 400°C, the subsequent films had improved L21 atomic ordering, decreased out-of-plane lattice parameters, and enhanced strain-induced perpendicular anisotropy. Dramatic variations in the magnetic anisotropy were observed for films grown on different III-V semiconductors due to controlled strain-induced perpendicular anisotropy. For Co2MnGa films grown under tension on InP, the magnetization barely saturated out-of-plane with a field of 1.75 Tesla. These films displayed clear in-plane anisotropy and low coercivity switching. For films grown under compression on GaAs, the magnetization easily saturated out-of-plane with a field of a few thousand Oe. These films displayed no in-plane anisotropy in the hysteresis loops and had large coercivities. For comparison, bulk-like unstrained Co2MnGa films were grown on relaxed ErAs interlayers on InAs. These films displayed properties intermediate between films grown on GaAs and InP. Finally, growth of films on GaP resulted in partial relaxation, thereby reducing the induced perpendicular anisotropy and verifying the need to grow uniformly strained films. A magnetic coherent rotation model was derived that provided a qualitative description for the anisotropy of films grown on InP and relaxed ErAs interlayers. However, it did not capture the behavior of films grown on GaAs due to the magnetic stripe domains. This research has successfully demonstrated the ability to manipulate the thin film magnetic anisotropy of epitaxial Co2MnGa films through uniform epitaxial strain.

  1. Magnetization Reversal and Magnetic Anisotropy in Ordered CoNiP Nanowire Arrays: Effects of Wire Diameter

    PubMed Central

    Van Thiem, Luu; Tu, Le Tuan; Phan, Manh-Huong

    2015-01-01

    Ordered CoNiP nanowires with the same length of 4 µm and varying diameters (d = 100 nm–600 nm) were fabricated by electrodeposition of CoNiP onto polycarbonate templates. X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy confirmed the quality of the fabricated nanowires. Magnetic measurements and theoretical analysis revealed that the magnetization reversal and magnetic anisotropy were significantly influenced by varying of the diameters of the nanowires. There existed a critical wire diameter (dc ≈ 276 nm), below which the magnetization reversal occurred via a coherent rotation mode, and above which the magnetization reversal occurred via a curling rotation mode. The easy axis of the magnetization tended to change in direction from parallel to perpendicular with respect to the wire axis as the wire diameter exceeded dc ≈ 276 nm. With increasing wire diameter, the coercive field (Hc) and the remanent to saturation magnetization ratio (Mr/Ms) were also found to rapidly decrease in the range d = 100–400 nm and gradually decrease for d > 400 nm. PMID:25760054

  2. Mercury's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.

  3. Perpendicular magnetic anisotropy of amorphous [CoSiB/Pt]{sub N} thin films

    SciTech Connect

    Kim, T. W.; Choi, Y. H.; Lee, K. J.; Jung, M. H.; Yoon, J. B.; Cho, J. H.; You, C.-Y.

    2015-05-07

    Materials with perpendicular magnetic anisotropy (PMA) have been intensively studied for high-density nonvolatile memory such as spin-transfer-torque magnetic random access memory with low switching current density and high thermal stability. Compared with crystalline PMA multilayers, considerable works have been done on amorphous PMA multilayers because the amorphous materials are expected to have lower pinning site density as well as smaller domain wall width. This study is an overview of the PMA properties of amorphous [CoSiB/Pt]{sub N} multilayers with varying N, where the energy contribution is changed from domain wall energy to magnetostatic energy around N = 6. By measuring the field-induced domain wall motion, we obtain the creep exponent of μ = 1/4. These results in the amorphous PMA multilayers of [CoSiB/Pt]{sub N} demonstrate possible potential as a free layer for PMA-based memory devices.

  4. Enhancement of magnetic anisotropy in mechanically attrited Cr 2O 3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hajra, Partha; Brahma, Pradip; Dutta, Saurav; Banerjee, Sourish; Chakravorty, Dipankar

    2012-04-01

    Cr2O3 nanoparticles of sizes from 24 to 12 nm were synthesized by mechanical grinding. Magnetic hysteresis loops were observed in the temperature range 5-300 K. Zero-field magnetization measurements showed two peaks, at low temperature in the range 36-52 K and at high temperature in the range 255-290 K. They were found to shift to higher temperatures as the particle size was reduced. This was ascribed due to the enhancement of the effective anisotropy constant with a decrease in particle size. The exchange bias was found to increase as the particle size became smaller. This is believed to arise due to an increase in uncompensated spins as a result of large surface area created.

  5. Magnetic anisotropy of rare-earth magnets calculated by SIC and OEP

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    We have pointed out in our previous study that the chemical bonding between N and Sm plays an important role in the magnetic anisotropy change of Sm2Fe17 from in-plane to uniaxial ones caused by the introducing of N. This effect of N insertion was discussed in terms of change in the electronic structure calculated in the framework of LDA+SIC. The main issue here is whether the 4f states are dealt with properly in SIC. In the present study, we examine the applicability of SIC for the evaluation of the magnetic anisotropy of rare-earth (RE) magnets by comparing the results with various methods, in particular, the optimized effective potential (OEP) method. In this study, OEP is applied only on the RE sites. Admittedly, this is a drawback from the viewpoint of the consistent treatment of uncertainly inherent in the so-called KLI (Krieger-Li-Iafrate) constants. Putting this aside for the moment, we have calculated the electronic structure of RE magnets R2Fe17Nx and RCo5 (R=light RE), by OEP with exact-exchange (EXX) combined with Colle-Salvetti correlation. Our preliminary results have shown considerable differences between the SIC and OEP calculations. We will discuss the meaning of this discrepancy. This work was supported by the Elements Strategy Initiative Center for Magnetic Materials under the outsourcing project of MEXT and by a Grant-in-Aid for Scientific Research (No. 26400330) from MEXT.

  6. Eruptive solar magnetic fields

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1981-01-01

    The quasi-steady evolution of solar magnetic fields in response to gradual photospheric changes is considered, with particular attention given to the threshold of a sudden eruption in the solar atmosphere. The formal model of an evolving, force-free field dependent on two Cartesian coordinates is extended to a field which is not force free but in static equilibrium with plasma pressure and gravity. The basic physics is illustrated through the evolution of a loop-shaped electric current sheet enclosing a potential bipolar field with footpoints rooted in the photosphere. A free-boundary problem is posed and then solved for the equilibrium configuration of the current sheet in a hydrostatically supported isothermal atmosphere. As the footpoints move apart to spread a constant photospheric magnetic flux over a larger region, the equilibria available extend the field to increasing heights.

  7. Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface

    PubMed Central

    Oyarzún, Simón; Tamion, Alexandre; Tournus, Florent; Dupuis, Véronique; Hillenkamp, Matthias

    2015-01-01

    Strong size-dependent variations of the magnetic anisotropy of embedded cobalt clusters are evidenced quantitatively by combining magnetic experiments and advanced data treatment. The obtained values are discussed in the frame of two theoretical models that demonstrate the decisive role of the shape in larger nanoparticles and the predominant role of the surface anisotropy in clusters below 3 nm diameter. PMID:26439626

  8. Magnetic anisotropy energy and effective exchange interactions in Co intercalated graphene on Ir(1 1 1).

    PubMed

    Shick, A B; Hong, S C; Maca, F; Lichtenstein, A I

    2014-11-26

    The electronic structure, magnetic moments, effective exchange interaction parameter and the magnetic anisotropy energy of [monolayer Co]/Ir(1 1 1) and Co intercalated graphene on Ir(1 1 1) are studied making use of the first-principles density functional theory calculations. A large positive magnetic anisotropy of 1.24 meV/Co is found for [monolayer Co]/Ir(1 1 1), and a high Curie temperature of 1190 K is estimated. These findings show the Co/Ir(1 1 1) system is a promising candidate for perpendicular ultra-high density magnetic recording applications. The magnetic moments, exchange interactions and the magnetic anisotropy are strongly affected by graphene. Reduction of the magnetic anisotropy and the Curie temperature are found for graphene/[monolayer Co]/Ir(1 1 1). It is shown that for graphene placed in the hollow-hexagonal positions over the monolayer Co, the magnetic anisotropy remains positive, while for the placements with one of the C atoms on the top of Co it becomes negative. These findings may be important for assessing the use of graphene for magnetic recording and magnetoelectronic applications. PMID:25351898

  9. Impact of reduced symmetry on magnetic anisotropy of a single iron phthalocyanine molecule on a Cu substrate

    NASA Astrophysics Data System (ADS)

    Tsukahara, Noriyuki; Kawai, Maki; Takagi, Noriaki

    2016-01-01

    We study the magnetic anisotropy of a single iron phthalocyanine (FePc) molecule on a Cu(110) (2 × 1)-O by using inelastic electron tunneling spectroscopy (IETS) with low-temperature scanning tunneling microscopy. Two inelastic excitations derived from the splitting of the molecular triplet spin state appear as two pairs of steps symmetrically with respect to zero sample voltage. We measured IETS spectra with external magnetic fields perpendicular and parallel to the molecular plane, and we analyzed the spectral evolution with the effective spin Hamiltonian approach. We determined all parameters related with magnetic anisotropy at a single-molecule level, both the easy- and hard-magnetization directions, zero-field splitting constant, D = - 4.0 meV and E = 1.1 meV, the Lande g-tensor (" separators=" g xx , g yy , g zz ) = ( 1 . 82 , 2 . 02 , 2 . 34 ) , and the constant of spin-orbit coupling λ = - 19.1 meV. We stress that the symmetry breaking caused by the adsorption of FePc on the oxidized Cu(110) significantly impacts the magnetic anisotropy.

  10. Impact of reduced symmetry on magnetic anisotropy of a single iron phthalocyanine molecule on a Cu substrate.

    PubMed

    Tsukahara, Noriyuki; Kawai, Maki; Takagi, Noriaki

    2016-01-28

    We study the magnetic anisotropy of a single iron phthalocyanine (FePc) molecule on a Cu(110) (2 × 1)-O by using inelastic electron tunneling spectroscopy (IETS) with low-temperature scanning tunneling microscopy. Two inelastic excitations derived from the splitting of the molecular triplet spin state appear as two pairs of steps symmetrically with respect to zero sample voltage. We measured IETS spectra with external magnetic fields perpendicular and parallel to the molecular plane, and we analyzed the spectral evolution with the effective spin Hamiltonian approach. We determined all parameters related with magnetic anisotropy at a single-molecule level, both the easy- and hard-magnetization directions, zero-field splitting constant, D = - 4.0 meV and E = 1.1 meV, the Lande g-tensor gxx, gyy, gzz=(1.82, 2.02, 2.34), and the constant of spin-orbit coupling λ = - 19.1 meV. We stress that the symmetry breaking caused by the adsorption of FePc on the oxidized Cu(110) significantly impacts the magnetic anisotropy. PMID:26827222

  11. Supercritical dynamics of domain walls in magnetic films with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Korzunin, L. G.; Filippov, B. N.; Zverev, V. V.

    2015-08-01

    Based on the numerical solution of Landau-Lifshitz equations, the nonlinear dynamic behavior of vortex-like domain walls in films with in-plane anisotropy has been investigated in external magnetic fields H significantly exceeding critical fields H c , above which the stationary motion of domain walls is replaced by nonstationary (periodic or aperiodic) motion. A method has been proposed for the detection of complex aperiodic dynamics of structural rearrangements of domain walls, which is based on the construction of diagrams of the dependences of the tilt angle of the magnetization M with respect to the plane of the domain wall in some of its points on the corresponding angle in other points. It has been found that these diagrams significantly change with variations in the external magnetic field applied along the easy axis of magnetization in the range H > H c . It has been shown that the pattern of these changes is similar to the scenario of the Feigenbaum transition to dynamic chaos.

  12. Pressure-induced enhancement of the magnetic anisotropy in Mn(N(CN)2)2

    NASA Astrophysics Data System (ADS)

    Quintero, P. A.; Rajan, D.; Peprah, M. K.; Brinzari, T. V.; Fishman, R. S.; Talham, D. R.; Meisel, M. W.

    2015-01-01

    Using dc and ac magnetometry, the pressure dependence of the magnetization of the three-dimensional antiferromagnetic coordination polymer Mn(N(CN)2)2 was studied up to 12 kbar and down to 8 K. The antiferromagnetic transition temperature, TN, increases dramatically with applied pressure (P ) , where a change from TN(P =ambient) =16.0 K to TN(P =12.1 kbar) =23.5 K was observed. In addition, a marked difference in the magnetic behavior is observed above and below 7.1 kbar. Specifically, for P <7.1 kbar, the differences between the field-cooled and zero-field-cooled magnetizations, the coercive field, and the remanent magnetization decrease with increasing pressure. However, for P >7.1 kbar, the behavior is inverted. Additionally, for P >8.6 kbar, minor hysteresis loops are observed. All of these effects are evidence of the increase of the superexchange interaction and the appearance of an enhanced exchange anisotropy with applied pressure.

  13. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Le, Ari; Daughton, William

    2013-06-01

    From spacecraft data, it is evident that electron pressure anisotropy develops in collisionless plasmas. This is in contrast to the results of theoretical investigations, which suggest this anisotropy should be limited. Common for such theoretical studies is that the effects of electron trapping are not included; simply speaking, electron trapping is a non-linear effect and is, therefore, eliminated when utilizing the standard methods for linearizing the underlying kinetic equations. Here, we review our recent work on the anisotropy that develops when retaining the effects of electron trapping. A general analytic model is derived for the electron guiding center distribution f¯(v∥,v⊥) of an expanding flux tube. The model is consistent with anisotropic distributions observed by spacecraft, and is applied as a fluid closure yielding anisotropic equations of state for the parallel and perpendicular components (relative to the local magnetic field direction) of the electron pressure. In the context of reconnection, the new closure accounts for the strong pressure anisotropy that develops in the reconnection regions. It is shown that for generic reconnection in a collisionless plasma nearly all thermal electrons are trapped, and dominate the properties of the electron fluid. A new numerical code is developed implementing the anisotropic closure within the standard two-fluid framework. The code accurately reproduces the detailed structure of the reconnection region observed in fully kinetic simulations. These results emphasize the important role of pressure anisotropy for the reconnection process. In particular, for reconnection geometries characterized by small values of the normalized upstream electron pressure, βe∞, the pressure anisotropy becomes large with p∥≫p⊥ and strong parallel electric fields develop in conjunction with this anisotropy. The parallel electric fields can be sustained over large spatial scales and, therefore, become important for electron acceleration.

  14. Magnetic and elastic wave anisotropy in partially molten rocks: insight from experimental melting of synthetic quartz-mica schist (Invited)

    NASA Astrophysics Data System (ADS)

    Almqvist, B.; Misra, S.; Biedermann, A. R.; Mainprice, D.

    2013-12-01

    We studied the magnetic and elastic wave speed anisotropy of a synthetically prepared quartz-mica schist, prior to, during and after experimental melting. The synthetic rock was manufactured from a mixture of powders with equal volumes of quartz and muscovite. The powders were initially compacted with 200 MPa uniaxial stress at room temperature and sealed in a stainless steel canister. Subsequently the sealed canister was isostatically pressed at 180 MPa and 580 °C for 24 hours. This produced a solid medium with ~25 % porosity. Mica developed a preferred grain-shape alignment due to the initial compaction with differential load, where mica flakes tend to orient perpendicular to the applied stress and hence define a synthetic foliation plane. In the last stage we used a Paterson gas-medium apparatus, to pressurize and heat the specimens up to 300 MPa and 750 °C for a six hour duration. This stage initially compacted the rock, followed by generation of melt, and finally crystallization of new minerals from the melt. Elastic wave speed measurements were performed in situ at pressure and temperature, with a transducer assembly mounted next to the sample. Magnetic measurements were performed before and after the partial melt experiments. Anisotropy was measured in low- and high-field, using a susceptibility bridge and torsion magnetometer, respectively. Additionally we performed measurements of hysteresis, isothermal remanent magnetization (IRM) and susceptibility as a function of temperature, to investigate the magnetic properties of the rock. The elastic wave speed, before the melting-stage of the experiment, exhibits a distinct anisotropy with velocities parallel to the foliation being about 15 % higher than normal to the foliation plane. Measurements of the magnetic anisotropy in the bulk sample show that anisotropy is originating from the preferred orientation of muscovite, with a prominent flattening fabric. In contrast, specimens that underwent partial melting display a weaker elastic and magnetic anisotropy, because muscovite preferentially melts due to dehydration melting at 750 °C. The decrease in anisotropy can be inferred from in situ observation of elastic wave anisotropy, but also from comparison of measurements of magnetic anisotropy prior to and subsequent to experiment. A distinct anisotropy is however identified after the experiments both in susceptibility and remanence, which appears to be controlled by the original foliation. As muscovite undergoes dehydration melting a small amount of Fe is released into the melt. Crystallization from the melt indicates that the Fe is bound in biotite and Fe-oxides. The bulk susceptibility and saturation remanence increase by more than one order of magnitude in samples after the melting experiment. The newly formed ferrimagnetic phase, identified through hysteresis, IRM and thermomagnetic measurements, have a tight grouping in the magnetite pseudo-single-domain field on a Day plot. Our experiments are pertinent to the study of partially molten rocks and provide an opportunity to help guide research in magnetic and elastic wave anisotropy of migmatite and granite. In particular the results from experiments apply to the understanding of generation and percolation of melt prior to, or coeval to, the onset of deformation.

  15. Magnetic Fields in Galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 μG) and in central starburst regions (50-100 μG). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 μG strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field α -Ω dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos around edge-on galaxies out to large distances from the plane, with X-shaped patterns. In the outflow cone above a starburst region of NGC 253, RM data indicate a helical magnetic field.

  16. High-purity cobalt thin films with perpendicular magnetic anisotropy prepared by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ootera, Yasuaki; Shimada, Takuya; Kado, Masaki; Quinsat, Michael; Morise, Hirofumi; Nakamura, Shiho; Kondo, Tsuyoshi

    2015-11-01

    A study of the chemical vapor deposition (CVD) of high-purity cobalt thin films is described. The Co layer prepared by a thermal CVD technique with a Pt/Ta underlayer and a Pt cap layer shows a saturation magnetization (Ms) of ∼1.8 T and perpendicular magnetic anisotropy (PMA) with an anisotropy energy (Ku) of ∼105 J/m3. The cobalt thickness dependence of Ku reveals that the interfacial anisotropy at the Pt/Co interface is most likely the origin of the obtained PMA.

  17. Influence of magnetic electrodes thicknesses on the transport properties of magnetic tunnel junctions with perpendicular anisotropy

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard

    2014-08-04

    The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33 nm for the bottom electrode and 0.60 nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65 nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6 nm.

  18. Determination of magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film by anisotropic magnetoresistance

    NASA Astrophysics Data System (ADS)

    Hu, Bo; He, Wei; Ye, Jun; Tang, Jin; Zhang, Yong-Sheng; Ahmad, Syed Sheraz; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2015-09-01

    It is challenging to determine domain wall pinning energy and magnetic anisotropy since both coherent rotation and domain wall displacement coexist during magnetization switching process. Here, angular dependence anisotropic magnetoresistance (AMR) measurements at different magnetic fields were employed to determine magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film. The AMR curves at magnetic fields which are high enough to ensure the coherent rotation of magnetization indicate a smooth behavior without hysteresis between clockwise (CW) and counter-clockwise (CCW) rotations. By analyzing magnetic torque, the magnetic anisotropy constants can be obtained. On the other hand, the AMR curves at low fields show abrupt transitions with hysteresis between CW and CCW rotations, suggesting the presence of multi-domain structures. The domain wall pinning energy can be obtained by analyzing different behaviors of AMR. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of magnetic anisotropy and domain wall pinning energy, which is still a critical issue for spintronics.

  19. Determination of magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film by anisotropic magnetoresistance.

    PubMed

    Hu, Bo; He, Wei; Ye, Jun; Tang, Jin; Zhang, Yong-Sheng; Ahmad, Syed Sheraz; Zhang, Xiang-Qun; Cheng, Zhao-Hua

    2015-01-01

    It is challenging to determine domain wall pinning energy and magnetic anisotropy since both coherent rotation and domain wall displacement coexist during magnetization switching process. Here, angular dependence anisotropic magnetoresistance (AMR) measurements at different magnetic fields were employed to determine magnetic anisotropy constants and domain wall pinning energy of Fe/MgO(001) ultrathin film. The AMR curves at magnetic fields which are high enough to ensure the coherent rotation of magnetization indicate a smooth behavior without hysteresis between clockwise (CW) and counter-clockwise (CCW) rotations. By analyzing magnetic torque, the magnetic anisotropy constants can be obtained. On the other hand, the AMR curves at low fields show abrupt transitions with hysteresis between CW and CCW rotations, suggesting the presence of multi-domain structures. The domain wall pinning energy can be obtained by analyzing different behaviors of AMR. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of magnetic anisotropy and domain wall pinning energy, which is still a critical issue for spintronics. PMID:26369572

  20. A distinct magnetic anisotropy enhancement in mononuclear dysprosium-sulfur complexes by controlling the Dy-ligand bond length.

    PubMed

    Liu, Shan-Shan; Lang, Ke; Zhang, Yi-Quan; Yang, Qian; Wang, Bing-Wu; Gao, Song

    2016-05-10

    In a field-induced single-ion magnet [(dtc)3Dy(phen)] (dtc(-) = diethyldithiocarbamate anion), replacing two of the S-based dtc(-) ligands with O-based dbm(-) ligands (dbm(-) = dibenzoylmethanoate anion) leads to a significant enhancement of magnetic anisotropy, yielding a rarely reported sulfur-ligated lanthanide-based single-ion magnet [(dbm)2Dy(dtc)(phen)]. Ab initio calculations reveal that the gz value of [(dbm)2Dy(dtc)(phen)] is much larger than that of [(dtc)3Dy(phen)], consistent with the experimental results. PMID:27090361

  1. Probing boundary magnetization through exchange bias in heterostructures with competing anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Binek, Christian

    2013-03-01

    Cr2O3 (chromia) is a magnetoelectric antiferromagnet with a bulk TN of 307 K. It has been utilized for electrically controlled exchange bias (EB) by taking advantage of voltage-controllable boundary magnetization (BM) occurring as a generic property in magnetoelectric single domain antiferromagnets.[2] In the perpendicular Cr2O3(0001)/CoPd EB system the EB-field shows an order parameter type T-dependence close to TN reflecting the T-dependence of the BM. At about 150 K a decrease of the EB-field sets in with decreasing temperature suggesting canting of the BM. To evidence this mechanism we use EB as a probe. Specifically, we investigate EB in Permalloy(5nm)/Cr2O3 (0001)(100nm) with Permalloy and chromia having competing anisotropies. We measure easy axis magnetic hysteresis loops via longitudinal magneto-optical Kerr effect for various temperatures after perpendicular and in-plane magnetic field-cooling. The T-dependence of the EB field supports the canting mechanism. In addition to the all thin film EB system, we explore a Permalloy(10nm)/Cr2O3(0001 single crystal) heterostructure where magnetoelectric annealing allows selecting Cr2O3 single domain states. Here the effect of T-dependent canting of the BM is compared with findings in the complementary perpendicular EB system. Financial support by NSF through MRSEC and the Nanoelectronic Research Initiative.

  2. Epitaxial thin film deposition of magnetostrictive materials and its effect on magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    McClure, Adam Marc

    Magnetostriction means that the dimensions of a material depend on its magnetization. The primary goal of this dissertation was to understand the effect of magnetostriction on the magnetic anisotropy of single crystal magnetostrictive thin films, where the epitaxial pinning of the material to a substrate could inhibit its conversion to new dimensions. In order to address this goal, several Fe-based binary alloys were deposited onto various substrates by molecular beam epitaxy. The samples were characterized by an array of techniques including electron diffraction, Rutherford backscattering, vibrating sample magnetometry, ferromagnetic resonance, and x-ray absorption spectroscopies. The attempted growths of crystalline magnetostrictive thin films resulted in successful depositions of Fe1-xGax and Fe1-x Znx. Depositions onto MgO(001) substrates result in an in-plane cubic magnetic anisotropy, as expected from the cubic symmetry of the Fe-based thin films, and a strong out-of-plane uniaxial anisotropy that forces the magnetization to lie in the plane of the films. Depositions onto ZnSe/GaAs(001) substrates feature an additional in-plane uniaxial anisotropy. The magnitudes and signs of the in-plane anisotropies depend on the Ga content. Furthermore, the cubic anisotropy constant of Fe1-xGax samples deposited onto MgO substrates switches sign at a lower Ga concentration than is seen in bulk Fe1-xGax. The effect on the magnetic anisotropy of depositing a magnetostrictive material as an epitaxial thin film is influenced by the material's magnetostrictive properties and the substrate upon which it is deposited. In particular, pinning a magnetoelastic material to a substrate will modify its cubic anisotropy, and depositions on substrates compliant to an anisotropic strain relaxation may result in a strong in-plane uniaxial anisotropy.

  3. Femtosecond laser-induced optical anisotropy in a two-dimensional lattice of magnetic dots

    NASA Astrophysics Data System (ADS)

    Razdolski, I.; Krutyanskiy, V. L.; Murzina, T. V.; Rasing, Th.; Kimel, A. V.

    2014-02-01

    Using pump-probe optical polarimetry we demonstrate that femtosecond laser excitation of a 2D regular lattice of magnetic nanodots effectively changes the optical anisotropy of the array. Study of the dynamics of the femtosecond laser-induced anisotropy reveals four main mechanisms occurring in the electronic, spin, and lattice subsystems. Below 1 ps, a strong Kerr-like nonlinearity causes linear birefringence, with its axis directed along the electric field of the linearly polarized femtosecond laser pump pulse. In addition, a long-living linear birefringence is also induced due to slowly relaxing excitations. Also below 1 ps, ultrafast laser-induced demagnetization of Co leads to a partial breakdown of the circular birefringence of the magnetic nanodots. On the timescale up to 300 ps, optically triggered acoustic modes of the dots drive oscillations of the linear optical birefringence. During this process, the oscillations damp while transferring their energy into acoustic modes of the substrate. On the nanosecond timescale, the signal is dominated by acoustic oscillations at the surface of the substrate.

  4. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  5. Torque acting on the magnetization vector during 90 pulsed magnetization of real garnet ferrite films with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Kolotov, O. S.; Matyunin, A. V.; Nikoladze, G. M.; Polyakov, P. A.

    2015-12-01

    The torque acting on the magnetization vector in the course of 90 pulsed magnetization of real garnet ferrite films with in-plane and biaxial anisotropy is calculated by a method in which the operating point trajectory is analyzed. The position of the operating point is described by azimuthal angle ? and torque component T m produced by pulsed magnetizing field H m . The time dependence of resultant torque T ? has a sharply ascending portion, within which the nonlinear magnetization oscillations are excited. Additionally, the shape of the curve T ?( t) within this portion depends on pulse rise time ? f only slightly. These results explain the weak dependence of the magnetization oscillation strength on ? f , which was experimentally found previously. It is shown analytically that when ? f decreases to 2.5-3.0 ns within the initial portion of the curve T ?( t) at ? ? 10, there arises an extra maximum of torque T ?. Simultaneously, an additional voltage peak appears in the initial part of the longitudinal magnetization signal. The appearance of the additional voltage peak is confirmed experimentally.

  6. Crystallographic orientation of Cr in longitudinal recording media and its relation to magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ajan, Antony; Okamoto, Iwao

    2002-08-01

    A specific growth of Cr layer grains is found to exist when grown on the mechanically textured NiP-Al substrates used for longitudinal recording. High resolution transmission electron microscopy analysis of a large number of individual Cr grains indicate a Cr110 preferential growth along the textured direction (groove or circumferential direction). This particular orientation of the Cr underlayer is found to be the cause of an in-plane magnetic anisotropy of the Co based magnetic layer. The temperature dependence of this in-plane magnetic anisotropy study indicated the importance of the specific crystallographic orientations of both the underlayer and the magnetic layer.

  7. Ultra Low Energy Switching of Ferromagnet with Perpendicular Anisotropy on Topological Insulator by Voltage Controlled Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Ghosh, Bahniman; Pramanik, Tanmoy; Dey, Rik; Roy, Urmimala; Register, Leonard; Banerjee, Sanjay

    2015-03-01

    We propose and demonstrate, through simulation, an ultra low energy memory device on a topological insulator thin film. The device consists of a thin layer of Fe deposited on the surface of a topological insulator, Bi2Se3. The top surface of Fe is covered with MgO so that the ferromagnetic layer has perpendicular anisotropy. Current is passed on the surface of the topological insulator which switches the magnetization of the Fe ferromagnet through strong exchange interaction, between electrons contributing to the surface current on the Bi2Se3 and the d electrons in the ferromagnet, and spin transfer torque due to shunting of current through the ferromagnet. Voltage controlled magnetic anisotropy enables ultra low energy switching. Our micromagnetic simulations, predict switching time of the order of 2.4 ns and switching energy of the order of 0.16 fJ for a ferromagnetic bit with thermal stability of 90 kBT. The proposed structure combines the advantages of both large spin torque from topological insulators and those of perpendicular anisotropy materials. This work is supported by NRI SWAN and NSF NASCENT Center.

  8. Parametric Excitation of Spin Waves by Voltage-Controlled Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Verba, Roman; Tiberkevich, Vasil; Krivorotov, Ilya; Slavin, Andrei

    2014-05-01

    A theory of parametric excitation of spin waves (SWs) in ultrathin ferromagnetic strips by a microwave electric field is developed. The excitation uses the effect of voltage-controlled magnetic anisotropy in ferromagnet-dielectric heterostuctures. The characteristic values of the electric field necessary for parametric excitation of propagating SWs of 5-10 GHz frequency in Fe /MgO structure are found to be 0.1-1.5 V/nm. The minimum excitation threshold is achieved in narrow strip (strip width wx˜10-20 nm) for relatively long dipole-dominated SWs. In wider strips (wx≳100 nm) electric parametric pumping excites mostly short exchange-dominated SWs having higher excitation thresholds, but substantially wider range of possible SW frequencies.

  9. Giant Perpendicular Magnetic Anisotropy of Graphene-Co Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Hallal, Ali; Chshiev, Mairbek; Spintec theory Team

    We report strongly enhanced perpendicular anisotropy (PMA) of Co films by graphene coating via ab-initio calculations. The results show that graphene coating can improve the surface anisotropy of Co film up to twice large of the bare Co case and keep the film effective anisotropy being out-of-plane till 25 Å of Co, in agreement with experiments. Our layer resolved analysis reveals that PMA of Co (Co/Gr) films mainly originates from the adjacent 3 Co layers close to surface (interface) and can be strongly influenced by graphene. Furthermore, orbital hybridization analysis uncovers the origin of the PMA enhancement which is due to graphene-Co bonding causing an inversion of Co 3dz 2 and 3dx 2 - y 2 Bloch states close to Fermi level. Finally, we propose to design Co-graphene heterostructures which possess a linearly increasing surface anisotropy and a constant effective anisotropy. These findings point towards a possible engineering graphene-Co junctions with giant anisotropy, which stands as a hallmark for future spintronic information processing. This work was supported by European Graphene Flagship, European Union-funded STREP project CONCEPT-GRAPHENE, French ANR Projects NANOSIM-GRAPHENE and NMGEM

  10. Effects of auroral-particle anisotropies and mirror forces on high-latitude electric fields

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Cornwall, J. M.

    1981-01-01

    It is noted that, for most of the mechanisms for the strong electric fields that characterize the narrow regions in which there is acceleration and precipitation of ring current and/or plasma-sheet plasma, certain effects must be taken into account in simulations of auroral electric fields. The effects are those of auroral particle anisotropy, of mirror forces due to the inhomogeneous geomagnetic field, of auroral electron backscatter by the atmosphere, and of electron trapping by the combination of magnetic mirroring and electrostatic forces. What is more, the effects of the very strong perpendicular electric field must also be taken into account in a kinetic description of the Poisson equation in order to achieve a unified theory of the auroral electrostatic structure. Progress in these areas during the past few years is reviewed. It is shown that particle anisotropies and mirror forces can account for some basic electrostatic features of the quiet arc, while additional effects may be occurring in strong events in which the parallel potential drop is more than about 10 kV.

  11. Surface impedance tensor in amorphous wires with helical anisotropy: Magnetic hysteresis and asymmetry

    NASA Astrophysics Data System (ADS)

    Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.

    2001-06-01

    This article concerns the investigation of the magnetic behavior of the surface impedance tensor final_sigmâ in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor final_sigmâ involving three different components is found by measuring the S21 parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field Hex exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of final_sigmâ (longitudinal final_sigmazz and circular final_sigmaφφ) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component final_sigmazφ (final_sigmaφz) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model.

  12. Perpendicular magnetic anisotropy in thin ferromagnetic films adjacent to high-k oxides

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Bi, Chong; Rosales, Marcus; Newhouse-Illige, Ty; Almasi, Hamid; Wang, Weigang

    2015-03-01

    Perpendicular magnetic anisotropy (PMA) in thin ferromagnetic films has attracted a great deal of attention due to interesting physics and promising application in spintronic devices. The strength of PMA is often found to be strongly influenced by the adjacent heavy metal layer and oxide layer. A strong interest has emerged recently to control the PMA of these ultra-thin films by electric fields. Here we report the fabrication and characterization of perpendicularly magnetized 3d transitional metal films next to high-k oxides such as HfO2 and ZrO2. We have investigated structural, magnetic and transport properties of these films. The PMA strongly depends on the thickness of the ferromagnetic layers and the interfacial oxidation level of the bilayers. We will also discuss electric field controlled magnetic properties in these systems. This work was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  13. Effect of electron thermal anisotropy on the kinetic cross-field streaming instability

    NASA Technical Reports Server (NTRS)

    Tsai, S. T.; Tanaka, M.; Gaffey, J. D., Jr.; Wu, C. S.; Da Jornada, E. H.; Ziebell, L. F.

    1984-01-01

    The investigation of the kinetic cross-field streaming instability, motivated by the research of collisionless shock waves and previously studied by Wu et al. (1983), is discussed more fully. Since in the ramp region of a quasi-perpendicular shock electrons can be preferentially heated in the direction transverse to the ambient magnetic field, it is both desirable and necessary to include the effect of the thermal anisotropy on the instability associated with a shock. It is found that Te-perpendicular greater than Te-parallel can significantly enhance the peak growth rate of the cross-field streaming instability when the electron beta is sufficiently high. Furthermore, the present analysis also improves the analytical and numerical solutions previously obtained.

  14. Effects of magnetocrystalline anisotropy and magnetization saturation on the mechanically induced switching in nanomagnets

    NASA Astrophysics Data System (ADS)

    Yi, Min; Xu, Bai-Xiang; Shen, Zhigang

    2015-03-01

    The effects of magnetocrystalline anisotropy (Ku) and magnetization saturation (Ms) on the mechanically induced switching in nanomagnets are studied using a constraint-free phase field model, which allows explicit magneto-mechanical coupling and strictly constant magnetization magnitude. The effects of Ku and Ms on the transition boundary between the coherent and incoherent switching modes are presented in terms of the nanomagnet geometry. It is found that Ms rather than Ku can affect the transition boundary between the two switching modes. In the coherent mode, there exists a critical strain ( ɛc ) to induce a deterministic 90° switching. By using the dynamic nature and overrun behavior of the magnetization, a deterministic 180° switching can occur if the mechanical strain is removed once the magnetization rotates to the largest achievable angle ( ϑ1m ). For 90° switching, increasing Ku can enhance both ɛc and ϑ1m , whereas Ms incurs no noticeable changes. For 180° switching, the switching time (ts) increases with Ms linearly, but initially decreases with increasing Ku and then saturates. The results for ts suggest that moderate Ku and Ms are advisable to simultaneously obtain relatively low ɛc , quick switching, high storage density, and high magnetization-state stability in nanomagnets. This work provides insight on tuning mechanically assisted nanomagnet-based logic and memory devices through Ms and Ku.

  15. Accurate tuning of (NdDySm)(FeCo)B coercivity by Sm magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Kablov, Eugene; Ospennikova, Olga; Piskorskii, Vadim; Korolev, Dmitriy; Dmitriev, Alexey; Kunitsyna, Ekaterina; Morgunov, Roman

    2016-02-01

    In sintered (Nd0.62Dy0.33Sm0.05)16.2(Fe0.77Co0.23)78.1B5.7 alloy, magnetization is governed by nucleation of reverse magnetic domains in the 36-350K range. The contribution of domain wall to magnetization has been found above 150K. The appearance of negative magnetic anisotropy of Sm is accompanied by the suppression of the domain wall contribution to magnetization below T = 120 K. The freezing of domain wall mobility is caused by the competition between the "easy axis" anisotropy of Nd and Dy ions and the "easy plane" anisotropy of Sm ions at low temperatures.

  16. Enhanced film thickness for Nel wall in soft magnetic film by introducing strong magnetocrystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Wang, Tao; Ma, Tianyong; Wang, Ying; Zhu, Shimeng; Li, Fashen

    2016-01-01

    This study investigated the magnetic domain walls in a single-layer soft magnetic film with strong magnetocrystalline anisotropy energy. The soft magnetic film is composed of a highly c-axis-oriented hcp-Co81Ir19 alloy with strong negative magnetocrystalline anisotropy. The domain structure of the soft Co81Ir19 films with thickness ranging from 50230?nm in a demagnetization state was observed through magnetic force microscopy and Lorentz transmission electron microscopy. Results reveal that the critical transition thickness at which the domain wall changes from Nel type to Bloch type is about 138?nm, which is much larger than the critical value of traditional Fe- and Co-based soft magnetic films with negligible magnetocrystalline anisotropy. Theoretical calculation was also performed and the calculated result agrees well with experimental data.

  17. Biological Magnetometry: Torque on Superparamagnetic Beads in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    van Oene, Maarten M.; Dickinson, Laura E.; Pedaci, Francesco; Köber, Mariana; Dulin, David; Lipfert, Jan; Dekker, Nynke H.

    2015-05-01

    Superparamagnetic beads are widely used in biochemistry and single-molecule biophysics, but the nature of the anisotropy that enables the application of torques remains controversial. To quantitatively investigate the torques experienced by superparamagnetic particles, we use a biological motor to rotate beads in a magnetic field and demonstrate that the underlying potential is π periodic. In addition, we tether a bead to a single DNA molecule and show that the angular trap stiffness increases nonlinearly with magnetic field strength. Our results indicate that the superparamagnetic beads' anisotropy derives from a nonuniform intrabead distribution of superparamagnetic nanoparticles.

  18. Four Point Magnetic Field Measurements of Magnetosheath Fluctuations

    NASA Astrophysics Data System (ADS)

    Horbury, T. S.; Lucek, E. A.; Balogh, A.; Dunlop, M. W.; Dandouras, I.

    Using magnetic field measurements made at the four Cluster spacecraft separated by several hundred km, it is possible to measure the three dimensional correlation tensor of waves, turbulence and structures in the magnetosheath. In this way, their correlation scales, anisotropy and three dimensional power spectra can be estimated. As an exam- ple, we present such measurements of mirror mode structures and estimate their corre- lation lengths along and across the magnetic field direction. We also present an analy- sis of broadband magnetosheath MHD turbulence, and in particular its anisotropy, and compare the results to the properties of solar wind MHD turblence.

  19. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures.

    PubMed

    Le, Anh-Tuan; Giang, Chu Duy; Tam, Le Thi; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; García, José Ángel; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-15

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ∼17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications. PMID:26933975

  20. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Le, Anh-Tuan; Duy Giang, Chu; Thi Tam, Le; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; Ángel García, José; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-01

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ˜17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications.

  1. The Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Balogh, André; Erdõs, Géza

    2013-06-01

    The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.

  2. Effects of magnetic anisotropy and exchange in Tm{sub 2}Fe{sub 17}

    SciTech Connect

    Pirogov, A. N. Bogdanov, S. G.; Rosenfeld, E. V.; Park, J.-G.; Choi, Y. N.; Lee, Seongsu; Prokes, K.; Golosova, N. O.; Sashin, I. L.; Kudrevatykh, N. V.; Skryabin, Yu. N.; Vokhmyanin, A. P.

    2012-11-15

    Neutron diffraction experiments have been carried out to study the magnetocrystalline anisotropy of two (2b and 2d) Tm sublattices and four (4f, 6g, 12j, and 12k) Fe sublattices in ferrimagnetic compound Tm{sub 2}Fe{sub 17} (space group P6{sub 3}/mmc). We have determined the temperature dependence of the magnitude and orientation of magnetization for each of the thulium and iron sublattices in the range (10-300) K. A spontaneous rotation (at about 90 K) of the Tm and Fe sublattice magnetizations from the c-axis to the basal plane is accompanied by a drastic change in the magnetization magnitude, signifying a large magnetization anisotropy. Both Tm sublattices exhibit an easy-axis type of the magnetocrystalline anisotropy. The Fe sublattices manifest both the uniaxial and planar anisotropy types. The sublattice formed by Fe atoms at the 4f position reveals the largest planar anisotropy constant. The Fe atoms at the 12j position show a uniaxial anisotropy. We find that the inelastic neutron scattering spectra measured below and above the spin-reorientation transition are remarkably different.

  3. Electric-field dependent g -factor anisotropy in Ge-Si core-shell nanowire quantum dots

    NASA Astrophysics Data System (ADS)

    Brauns, Matthias; Ridderbos, Joost; Li, Ang; Bakkers, Erik P. A. M.; Zwanenburg, Floris A.

    2016-03-01

    We present angle-dependent measurements of the effective g factor g in a Ge-Si core-shell nanowire quantum dot. g is found to be maximum when the magnetic field is pointing perpendicularly to both the nanowire and the electric field induced by local gates. Alignment of the magnetic field with the electric field reduces g significantly. g is almost completely quenched when the magnetic field is aligned with the nanowire axis. These findings confirm recent calculations, where the obtained anisotropy is attributed to a Rashba-type spin-orbit interaction induced by heavy-hole light-hole mixing. In principle, this facilitates manipulation of spin-orbit qubits by means of a continuous high-frequency electric field.

  4. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    NASA Astrophysics Data System (ADS)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  5. A Dzyaloshinskii-Moriya Anisotropy in nanomagnets with in-plane magnetization

    NASA Astrophysics Data System (ADS)

    Cubukcu, M.; Sampaio, J.; Khvalkovskiy, A. V.; Apalkov, D.; Cros, V.; Reyren, N.

    The Dzyaloshinskii-Moriya interaction (DMI) is known to be a direct manifestation of spin-orbit coupling in systems with broken inversion symmetry. We present a new anisotropy for in-plane-magnetized nanomagnets which is due to the interfacial DMI. This new anisotropy depends on the shape of the magnet, and is perpendicular to the demagnetization shape anisotropy. The DMI anisotropy term that we introduce here results from the DMI energy reduction due to an out-of-plane tilt of the spins at the edges that are oriented perpendicular to the magnetization. For large enough DMI, the reduction of the DMI and anisotropy energies takes over the demagnetization energy cost when magnetization lies along the minor axis of a structure. Our experimental, numerical and analytical results demonstrate this prediction in magnets of elongated shape for small enough volume (and thus quasi-uniform magnetization). Our results also provide the first experimental evidence of the interfacial DMI-induced tilt of the spins at the borders. This work was supported by the Samsung Global MRAM Innovation Program.

  6. ROTMOKE study of step-induced magnetic anisotropy in vicinal Cu/Py/Ni/Cu(001)

    NASA Astrophysics Data System (ADS)

    Deng, J. X.; Ma, Song; Tan, A.; Li, J.; Zhang, Z. D.; Hwang, C.; Qiu, Z. Q.

    2015-03-01

    Py/Ni films were epitaxially grown on a 6o vicinal Cu(001) substrate with steps parallel to the [110] axis. The addition of Py film increases the Ni film spin reorientation transition (SRT) thickness to permit a study of the step-induced in-plane magnetic anisotropy in a wider Ni thickness range. Rotation MOKE (ROTMOKE) was applied to determine the step-induced magnetic anisotropy in the vicinal Cu/Py/Ni/Cu(001) as a function of both the Py and Ni film thicknesses. We found that the atomic steps from the vicinal Cu(001) induce an in-plane uniaxial magnetic anisotropy that favors both Py and Ni magnetizations perpendicular to the steps. In addition, thickness-dependent ROTMOKE measurement allows a separation of the Py and Ni volume-type step-induced magnetic anisotropies. We show that Ni films exhibit different step-induced magnetic anisotropies below and above ~ 5-6ML Ni thickness. visiting scholar at University of California at Berkeley.

  7. Magnetic-field-modulated Kondo effect in a single-magnetic-ion molecule

    NASA Astrophysics Data System (ADS)

    Romero, Javier I.; Vernek, E.; Martins, G. B.; Mucciolo, E. R.

    2014-11-01

    We study numerically the low-temperature electronic transport properties of a single-ion magnet with uniaxial and transverse spin anisotropies. We find clear signatures of a Kondo effect caused by the presence of a transverse (zero-field) anisotropy in the molecule. This Kondo effect has an SU(2) pseudospin character, associated with a doublet ground state of the isolated molecule, which results from the transverse anisotropy. Upon applying a transverse magnetic field to the single-ion magnet, we observe oscillations of the Kondo effect due to the presence of diabolical points (degeneracies) of the energy spectrum of the molecule caused by geometrical phase interference effects, similar to those observed in the quantum tunneling of multi-ion molecular nanomagnets. The field-induced lifting of the ground-state degeneracy competes with the interference modulation, resulting in some cases in a suppression of the Kondo peak.

  8. Magnetization dynamics using ultrashort magnetic field pulses

    NASA Astrophysics Data System (ADS)

    Tudosa, Ioan

    Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic field.

  9. Magnetic phase diagram of the low-anisotropy antiferromagnet Cs2FeCl5·H2O

    NASA Astrophysics Data System (ADS)

    Freitas, R. S.; Paduan-Filho, A.; Becerra, C. C.

    2015-01-01

    From magnetization and ac susceptibility measurements we obtain the complete magnetic phase diagram of single crystals of Cs2FeCl5·H2O for magnetic field up to 15 T. The magnetic field was applied along the directions parallel and perpendicular to the easy axis and the magnetization measured to temperatures down to 0.5 K. At zero magnetic field the antiferromagnetic ordering occurs at TN=6.63 K. For the field applied parallel to the easy axis the antiferromagnetic (AF) to the spin-flop (SF) transition occurs for fields from 1.4 T to 1.1 T depending on the temperature. The low temperature transition from the (SF) to the paramagnetic (P) phase occurs at 13.15 T. In the perpendicular configuration this transition occurs at fields around 13.5 T. From the extrapolation of the transition fields to zero temperature, we obtain a ratio of the anisotropy field HA to exchange field HE, α=HA/HE=(1.4±0.2)×10-2. A comparison with the phase diagram measured for MnF2 is included.

  10. Voltage Control of Domain Wall Motion in Perpendicular Magnetic Anisotropy Materials

    NASA Astrophysics Data System (ADS)

    Bauer, Uwe; Emori, Satoru; Beach, Geoffrey S. D.

    2013-03-01

    High-performance solid-state operation of a wide variety of spintronic devices requires efficient electrical control of domain walls (DWs). In this work we examine DW dynamics in ultrathin Co films under the influence of an electric field applied across a gadolinium oxide gate dielectric. By measuring the velocity scaling with temperature, driving field, and gate voltage, we verify domain expansion via thermally-activated creep dynamics. We show that an electric field linearly modulates the activation energy barrier EA that governs DW creep, leading to an exponential dependence of DW velocity on gate voltage. As a consequence, significant voltage-induced velocity enhancement can be achieved in the low-velocity regime, but the efficiency is diminished at high velocities where EA is correspondingly small. We overcome this limitation by engineering novel device structures with significantly larger voltage induced effects on magnetic anisotropy and demonstrate voltage modulation of the DW propagation field by hundreds of Oe. Implementation into magnetic nanowire devices allows us to engineer gate voltage controlled DW traps which are nonvolatile and robustly switchable for many cycles. This work is supported by the National Science Foundation through grant ECCS-1128439

  11. Study of in-plane magnetic anisotropy in Co-based thin-film media

    NASA Astrophysics Data System (ADS)

    Murao, R.; Okuyama, C.; Takahashi, K.; Kikuchi, A.; Kitamoto, Y.; Ishida, S.

    2002-04-01

    The relationship among macroscopic in-plane magnetic anisotropy, the crystal structure of both the Co-based magnetic layer and the Cr under-layer, and the surface morphology of the textured substrate was studied. In the highly oriented media, the preferred orientation of the c-axis of Co to the circumferential direction and the distortion of the Cr crystal lattice were observed. In-plane magnetic anisotropy is induced when the grain of the under-layer is smaller than the texture grooves.

  12. Interfacial magnetic anisotropy of Co90Zr10 on Pt layer.

    PubMed

    Kil, Joon Pyo; Bae, Gi Yeol; Suh, Dong Ik; Choi, Won Joon; Noh, Jae Sung; Park, Wanjun

    2014-11-01

    Spin Transfer Torque (STT) is of great interest in data writing scheme for the Magneto-resistive Random Access Memory (MRAM) using Magnetic Tunnel Junction (MTJ). Scalability for high density memory requires ferromagnetic electrodes having the perpendicular magnetic easy axis. We investigated CoZr as the ferromagnetic electrode. It is observed that interfacial magnetic anisotropy is preferred perpendicular to the plane with thickness dependence on the interfaces with Pt layer. The anisotropy energy (K(u)) with thickness dependence shows a change of magnetic-easy-axis direction from perpendicular to in-plane around 1.2 nm of CoZr. The interfacial anisotropy (K(i)) as the directly related parameters to switching and thermal stability, are estimated as 1.64 erg/cm2 from CoZr/Pt multilayered system. PMID:25958513

  13. Magnetic anisotropy and magnetic phase transitions in RFe5Al7

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. I.; Yasin, S.; Andreev, A. V.; Skourski, Y.; Mushnikov, N. V.; Rosenfeld, E. V.; Zherlitsyn, S.; Wosnitza, J.

    2015-06-01

    RFe5Al7 (R - Gd, Tb, Dy, Ho, Er and Tm) single crystals have been studied by measurements of magnetization, sound propagation (in static and pulsed magnetic fields up to 60 T) and specific heat. Fundamental magnetic properties have been determined and compared for all these materials. RFe5Al7 are highly anisotropic ferrimagnets. Spontaneous and field-induced magnetic phase transitions of anisotropic and exchange nature have been observed in RFe5Al7. Strong magnetoelastic interactions are manifested by pronounced acoustic anomalies at the phase transformations. The detected magnetization jumps provide important information on the R-Fe inter-sublattice exchange interactions.

  14. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  15. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    NASA Astrophysics Data System (ADS)

    Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.; Perez, Oscar E.; Butera, Alejandro; Jorge, Guillermo; Oliveira, Cristiano L. P.; Negri, R. Martín

    2013-12-01

    Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ˜ 10) were obtained at 85 °C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR field, and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials.

  16. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    SciTech Connect

    Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.; Negri, R. Martín; Perez, Oscar E.; Butera, Alejandro; Jorge, Guillermo; Oliveira, Cristiano L. P.

    2013-12-07

    Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ∼ 10) were obtained at 85 °C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR field, and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials.

  17. Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy

    SciTech Connect

    Ohnuma, M.; Hono, K.; Yanai, T.; Nakano, M.; Fukunaga, H.; Yoshizawa, Y.

    2005-04-11

    The dependence of the structural anisotropy of Fe-Si-B-Nb-Cu alloy on the applied stress during annealing has been studied by transmission x-ray diffraction. After crystallizing under stress, the Fe-Si nanocrystals show anisotropy in the lattice spacing of the (620) planes. Their elongations are proportional to the applied stress and show a linear correlation with the magnetic anisotropy energy, K{sub u}. These results indicate that K{sub u} originates from a magnetoelastic effect due to an elastic elongation of the Fe-Si phase constrained by the surrounding amorphous phase.

  18. Fabrication of tunable Janus microspheres with dual anisotropy of porosity and magnetism.

    PubMed

    Ning, Yin; Wang, Chaoyang; Ngai, To; Tong, Zhen

    2013-04-30

    This work presents a facile approach to produce a novel type of Janus microspheres with dual anisotropy of porosity and magnetism based on Pickering-type double emulsion templates. A stable aqueous Fe3O4 dispersion-in-oil-in-water (WF/O/W) double Pickering emulsion is first generated by using hydrophobic silica and hydrophilic mesoporous silica particles as stabilizers. Janus microspheres with multihollow structure possessing magnetite nanoparticles concentrated on one side of the microspheres are obtained after polymerization of the middle oil phase of the double emulsion under a magnetic field. The resultant Janus microspheres are characterized by optical microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX). Moreover, we have systematically investigated the influences of Fe3O4 particle concentration, hydrophobic silica particle content, and volume ratio of the inner water phase to middle oil phase (WF/O) on the double emulsion formation and consequently on the structure of the resulting Janus microspheres. Our results show that the distribution of the multihollow structures within the prepared microspheres can be accurately tailored by adjusting the ratio of WF/O. In addition, the obtained Janus microsphere can be fairly orientated under a magnetic field, making them a potential candidate for synthesizing Janus membrane. PMID:23565899

  19. Scaling Laws for Magnetic Reconnection when Electron Pressure Anisotropy is near the Firehose Threshold

    NASA Astrophysics Data System (ADS)

    Ohia, Obioma; Egedal, Jan; Lukin, Vyacheslav S.; Daughton, William; Le, Ari

    2015-11-01

    Magnetic reconnection in weakly-collisional, a process linked to solar flares, coronal mass ejections, and magnetic substorms, has been widely studied through fluid and kinetic simulations. While two-fluid models often reproduce the fast reconnection rate of kinetic simulations, significant differences are observed in the structure of the reconnection regions. Recently, new equations of state that accurately account for the development of anisotropic electron pressure due to the electric and magnetic trapping of electrons have been developed. Guide-field, fluid simulations using these equations of state have been shown to reproduce the detailed reconnection region observed in kinetic simulations. Implementing this two-fluid simulation using the HiFi framework, we describe a mechanism for regulation of electron pressure anisotropy as well as study force balance of the electron layers in guide-field reconnection. Scaling laws for the heating observed in these layers based on upstream conditions are derived. Formerly of U.S. Naval Research Laboratory. Any opinions, findings, conclusions and/or recommendations are those of author and do not necessarily reflect the views of the National Science Foundation.

  20. Perpendicular magnetic anisotropy in CoxMn4-xN (x = 0 and 0.2) epitaxial films and possibility of tetragonal Mn4N phase

    NASA Astrophysics Data System (ADS)

    Ito, Keita; Yasutomi, Yoko; Kabara, Kazuki; Gushi, Toshiki; Higashikozono, Soma; Toko, Kaoru; Tsunoda, Masakiyo; Suemasu, Takashi

    2016-05-01

    We grow 25-nm-thick Mn4N and Co0.2Mn3.8N epitaxial films on SrTiO3(001) by molecular beam epitaxy. These films show the tetragonal structure with a tetragonal axial ratio c/a of approximately 0.99. Their magnetic properties are measured at 300 K, and perpendicular magnetic anisotropy is confirmed in both films. There is a tendency that as the Co composition increases, an anisotropy field increases, whereas saturation magnetization and uniaxial magnetic anisotropy energy decrease. First-principles calculation predicts the existence of tetragonal Mn4N phase. This explains the c/a ˜ 0.99 in the Mn4N films regardless of their film thickness and lattice mismatch with substrates used.

  1. Reionization constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Pandey, Kanhaiya L.; Choudhury, T. Roy; Sethi, Shiv K.; Ferrara, Andrea

    2015-08-01

    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: 6 < z < 10. We perform a comprehensive Markov chain Monte Carlo (MCMC) physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, B0, and power-spectrum index n_{B}), reionization and Λ cold dark matter cosmological model. We find that magnetic field strengths in the range: B0 ≃ 0.05-0.3 nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the Wilkinson Microwave Anisotropy Probe and quasar absorption spectra data. Our analysis puts upper limits on the magnetic field strength B0 < 0.358, 0.120 and 0.059 nG (95 per cent c.l.) for n_{B} = -2.95, -2.9 and -2.85, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.

  2. Field dependence of the superconducting basal plane anisotropy of TmNi2B2C

    SciTech Connect

    Das, P.; Densmore, J.M.; Rastovski, C.; Schlesinger, K.J.; Laver, M.; Dewhurst, C.D.; Littrell, K.; Budko, Serguei L.; Canfield, Paul C.; Eskildsen, M.R.

    2012-10-01

    The superconductor TmNi2B2C possesses a significant fourfold basal plane anisotropy, leading to a square vortex lattice (VL) at intermediate fields. However, unlike other members of the borocarbide superconductors, the anisotropy in TmNi2B2C appears to decrease with increasing field, evident by a reentrance of the square VL phase. We have used small-angle neutron scattering measurements of the VL to study the field dependence of the anisotropy. Our results provide a direct, quantitative measurement of the decreasing anisotropy. We attribute this reduction of the basal plane anisotropy to the strong Pauli paramagnetic effects observed in TmNi2B2C and the resulting expansion of vortex cores near Hc2.

  3. THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Jansson, Ronnie; Farrar, Glennys R.

    2012-12-10

    With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

  4. Radial magnetic field in magnetic confinement device

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Liu, Ming-Hai; Chen, Ming; Rao, Bo; Chen, Jie; Chen, Zhao-Quan; Xiao, Jin-Shui; Hu, Xi-Wei

    2015-09-01

    The intrinsic radial magnetic field (Br) in a tokamak is explored by the solution of the Grad-Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement. Project supported by the Special Domestic Program of ITER, China (Grant No. 2009GB105003).

  5. Magnetic anisotropy, unusual hysteresis and putative “up-up-down” magnetic structure in EuTAl4Si2 (T = Rh and Ir)

    PubMed Central

    Maurya, Arvind; Thamizhavel, A.; Dhar, S. K.; Bonville, P.

    2015-01-01

    We present detailed investigations on single crystals of quaternary EuRhAl4Si2 and EuIrAl4Si2. The two compounds order antiferromagnetically at TN1 = 11.7 and 14.7 K, respectively, each undergoing two magnetic transitions. The magnetic properties in the ordered state present a large anisotropy despite Eu2+being an S-state ion for which the single-ion anisotropy is expected to be weak. Two features in the magnetization measured along the c-axis are prominent. At 1.8 K, a ferromagnetic-like jump occurs at very low field to a value one third of the saturation magnetization (1/3 M0) followed by a wide plateau up to 2 T for Rh and 4 T for Ir-compound. At this field value, a sharp hysteretic spin-flop transition occurs to a fully saturated state (M0). Surprisingly, the magnetization does not return to origin when the field is reduced to zero in the return cycle, as expected in an antiferromagnet. Instead, a remnant magnetization 1/3 M0 is observed and the magnetic loop around the origin shows hysteresis. This suggests that the zero field magnetic structure has a ferromagnetic component, and we present a model with up to third neighbor exchange and dipolar interaction which reproduces the magnetization curves and hints to an “up-up-down” magnetic structure in zero field. PMID:26156410

  6. Copper dusting effects on perpendicular magnetic anisotropy in Pt/Co/Pt tri-layers

    NASA Astrophysics Data System (ADS)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S.

    2016-05-01

    The effect of Cu dusting on perpendicular magnetic anisotropy of sputter grown Pt/Co/Pt stack in which the Cu layer is in proximity with that of Co is investigated in this work. We used magneto optic Kerr effect microscopy measurements to study the variation in the reversal mechanisms in films with Co thicknesses below 0.8nm by systematically varying their perpendicular magnetic anisotropy using controlled Cu dusting. Cu dusting was done separately above and below the cobalt layer in order to understand the role of bottom and top Pt layers in magnetization reversal mechanisms of sputtered Pt/Co/Pt stack. The introduction of even 0.3nm thick Cu layer below the cobalt layer drastically affected the perpendicular magnetic anisotropy as evident from the nucleation behavior. On the contrary, even a 4nm thick top Cu layer had little effect on the reversal mechanism. These observations along with magnetization data was used to estimate the role of top and bottom Pt in the origin of perpendicular magnetic anisotropy as well as magnetization switching mechanism in Pt/Co/Pt thin films. Also, with an increase in the bottom Cu dusting from 0.2 to 0.4nm there was an increase in the number of nucleation sites resulting in the transformation of domain wall patterns from a smooth interface type to a finger like one and finally to maze type.

  7. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  8. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  9. Low field magnetic resonance imaging

    DOEpatents

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  10. Experimental evidence of skyrmion-like configurations in bilayer nanodisks with perpendicular magnetic anisotropy

    SciTech Connect

    Stebliy, Maxim E. Kolesnikov, Alexander G.; Davydenko, Alexander V.; Ognev, Alexey V.; Samardak, Alexander S.; Chebotkevich, Ludmila A.

    2015-05-07

    Formation and existence of magnetic skyrmion-like configurations in bilayer nanodisks (Ta(3 nm)/[Co(0.37 nm)/Ni(0.58 nm)]{sub 10}){sub 2} with perpendicular magnetic anisotropy are shown experimentally at room temperature. Magnetization reversal through the skyrmion state is studied using magnetic hysteresis measurements. An evolution of skyrmion configurations in the nanodisk structure is analyzed. Experimental methods and micromagnetic simulations help to understand the magnetization reversal processes occurring through the stable skyrmion-like configurations. Formation of the intermediate C-states during magnetization reversal is demonstrated. The skyrmion number for all possible spin configurations is calculated.

  11. Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films

    SciTech Connect

    Di, N.; Maroun, F. Allongue, P.; Kubal, J.; Zeng, Z.; Greeley, J.

    2015-03-23

    We studied the influence of controlled surface-limited oxidation of electrodeposited epitaxial Co(0001)/Au(111) films on their magnetic anisotropy energy using real time in situ magneto optical Kerr effect and density functional theory (DFT) calculations. We investigated the Co first electrochemical oxidation step which we demonstrate to be completely reversible and determined the structure of this oxide layer. We show that the interface magnetic anisotropy of the Co film increases by 0.36 erg/cm{sup 2} upon Co surface oxidation. We performed DFT calculations to determine the different surface structures in a wide potential range as well as the charge transfer at the Co surface. Our results suggest that the magnetic anisotropy change is correlated with a positive charge increase of 0.54 e{sup −} for the Co surface atom upon oxidation.

  12. Tuning magnetic anisotropies of Fe films on Si(111) substrate via direction variation of heating current.

    PubMed

    Wu, Qiong; He, Wei; Liu, Hao-Liang; Ye, Jun; Zhang, Xiang-Qun; Yang, Hai-Tao; Chen, Zi-Yu; Cheng, Zhao-Hua

    2013-01-01

    We adopted a novel method to tune the terrace width of Si(111) substrate by varying the direction of heating current. It was observed that the uniaxial magnetic anisotropy (UMA) of Fe films grown on the Si(111) substrate enhanced with decreasing the terrace width and superimposed on the weak six-fold magnetocrystalline anisotropy. Furthermore, on the basis of the scanning tunneling microscopy (STM) images, self-correlation function calculations confirmed that the UMA was attributed mainly from the long-range dipolar interaction between the spins on the surface. Our work opens a new avenue to manipulate the magnetic anisotropy of magnetic structures on the stepped substrate by the decoration of its atomic steps. PMID:23529097

  13. Control of the magnetic in-plane anisotropy in off-stoichiometric NiMnSb

    SciTech Connect

    Gerhard, F.; Schumacher, C.; Gould, C.; Molenkamp, L. W.

    2014-03-07

    NiMnSb is a ferromagnetic half-metal which, because of its rich anisotropy and very low Gilbert damping, is a promising candidate for applications in information technologies. We have investigated the in-plane anisotropy properties of thin, molecular beam epitaxy-grown NiMnSb films as a function of their Mn concentration. Using ferromagnetic resonance to determine the uniaxial and four-fold anisotropy fields, (2K{sub U})/(M{sub s}) and (2K{sub 1})/(M{sub s}) , we find that a variation in composition can change the strength of the four-fold anisotropy by more than an order of magnitude and cause a complete 90 rotation of the uniaxial anisotropy. This provides valuable flexibility in designing new device geometries.

  14. The adjustable anisotropy field in FeCoTiO/SiO2/FeCoTiO trilayer films by oblique sputtering and stripe patterning

    NASA Astrophysics Data System (ADS)

    Wang, Yicheng; Zhang, Huaiwu; Wang, Luo; Bai, Feiming

    2016-05-01

    A series of FeCoTiO thin films were deposited on Si (100) substrates using oblique sputtering and stripe patterning at the same time and the static and high frequency magnetic properties were studied in details. For the single-layered films, if the anisotropy fields induced by the two methods are in the same direction, the effective anisotropy field will be greatly enhanced, closed to 300 Oe. But if the two anisotropy fields are perpendicular to each other, there will be an opposite result. In the FM/NM/FM sandwich structures, the influence of shape anisotropy will be suppressed by the exchange coupling effect between the two FM layers. The resonance frequency and permeability are still above 3.5 GHz and 75 even the width of stripes change from 40 µm to 10 µm.

  15. Influence Of Nanoparticles Diameter On Structural Properties Of Magnetic Fluid In Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kúdelčík, Jozef; Bury, Peter; Hardoň, Štefan; Kopčanský, Peter; Timko, Milan

    2015-07-01

    The properties of magnetic fluids depend on the nanoparticle diameter, their concentration and the carrier liquid. The structural changes in magnetic fluids with different nanoparticle diameter based on transformer oils TECHNOL and MOGUL under the effect of a magnetic field and temperature were studied by acoustic spectroscopy. At a linear and jump changes of the magnetic field at various temperatures a continuous change was observed of acoustic attenuation caused by aggregation of the magnetic nanoparticles to structures. From the anisotropy of acoustic attenuation and using the Taketomi theory the basic parameters of the structures are calculated and the impact of nanoparticle diameters on the size of structures is confirmed.

  16. Decrease in magnetic anisotropy of external segments of the retinal rods after a total photolysis.

    PubMed Central

    Chagneux, R; Chagneux, H; Chalazonitis, N

    1977-01-01

    The magnetic anisotropy of a polymembrane cell, such as the external segment of the frog retinal rod, is defined as the difference between the axial magnetic susceptibility (chiar), chia - chir = deltachi of the segment. After the total photolysis of the rhodopsin in situ, deltachi decreases a significantly by 20%. This decrease in magnetic anisotrophy should involve a subtle molecular disorder, mostly due to an alteration of the rhodopsin molecule. PMID:856315

  17. Rare-Earth-Dependent Tri-axial Magnetic Anisotropies and Growth Conditions in REBa2Cu4O8

    NASA Astrophysics Data System (ADS)

    Yamaki, Momoko; Horii, Shigeru; Haruta, Masakazu; Shimoyama, Jun-ichi

    2012-01-01

    Tri-axial orientation under modulated rotation magnetic fields (MRFs) and the growth of single crystals in ambient pressure were demonstrated in various REBa2Cu4O8 (RE124; RE, rare earth elements) compounds. RE124 crystals have been successfully grown for RE = Y, Sm, Eu, Gd, Dy, Ho, and Er. Optimal growth temperature regions for RE124 largely depended on the type of RE and became narrower in the case of lighter RE ions. By applying an MRF of 10 T, powders of all the grown RE124 were tri-axially oriented in epoxy resin at room temperature, and their orientation axes were clearly dependent on the type of RE ions in RE124. Furthermore, it was found from the changes in the degree of orientation under three different MRF conditions that tri-axial single-ion magnetic anisotropies of heavy RE3+ ions were highest among magnetic anisotropies generated by Cu-O networks and RE3+ ions. The appropriate choice of RE ions in RE-based cuprate superconductors enables the reduction of the magnetic field required for the production of bulk and thick films based on the magnetic orientation technique.

  18. Tunable magnetic anisotropy in perpendicular exchange-coupled CoFeB/(Co/Pt) films

    NASA Astrophysics Data System (ADS)

    You, Long; Lee, Oukjae; Glenn, Terrell; Abdel-Raziq, Haron; Salahuddin, Sayeef

    2015-03-01

    Spintronic materials with strong perpendicular magnetic anisotropy (PMA), such as Co/Pd, Co/Pt and Co/Ni multilayers, have been introduced to improve the functional performance of STT devices (e.g. enhanced thermal stability, scalability and switching speeds of spin memory/logic). Furthermore, by coupling magnetic layers with PMA and longitudinal magnetic anisotropy (LMA), added benefits such as a variable magnetization tilt angle and tunable damping have been shown. In our study, we discuss how to precise control the anisotropy tilt angle by coupling the PMA hard layer (Co/Pt) with an in-plane soft layer (IMA, CoFeB). Due to the competition between the PMA and IMA, the tilted angle can be tuned by varying thickness of IMA. The stack of Pt(5nm)/Co (1nm)/CoFeB(Xnm)/MgO (2nm) (x varied from 0 to 1nm) was deposited by magneto-sputtering system. The magnetic properties were investigated by vibrating sample magnetometer and anomalous Hall effect . The electric transport of microscale devices comprised of that stack were also studied by our probe station with electromagnet. The experiments show the magnetic anisotropy can be tuned well by changing thickness of in plane layer and open a promising new avenue to next generation spintronics devices.

  19. Comparison between planar magnetocrystaline and shape anisotropies in the magnetic vortex configuration of nanostructured particles

    NASA Astrophysics Data System (ADS)

    Parreiras, Sofia; Souza, Rafael; Martins, Maximiliano

    2015-03-01

    Soft ferromagnetic dots with sub-micrometer size can exhibit in the ground state a curling spin configuration known as magnetic vortex. In the case of soft ferromagnetic materials in micron and submicron scales, small changes in shape, size and material's anisotropy can modify the energy equilibrium that defines the stable spin structure. In this work, we investigated the magnetic configuration of micron-sized Co60Fe40 and Permalloy disks and elipses, prepared by lift-off lithography process, by comparing the results of micromagnetic simulations and magnetic force microscopy (MFM) measurements. By comparing the results for Co60Fe40 and Permalloy it is possible to elucidate the effect of the planar magnetocrystaline anisotropy in the stability of the magnetic vortex configuration and this effect is compared with the effect of the shape anisotropy induced by the elliptical shape. The results for disks with diameters between 0.5 and 8 μm showed that the anisotropy favors spins alignment and domains division, reducing vortex stability. The results showed different magnetic configurations for each disk diameter. Additionally, a statistical analysis of the magnetic configuration distribution observed in MFM experiments was performed and compared with the simulation results. Acknowledgements: CAPES, CNPq and FAPEMIG.

  20. Highly asymmetric magnetic behavior in exchange biased systems induced by non-collinear field cooling.

    SciTech Connect

    Jimenez, E.; Camarero, J.; Sort, J.; Nogues, J.; Hoffmann, A.; Teran, F. J.; Perna, P.; Garcia-Martin, J. M.; Dieny, B.; Miranda, R.; Univ. Autonoma de Madrid; Univ. Autonoma de Barcelona; Inst. de Microelectronica de Madrid; SPINTEC

    2009-09-21

    A detailed study of the angular dependence of the magnetization reversal in polycrystalline ferromagnetic (FM)/antiferromagnetic Co/IrMn bilayers with noncollinear FM and unidirectional anisotropies shows a peculiar asymmetric magnetic behavior. The anisotropy configuration is set via a field cooling (FC) procedure with the magnetic field misaligned with respect to the easy magnetization direction of the FM layer. Different magnetization reversal modes are observed for either positive or negative angles with respect to the FC direction. The angular dependence of both coercivity and exchange bias also clearly displays the broken symmetry of the induced noncollinearity. Our findings are reproduced with a modified Stoner-Wohlfarth model including the induced anisotropy configuration. Our results highlight the importance of the relative angle between anisotropies in exchange bias systems, opening a new path for the tailoring of their magnetic properties.

  1. A new magnetic bar code system based on a magnetic anisotropy detection (abstract)

    NASA Astrophysics Data System (ADS)

    Sasada, I.; Watanabe, N.

    1996-04-01

    Magnetic bar codes can be used in unclean environments, where widely used optical bar code systems cannot be applied. Readout system for magnetic bar codes can also be made much simpler than optical ones. A new magnetic bar code system is proposed, in which binary information is coded in the sign of tilted angles of magnetic strips from a given standard direction. This scheme is unique compared to the conventional optical bar code, where width or space of the parallel pattern carries information, or an already reported magnetic bar code, where cross sectional shapes of pattern engraved in a ferromagnetic body carries information. Each of the magnetic strips brings about magnetic anisotropy due to its shape effect, hence angular dependent permeability in the proximity of the strip. The sign of the tilted angle of each magnetic strip is detected inductively through the angular dependent permeability by using a magnetic pickup head with a pair of cross-coupled figure-eight coils, where the sign of mutual inductance between the primary and the secondary figure-eight coil has one to one relationship to the sign of the tilted angle. Because the detection of the tilted angle is independent of scanning speed, variation in the scanning speed of the readout head does not affect the performance. In our preliminary study, the proposed magnetic bar code system was examined using pickup head consisting of a pair of cross-coupled 10-turn figure-eight coils which was embedded in a rectangular ferrite rod with cross-shape groove on the top surface of 6.5×3 mm dimension. The head was made thinner in the scanning direction to allow dense alignment of the pattern. Two kinds of pattern were made: the one was by aligning short amorphous wires (5 mm in length and 120 μm in diameter) on the plastic film and the other by using a thin (10 μm in thickness) copper film with tilted slits backed by an amorphous ribbon. These samples of magnetic bar code patterns were scanned with lift-off of 1 mm under the operating condition of 120 kHz and 200 mA. Amplitudes of the positive and the negative peak of the output voltage well exceeded 10 mV. Density of the pattern in the preliminary study was 7 bits for the bar code length of 2.6 cm. We will discuss several factors to make density of the pattern higher. Because the pickup coils can be assembled with planar coils and because the magnetic bar code itself is thin, the total system of this bar code scheme can be realized in thin form.

  2. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy.

    PubMed

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V; Samant, Mahesh G; Felser, Claudia; Parkin, Stuart S P

    2016-01-01

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible. PMID:26776829

  3. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

    PubMed Central

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V.; Samant, Mahesh G.; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn–Ge termination layers that are oppositely magnetized to the higher moment Mn–Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible. PMID:26776829

  4. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K.; Chshiev, Mairbek

    2016-01-01

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25~\\AA. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis which help understanding the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose super-exchange stabilized Co-graphene heterostructures with a robust out-of-plane constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point towards possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20 times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies.

  5. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt-Graphene Heterostructures.

    PubMed

    Yang, Hongxin; Vu, Anh Duc; Hallal, Ali; Rougemaille, Nicolas; Coraux, Johann; Chen, Gong; Schmid, Andreas K; Chshiev, Mairbek

    2016-01-13

    We report strongly enhanced perpendicular magnetic anisotropy (PMA) of Co films by graphene coating from both first-principles and experiments. Our calculations show that graphene can dramatically boost the surface anisotropy of Co films up to twice the value of its pristine counterpart and can extend the out-of-plane effective anisotropy up to unprecedented thickness of 25 Å. These findings are supported by our experiments on graphene coating on Co films grown on Ir substrate. Furthermore, we report layer-resolved and orbital-hybridization-resolved anisotropy analysis, which help understanding of the physical mechanisms of PMA and more practically can help design structures with giant PMA. As an example, we propose superexchange stabilized Co-graphene heterostructures with a robust constant effective PMA and linearly increasing interfacial anisotropy as a function of film thickness. These findings point toward possibilities to engineer graphene/ferromagnetic metal heterostructures with giant magnetic anisotropy more than 20-times larger compared to conventional multilayers, which constitutes a hallmark for future graphene and traditional spintronic technologies. PMID:26641927

  6. Strain and magnetic anisotropy of epitaxial Ni/Cu(001) nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Shin, S. W.; Jang, J. W.; Hwang, H. M.; Jang, H. K.; Lee, J.; Lee, J. H.; Song, J. H.; Choi, J.-Y.; Lee, H. S.

    2006-04-01

    The magnetic anisotropy of isolated epitaxial Ni/Cu(001) nanostructure on Si(001) has been studied together with structural characterization. The strain of the Ni nanostructure is released such that the perpendicular strain of nanostructure with tNi=10 nm decreases to -0.48% from -1.17% of film with the same thickness. Because of this, strain becomes the main factor in determining magnetic anisotropy of Ni/Cu nanostructure in the investigated Ni thickness range (tNi=4.5-10 nm).

  7. Entanglement and Sources of Magnetic Anisotropy in Radical Pair-Based Avian Magnetoreceptors

    NASA Astrophysics Data System (ADS)

    Hogben, Hannah J.; Biskup, Till; Hore, P. J.

    2012-11-01

    One of the principal models of magnetic sensing in migratory birds rests on the quantum spin dynamics of transient radical pairs created photochemically in ocular cryptochrome proteins. We consider here the role of electron spin entanglement and coherence in determining the sensitivity of a radical pair-based geomagnetic compass and the origins of the directional response. It emerges that the anisotropy of radical pairs formed from spin-polarized molecular triplets could form the basis of a more sensitive compass sensor than one founded on the conventional hyperfine-anisotropy model. This property offers new and more flexible opportunities for the design of biologically inspired magnetic compass sensors.

  8. Temperature dependence of perpendicular magnetic anisotropy in CoFeB thin films

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Barsukov, I.; Li, Jing; Gonçalves, A. M.; Kuo, C. C.; Farle, M.; Krivorotov, I. N.

    2016-04-01

    We study perpendicular magnetic anisotropy in thin films of Ta/Co20Fe60B20/MgO by ferromagnetic resonance and find a linear temperature dependence for the first and second order uniaxial terms from 5 to 300 K. Our data suggest the possible hybridization of Fe-O orbitals at the CoFeB/MgO interface for the origin of the first order anisotropy. However, we also find that non-interfacial contributions to the anisotropy are present. An easy-cone anisotropy is found for the entire temperature range in the narrow region of film thicknesses around the spin reorientation transition 1.2-1.35 nm.

  9. Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy

    DOE PAGESBeta

    Le, A.; Daughton, W.; Karimabadi, H.; Egedal, J.

    2016-03-16

    We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor.Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropicequations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fullymore » kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Here, implications for global modeling are discussed.« less

  10. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  11. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  12. Tuning the magnetic anisotropy of CoFeB grown on flexible substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Yuan-Yuan; Yang, Mei-Yin; Zhang, Bao; Yang, Guang; Wang, Shou-Guo; Wang, Kai-You

    2015-07-01

    The magnetic properties of CoFeB thin films grown on flexible polyimide substrates were investigated using a magneto-optical Kerr effect magnetometer. In-plane uniaxial magnetic anisotropy was observed in the virgin state. The strain induced by bending the flexible substrate was applied on the sample to change the magnetic properties of CoFeB. The strain induced uniaxial magnetic anisotropy changed linearly with the deformation by about 8.41 × 1041 erg/cm3 at 1% of deformation. Our results prove the magnetic properties of CoFeB grown on flexible polyimide substrate can be tuned effectively by bending, which could be important for future flexible spintronics. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922201 and 2015CB921401) and the National Natural Science Foundation of China (Grant Nos. 11174272, 11474272, 11274371, 51431009, and 61225021).

  13. Control of magnetic anisotropy in (111)SmAl2 films

    NASA Astrophysics Data System (ADS)

    Avisou, A.; Dufour, C.; Dumesnil, K.

    2008-04-01

    This study enlightens how the magnetic anisotropy might be tailored in magnetic films by the proper choice of the substrate. Single crystalline (111)SmAl2 films have been grown by molecular beam epitaxy on two substrates: (112¯0)Al2O3 and (111)CaF2. Hysteresis loops measured along the different crystallographic directions are the signature of the following: (i) a uniaxial anisotropy with an easy direction perpendicular to the (111) growth plane when the film is grown on Al2O3; (ii) a [111] hard magnetic direction when the film is grown on CaF2. This effect can be understood if we consider the influence of the thermal strains on the various energy terms which govern the easy magnetization direction. The relevant parameters to determine the easy magnetization direction are the relative sign and absolute values of the strains and of the magnetoelastic constants.

  14. Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films

    SciTech Connect

    Yanagihara, H. Utsumi, Y.; Niizeki, T. Inoue, J.; Kita, Eiji

    2014-05-07

    We investigated the dependencies of both the magnetization characteristics and the perpendicular magnetic anisotropy of Co{sub x}Fe{sub 3–x}O{sub 4}(001) epitaxial films (x = 0.5 and 0.75) on the growth conditions of the reactive magnetron sputtering process. Both saturation magnetization and the magnetic uniaxial anisotropy constant K{sub u} are strongly dependent on the reactive gas (O{sub 2}) flow rate, although there is little difference in the surface structures for all samples observed by reflection high-energy electron diffraction. In addition, certain dead-layer-like regions were observed in the initial stage of the film growth for all films. Our results suggest that the magnetic properties of Co{sub x}Fe{sub 3–x}O{sub 4} epitaxial films are governed by the oxidation state and the film structure at the vicinity of the interface.

  15. CoxC nanorod magnets: Highly magnetocrystalline anisotropy with lower Curie temperature for potential applications

    SciTech Connect

    El-Gendy, AA; Almugaiteeb, T; Carpenter, EE

    2013-12-01

    Magnetic CoxC nanorods with larger magnetocrystalline anisotropy of 5 x 10(5) J/m(3) as well as larger coercivity and lower Curie temperature are introduced. The particles have an average diameter of 8 nm and shows three different magnetic behaviors. The sample shows ferromagnetism up to 400 K, superparamagnetism at temperature > 400 K and magnets, magnetic sensors and contract agent for magnetic resonance imaging. (c) 2013 Elsevier B.V. All rights reserved.

  16. Perpendicular magnetic anisotropy in composite MgO/CoFeB/Ta/[Co/Pd]n structures

    NASA Astrophysics Data System (ADS)

    Garcia-Vazquez, Valentin; Chang, Yao-Jen; Canizo-Cabrera, A.; Garzon-Roman, Abel; Wu, Te-ho

    2016-02-01

    The impact of a non-magnetic Ta spacer layer on the perpendicular magnetic anisotropy (PMA) of composite magnetic structures constituted by ultra-thin Co/Pd multilayers (MLs) and MgO/CoFeB was studied. Composite structures lacking a Ta layer present in-plane magnetic anisotropy. The strong perpendicular anisotropy observed in sole Co/Pd MLs is not sufficient to pull the magnetic moment out of the film plane, not even after annealing at 300 or 350 °C. PMA with squareness values close to unity and annealing stability up to 350 °C is observed after the insertion of an ultra-thin Ta layer. Our study demonstrates that Ta layer is essential for obtaining perpendicular magnetic axis in MgO/CoFeB/Ta/[Co/Pd]6. The exchange coupling between the MgO/CoFeB bilayer and the Co/Pd MLs is ferromagnetic with sharp switching characteristics. Perpendicular composite structures with sharp magnetization reversal and annealing stability are relevant in perpendicular CoFeB-based magnetic tunnel junctions for the development of gigabit-scale nonvolatile memory.

  17. A large scale coherent magnetic field: interactions with free streaming particles and limits from the CMB

    SciTech Connect

    Adamek, Julian; Durrer, Ruth; Fenu, Elisa; Vonlanthen, Marc E-mail: ruth.durrer@unige.ch E-mail: marc.vonlanthen@unige.ch

    2011-06-01

    We study a homogeneous and nearly-isotropic Universe permeated by a homogeneous magnetic field. Together with an isotropic fluid, the homogeneous magnetic field, which is the primary source of anisotropy, leads to a plane-symmetric Bianchi I model of the Universe. However, when free-streaming relativistic particles are present, they generate an anisotropic pressure which counteracts the one from the magnetic field such that the Universe becomes isotropized. We show that due to this effect, the CMB temperature anisotropy from a homogeneous magnetic field is significantly suppressed if the neutrino masses are smaller than 0.3 eV.

  18. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  19. FIELD EVALUATION OF DIPOLE METHOD TO MEASURE AQUIFER ANISOTROPY

    EPA Science Inventory

    The ultimate size of a three-dimensional groundwater circulation cell surrounding a vertical circulation well (VCW) is a strong function of the aquifer hydraulic anisotropy, the ratio of the hydraulic conductivity in the horizontal direction to that in the vertical direction. In ...

  20. A simple and effective method for quantifying spatial anisotropy of time series of precipitation fields

    NASA Astrophysics Data System (ADS)

    Niemi, Tero J.; Kokkonen, Teemu; Seed, Alan W.

    2014-07-01

    The spatial shape of a precipitation event has an important role in determining the catchment's hydrological response to a storm. To be able to generate stochastic design storms with a realistic spatial structure, the anisotropy of the storm has to be quantified. In this paper, a method is proposed to estimate the anisotropy of precipitation fields, using the concept of linear Generalized Scale Invariance (GSI). The proposed method is based on identifying the values of GSI parameters that best describe isolines of constant power on the two-dimensional power spectrum of the fields. The method is evaluated using two sets of simulated fields with known anisotropy and a measured precipitation event with an unknown anisotropy from Brisbane, Australia. It is capable of accurately estimating the anisotropy parameters of simulated nonzero fields, whereas introducing the rain-no rain intermittency alters the power spectra of the fields and slightly reduces the accuracy of the parameter estimates. The parameters estimated for the measured event correspond well with the visual observations on the spatial structure of the fields. The method requires minimum amount of decision making and user interaction, making it suitable for analyzing anisotropy of storm events consisting of long time series of fields with a changing spatial structure.

  1. Diffusion of charged particles in a random magnetic field.

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1973-01-01

    When charged particles move in a random magnetic field superposed upon a relatively large constant field, their pitch-angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch-angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.

  2. Unidirectional magnetic anisotropy in amorphous Tb-Fe films

    SciTech Connect

    Shipil`, E.V.; Guslienko, K.Yu.; Szymanski, B.

    1994-03-01

    The torque curves (TC) of amorphous Tb-Fe films with the thicknesses d = 40--80 nm and compositions near room temperature compensation point were experimentally investigated. The films were evaporated by electron-beam method. Unidirectional (exchange) anisotropy revealed in TC hysteresis is detected and explained by the strong chemical inhomogeneities of the films. The Fe inclusions are the characteristic peculiarity of Tb-Fe films. Their dimensions are determined by the preparation technique. The exchange filed on Tb ions is estimated by using the temperature dependence of the TC amplitude as 1.1--1.3 {center_dot}{sup 6} Oe.

  3. Induced magnetic anisotropy in Si-free nanocrystalline soft magnetic materials: A transmission x-ray diffraction study

    SciTech Connect

    Parsons, R. Suzuki, K.; Yanai, T.; Kishimoto, H.; Kato, A.; Ohnuma, M.

    2015-05-07

    In order to better understand the origin of field-induced anisotropy (K{sub u}) in Si-free nanocrystalline soft magnetic alloys, the lattice spacing of the bcc-Fe phase in nanocrystalline Fe{sub 94−x}Nb{sub 6}B{sub x} (x = 10, 12, 14) alloys annealed under an applied magnetic field has been investigated by X-ray diffraction in transmission geometry (t-XRD) with the diffraction vector parallel and perpendicular to the field direction. The saturation magnetostriction (λ{sub s}) of nanocrystalline Fe{sub 94−x}Nb{sub 6}B{sub x} was found to increase linearly with the volume fraction of the residual amorphous phase and is well described by taking into account the volume-weighted average of two local λ{sub s} values for the bcc-Fe nanocrystallites (−5 ± 2 ppm) and the residual amorphous matrix (+8 ± 2 ppm). The lattice distortion required to produce the measured K{sub u} values (∼100 J/m{sup 3}) was estimated via the inverse magnetostrictive effect using the measured λ{sub s} values and was compared to the lattice spacing estimations made by t-XRD. The lattice strain required to produce K{sub u} under the magnetoelastic model was not observed by the t-XRD experiments and so the findings of this study suggest that the origin of magnetic field induced K{sub u} cannot be explained through the magnetoelastic effect.

  4. Magnetic and structural anisotropies in laser ablated epitaxial thin films of full-Heusler alloy Co2MnSi on SrTiO3

    NASA Astrophysics Data System (ADS)

    Pandey, Himanshu; Rout, P. K.; Budhani, R. C.

    2013-03-01

    We present the thickness dependent magnetic properties of laser ablated epitaxial Co2MnSi (CMS)Heusler alloy thin films grown on (001) oriented SrTiO3 substrate. In order to study the intrinsic magnetic anisotropy, a highly ordered single crystal thin film of Heusler alloys is necessary. This provides a unique opportunity to determine the behavior of magnetization reversal, and affect important properties such as the coercive field and remanence. The two important sources of the magnetic anisotropy are the magnetic dipolar interaction and the spin-orbit interaction. The strain in films due to the lattice mismatch with the substrate affects the shape anisotropy while spin-orbit coupling changes magneto-crystalline anisotropy. We have observed an in-plane biaxial compressive strain in the films which relaxes with increasing film thickness. Although the hysteresis loops show an in-plane easy axis for all films, the single-domain phase diagram reveals a gradual transition from in-plane to out-of-plane transition of magnetization as the film thickness is decreased. The magnetization starts to cant as film thickness start to decrease and we found a canting angle of ~ 31.8° with respect to the film plane for our thinnest 5 nm CMS films. We acknowledge support from DIT, DST, CSIR and IIT Kanpur.

  5. Constituents of magnetic anisotropy and a screening of spin-orbit coupling in solids

    SciTech Connect

    Antropov, Vladimir; Ke, Liqin; Aberg, Daniel

    2014-07-11

    Using quantum mechanical perturbation theory (PT) we analyze how the energy of perturbation of different orders is renormalized in solids. We test the validity of PT analysis by considering a specific case of spin-orbit coupling as a perturbation. We further compare the relativistic energy and the magnetic anisotropy from the PT approach with direct density functional calculations in FePt, CoPt, FePd, MnAl, MnGa, FeNi, and tetragonally strained FeCo. In addition using decomposition of anisotropy into contributions from individual sites and different spin components we explain the microscopic origin of high anisotropy in FePt and CoPt magnets.

  6. Structural controlled magnetic anisotropy in Heusler L1{sub 0}-MnGa epitaxial thin films

    SciTech Connect

    Wang Kangkang; Lu Erdong; Smith, Arthur R.; Knepper, Jacob W.; Yang Fengyuan

    2011-04-18

    Ferromagnetic L1{sub 0}-MnGa thin films have been epitaxially grown on GaN, sapphire, and MgO substrates using molecular beam epitaxy. Using diffraction techniques, the epitaxial relationships are determined. It is found that the crystalline orientation of the films differ due to the influence of the substrate. By comparing the magnetic anisotropy to the structural properties, a clear correlation could be established indicating that the in-plane and out-of-plane anisotropy is directly determined by the crystal orientation of the film and could be controlled via selection of the substrates. This result could be helpful in tailoring magnetic anisotropy in thin films for spintronic applications.

  7. Anisotropy of the magnetic properties and the electronic structure of transition-metal diborides

    NASA Astrophysics Data System (ADS)

    Fedorchenko, A. V.; Grechnev, G. E.; Panfilov, A. S.; Logosha, A. V.; Svechkarev, I. V.; Filippov, V. B.; Lyashchenko, A. B.; Evdokimova, A. V.

    2009-11-01

    The temperature dependences of the magnetic susceptibility χ and its anisotropy Δχ =χ∥-χ⊥ have been measured for hexagonal single crystals of transition-metal diborides MB2 (M =Sc,Ti,V,Zr,Hf) in the temperature interval 4.2-300K. It is found that the anisotropy Δχ is weakly temperature-dependent, a nonmonotonic function of the filling of the hybridized p -d conduction band, and largest for group-IV transition metals. First-principles calculations of the electronic structure of diborides and the values of the paramagnetic contributions (spin and Van Vleck) to their susceptibility show that the behavior of the magnetic anisotropy is due to the competition between Van Vleck paramagnetism and orbital diamagnetism of the conduction electrons.

  8. Estimation of magnetic moment and anisotropy energy of magnetic markers for biosensing application

    NASA Astrophysics Data System (ADS)

    Enpuku, K.; Sasayama, T.; Yoshida, T.

    2016-05-01

    We present a method to evaluate the magnetic moment (m) and the anisotropy energy (E) of magnetic markers, which are the key parameters employed in biosensing applications. The distributions of the m and E values in the marker are evaluated by analyzing the static magnetization (M-H) curve of the suspended markers and the frequency dependence of the AC susceptibility of the immobilized markers, respectively. Then, we obtain the relationship between m and E. In the experiment, four markers made of multicore and single core nanoparticles are examined. We obtain distributions of the m and E values, which show the particular characteristics of each marker. Although the m and E values are widely distributed in the marker, a clear relationship is obtained between the values. Therefore, the obtained m-E curve, as well as the distribution of the m and E values, provides a framework to discuss the dynamic behavior of the immobilized markers. The difference in the estimated m-E curves between the markers is also discussed.

  9. Investigating the anisotropy of magnetic susceptibility and other rock magnetic properties of the Beaver River Diabase in northeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Hariri, Samer H.

    The Beaver River Diabase (BRD) is a series of mafic dikes and sills within the Beaver Bay Complex (BBC) of northern Minnesota, which formed during the development of the ~1.1 Ga Midcontinent Rift (MCR). The BRD is one of the youngest and most extensive intrusive phases of the BBC. The BRD dikes and sills were emplaced into the medial levels of the 6-10 kilometer-thick North Shore Volcanic Group and occur over an arcuate area extending 120 by 20 kilometers. The BRD is composed of fine- to medium-grained ophitic olivine gabbro and does not display obvious foliation or lineation features and rarely displays modal layering. Without obvious magmatic internal structures, it is difficult to determine emplacement properties such as flow direction using standard geologic mapping or petrographic techniques. For this reason, we measured the anisotropy of magnetic susceptibility (AMS), in conjunction with other rock magnetic properties, to better understand the BRD's emplacement and deformation history in the context of the MCR. AMS measures the directional dependence of low-field magnetic susceptibility, and is used to infer a shape-preferred orientation of magnetic minerals within a rock, which can be related to specific emplacement mechanisms (e.g. directional flow or settling). Preliminary analysis of AMS at 20 sites within the southern half of the BRD (with 4-7 samples per site) shows maximum susceptibility values between 4.48 x 10-6 and 2.22 x 10-4 m 3/kg (1165 and 65400 ?SI). Most specimens display nearly isotropic AMS ellipsoids (Pj < 1.15) with minor degrees of prolateness and oblateness. However, about 20% of specimens have higher anisotropies (Pj between 1.15 and 1.67) and higher degrees of oblateness and prolateness. Variations in AMS properties may reflect differences in concentration and composition of magnetic minerals, as well as emplacement mechanisms. Measurements of susceptibility as a function of temperature yield Curie points between 470 and 570 C, indicating the presence of low-titanium titanomagnetite. Major hysteresis loops show coercivities between 1 and 25 mT, consistent with titanomagnetite as the dominant remanence carrier.

  10. Reconnection of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Birn, J.; Priest, E. R.

    2007-01-01

    Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

  11. Rotation of sickle cells in homogeneous magnetic fields.

    PubMed Central

    Riberiro, P C; Davidovich, M A; Wajnberg, E; Bemski, G; Kischinevsky, M

    1981-01-01

    Deoxygenated sickle cells (HbS) have been shown to orient in homogeneous magnetic fields because of magnetic anisotropy of the hemes. The time of rotation is proportional to 1/H2 and is in agreement with theory. Structural information concerning the orientation of HbS molecules in the fibers is obtained from these experiments and is shown to agree substantially with existing models. PMID:7306665

  12. Leptogenesis and primordial magnetic fields

    SciTech Connect

    Long, Andrew J.; Sabancilar, Eray; Vachaspati, Tanmay E-mail: eray.sabancilar@asu.edu

    2014-02-01

    The anomalous conversion of leptons into baryons during leptogenesis is shown to produce a right-handed helical magnetic field; in contrast, the magnetic field produced during electroweak baryogenesis is known to be left-handed. If the cosmological medium is turbulent, the magnetic field evolves to have a present day coherence scale ∼ 10 pc and field strength ∼ 10{sup −18} Gauss. This result is insensitive to the energy scale at which leptogenesis took place. Observations of the amplitude, coherence scale, and helicity of the intergalactic magnetic field promise to provide a powerful probe of physics beyond the Standard Model and the very early universe.

  13. Observations of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.

  14. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  15. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  16. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  17. Van der Waals torque induced by external magnetic fields

    SciTech Connect

    Esquivel-Sirvent, R.; Cocoletzi, G. H.; Palomino-Ovando, M.

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III–IV semiconductors such as InSb, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of InSb. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of InSb increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropicmaterials when the magnetic fields is close to 1 T.

  18. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  19. Electric-field-driven magnetization reversal in square-shaped nanomagnet-based multiferroic heterostructure

    SciTech Connect

    Peng, Ren-Ci; Nan, Ce-Wen E-mail: cwnan@tsinghua.edu.cn; Wang, J. J. E-mail: cwnan@tsinghua.edu.cn; Chen, Long-Qing; Hu, Jia-Mian

    2015-04-06

    Based on phase field modeling and thermodynamic analysis, purely electric-field-driven magnetization reversal was shown to be possible in a multiferroic heterostructure of a square-shaped amorphous Co{sub 40}Fe{sub 40}B{sub 20} nanomagnet on top of a ferroelectric layer through electrostrain. The reversal is made possible by engineering the mutual interactions among the built-in uniaxial magnetic anisotropy, the geometry-dependent magnetic configuration anisotropy, and the magnetoelastic anisotropy. Particularly, the incorporation of the built-in uniaxial anisotropy made it possible to reverse magnetization with one single unipolar electrostrain pulse, which is simpler than previous designs involving the use of bipolar electrostrains and may alleviate ferroelectric fatigue. Critical conditions for triggering the magnetization reversal are identified.

  20. Domain configurations in Co/Pd and L10-FePt nanowire arrays with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ho, Pin; Tu, Kun-Hua; Zhang, Jinshuo; Sun, Congli; Chen, Jingsheng; Liontos, George; Ntetsikas, Konstantinos; Avgeropoulos, Apostolos; Voyles, Paul M.; Ross, Caroline A.

    2016-02-01

    Perpendicular magnetic anisotropy [Co/Pd]15 and L10-FePt nanowire arrays of period 63 nm with linewidths 38 nm and 27 nm and film thickness 27 nm and 20 nm respectively were fabricated using a self-assembled PS-b-PDMS diblock copolymer film as a lithographic mask. The wires are predicted to support Néel walls in the Co/Pd and Bloch walls in the FePt. Magnetostatic interactions from nearest neighbor nanowires promote a ground state configuration consisting of alternating up and down magnetization in adjacent wires. This was observed over ~75% of the Co/Pd wires after ac-demagnetization but was less prevalent in the FePt because the ratio of interaction field to switching field was much smaller. Interactions also led to correlations in the domain wall positions in adjacent Co/Pd nanowires. The reversal process was characterized by nucleation of reverse domains, followed at higher fields by propagation of the domains along the nanowires. These narrow wires provide model system for exploring domain wall structure and dynamics in perpendicular anisotropy systems.Perpendicular magnetic anisotropy [Co/Pd]15 and L10-FePt nanowire arrays of period 63 nm with linewidths 38 nm and 27 nm and film thickness 27 nm and 20 nm respectively were fabricated using a self-assembled PS-b-PDMS diblock copolymer film as a lithographic mask. The wires are predicted to support Néel walls in the Co/Pd and Bloch walls in the FePt. Magnetostatic interactions from nearest neighbor nanowires promote a ground state configuration consisting of alternating up and down magnetization in adjacent wires. This was observed over ~75% of the Co/Pd wires after ac-demagnetization but was less prevalent in the FePt because the ratio of interaction field to switching field was much smaller. Interactions also led to correlations in the domain wall positions in adjacent Co/Pd nanowires. The reversal process was characterized by nucleation of reverse domains, followed at higher fields by propagation of the domains along the nanowires. These narrow wires provide model system for exploring domain wall structure and dynamics in perpendicular anisotropy systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08865h

  1. Effect of annealing conditions on the perpendicular magnetic anisotropy of Ta/CoFeB/MgO multilayers

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Hao, Liang; Cao, Jiangwei

    2016-04-01

    Films with a structure of Ta (5 nm)/Co20Fe60B20 (0.8-1.5 nm)/MgO (1 nm)/Ta (1 nm) were deposited on Corning glass substrates by magnetron sputtering. The as-deposited films with CoFeB layer thickness from 0.8 to 1.3 nm show perpendicular magnetic anisotropy (PMA). After annealing at a proper temperature, the PMA of the films can be enhanced remarkably. A maximum effective anisotropy field of up to 9 kOe was obtained for 1.0- and 1.1-nm-thick CoFeB layers annealed at an optimum temperature of 300 °C. A 4-kOe magnetic field was applied during annealing to study its effect on the PMA of the CoFeB layers. The results confirmed that applying a perpendicular magnetic field during annealing did not improve the maximum PMA of the films, but it did enhance the PMA of the thinner films at a lower annealing temperature.

  2. Magnetic anisotropy in Ta/CoFeB/MgO investigated by x-ray magnetic circular dichroism and first-principles calculation

    SciTech Connect

    Kanai, Shun; Tsujikawa, Masahito; Shirai, Masafumi; Miura, Yoshio; Matsukura, Fumihiro Ohno, Hideo

    2014-12-01

    We study the spin and orbital magnetic moments in Ta/Co{sub 0.4}Fe{sub 0.4}B{sub 0.2}/MgO by x-ray magnetic circular dichroism measurements as well as first-principles calculations, in order to clarify the origin of the perpendicular magnetic anisotropy. Both experimental and theoretical results show that orbital magnetic moment of Fe is more anisotropic than that of Co with respect to the magnetization direction. The anisotropy is larger for thinner CoFeB, indicating that Fe atoms at the interface with MgO contribute more than Co to the observed perpendicular magnetic anisotropy.

  3. Crystallographic Texture and Magnetic Anisotropy and Their Influence Upon Microwave Devices

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Chen, Y.; Chen, Z.

    2013-07-01

    The role of magnetic and structural anisotropies in determining the radio-frequency properties of ferrites and their performance characteristics when integrated within high-frequency devices are explored. Both thin-film epitaxy and bulk polycrystalline texture are discussed, defining viable paths to realizing the crystallographic texture required for device integration.

  4. Room-temperature perpendicular magnetic anisotropy of MgO/Fe/MgO ultrathin films

    SciTech Connect

    Kozioł-Rachwał, A.; Ślęzak, T.; Przewoźnik, J.; Skowroński, W.; Stobiecki, T.; Wilgocka-Ślęzak, D.; Qin, Q. H.; Dijken, S. van; Korecki, J.

    2013-12-14

    We used the anomalous Hall effect to study the magnetic properties of MgO/Fe(t)/MgO(001) structures in which the Fe thickness t ranged from 4 Å to 14 Å. For the iron deposited at 140 K, we obtained perpendicular magnetization at room temperature below the critical thickness of t{sub c} = (9 ± 1) Å. In the vicinity of t{sub c}, the easy magnetization axis switched from an out-of-plane orientation to an in-plane orientation, and the observed spin-reorientation transition was considered in terms of the competition among different anisotropies. The perpendicular magnetization direction was attributed to magnetoelastic anisotropy. Finally, the temperature-dependent spin-reorientation transition was analyzed for Fe thicknesses close to t{sub c}.

  5. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  6. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  7. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  8. Fabrics revealed in basal glacier ice through anisotropy of magnetic susceptibility data

    NASA Astrophysics Data System (ADS)

    Fleming, E.; Lovell, H.; Benn, D.; Stevenson, C.; Hambrey, M.; Petronis, M. S.; Fairchild, I. J.

    2012-12-01

    The properties of basal ice are important for understanding interactions between glaciers and their substrates and is therefore of significant importance for understanding glacier motion and the processes operating at the glacier bed. Anisotropy of magnetic susceptibility (AMS) uses the magnetic properties of minerals to reveal subtle fabrics. AMS can provide considerable information regarding the kinematics of deformation within rocks and sediment and has recently been applied to glacial geology to investigate subglacially deformed sediments. In this study, we present, as far as we are aware, the first AMS study from basal ice to investigate deformation within a glacier. Basal ice samples, field descriptions and structural measurements were collected from north-eastern and south-western exposures at the tidewater margin of Tunabreen, a surging glacier in Svalbard. AMS data indicate that the magnetic lineations (k1) are aligned parallel or sub-parallel to glacier flow direction from aerial photographs and parallel to the direction of extension and shear revealed from structural observations at the ice outcrop (folds, lineations, macrofabric). The magnetic foliation, given by the K1/K2 plane, dips gently up glacier, generally parallel to visible foliations within the ice. The magnetic fabric is interpreted as being formed by a preferred alignment of paramagnetic and ferromagnetic grains within detrital debris located at ice crystal boundaries. We hypothesise that as the glacier flowed, simple shear affected the basal ice causing stretching and extension. As such, detrital minerals in the spaces between ice crystals rotated into a preferred orientation reflecting the strain. On the north-western section, the imbrications of magnetic lineations away from the glacier margins suggest that, as well as longitudinal extension, there is a component of lateral shear. In contrast, at the south-eastern margin, the divergence of magnetic lineation away from flow reveals lateral spreading due to interactions between an advancing surge front into an irregular fjord bathymetry. The results suggest that AMS can be used as a petrofabric indicator in ice and subsequently has potential to be used as a tool for measuring strain direction and possibly magnitude within basal ice.a) The visualisation of a magnetic fabric through a susceptibility ellipsoid showing the K1 (long), K2 (medium) and K3 (short) susceptibility axes and relationships to glacier flow. b) The plotting of AMS data on an equal area, lower hemisphere stereonet.

  9. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H.

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  10. Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy

    SciTech Connect

    Zhao, Zhengyang; Jamali, Mahdi; Smith, Angeline K.; Wang, Jian-Ping

    2015-03-30

    Spin-orbit torques are studied in Ta/TbFeCo/MgO patterned structures, where the ferrimagnetic material TbFeCo provides a strong bulk perpendicular magnetic anisotropy (bulk-PMA) independent of the interfaces. The current-induced magnetization switching in TbFeCo is investigated in the presence of a perpendicular, longitudinal, or transverse field. An unexpected partial-switching phenomenon is observed in the presence of a transverse field unique to our bulk-PMA material. It is found that the anti-damping torque related with spin Hall effect is very strong, and a spin Hall angle is determined to be 0.12. The field-like torque related with Rashba effect is unobservable, suggesting that the interface play a significant role in Rashba-like torque.

  11. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous ~ N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from ~ E-W in the Patagonian Andes to ~ N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled the Late Cretaceous to Cenozoic evolution of the Magallanes fold-and-thrust belt, yielding the observed deformation pattern.

  12. Seismic anisotropy and anisotropy of magnetic susceptibility (AMS) in the Pelona-Orocopia-Rand schist in the Mojave region of southern California

    NASA Astrophysics Data System (ADS)

    Brownlee, S. J.; Hacker, B. R.; Feinberg, J. M.; Chapman, A. D.; Saleeby, J.; Seward, G. G.

    2013-12-01

    Our current interpretation of the composition and elastic properties of the middle and lower crust depends strongly on seismic observations. Advances in seismic methods are leading to more studies focused on seismic anisotropy in the lower crust. With increasing observations of lower crustal anisotropy, the need for a more comprehensive characterization of the seismic properties of candidate lower crustal materials is growing. In addition, links between seismic anisotropy and other geophysical parameters need to be investigated. This work combines measurements of anisotropy of magnetic susceptibility (AMS) and electron backscatter diffraction (EBSD)-based calculations of seismic anisotropy in samples of the Pelona-Orocopia-Rand (POR) schist from the Mojave region of southern California. The POR schist is thought to comprise much of the lower crust of southern California, and is one of the archetypes for understanding shallow slab subduction and subduction erosion. The goals of this study are to characterize the: 1) seismic anisotropy of the POR schist and its relationship to observed crustal anisotropy in the region, and 2) relationship between seismic anisotropy and AMS. Velocity anisotropy in individual samples of the POR schist ranges from ~2-11% in VP and ~3-15% in VS, which is consistent with results of Porter et al. (2011) for lower crustal anisotropy in southern California from analysis of receiver functions. When all schist samples are averaged together to approximate the bulk schist, the velocity anisotropy is significantly reduced to ~6% in Vs and ~8% in Vs, lower than the average values inferred by Porter et al. (2011). AMS results indicate that the directions of maximum and minimum susceptibility are subparallel to Vp-max and Vp-min, respectively (Figure 1). The magnitude of anisotropy in AMS does not show as strong a correlation with magnitude of seismic anisotropy, and may have a stronger dependence on magnetic mineralogy. These results indicate that AMS measurements may provide a proxy for maximum and minimum Vp directions. Figure 1. Maximum and minimum AMS directions (filled symbols) correlate with directions of maximum and minimum Vp (open symbols). Both properties have maxima within the foliation, ~parallel to lineation, and minima perpendicular to foliation. Equal area, lower hemisphere projection.

  13. Universal distribution of magnetic anisotropy of impurities in ordered and disordered nanograins

    NASA Astrophysics Data System (ADS)

    Szilva, A.; Balla, P.; Eriksson, O.; Zaránd, G.; Szunyogh, L.

    2015-04-01

    We examine the distribution of the magnetic anisotropy experienced by a magnetic impurity embedded in a metallic nanograin. As an example of a generic magnetic impurity with a partially filled d shell, we study the case of d1 impurities embedded into ordered and disordered Au nanograins, described in terms of a realistic band structure. Confinement of the electrons induces a magnetic anisotropy that is large, and can be characterized by five real parameters, coupling to the quadrupolar moments of the spin. In ordered (spherical) nanograins, these parameters exhibit symmetrical structures and reflect the symmetry of the underlying lattice, while for disordered grains they are randomly distributed and, for stronger disorder, their distribution is found to be characterized by random matrix theory. As a result, the probability of having small magnetic anisotropies KL is suppressed below a characteristic scale ΔE, which we predict to scale with the number of atoms N as ΔE˜1 /N3 /2 . This gives rise to anomalies in the specific heat and the susceptibility at temperatures T ˜ΔE and produces distinct structures in the magnetic excitation spectrum of the clusters that should be possible to detect experimentally.

  14. Magnetic state of pyrochlore Cd(2)Os(2)O(7) emerging from strong competition of ligand distortions and longer-range crystalline anisotropy.

    PubMed

    Bogdanov, Nikolay A; Maurice, Rémi; Rousochatzakis, Ioannis; van den Brink, Jeroen; Hozoi, Liviu

    2013-03-22

    By many-body quantum-chemical calculations, we investigate the role of two structural effects--local ligand distortions and the anisotropic Cd-ion coordination--on the magnetic state of Cd(2)Os(2)O(7), a spin S = 3/2 pyrochlore. We find that these effects strongly compete, rendering the magnetic interactions and ordering crucially dependent on these geometrical features. Without trigonal distortions, a large easy-plane magnetic anisotropy develops. Their presence, however, reverses the sign of the zero-field splitting and causes a large easy-axis anisotropy (D ≃ -6.8 meV), which in conjunction with the antiferromagnetic exchange interaction (J ≃ 6.4 meV) stabilizes an all-in-all-out magnetic order. The competition uncovered here is a generic feature of pyrochlore magnets. PMID:25166841

  15. Investigating the anisotropy of magnetic susceptibility and other rock magnetic properties of the Beaver River Diabase in northeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Hariri, S. H.; Brownlee, S. J.; Feinberg, J. M.; Jackson, M. J.; Miller, J. D.

    2013-12-01

    The Beaver River Diabase (BRD) is a series of mafic dikes and sills within the Beaver Bay Complex (BBC) of northern Minnesota, which formed during the development of the ~1.1 Ga Midcontinent Rift (MCR). The BRD is one of the youngest and most extensive intrusive phases of the BBC. The BRD dikes and sills were emplaced into the medial levels of the 6-10 kilometer-thick North Shore Volcanic Group and occur over an arcuate area extending 120 by 20 kilometers. The BRD is composed of fine- to medium-grained ophitic olivine gabbro and does not display obvious foliation or lineation features and rarely displays modal layering. Without obvious magmatic internal structures, it is difficult to determine emplacement properties such as flow direction using standard geologic mapping or petrographic techniques. For this reason, we measured the anisotropy of magnetic susceptibility (AMS), in conjunction with other rock magnetic properties, to better understand the BRD's emplacement and deformation history in the context of the MCR. AMS measures the directional dependence of low-field magnetic susceptibility, and is used to infer a shape-preferred orientation of magnetic minerals within a rock, which can be related to specific emplacement mechanisms (e.g. directional flow or settling). Preliminary analysis of AMS at 20 sites within the southern half of the BRD (with 4-7 samples per site) shows maximum susceptibility values between 4.48 x 10-6 and 2.22 x 10-4 m3/kg (1165 and 65400 ?SI). Most specimens display nearly isotropic AMS ellipsoids (Pj < 1.15) with minor degrees of prolateness and oblateness. However, about 20% of specimens have higher anisotropies (Pj between 1.15 and 1.67) and higher degrees of oblateness and prolateness. Variations in AMS properties may reflect differences in concentration and composition, as well as emplacement mechanisms. Measurements of susceptibility as a function of temperature yield Curie points between 470 and 570 C, indicating a presence of low-titanium titanomagnetite. Major hysteresis loops and first order reversal curve (FORC) experiments show coercivities between 1 and 125 mT, with a bulk average microcoercivity of 25 mT, consistent with titanomagnetite as the dominant remanence carrier. Further analysis will also investigate the relationship of AMS to rock fabric by measuring mineral crystal preferred orientations using electron backscatter diffraction. These measurements will supplement the AMS data, and provide links to the role of microstructure, texture and mineralogy in AMS.

  16. Repeatability of functional anisotropy in navigated transcranial magnetic stimulation--coil-orientation versus response.

    PubMed

    Kallioniemi, Elisa; Könönen, Mervi; Julkunen, Petro

    2015-06-17

    Transcranial magnetic stimulation (TMS) can be used for evaluating the function of motor pathways. According to the principles of electromagnetism and electrophysiology, TMS activates those neurons that are suitably oriented with respect to the TMS-induced electric field. We hypothesized that TMS could potentially be able to evaluate the neuronal structure, although until now, this putative application has not been exploited. We have developed a TMS-based method to evaluate the function and structure of the motor cortex concurrently in a quantitative manner. This method produced a measure, the anisotropy index (AI), which is based on the motor-evoked potentials induced at different coil orientations. The AI was demonstrated to exhibit an association with both motor cortex excitability and neuronal structure. In the present study, we evaluated the repeatability (intrasession and intersession) of AI in three consecutive measurements. In addition, we studied the repeatability of the optimal coil angle in inducing motor-evoked potentials. Two of the measurements were conducted on the same stimulation target and the third on a remapped target. The coefficient of repeatability of the AI was 0.022 for intrasession and 0.040 for intersession assessments. For the optimal stimulation angle, the coefficients of repeatability were 3.7° and 5.1°, respectively. Both the AI and the optimal stimulation angle demonstrated good repeatability (Cronbach's α>0.760). In conclusion, the results indicate that the AI can provide a reliable estimation of local functional anisotropy changes under conditions affecting the cortex, such as during stroke or focal dysplasia. PMID:26011386

  17. The Sun's global magnetic field.

    PubMed

    Mackay, Duncan H

    2012-07-13

    Our present-day understanding of solar and stellar magnetic fields is discussed from both an observational and theoretical viewpoint. To begin with, observations of the Sun's large-scale magnetic field are described, along with recent advances in measuring the spatial distribution of magnetic fields on other stars. Following this, magnetic flux transport models used to simulate photospheric magnetic fields and the wide variety of techniques used to deduce global coronal magnetic fields are considered. The application and comparison of these models to the Sun's open flux, hemispheric pattern of solar filaments and coronal mass ejections are then discussed. Finally, recent developments in the construction of steady-state global magnetohydrodynamic models are considered, along with key areas of future research. PMID:22665897

  18. Vestibular stimulation by magnetic fields.

    PubMed

    Ward, Bryan K; Roberts, Dale C; Della Santina, Charles C; Carey, John P; Zee, David S

    2015-04-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  19. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  20. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  1. Magnetic anisotropy engineering: Single-crystalline Fe films on ion eroded ripple surfaces

    SciTech Connect

    Liedke, M. O.; Koerner, M.; Lenz, K.; Grossmann, F.; Facsko, S.; Fassbender, J.

    2012-06-11

    We present a method to preselect the direction of an induced in-plane uniaxial magnetic anisotropy (UMA) in thin single-crystalline Fe films on MgO(001). Ion beam irradiation is used to modulate the MgO(001) surface with periodic ripples on the nanoscale. The ripple direction determines the orientation of the UMA, whereas the intrinsic cubic anisotropy of the Fe film is not affected. Thus, it is possible to superimpose an in-plane UMA with a precision of a few degrees - a level of control not reported so far that can be relevant for example in spintronics.

  2. Pressure anisotropy generation in a magnetized plasma configuration with a shear flow velocity

    NASA Astrophysics Data System (ADS)

    De Camillis, S.; Cerri, S. S.; Califano, F.; Pegoraro, F.

    2016-04-01

    The nonlinear evolution of the Kelvin Helmholtz instability in a magnetized plasma with a perpendicular flow close to, or in, the supermagnetosonic regime can produce a significant parallel-to-perpendicular pressure anisotropy. This anisotropy, localized inside the flow shear region, can make the configuration unstable either to the mirror or to the firehose instability and, in general, can affect the development of the KHI. The interface between the solar wind and the Earth’s magnetospheric plasma at the magnetospheric equatorial flanks provides a relevant setting for the development of this complex nonlinear dynamics.

  3. Spin-Fluctuation Mechanism of Anomalous Temperature Dependence of Magnetocrystalline Anisotropy in Itinerant Magnets

    NASA Astrophysics Data System (ADS)

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-01

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1 -xCox )2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit "hot spots" by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization due to these peculiar electronic mechanisms, which contrast starkly with those assumed in existing models.

  4. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    DOE PAGESBeta

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  5. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    SciTech Connect

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  6. Theoretical limit of the minimal magnetization switching field and the optimal field pulse for Stoner particles.

    PubMed

    Sun, Z Z; Wang, X R

    2006-08-18

    The theoretical limit of the minimal magnetization switching field and the optimal field pulse design for uniaxial Stoner particles are investigated. Two results are obtained. One is the existence of a theoretical limit of the smallest magnetic field out of all possible designs. It is shown that the limit is proportional to the damping constant in the weak damping regime and approaches the Stoner-Wohlfarth (SW) limit at large damping. For a realistic damping constant, this limit is more than 10 times smaller than that of so-called precessional magnetization reversal under a noncollinear static field. The other is on the optimal field pulse design: if the magnitude of a magnetic field does not change, but its direction can vary during a reversal process, there is an optimal design that gives the shortest switching time. The switching time depends on the field magnitude, damping constant, and magnetic anisotropy. PMID:17026272

  7. Magnetic response to applied electrostatic field in external magnetic field

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

    2014-04-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  8. Magnetic field depression within electron holes

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F.; Artemyev, A. V.; Jovanovic, D.

    2015-04-01

    We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T⊥/T∥˜2. We argue that the observed electron holes could be generated due to injections of highly anisotropic plasma sheet electrons into the outer radiation belt. These electron holes may present a source of the seed population due to transport of trapped electrons to higher latitudes and can be potentially used for distant probing of plasma properties in their source region.

  9. Modification of structure and magnetic anisotropy of epitaxial CoFe?O? films by hydrogen reduction

    SciTech Connect

    Chen, Aiping; Poudyal, Narayan; Xiong, Jie; Liu, J. Ping; Jia, Quanxi

    2015-03-16

    Heteroepitaxial CoFe?O? (CFO) thin films with different thicknesses were deposited on MgO (001) substrates. The as-deposited CFO films show a clear switching of magnetic anisotropy with increasing film thickness. The thinner films (<100 nm) show a perpendicular magnetic anisotropy due to the out-of-plane compressive strain. The thicker films exhibit an in-plane easy axis owing to the dominating shape anisotropy effect. The magnetostriction coefficient of CFO films is estimated to be ?[001] =-188 10??. Metallic CoFe? films were obtained by annealing the as-deposited CFO films in forming gas (Ar 93% + H? 7%) at 450 C. XRD shows that CoFe? films are textured out-of-plane and aligned in-plane, owing to lattice matching between CoFe? and MgO substrate. TEM results indicate that as-deposited films are continuous while the annealed films exhibit a nanopore mushroom structure. The magnetic anisotropy of CoFe? films is dominated by the shape effect. The results demonstrate that hydrogen reduction can be effectively used to modify microstructures and physical properties of complex metal oxide materials.

  10. Modification of structure and magnetic anisotropy of epitaxial CoFe₂O₄ films by hydrogen reduction

    SciTech Connect

    Chen, Aiping; Poudyal, Narayan; Xiong, Jie; Liu, J. Ping; Jia, Quanxi

    2015-03-16

    Heteroepitaxial CoFe₂O₄ (CFO) thin films with different thicknesses were deposited on MgO (001) substrates. The as-deposited CFO films show a clear switching of magnetic anisotropy with increasing film thickness. The thinner films (<100 nm) show a perpendicular magnetic anisotropy due to the out-of-plane compressive strain. The thicker films exhibit an in-plane easy axis owing to the dominating shape anisotropy effect. The magnetostriction coefficient of CFO films is estimated to be λ[001] =-188 × 10⁻⁶. Metallic CoFe₂ films were obtained by annealing the as-deposited CFO films in forming gas (Ar 93% + H₂ 7%) at 450 °C. XRD shows that CoFe₂ films are textured out-of-plane and aligned in-plane, owing to lattice matching between CoFe₂ and MgO substrate. TEM results indicate that as-deposited films are continuous while the annealed films exhibit a nanopore mushroom structure. The magnetic anisotropy of CoFe₂ films is dominated by the shape effect. The results demonstrate that hydrogen reduction can be effectively used to modify microstructures and physical properties of complex metal oxide materials.

  11. Modification of structure and magnetic anisotropy of epitaxial CoFe₂O₄ films by hydrogen reduction

    DOE PAGESBeta

    Chen, Aiping; Poudyal, Narayan; Xiong, Jie; Liu, J. Ping; Jia, Quanxi

    2015-03-16

    Heteroepitaxial CoFe₂O₄ (CFO) thin films with different thicknesses were deposited on MgO (001) substrates. The as-deposited CFO films show a clear switching of magnetic anisotropy with increasing film thickness. The thinner films (<100 nm) show a perpendicular magnetic anisotropy due to the out-of-plane compressive strain. The thicker films exhibit an in-plane easy axis owing to the dominating shape anisotropy effect. The magnetostriction coefficient of CFO films is estimated to be λ[001] =-188 × 10⁻⁶. Metallic CoFe₂ films were obtained by annealing the as-deposited CFO films in forming gas (Ar 93% + H₂ 7%) at 450 °C. XRD shows that CoFe₂more » films are textured out-of-plane and aligned in-plane, owing to lattice matching between CoFe₂ and MgO substrate. TEM results indicate that as-deposited films are continuous while the annealed films exhibit a nanopore mushroom structure. The magnetic anisotropy of CoFe₂ films is dominated by the shape effect. The results demonstrate that hydrogen reduction can be effectively used to modify microstructures and physical properties of complex metal oxide materials.« less

  12. Energetic electron anisotropies in the magnetotail - Identification of open and closed field lines

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Stone, E. C.

    1976-01-01

    Unidirectional anisotropies in the energetic electron fluxes (E greater than or equal to about 200 keV) have been observed in the earth's magnetotail with the Caltech Electron/Isotope Spectrometer on IMP-8. The anisotropies occur during periods of enhanced fluxes and provide essential information on the topology (open or closed) of the magnetotail field lines which are associated with recently identified acceleration regions.

  13. Theory of fossil magnetic field

    NASA Astrophysics Data System (ADS)

    Dudorov, Alexander E.; Khaibrakhmanov, Sergey A.

    2015-02-01

    Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.

  14. Magnetic field induced anisotropy of 139La spin-lattice relaxation rates in stripe ordered La1.875Ba0.125CuO4

    SciTech Connect

    S. -H. Baek; Gu, G. D.; Utz, Y.; Hucker, M.; Buchner, B.; Grafe, H. -J.

    2015-10-26

    We report 139La nuclear magnetic resonance studies performed on a La1.875Ba0.125CuO4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T–11 sharply upturns at the charge-ordering temperature TCO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T–11 below the spin-ordering temperature TSO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state for H ∥ [001], which are completely suppressed for large fields along the CuO2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.

  15. Magnetic anisotropy in Shiba bound states across a quantum phase transition

    PubMed Central

    Hatter, Nino; Heinrich, Benjamin W.; Ruby, Michael; Pascual, Jose I.; Franke, Katharina J.

    2015-01-01

    The exchange coupling between magnetic adsorbates and a superconducting substrate leads to Shiba states inside the superconducting energy gap and a Kondo resonance outside the gap. The exchange coupling strength determines whether the quantum many-body ground state is a Kondo singlet or a singlet of the paired superconducting quasiparticles. Here we use scanning tunnelling spectroscopy to identify the different quantum ground states of manganese phthalocyanine on Pb(111). We observe Shiba states, which are split into triplets by magnetocrystalline anisotropy. Their characteristic spectral weight yields an unambiguous proof of the nature of the quantum ground state. Our results provide experimental insights into the phase diagram of a magnetic impurity on a superconducting host and shine light on the effects induced by magnetic anisotropy on many-body interactions. PMID:26603561

  16. Magnetic anisotropy in Shiba bound states across a quantum phase transition

    NASA Astrophysics Data System (ADS)

    Hatter, Nino; Heinrich, Benjamin W.; Ruby, Michael; Pascual, Jose I.; Franke, Katharina J.

    2015-11-01

    The exchange coupling between magnetic adsorbates and a superconducting substrate leads to Shiba states inside the superconducting energy gap and a Kondo resonance outside the gap. The exchange coupling strength determines whether the quantum many-body ground state is a Kondo singlet or a singlet of the paired superconducting quasiparticles. Here we use scanning tunnelling spectroscopy to identify the different quantum ground states of manganese phthalocyanine on Pb(111). We observe Shiba states, which are split into triplets by magnetocrystalline anisotropy. Their characteristic spectral weight yields an unambiguous proof of the nature of the quantum ground state. Our results provide experimental insights into the phase diagram of a magnetic impurity on a superconducting host and shine light on the effects induced by magnetic anisotropy on many-body interactions.

  17. Magnetic anisotropy in Shiba bound states across a quantum phase transition.

    PubMed

    Hatter, Nino; Heinrich, Benjamin W; Ruby, Michael; Pascual, Jose I; Franke, Katharina J

    2015-01-01

    The exchange coupling between magnetic adsorbates and a superconducting substrate leads to Shiba states inside the superconducting energy gap and a Kondo resonance outside the gap. The exchange coupling strength determines whether the quantum many-body ground state is a Kondo singlet or a singlet of the paired superconducting quasiparticles. Here we use scanning tunnelling spectroscopy to identify the different quantum ground states of manganese phthalocyanine on Pb(111). We observe Shiba states, which are split into triplets by magnetocrystalline anisotropy. Their characteristic spectral weight yields an unambiguous proof of the nature of the quantum ground state. Our results provide experimental insights into the phase diagram of a magnetic impurity on a superconducting host and shine light on the effects induced by magnetic anisotropy on many-body interactions. PMID:26603561

  18. Tuning perpendicular magnetic anisotropy in (Ga,Mn)(As,P) by thermal annealing

    SciTech Connect

    Casiraghi, A.; Rushforth, A. W.; Wang, M.; Farley, N. R. S.; Wadley, P.; Hall, J. L.; Staddon, C. R.; Edmonds, K. W.; Campion, R. P.; Foxon, C. T.; Gallagher, B. L.

    2010-09-20

    We have investigated the effects of postgrowth low temperature annealing on the magnetic, electrical, and structural properties of (Ga{sub 0.94}Mn{sub 0.06})(As{sub 0.9}P{sub 0.1}) layers grown by molecular beam epitaxy. By controlling the annealing time, we are able to tune the magnetic anisotropy between an easy axis in the plane for the as-grown samples, to an easy axis perpendicular to the plane for fully annealed samples. The increase in the carrier density, as a result of annealing, is found to be the primary reason for the sign reversal of the magnetic anisotropy, in qualitative agreement with theoretical predictions.

  19. Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Foulkes, T.; Syed, M.; Taplin, T.

    2015-05-01

    Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.

  20. Origin of cosmic magnetic fields.

    PubMed

    Campanelli, Leonardo

    2013-08-01

    We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)  G if the energy scale of inflation is few×10(16)  GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556