Science.gov

Sample records for magnetic chitosan nanoparticles

  1. Synthesis and application of magnetic chitosan nanoparticles in oilfield

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xuefang

    2016-01-01

    The novel magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles has the advantage of excellent biodegradation and a high level of controllability. The Co0.5Mn0.5Fe2O4-chitosan nanoparticles was prepared successfully. The size of the Co0.5Mn0.5Fe2O4-chitosan nanoparticles were all below 100 nm. The saturated magnetization of the Co0.5Mn0.5Fe2O4-chitosan nanoparticles could reach 80 emu/g and showed the characteristics of superparamagnetism at the same time. The image of TEM and SEM electron microscopy showed that the cubic-shape magnetic Co0.5Mn0.5Fe2O4 particles were encapsulated by the spherical chitosan nanoparticles. The evaluation on the interfacial properties of the product showed that the interfacial tension between crude oil and water could be reduce to ultra-low values as low as 10-3 mN/m when the magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticle was used in several blocks in Shengli Oilfield without other additives. Meanwhile, the magnetic Co0.5Mn0.5Fe2O4-chitosan nanoparticles possessed good salt-resisting capacity.

  2. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. PMID:27261762

  3. Combination of carboxymethyl chitosan-coated magnetic nanoparticles and chitosan-citrate complex gel beads as a novel magnetic adsorbent.

    PubMed

    Mi, Fwu-Long; Wu, Shao-Jung; Chen, Yung-Chih

    2015-10-20

    Magnetic chitosan beads were synthesized by incorporating N,O-carboxymethyl chitosan-coated magnetic nanoparticles (NOCC-MNPs) into chitosan-citrate gel beads (CCGBs) for adsorbing Cu(II) ions. An increase of Cu(II) adsorption capacity was due to the combined chelation effects from the electron-donating functional groups in the CCGBs and NOCC-MNPs. Moreover, the paramagnetic susceptibility of Cu(II) citrate chelates could further improve the Cu(II) adsorption efficiency through the force of magnetic attraction. The adsorption data of the magnetic CCGBs fitted well with the Freundlich model, whereas the adsorption kinetics followed the pseudo-second-order kinetic model. The maximal adsorption capacity as estimated by the Langmuir model was 294.11mg/g. The adsorption thermodynamic parameters indicated that the involved process should be spontaneous and exothermic. PMID:26256183

  4. Preparation and characterization of magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid

    NASA Astrophysics Data System (ADS)

    Qin, H.; Wang, C. M.; Dong, Q. Q.; Zhang, L.; Zhang, X.; Ma, Z. Y.; Han, Q. R.

    2015-05-01

    A novel and simple method has been proposed to prepare magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid (Fe3O4/CS/INH nanocomposites). Efforts have been made to develop isoniazid (INH) loaded chitosan (CS) nanoparticles by ionic gelation of chitosan with tripolyphosphate (TPP). The factors that influence the preparation of chitosan nanoparticles, including the TPP concentration, the chitosan/TPP weight ratio and the chitosan concentration on loading capacity and encapsulation efficiency of chitosan nanoparticles were studied. The magnetic Fe3O4 nanoparticles were prepared by co-precipitation method of Fe2+ and Fe3+. Then the magnetic Fe3O4/CS/INH nanocomposites were prepared by ionic gelation method. The magnetic Fe3O4 nanoparticles and magnetic Fe3O4/CS/INH nanocomposites were characterized by XRD, TEM, FTIR and SQUID magnetometry. The in vitro release of Fe3O4/CS/INH nanocomposites showed an initial burst release in the first 10 h, followed by a more gradual and sustained release for 48 h. It is suggested that the magnetic Fe3O4/CS/INH nanocomposites may be exploited as potential drug carriers for controlled-release applications in magnetic targeted drugs delivery system.

  5. Activation of tumor suppressor p53 gene expression by magnetic thymine-imprinted chitosan nanoparticles.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Chen, Jian-Zhou; Jan, Jeng-Shiung; Lin, Hung-Yin

    2016-02-01

    Chitosan is a natural biodegradable polysaccharide that has been used to enhance gene delivery, owing to the ease with which chitosan nanoparticles enter the nucleus of cells. To study the effects of nuclear delivery of telomeric gene sequences, which contain thymine, we formed magnetic thymine-imprinted chitosan nanoparticles (TIPs) by the precipitation of chitosan, mixed with thymine and magnetic nanoparticles (to aid in separations). The mean size of the TIPS was 116 ± 18 nm; the dissociation constant for thymine was 21.8 mg mL(-1). We then treated human hepatocellular carcinoma (HepG2) with TIPs nanoparticles bearing bound thymine or a bound telomeric DNA sequence. The expression of the tumor suppressor p53 gene increased when TIPs were applied and decreased when telomere-bound TIPs were applied. PMID:26693943

  6. Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution.

    PubMed

    Thinh, Nguyen Ngoc; Hanh, Pham Thi Bich; Ha, Le Thi Thanh; Anh, Le Ngoc; Hoang, Tran Vinh; Hoang, Vu Dinh; Dang, Le Hai; Khoi, Nguyen Van; Lam, Tran Dai

    2013-04-01

    A simple method was introduced to prepare magnetic chitosan nanoparticles by co-precipitation via epichlorohydrin cross-linking reaction. The average size of magnetic chitosan nanoparticles is estimated at ca. 30 nm. It was found that the adsorption of Cr(VI) was highly pH-dependent and its kinetics follows the pseudo-second-order model. Maximum adsorption capacity (at pH 3, room temperature) was calculated as 55.80 mg·g(-1), according to Langmuir isotherm model. The nanoparticles were thoroughly characterized before and after Cr(VI) adsorption. From this result, it can be suggested that magnetic chitosan nanoparticles could serve as a promising adsorbent for Cr(VI) in wastewater treatment technology. PMID:23827563

  7. Chitosan-Coated Magnetic Nanoparticles Prepared in One Step by Reverse Microemulsion Precipitation

    PubMed Central

    López, Raúl G.; Pineda, María G.; Hurtado, Gilberto; de León, Ramón Díaz; Fernández, Salvador; Saade, Hened; Bueno, Darío

    2013-01-01

    Chitosan-coated magnetic nanoparticles (CMNP) were obtained at 70 °C and 80 °C in a one-step method, which comprises precipitation in reverse microemulsion in the presence of low chitosan concentration in the aqueous phase. X-ray diffractometry showed that CMNP obtained at both temperatures contain a mixture of magnetite and maghemite nanoparticles with ≈4.5 nm in average diameter, determined by electron microscopy, which suggests that precipitation temperature does not affect the particle size. The chitosan coating on nanoparticles was inferred from Fourier transform infrared spectrometry measurements; furthermore, the carbon concentration in the nanoparticles allowed an estimation of chitosan content in CMNP of 6%–7%. CMNP exhibit a superparamagnetic behavior with relatively high final magnetization values (≈49–53 emu/g) at 20 kOe and room temperature, probably due to a higher magnetite content in the mixture of magnetic nanoparticles. In addition, a slight direct effect of precipitation temperature on magnetization was identified, which was ascribed to a possible higher degree of nanoparticles crystallinity as temperature at which they are obtained increases. Tested for Pb2+ removal from a Pb(NO3)2 aqueous solution, CMNP showed a recovery efficacy of 100%, which makes them attractive for using in heavy metals ion removal from waste water. PMID:24084716

  8. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ahmad, Tanveer; Bae, Hongsub; Iqbal, Yousaf; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun; Sohn, Derac

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe2O4) nanoparticles as both T1 and T2 contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T1 and T2 relaxivities were 0.858±0.04 and 1.71±0.03 mM-1 s-1, respectively. In animal experimentation, both a 25% signal enhancement in the T1-weighted mage and a 71% signal loss in the T2-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T1 and T2 contrast agents in MRI. We note that the applicability of our nanoparticles as both T1 and T2 contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles.

  9. Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Song, Xiaoli; Luo, Xiadan; Zhang, Qingqing; Zhu, Aiping; Ji, Lijun; Yan, Caifeng

    2015-08-01

    Biofunctionalized chitosan@Fe3O4 nanoparticles are synthesized by combining Fe3O4 and CS chemically modified with PEG and lactobionic acid in one step. The biofunctionalized nanoparticles are characterized by TEM, X-ray, DLS, zeta-potential and magnetic measurements. The in vitro and in vivo behaviors of the biofunctionalized nanoparticles, especially, the cytotoxicity, the protein resistance, metabolism and iron toxicity are assessed. The functional groups, PEG enable the nanoparticles more biocompatible and the lactobionic acid groups enable liver targeting. The potential applications of the nanoparticles in liver magnetic resonance imaging are confirmed. The results demonstrated that the nanoparticles are suspension stability, non-cytotoxicity, non-tissue toxicity and sensitive in liver magnetic resonance imaging, representing potential tools for applications in the biomedical field.

  10. Elucidation on enhanced application of synthesised kojic acid immobilised magnetic and chitosan tri-polyphosphate nanoparticles as antibacterial agents.

    PubMed

    Chaudhary, Jignesh; Lakhawat, Sudarshan; Pathak, Amrendra Nath

    2015-12-01

    Kojic acid (KA) is a secondary metabolite which is secreted by several aspergillus species. It is a multi-functional skeleton from which many derivatives can be synthesised and applied in various areas of biotechnology. KA grafting on synthesised magnetic nanoparticles (MNPs) and chitosan tri-polyphosphate (chitosan-TPP) nanoparticles was successfully done and characterised by Fourier transformation infrared spectroscopy. It was observed that amino propyl triethoxy silane-coated MNPs and chitosan-TPP nanoparticles enhanced the antibacterial activity of KA against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa). The organic constitution and significant antibacterial activity of KA-chitosan-TPP nanoparticles can be applicable in the field of medical biotechnology. PMID:26647814

  11. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, A.; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Israr, M. Q.; Sadaf, J. R.; Ahmed, E.; Nur, O.; Willander, M.

    2013-02-01

    The iron oxide (Fe3O4) magnetic nanoparticles have been fabricated through a simple, cheap and reproducible approach. Scanning electron microscope, x-rays powder diffraction of the fabricated nanoparticles. Furthermore, the fabrication of potentiometric urea biosensor is carried out through drop casting the initially prepared isopropanol and chitosan solution, containing Fe3O4 nanoparticles, on the glass fiber filter with a diameter of 2 cm and a copper wire (of thickness -500 μm) has been utilized to extract the voltage signal from the functionalized nanoparticles. The functionalization of surface of the Fe3O4 nanoparticles is obtained by the electrostatically immobilization of urease onto the nanobiocomposite of the chitosan- Fe3O4 in order to enhance the sensitivity, specificity, stability and reusability of urea biosensor. Electrochemical detection procedure has been adopted to measure the potentiometric response over the wide logarithmic concentration range of the 0.1 mM to 80 mM. The Fe3O4 nanoparticles based urea biosensor depicts good sensitivity with ~42 mV per decade at room temperature. Durability of the biosensor could be considerably enhanced by applying a thin layer of the nafion. In addition, the reasonably stable output response of the biosensor has been found to be around 12 sec.

  12. Influence of chitosan coating on magnetic nanoparticles in endothelial cells and acute tissue biodistribution.

    PubMed

    Agotegaray, Mariela; Campelo, Adrián; Zysler, Roberto; Gumilar, Fernanda; Bras, Cristina; Minetti, Alejandra; Massheimer, Virginia; Lassalle, Verónica

    2016-08-01

    Chitosan coating on magnetic nanoparticles (MNPs) was studied on biological systems as a first step toward the application in the biomedical field as drug-targeted nanosystems. Composition of MNPs consists of magnetite functionalized with oleic acid and coated with the biopolymer chitosan or glutaraldehyde-cross-linked chitosan. The influence of the biopolymeric coating has been evaluated by in vitro and in vivo assays on the effects of these MNPs on rat aortic endothelial cells (ECs) viability and on the random tissue distribution in mice. Results were correlated with the physicochemical properties of the nanoparticles. Nitric oxide (NO) production by ECs was determined, considering that endothelial NO represents one of the major markers of ECs function. Cell viability was studied by MTT assay. Different doses of the MNPs (1, 10 and 100 μg/mL) were assayed, revealing that MNPs coated with non-cross-linked chitosan for 6 and 24 h did not affect neither NO production nor cell viability. However, a significant decrease in cell viability was observed after 36 h treatment with the highest dose of this nanocarrier. It was also revealed that the presence and dose of glutaraldehyde in the MNPs structureimpact on the cytotoxicity. The study of the acute tissue distribution was performed acutely in mice after 24 h of an intraperitoneal injection of the MNPs and sub acutely, after 28 days of weekly administration. Both formulations greatly avoided the initial clearance by the reticuloendothelial system (RES) in liver. Biological properties found for N1 and N2 in the performed assays reveal that chitosan coating improves biocompatibility of MNPs turning these magnetic nanosystems as promising devices for targeted drug delivery. PMID:27251857

  13. Preparation of Chitosan Coated Magnetic Hydroxyapatite Nanoparticles and Application for Adsorption of Reactive Blue 19 and Ni2+ Ions

    PubMed Central

    Nguyen, Van Cuong; Pho, Quoc Hue

    2014-01-01

    An adsorbent called chitosan coated magnetic hydroxyapatite nanoparticles (CS-MHAP) was prepared with the purpose of improvement for the removal of Ni2+ ions and textile dye by coprecipitation. Structure and properties of CS-MHAP were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Weight percent of chitosan was investigated by thermal gravimetric analysis (TGA). The prepared CS-MHAP presents a significant improvement on the removal efficiency of Ni2+ ions and reactive blue 19 dye (RB19) in comparison with chitosan and magnetic hydroxyapatite nanoparticles. Moreover, the adsorption capacities were affected by several parameters such as contact time, initial concentration, adsorbent dosage, and initial pH. Interestingly, the prepared adsorbent could be easily recycled from an aqueous solution by an external magnet and reused for adsorption with high removal efficiency. PMID:24592158

  14. Covalent Immobilization of Penicillin G Acylase onto Fe3O4@Chitosan Magnetic Nanoparticles.

    PubMed

    Ling, Xiao-Min; Wang, Xiang-Yu; Ma, Ping; Yang, Yi; Qin, Jie-Mei; Zhang, Xue-Jun; Zhang, Ye-Wang

    2016-05-28

    Penicillin G acylase (PGA) was immobilized on magnetic Fe3O4@chitosan nanoparticles through the Schiff base reaction. The immobilization conditions were optimized as follows: enzyme/support 8.8 mg/g, pH 6.0, time 40 min, and temperature 25°C. Under these conditions, a high immobilization efficiency of 75% and a protein loading of 6.2 mg/g-support were obtained. Broader working pH and higher thermostability were achieved by the immobilization. In addition, the immobilized PGA retained 75% initial activity after ten cycles. Kinetic parameters Vmax and Km of the free and immobilized PGAs were determined as 0.91 mmol/min and 0.53 mmol/min, and 0.68 mM and 1.19 mM, respectively. Synthesis of amoxicillin with the immobilized PGA was carried out in 40% ethylene glycol at 25°C and a conversion of 72% was obtained. These results showed that the immobilization of PGA onto magnetic chitosan nanoparticles is an efficient and simple way for preparation of stable PGA. PMID:26869599

  15. Construction of Ang2-siRNA chitosan magnetic nanoparticles and the effect on Ang2 gene expression in human malignant melanoma cells

    PubMed Central

    LIU, ZHAO-LIANG; YOU, CAI-LIAN; WANG, BIAO; LIN, JIAN-HONG; HU, XUE-FENG; SHAN, XIU-YING; WANG, MEI-SHUI; ZHENG, HOU-BING; ZHANG, YAN-DING

    2016-01-01

    The aim of the present study was to construct angiopoietin-2 (Ang2)-small interfering (si)RNA chitosan magnetic nanoparticles and to observe the interference effects of the nanoparticles on the expression of the Ang2 gene in human malignant melanoma cells. Ang2-siRNA chitosan magnetic nanoparticles were constructed and transfected into human malignant melanoma cells in vitro. Red fluorescent protein expression was observed, and the transfection efficiency was analyzed. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the inhibition efficiency of Ang2 gene expression. Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed, and at a mass ratio of plasmid to magnetic chitosan nanoparticles of 1:100, the transfection efficiency into human malignant melanoma cells was the highest of the ratios assessed, reaching 61.17%. RT-qPCR analysis showed that the magnetic chitosan nanoparticles effectively inhibited Ang2 gene expression in cells, and the inhibition efficiency reached 59.56% (P<0.05). Ang2-siRNA chitosan magnetic nanoparticles were successfully constructed. The in vitro studies showed that the nanoparticles inhibited Ang2 gene expression in human malignant melanoma tumor cells, which laid the foundation and provided experimental evidence for additional future in vivo studies of intervention targeting malignant melanoma tumor growth in nude mice. PMID:27313729

  16. Magnetic removal of Entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles

    PubMed Central

    Shukla, Sudeep; Arora, Vikas; Jadaun, Alka; Kumar, Jitender; Singh, Nishant; Jain, Vinod Kumar

    2015-01-01

    Amebiasis, a major health problem in developing countries, is the second most common cause of death due to parasitic infection. Amebiasis is usually transmitted by the ingestion of Entamoeba histolytica cysts through oral–fecal route. Herein, we report on the use of chitosan oligosaccharide-functionalized iron oxide nanoparticles for efficient capture and removal of pathogenic protozoan cysts under the influence of an external magnetic field. These nanoparticles were synthesized through a chemical synthesis process. The synthesized particles were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and zeta potential analysis. The particles were found to be well dispersed and uniform in size. The capture and removal of pathogenic cysts were demonstrated by fluorescent microscopy, transmission electron microscopy, and scanning electron microscopy (SEM). Three-dimensional modeling of various biochemical components of cyst walls, and thereafter, flexible docking studies demonstrate the probable interaction mechanism of nanoparticles with various components of E. histolytica cyst walls. Results of the present study suggest that E. histolytica cysts can be efficiently captured and removed from contaminated aqueous systems through the application of synthesized nanoparticles. PMID:26261417

  17. Immobilization of invertase on chitosan coated γ-Fe2O3 magnetic nanoparticles to facilitate magnetic separation.

    PubMed

    Waifalkar, P P; Parit, S B; Chougale, A D; Sahoo, Subasa C; Patil, P S; Patil, P B

    2016-11-15

    Industrially important invertase enzyme was immobilized on chitosan coated sol gel derived γ-Fe2O3 magnetic nanoparticles (MNPs) to enable it for repetitive use by magnetic separation. MNPs were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), field emission scanning electron microscope (FE-SEM), Fourier transform infrared (FTIR) spectrometer and magnetic measurements. FTIR studies confirmed successful immobilization of invertase on MNPs. The ability to convert sucrose into invert syrup was enhanced in immobilized invertase compared to that of free enzyme. Further it was found that invertase immobilized on MNPs (IIMNPs) were more stable at varying pH and temperature conditions. Magnetic separation technique was successfully employed for reuse of the IIMNPs for 20 times without significant loss of activity. PMID:27501039

  18. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug.

    PubMed

    Parsian, Maryam; Unsoy, Gozde; Mutlu, Pelin; Yalcin, Serap; Tezcaner, Aysen; Gunduz, Ufuk

    2016-08-01

    Targeted delivery of anti-cancer drugs increase the efficacy, while decreasing adverse effects. Among various delivery systems, chitosan coated iron oxide nanoparticles (CsMNPs) gained attention with their biocompatibility, biodegradability, low toxicity and targetability under magnetic field. This study aimed to increase the cellular uptake and efficacy of Gemcitabine. CsMNPs were synthesized by in situ co-precipitation and Gemcitabine was loaded onto the nanoparticles. Nanoparticle characterization was performed by TEM, FTIR, XPS, and zeta potential. Gemcitabine release and stability was analyzed. The cellular uptake was shown. Cytotoxicity of free-Gemcitabine and Gem-CsMNPs were examined on SKBR and MCF-7 breast cancer cells by XTT assay. Gemcitabine loading was optimized as 30µM by spectrophotometric analyses. Drug release was highest (65%) at pH 4.2, while it was 8% at pH 7.2. This is a desired release characteristic since pH of tumor-tissue and endosomes are acidic, while the blood-stream and healthy-tissues are neutral. Peaks reflecting the presence of Gemcitabine were observed in FTIR and XPS. At neutral pH, zeta potential increased after Gemcitabine loading. TEM images displayed, Gem-CsMNPs were 4nm with uniform size-distribution and have spherical shape. The cellular uptake and targetability of CsMNPs was studied on MCF-7 breast cancer cell lines. IC50 value of Gem-CsMNPs was 1.4 fold and 2.6 fold lower than free-Gem on SKBR-3 and MCF-7 cell lines respectively, indicating the increased efficacy of Gemcitabine when loaded onto nanoparticles. Targetability by magnetic field, stability, size distribution, cellular uptake and toxicity characteristics of CsMNPs in this study provides a useful targeted delivery system for Gemcitabine in cancer therapy. PMID:27181067

  19. Magnetophoretic harvesting of oleaginous Chlorella sp. by using biocompatible chitosan/magnetic nanoparticle composites.

    PubMed

    Lee, Kyubock; Lee, So Yeun; Na, Jeong-Geol; Jeon, Sang Goo; Praveenkumar, Ramasamy; Kim, Dong-Myung; Chang, Won-Seok; Oh, You-Kwan

    2013-12-01

    The consumption of energy and resources such as water in the cultivation and harvesting steps should be minimized to reduce the overall cost of biodiesel production from microalgae. Here we present a biocompatible and rapid magnetophoretic harvesting process of oleaginous microalgae by using chitosan-Fe3O4 nanoparticle composites. Over 99% of microalgae was harvested by using the composites and the external magnetic field without changing the pH of culture medium so that it may be reused for microalgal culture without adverse effect on the cell growth. Depending on the working volume (20-500 mL) and the strength of surface magnetic-field (3400-9200 G), the process of harvesting microalgae took only 2-5 min. The method presented here not only utilizes permanent magnets without additional energy for fast harvesting but also recycles the medium effectively for further cultivation of microalgae, looking ahead to a large scale economic microalgae-based biorefinement. PMID:24128604

  20. Chitosan magnetic nanoparticles for pH responsive Bortezomib release in cancer therapy.

    PubMed

    Unsoy, Gozde; Yalcin, Serap; Khodadust, Rouhollah; Mutlu, Pelin; Onguru, Onder; Gunduz, Ufuk

    2014-06-01

    The use of nanotechnology in cancer treatment offers exciting opportunities, including the possibility of destroying tumors with minimal damage to healthy tissue by novel targeted drug delivery systems. pH differences between healthy and tumor microenvironment provide pH responsive release of drugs at tumor site via smart nanoparticles. In this study, chitosan coated superparamagnetic iron oxide nanoparticles (CS MNPs) were in situ synthesized by ionic crosslinking method as nanocarrier systems and loaded with the drug Bortezomib (Velcade(®)). The drug loading capacity, drug release and stability of CS MNPs were analyzed. CS MNPs were visualized inside the cells by fluorescence microscopy. The cytotoxicity of Bortezomib, CS MNPs and Bortezomib loaded CS MNPs were tested by XTT analyses in vitro. Gene expression analyses revealed that pro-apoptotic PUMA and NOXA genes were upregulated while anti-apoptotic BCL-2, SURVIVIN and cIAP-2 genes were downregulated at Bortezomib loaded CS MNP treated cells. Immunocytochemical analyses demonstrated an increase in p53 tumor suppressor protein levels at treated cells, which supports the upregulation of PUMA and NOXA genes, while Survivin protein level did not significantly change. This study points out that the pH responsive magnetic targeting of Bortezomib is more efficacious than free drug treatment. Moreover, targeted delivery of Bortezomib would reduce the frequency of drug administration by lowering the required amount of drug dose. PMID:24880680

  1. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  2. Facile solvothermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for pH-responsive drug delivery and magnetic resonance imaging contrast agents.

    PubMed

    Zhao, Guanghui; Wang, Jianzhi; Peng, Xiaomen; Li, Yanfeng; Yuan, Xuemei; Ma, Yingxia

    2014-02-01

    We report a facile fabrication of a host-metal-guest coordination-bonding system in a mesostructured Fe3O4/chitosan nanoparticle that can act as a pH-responsive drug-delivery system. The mesostructured Fe3O4/chitosan was synthesized by a solvothermal approach with iron(III) chloride hexahydrate as a precursor, ethylene glycol as a reducing agent, ammonium acetate as a porogen, and chitosan as a surface-modification agent. Subsequently, doxorubicin (DOX), acting as a model drug (guest), was loaded onto the mesostructured Fe3O4/chitosan nanoparticles, with chitosan acting as a host molecule to form the NH2-Zn(II)-DOX coordination architecture. The release of DOX can be achieved through the cleavage of coordination bonds that are sensitive to variations in external pH under weakly acidic conditions. The pH-responsive nature of the nanoparticles was confirmed by in vitro releases and cell assay tests. Furthermore, the relaxation efficiency of the nanoparticles as high-performance magnetic resonance imaging contrast agents was also investigated. Experimental results confirm that the synthesized mesostructured Fe3O4/chitosan is a smart nanovehicle for drug delivery owing to both its pH-responsive nature and relaxation efficiency. PMID:24259489

  3. Facile synthesis of magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan hydrogel as MTX carriers for controlled drug release.

    PubMed

    Wu, Juan; Jiang, Wei; Tian, Renbing; Shen, Yewen; Jiang, Wei

    2016-10-01

    In the present study, methotrexate (MTX)-encapsulated magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan were successfully prepared through a one-step gelation process, which is a very facile, economic and environmentally friendly route. The developed hydrogel beads exhibited homogeneous porous structure and super-paramagnetic responsibility. MTX can be successfully encapsulated into magnetic chitosan hydrogel beads, and the drug encapsulation efficiency (%) and encapsulation content (%) were 93.8 and 6.28%, respectively. In addition, the drug release studies in vitro indicated that the MTX-encapsulated magnetic chitosan hydrogel beads had excellent pH-sensitivity, 90.6% MTX was released from the magnetic chitosan hydrogel beads within 48 h at pH 4.0. WST-1 assays in human liver hepatocellular carcinoma cells (HepG2) demonstrated that the MTX-encapsulated magnetic chitosan hydrogel beads had good cytocompatibility and high anti-tumor activity. Therefore, our results revealed that the MTX-encapsulated magnetic chitosan hydrogel beads would be a competitive candidate for controlled drug release in the area of targeted cancer therapy in the near future. PMID:27464586

  4. Preparation of magnetic composite based on zinc oxide nanoparticles and chitosan as a photocatalyst for removal of reactive blue 198

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Cuong; Giang Nguyen, Ngoc Lam; Hue Pho, Quoc

    2015-09-01

    In this study a novel magnetic composite used as a photocatalyst with combination of zinc oxide nanoparticles and chitosan (ZnO/Fe3O4/CS) was synthesized by a simple co-precipitation method. The role of the prepared magnetic nanocomposite is to improve the removal efficiency of textile dye due to the photocatalytic activity of zinc oxide nanoparticles and reusable capacity of Fe3O4 magnetic nanoparticles. Constituents and structure properties of ZnO/Fe3O4/CS were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Magnetic property of the prepared composite was determined by vibrating sample magnetometer (VSM). The results demonstrated that ZnO/Fe3O4/CS nanocomposite dramatically improved the removal efficiency of reactive blue 198 dye (RB198) with high photocatalytic activity and easy separation by a permanent magnet. In addition, the photocatalytic activity of the prepared composite was also performed under different parameters such as contact time, initial pH, the amount of composite and initial concentration of RB198. Interestingly, ZnO/Fe3O4/CS nanocomposite still showed high removal efficiency after recycling three times and performed in a real textile dyeing wastewater.

  5. Applications of chitosan nanoparticles in drug delivery.

    PubMed

    Tajmir-Riahi, H A; Nafisi, Sh; Sanyakamdhorn, S; Agudelo, D; Chanphai, P

    2014-01-01

    We have reviewed the binding affinities of several antitumor drugs doxorubicin (Dox), N-(trifluoroacetyl) doxorubicin (FDox), tamoxifen (Tam), 4-hydroxytamoxifen (4-Hydroxytam), and endoxifen (Endox) with chitosan nanoparticles of different sizes (chitosan-15, chitosan-100, and chitosan-200 KD) in order to evaluate the efficacy of chitosan nanocarriers in drug delivery systems. Spectroscopic and molecular modeling studies showed the binding sites and the stability of drug-polymer complexes. Drug-chitosan complexation occurred via hydrophobic and hydrophilic contacts as well as H-bonding network. Chitosan-100 KD was the more effective drug carrier than the chitosan-15 and chitosan-200 KD. PMID:24567139

  6. Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution.

    PubMed

    Vllasaliu, Driton; Exposito-Harris, Ruth; Heras, Angeles; Casettari, Luca; Garnett, Martin; Illum, Lisbeth; Stolnik, Snow

    2010-11-15

    Present work investigates the potential of chitosan nanoparticles, formulated by the ionic gelation with tripolyphosphate (TPP), to open the cellular tight junctions and in doing so, improve the permeability of model macromolecules. A comparison is made with chitosan solution at equivalent concentrations. Initial work assessed cytotoxicity (through MTS and LDH assays) of chitosan nanoparticles and solutions on Calu-3 cells. Subsequently, a concentration of chitosan nanoparticles and solution exhibiting minimal toxicity was used to investigate the effect on TEER and macromolecular permeability across filter-cultured Calu-3 monolayer. Chitosan nanoparticles and solution were also tested for their effect on the distribution of the tight junction protein, zonnula occludens-1 (ZO-1). Chitosan nanoparticles produced a sharp and reversible decrease in TEER and increased the permeability of two FITC-dextrans (FDs), FD4 (MW 4 kDa) and FD10 (MW 10 kDa), with effects of a similar magnitude to chitosan solution. Chitosan nanoparticles produced changes in ZO-1 distribution similar to chitosan solution, indicating a tight junction effect. While there was no improvement in permeability with chitosan nanoparticles compared to solution, nanoparticles provide the potential for drug incorporation, and hence the possibility for providing controlled drug release and protection from enzymatic degradation. PMID:20727955

  7. Chitosan-coated magnetic nanoparticles prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion.

    PubMed

    Pineda, María Guadalupe; Torres, Silvia; López, Luis Valencia; Enríquez-Medrano, Francisco Javier; de León, Ramón Díaz; Fernández, Salvador; Saade, Hened; López, Raúl Guillermo

    2014-01-01

    Chitosan-coated magnetic nanoparticles (CMNP) were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min. PMID:24991759

  8. Removal of Pb2+, Hg2+, and Cu2+ by Chain-Like Fe3O4@SiO2@Chitosan Magnetic Nanoparticles.

    PubMed

    Shi, Haowei; Yang, Junya; Zhu, Lizhong; Yang, Yuxiang; Yuan, Hongming; Yang, Yubing; Liu, Xiangnong

    2016-02-01

    In this paper, the chain-like core-shell structure Fe3O4@SiO2@Chitosan composite nanoparticles were synthesized by a two-step coating and following crosslinking glutaraldehyde on chitosan shell. The composite particles showed nearly monodisperse 105 sized particles with a core diameter of 80 nm and chitosan shell thickness of 12 nm. The synthesis conditions of the product were studied, and the morphology and properties of the composite nanoparticles were characterized by IR, XRD, TEM, SEM, EDS and VSM. The adsorption properties of Hg2+, Pb2+ or Cu2+ ions on Fe3O4, Fe3O4@SiO2 and the composite particles were in detail studied using the colorimetric method based on forming colored mercuric dithizone, rhodamine-Pb2+ complex and DDTC-Cu(2+) complex. The results showed, adsorption isotherm, kinetics and separation coefficient of heavy metal ions on these three magnetic nanoparticles were concerned with pH, metal ions' electronic configuration, silica coating and chitosan shell respectively. In addition, the recycle efficiency was also studied. The findings demonstrated that Fe3O4@SiO2@Chitosan composite nanoparticles have great application value in the adsorption and separation of heavy metal ions. PMID:27433691

  9. Separation and extraction of Co(II) using magnetic chitosan nanoparticles grafted with β-cyclodextrin and determination by FAAS

    NASA Astrophysics Data System (ADS)

    Moghimi, Ali

    2014-12-01

    A novel and selective method for the fast determination of trace amounts of Co(II) ions in water samples has been developed. The procedure is based on the selective sorption of Co(II) ions using magnetic chitosan nanoparticles grafted with β-cyclodextrin at different pH followed by elution with organic eluents and determination by atomic absorption spectrometry The preconcentration factor was 100 (1 mL elution volume) for a 100 mL sample volume. The limit of detection of the proposed method is 1.0 ng mL-1. The maximum sorption capacity of sorbent under optimum conditions has been found to be 5 mg of Co per gram of sorbent. The relative standard deviation under optimum conditions was 3.0% ( n = 10). Accuracy and applicability of the method was estimated using test samples of natural and model water with different amounts of Co(II).

  10. Synthesis of chitosan networks: Swelling, drug release, and magnetically assisted BSA separation using Fe3O4 nanoparticles.

    PubMed

    Ghaemy, Mousa; Naseri, Motahare

    2012-10-15

    Chitosan (CS) nanohydrogel networks were prepared by reaction with glyceroldiglycidylether (GDE) and poly(dimethylsiloxane) (PDMS), as crosslinking agents in an emulsion system. The nanogel content increased with increasing the amount of crosslinkers and reached to a maximum of 90% with GDE. The nanogels structure was characterized by FT-IR, AFM, DSC, and TGA. The average size for CS-GDE and CS-PDMS particles were 59nm and 180nm, respectively. The swelling behavior of nanohydrogels was observed to be dependent on pH, temperature, degree of crosslinking, and on the chemical structure of crosslinker. The equilibrium water content of CS-GDE nanohydrogels reached to a maximum of 600% at neutral pH, and decreased at high and low pH and low temperature. These nanohydrogels were tested for sodium diclofenac (SDF) loading and releasing efficiency. The covalent conjugation of bovine serum albumin (BSA) and magnetic Fe(3)O(4) nanoparticles on the hydrogels were found to hold a potential application in magnetically assisted bioseparation. PMID:22939340

  11. Magnetic Fe3O4@chitosan nanoparticle: synthesis, characterization and application as catalyst carrier.

    PubMed

    He, Linghao; Yao, Lu; Liu, Fujun; Qin, Bing; Song, Rul; Huang, Wei

    2010-10-01

    A novel method was developed to prepare Fe3O4@CS beads with core-shell structure using a double-crosslinking process. Before the coating process, an unique crosslinking agent, glutaraldehyde (GA), was adsorbed onto the surface of Fe3O4 in advance, so the subsequent CS can uniformly coat around the magnetic core processed from the strong interaction between GA and CS, forming a perfect core-shell structure. The obtained Fe3O4@CS beads were followed by the Pd deposition through in-situ reduction method, and the prepared composite catalyst was applied exemplarily in synthesizing nabumetone to check its reusing property. The nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and the magnetic hysteresis loop determination method. This novel composite catalyst showed admirable potential in reusable catalysis. PMID:21137729

  12. An environmentally benign dual action antimicrobial: quaternized chitosan/sodium alga acid multilayer films and silver nanoparticles decorated on magnetic nanoparticles.

    PubMed

    Jin, Feng; Xiang, Qian; Chen, Xiaoqin; Peng, Xuefeng; Xing, Xiaodong

    2016-10-01

    There is an urgent need to develop a puissant and environmentally benign antibacterial composite that act via multiple mechanisms to make response to the potentially daunting complexity of the microbial population and microbial antibiotic resistance. In this work, a facile and green approach, layer-by-layer self-assembly technology was applied to assemble polycation quaternized chitosan (QAC) and polyanion sodium alga acid onto magnetic nanoparticles (MNPs). Then silver nanoparticles (AgNPs) with stable and narrow-sized distribution in the range of 25-35 nm were immobilized on the surface of MNPs with L-ascorbic acid as reducing agent and organic multilayers as stabilizer. Through above modification on MNPs, we expected to achieve a green dual antibacterial and recyclable composite via the combined antibacterial action of QAC and AgNPs. Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, zeta potentials, and dynamic light scattering were employed to confirm the success of the surface functionalization. Silver ion release process was detected by inductively coupled plasma mass spectrometry. Furthermore, the antibacterial properties of the biomaterials against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were studied. The modified MNPs exhibited rapid, efficient, and long-lasting biocidal abilities against E. coli and S. aureus. The magnetic antibacterial composite still showed excellent antibacterial efficiency during five exposure/collection/recycle procedures. PMID:27405094

  13. Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for pH Sensitive Targeted Anticancer Drug Delivery.

    PubMed

    Chowdhuri, Angshuman Ray; Singh, Tanya; Ghosh, Sudip Kumar; Sahu, Sumanta Kumar

    2016-07-01

    Recently, nanoscale metal organic frameworks (NMOFs) have been demonstrated as a promising carrier for drug delivery, as they possess many advantages like large surface area, high porosity, and tunable functionality. However, there are no reports about the functionalization of NMOFs, which combines cancer-targeted drug delivery/imaging, magnetic property, high drug loading content, and pH-sensitive drug release into one system. Existing formulations for integrating target molecules into NMOF are based on multistep synthetic processes. However, in this study, we report an approach that combines NMOF (IRMOF-3) synthesis and target molecule (Folic acid) encapsulation on the surface of chitosan modified magnetic nanoparticles in a single step. A noticeable feature of chitosan is control and pH responsive drug release for several days. More importantly, doxorubicin (DOX) was incorporated into magnetic NMOF formulation and showed high drug loading (1.63 g DOX g(-1) magnetic NMOFs). To demonstrate the optical imaging, carbon dots (CDs) are encapsulated into the synthesized magnetic NMOF, thereby endowing fluorescence features to the nanoparticles. These folate targeted magnetic NMOF possess more specific cellular internalization toward folate-overexpressed cancer (HeLa) cells in comparison to normal (L929) cells. PMID:27305490

  14. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery.

    PubMed

    Ding, Yongling; Shen, Shirley Z; Sun, Huadong; Sun, Kangning; Liu, Futian; Qi, Yushi; Yan, Jun

    2015-03-01

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host-guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7±1.8%) with a high saturation magnetization of 43.8emu/g. UV-Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3(+), and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed. PMID:25579950

  15. Nanoindentation of Chitosan Doped with Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Palumbo, Matthew; Teklu, Alem; Kuthirummal, Narayanan; Levi-Polyachenko, Nicole; Department of Physics; Astronomy, College of Charleston Collaboration; Department of Plastic; Reconstructive Surgery, Wake Forest University Health Sciences Collaboration

    Imaging and spectroscopic analysis via nanoindentation was performed with the Nanosurf EasyScan2 AFM on the pure and silver doped chitosan samples allowing for a more localized determination of their stiffness, hardness, and reduced Young's modulus. The pure chitosan sample was tested to have a stiffness of 0.367 N/m, a hardness of 1.12 GPa, and a reduced Young's modulus of 30.5 MPa. The film with 5mg Ag nanoparticle per gram of chitosan was tested on the boundaries between the chitosan and Ag nanoparticles to show an increase in stiffness of about 4.6% at 0.384 N/m, an increase in hardness of about 5.4% at 1.18 GPa, and an increase in the reduced Young's modulus of about 5.0% at 3.2 MPa in comparison to the pure chitosan sample. On the other hand, upon increasing the doping to 10mg Ag nanoparticle per gram of chitosan showed a decrease in stiffness of about 6.3% at 0.344 N/m, a decrease in hardness of about 27.0% at 0.820 GPa, and a decrease in the reduced Young's modulus of about 6.0% at 28.7 MPa in comparison to the pure chitosan sample. Obviously, films doped with 5mg Ag nanoparicle per gram of chitosan provided the composites with improved mechanical strength compared to chitosan alone.

  16. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent

    PubMed Central

    Chen, Su-Ching; Duan, Kow-Jen

    2015-01-01

    β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w·v−1) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study. PMID:26047337

  17. New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4-κ-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex.

    PubMed

    Long, Jie; Wu, Zhengzong; Li, Xingfei; Xu, Enbo; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-04-01

    We present a simple method to immobilize pullulanase onto hybrid magnetic (Fe3O4-κ-carrageenan) nanoparticles, involving the in situ synthesis of magnetic carrageenan nanoparticles and the formation of pullulanase/chitosan complex. The complex behavior of pullulanase with chitosan as a function of pH and protein-polysaccharide ratio was studied by turbidimetric titration. Then, the as-prepared immobilized enzymes were characterized by vibrating-sample magnetometer, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometer, and thermogravimetric analysis. It was found that the activity retention of immobilized pullulanase and amount of enzyme loaded reached 95.5% and 96.3 mg/g, respectively, under optimal conditions. The immobilized enzyme exhibited great operational stability (retaining approximately 61% residual activity after ten consecutive reuses), demonstrating that enzyme leakage during the catalysis reaction was efficiently reduced. Furthermore, the activity of immobilized pullulanase was significantly (p < 0.01) higher than that of free pullulanase in a low pH range (pH < 3.0) and temperature over 60 °C, and the immobilized enzymes retained 45% of their initial activity after 5 h at 60 °C, compared to 21% for the free enzyme. These results indicated that immobilized pullulanase was efficient in terms of catalytic activity and can be applied to continuous starch processing applications in the food industry. PMID:25797694

  18. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles

    PubMed Central

    Wawro, Dariusz; Pighinelli, Luciano

    2011-01-01

    This paper describes a method for preparing chitosan fibers modified with hydroxyapatite (HAp), tricalcium phosphate (β-TCP), and HAp/β-TCP nanoparticles. Fiber-grade chitosan derived from the northern shrimp (Pandalus borealis) and nanoparticles of tricalcium phosphate (β-TCP) and hydroxyapatite (HAp) suspended in a diluted chitosan solution were used in the investigation. Diluted chitosan solution containing nanoparticles of Hap/β-TCP was introduced to a 5.16 wt% solution of chitosan in 3.0 wt% acetic acid. The properties of the spinning solutions were examined. Chitosan fibers modified with nanoparticles of HAp/β-TCP were characterized by a level of tenacity and calcium content one hundred times higher than that of regular chitosan fibers. PMID:22174598

  19. The Use of chitosan in The Formation of Silver Nanoparticles, Chitosanic Nanoparticles and Fibrous Structures

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Abdelrahman Mohamed

    Nanoscale materials have attracted much attention in the last two decades due to their unique properties. The size effect attains new chemical and physical properties to these materials. Nanoparticles and nanofiber are major component of nanomaterials and they have heavily investigated in the literature for different applications. Nanoparticles could be produced from both metals as well as polymers. Chitosan, which is a natural polymer, can be used as capping agent in the preparation of metallic nanoparticles and itself, can produce nanoparticles. The utilization of nanoparticles and nanofibers for wound dressing materials is a very popular approach. Acquiring antibacterial properties to the wound dressing materials could be obtained either by formulation of nanomaterials composites or direct chemical modification of the substance. To improve the antibacterial properties of chitosan two approaches were applied. First, is through the formulation of chitosan with silver nanoparticles and the formation of nanofiber mats. In this study, the concepts of green chemistry were applied and silver nanoparticles were prepared in high concentration using chitosan as a capping polymer and glucose as a reducing agent. Nanofiber mats of polyvinyl alcohol/chitosan/silvernanoparticles were produced via electrospinning. The antibacterial activity of these fibers shows bactericidal effect against E. coli at low concentrations of Ag-NPs. In the second approach, direct chemical modification of chitosan was performed by grafting of Iodoacetic acid to the amino group at carbon-2. The chemical structure of chitosan Iodoacetamide derivative (CIA) was confirmed by FTIR and H1-NMR. The derivative was amorphous and water soluble at neutral pH. The minimum inhibitory concentration of CIA, against E. coli, was 400ig/mL and the derivative was bacteriostatic after 4h of treatment. Nanofiber mats of polyvinyl alcohol/chitosan/chitosan Iodoacetamide were produced via electrospinning. The

  20. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery.

    PubMed

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  1. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

    PubMed Central

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  2. Preparation and Characterization of Chitosan Nanoparticles for Zidovudine Nasal Delivery.

    PubMed

    Barbi, Mariana Da Silva; Carvalho, Flávia Chiva; Kiill, Charlene Priscila; Barud, Hernane Da Silva; Santagneli, Sílvia Helena; Ribeiro, Sidney José Lima; Gremião, Maria Palmira Daflon

    2015-01-01

    Zidovudine (AZT) is the antiretroviral drug most frequently used for the treatment of Acquired Immunodeficiency Syndrome. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. The nasal route is an option for enhanced therapeutic efficacy and to reduce the extent of the first-pass effect. In this article, AZT loaded chitosan nanoparticles were prepared by a modified ionotropic gelation method with sodium tripolyphosphate. The increase proportion of CS (NP1 10:01 (w/w)) promoted the formation of smaller nanoparticles (260 nm), while raising the proportion of TPP (NP2 5:1 w/w) increased the nanoparticles size (330 nm). The incorporation of AZT increased the nanoparticles size for both AZT-loaded nanoparticles AZT-loaded NP1 (406 nm) and AZT-loaded NP2 (425 nm). The incorporation of AZT into NP1 did not change the electrophoretic mobility, however, in AZT-loaded NP2 there was a significant increase. The positive surface of the nanoparticles is very important for the mucoadhesive properties due interaction with the sialic groups of the mucin. Nuclear resonance magnetic data showed that the higher concentration of chitosan in the nanoparticles favored the interaction of few phosphate units (pyrophosphate) by ionic interaction Scanning electron microscopy, revealed that the nanoparticles are nearly spherical shape with porous surface. The entrapment efficiency of AZT, was 17.58% ± 1.48 and 11.02% ± 2.05 for NP1 and NP2, respectively. The measurement of the mucoadhesion force using mucin discs and nasal tissue obtained values of NP1 = 2.12 and NP2 = 4.62. In vitro permeation study showed that the nanoparticles promoted an increase in the flux of the drug through the nasal mucosa. In view of these results, chitosan nanoparticles were found to be a promising approach for the incorporation of hydrophilic drugs and these results suggest that the CS-containing nanoparticles have great potential for nasal AZT

  3. Chitosan nanoparticles conjugate with trypsin and trypsin inhibitor.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2016-06-25

    Chitosan-protein conjugates are widely used in therapeutic drug delivery. We report the bindings of chitosan nanoparticles with trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis and multiple spectroscopic methods. Thermodynamic parameters ΔS, ΔH and ΔG showed chitosan-protein bindings occur mainly via H-bonding and van der Waals contacts with trypsin inhibitor forming more stable conjugate than trypsin. As chitosan size increased more stable polymer-protein conjugate was formed. Chitosan complexation induces more perturbations of trypsin inhibitor structure than trypsin with reduction of protein alpha-helix and major increase of random structure. The negative value of ΔG indicates spontaneous protein-chitosan complexation at room temperature. Chitosan nanoparticles can be used to transport trypsin and trypsin inhibitor. PMID:27083826

  4. Biocompatibility of folate-modified chitosan nanoparticles

    PubMed Central

    Chakraborty, Subhankari Prasad; Sahu, Sumanta Kumar; Pramanik, Panchanan; Roy, Somenath

    2012-01-01

    Objective To evaluate the acute toxicity of carboxymethyl chitosan-2, 2′ ethylenedioxy bis-ethylamine-folate (CMC-EDBE-FA) and as well as possible effect on microbial growth and in vitro cell cyto-toxicity. Methods CMC-EDBE-FA was prepared on basis of carboxymethyl chitosan tagged with folic acid by covalently linkage through 2, 2′ ethylenedioxy bis-ethylamine. In vivo acute toxicity, in vitro cyto-toxicity and antimicrobial activity of CMC-EDBE-FA nanoparticle were determined. Results Vancomycin exhibited the antibacterial activity against vancomycin sensitive Staphylococcus aureus, but CMC-EDBE-FA nanoparticle did not give any antibacterial activity as evidenced by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), disc agar diffusion (DAD) and killing kinetic assay. Further, the CMC-EDBE-FA nanoparticle showed no signs of in vivo acute toxicity up to a dose level of 1 000 mg/kg p.o., and as well as in vitro cyto-toxicity up to 250 µg/mL. Conclusions These findings suggest that CMC-EDBE-FA nanoparticle is expected to be safe for biomedical applications. PMID:23569900

  5. A recyclable and regenerable magnetic chitosan absorbent for dye uptake.

    PubMed

    Zhao, Weifeng; Huang, Xuelian; Wang, Yilin; Sun, Shudong; Zhao, Changsheng

    2016-10-01

    A recyclable and regenerable magnetic polysaccharide absorbent for methylene blue (MB) removal was prepared by coating magnetic polyethyleneimine nanoparticles (PEI@MNPs) with sulfonated chitosan (SCS) and further cross-linked with glutaraldehyde. The driving force for coating is the electrostactic interaction between positively charged PEI and negatively charged SCS. Infrared spectra, zeta potential, thermal gravimetric analysis and X-ray diffraction demonstrated the successful synthesis of magnetic polysaccharide absorbent. The self-assembly of polysaccharide with magnetic nanopartices did not alter the saturation magnetization value of the absorbent confirmed by vibrating sample magnetometer. The nanoparticles showed fast removal (about 30min reached equilibrium) of MB. In particular, the removal ability of MB after desorption did not reduce, demonstrating an excellent regeneration ability. Our study provides new insights into utilizing polysaccharides for environmental remediation and creating advanced magnetic materials for various promising applications. PMID:27312630

  6. Magnetic nanoparticles with surfaces modified with chitosan-poly[N-benzyl-2-(methacryloxy)-N,N-dimethylethanaminium bromide] for lipase immobilization

    NASA Astrophysics Data System (ADS)

    Ziegler-Borowska, Marta; Siódmiak, Tomasz; Chełminiak, Dorota; Cyganiuk, Aleksandra; Marszałł, Michał P.

    2014-01-01

    Superparamagnetic nanoparticles were surface-modified with a mixture of two polymers for lipase immobilization. Magnetite (Fe3O4)-chitosan (CS)-poly[N-benzyl-2-(methacryloxy)-N,N-dimethylethanaminium bromide] (PQ) nanoparticles with various polymers weight ratios were prepared by co-precipitation method via glutaraldehyde CS cross-linking reaction. Both of polymers have been successfully coated on the surface of magnetite nanoparticles and characterized. Prepared nanoparticles were also used for lipase immobilization. Obtained results demonstrate that application of the support prepared with the use of polymeric quaternized ammonium salt (CS-PQ (1:1)) allows to obtain high activity recovery (higher than 80%) in comparison with other tested nanoparticles.

  7. Quaternized Chitosan/Alginate-Fe3O4 Magnetic Nanoparticles Enhance the Chemosensitization of Multidrug-Resistant Gastric Carcinoma by Regulating Cell Autophagy Activity in Mice.

    PubMed

    Li, Xiujuan; Feng, Jing; Zhang, Ran; Wang, Jinda; Su, Tao; Tian, Zuhong; Han, Dong; Zhao, Chuanxu; Fan, Miaomiao; Li, Congye; Liu, Bing; Feng, Xuyang; Nie, Yongzhan; Wu, Kaichun; Chen, Yundai; Deng, Hongbing; Cao, Feng

    2016-05-01

    Multidrug resistance (MDR) and targeted therapies present major challenges in tumor chemotherapy. Nanoparticles (NPs) hold promise for use in cancer theranostics due to their advantages in terms of tumor-targeted cytotoxicity and imaging. In this study, we developed N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC)/alginate-encapsulated Fe3O4 magnetic NPs (HTCC-MNPs) and applied them to MDR gastric cancer both in vivo and in vitro. HTCC-MNPs were fabricated from sodium alginate (ALG), Fe3O4 and HTCC using an ionic gelation method. The sizes and physical characteristics of the NPs were determined using dynamic light scattering, transmission electron microscopy (TEM) and zeta potential analysis. The HTCC-MNPs exhibited excellent water solubility and biocompatibility as well as significantly reduced cell viability in the drug-resistant cancer cell line SGC7901/ADR, but not in normal gastric cells (P < 0.05). An analysis of LC3 expression demonstrated the involvement of autophagy in HTCC-MNP cytotoxicity. Additionally, apoptosis was verified using a DNA content assay. HTCC-MNPs led to mitochondrial membrane potential loss, decreased ATP production and excessive reactive oxygen species (ROS) generation compared to a control group (P < 0.05). Magnetic resonance imaging showed enrichment of HTCC-MNPs in tumor-bearing mice. In vivo bioluminescence imaging and tumor volume measurements revealed that HTCC-MNPs markedly inhibited in vivo tumor growth (P < 0.05). In conclusion, HTCC-MNPs significantly inhibited MDR gastric tumor growth and reduced tumor volume via the induction of cellular autophagy and apoptosis, which was attributed to mitochondrial dysfunction and excessive ROS accumulation. PMID:27305817

  8. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: an in vitro study

    PubMed Central

    Aliasghari, Azam; Rabbani Khorasgani, Mohammad; Vaezifar, Sedigheh; Rahimi, Fateh; Younesi, Habibollah; Khoroushi, Maryam

    2016-01-01

    Background and Objectives: The most prevalent and worldwide oral disease is dental caries that affects a significant proportion of the world population. There are some classical approaches for control, prevention and treatment of this pathologic condition; however, the results are still not completely successful. Therefore new methods are needed for better management of this important challenge. Chitosan is a natural and non-toxic polysaccharide with many biological applications, particularly as an antimicrobial agent. Chitosan nanoparticle is a bioactive and environment friendly material with unique physicochemical properties. The aim of the present study was to investigate the antimicrobial effect of chitosan and nano-chitosan on the most important cariogenic streptococci. Materials and Methods: For evaluation of antimicrobial effect of chitosan and nano-chitosan against oral streptococci broth micro-dilution method was carried out for four bacterial species; Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguis and Streptococcus salivarius. Also the effect of these materials on adhesion of above bacteria was evaluated. One-way ANOVA and post hoc Tukey test were used for statistical analysis. Results: The MICs of chitosan for S. mutans, S. sanguis, S. salivarius and S. sobrinus were 1.25, 1.25, 0.625 and 0.625 mg/mL, respectively. The MIC of chitosan nanoparticle for S. mutans, S. salivarius and S. sobrinus was 0.625 mg/mL and for S. sanguis was 0.312 mg/mL. Chitosan and chitosan nanoparticles at a concentration of 5 mg/mL also reduced biofilm formation of S. mutans up to 92.5% and 93.4%, respectively. Conclusion: The results of this study supported the use of chitosan and chitosan nanoparticles as antimicrobial agents against cariogenic Streptococci. PMID:27307974

  9. Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms.

    PubMed

    Chávez de Paz, Luis E; Resin, Anton; Howard, Kenneth A; Sutherland, Duncan S; Wejse, Peter L

    2011-06-01

    Nanoparticle complexes were prepared from chitosans of various molecular weights (MW) and degrees of deacetylation (DD). The antimicrobial effect was assessed by the Live/Dead BacLight technique in conjunction with confocal scanning laser microscopy (CSLM) and image analysis. Nanocomplexes prepared from chitosans with high MW showed a low antimicrobial effect (20 to 25% of cells damaged), whereas those prepared from low-MW chitosans showed high antimicrobial effect (>95% of cells damaged). PMID:21498764

  10. Antimicrobial Effect of Chitosan Nanoparticles on Streptococcus mutans Biofilms▿

    PubMed Central

    Chávez de Paz, Luis E.; Resin, Anton; Howard, Kenneth A.; Sutherland, Duncan S.; Wejse, Peter L.

    2011-01-01

    Nanoparticle complexes were prepared from chitosans of various molecular weights (MW) and degrees of deacetylation (DD). The antimicrobial effect was assessed by the Live/Dead BacLight technique in conjunction with confocal scanning laser microscopy (CSLM) and image analysis. Nanocomplexes prepared from chitosans with high MW showed a low antimicrobial effect (20 to 25% of cells damaged), whereas those prepared from low-MW chitosans showed high antimicrobial effect (>95% of cells damaged). PMID:21498764

  11. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes.

    PubMed

    de Lima, Jefferson Muniz; Sarmento, Ronaldo Rodrigues; de Souza, Joelma Rodrigues; Brayner, Fábio André; Feitosa, Ana Paula Sampaio; Padilha, Rafael; Alves, Luiz Carlos; Porto, Isaque Jerônimo; Batista, Roberta Ferreti Bonan Dantas; de Oliveira, Juliano Elvis; de Medeiros, Eliton Souto; Bonan, Paulo Rogério Ferreti; Castellano, Lúcio Roberto

    2015-01-01

    Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L(-1). The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH. PMID:25759815

  12. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes

    PubMed Central

    de Lima, Jefferson Muniz; Sarmento, Ronaldo Rodrigues; de Souza, Joelma Rodrigues; Brayner, Fábio André; Feitosa, Ana Paula Sampaio; Padilha, Rafael; Alves, Luiz Carlos; Porto, Isaque Jerônimo; Batista, Roberta Ferreti Bonan Dantas; de Oliveira, Juliano Elvis; de Medeiros, Eliton Souto; Bonan, Paulo Rogério Ferreti; Castellano, Lúcio Roberto

    2015-01-01

    Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH. PMID:25759815

  13. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry. PMID:23687952

  14. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  15. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi.

    PubMed

    Sathiyabama, M; Parthasarathy, R

    2016-10-20

    The aim of the present study was to prepare Chitosan nanoparticles through biological method with high antifungal activities. Chitosan nanoparticles were prepared by the addition of anionic proteins isolated from Penicillium oxalicum culture to chitosan solutions. The formation of chitosan nanoparticles was preliminary confirmed by UV-vis spectrophotometric analysis. The physico-chemical properties of the chitosan nanoparticles were determined by size and zeta potential analysis, FTIR analysis, HRTEM and XRD pattern. The chitosan nanoparticles were evaluated for its potential to inhibit the growth of phytopathogens viz., Pyricularia grisea, Alternaria solani, Fusarium oxysporum. It is evident from our results that chitosan nanoparticles inhibit the growth of phytopathogens tested. Chitosan nanoparticle treated chickpea seeds showed positive morphological effects such as enhanced germination%, seed vigor index and vegetative biomass of seedlings. All these results indicate that chitosan nanoparticle can be used further under field condition to protect various crops from the devastating fungal pathogens as well as growth promoters. PMID:27474573

  16. Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles

    PubMed Central

    Wang, Xin; Tang, Huang; Wang, Chongzhi; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun

    2016-01-01

    The phenylboronic acid-conjugated chitosan nanoparticles were prepared by particle surface modification. The size, zeta potential and morphology of the nanoparticles were characterized by dynamic light scattering, zeta potential measurement and transmission electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using monolayer cell model, 3-D multicellular spheroid model and H22 tumor-bearing mice. The incorporation of phenylboronic acid group into chitosan nanoparticles impart a surface charge-reversible characteristic to the nanoparticles. In vitro evaluation using 2-D and 3-D cell models showed that phenylboronic acid-decorated nanoparticles were more easily internalized by tumor cells compared to non-decorated chitosan nanoparticles, and could deliver more drug into tumor cells due to the active targeting effect of boronic acid group. Furthermore, the phenylboronic acid-decorated nanoparticles displayed a deeper penetration and persistent accumulation in the multicellular spheroids, resulting in better inhibition growth to multicellular spheroids than non-decorated nanoparticles. Tumor penetration, drug distribution and near infrared fluorescence imaging revealed that phenylboronic acid-decorated nanoparticles could penetrate deeper and accumulate more in tumor area than non-decorated ones. In vivo antitumor examination demonstrated that the phenylboronic acid-decorated nanoparticles have superior efficacy in restricting tumor growth and prolonging the survival time of tumor-bearing mice than free drug and drug-loaded chitosan nanoparticles. PMID:27375786

  17. Phenylboronic Acid-Mediated Tumor Targeting of Chitosan Nanoparticles.

    PubMed

    Wang, Xin; Tang, Huang; Wang, Chongzhi; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun

    2016-01-01

    The phenylboronic acid-conjugated chitosan nanoparticles were prepared by particle surface modification. The size, zeta potential and morphology of the nanoparticles were characterized by dynamic light scattering, zeta potential measurement and transmission electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using monolayer cell model, 3-D multicellular spheroid model and H22 tumor-bearing mice. The incorporation of phenylboronic acid group into chitosan nanoparticles impart a surface charge-reversible characteristic to the nanoparticles. In vitro evaluation using 2-D and 3-D cell models showed that phenylboronic acid-decorated nanoparticles were more easily internalized by tumor cells compared to non-decorated chitosan nanoparticles, and could deliver more drug into tumor cells due to the active targeting effect of boronic acid group. Furthermore, the phenylboronic acid-decorated nanoparticles displayed a deeper penetration and persistent accumulation in the multicellular spheroids, resulting in better inhibition growth to multicellular spheroids than non-decorated nanoparticles. Tumor penetration, drug distribution and near infrared fluorescence imaging revealed that phenylboronic acid-decorated nanoparticles could penetrate deeper and accumulate more in tumor area than non-decorated ones. In vivo antitumor examination demonstrated that the phenylboronic acid-decorated nanoparticles have superior efficacy in restricting tumor growth and prolonging the survival time of tumor-bearing mice than free drug and drug-loaded chitosan nanoparticles. PMID:27375786

  18. Properties of Novel Hydroxypropyl Methylcellulose Films Containing Chitosan Nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, chitosan nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films under different conditions. Mechanical properties, water vapor and oxygen permeability, water solubility and scanning and transmission electron microscopy (SEM and TEM) results were ana...

  19. Polyaniline-coated chitosan-functionalized magnetic nanoparticles: Preparation for the extraction and analysis of endocrine-disrupting phenols in environmental water and juice samples.

    PubMed

    Jiang, Xilan; Cheng, Jing; Zhou, Hongbin; Li, Feng; Wu, Wenlin; Ding, Kerong

    2015-08-15

    In the present study, chitosan (CHI) functionalized Fe3O4 magnetic microspheres coated with polyaniline (PANI) were synthesized for the first time. The chitosan-functionalized magnetic microspheres (Fe3O4@CHI) were synthesized by a co-precipitation method, and then aniline was polymerized on the magnetic core. The obtained Fe3O4@CHI@PANI microspheres were spherical core-shell structure with uniform size at about 100nm with 20-30nm diameter core. The microspheres had a high saturation magnetization of 32emu g(-)(1), which was sufficient for magnetic separation. The obtained Fe3O4@CHI@PANI magnetic microspheres were applied as magnetic adsorbents for the extraction of aromatic compounds via π-π interaction between polyaniline shell and aromatic compounds. Three endocrine-disrupting phenols, including bisphenol A (BPA), 2, 4-dichlorophenol (2, 4-DCP), and triclosan (TCS) were selected as the model analytes to verify the extraction ability of Fe3O4@CHI@PANI. The hydrophilic chitosan-functionalized Fe3O4 core (Fe3O4@CHI) improved the dispersibility of Fe3O4@CHI@PANI microspheres, and then improve its extraction efficiency. The dominant parameters affecting enrichment efficiency were investigated and optimized. Under optimal condition, the proposed method was evaluated, and applied to the analysis of phenols in real water and juice samples. The results demonstrated the method based on Fe3O4@CHI@PANI magnetic microspheres had good linearity (R(2)>0.996), and limits of detection (0.10-0.13ng mL(-1)), high repeatability (RSD<6.6%) and good recovery (85.0-106.7%). PMID:25966409

  20. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles.

    PubMed

    Rudzinski, Walter E; Palacios, Adriana; Ahmed, Abuzar; Lane, Michelle A; Aminabhavi, Tejraj M

    2016-08-20

    Small interfering RNA (siRNA) molecules specifically target messenger RNA species, decreasing intracellular protein levels. β-Catenin protein concentrations are increased in 70-80% of colon tumors, promoting tumor progression. Chitosan exhibits low levels of toxicity and can be transported across mucosal membranes; therefore, our objective was to develop chitosan and poly(ethylene glycol)-grafted (PEGylated) chitosan nanoparticles, 100-150nm in diameter, encapsulating anti-β-catenin siRNA for transfection into colon cancer cells. Encapsulation efficiencies up to 97% were observed. Confocal microscopy visualized the entry of fluorescently-tagged siRNA into cells. Western blot analysis showed that both chitosan and PEGylated chitosan nanoparticles containing anti-β-catenin siRNA decreased β-catenin protein levels in cultured colon cancer cells. These results indicate that nanoparticles made with chitosan and PEGylated chitosan can successfully enter colon cancer cells and decrease the level of a protein that promotes tumor progression. These or similar nanoparticles may prove beneficial for the treatment of colon cancer in humans. PMID:27178938

  1. Recent advances of chitosan nanoparticles as drug carriers

    PubMed Central

    Wang, Jun Jie; Zeng, Zhao Wu; Xiao, Ren Zhong; Xie, Tian; Zhou, Guang Lin; Zhan, Xiao Ri; Wang, Shu Ling

    2011-01-01

    Chitosan nanoparticles are good drug carriers because of their good biocompatibility and biodegradability, and can be readily modified. As a new drug delivery system, they have attracted increasing attention for their wide applications in, for example, loading protein drugs, gene drugs, and anticancer chemical drugs, and via various routes of administration including oral, nasal, intravenous, and ocular. This paper reviews published research on chitosan nanoparticles, including its preparation methods, characteristics, modification, in vivo metabolic processes, and applications. PMID:21589644

  2. Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics.

    PubMed

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A

    2014-01-01

    RNA interference (RNAi) gene silencing by small interfering RNAs (siRNAs) offers a potent and highly specific therapeutic strategy; however, enabling technologies that overcome extracellular and intracellular barriers are required. Polycation-based nanoparticles (termed polyplexes) composed of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA. PMID:25409611

  3. Alginate and Chitosan Gel Nanoparticles for Efficient Protein Entrapment

    NASA Astrophysics Data System (ADS)

    Masalova, O.; Kulikouskaya, V.; Shutava, T.; Agabekov, V.

    Alginate and chitosan nanoparticles were synthesized by ionic gelation of the polymers in the presence of stabilizers (PEG 1500, PEG 6000, TWEEN 80). The stability of 210-240 nm Ca-alginate colloids is affected by nanoparticles ageing and by the presence of a stabilizer. The diameter of chitosan nanoparticles is in the range of 180 to 260 nm and depends on polymer concentration in the reaction mixture, its molecular weight, and stabilizer type. The nanoparticles efficiently entrap a model protein, bovine serum albumin, in the amount up to 0.24 mg per 1 mg of polysaccharide.

  4. Formation and dissolution of chitosan/pyrophosphate nanoparticles: is the ionic crosslinking of chitosan reversible?

    PubMed

    Cai, Yuhang; Lapitsky, Yakov

    2014-03-01

    Ionically crosslinked chitosan particles with submicron dimensions attract widespread interest as materials for controlled release. To this end, we have examined the formation and dissolution of nanoparticles prepared by crosslinking chitosan with pyrophosphate (PPi). The formation of these particles required a critical PPi concentration (which increased with the chitosan concentration), and their z-average hydrodynamic diameters could be predictably tuned from roughly 60 to 220 nm by varying the concentration of the parent chitosan solutions. Unlike the nanoparticles crosslinked with the commonly used tripolyphosphate (TPP), which coagulated and precipitated when TPP was in excess, the chitosan/PPi nanoparticles remained colloidally stable even at high PPi concentrations. Moreover, the analysis of their dissolution revealed hysteresis in the particle formation/dissolution cycle, where portions of the crosslinked chitosan/PPi complexes remained stably intact at PPi concentrations below those required for their formation. This irreversible behavior was surmised to reflect the cooperativity of chitosan/PPi binding and was qualitatively modeled using the Bragg-Williams theory. PMID:24333908

  5. Chitosan Nanoparticles for SiRNA Delivery In Vitro.

    PubMed

    Ragelle, Héloïse; Vanvarenberg, Kevin; Vandermeulen, Gaëlle; Préat, Véronique

    2016-01-01

    RNA interference, the process in which small interfering RNAs (SiRNAs) silence a specific gene and thus inhibit the associated protein, has opened new doors for the treatment of a wide range of diseases. However, efficient delivery of SiRNAs remains a challenge, especially due to their instability in biological environments and their inability to cross cell membranes. To protect and deliver SiRNAs to mammalian cells, a variety of polymeric nanocarriers have been developed. Among them, the polysaccharide chitosan has generated great interests. This derivative of natural chitin is biodegradable and biocompatible, and can complex SiRNAs into nanoparticles on account of its positive charges. However, chitosan presents some limitations that need to be taken into account when designing chitosan/SiRNA nanoparticles. Here, we describe a method to prepare SiRNA/chitosan nanoparticles with high gene silencing efficiency and low cytotoxicity by using the ionic gelation technique. PMID:26472448

  6. Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds.

    PubMed

    Kariminia, Samira; Shamsipur, Ali; Shamsipur, Mojtaba

    2016-09-10

    A pH-responsive drug carrier based on chitosan coated iron oxide nanoparticles (CS-Fe3O4) for prolonged antibiotic release in a controlled manner is reported. As an antibiotic drug model, ciprofloxacin was loaded onto the nanocarrier via H-bonding interactions. The nanoparticles were characterized using scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, photon correlation spectroscopy and Fourier transform infrared spectroscopy. The particle size of CS-Fe3O4 nanoparticles were found to lie in the range of 30-80nm. The analytical characteristics of the designed system were thoroughly investigated. The in vitro drug loading at pH 4.8 and release kinetics at pH 7.4 studies revealed that the drug delivery system can take 99% of ciprofloxacin load and quantitatively release the drug over a sustained period of 5 days. The release kinetics study indicated that the system follows a zero order kinetics via a diffusion-controlled mechanism. These results indicated that CS-Fe3O4 nanoparticles have the potential for use as controlled antibiotic delivery systems through oral administration by avoiding the drug release in the highly acidic gastric fluid region of the stomach. Furthermore, the ability of low-frequency ultrasound in fast release of the encapsulated drug in less than 60min from the CS-Fe3O4 nanoparticles in a controlled manner was confirmed. PMID:27497305

  7. Comparison of magnetic carboxymethyl chitosan nanoparticles and cation exchange resin for the efficient purification of lysine-tagged small ubiquitin-like modifier protease.

    PubMed

    Li, Junhua; Zhang, Yang; Shen, Fei; Yang, Yanjun

    2012-10-15

    A fusion tag that can be purified by the cheap ion-exchanger based on the ionic binding force may provide a cost-effective scheme over other affinity fusion tags. Small ubiquitin-like modifier (SUMO) protease derived from Saccharomyces cerevisiae was fused with a poly lysine tag containing 10 lysine residues at its C-terminus and then expressed in Escherichia coli. The ionic binding force provided by the ploy lysine tag allowed the selective recovery of the small ubiquitin-like modifier protease from recombinant E. coli cell extracts. A preliminary comparative study of the adsorption and elution of poly lysine tagged SUMO protease on Amberlite Cobalamion and magnetite carboxymethyl chitosan nanoparticles was performed. Amberlite Cobalamion and magnetite nanoparticles had the similar elution profile due to the common functional groups - carboxyl groups. The maximum dynamic adsorption capacity of Amberlite Cobalamion and magnetite nanoparticles reached 36.8 and 211.4 mg/g, respectively. The lysine-tagged protease can be simply purified by magnetite nanoparticles from cell extracts with higher purity than that by Amberlite Cobalamion. The superparamagnetic nanoparticles possess the advantages of highly specific, fast and excellent binding of a larger amount of lysine tagged SUMO modifier protease, and it is also easier to separate from the crude biological process liquors compared with the conventional separation techniques of polycationic amino acids fusion proteins. PMID:22995375

  8. Cell outer membrane mimetic chitosan nanoparticles: preparation, characterization and cytotoxicity.

    PubMed

    Zhao, Jing; Liang, Fei; Kong, Lingheng; Zheng, Lina; Fan, Tao

    2015-01-01

    A negatively charged copolymer poly (MPC-co-AMPS) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-acrylamide-2-methyl propane sulfonic acid (AMPS) was designed and synthesized. Chitosan nanoparticles with cell outer membrane mimetic structure were prepared by electrostatic interaction between the sulfonic acid groups of poly (MPC-co-AMPS) and the protonated amino groups of chitosan. Effects of factors on influencing the particle size, distribution, and stability were investigated. The experimental results showed that cell membrane mimetic chitosan nanoparticles with controllable and homogeneous size ranged from 100 to 300 nm were prepared at the concentration of 0.1-2.0 mg/mL and the charge ratio of 0.5-1.1. Chitosan nanoparticles prepared can exist stably for more than 45 days when placed at 4 °C and pH < 7.5. The cytotoxicity of the chitosan nanoparticles reduced significantly after surface modification with cell membrane mimetic structure, meeting the basic requirements of biomedical materials. The results suggest cell membrane mimetic chitosan nanoparticles prepared with polyanion and polycation obtain good biological compatibility and immune stealth ability, which has important academic significance and great application prospects. PMID:26230052

  9. Properties of novel hydroxypropyl methylcellulose films containing chitosan nanoparticles.

    PubMed

    de Moura, M R; Avena-Bustillos, R J; McHugh, T H; Krochta, J M; Mattoso, L H C

    2008-09-01

    In this study, chitosan nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films under different conditions. Mechanical properties, water vapor and oxygen permeability, water solubility, and scanning and transmission electron microscopy (SEM and TEM) results were analyzed. Incorporation of chitosan nanoparticles in the films improved their mechanical properties significantly, while also improving film barrier properties significantly. The chitosan poly(methacrylic acid) (CS-PMAA) nanoparticles tend to occupy the empty spaces in the pores of the HPMC matrix, inducing the collapse of the pores and thereby improving film tensile and barrier properties. This study is the first to investigate the use of nanoparticles for the purpose of strengthening HPMC films. PMID:18803724

  10. Synthesis of Monodisperse Chitosan Nanoparticles and in Situ Drug Loading Using Active Microreactor.

    PubMed

    Kamat, Vivek; Marathe, Ila; Ghormade, Vandana; Bodas, Dhananjay; Paknikar, Kishore

    2015-10-21

    Chitosan nanoparticles are promising drug delivery vehicles. However, the conventional method of unregulated mixing during ionic gelation limits their application because of heterogeneity in size and physicochemical properties. Therefore, a detailed theoretical analysis of conventional and active microreactor models was simulated. This led to design and fabrication of a polydimethylsiloxane microreactor with magnetic micro needles for the synthesis of monodisperse chitosan nanoparticles. Chitosan nanoparticles synthesized conventionally, using 0.5 mg/mL chitosan, were 250 ± 27 nm with +29.8 ± 8 mV charge. Using similar parameters, the microreactor yielded small size particles (154 ± 20 nm) at optimized flow rate of 400 μL/min. Further optimization at 0.4 mg/mL chitosan concentration yielded particles (130 ± 9 nm) with higher charge (+39.8 ± 5 mV). The well-controlled microreactor-based mixing generated highly monodisperse particles with tunable properties including antifungal drug entrapment (80%), release rate, and effective activity (MIC, 1 μg/mL) against Candida. PMID:26448128

  11. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells

    SciTech Connect

    Loh, Jing Wen; Yeoh, George; Saunders, Martin; Lim, Lee-Yong

    2010-12-01

    Despite extensive research into the biomedical and pharmaceutical applications of nanoparticles, and the liver being the main detoxifying organ in the human body, there are limited studies which delineate the hepatotoxicity of nanoparticles. This paper reports on the biological interactions between liver cells and chitosan nanoparticles, which have been widely recognised as biocompatible. Using the MTT assay, human liver cells were shown to tolerate up to 4 h of exposure to 0.5% w/v of chitosan nanoparticles (18 {+-} 1 nm, 7.5 {+-} 1.0 mV in culture medium). At nanoparticle concentrations above 0.5% w/v, cell membrane integrity was compromised as evidenced by leakage of alanine transaminase into the extracellular milieu, and there was a dose-dependent increase in CYP3A4 enzyme activity. Uptake of chitosan nanoparticles into the cell nucleus was observed by confocal microscopic analysis after 4 h exposure with 1% w/v of chitosan nanoparticles. Electron micrographs further suggest necrotic or autophagic cell death, possibly caused by cell membrane damage and resultant enzyme leakage.

  12. Asymmetric Collagen/chitosan Membrane Containing Minocycline-loaded Chitosan Nanoparticles for Guided Bone Regeneration.

    PubMed

    Ma, Shiqing; Adayi, Aidina; Liu, Zihao; Li, Meng; Wu, Mingyao; Xiao, Linghao; Sun, Yingchun; Cai, Qing; Yang, Xiaoping; Zhang, Xu; Gao, Ping

    2016-01-01

    Infections caused by pathogens colonization at wound sites in the process of bone healing are considered as one of the major reasons for the failure of guided bone regeneration (GBR). The objective of this study was to prepare a novel asymmetric collagen/chitosan GBR membrane containing minocycline-loaded chitosan nanoparticles. The morphologies of the membranes and nanoparticles were observed by SEM and TEM, respectively. The characterization and biocompatibility of the membranes was evaluated. The effect of the membrane on bone regeneration was assessed using the critical-size at cranial defect model. TEM images showed the spherical morphology of the nanoparticles. The results of SEM indicated that the asymmetric membrane contained a dense collagen layer and a loose chitosan layer. An in vitro experiment showed that the membrane can inhibit bacterial growth and promote osteoblasts and fibroblasts growth. The membrane showed the ability to promote angiogenesis and enhance bone regeneration in vivo. An asymmetric collagen/chitosan GBR membrane can be fabricated by loading minocycline encapsulated chitosan nanoparticles, and shows satisfactory biocompatibility and barrier function, which enhances bone regeneration. Therefore, this antibacterial GBR membrane is a promising therapeutic approach to prevent infection and guide bone regeneration. PMID:27546177

  13. Asymmetric Collagen/chitosan Membrane Containing Minocycline-loaded Chitosan Nanoparticles for Guided Bone Regeneration

    PubMed Central

    Ma, Shiqing; Adayi, Aidina; Liu, Zihao; Li, Meng; Wu, Mingyao; Xiao, Linghao; Sun, Yingchun; Cai, Qing; Yang, Xiaoping; Zhang, Xu; Gao, Ping

    2016-01-01

    Infections caused by pathogens colonization at wound sites in the process of bone healing are considered as one of the major reasons for the failure of guided bone regeneration (GBR). The objective of this study was to prepare a novel asymmetric collagen/chitosan GBR membrane containing minocycline-loaded chitosan nanoparticles. The morphologies of the membranes and nanoparticles were observed by SEM and TEM, respectively. The characterization and biocompatibility of the membranes was evaluated. The effect of the membrane on bone regeneration was assessed using the critical-size at cranial defect model. TEM images showed the spherical morphology of the nanoparticles. The results of SEM indicated that the asymmetric membrane contained a dense collagen layer and a loose chitosan layer. An in vitro experiment showed that the membrane can inhibit bacterial growth and promote osteoblasts and fibroblasts growth. The membrane showed the ability to promote angiogenesis and enhance bone regeneration in vivo. An asymmetric collagen/chitosan GBR membrane can be fabricated by loading minocycline encapsulated chitosan nanoparticles, and shows satisfactory biocompatibility and barrier function, which enhances bone regeneration. Therefore, this antibacterial GBR membrane is a promising therapeutic approach to prevent infection and guide bone regeneration. PMID:27546177

  14. Signal amplification strategy using gold/N-trimethyl chitosan/iron oxide magnetic composite nanoparticles as a tracer tag for high-sensitive electrochemical detection.

    PubMed

    Shirazi, Hanieh; Ahmadi, Anita; Darzianiazizi, Maedeh; Kashanian, Susan; Kashanian, Soheila; Omidfar, Kobra

    2016-02-01

    This study presents a novel signal amplification method for high-sensitive electrochemical immunosensing. Gold (Au)/N-trimethyl chitosan (TMC)/iron oxide (Fe3O4) (shell/shell/core) nanocomposite was used as a tracing tag to label antibody. The tag was shown to be capable of amplifying the recognition signal by high-density assembly of Au nanoparticles (NPs) on TMC/Fe3O4 particles. The remarkable conductivity of AuNPs provides a feasible pathway for electron transfer. The method was found to be simple, reliable and capable of high-sensitive detection of human serum albumin as a model, down to 0.2 pg/ml in the range of 0.25-1000 pg/ml. Findings of the present study would create new opportunities for sensitive and rapid detection of various analytes. PMID:26766869

  15. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Lee, Nohyun; Kang, Hyun Wook; Oh, Junghwan

    2016-03-01

    Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.

  16. Sunitinib loaded chitosan nanoparticles formulation and its evaluation.

    PubMed

    Joseph, Jayapal John; Sangeetha, D; Gomathi, Thandapani

    2016-01-01

    The nano-polymeric pharmaceutical excipient such as chitosan nanoparticles (CS-NPs) were synthesized for formulating the anticancer drug Sunitinib (STB). The formulation was done through the simple ionic cross linking method. The prepared formulation was characterized by DLS, SEM, FT-IR and XRD. The DLS study reveals that the Sunitinib loaded chitosan nanoparticles (SNB-CS-NPs) were in the size range of < 200 nm. Encapsulation of Sunitinib and validation for the formulation was done using UV spectrophotometry. In vitro drug release and its cytotoxic studies were performed for STB-CS-NPs. This study implies the novel drug delivery system for Sunitinib for the effective sustained delivery. PMID:26522243

  17. Preparation of Chitosan Nanoparticles: A Study of Influencing Factors

    NASA Astrophysics Data System (ADS)

    Thakur, Anupama; Taranjit

    2011-12-01

    Chitosan (CS), a cationic polysaccharide, offers great advantages for ionic interactions with negatively charged species such as sodium tripolyphosphate (STPP) leading to the formation of biocompatible crosslinked chitosan nanoparticles In the present work, an attempt has been made to systematically study the following factors influencing the ionotropic gelation of chitosan with STPP to produce CS nanoparticles: effect of pH of solution, CS concentration, STPP concentration and CS/STPP ratio. The results show that with the increase in CS concentration, the yield of the nanoparticle decreases whereas size increases. The mean size of the prepared nanoparticles varied between 120 to 720 nm and zeta potential between +14 mV to +53 mV . Nanoparticle size and yield was found to be strongly dependent on solution pH. Nanoparticle size decreased with increase in solution pH from 4 to 5 and yield was found to be maximum at pH = 5. With increase in STPP concentration, the size and yield of the nanoparticle increased. The potential of CS nanoparticles to trap amoxicillin trihydrate, taken as the model drug, was also studied. The maximum drug loading capacity was found to be 35% at a solution pH = 5 for 0.2% CS and 0.086% STPP.

  18. Design of chitosan-based nanoparticles functionalized with gallic acid.

    PubMed

    Lamarra, J; Rivero, S; Pinotti, A

    2016-10-01

    Active nanoparticles based on chitosan could be applied as a support for the modulation of gallic acid delivery. In this sense, these nanostructures could be employed in different fields such as food, packaging, and pharmaceutical areas. The design parameters of chitosan-based nanoparticles functionalized with gallic acid (GA) were optimized through RSM by means of the analysis of zeta potential (ZP) and percentage encapsulation efficiency (PEE). The nanoparticles were prepared by ionotropic gelation using tripolyphosphate (TPP), at different combinations of chitosan (CH) concentration, CH:TPP ratio and GA. Global desirability methodology allowed finding the optimum formulation that included CH 0.76% (w/w), CH:TPP ratio of 5 and 37mgGA/gCH leading to ZP of +50mV and 82% of PEE. Analysis through QuickScan and turbidity demonstrated that the most stable nanoparticle suspensions were achieved combining concentrations of chitosan ranging between 0.5 and 0.75% with CH:TPP ratios higher than 3. These suspensions had high stability confirmed by means ZP and transmittance values which were higher than +25mV and 0.21 on average, respectively, as well as nanoparticle diameters of about 140nm. FTIR revealed the occurrence of both hydrogen bond and ionic interactions of CH-TPP which allowed the encapsulation and the improvement of the stability of the active agent. PMID:27287172

  19. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio.

    PubMed

    Wang, Yanbo; Zhou, Jinru; Liu, Lin; Huang, Changjiang; Zhou, Deqing; Fu, Linglin

    2016-05-01

    In the present study, chitosan nanoparticles were prepared, characterized and used to evaluate the embryonic toxicology on zebrafish (Danio rerio). The average particle size of chitosan nanoparticles was 84.86nm. The increased mortality and decreased hatching rate was found in the zebrafish embryo exposure to normal chitosan particles and chitosan nanoparticles with the increased addition concentration. At 120h post-fertilization (hpf), the rate of mortality were 25.0 and 44.4% in the groups treated with chitosan nanoparticles and normal chitosan particles at 250mg/L, respectively. At 72hpf, the hatching rate in the groups treated with normal chitosan particles were lower (P<0.01) at 300 and 400mg/L than those of the corresponding control groups, respectively. However, there were no significant differences between the groups treated with chitosan nanoparticles and the control groups across all the addition concentrations. More abundant typical malformation of embryos was observed in the groups treated with normal chitosan particles compared with those treated with chitosan nanoparticles. The LC50 (medium lethal concentration) of chitosan nanoparticles was 280mg/L at 96hpf and 270mg/L at 120hpf. As for normal chitosan particles, the LC50 was 257mg/L at both 96hpf and 120hpf. The TC50 (medium teratogenic concentration) of the zebrafish treated with chitosan nanoparticles and normal chitosan particles were 257mg/L and 137mg/L, respectively. It indicated that the chitosan nanoparticles were relatively more secure compared with normal chitosan particles. PMID:26877014

  20. Multimodal in vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Exact detection and complete removal of cancer is a key point to minimize cancer recurrence. However, it is currently very difficult to detect small tumors inside human body and continuously monitor tumors using a non-invasive imaging modality. Presently, positron emission tomography (PET) can provide the most sensitive cancer images in the human body. However, PET imaging has very limited imaging time because they typically use isotopes with short halflives. PET imaging cannot also visualize anatomical information. Magnetic resonance imaging (MRI) can provide highresolution images inside the body but it has a low sensitivity, so MRI contrast agents are necessary to enhance the contrast of tumor. Near infrared fluorescent (NIRF) imaging has a good sensitivity to visualize tumor using optical probes, but it has a very limited tissue penetration depth. Therefore, we developed multi-modality nanoparticles for MRI based diagnosis and NIRF imaging based surgery of cancer. We utilized glycol chitosan of 350 nm as a vehicle for MRI contrast agents and NIRF probes. The glycol chitosan nanoparticles were conjugated with NIRF dye, Cy5.5 and bladder cancer targeting peptides to increase the internalization of cancer. For MR contrast effects, iron oxide based 22 nm nanocubes were physically loaded into the glycol chitosan nanoparticles. The nanoparticles were characterized and evaluated in bladder tumor bearing mice. Our study suggests the potential of our nanoparticles by both MRI and NIRF imaging for tumor diagnosis and real-time NIRF image-guided tumor surgery.

  1. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells

    SciTech Connect

    Loh, Jing Wen; Saunders, Martin; Lim, Lee-Yong

    2012-08-01

    Published toxicology data on chitosan nanoparticles (NP) often lack direct correlation to the in situ size and surface characteristics of the nanoparticles, and the repeated NP assaults as experienced in chronic use. The aim of this paper was to breach these gaps. Chitosan nanoparticles synthesized by spinning disc processing were characterised for size and zeta potential in HBSS and EMEM at pHs 6.0 and 7.4. Cytotoxicity against the Caco-2 cells was evaluated by measuring the changes in intracellular mitochondrial dehydrogenase activity, TEER and sodium fluorescein transport data and cell morphology. Cellular uptake of NP was observed under the confocal microscope. Contrary to established norms, the collective data suggest that the in vitro cytotoxicity of NP against the Caco-2 cells was less influenced by positive surface charges than by the particle size. Particle size was in turn determined by the pH of the medium in which the NP was dispersed, with the mean size ranging from 25 to 333 nm. At exposure concentration of 0.1%, NP of 25 ± 7 nm (zeta potential 5.3 ± 2.8 mV) was internalised by the Caco-2 cells, and the particles were observed to inflict extensive damage to the intracellular organelles. Concurrently, the transport of materials along the paracellular pathway was significantly facilitated. The Caco-2 cells were, however, capable of recovering from such assaults 5 days following NP removal, although a repeat NP exposure was observed to produce similar effects to the 1st exposure, with the cells exhibiting comparable resiliency to the 2nd assault. -- Highlights: ► Chitosan nanoparticles reduced mitochondrial dehydrogenase activity. ► Cellular uptake of chitosan nanoparticles was observed. ► Chitosan nanoparticles inflicted extensive damage to the cell morphology. ► The transport of materials along the paracellular pathway was facilitated.

  2. Development of novel guava puree films containing chitosan nanoparticles.

    PubMed

    Lorevice, Marcos V; de Moura, Márcia R; Aouada, Fauze A; Mattoso, Luiz H C

    2012-03-01

    One of the overall goals of industries is to use packages that do not cause environmental problems at disposal time, but that have the same properties as the conventional ones. The goal of this study is to synthesize edible films based on hydroxypropyl methylcellulose (HPMC) with guava puree and chitosan (CS) nanoparticles. This was divided into two stages, the first is the synthesis of chitosan nanoparticles and the second is the production of the films. For the nanoparticles, average size and zeta potential measurements were performed. The characterizations of mechanical and thermal properties, solubility and water vapor permeability tests were conducted in the films. It was observed that when the nanoparticles were added to HPMC and guava puree films, they improved their mechanical and thermal properties, as well as decreased the films solubility and permeability. The potential application of the films prepared would be in edible films with flavor and odor to extend the shelf life of products. PMID:22755113

  3. Chitosan as template for the synthesis of ceria nanoparticles

    SciTech Connect

    Sifontes, A.B.; Gonzalez, G.; Ochoa, J.L.; Tovar, L.M.; Zoltan, T.; Canizales, E.

    2011-11-15

    Graphical abstract: Cerium oxide nanoparticles with cubic fluorite structure were prepared using chitosan as template, cerium nitrate as a starting material and sodium hydroxide as a precipitating agent. Calcinated powders at 350 {sup o}C contain agglomerated particles with average particle size of {approx}4 nm, very high porosity and foam-like morphology formed by open and close pores. Highlights: {yields} Pure CeO{sub 2} nanoparticles can take place using chitosan as template. {yields} A porous material was obtained. {yields} Blueshifts in the ultraviolet absorption spectra have been observed in cerium oxide nanocrystallites. -- Abstract: Cerium oxide (CeO{sub 2}), nanoparticles were prepared using chitosan as template, cerium nitrate as a starting material and sodium hydroxide as a precipitating agent. The resultant ceria-chitosan spheres were calcined at 350 {sup o}C. The synthesized powders were characterized by, XRD, HRTEM, UV-vis, FTIR, and TG-DTA. The average size of the nanoparticles obtained was {approx}4 nm and BET specific surface area {approx}105 m{sup 2} g{sup -1}. Blueshifts in the ultraviolet absorption spectra have been observed in cerium oxide nanocrystallites. The band-gap was found to be 4.5 eV. The blueshifts are well explained for diameters down to less than a few nanometers by the change in the electronic band structure.

  4. In Vivo Magnetic Resonance Imaging and Microwave Thermotherapy of Cancer Using Novel Chitosan Microcapsules

    NASA Astrophysics Data System (ADS)

    Tang, Shunsong; Du, Qijun; Liu, Tianlong; Tan, Longfei; Niu, Meng; Gao, Long; Huang, Zhongbing; Fu, Changhui; Ma, Tengchuang; Meng, Xianwei; Shao, Haibo

    2016-07-01

    Herein, we develop a novel integrated strategy for the preparation of theranostic chitosan microcapsules by encapsulating ion liquids (ILs) and Fe3O4 nanoparticles. The as-prepared chitosan/Fe3O4@IL microcapsules exhibit not only significant heating efficacy in vitro under microwave (MW) irradiation but also obvious enhancement of T2-weighted magnetic resonance (MR) imaging, besides the excellent biocompatibility in physiological environments. The chitosan/Fe3O4@IL microcapsules show ideal temperature rise and therapeutic efficiency when applied to microwave thermal therapy in vivo. Complete tumor elimination is realizing after MW irradiation at an ultralow power density (1.8 W/cm2), while neither the MW group nor the chitosan microcapsule group has significant influence on the tumor development. The applicability of the chitosan/Fe3O4@IL microcapsules as an efficient contrast agent for MR imaging is proved in vivo. Moreover, the result of in vivo systematic toxicity shows that chitosan/Fe3O4@IL microcapsules have no acute fatal toxicity. Our study presents an interesting type of multifunctional platform developed by chitosan microcapsule promising for imaging-guided MW thermotherapy.

  5. In Vivo Magnetic Resonance Imaging and Microwave Thermotherapy of Cancer Using Novel Chitosan Microcapsules.

    PubMed

    Tang, Shunsong; Du, Qijun; Liu, Tianlong; Tan, Longfei; Niu, Meng; Gao, Long; Huang, Zhongbing; Fu, Changhui; Ma, Tengchuang; Meng, Xianwei; Shao, Haibo

    2016-12-01

    Herein, we develop a novel integrated strategy for the preparation of theranostic chitosan microcapsules by encapsulating ion liquids (ILs) and Fe3O4 nanoparticles. The as-prepared chitosan/Fe3O4@IL microcapsules exhibit not only significant heating efficacy in vitro under microwave (MW) irradiation but also obvious enhancement of T2-weighted magnetic resonance (MR) imaging, besides the excellent biocompatibility in physiological environments. The chitosan/Fe3O4@IL microcapsules show ideal temperature rise and therapeutic efficiency when applied to microwave thermal therapy in vivo. Complete tumor elimination is realizing after MW irradiation at an ultralow power density (1.8 W/cm(2)), while neither the MW group nor the chitosan microcapsule group has significant influence on the tumor development. The applicability of the chitosan/Fe3O4@IL microcapsules as an efficient contrast agent for MR imaging is proved in vivo. Moreover, the result of in vivo systematic toxicity shows that chitosan/Fe3O4@IL microcapsules have no acute fatal toxicity. Our study presents an interesting type of multifunctional platform developed by chitosan microcapsule promising for imaging-guided MW thermotherapy. PMID:27422776

  6. Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for oral administration.

    PubMed

    Hecq, J; Siepmann, F; Siepmann, J; Amighi, K; Goole, J

    2015-01-01

    Chitosan and chitosan derivative-based nanoparticles loaded with insulin were prepared by self-assembly, via electrostatic interactions between the negatively charged drug and the positively charged polymers. In the investigated chitosan derivatives, the amine groups were substituted to different extents (33, 52 or 99%) by 2-hydroxypropyl-3-trimethyl ammonium groups, rendering the polymers permanently positively charged, irrespective of the pH. This is an important property for this type of advanced drug delivery system, since the pH value changes throughout the gastrointestinal tract and electrostatic interactions are of crucial importance for the stability of the nanoparticles. Permanent positive charges are also in favor of mucoadhesion. In contrast, the electric charges of chitosan molecules depend on the pH of the surrounding medium. Since the solubility of the chitosan derivatives increased due to the introduction of quaternary ammonium groups, sodium tripolyphosphate (TPP) was added to the systems to create supplementary cross-links and stabilize the nanoparticles. The presence of TPP influenced both the dissolution of the polymer matrix as well as the resulting release kinetics. The underlying drug release mechanisms were found to be more complex than simple diffusion under constant conditions, likely involving also ionic interactions and matrix dissolution. The most promising formulation was based on a chitosan derivative with 33% substitution degree and characterized by a Z-average of 142 ± 10 nm, a zeta potential of 29 ± 1 mV, an encapsulation efficacy of 52 ± 3% and, most importantly, the release of insulin was sustained for more than 210 min. PMID:26006329

  7. Towards the development of multifunctional chitosan-based iron oxide nanoparticles: Optimization and modelling of doxorubicin release.

    PubMed

    Soares, Paula I P; Sousa, Ana Isabel; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-11-20

    In the present work composite nanoparticles with a magnetic core and a chitosan-based shell were produced as drug delivery systems for doxorubicin (DOX). The results show that composite nanoparticles with a hydrodynamic diameter within the nanometric range are able to encapsulate more DOX than polymeric nanoparticles alone corresponding also to a higher drug release. Moreover the synthesis method of the iron oxide nanoparticles influences the total amount of DOX released and a high content of iron oxide nanoparticles inhibits DOX release. The modelling of the experimental results revealed a release mechanism dominated by Fickian diffusion. PMID:27561489

  8. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi.

    PubMed

    Saharan, Vinod; Mehrotra, Akanksha; Khatik, Rajesh; Rawal, Pokhar; Sharma, S S; Pal, Ajay

    2013-11-01

    The main aim of present study was to prepare chitosan, chitosan-saponin and Cu-chitosan nanoparticles to evaluate their in vitro antifungal activities. Various nanoparticles were prepared using ionic gelation method by interaction of chitosan, sodium tripolyphosphate, saponin and Cu ions. Their particle size, polydispersity index, zeta potential and structures were confirmed by DLS, FTIR, TEM and SEM. The antifungal properties of nanoparticles against phytopathogenic fungi namely Alternaria alternata, Macrophomina phaseolina and Rhizoctonia solani were investigated at various concentrations ranging from 0.001 to 0.1%. Among the various formulations of nanoparticles, Cu-chitosan nanoparticles were found most effective at 0.1% concentration and showed 89.5, 63.0 and 60.1% growth inhibition of A. alternata, M. phaseolina and R. solani, respectively in in vitro model. At the same concentration, Cu-chitosan nanoparticles also showed maximum of 87.4% inhibition rate of spore germination of A. alternata. Chitosan nanoparticles showed the maximum growth inhibitory effects (87.6%) on in vitro mycelial growth of M. phaseolina at 0.1% concentration. From our study it is evident that chitosan based nanoparticles particularly chitosan and Cu-chitosan nanoparticles have tremendous potential for further field screening towards crop protection. PMID:24141067

  9. Collagen/chitosan film containing biotinylated glycol chitosan nanoparticles for localized drug delivery.

    PubMed

    Chen, Ming-Mao; Huang, Yu-Qing; Cao, Huan; Liu, Yan; Guo, Hao; Chen, Lillian S; Wang, Jian-Hua; Zhang, Qi-Qing

    2015-04-01

    The objective of this study was to design a drug delivery system consisting of biotinylated cholesterol-modified glycol chitosan (Bio-CHGC) nanoparticles and fish collagen/chitosan (Col/Ch) film for localized chemotherapy. Bio-CHGC was synthesized, and then its self-assembled nanoparticles were prepared by probe sonication. Doxorubicin (DOX)-loaded Bio-CHGC (DBC) nanoparticles prepared by dialysis had spherical shape, and their sizes were in the range of 330-397 nm. Col/Ch/DBC nanoparticle films were fabricated by freeze-drying. SEM showed that the DBC nanoparticles were uniformly distributed into the films, and the films retained their structural integrity. A higher degradation and swelling rate of the drug films led to a higher diffusion rate of the nanoparticles from the films, resulting in an increase in the drug release from nanoparticles. The release of DOX from the films or Bio-CHGC nanoparticles was sensitive to the pH value of the release medium. In addition, the DOX release ratio of the drug films was lower than that of the nanoparticles alone, suggesting that the drug films had a double-sustained effect on the drug release. MTT assay implied that the DBC nanoparticle film showed a higher inhibitory ratio than the film containing nanoparticles without biotin, indicating that biotin moieties in the nanoparticles played an important role in exerting a cytotoxic effect. These data demonstrate that Col/Ch/DBC nanoparticle film has the potential to be used as a localized delivery system for hydrophobic antitumor drugs. PMID:25784300

  10. Magnetic Nanoparticle Sensors

    PubMed Central

    Koh, Isaac; Josephson, Lee

    2009-01-01

    Many types of biosensors employ magnetic nanoparticles (diameter = 5–300 nm) or magnetic particles (diameter = 300–5,000 nm) which have been surface functionalized to recognize specific molecular targets. Here we cover three types of biosensors that employ different biosensing principles, magnetic materials, and instrumentation. The first type consists of magnetic relaxation switch assay-sensors, which are based on the effects magnetic particles exert on water proton relaxation rates. The second type consists of magnetic particle relaxation sensors, which determine the relaxation of the magnetic moment within the magnetic particle. The third type is magnetoresistive sensors, which detect the presence of magnetic particles on the surface of electronic devices that are sensitive to changes in magnetic fields on their surface. Recent improvements in the design of magnetic nanoparticles (and magnetic particles), together with improvements in instrumentation, suggest that magnetic material-based biosensors may become widely used in the future. PMID:22408498

  11. Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation.

    PubMed

    Blažević, Filip; Milekić, Tamara; Romić, Marieta Duvnjak; Juretić, Marina; Pepić, Ivan; Filipović-Grčić, Jelena; Lovrić, Jasmina; Hafner, Anita

    2016-08-01

    Herein, we propose an innovative approach to improving wound healing. Our strategy is to deliver melatonin locally at the wound site by means of lecithin/chitosan nanoparticles. We used four types of chitosan that differed in terms of molecular weight and/or deacetylation degree. Melatonin encapsulation efficiency, nanoparticle size, zeta potential, biocompatibility and in vitro drug release were studied as a function of the type of chitosan used in preparation. The nanoparticles were evaluated in terms of their potential to promote wound epithelialisation via an in vitro scratch assay using a human keratinocyte (HaCaT) monolayer. The model wounds were treated with nanoparticle suspensions at a chitosan concentration of 5μgml(-1), which was based on preceding cell biocompatibility studies. Nanoparticles prepared with different types of chitosan showed similar effect on the keratinocyte proliferation/migration. Nanoparticle-mediated interplay of chitosan and melatonin was shown to be crucial for improved wound epithelialisation. PMID:27112895

  12. Thermosensitive macroporous cryogels functionalized with bioactive chitosan/bemiparin nanoparticles.

    PubMed

    Peniche, Hazel; Reyes-Ortega, Felisa; Aguilar, María R; Rodríguez, Gema; Abradelo, Cristina; García-Fernández, Luis; Peniche, Carlos; San Román, Julio

    2013-11-01

    Thermosensitive macroporous scaffolds of poly(N-isopropylacrylamide) (polyNIPA) loaded with chitosan/bemiparin nanoparticles are prepared by the free radical polymerization in cryogenic conditions. Chitosan/bemiparin nanoparticles of 102 ± 6.5 nm diameter are prepared by complex coacervation and loaded into polyNIPA cryogels. SEM image reveal the highly porous structure of cryogels and the integration of nanoparticles into the macroporous system. Volume phase transition temperature (VPT) and total freezing water content of cryogels are established by differential scanning calorimetry, and their porosity is determined by image-NMR. Swelling of cryogels (above and below the VPT) is highly dependent on nanoparticles concentration. In vitro release profile of bemiparin from cryogel is highly modulated by the presence of chitosan. Bemiparin released from nanoparticles preserves its biological activity, as shown by the BaF32 cell proliferation assay. Cryogels are not cytotoxic for the human fibroblast cells and present excellent properties for application on tissue engineering and controlled release of heparin. PMID:23956200

  13. Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer

    NASA Astrophysics Data System (ADS)

    Karaca, E.; Şatır, M.; Kazan, S.; Açıkgöz, M.; Öztürk, E.; Gürdağ, G.; Ulutaş, D.

    2015-01-01

    Fe3O4 nanoparticles doped into chitosan films were prepared by the solution casting technique. Various samples were synthesized in atmospheric medium and in vacuum. The morphological properties of the samples were characterized by high resolution transmission electron microscopy (HR-TEM) and Scanning Electron Microscopy (SEM). The structural, magnetic, and microwave absorption properties of magnetic chitosan films have been carried out using the Vibrating Sample Magnetometer (VSM) and Ferromagnetic Resonance (FMR). It is shown that the composite polymer behaves like a superparamagnetic material with high blocking temperature. The effective magnetization shows gradual increments with the concentration of dopant Fe3O4 nanoparticles. The microwave absorption characteristic of superparamagnetic composite polymer shows low reflection loss.

  14. One-step synthesis of magnetic chitosan for controlled release of 5-hydroxytryptophan

    NASA Astrophysics Data System (ADS)

    Santos Menegucci, Jucély dos; Santos, Mac-Kedson Medeiros Salviano; Dias, Diego Juscelino Santos; Chaker, Juliano Alexandre; Sousa, Marcelo Henrique

    2015-04-01

    In this work, nanoparticles of chitosan embedded with 25% (w/w) of iron oxide magnetic nanoparticles (magnetite/maghemite) with narrow size-distribution and with a loading efficiency of about 80% for 5-hydroxytryptophan (5-HTP), which is a chemical precursor in the biosynthesis of important neurotransmitters as serotonin, were synthesized with an initial mass ratio of 5-HTP/magnetic chitosan=1.2, using homogeneous precipitation by urea decomposition, in an efficient one-step procedure. Characterization of morphology, structure and surface were performed by XRD, TEM, FTIR, TGA, magnetization and zeta potential measurements, while drug loading and drug releasing were investigated using UV-vis spectroscopy. Kinetic drug release experiments under different pH conditions revealed a pH-sensitivecontrolled-release system, ruled by polymer swelling and/or particle dissolution.

  15. A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation.

    PubMed

    Kleine-Brueggeney, H; Zorzi, G K; Fecker, T; El Gueddari, N E; Moerschbacher, B M; Goycoolea, F M

    2015-11-01

    Chitosan is a linear aminopolysaccharide that has been widely used for the formation of chitosan-based nanoparticles by ionic gelation with sodium tripolyphosphate (TPP). Often, the experimental design used to obtain these systems does not take into consideration important variables, such as the degree of acetylation (DA) and the molecular weight (Mw) of chitosan. In this work, we studied the formation of chitosan-TPP nanoparticles with chitosan samples of varying DA and Mw (DA0 ∼ 0-47% and Mw ∼ 2.5-282 kDa). We addressed the influence the degree of space occupancy and the degree of crosslinking on the physical properties of chitosan-TPP nanoparticles. Nanoparticles that comprised chitosan of DA ∼ 0-21.7% behaved differently than those made of chitosan of DA ∼ 34.7-47%. We attributed these differences to the polymer conformation and chain flexibility of the distinct chitosans in solution. Moreover, chitosan of high Mw were found to have a stronger preference for incorporating into the formed nanoparticles than do low-Mw ones, as determined by SEC-HPLC. These results open new perspectives to understand the formation of chitosan nanoparticles by the ionic gelation technique. PMID:26241921

  16. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    NASA Astrophysics Data System (ADS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Bernkop Schnürch, Andreas

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy.

  17. Preparation of the chitosan grafted poly (quaternary ammonium)/Fe3O4 nanoparticles and its adsorption performance for food yellow 3.

    PubMed

    Yu, Chen; Geng, Jianqiang; Zhuang, Yunxia; Zhao, Jian; Chu, Liqiu; Luo, Xiaoxuan; Zhao, Ying; Guo, Yanwen

    2016-11-01

    Chitosan and its derivatives can be used to modify magnetic materials to promote the adsorption properties of the magnetic materials and avoid the weakness of chitosan and its derivatives. In the present study, chitosan grafted poly(trimethyl allyl ammonium chloride) (CTS-g-PTMAAC) was prepared by graft copolymerization; then it was coated on the surfaces of the sodium citrate coated Fe3O4 nanoparticles (SC-Fe3O4) to prepare a novel composite CTS-g-PTMAAC/SC-Fe3O4 magnetic nanoparticles, with which possesses abundant surface positive charges. The structure and properties of the CTS-g-PTMAAC/SC-Fe3O4 composite magnetic nanoparticles were characterized by FTIR, TEM, VSM, and zeta potential. The dye adsorption characteristics of the CTS-g-PTMAAC/SC-Fe3O4 nanoparticles were determined using the food yellow 3 aqueous solutions as a model food effluent. Effect of pH of the dye solution on the adsorption of food yellow 3 was determined and compared with N-2-hydroxylpropyl trimethyl ammonium chloride chitosan coated sodium citrate-Fe3O4 (CTS-g-HTCC/SC-Fe3O4) composite magnetic nanoparticles. The adsorption kinetics, adsorption isotherms, adsorption thermodynamics, and desorption and reusability of the magnetic nanoparticles were investigated. PMID:27516279

  18. Dietary chitosan nanoparticles protect crayfish Procambarus clarkii against white spot syndrome virus (WSSV) infection.

    PubMed

    Sun, Baozhen; Quan, Haizhi; Zhu, Fei

    2016-07-01

    Chitosan nanoparticles have exhibited potential antibacterial activity or anticancer activity as their unique character. In this study, we investigated the effect of chitosan nanoparticles protect crayfish Procambarus clarkii against WSSV. Chitosan (from crab shell) nanoparticles were prepared by ultrafine milling. The physicochemical properties of the nanoparticles were determined by particle size measure, zeta potential analysis and scanning electron microscope observation. The total hemocyte count (THC), phenoloxidase (PO) and superoxide dismutase (SOD) activity were measured at days 1, 4, 9 and 12, and the survival rate was also recorded after WSSV challenge. The results showed that chitosan nanoparticles could enhance the survival rate of WSSV-challenged crayfish. And crayfish fed diets supplemented with 10 mg/g chitosan nanoparticles (65% mortality) showed a significantly higher survival rate when compared to the control group (100% mortality). The analysis of immunological parameters revealed that 10 mg/g chitosan nanoparticles showed significantly higher level of prophenoloxidase (proPO), superoxide dismutase (SOD) and total hemocyte count (THC) when compared to the control group. It was found that chitosan nanoparticles could inhibit WSSV replication in crayfish. Our results demonstrated that dietary chitosan nanoparticles effectively improve innate immunity and survival of P. clarkii challenged with WSSV. PMID:27071520

  19. MRI traceability of superparamagnetic iron oxide nanoparticle-embedded chitosan microspheres as an embolic material in rabbit uterus

    PubMed Central

    Choi, Sun Young; Kwak, Byung Kook; Shim, Hyung Jin; Lee, Jaehwi; Hong, Soon Uk; Kim, Kyung Ah

    2015-01-01

    PURPOSE We aimed to compare polyvinyl alcohol (PVA) particles with calibrated superparamagnetic iron oxide (SPIO) nanoparticle-loaded chitosan microspheres in a rabbit model, specifically regarding the relative distribution of embolic agents within the uterus based on magnetic resonance imaging (MRI) and pathological evaluation. METHODS Twelve New Zealand white rabbits underwent uterine artery embolization using either standard PVA particles (45–150 µm or 350–500 µm) or calibrated SPIO-embedded chitosan microspheres (45–150 µm or 300–500 µm). MRI and histopathological findings were compared one week after embolization. RESULTS Calibrated SPIO-loaded chitosan microspheres 45–150 µm in size were detected on T2-weighted images. On histological analysis, calibrated SPIO-embedded chitosan microspheres were found in both myometrium and endometrium, whereas PVA particles were found only in the perimyometrium or extrauterine fat pads. A proportional relationship was noted between the calibrated SPIO-embedded chitosan microsphere size and the size of the occluded artery. CONCLUSION Calibrated SPIO-embedded chitosan microspheres induced greater segmental arterial occlusion than PVA particles and showed great potential as a new embolic material. SPIO-embedded chitosan microspheres can be used to follow distribution of embolic particles through MRI studies. PMID:25333216

  20. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitosan/tripolyphosphate nanoparticles were prepared and incorporated in hydroxypropyl methylcellulose (HPMC) films. FT-IR and transmission electron microscopy (TEM) analyses of the nanoparticles, mechanical properties, water vapor permeability, thermal stability, scanning electron microscopy (SEM...

  1. Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties

    PubMed Central

    Ing, Ling Yien; Zin, Noraziah Mohamad; Sarwar, Atif; Katas, Haliza

    2012-01-01

    The need of natural antimicrobials is paramount to avoid harmful synthetic chemicals. The study aimed to determine the antifungal activity of natural compound chitosan and its nanoparticles forms against Candida albicans, Fusarium solani and Aspergillus niger. Chitosan nanoparticles were prepared from low (LMW), high molecular weight (HMW) chitosan and its derivative, trimethyl chitosan (TMC). Particle size was increased when chitosan/TMC concentration was increased from 1 to 3 mg/mL. Their zeta potential ranged from +22 to +55 mV. Chitosan nanoparticles prepared from different concentrations of LMW and HMW were also found to serve a better inhibitory activity against C. albicans (MICLMW = 0.25–0.86 mg/mL and MICHMW = 0.6–1.0 mg/mL) and F. solani (MICLMW = 0.86–1.2 mg/mL and MICHMW = 0.5–1.2 mg/mL) compared to the solution form (MIC = 3 mg/mL for both MWs and species). This inhibitory effect was also influenced by particle size and zeta potential of chitosan nanoparticles. Besides, Aspergillus niger was found to be resistant to chitosan nanoparticles except for nanoparticles prepared from higher concentrations of HMW. Antifungal activity of nanoparticles prepared from TMC was negligible. The parent compound therefore could be formulated and applied as a natural antifungal agent into nanoparticles form to enhance its antifungal activity. PMID:22829829

  2. Magnetic nanoparticle temperature estimation

    SciTech Connect

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  3. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics

    PubMed Central

    Min, Hyun Su; You, Dong Gil; Son, Sejin; Jeon, Sangmin; Park, Jae Hyung; Lee, Seulki; Kwon, Ick Chan; Kim, Kwangmeyung

    2015-01-01

    Theranostic nanoparticles hold great promise for simultaneous diagnosis of diseases, targeted drug delivery with minimal toxicity, and monitoring of therapeutic efficacy. However, one of the current challenges in developing theranostic nanoparticles is enhancing the tumor-specific targeting of both imaging probes and anticancer agents. Herein, we report the development of tumor-homing echogenic glycol chitosan-based nanoparticles (Echo-CNPs) that concurrently execute cancer-targeted ultrasound (US) imaging and US-triggered drug delivery. To construct this novel Echo-CNPs, an anticancer drug and bioinert perfluoropentane (PFP), a US gas precursor, were simultaneously encapsulated into glycol chitosan nanoparticles using the oil in water (O/W) emulsion method. The resulting Echo-CNPs had a nano-sized particle structure, composing of hydrophobic anticancer drug/PFP inner cores and a hydrophilic glycol chitosan polymer outer shell. The Echo-CNPs had a favorable hydrodynamic size of 432 nm, which is entirely different from the micro-sized core-empty conventional microbubbles (1-10 μm). Furthermore, Echo-CNPs showed the prolonged echogenicity via the sustained microbubble formation process of liquid-phase PFP at the body temperature and they also presented a US-triggered drug release profile through the external US irradiation. Interestingly, Echo-CNPs exhibited significantly increased tumor-homing ability with lower non-specific uptake by other tissues in tumor-bearing mice through the nanoparticle's enhanced permeation and retention (EPR) effect. Conclusively, theranostic Echo-CNPs are highly useful for simultaneous cancer-targeting US imaging and US-triggered delivery in cancer theranostics. PMID:26681985

  4. Biotemplated magnetic nanoparticle arrays.

    PubMed

    Galloway, Johanna M; Bramble, Jonathan P; Rawlings, Andrea E; Burnell, Gavin; Evans, Stephen D; Staniland, Sarah S

    2012-01-23

    Immobilized biomineralizing protein Mms6 templates the formation of uniform magnetite nanoparticles in situ when selectively patterned onto a surface. Magnetic force microscopy shows that the stable magnetite particles maintain their magnetic orientation at room temperature, and may be exchange coupled. This precision-mixed biomimetic/soft-lithography methodology offers great potential for the future of nanodevice fabrication. PMID:22052737

  5. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel.

    PubMed

    Al-Kassas, Raida; Wen, Jingyuan; Cheng, Angel En-Miao; Kim, Amy Moon-Jung; Liu, Stephanie Sze Mei; Yu, Joohee

    2016-11-20

    This study aimed at improving the systemic bioavailability of propranolol-HCl by the design of transdermal drug delivery system based on chitosan nanoparticles dispersed into gels. Chitosan nanoparticles were prepared by ionic gelation technique using tripolyphosphate (TPP) as a cross-linking agent. Characterization of the nanoparticles was focused on particle size, zeta potential, surface texture and morphology, and drug encapsulation efficiency. The prepared freeze dried chitosan nanoparticles were dispersed into gels made of poloxamer and carbopol and the rheological behaviour and the adhesiveness of the gels were investigated. The results showed that smallest propranolol loaded chitosan nanoparticles were achieved with 0.2% chitosan and 0.05% TPP. Nanoparticles were stable in suspension with a zeta potential (ZP) above ±30mV to prevent aggregation of the colloid. Zeta potential was found to increase with increasing chitosan concentration due to its cationic nature. At least 70% of entrapment efficiency and drug loading were achieved for all prepared nanoparticles. When chitosan nanoparticles dispersed into gel consisting of poloxamer and carbopol, the resultant formulation exhibited thixotropic behaviour with a prolonged drug release properties as shown by the permeation studies through pig ear skin. Our study demonstrated that the designed nanoparticles-gel transdermal delivery system has a potential to improve the systemic bioavailability and the therapeutic efficacy of propranolol-HCl. PMID:27561485

  6. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.

    PubMed

    Li, Pu-Wang; Wang, Guang; Yang, Zi-Ming; Duan, Wei; Peng, Zheng; Kong, Ling-Xue; Wang, Qing-Huang

    2016-01-01

    Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250 nm in diameter with smooth surface and were negatively charged with a zeta potential of - 17.4 mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs. PMID:24712731

  7. Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance.

    PubMed

    Ma, Jiangya; Fu, Kun; Shi, Jun; Sun, Yongjun; Zhang, Xinxi; Ding, Lei

    2016-10-20

    In the present work, a new flocculant, polyacrylamide-grafted chitosan nanoparticles (NCS-g-PAM), was synthesized by the copolymerization of acrylamide (AM) and chitosan nanoparticle (NCS) under ultraviolet irradiation using 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone as photo-initiator. The NCS was prepared by the ionic gelation between chitosan and sodium tripolyphosphate. The structure and morphology of NCS-g-PAM were characterized by Fourier Transform Infraredspectroscopy (FT-IR), X-ray diffraction, (1)H-nuclear magnetic resonance spectrometry, scanning electron microscopy, and thermogravimetric analysis. The factors affecting the intrinsic viscosity and the yield of copolymer were studied, which showed that the optimum conditions for the synthesis of NCS-g-PAM were mAM:mNCS=8:1, 0.15g of initiator dosage, mCS:mTPP=4.5:1, 1min of ultrasonication time, 4h of illumination time, and 30min of stirring time. The NCS-g-PAM was found to be more effective than NC-g-PAM in the flocculation of both kaolin suspension and Cu(2+) simulated wastewater. With 5mg/L of polyaluminium chloride (PAC) coordinated and 1mg/L of NCS-g-PAM it was confirmed to be appropriate for flocculating kaolin suspension. PMID:27474601

  8. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights.

    PubMed

    Zhang, Chunyue; Zhai, Xiaona; Zhao, Guanghua; Ren, Fazheng; Leng, Xiaojing

    2015-12-10

    Chitosan-stabilized selenium nanoparticles (SeNPs) have been reported, but there is no information on the effect of the chitosan molecular weight on the structure, stability, and selenium release properties of the SeNPs. Herein, we compared the uniform Se(0) spherical nanoparticles prepared through the reduction of seleninic acid with ascorbic acid in the presence of chitosan with different molecular weights (Mws). We found that both low and high molecular weight chitosan-stabilized selenium nanoparticles exhibited core-shell microstructures with a size of about 103 nm after 30 days growing through the "bottom-up approach" and "top-down approach," respectively. Moreover, both chitosan SeNPs processed excellent stability towards pH and enzyme treatment. In contrast, selenium was easily released to different extents from these two chitosan SeNPs upon treatment with different free radicals. This makes these materials potentially useful as oral antioxidant supplements. PMID:26428112

  9. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus.

    PubMed

    Wang, Xiang-Yu; Jiang, Xiao-Ping; Li, Yue; Zeng, Sha; Zhang, Ye-Wang

    2015-04-01

    Magnetic Fe3O4@chitosan nanoparticles were prepared by a simple in situ co-precipitation method and characterized by transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The prepared Fe3O4@chitosan nanoparticles were used for covalent immobilization of lipase from Thermomyces lanuginosus by chemical conjugation after electrostatic entrapment (CCEE). The optimal immobilization conditions were obtained as follows: enzyme/support 19.8 mg/g, pH 5.0, time 4h and temperature 30 °C. Under these conditions, a high immobilization efficiency of 75% and a protein loading of 16.8 mg/g-support were obtained. Broad pH tolerance and high thermostability could be achieved by immobilization. The immobilized lipase retained 70% initial activity after ten cycles. Kinetic parameters Vmax and Km of free and immobilized lipase were determined as 5.72 mM/min, 2.26 mM/min and 21.25 mM, 28.73 mM, respectively. Ascorbyl palmitate synthesis with immobilized lipase was carried out in tert-butanol at 50 °C, and the conversion of ascorbic acid was obtained higher than 50%. These results showed that the immobilization of lipase onto magnetic chitosan nanoparticles by the method of CCEE is an efficient and simple way for preparation of stable lipase. PMID:25603148

  10. Ligand fishing using new chitosan based functionalized Androgen Receptor magnetic particles.

    PubMed

    Marszałł, Michał Piotr; Sroka, Wiktor Dariusz; Sikora, Adam; Chełminiak, Dorota; Ziegler-Borowska, Marta; Siódmiak, Tomasz; Moaddel, Ruin

    2016-08-01

    Superparamagnetic nanoparticles with chemically modified chitosan has been proposed as a potential support for the immobilization of the androgen receptor (AR). The study involved comparison of different AR carriers like commercially available magnetic beads coated with silica (BcMag) and chitosan coated nanoparticles with different amount of amino groups. The immobilization was carried out through covalent immobilization of the AR through the terminal amino group or through available carboxylic acids. The initial characterization of the AR coated magnetic beads was carried out with dihydrotestosterone, a known AR ligand. Subsequently, chitosan modified nanporticles with long-distanced primary amino groups (Fe3O4CS-(NH2)3) (upto 8.34mM/g) were used for further study to isolate known AR ligands (bicalutamide, flutamide, hydroxyflutamide and levonogestrel) from a mixture of tested compounds in ammonium acetate buffer [10mM, pH 7.4]. The results showed that the selected nanoparticles are a promising semi-quantitative tool for the identification of high affinity compounds to AR and might be of special importance in the identification of novel agonists or antiandrogens. PMID:27156644

  11. Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab

    PubMed Central

    Yousefpour, Parisa; Atyabi, Fatemeh; Vasheghani-Farahani, Ebrahim; Movahedi, Ali-Akbar Mousavi; Dinarvand, Rassoul

    2011-01-01

    Background Targeting drugs to their sites of action to overcome the systemic side effects associated with most antineoplastic agents is still a major challenge in pharmaceutical research. In this study, the monoclonal antibody, trastuzumab, was used as a targeting agent in nanoparticles carrying the antitumor drug, doxorubicin, specifically to its site of action. Methods Chitosan-doxorubicin conjugation was carried out using succinic anhydride as a crosslinker. Trastuzumab was conjugated to self-assembled chitosan-doxorubin conjugate (CS-DOX) nanoparticles (particle size, 200 nm) via thiolation of lysine residues and subsequent linking of the resulted thiols to chitosan. Conjugation was confirmed by gel permeation chromatography, differential scanning calorimetry, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy studies. Dynamic light scattering, transmission electron microscopy, and zeta potential determination were used to characterize the nanoparticles. Results CS-DOX conjugated nanoparticles had a spherical shape and smooth surface with a narrow size distribution and core-shell structure. Increasing the ratio of doxorubicin to chitosan in the conjugation reaction gave rise to a higher doxorubicin content but lower conjugation efficiency. Trastuzumab-decorated nanoparticles (CS-DOX-mAb) contained 47 μg/mg doxorubicin and 33.5 μg/mg trastuzumab. Binding of trastuzumab to the nanoparticles was further probed thermodynamically by isothermal titration calorimetry. Fluorescence microscopy demonstrated enhanced and selective uptake of CS-DOX-mAb by Her2+ cancer cells compared with nontargeted CS-DOX nanoparticles and free drug. Conclusion Antibody-conjugated nanoparticles were shown to discriminate between Her2+ and Her2− cells, and thus have the potential to be used in active targeted drug delivery, with reduction of drug side effects in Her2+ breast and ovarian cancers. PMID:21976974

  12. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    PubMed Central

    2013-01-01

    Oral chemotherapy is a key step towards ‘chemotherapy at home’, a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588

  13. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-01

    Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  14. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer.

    PubMed

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-01-01

    Oral chemotherapy is a key step towards 'chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588

  15. Biocompatible and target specific hydrophobically modified glycol chitosan nanoparticles.

    PubMed

    Yin, Wei; Li, Weiyi; Rubenstein, David A; Meng, Yizhi

    2016-01-01

    Cardiovascular disease is the leading cause of death in the United States. Atherosclerosis is a major cause for cardiovascular diseases. Drugs that treat atherosclerosis usually act nonspecifically. To enhance drug delivery specificity, the authors developed a hydrophobically modified glycol chitosan (HGC) nanoparticle that can specifically target activated endothelial cells. The biocompatibility of these nanoparticles toward red blood cells and platelets was evaluated through hemolysis, platelet activation, platelet thrombogenicity, and platelet aggregation assays. The biocompatibility of these nanoparticles toward vascular endothelial cells was evaluated by their effects on endothelial cell growth, metabolic activity, and activation. The results demonstrated that HGC nanoparticles did not cause hemolysis, or affect platelet activation, thrombogenicity, and aggregation capability in vitro. The nanoparticles did not impair vascular endothelial cell growth or metabolic activities in vitro, and did not cause cell activation either. When conjugated with intercellular adhesion molecular 1 antibodies, HGC nanoparticles showed a significantly increased targeting specificity toward activated endothelial cells. These results suggested that HGC nanoparticles are likely compatible toward red blood cells, platelets, and endothelial cells, and they can be potentially used to identify activated endothelial cells at atherosclerotic lesion areas within the vasculature, and deliver therapeutic drugs. PMID:27126597

  16. Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization.

    PubMed

    De Giglio, Elvira; Trapani, Adriana; Cafagna, Damiana; Sabbatini, Luigia; Cometa, Stefania

    2011-06-01

    The formulation and characterization of dopamine (DA)-loaded chitosan nanoparticles (CSNPs) are described as preliminary steps for the development of potential DA carrier systems intended for Parkinson's disease treatment. For this purpose, CSNPs were firstly produced and, afterwards, they were incubated in a DA aqueous solution to promote neurotransmitter loading. The characterization of the resulting nanoparticles started with Fourier transform infrared spectroscopy analysis to ascertain the presence of DA in the nanocarrier, whereas X-ray photoelectron spectroscopy analysis provided evidence of the localization of DA on the nanoparticle surface. A quartz crystal microbalance with dissipation monitoring (QCM-D) was then exploited to investigate both swelling of CSNPs and interaction of DA with CSNPs. In particular, the QCM-D revealed that this interaction is fast and so this allows a stable nanostructured system to be obtained. PMID:21523332

  17. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging.

    PubMed

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    2016-01-01

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging. PMID:27621615

  18. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging

    PubMed Central

    Key, Jaehong; Dhawan, Deepika; Cooper, Christy L; Knapp, Deborah W; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Park, Kinam; Decuzzi, Paolo; Leary, James F

    2016-01-01

    While current imaging modalities, such as magnetic resonance imaging (MRI), computed tomography, and positron emission tomography, play an important role in detecting tumors in the body, no single-modality imaging possesses all the functions needed for a complete diagnostic imaging, such as spatial resolution, signal sensitivity, and tissue penetration depth. For this reason, multimodal imaging strategies have become promising tools for advanced biomedical research and cancer diagnostics and therapeutics. In designing multimodal nanoparticles, the physicochemical properties of the nanoparticles should be engineered so that they successfully accumulate at the tumor site and minimize nonspecific uptake by other organs. Finely altering the nano-scale properties can dramatically change the biodistribution and tumor accumulation of nanoparticles in the body. In this study, we engineered multimodal nanoparticles for both MRI, by using ferrimagnetic nanocubes (NCs), and near infrared fluorescence imaging, by using cyanine 5.5 fluorescence molecules. We changed the physicochemical properties of glycol chitosan nanoparticles by conjugating bladder cancer-targeting peptides and loading many ferrimagnetic iron oxide NCs per glycol chitosan nanoparticle to improve MRI contrast. The 22 nm ferrimagnetic NCs were stabilized in physiological conditions by encapsulating them within modified chitosan nanoparticles. The multimodal nanoparticles were compared with in vivo MRI and near infrared fluorescent systems. We demonstrated significant and important changes in the biodistribution and tumor accumulation of nanoparticles with different physicochemical properties. Finally, we demonstrated that multimodal nanoparticles specifically visualize small tumors and show minimal accumulation in other organs. This work reveals the importance of finely modulating physicochemical properties in designing multimodal nanoparticles for bladder cancer imaging. PMID:27621615

  19. Facile Synthesis of Silver Nanoparticles Under {gamma}-Irradiation: Effect of Chitosan Concentration

    SciTech Connect

    Huang, N. M.; Radiman, S.; Ahmad, A.; Idris, H.; Lim, H. N.; Khiew, P. S.; Chiu, W. S.; Tan, T. K.

    2009-06-01

    In the present study, a biopolymer, low molecular weight chitosan had been utilized as a 'green' stabilizing agent for the synthesis of silver nanoparticles under {gamma}-irradiation. The as-synthesized silver nanoparticles have particle diameters in the range of 5 nm-30 nm depending on the percentage of chitosan used (0.1 wt%, 0.5 wt%, 1.0 wt% and 2.0 wt%). It was found that the yield of the silver nanoparticles was in accordance with the concentration of chitosan presence in the solution due to the reduction by the chitosan radical during irradiation. The highly stable chitosan encapsulated silver nanoparticles were characterized using transmission electron microscopy (TEM), UV-Visible spectrophotometer (UV-VIS) and X-ray diffraction spectroscopy (XRD)

  20. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites

    PubMed Central

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-01-01

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16 μM, a sensitivity of 5.658 mA/cm2/M, and a linear detection range up to 26 mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents. PMID:26052919

  1. Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-06-01

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16 μM, a sensitivity of 5.658 mA/cm2/M, and a linear detection range up to 26 mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents.

  2. Multifunctional glucose biosensors from Fe₃O₄ nanoparticles modified chitosan/graphene nanocomposites.

    PubMed

    Zhang, Wenjing; Li, Xiaojian; Zou, Ruitao; Wu, Huizi; Shi, Haiyan; Yu, Shanshan; Liu, Yong

    2015-01-01

    Novel water-dispersible and biocompatible chitosan-functionalized graphene (CG) has been prepared by a one-step ball milling of carboxylic chitosan and graphite. Presence of nitrogen (from chitosan) at the surface of graphene enables the CG to be an outstanding catalyst for the electrochemical biosensors. The resulting CG shows lower ID/IG ratio in the Raman spectrum than other nitrogen-containing graphene prepared using different techniques. Magnetic Fe3O4 nanoparticles (MNP) are further introduced into the as-synthesized CG for multifunctional applications beyond biosensors such as magnetic resonance imaging (MRI). Carboxyl groups from CG is used to directly immobilize glucose oxidase (GOx) via covalent linkage while incorporation of MNP further facilitated enzyme loading and other unique properties. The resulting biosensor exhibits a good glucose detection response with a detection limit of 16 μM, a sensitivity of 5.658 mA/cm(2)/M, and a linear detection range up to 26 mM glucose. Formation of the multifunctional MNP/CG nanocomposites provides additional advantages for applications in more clinical areas such as in vivo biosensors and MRI agents. PMID:26052919

  3. Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Zubareva, A. A.; Shcherbinina, T. S.; Varlamov, V. P.; Svirshchevskaya, E. V.

    2015-04-01

    Chitosan (Chi) is a biodegradable nontoxic polycation with multiple reactive groups that is easily used to obtain derivatives with a desired charge and hydrophobic properties. The aim of this work was to study the intracellular traffic of positively charged hexanoyl-chitosan (HC) or HC-based nanoparticles (HCNPs) and negatively charged succinoyl-chitosan (SC) and SCNPs in epithelial and macrophage cell lines. By using flow cytometry we demonstrated that positively charged HC adhered to cell membranes quicker and more efficiently than negatively charged SC or NPs. However confocal studies showed that SC and SCNPs penetrated cells much more efficiently than HC while HCNPs did not enter the epithelial cells. Macrophages also phagocyted better negatively charged material but were able to engulf both HC and HCNPs. Upon entering the cells, SC and SCNPs were co-localized with endosomes and lysosomes while HC was found in mitochondria and, to a lesser extent, in lysosomes of epithelial cells. Macrophages, RAW264.7, more efficiently transported all Chi samples to the lysosomal compartment while some positively charged material was still found in mitochondria. Incubation of Chi derivatives and ChiNPs at pH specific to mitochondria (8.0) and lysosomes (4.5) demonstrated the neutralization of Chi charge. We concluded that epithelial cells and, to a lesser extent, macrophages sort charged material to the organelles neutralizing Chi charge.

  4. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy.

    PubMed

    Bisht, Savita; Maitra, Amarnath

    2009-01-01

    Chemotherapy is a major therapeutic approach for the treatment of localized and metastasized cancers. Whereas potent chemotherapeutic agents seem promising in the test tube, clinical trials often fail due to unfavorable pharmacokinetics, poor delivery, low local concentrations, and limited accumulation in the target cell. The pathophysiology of the tumor vasculature and stromal compartment presents a major obstacle to effective delivery of agents to solid tumors. Poor perfusion of the tumor, arterio-venous shunting, necrotic and hypoxic areas, as well as a high interstitial fluid pressure work against favorable drug uptake. Thus, targeted drug delivery using long-circulating particulate drug carriers such as hydrogels of controlled size (<100 nm diameter) holds immense potential to improve the treatment of cancer by selectively providing therapeutically effective drug concentrations at the tumor site [through enhanced permeability and retention (EPR) effect] while reducing undesirable side effects. This review focuses on the progress of targeted delivery of nanoparticulated anticancer drug such as doxorubicin chemically conjugated with dextran and encapsulated in chitosan nanoparticles to solid tumor with reduced side effect of drug. Regulated particle size and long circulation of these hydrogel nanoparticles in blood help them accumulate in tumor tissue through EPR effect as evident from the significant regression of the tumor volume. The cardiotoxicity of doxorubicin can be minimized by coupling the drug with dextran and encapsulating it in chitosan nanoparticles. PMID:20049807

  5. Chitosan and silver nanoparticles: promising anti-toxoplasma agents.

    PubMed

    Gaafar, M R; Mady, R F; Diab, R G; Shalaby, Th I

    2014-08-01

    Toxoplasmosis is a worldwide infection caused by obligate intracellular protozoan parasite which is Toxoplasma gondii. Chitosan and silver nanoparticles were synthesized to be evaluated singly or combined for their anti-toxoplasma effects as prophylaxis and as treatment in the experimental animals. Results were assessed through studying the parasite density and the ultrastructural parasite changes, and estimation of serum gamma interferon. Weight of tissue silver was assessed in different organs. Results showed that silver nanoparticles used singly or combined with chitosan have promising anti-toxoplasma potentials. The animals that received these compounds showed statistically significant decrease in the mean number of the parasite count in the liver and the spleen, when compared to the corresponding control group. Light microscopic examination of the peritoneal exudates of animals receiving these compounds showed stoppage of movement and deformity in shape of the tachyzoites, whereas, by scanning electron microscope, the organisms were mutilated. Moreover, gamma interferon was increased in the serum of animals receiving these compounds. All values of silver detected in different tissues were within the safe range. Thus, these nanoparticles proved their effectiveness against the experimental Toxoplasma infection. PMID:24852215

  6. Chitosan-modified cobalt oxide nanoparticles stimulate TNF-α-mediated apoptosis in human leukemic cells.

    PubMed

    Chattopadhyay, Sourav; Dash, Sandeep Kumar; Kar Mahapatra, Santanu; Tripathy, Satyajit; Ghosh, Totan; Das, Balaram; Das, Debasis; Pramanik, Panchanan; Roy, Somenath

    2014-03-01

    The objective of this study was to develop chitosan-based delivery of cobalt oxide nanoparticles to human leukemic cells and investigate their specific induction of apoptosis. The physicochemical properties of the chitosan-coated cobalt oxide nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Fourier transform infrared spectroscopy. The solubility of chitosan-coated cobalt oxide nanoparticles was higher at acidic pH, which helps to release more cobalt ions into the medium. Chitosan-coated cobalt oxide nanoparticles showed good compatibility with normal cells. However, our results showed that exposure of leukemic cells (Jurkat cells) to chitosan-coated cobalt oxide nanoparticles caused an increase in reactive oxygen species generation that was abolished by pretreatment of cells with the reactive oxygen species scavenger N-acetyl-L-cysteine. The apoptosis of Jurkat cells was confirmed by flow-cytometric analysis. Induction of TNF-α secretion was observed from stimulation of Jurkat cells with chitosan-coated cobalt oxide nanoparticles. We also tested the role of TNF-α in the induction of Jurkat cell death in the presence of TNF-α and caspase inhibitors. Treatment of leukemic cells with a blocker had a greater effect on cancer cell viability. From our findings, oxidative stress and caspase activation are involved in cancer cell death induced by chitosan-coated cobalt oxide nanoparticles. PMID:24445996

  7. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres.

    PubMed

    Luo, Xiaogang; Zeng, Jian; Liu, Shilin; Zhang, Lina

    2015-10-01

    Development of highly cost-effective, highly operation-convenient and highly efficient natural polymer-based adsorbents for their biodegradability and biocompatibility, and supply of safe drinking water are the most threatening problems in water treatment field. To tackle the challenges, a new kind of efficient recyclable magnetic chitosan/cellulose hybrid microspheres was prepared by sol-gel method. By embedding magnetic γ-Fe2O3 nanoparticles in chitosan/cellulose matrix drops in NaOH/urea aqueous solution, it combined renewability and biocompatibility of chitosan and cellulose as well as magnetic properties of γ-Fe2O3 to create a hybrid system in heavy metal ions removal. PMID:26216781

  8. Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles.

    PubMed

    Chen, Wanwen; Li, Yanfang; Yang, Shuo; Yue, Lin; Jiang, Qixing; Xia, Wenshui

    2015-11-01

    Monodispersible selenium nanoparticles (SeNPs) were synthesized by using chitosan (CS) and carboxymethyl chitosan (CCS) as the stabilizer and capping agent using a facile synthetic approach. The structure, size, morphology and antioxidant activity of the nanocomposites were characterized by transmission electron microscopy (TEM), Ultraviolet-visible spectroscopy (UV-vis), Dynamic Light Scattering (DLS), Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA). The results revealed that the monodispersible SeNPs (mean particle size of about 50 nm) were ligated with CS and CCS to form nanocomposites in aqueous solution for at least 30 days, and for 120 days the nanoparticles increased to 180 nm or so in size. The DPPH scavenging ability of CS-SeNPs was higher than that of CCS-SeNPs, and could reach 93.5% at a concentration of 0.6 mmol/L. Moreover, SeNPs, CS-SeNPs and CCS-SeNPs exhibited a higher ABTS scavenging ability in comparison to Na2SeO3. PMID:26256384

  9. O-2'-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine.

    PubMed

    Dai, Chunxiao; Kang, Hong; Yang, Wanqiu; Sun, Jinyan; Liu, Chunlong; Cheng, Guogang; Rong, Guangyu; Wang, Xiaohua; Wang, Xin; Jin, Zheng; Zhao, Kai

    2015-10-01

    A novel complex chitosan derivative, O-2'-hydroxypropyltrimethyl ammonium chloride chitosan (O-2'-HACC), was synthesized and used to make nanoparticles as a delivery vehicle for live attenuated Newcastle disease vaccine. We found that O-2'-HACC had high antimicrobial activity, low toxicity, and a high safety level. Newcastle disease virus (NDV) was then encapsulated in the O-2'-HACC nanoparticles (NDV/La Sota-O-2'-HACC-NPs) by the ionic crosslinking method, and the properties of the resulting nanoparticles were determined by transmission electron microscopy, Zeta potential analysis, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and X-ray diffraction. NDV/La Sota-O-2'-HACC-NPs had regular spherical morphologies and high stability, with an encapsulation efficiency of 95.68 ± 2.2% and a loading capacity of 58.75 ± 4.03%. An in vitro release assay indicated that release of NDV from NDV/La Sota-O-2'-HACC-NPs occurred slowly. Specific pathogen-free chickens immunized with NDV/La Sota-O-2'-HACC-NPs intranasally had much stronger cellular, humoral and mucosal immune responses than did those immunized intramuscularly or with live attenuated Newcastle disease vaccine. NDV/La Sota-O-2'-HACC-NPs are a novel drug delivery carrier with immense potential in medical applications. PMID:26076628

  10. Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity.

    PubMed

    Kim, Mi Kyung; Lee, Ji-Soo; Kim, Kwang Yup; Lee, Hyeon Gyu

    2013-03-01

    The aim of this study was to produce ascorbyl palmitate (AP)-loaded nanoparticles in order to inhibit polyphenol oxidase (PPO) in bananas. AP-loaded chitosan nanoparticles were prepared using acetic acid and citric acid (denoted as CS/AA and CS/CA nanoparticles, respectively). As the initial AP concentration increases, the particle size significantly decreases, and the zeta potential, entrapment and loading efficiency significantly increases. The PPO inhibitory activity of AP was effectively improved when AP was nano-encapsulated by chitosan compared to no encapsulation. These results suggest that chitosan nano-encapsulation can be used to enhance the PPO inhibitory activity of AP. PMID:23247266

  11. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications. PMID:27015511

  12. Magnetoacoustic Sensing of Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G.; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-01

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  13. DNA templated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  14. Conjugation of chitosan nanoparticles with biogenic and synthetic polyamines: A delivery tool for antitumor polyamine analogues.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2016-11-01

    We report the conjugation of chitosan nanoparticles with biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) in aqueous solution. Multiple spectroscopic methods, thermodynamic parameters and molecular modeling were used to analyse polyamine bindings to chitosan nanoparticles. Thermodynamic parameters ΔS, ΔH and ΔG showed that polyamines bind protein through H-bonding and hydrophobic contacts with biogenic polyamines form more stable conjugates than synthetic polyamines. As polymer size increases the stability of polyamine-chitosan conjugate increases. The loading efficacy was 40-50% for polyamine-chitosan conjugates. Modeling showed that polyamine-protein interaction is spontaneous and chitosan nanoparticles can be used for delivery of antitumor polyamine analogues. PMID:27516317

  15. Optimization, characterization and evaluation of chitosan-tailored cubic nanoparticles of clotrimazole.

    PubMed

    Verma, Purnima; Ahuja, Munish

    2015-02-01

    The present study deals with improvement of the mucoadhesive properties of monoolein based cubic nanoparticles by incorporating chitosan. Chitosan-tailored cubic nanoparticles were prepared by thin film hydration followed by ultrasonication employing clotrimazole as model drug. The effect of Pluronic F127 fraction and concentration of chitosan on particle size and % mucin binding of the formulations was studied using 2-factor, 3-level, central composite experimental design. The concentration of chitosan was found to influence particle size and % mucin binding of cubic nanoparticles while Pluronic F127 fraction influenced only the % mucin binding. Studies indicated 8.33(%w/w) fraction of Pluronic F127 and 0.17 (%w/v) concentration of chitosan as optimum concentration. Finally, the optimized batch was characterized by polarized light microscopy, small-angle X-ray scattering (SAXS) and transmission electron microscopy. The results unveiled incorporation of chitosan did not disrupt the inner cubic structure of nanoparticles. Peak indexing of SAXS data revealed the coexistence of P-type and D-type cubic phases in nanoparticles. Further, comparative evaluation studies showed significantly higher anti-fungal activity of clotrimazole-loaded chitosan-tailored cubic nanoparticles than conventional suspension of clotrimazole against Candida albicans. PMID:25463320

  16. Chitosan nanoparticles synthesis caught in action using microdroplet reactions

    PubMed Central

    Kamat, Vivek; Bodas, Dhananjay; Paknikar, Kishore

    2016-01-01

    The ionic gelation process for the synthesis of chitosan nanoparticles was carried out in microdroplet reactions. The synthesis could be stopped instantaneously at different time points by fast dilution of the reaction mixture with DI water. Using this simple technique, the effect of temperature and reactant concentrations on the size and distribution of the nanoparticles formed, as a function of time, could be investigated by DLS and SEM. Results obtained indicated very early (1–5 s) nucleation of the particles followed by growth. The concentration of reactants, reaction temperature as well as time, were found to (severally and collectively) determine the size of nanoparticles and their distribution. Nanoparticles obtained at 4 °C were smaller (60–80 nm) with narrower size distribution. Simulation experiments using Comsol software showed that at 4 °C ‘droplet synthesis’ of nanoparticles gets miniaturised to ‘droplet-core synthesis’, which is being reported for the first time. PMID:26924801

  17. Chitosan nanoparticles synthesis caught in action using microdroplet reactions.

    PubMed

    Kamat, Vivek; Bodas, Dhananjay; Paknikar, Kishore

    2016-01-01

    The ionic gelation process for the synthesis of chitosan nanoparticles was carried out in microdroplet reactions. The synthesis could be stopped instantaneously at different time points by fast dilution of the reaction mixture with DI water. Using this simple technique, the effect of temperature and reactant concentrations on the size and distribution of the nanoparticles formed, as a function of time, could be investigated by DLS and SEM. Results obtained indicated very early (1-5 s) nucleation of the particles followed by growth. The concentration of reactants, reaction temperature as well as time, were found to (severally and collectively) determine the size of nanoparticles and their distribution. Nanoparticles obtained at 4 °C were smaller (60-80 nm) with narrower size distribution. Simulation experiments using Comsol software showed that at 4 °C 'droplet synthesis' of nanoparticles gets miniaturised to 'droplet-core synthesis', which is being reported for the first time. PMID:26924801

  18. Chitosan nanoparticles synthesis caught in action using microdroplet reactions

    NASA Astrophysics Data System (ADS)

    Kamat, Vivek; Bodas, Dhananjay; Paknikar, Kishore

    2016-02-01

    The ionic gelation process for the synthesis of chitosan nanoparticles was carried out in microdroplet reactions. The synthesis could be stopped instantaneously at different time points by fast dilution of the reaction mixture with DI water. Using this simple technique, the effect of temperature and reactant concentrations on the size and distribution of the nanoparticles formed, as a function of time, could be investigated by DLS and SEM. Results obtained indicated very early (1-5 s) nucleation of the particles followed by growth. The concentration of reactants, reaction temperature as well as time, were found to (severally and collectively) determine the size of nanoparticles and their distribution. Nanoparticles obtained at 4 °C were smaller (60-80 nm) with narrower size distribution. Simulation experiments using Comsol software showed that at 4 °C ‘droplet synthesis’ of nanoparticles gets miniaturised to ‘droplet-core synthesis’, which is being reported for the first time.

  19. Folatereceptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipsikha; Das, Manasmita; Mishra, Debashis; Banerjee, Indranil; Sahu, Sumanta K.; Maiti, Tapas K.; Pramanik, Panchanan

    2011-04-01

    This article delineates the design and synthesis of a novel, bio-functionalized, magneto-fluorescent multifunctional nanoparticles suitable for cancer-specific targeting, detection and imaging. Biocompatible, hydrophilic, magneto-fluorescent nanoparticles with surface-pendant amine, carboxyl and aldehyde groups were designed using o-carboxymethyl chitosan (OCMC). The free aminegroups of OCMC stabilized magnetite nanoparticles on the surface allow for the covalent attachment of a fluorescent dye such as rhodamine isothiocyanate (RITC) with the aim to develop a magneto-fluorescent nanoprobe for optical imaging. In order to impart specific cancer cell targeting properties, folic acid and its aminated derivative was conjugated onto these magneto-fluorescent nanoparticles using different pendant groups (-NH2, -COOH, -CHO). These newly synthesized iron-oxide folate nanoconjugates (FA-RITC-OCMC-SPIONs) showed excellent dispersibility, biocompatibility and good hydrodynamic sizes under physiological conditions which were extensively studied by a variety of complementary techniques. The cellular internalization efficacy of these folate-targeted and its non-targeted counterparts were studied using a folate-overexpressed (HeLa) and a normal (L929fibroblast) cells by fluorescence microscopy and magnetically activated cell sorting (MACS). Cell-uptake behaviors of nanoparticles clearly demonstrate that cancer cells over-expressing the human folatereceptor internalized a higher level of these nanoparticle-folate conjugates than normal cells. These folate targeted nanoparticles possess specific magnetic properties in the presence of an external magnetic field and the potential of these nanoconjugates as T2-weighted negative contrast MR imaging agent were evaluated in folate-overexpressed HeLa and normal L929fibroblastcells.

  20. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.

    PubMed

    Zhang, Xiaoyang; Zhao, Jun; Wen, Yan; Zhu, Chuanshun; Yang, Jun; Yao, Fanglian

    2013-11-01

    Intracellular delivery of native, active proteins is challenging due to the fragility of most proteins. Herein, a novel polymer/protein polyion complex (PIC) nanoparticle with core-shell structure was prepared. Carboxymethyl chitosan-grafted-terminal carboxyl group-poly(amidoamine) (CM-chitosan-PAMAM) dendrimers were synthesized by amidation and saponification reactions. (1)H NMR was used to characterize CM-chitosan-PAMAM dendrimers. The TEM images and results of lysozyme loading efficiency indicated that CM-chitosan-PAMAM dendrimers could self-assemble into core-shell nanoparticles, and lysozyme was efficiently encapsulated inside the core of CM-chitosan-PAMAM dendrimer nanoparticles. Activity of lysozyme was completely inhibited by CM-chitosan-PAMAM Dendrimers at physiological pH, whereas it was released into the medium and exhibited a significant enzymatic activity in an acidic intracellular environment. Moreover, the CM-chitosan-PAMAM dendrimer nanoparticles did not exhibit significant cytotoxicity in the range of concentrations below 3.16 mg/ml. The results indicated that these CM-chitosan-PAMAM dendrimers have excellent properties as highly potent and non-toxic intracellular protein carriers, which would create opportunities for novel applications in protein delivery. PMID:24053810

  1. Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics

    PubMed Central

    Cheng, Mingrong; Chen, Houxiang; Wang, Yong; Xu, Hongzhi; He, Bing; Han, Jiang; Zhang, Zhiping

    2014-01-01

    The nanoparticle drug delivery system, which uses natural or synthetic polymeric material as a carrier to deliver drugs to targeted tissues, has a broad prospect for clinical application for its targeting, slow-release, and biodegradable properties. Here, we used chitosan (CTS) and hepatoma cell-specific binding molecule glycyrrhetinic acid to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared (IR) spectra and hydrogen-1 nuclear magnetic resonance. The GA-CTS/5-fluorouracil (5-FU) nanoparticles were synthesized by combining GA-CTS and 5-FU and conjugating 5-FU onto the GA-CTS nanomaterial. The central composite design was performed to optimize the preparation process as CTS:tripolyphosphate sodium (TPP) weight ratio =5:1, 5-FU:CTS weight ratio =1:1, TPP concentration =0.05% (w/v), and cross-link time =50 minutes. GA-CTS/5-FU nanoparticles had a mean particle size of 193.7 nm, a polydispersity index of 0.003, a zeta potential of +27.4 mV, and a drug loading of 1.56%. The GA-CTS/5-FU nanoparticle had a protective effect on the drug against plasma degrading enzyme, and provided a sustained release system comprising three distinct phases of quick, steady, and slow release. Our study showed that the peak time, half-life time, mean residence time and area under the curve of GA-CTS/5-FU were longer or more than those of the 5-FU group, but the maximum concentration (Cmax) was lower. We demonstrated that the nanoparticles accumulated in the liver and have significantly inhibited tumor growth in an orthotropic liver cancer mouse model. PMID:24493926

  2. Hybrid chitosan-Pluronic F-127 films with BaTiO3:Co nanoparticles: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Fuentes, S.; Dubo, J.; Barraza, N.; González, R.; Veloso, E.

    2015-03-01

    In this study, magnetic BaTiO3:Co (BT:Co) nanoparticles prepared using a combined sol-gel-hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles.

  3. Chitosan wound dressing with hexagonal silver nanoparticles for hyperthermia and enhanced delivery of small molecules.

    PubMed

    Levi-Polyachenko, Nicole; Jacob, Reuben; Day, Cynthia; Kuthirummal, Narayanan

    2016-06-01

    Chitosan films were synthesized with hexagonal silver nanoparticles (Ag NP). The unique shape and size of the Ag NP shift the optical absorption into the infrared. Stimulation of the nanoparticles with infrared light was used to generate heat and facilitate intracellular delivery of fluorescently-labeled dextran molecules. Chitosan films prepared with hexagonal or spherical Ag NP were characterized by optical and thermal analyses, and X-ray diffraction. There were found to be slight differences between how the chitosan molecular chains interface with the Ag NP depending upon shape of the nanoparticle. Viability of cells associated with dermal wound healing was evaluated on chitosan films prepared with hexagonal or spherical Ag NP, with both keratinocytes and fibroblasts having normal or moderately enhanced growth on films containing hexagonally-shaped nanoparticles. PMID:26970819

  4. Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering.

    PubMed

    Saravanan, S; Sameera, D K; Moorthi, A; Selvamurugan, N

    2013-11-01

    Chicken feathers are considered as major waste from poultry industry. They are mostly constituted by a protein called keratin. In this study, keratin was prepared from chicken feathers and from where keratin nanoparticles (nKer) were synthesized. Since chitosan has excellent properties like controlled biodegradation and biocompatibility, we used keratin nanoparticles along with chitosan matrix as scaffolds (CS/nKer) and they were characterized by SEM, FT-IR and XRD analyses. There was a porous architecture in the scaffolds in the range to support cell infiltration and tissue ingrowth. The keratin nanoparticles had interaction with chitosan matrix and did not alter the semi crystalline nature of chitosan scaffolds. The biodegradation and protein adsorption of the scaffolds were significantly increased upon addition of keratin nanoparticles. The scaffolds were also found to be non-cytotoxic to human osteoblastic cells. Thus, CS/nKer scaffolds could serve as a potential biomimetic substrate for bone tissue engineering applications. PMID:24095711

  5. Thermo-therapeutic applications of chitosan- and PEG-coated NiFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Tariq, Mehrin; Liba, S. I.; Salehin, F.; Mahmood, Z. H.; Khan, M. N. I.; Chattopadhayay, K.; Islam, Rafiqul; Akhter, S.

    2016-07-01

    The paper reports the thermo-therapeutic applications of chitosan- and PEG-coated nickel ferrite (NiFe2O4) nanoparticles. In this study NiFe2O4 nanoparticles were synthesized by the co-precipitation method, tuning the particle size through heat treatment in the temperature range from 200–800 °C for 3 h. XRD and TEM analysis revealed that the the ultrafine nanoparticles were of size 2–58 nm. Crystallinity of the NiFe2O4 nanoparticles in the as-dried condition with the particle size ∼2–3 nm was confirmed from the presence of a lattice fringe in the HRTEM image. VSM measurements showed that a superparamagnetic/ferromagnetic transition occurs with increasing particle size, which was further confirmed by Mössbauer spectroscopy. The nickel ferrite nanoparticles with optimum particle size of 10 nm were then coated with materials commonly used for biomedical applications, i.e. chitosan and PEG, to form homogeneous suspensions. The hydrodynamic diameter and the polydispersity index (PDI) were analyzed by dynamic light scattering at the physiological temperature of 37 °C and found to be 187 nm and 0.21 for chitosan-coated nanoparticles and 285 nm and 0.32 for PEG-coated ones. The specific loss power of rf induction heating by the set-up for hyperthermia and r 2 relaxivity by the nuclear magnetic resonance were determined. The results of induction heating measurements showed that the temperature attained by the nanoparticles of size 10 nm and concentration of about 20 mg ml‑1 was >70 °C (for chitosan) and >64 °C (for PEG). It has been demonstrated that the required temperature for hyperthermia heating could be tuned by tuning the particle size, shape and magnetization and the concentration of solution. For other potential biomedical applications of the NiFe2O4 nanoparticle solution, e.g. magnetic resonance imaging, the NMR studies yielded the T 1 and T 2 relaxivities as 0.348 and 89 mM‑1 s‑1 respectively. The fact that the T 2 relaxivity is orders of

  6. Thermo-therapeutic applications of chitosan- and PEG-coated NiFe2O4 nanoparticles.

    PubMed

    Hoque, S Manjura; Tariq, Mehrin; Liba, S I; Salehin, F; Mahmood, Z H; Khan, M N I; Chattopadhayay, K; Islam, Rafiqul; Akhter, S

    2016-07-15

    The paper reports the thermo-therapeutic applications of chitosan- and PEG-coated nickel ferrite (NiFe2O4) nanoparticles. In this study NiFe2O4 nanoparticles were synthesized by the co-precipitation method, tuning the particle size through heat treatment in the temperature range from 200-800 °C for 3 h. XRD and TEM analysis revealed that the the ultrafine nanoparticles were of size 2-58 nm. Crystallinity of the NiFe2O4 nanoparticles in the as-dried condition with the particle size ∼2-3 nm was confirmed from the presence of a lattice fringe in the HRTEM image. VSM measurements showed that a superparamagnetic/ferromagnetic transition occurs with increasing particle size, which was further confirmed by Mössbauer spectroscopy. The nickel ferrite nanoparticles with optimum particle size of 10 nm were then coated with materials commonly used for biomedical applications, i.e. chitosan and PEG, to form homogeneous suspensions. The hydrodynamic diameter and the polydispersity index (PDI) were analyzed by dynamic light scattering at the physiological temperature of 37 °C and found to be 187 nm and 0.21 for chitosan-coated nanoparticles and 285 nm and 0.32 for PEG-coated ones. The specific loss power of rf induction heating by the set-up for hyperthermia and r 2 relaxivity by the nuclear magnetic resonance were determined. The results of induction heating measurements showed that the temperature attained by the nanoparticles of size 10 nm and concentration of about 20 mg ml(-1) was >70 °C (for chitosan) and >64 °C (for PEG). It has been demonstrated that the required temperature for hyperthermia heating could be tuned by tuning the particle size, shape and magnetization and the concentration of solution. For other potential biomedical applications of the NiFe2O4 nanoparticle solution, e.g. magnetic resonance imaging, the NMR studies yielded the T 1 and T 2 relaxivities as 0.348 and 89 mM(-1) s(-1) respectively. The fact that the T 2 relaxivity is orders of magnitude

  7. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung

    NASA Astrophysics Data System (ADS)

    Worthington, Kristan L. S.; Adamcakova-Dodd, Andrea; Wongrakpanich, Amaraporn; Mudunkotuwa, Imali A.; Mapuskar, Kranti A.; Joshi, Vijaya B.; Guymon, C. Allan; Spitz, Douglas R.; Grassian, Vicki H.; Thorne, Peter S.; Salem, Aliasger K.

    2013-10-01

    Despite their potential for a variety of applications, copper nanoparticles induce very strong inflammatory responses and cellular toxicity following aerosolized delivery. Coating metallic nanoparticles with polysaccharides, such as biocompatible and antimicrobial chitosan, has the potential to reduce this toxicity. In this study, copper nanoparticles were coated with chitosan using a newly developed and facile method. The presence of coating was confirmed using x-ray photoelectron spectroscopy, rhodamine tagging of chitosan followed by confocal fluorescence imaging of coated particles and observed increases in particle size and zeta potential. Further physical and chemical characteristics were evaluated using dissolution and x-ray diffraction studies. The chitosan coating was shown to significantly reduce the toxicity of copper nanoparticles after 24 and 52 h and the generation of reactive oxygen species as assayed by DHE oxidation after 24 h in vitro. Conversely, inflammatory response, measured using the number of white blood cells, total protein, and cytokines/chemokines in the bronchoalveolar fluid of mice exposed to chitosan coated versus uncoated copper nanoparticles, was shown to increase, as was the concentration of copper ions. These results suggest that coating metal nanoparticles with mucoadhesive polysaccharides (e.g. chitosan) could increase their potential for use in controlled release of copper ions to cells, but will result in a higher inflammatory response if administered via the lung.

  8. The synthesis and characterization of monodispersed chitosan-coated Fe3O4 nanoparticles via a facile one-step solvothermal process for adsorption of bovine serum albumin.

    PubMed

    Shen, Mao; Yu, Yujing; Fan, Guodong; Chen, Guang; Jin, Ying Min; Tang, Wenyuan; Jia, Wenping

    2014-01-01

    Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization. PMID:24994954

  9. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency.

    PubMed

    Ragelle, H; Riva, R; Vandermeulen, G; Naeye, B; Pourcelle, V; Le Duff, C S; D'Haese, C; Nysten, B; Braeckmans, K; De Smedt, S C; Jérôme, C; Préat, V

    2014-02-28

    This study aims at developing chitosan-based nanoparticles suitable for an intravenous administration of small interfering RNA (siRNA) able to achieve (i) high gene silencing without cytotoxicity and (ii) stability in biological media including blood. Therefore, the influence of chitosan/tripolyphosphate ratio, chitosan physicochemical properties, PEGylation of chitosan as well as the addition of an endosomal disrupting agent and a negatively charged polymer was assessed. The gene silencing activity and cytotoxicity were evaluated on B16 melanoma cells expressing luciferase. We monitored the integrity and the size behavior of siRNA nanoparticles in human plasma using fluorescence fluctuation spectroscopy and single particle tracking respectively. The presence of PEGylated chitosan and poly(ethylene imine) was essential for high levels of gene silencing in vitro. Chitosan nanoparticles immediately released siRNA in plasma while the inclusion of hyaluronic acid and high amount of poly(ethylene glycol) in the formulation improved the stability of the particles. The developed formulations of PEGylated chitosan-based nanoparticles that achieve high gene silencing in vitro, low cytotoxicity and high stability in plasma could be promising for intravenous delivery of siRNA. PMID:24389132

  10. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties.

    PubMed

    Correia, Cristina O; Leite, Álvaro J; Mano, João F

    2015-06-01

    We propose a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce CHT/BG-NPs scaffolds that combine the shape memory properties of chitosan and the biomineralization ability of BG-NPs for applications in bone regeneration. The addition of BG-NPs prepared by a sol-gel route to the CHT polymeric matrix improved the bioactivity of the nanocomposite scaffold, as seen by the precipitation of bone-like apatite layer upon immersion in simulated body fluid (SBF). Shape memory tests were carried out while the samples were immersed in varying compositions of water/ethanol mixtures. Dehydration with ethanol enables to fix a temporary shape of a deformed scaffold that recovers the initial geometry upon water uptake. The scaffolds present good shape memory properties characterized by a recovery ratio of 87.5% for CHT and 89.9% for CHT/BG-NPs and a fixity ratio of 97.2% for CHT and 98.2% for CHT/BG-NPs (for 30% compressive deformation). The applicability of such structures was demonstrated by a good geometrical accommodation of a previously compressed scaffold in a bone defect. The results indicate that the developed CHT/BG-NPs nanocomposite scaffolds have potential for being applied in bone tissue engineering. PMID:25843832

  11. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities

    PubMed Central

    El Zowalaty, Mohamed Ezzat; Hussein Al Ali, Samer Hassan; Husseiny, Mohamed I; Geilich, Benjamin M; Webster, Thomas J; Hussein, Mohd Zobir

    2015-01-01

    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe2+ and Fe3+ iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections. PMID:25995633

  12. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities.

    PubMed

    El Zowalaty, Mohamed Ezzat; Hussein Al Ali, Samer Hassan; Husseiny, Mohamed I; Geilich, Benjamin M; Webster, Thomas J; Hussein, Mohd Zobir

    2015-01-01

    Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe(2+) and Fe(3+) iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections. PMID:25995633

  13. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine.

    PubMed

    Sawaengsak, Chompoonuch; Mori, Yasuko; Yamanishi, Koichi; Mitrevej, Ampol; Sinchaipanid, Nuttanan

    2014-04-01

    Subunit/split influenza vaccines are less reactogenic compared with the whole virus vaccines. However, their immunogenicity is relatively low and thus required proper adjuvant and/or delivery vehicle for immunogenicity enhancement. Influenza vaccines administered intramuscularly induce minimum, if any, mucosal immunity at the respiratory mucosa which is the prime site of the infection. In this study, chitosan (CS) nanoparticles were prepared by ionic cross-linking of the CS with sodium tripolyphosphate (TPP) at the CS/TPP ratio of 1:0.6 using 2 h mixing time. The CS/TPP nanoparticles were used as delivery vehicle of an intranasal influenza vaccine made of hemagglutinin (HA)-split influenza virus product. Innocuousness, immunogenicity, and protective efficacy of the CS/TPP-HA vaccine were tested in influenza mouse model in comparison with the antigen alone vaccine. The CS/TPP-HA nanoparticles had required characteristics including nano-sizes, positive charges, and high antigen encapsulation efficiency. Mice that received two doses of the CS/TPP-HA vaccine intranasally showed no adverse symptoms indicating the vaccine innocuousness. The animals developed higher systemic and mucosal antibody responses than vaccine made of the HA-split influenza virus alone. The CS/TPP-HA vaccine could induce also a cell-mediated immune response shown as high numbers of IFN-γ-secreting cells in spleens while the HA vaccine alone could not. Besides, the CS nanoparticle encapsulated HA-split vaccine reduced markedly the influenza morbidity and also conferred 100% protective rate to the vaccinated mice against lethal influenza virus challenge. Overall results indicated that the CS nanoparticles invented in this study is an effective and safe delivery vehicle/adjuvant for the influenza vaccine. PMID:24343789

  14. Non-monotonic wetting behavior of chitosan films induced by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Praxedes, A. P. P.; Webler, G. D.; Souza, S. T.; Ribeiro, A. S.; Fonseca, E. J. S.; de Oliveira, I. N.

    2016-05-01

    The present work is devoted to the study of structural and wetting properties of chitosan-based films containing silver nanoparticles. In particular, the effects of silver concentration on the morphology of chitosan films are characterized by different techniques, such as atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). By means of dynamic contact angle measurements, we study the modification on surface properties of chitosan-based films due to the addition of silver nanoparticles. The results are analyzed in the light of molecular-kinetic theory which describes the wetting phenomena in terms of statistical dynamics for the displacement of liquid molecules in a solid substrate. Our results show that the wetting properties of chitosan-based films are high sensitive to the fraction of silver nanoparticles, with the equilibrium contact angle exhibiting a non-monotonic behavior.

  15. Formation of enriched black tea extract loaded chitosan nanoparticles via electrospraying

    NASA Astrophysics Data System (ADS)

    Hammond, Samuel James

    Creating nanoparticles of beneficial nutraceuticals and pharmaceuticals has had a large surge of research due to the enhancement of absorption and bioavailability by decreasing their size. One of these ways is by electrohydrodynamic atomization, also known as electrospraying. In general, this novel process is done by forcing a liquid through a capillary nozzle and which is subjected to an electrical field. While there are different ways to create nanoparticles, the novel method of electrospraying can be beneficial over other types of nanoparticle formation. Reasons include high control over particle size and distribution by altering electrospray parameters (voltage, flow rate, distance, and time), higher encapsulation efficiency than other methods, and also it is a one step process without exposure to extreme conditions (Gomez-Estaca et. al. 2012, Jaworek and Sobcyzk 2008). The current study aimed to create a chitosan encapsulated theaflavin-2 enriched black tea extract (BTE) nanoparticles via electrospraying. The first step of this process was to create the smallest chitosan nanoparticles possible by altering the electrospray parameters and the chitosan-acetic acid solution parameters. The solution properties altered include chitosan molecular weight, acetic acid concentration, and chitosan concentration. Specifically, the electrospray parameters such as voltage, flow rate and distance from syringe to collector are the most important in determining particle size. After creating the smallest chitosan particles, the TF-2 enriched black tea extract was added to the chitosan-acetic acid solution to be electrosprayed. The particles were assessed with the following procedures: Atomic force microscopy (AFM) and scanning electron microscopy (SEM) for particle morphology and size, and loading efficiency with ultraviolet--visible spectrophotometer (UV-VIS). Chitosan-BTE nanoparticles were successfully created in a one step process. Diameter of the particles on average

  16. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Ju; Choi, Moonhwan; Lee, Jangwook; Rhim, Taiyoun; Lee, Kuen Yong

    2015-11-01

    Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of R9Gn-chitosan/siRNA nanoparticles were investigated in vitro. Increasing the spacing arm length did not significantly affect the complex formation between R9Gn-chitosan and siRNA. However, R9G10-chitosan was much more effective in delivering genes both in vitro and in vivo compared with non-modified chitosan (without the peptide) and R9-chitosan (without the spacer arm). Chitosan derivatives modified with oligoarginine containing a spacer arm can be considered as potential delivery vehicles for various genes.Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of

  17. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    PubMed Central

    Gao, Wenjuan; Lai, James C. K.; Leung, Solomon W.

    2012-01-01

    As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel, and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures. PMID:22934070

  18. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  19. Dual responsive PNIPAM-chitosan targeted magnetic nanopolymers for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yadavalli, Tejabhiram; Ramasamy, Shivaraman; Chandrasekaran, Gopalakrishnan; Michael, Isaac; Therese, Helen Annal; Chennakesavulu, Ramasamy

    2015-04-01

    A dual stimuli sensitive magnetic hyperthermia based drug delivery system has been developed for targeted cancer treatment. Thermosensitive amine terminated poly-N-isopropylacrylamide complexed with pH sensitive chitosan nanoparticles was prepared as the drug carrier. Folic acid and fluorescein were tagged to the nanopolymer complex via N-hydroxysuccinimide and ethyl-3-(3-dimethylaminopropyl)carbodiimide reaction to form a fluorescent and cancer targeting magnetic carrier system. The formation of the polymer complex was confirmed using infrared spectroscopy. Gadolinium doped nickel ferrite nanoparticles prepared by a hydrothermal method were encapsulated in the polymer complex to form a magnetic drug carrier system. The proton relaxation studies on the magnetic carrier system revealed a 200% increase in the T1 proton relaxation rate. These magnetic carriers were loaded with curcumin using solvent evaporation method with a drug loading efficiency of 86%. Drug loaded nanoparticles were tested for their targeting and anticancer properties on four cancer cell lines with the help of MTT assay. The results indicated apoptosis of cancer cell lines within 3 h of incubation.

  20. Chitosan-based nanoparticles for rosmarinic acid ocular delivery--In vitro tests.

    PubMed

    da Silva, Sara Baptista; Ferreira, Domingos; Pintado, Manuela; Sarmento, Bruno

    2016-03-01

    In this study, chitosan nanoparticles were used to encapsulate antioxidant rosmarinic acid, Salvia officinalis (sage) and Satureja montana (savory) extracts as rosmarinic acid natural vehicles. The nanoparticles were prepared by ionic gelation using chitosan and sodium tripolyphosphate (TPP) in a mass ratio of 7:1, at pH 5.8. Particle size distribution analysis and transmission electron microscopy (TEM) confirmed the size ranging from 200 to 300 nm, while surface charge of nanoparticles ranged from 20 to 30 mV. Nanoparticles demonstrate to be safe without relevant cytotoxicity against retina pigment epithelium (ARPE-19) and human cornea cell line (HCE-T). The permeability study in HCE monolayer cell line showed an apparent permeability coefficient Papp of 3.41±0.99×10(-5) and 3.24±0.79×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. In ARPE-19 monolayer cell line the Papp was 3.39±0.18×10(-5) and 3.60±0.05×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. Considering the mucin interaction method, nanoparticles indicate mucoadhesive proprieties suggesting an increased retention time over the ocular mucosa after instillation. These nanoparticles may be promising drug delivery systems for ocular application in oxidative eye conditions. PMID:26645149

  1. Size selected synthesis of CoFe{sub 2}O{sub 4} nanoparticles prepared in a chitosan matrix

    SciTech Connect

    Gurgel, A. L.; Soares, J. M.; Chaves, D. S.; Xavier, M. M. Jr.; Morales, M. A.; Baggio-Saitovitch, E. M.; Chaves, D. S.

    2010-05-15

    In this paper we report the synthesis and magnetic properties of CoFe{sub 2}O{sub 4} nanoparticles. The nanoparticles with sizes ranging from 6 to 20 nm were prepared in a chitosan matrix. Size selection was achieved by introducing a nonionic surfactant Tween-X, where X={l_brace}20, 60, 80, and 85{r_brace}. Aqueous dispersions of Tween-X show micelles with increasing hydrodynamic sizes as X increases. Moessbauer spectroscopy measurements at 300 K show superparamagnetic behavior for the small particles, changing gradually to a blocked magnetic regime as the particle size increases. Magnetization measurements at 300 K show increasing values for the ratio M{sub r}/M{sub Hmax} and coercive fields (H{sub c}).

  2. Development of chitosan-nanoparticle film based materials for controlled quality of minced beef during refrigerated storage

    NASA Astrophysics Data System (ADS)

    Erdawati

    2010-10-01

    Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan nanoparticles were determined by FTIR analysis, XRD pattern and TEM. The effects of chitosan nanoparticles treatment on the shelf-life extension of minced beef stored at 20±1° C were studied, including chemical and microbiological,. Results indicated that chitosan nanoparticle treatment reduced the total microbial load of fresh minced beef about 10-fold (from 3.2×104 CFU/g to 5.4×102 CFU/g) before storage and the microbial flora was different with that of raw samples. The wide-spectrum antibacterial property of chitosan against bacteria isolated from minced beef was confirmed, and chitosan concentration of 400 ppm was eventually determined for application in minced beef. Based on microbiological analysis, biochemical indices determination and sensory evaluation, shelf-lives of 2-3 days for control, 4-5 days for nanoparticle chitosan treatment samples, were observed, indicating that chitosan nanoparticle have a great potential for minced beef preservation.

  3. Development of chitosan-pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies.

    PubMed

    Cevher, Erdal; Salomon, Stefan K; Somavarapu, Satyanarayana; Brocchini, Steve; Alpar, H Oya

    2015-01-01

    Here, we aimed at developing chitosan/pullulan composite nanoparticles and testing their potential as novel systems for the nasal delivery of diphtheria toxoid (DT). All the chitosan derivatives [N-trimethyl (TMC), chloride and glutamate] and carboxymethyl pullulan (CMP) were synthesised and antigen-loaded composites were prepared by polyion complexation of chitosan and pullulan derivatives (particle size: 239-405 nm; surface charge: +18 and +27 mV). Their immunological effects after intranasal administration to mice were compared to intramuscular route. Composite nanoparticles induced higher levels of IgG responses than particles formed with chitosan derivative and antigen. Nasally administered TMC-pullulan composites showed higher DT serum IgG titre when compared with the other composites. Co-encapsulation of CpG ODN within TMC-CMP-DT nanoparticles resulted in a balanced Th1/Th2 response. TMC/pullulan composite nanoparticles also induced highest cytokine levels compared to those of chitosan salts. These findings demonstrated that TMC-CMP-DT composite nanoparticles are promising delivery system for nasal vaccination. PMID:26480962

  4. Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles.

    PubMed

    Li, Guang-Feng; Wang, Jing-Cheng; Feng, Xin-Min; Liu, Zhen-Dong; Jiang, Chao-Yong; Yang, Jian-Dong

    2015-04-01

    The aim of this study was to synthesize a chitosan (CS) derivative, a quaternary ammonium salt crystal called N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC), and test a series of HACC and pEGFP-DNA complexes at different weight ratios for their efficiency of gene delivery into human cells. CS was modified with cationic etherifying agent to obtain the CS derivative. Fourier transform infrared spectra were recorded on KBr pellets with a spectrometer. (1)H nuclear magnetic resonance (NMR) spectra of HACC were obtained using a spectrometer. HACC was subsequently used to prepare HACC/DNA complexes at different weight ratios by coacervation method. The resulting particle size and surface charge were assessed by laser light scattering using a zeta potential analyzer. The HACC/DNA complex formation and DNA protection in the nanoparticle complex was investigated by gel mobility shift assay and DNase I protection assay, respectively. The cytotoxicity of HACC and HACC/DNA nanoparticles was evaluated by MTT assay using (mesenchymal stem cell) MSC lines. The nanoscale structure of the particles was obtained by transmission electron microscope (TEM). The FTIR spectrum of HACC showed the characteristic quaternary ammonium group absorption band at 1475 cm(-1), which indicated the presence of quaternary ammonium group. The successful synthesis of HACC was also confirmed by (1)H NMR spectrum. HACC showed good solubility in water and was electropositive. HACC efficiently packed and protected pEGFP-DNA at a weight ratio of 10. With increased weight ratios, the surface charge of the composite particle increased from negative to positive, the average particle size increased, and HACC nanoparticle had a higher carrying efficiency. The nanoparticles released DNA in two distinct phases, and 55 % was released within the first 20 h of solubilization. The nanoparticles under TEM showed circular or oval shapes. The particles exhibited no cytotoxicity against human cells. No

  5. Preparation and adsorption properties of magnetic CoFe2O4-chitosan composite microspheres

    NASA Astrophysics Data System (ADS)

    Lian, Qi; Zheng, Xue-Fang; Hu, Tie-Feng

    2015-11-01

    Magnetic chitosan microspheres made from novel polymer materials show outstanding applied characteristics. Magnetic chitosan microspheres are rather cheap, non-toxic, tasteless, alkali resistant, corrosion resistant, easily degradable, easily recyclable, and so on. It can be widely used in many fields. In this paper, magnetic CoFe2O4/chitosan core-shell microspheres are prepared by means of emulsification cross-linking technique using CoFe2O4 as core and glutaric dialdehyde as crosslinking agent. The results demonstrated that the different calcining temperature of magnetic (CoFe2O4) particles, CoFe2O4/chitosan ratio and stirring time of the suspension medium are the most effective parameters that control the size, size distribution, morphology and magnetism of the described microspheres. Finally, the size, morphology and chemical structure of the prepared materials are studied by different methods. The results show that the optimal calcination temperature of magnetic particles is 700°C, the optimal ratio of CoFe2O4/chitosan is 1: 1, ultrasonic dispersion time is 30 min. The prepared chitosan magnetic microspheres have small size and are well dispersed when the stirring time is 3 h. The prepared magnetic chitosan microspheres are well shaped spheres with a diameter from 1 to 50 μm, in which CoFe2O4 particles are dispersed uniformly. The magnetic chitosan microspheres show excellent magnetic response and have good adsorption characteristics.

  6. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment.

    PubMed

    Jeong, Eun Ju; Choi, Moonhwan; Lee, Jangwook; Rhim, Taiyoun; Lee, Kuen Yong

    2015-12-21

    Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of R9Gn-chitosan/siRNA nanoparticles were investigated in vitro. Increasing the spacing arm length did not significantly affect the complex formation between R9Gn-chitosan and siRNA. However, R9G10-chitosan was much more effective in delivering genes both in vitro and in vivo compared with non-modified chitosan (without the peptide) and R9-chitosan (without the spacer arm). Chitosan derivatives modified with oligoarginine containing a spacer arm can be considered as potential delivery vehicles for various genes. PMID:26568525

  7. The novel synthesis of magnetically chitosan/carbon nanotube composites and their catalytic applications.

    PubMed

    Zarnegar, Zohre; Safari, Javad

    2015-04-01

    Chitosan-modified magnetic carbon nanotubes (CS-MCNTs) were synthesized and were investigated by FT-IR, EDX, FE-SEM, elemental analysis, XRD, VSM and TGA. In order to synthesize the CS-MCNTs composites, Fe3O4 decorated carbon nanotubes (CNTs-Fe3O4) were modified with a silica layer by the ammonia-catalysed hydrolysis of tetraethyl orthosilicate (CNTs-Fe3O4@SiO2). Then, CS-MCNTs were successfully grafted on the surface of CNTs-Fe3O4@SiO2via a suspension cross-linking method. The CS-MCNT was found to be an excellent heterogeneous catalyst for the synthesis of 1,4-dihydropyridines (DHPs). The attractive advantages of the present process include short reaction times, milder and cleaner conditions, higher purity and yields, easy isolation of products, easier work-up procedure and lower generation of waste or pollutions. This catalyst was easily separated by an external magnet and the recovered catalyst was reused several times without any significant loss of activity. A combination of the advantages of CNTs, chitosan and magnetic nanoparticles provides an important methodology for carrying out catalytic transformations. Therefore, this method provides a green and much improved protocol over the existing methods. PMID:25597431

  8. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    NASA Astrophysics Data System (ADS)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  9. Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling.

    PubMed

    Soares, Paula I P; Sousa, Ana Isabel; Silva, Jorge Carvalho; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-08-20

    In the present work, two drug delivery systems were produced by encapsulating doxorubicin into chitosan and O-HTCC (ammonium-quaternary derivative of chitosan) nanoparticles. The results show that doxorubicin release is independent of the molecular weight and is higher at acidic pH (4.5) than at physiological pH. NPs with an average hydrodynamic diameter bellow 200nm are able to encapsulate up to 70% and 50% of doxorubicin in the case of chitosan and O-HTCC nanoparticles, respectively. O-HTCC nanoparticles led to a higher amount of doxorubicin released than chitosan nanoparticles, for the same experimental conditions, although the release mechanism was not altered. A burst effect occurs within the first hours of release, reaching a plateau after 24h. Fitting mathematical models to the experimental data led to a concordant release mechanism between most samples, indicating an anomalous or mixed release, which is in agreement with the swelling behavior of chitosan described in the literature. PMID:27178936

  10. Hydrodynamic Delivery of Chitosan-Folate-DNA Nanoparticles in Rats with Adjuvant-Induced Arthritis

    PubMed Central

    Shi, Qin; Wang, Huijie; Tran, Covi; Qiu, Xingping; Winnik, Françoise M.; Zhang, Xiaoling; Dai, Kerong; Benderdour, Mohamed; Fernandes, Julio C.

    2011-01-01

    50 kDa chitosan was conjugated with folate, a specific tissue-targeting ligand. Nanoparticles such as chitosan-DNA and folate-chitosan-DNA were prepared by coacervation process. The hydrodynamic intravenous injection of nanoparticles was performed in the right posterior paw in normal and arthritic rats. Our results demonstrated that the fluorescence intensity of DsRed detected was 5 to 12 times more in the right soleus muscle and in the right gastro muscle than other tissue sections. β-galactosidase gene expression with X-gal substrate and folate-chitosan-plasmid nanoparticles showed best coloration in the soleus muscle. Treated arthritic animals also showed a significant decrease in paw swelling and IL-1β and PGE2 concentration in serum compared to untreated rats. This study demonstrated that a nonviral gene therapeutic approach using hydrodynamic delivery could help transfect more efficiently folate-chitosan-DNA nanoparticles in vitro/in vivo and could decrease inflammation in arthritic rats. PMID:21274258

  11. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.

    PubMed

    Esmaeili, Akbar; Asgari, Azadeh

    2015-11-01

    In recent years, the unparalleled and functional properties of essential oils have been extensively reported, but the sensitivity of essential oils to environmental factors and their poor aqueous solubility have limited their applications in industries. Hence, we encapsulated CEO in chitosan nanoparticles by an emulsion-ionic gelation with pantasodium tripolyphosphate (TPP) and sodium hexametaphosphte (HMP), separately, as crosslinkers. The nanoparticles were analyzed by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency (EE) and loading capacity (LC) of CEO in chitosan nanoparticles increased with the increase of initial CEO amount. The nanoparticles displayed an average size of 30-80nm with a spherical shape and regular distribution. In vitro release profiles exhibited an initial burst release and followed by a sustained CEO release at different pH conditions. The amount of CEO release from chitosan nanoparticles was higher in acidic pH to basic or neutral pH, respectively. The biological properties of CEO, before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and agar disk diffusion method, respectively. The results indicated the encapsulation of CEO in chitosan nanoparticles could be protected the quality. PMID:26257380

  12. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes.

    PubMed

    Dumont, Vitor C; Mansur, Alexandra A P; Carvalho, Sandhra M; Medeiros Borsagli, Fernanda G L; Pereira, Marivalda M; Mansur, Herman S

    2016-02-01

    Synthetic biomaterials based on calcium phosphates (CaP) have been widely studied for bone tissue reconstruction therapies, but no definitive solution that fulfills all of the required properties has been identified. Thus, this study reports the synthesis of composite membranes based on nanohydroxyapatite particles (nHA) embedded in chitosan (CHI) and O-carboxymethyl chitosan (CMC) matrices produced using a one-step co-precipitation method in water media. Biopolymers were used as capping ligands for simultaneously controlling the nucleation and growth of the nHA particles during the precipitation process and also to form the polymeric network of the biocomposites. The bionanocomposites were extensively characterized using light microscopy (LM), scanning and transmission electron microscopy (SEM/TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray micro-CT analysis (μCT), andMTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide) cell proliferation assays for cell cytotoxicity. The results demonstrated that the ligands used during the synthesis highly affected the composites produced, primarily due the changes in the mechanisms and kinetics of nucleation and growth of the HA particles at the nanoscale level. The SEMimages revealed that the use of carboxyl-functionalized chitosan (CMC) ligands significantly reduced the average size of theHA nanoparticles and caused the formation of a narrower size distribution (90±20nm) compared to theHAnanoparticles producedwith chitosan ligands (220±50nm). The same trend was verified by the AFM analysis,where the nHA particles were formed evenly dispersed in the polymer matrix. However, the CMC-based composites were more homogeneously distributed, which was endorsed by the images collected via X-ray micro-CT. The FTIR spectra and the XRD analysis indicated that nanosized hydroxyapatite was the predominant calcium

  13. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    PubMed Central

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  14. Internalized Chitosan Nanoparticles Persist for Long Time in Cultured Cells

    PubMed Central

    Malatesta, M.; Grecchi, S.; Chiesa, E.; Cisterna, B.; Costanzo, M.; Zancanaro, C.

    2015-01-01

    Chitosan-based nanoparticles (chiNPs) are considered to be potentially good carriers for the sustained intracellular delivery of specific molecules. However, scarce attention has been paid to the long-lasting permanence of these NPs in the intracellular milieu, as well as to their intracellular fate (i.e., distribution, interaction with cell organelles, and degradation) in the long term. In the present study, the presence and subcellular location of FITC-labelled chiNPs were monitored in HeLa cells up to 14 days post-administration using multicolorfluorescence confocal microscopy and diaminobenzidine photo-oxidation at transmission electron microscopy. The main result of the present study is the demonstration that internalized chiNPs persist inside the cell up to two weeks, occurring in both the cytoplasm and nucleus; accordingly, chiNPs are able to pass from mother to daughter cells through several mitotic cycles. The cells did not show increased mortality or structural damage up to 14 days after chiNP exposure. PMID:25820565

  15. Biomedical and environmental applications of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tran, Dai Lam; Le, Van Hong; Linh Pham, Hoai; Nhung Hoang, Thi My; Quy Nguyen, Thi; Luong, Thien Tai; Thu Ha, Phuong; Phuc Nguyen, Xuan

    2010-12-01

    This paper presents an overview of syntheses and applications of magnetic nanoparticles (MNPs) at the Institute of Materials Science, Vietnam Academy of Science and Technology. Three families of oxide MNPs, magnetite, manganite and spinel ferrite materials, were prepared in various ways: coprecipitation, sol–gel and high energy mechanical milling. Basic properties of MNPs were characterized by Vibrating Sample Magnetometer (VSM) and Physical Properties Measurement Systems (PPMS). As for biomedical application, the aim was to design a novel multifunctional, nanosized magnetofluorescent water-dispersible Fe3O4-curcumin conjugate, and its ability to label, target and treat tumor cells was described. The conjugate possesses a magnetic nano Fe3O4 core, chitosan (CS) or Oleic acid (OL) as an outer shell and entrapped curcumin (Cur), serving the dual function of naturally autofluorescent dye as well as antitumor model drug. Fe3O4-Cur conjugate exhibited a high loading cellular uptake with the help of a macrophage, which was clearly visualized dually by Fluorescence Microscope and Laser Scanning Confocal Microscope (LSCM), as well as by magnetization measurement (PPMS). A preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using the conjugate. As for the environmental aspect, the use of magnetite MNPs for the removal of heavy toxic metals, such as Arsenic (As) and Lead (Pb), from contaminated water was studied.

  16. Chitosan nanoparticle induced defense responses in fingermillet plants against blast disease caused by Pyricularia grisea (Cke.) Sacc.

    PubMed

    Sathiyabama, Muthukrishnan; Manikandan, Appu

    2016-12-10

    The in vitro antifungal properties of chitosan nanoparticle and its role in protection of fingermillet plants from blast disease were evaluated. Chitosan nanoparticle inhibited the radial growth of Pyricularia grisea indicating the antifungal property. Application of chitosan nanoparticle delayed blast symptom expression on fingermillet leaves for 25days while it was on 15day in control plants. Chitosan naoparticle was able to induce the reactive oxygen species and the level of peroxidase actvitiy in leaves of fingermillet, which might be the reason for delayed symptom. The treated plants showed reduced disease incidence when compared to untreated control plants. These results suggested the role of chitosan nanoparticle in protecting fingermillet plants from P. grisea infection. PMID:27577915

  17. Magnetic Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  18. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates. PMID:27287146

  19. Preparation and characterization of ferrofluid stabilized with biocompatible chitosan and dextran sulfate hybrid biopolymer as a potential magnetic resonance imaging (MRI) T2 contrast agent.

    PubMed

    Tsai, Zei-Tsan; Tsai, Fu-Yuan; Yang, Wei-Cheng; Wang, Jen-Fei; Liu, Chao-Lin; Shen, Chia-Rui; Yen, Tzu-Chen

    2012-11-01

    Chitosan is the deacetylated form of chitin and used in numerous applications. Because it is a good dispersant for metal and/or oxide nanoparticle synthesis, chitosan and its derivatives have been utilized as coating agents for magnetic nanoparticles synthesis, including superparamagnetic iron oxide nanoparticles (SPIONs). Herein, we demonstrate the water-soluble SPIONs encapsulated with a hybrid polymer composed of polyelectrolyte complexes (PECs) from chitosan, the positively charged polymer, and dextran sulfate, the negatively charged polymer. The as-prepared hybrid ferrofluid, in which iron chloride salts (Fe³⁺ and Fe²⁺) were directly coprecipitated inside the hybrid polymeric matrices, was physic-chemically characterized. Its features include the z-average diameter of 114.3 nm, polydispersity index of 0.174, zeta potential of −41.5 mV and iron concentration of 8.44 mg Fe/mL. Moreover, based on the polymer chain persistence lengths, the anionic surface of the nanoparticles as well as the high R2/R1 ratio of 13.5, we depict the morphology of SPIONs as a cluster because chitosan chains are chemisorbed onto the anionic magnetite surfaces by tangling of the dextran sulfate. Finally, the cellular uptake and biocompatibility assays indicate that the hybrid polymer encapsulating the SPIONs exhibited great potential as a magnetic resonance imaging T2 contrast agent for cell tracking. PMID:23203267

  20. Investigation of Size and Morphology of Chitosan Nanoparticles Used in Drug Delivery System Employing Chemometric Technique

    PubMed Central

    Khanmohammadi, Mohammadreza; Elmizadeh, Hamideh; Ghasemi, Keyvan

    2015-01-01

    The polymeric nanoparticles are prepared from biocompatible polymers in size between 10-1000 nm. Chitosan is a biocompatible polymer that - can be utilized as drug delivery systems. In this study, chitosan nanoparticles were synthesized using an optimized spontaneous emulsification method. Determining particle size and morphology are two critical parameters in nanotechnology. The aim of this study is to introduce methodology based on relation between particle size and diffuse reflectance infrared fourier transform (DRIFT) spectroscopy technique. Partial least squares (PLS) technique was used to estimate the average particle size based on DRIFT spectra. Forty two different chitosan nanoparticle samples with different particle sizes were analyzed using DRIFT spectrometry and the obtained data were processed by PLS. Results obtained from the real samples were compared to those obtained using field emission scanning electron microscope(FE-SEM) as a reference method. It was observed that PLS could correctly predict the average particle size of synthesized sample. Nanoparticles and their morphological state were determined by FE-SEM. Based on morphological characteristics analyzing with proposed method the samples were separated into two groups of "appropriate" and "inappropriate". Chemometrics methods such as principal component analysis, cluster analysis (CA) and linear discriminate analysis (LDA) were used to classify chitosan nanoparticles in terms of morphology. The percent of correctly classified samples using LDA were 100 %and 90% for training and test sets, respectively. PMID:26330855

  1. Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles

    PubMed Central

    Abdolmohammadi, Sanaz; Siyamak, Samira; Ibrahim, Nor Azowa; Yunus, Wan Md Zin Wan; Rahman, Mohamad Zaki Ab; Azizi, Susan; Fatehi, Asma

    2012-01-01

    This study investigates the effects of calcium carbonate (CaCO3) nanoparticles on the mechanical and thermal properties and surface morphology of polycaprolactone (PCL)/chitosan nanocomposites. The nanocomposites of PCL/chitosan/CaCO3 were prepared using a melt blending technique. Transmission electron microscopy (TEM) results indicate the average size of nanoparticles to be approximately 62 nm. Tensile measurement results show an increase in the tensile modulus with CaCO3 nanoparticle loading. Tensile strength and elongation at break show gradual improvement with the addition of up to 1 wt% of nano-sized CaCO3. Decreasing performance of these properties is observed for loading of more than 1 wt% of nano-sized CaCO3. The thermal stability was best enhanced at 1 wt% of CaCO3 nanoparticle loading. The fractured surface morphology of the PCL/chitosan blend becomes more stretched and homogeneous in PCL/chitosan/CaCO3 nanocomposite. TEM micrograph displays good dispersion of CaCO3 at lower nanoparticle loading within the matrix. PMID:22605993

  2. Tuning of shell and core characteristics of chitosan-decorated acrylic nanoparticles.

    PubMed

    Bravo-Osuna, I; Ponchel, G; Vauthier, C

    2007-02-01

    The aim of the work was to develop a new family of chitosan-coated acrylic nanoparticles to increase the specificity of absorption of drugs associated given by the mucosal route. To achieve this goal, techniques of radical and anionic emulsion polymerisation of isobutylcyanoacrylate (IBCA) were used. Changes in the shell composition were made by using chitosan of different molecular weight and thiolated chitosan to modify the particle surface properties in order to vary the mucosae-nanoparticle interactions. The core was also modified by the inclusion of methyl methacrylate (MMA) as second monomer potentially able to improve the control of drug release. Finally, the labelling of nanoparticles core with a fluorophore, methacryloxyethyl thiocarbamoyl rhodamine B (Polyfluor), was successfully achieved, necessary for the in vitro and in vivo evaluation of the systems created. Results showed that nanoparticle size varied from 200 to 500 nm, depending on the molecular weight of chitosan used. Positive surface charge values were obtained in all cases. In addition, evidences of the presence of thiol groups were obtained (0.03-0.16 x 10(-3)micromol/cm(2) of nanoparticle). PMID:17157487

  3. Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: in vitro and ex vivo evaluations.

    PubMed

    Atyabi, F; Talaie, F; Dinarvand, R

    2009-08-01

    The purpose of this study was the synthesis of two thiol conjugated Chitosan polymers, and evaluation of the potential of Thiomer nanoparticle formulation as a carrier for oral delivery system. Mediated by EDAC (Ethylene-3-(3-di-methylaminopropyl)-carbodiimide), either N-acetyl Cysteine (NAC) or N-acetyl D-penicillamine (NAP) were covalently attached to Chitosan. The success of the synthesis was demonstrated by comparing FTIR spectra. Iodometric titration demonstrated that depending on the pH value of the synthesis medium, the Thiomers display 250 +/- 30 microMol and 300 +/- 20 microMol thiol groups per gram of polymer respectively. The interaction between mucin and Thiomers, compared to mucin and Chitosan was studied for assessment of mucoadhesion properties of synthesized polymers. This interaction was determined by the measurement of the amount of mucin adsorbed on Chitosan and the conjugated polymers. Rotating cylinder method demonstrated an average of 20 times improvement in mucoadhesion of Thiomers compared to the unmodified polymer. Chitosan and Thiomer nanoparticles were formulated by two methods; TPP and Sodium Sulfate gelation. SEM micrographs and data achieved by a Malvern nano/zetasizer show nanoparticles formed by TPP gelation have a mean size of 150 +/- 15 nm compared to 300 +/- 25 nm sized nanoparticles obtained by Sodium sulfate gelation. TPP gelation yields smaller, more spherical shaped nanoparticles with a smaller range of size distribution. Amikacin loaded nanoparticles with an average size of 280 nm were prepared by TPP gelation in which disulfide bond formation was achieved by a time dependent oxidation process. In vitro studies were carried out; a recovery rate of 33% and a drug entrapment of 25% were achieved. The amount of release was determined during 18 hr in a carefully prepared media. The permeation time across a biological membrane was observed to be about 150 minutes. Microbiological tests were carried out on two microorganisms

  4. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies.

    PubMed

    Chadha, Renu; Gupta, Sushma; Pathak, Natasha

    2012-12-01

    Artesunate (AST), the most widely used artemisnin derivative, has poor aqueous solubility and suffers from low oral bioavailability (~40%). Under these conditions, nanoparticles with controlled and sustained released properties can be a suitable solution for improving its biopharmaceuticals properties. This work reports the preparation and characterization of auto-assembled chitosan/lecithin nanoparticles loaded with AST and AST complexed with β-cyclodextrin (β-CD) to boost its antimalarial activity. The nanoparticles prepared by direct injection of lecithin alcoholic solution into chitosan/water solution have shown the particle size distribution below 300 nm. Drug entrapment efficiency was found to be maximum (90%) for nanoparticles containing 100 mg of AST. Transmission electron microscopy images show spherical shape with contrasted corona (chitosan) surrounded by a lipidic core (lecithin + isopropyl myristate). Differential scanning calorimeter thermograms demonstrated the presence of drug in drug-loaded nanoparticles along with the disappearance of decomposition exotherm suggesting the increased physical stability of drug in prepared formulations. Negligible changes in the characteristic peaks of drug in Fourier-transform infrared spectra indicated the absence of any interaction among the various components entrapped in the nanoparticle formulation. In vitro drug release behavior was found to be influenced by pH value. Increased in vivo antimalarial activity in terms of less mean percent parasitemia was observed in infected Plasmodium berghei mice after the oral administration of all the prepared nanoparticle formulations. PMID:22348223

  5. Synthesis, characterization and anticorrosion potentials of chitosan-g-PEG assembled on silver nanoparticles.

    PubMed

    Hefni, Hassan H H; Azzam, Eid M; Badr, Emad A; Hussein, M; Tawfik, Salah M

    2016-02-01

    Chitosan (Ch) grafted with poly(ethylene glycol) (Ch-g-mPEG) were synthesized using mPEG with molecular weights 2000 g/mol. The synthesized Ch-g-mPEG was characterized using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD) techniques. Ch-g-mPEG silver nanoparticles has been synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and energy dispersive analysis of X-rays (EDAX). The synthesized Ch-g-mPEG and its nanostructure were examined as corrosion inhibitors for carbon steel in 1M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results revealed that the inhibition efficiency obtained by Ch-g-mPEG self-assembled on silver nanoparticles is greater than that obtained by Ch-g-mPEG only. Potentiodynamic polarization results reveal that the synthesized compound could be classified as mixed-type corrosion inhibitors with predominant control of the cathodic reaction. The results of EIS indicate that the both charge transfer resistance and inhibition efficiency tend to increase by increasing the inhibitor concentration. PMID:26645144

  6. Enzymatic synthesis of magnetic nanoparticles.

    PubMed

    Kolhatkar, Arati G; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S; Litvinov, Dmitri; Lee, T Randall; Willson, Richard C

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  7. Enzymatic Synthesis of Magnetic Nanoparticles

    PubMed Central

    Kolhatkar, Arati G.; Dannongoda, Chamath; Kourentzi, Katerina; Jamison, Andrew C.; Nekrashevich, Ivan; Kar, Archana; Cacao, Eliedonna; Strych, Ulrich; Rusakova, Irene; Martirosyan, Karen S.; Litvinov, Dmitri; Lee, T. Randall; Willson, Richard C.

    2015-01-01

    We report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K. Although weakly magnetic at 300 K, the room-temperature magnetization of the nanoparticles found here is considerably greater than that of analogous chemically-synthesized LnxFeyOz (Ln = Gd, Ho) samples reported previously. At 5 K, the nanoparticles showed a significantly higher saturation magnetization of 45 and 30 emu/g for Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5, respectively. Our approach of enzymatically synthesizing magnetic labels reduces the cost and avoids diffusional mass-transfer limitations associated with pre-synthesized magnetic reporter particles, while retaining the advantages of magnetic sensing. PMID:25854425

  8. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.

    PubMed

    Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen

    2016-08-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications. PMID:27088188

  9. Chelating and antibacterial properties of chitosan nanoparticles on dentin

    PubMed Central

    Bramante, Clovis Monteiro; Duarte, Marco Antonio Hungaro; de Moura, Marcia Regina; Aouada, Fauze Ahmad; Kishen, Anil

    2015-01-01

    Objectives The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. Results The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). Conclusions CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin. PMID:26295022

  10. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile.

    PubMed

    Nafee, Noha; Schneider, Marc; Schaefer, Ulrich F; Lehr, Claus-Michael

    2009-11-01

    The application of nanoparticles on a sub-cellular level necessitates an in depth study of their biocompatibility. However, complete characterization of the particles under the physiological conditions relevant for biological evaluation is still lacking. Our goal is therefore to evaluate the possible toxicity aspects of chitosan-modified PLGA nanoparticles on different cell lines and relate them to the parameters affecting the colloidal stability of the nanoparticles. The impacts of different factors such as nanoparticle concentration, exposure time, chitosan content in the particles and pH fluctuations on the cell viability were investigated. Meanwhile, the colloidal stability of the particles in cell culture media was checked by measuring their size and charge as well as visualizing the particles in media by scanning force microscopy (SFM). A slight shift in the pH of the culture medium to the acidic side allows the protonation of chitosan; thus the increased positive surface charge induced membrane damage ( approximately 50% increase in LDH released). Besides, cell viability is reduced by 15% in the absence of serum; serum in the culture medium forms a protective shell around the particles; such interaction influences the surface charge of the particles and was found to be a function of chitosan content in the particles. In conclusion, there is an undeniable impact of cell type, medium, presence/absence of serum on the colloidal state of the particles that consequently influence their interaction with the cells. PMID:19450671

  11. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  12. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye.

    PubMed

    Nagarwal, Ramesh C; Kumar, Rakesh; Pandit, J K

    2012-11-20

    The objective of the study was to develop chitosan (CH) coated sodium alginate-chitosan (SA-CH) nanoparticles, i.e. CH-SA-CH NPs loaded with 5-FU for ophthalmic delivery. Drug loaded nanoparticles (DNPs) were prepared by ionic gelation technique using sodium alginate (SA) and chitosan (CH) and then suspended in chitosan solution. The mean size of nanoparticles and morphology were characterized by dynamic light scattering, scanning electron microscopy, atomic force microscopy and zeta potential. The in vitro release was studied by dialysis membrane technique. The size and drug encapsulation efficiency were dependent on molar ratio of SA and CH. The size of SA-CH nanoparticles was significantly increased with changed morphology after CH coating. SA-CH nanoparticles did not show any interaction with mucin while an enhanced viscosity was observed on coating of nanoparticles with CH. CH-SA-CH DNPs presented a sustained release of 5-FU compared to the 5-FU solution with high burst effect. In vivo study in rabbit eye showed significantly greater level of 5-FU in aqueous humor compared to 5-FU solution. The enhanced mucoadhesiveness of CH-SA-CH DNPs results in higher bioavailability as compared to the uncoated nanoparticles. Optimized formulation was found non-irritant and tolerable when tested by modified Draize test in rabbit eye. PMID:22922098

  13. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    PubMed Central

    Poth, Nils; Seiffart, Virginia; Gross, Gerhard; Menzel, Henning; Dempwolf, Wibke

    2015-01-01

    A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V. PMID:25581889

  14. Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments

    NASA Astrophysics Data System (ADS)

    Shete, P. B.; Patil, R. M.; Thorat, N. D.; Prasad, A.; Ningthoujam, R. S.; Ghosh, S. J.; Pawar, S. H.

    2014-01-01

    Nanocrystals of magnetite (Fe3O4) were prepared by alkaline precipitation. The precursor used for synthesis was ferrous chloride only and the reaction was carried out in absence of any oxidant. The synthesized pure phase magnetic nanoparticles (MNPs) were coated with a biocompatible polymer, chitosan (CS). FTIR and TGA confirm coating of CS on MNPs. Both bare and coated MNPs (Fe3O4 and CS-Fe3O4) show particle size 21.8 ± 5.3 and 15.1 ± 5.0 nm respectively. The magnetization values of both the MNPs are 51.68 and 49.96 emu/g at room temperature respectively. Negligible Coercivity and Remenance values at room temperature imply superparamagnetic behavior of the MNPs. The MNPs are studied for their induction heating abilities at 167.6, 251.4 and 335.2 Oe (equivalent to 13.3, 20.0 and 26.7 kA m-1 respectively), in order to use them in magnetic fluid hyperthermia therapy. At 335.2 Oe, CS coated nanoparticles (NPs) show maximum SAR of 118.85 W/g, while bare NPs show SAR of 79.32 W/g. Low cytotoxic effects of both the MNPs on L929 cell line proved their suitability for in vivo applications. NH2 group rendered by CS can further be used for conjugation of biomolecules to make them suitable candidates for biosensing and targeted drug delivery.

  15. Chitosan

    PubMed Central

    Smith, Alan; Perelman, Michael; Hinchcliffe, Michael

    2014-01-01

    The nasal route is attractive for the delivery of vaccines in that it not only offers an easy to use, non-invasive, needle-free alternative to more conventional parenteral injection, but it also creates an opportunity to elicit both systemic and (crucially) mucosal immune responses which may increase the capability of controlling pathogens at the site of entry. Immune responses to “naked” antigens are often modest and it is widely accepted that incorporation of an adjuvant is a prerequisite for the achievement of clinically effective nasal vaccines. Many existing adjuvants are sub-optimal or unsuitable because of local toxicity or poor enhancement of immunogenicity. Chitosan, particularly chitosan salts, have now been used in several preclinical and clinical studies with good tolerability, excellent immune stimulation and positive clinical results across a number of infections. Particularly significant evidence supporting chitosan as an adjuvant for nasal vaccination comes from clinical investigations on a norovirus vaccine; this demonstrated the ability of chitosan (ChiSys®), when combined with monophosphoryl lipid, to evoke robust immunological responses and confer protective immunity following (enteral) norovirus challenge. This article summarizes the totality of the meaningful information (including key unpublished data) supporting the development of chitosan-adjuvanted vaccines. PMID:24346613

  16. Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan

    NASA Astrophysics Data System (ADS)

    Inbaraj, Baskaran Stephen; Tsai, Tsung-Yu; Chen, Bing-Huei

    2012-02-01

    Iron oxide nanoparticles (IONPs) were synthesized by coprecipitation of iron salts in alkali media followed by coating with glycol chitosan (GC-coated IONPs). Both bare and GC-coated IONPs were subsequently characterized and evaluated for their antibacterial activity. Comparison of Fourier transform infrared spectra and thermogravimetric data of bare and GC-coated IONPs confirmed the presence of GC coating on IONPs. Magnetization curves showed that both bare and GC-coated IONPs are superparamagnetic and have saturation magnetizations of 70.3 and 59.8 emu g-1, respectively. The IONP size was measured as ~8-9 nm by transmission electron microscopy, and their crystal structure was assigned to magnetite from x-ray diffraction patterns. Both bare and GC-coated IONPs inhibited the growths of Escherichia coli ATCC 8739 and Salmonella enteritidis SE 01 bacteria better than the antibiotics linezolid and cefaclor, as evaluated by the agar dilution assay. GC-coated IONPs showed higher potency against E. coli O157:H7 and Staphylococcus aureus ATCC 10832 than bare IONPs. Given their biocompatibility and antibacterial properties, GC-coated IONPs are a potential nanomaterial for in vivo applications.

  17. Chitosan/TPP Nanoparticles as a Gene Delivery Agent For Tumor Suppressant P53

    NASA Astrophysics Data System (ADS)

    Liu, Gaojun

    In the last decade, non-viral polymeric vectors have become more attractive than their viral counterparts due to their nontoxicity and good biocompatibility. However, one of the major drawbacks is the low transfection efficiency when compared to viruses. In this work, a naturally cationic polysaccharide, chitosan, was cross-linked with negatively charged tripolyphosphate (TPP) to synthesize chitosan/TPP nanoparticles (CNPs) for delivery of plasmid DNA (pDNA). Particle size and zeta potential were characterized for CNPs with chitosan-TPP mass ratios of 4:1 and 6:1 (w/w) using benchtop dynamic light scattering. And both potentiometric titration method and FTIR spectrometer were applied to measure the degree of deacetylation of chitosan. Release kinetics of a model protein (bovine serum albumin, BSA) showed a steady release that reached 7% after 6 days. Besides that, we also assessed the in vitro transfection efficiency of the CNP-pDNA system using fluorescence microscopy, as well as the effect of tumor suppressant p53. Later the release kinetics and encapsulation efficiency of plasmid DNA bound to the CNPs will be investigated. Additionally, we will try to improve the gene transfection efficiency in both MC3T3-E1 and osteosarcoma cells by applying Sonicator 740 therapeutic ultrasound. Key words: gene therapy, non-viral gene vector, chitosan/TPP nanoparticles, ionic gelation, p53.

  18. Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a "one-pot" multicomponent reaction.

    PubMed

    Wan, Qing; Liu, Meiying; Xu, Dazhuang; Mao, Liucheng; Tian, Jianwen; Huang, Hongye; Gao, Peng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    Chitosan based nanomaterials have been extensively examined for biomedical applications for their biodegradability, low toxicity, biological activity and low cost. In this work, a novel strategy for fabrication of luminescent polymeric nanoparticles (LPNs) based on aggregation induced emission (AIE) dye and water soluble chitosan (WS-Chitosan) were firstly developed via a highly efficient mercaptoacetic acid (MA) locking imine reaction. In this multicomponent reaction (MCR), MA serves as "lock" to connect 9,10-Bis(aldehydephenl)anthracene dye (An-CHO) and amino-containing WS-Chitosan under mild reaction conditions. The obtained WS-Chitosan@An-CHO LPNs show strong yellow emission and great water dispersibility. Biological evaluation results demonstrated that synthetic luminescent polymeric nanoparticles possess desirable cytocompatibility and distinct imaging properties. Therefore, we have developed a facile and useful method to fabricate AIE active nanoprobes with desirable properties for various biomedical applications. This strategy should be a general and easy handling tool to fabricate many other AIE dye based materials. PMID:27516264

  19. Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization.

    PubMed

    Luan, Pan-Pan; Jiang, Yan-Jun; Zhang, Song-Ping; Gao, Jing; Su, Zhi-Guo; Ma, Guang-Hui; Zhang, Yu-Fei

    2014-11-01

    Our work here, for the first time, reported the use of chitosan-mediated biomimetic silica nanoparticles in enzyme immobilization. In order to make clear the relationship among silicification process, silica nanoparticle structure and immobilized enzyme activity, a mechanism of chitosan-mediated silicification using sodium silicate as the silica source was primarily evaluated. Chitosan was demonstrated effectively to promote the silicification not only in accelerating the aggregation rate of sodium silicate, but also in templating the formation of silica nanoparticles. Although the whole biomimetic silicification process contained polycondensation-aggregation-precipitation three stages, the elemental unit in precipitated silica was confirmed to be nanoparticles with 100 nm diameter regardless of the chitosan and silicate concentration used. Furthermore, the effect of enzyme on silicification process was also investigated. The introducing of manganese peroxidase (MnP) to silica precursor solution had no obvious effect on the silicification rate and nanoparticle morphology. The residual activity and embedding rate of immobilized MnP were 64.2% and 36.4% respectively under the optimum conditions. In addition, compared to native MnP, the MnP embedded in chitosan/silica nanoparticles exhibited improved stability against organic solvent and ultrasonic wave. After ultrasonic treatment for 20 min, 77% of the initial activity was remained due to the protective effect of chitosan/silica nanoparticles, while native MnP lost almost all of its original activity. PMID:24913823

  20. One-step synthesis of magnetic chitosan polymer composite films

    NASA Astrophysics Data System (ADS)

    Cesano, Federico; Fenoglio, Gaia; Carlos, Luciano; Nisticò, Roberto

    2015-08-01

    In this study, a magnetic iron oxide-chitosan composite film is synthesized by one-step method and thoroughly investigated in order to better understand its inorganic/organic properties. A deep physico-chemical characterization of the magnetic films has been performed. In particular, the material composition was evaluated by means of XRD and ATR-FTIR spectroscopy, whereas the thermal stability and the subsequent inorganic phase transitions involving iron oxide species were followed by TGA analyses carried out at different experimental conditions (i.e. inert and oxidative atmosphere). The magnetic properties of the films were tested at the bulk and at the surface level, performing respectively magnetization hysteresis curve and magnetic force microscopy (MFM) surface mapping. Results indicate that the synthesized material can be prepared through a very simple synthetic procedure and suggests that it can be successfully applied for instance to environmental applications, such as the adsorption of contaminants from solid and liquid media thanks to its pronounced magnetic properties, which favour its recover.

  1. Magnetic nanoparticles for "smart liposomes".

    PubMed

    Nakayama, Yoshitaka; Mustapić, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris

    2015-12-01

    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs. PMID:26184724

  2. Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium, an essential mineral, plays important roles in optimizing human health. Chitosan is an effective, naturally oriented material for synthesizing nanoparticles with polyanions and exhibit preferable properties such as biocompatibility, biodegradation and resistance to certain enzymes. We have...

  3. Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells

    PubMed Central

    Cheng, Mingrong; Xu, Hongzhi; Wang, Yong; Chen, Houxiang; He, Bing; Gao, Xiaoyan; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-01-01

    Modified chitosan nanoparticles are a promising platform for drug, such as 5-fluorouracil (5-FU), gene, and vaccine delivery. Here, we used chitosan and hepatoma cell-specific binding molecule glycyrrhetinic acid (GA) to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared spectroscopy and hydrogen nuclear magnetic resonance. By combining GA-CTS and 5-FU, we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 193.7 nm, drug loading of 1.56%, and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained-release system comprising three distinct phases of quick, steady, and slow release. In vitro data indicated that it had a dose- and time-dependent anticancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited cancer cell proliferation, resulting in increased survival time. The antitumor mechanisms for GA-CTS/5-FU nanoparticle were possibly associated with an increased expression of regulatory T-cells, decreased expression of cytotoxic T-cell and natural killer cells, and reduced levels of interleukin-2 and interferon gamma. PMID:24187487

  4. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    SciTech Connect

    Wu, Hong; Wang, Jun; Kang, Xinhuang; Wang, Chong M.; Wang, Donghai; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  5. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    PubMed

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. PMID:26340358

  6. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies.

    PubMed

    Silva, Mariana dos Santos; Cocenza, Daniela Sgarbi; Grillo, Renato; de Melo, Nathalie Ferreira Silva; Tonello, Paulo Sérgio; de Oliveira, Luciana Camargo; Cassimiro, Douglas Lopes; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-06-15

    Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physico-chemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 ± 12 nm, polydispersion of 0.518, zeta potential of -22.8 ± 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles, was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. PMID:21493003

  7. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats

    PubMed Central

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics. PMID:26248340

  8. Glutathione and S-nitrosoglutathione in alginate/chitosan nanoparticles: Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Marcato, P. D.; Adami, L. F.; Melo, P. S.; de Paula, L. B.; Durán, N.; Seabra, A. B.

    2011-07-01

    Nitric oxide (NO) is involved in several physiological processes, such as the control of vascular tone, the immune response and the wound healing process. Thus, there is a great interest in the development of NO-releasing drugs and in matrices which are able to stabilize and release NO locally in different tissues. Thiols, such as glutathione (GSH), are ready nitrosated to form the NO donors S-nitrosothiols (RSNOs). In this work, GSH, a precursor of the NO donor S-nitrosoglutathione (GSNO), was encapsulated into a mucoadhesive combination of alginate/chitosan nanoparticles. The encapsulated GSH was nitrosated in the alginate/chitosan nanoparticles by adding sodium nitrite, leading to the formation of encapsulated GSNO. The cytotoxicity characterization of the nanoparticles containing either GSH or GSNO showed that these materials were completely non cytotoxic to cellular viability. These results show that this novel nanostructure biomaterial has a great potential to be use in biomedical applications where NO has a therapeutical effect.

  9. Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery.

    PubMed

    Jung, Sang-Myung; Yoon, Gwang Heum; Lee, Hoo Cheol; Shin, Hwa Sung

    2015-01-01

    Many investigations of wound dressings equipped with drug delivery systems have recently been conducted. Chitosan is widely used not only as a material for wound dressing by the efficacy of its own, but also as a nanoparticle for drug delivery. In this study, an electrospun polycaprolactone nanofiber composite with chitosan nanoparticles (ChiNP-PCLNF) was fabricated and then evaluated for its drug release and biocompatibility to skin fibroblasts. ChiNP-PCLNF complexes showed no cytotoxicity and nanoparticles adsorbed by van der Waals force were released into aquatic environments and then penetrated into rat primary fibroblasts. Our studies demonstrate the potential for application of ChiNP-PCLNF as a wound dressing system with drug delivery for skin wound healing without side effects. PMID:25573454

  10. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    PubMed

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-01

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. PMID:25129735

  11. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release.

    PubMed

    Yuan, Zeting; Ye, Yajing; Gao, Feng; Yuan, Huihui; Lan, Minbo; Lou, Kaiyan; Wang, Wei

    2013-03-25

    Chitosan (CS) grafted with β-cyclodextrin (CD-g-CS) nanoparticles as a new carrier for poorly water-soluble drugs has been developed. The CD-g-CS polymer is readily synthesized from chitosan and mono-6-deoxy-6-(p-toluenesulfonyl)-β-cyclodextrin. Three different degrees of substitution (DS) of β-cyclodextrin (β-CD) on CD-g-CS (9.6, 14.0 and 20.0%) are designed and evaluated by controlling the mole ratio of β-CD to chitosan. Then CD-g-CS nanoparticles are prepared by an ionic gelation method, with the controlled size of 202.0-589.0 nm. Stable colloidal dispersion of the nanoparticles has been formed with the zeta potential of +23.0 to +43.0 mV. In vitro stability test indicates that CD-g-CS nanoparticles are more stable in phosphate-buffered saline compared with CS nanoparticles. Finally, the poorly water-soluble drug, ketoprofen (KTP), is used as a model drug to evaluate the efficiency of the new drug delivery carrier. It is found that the encapsulation efficiency of KTP in the nanoparticles with 20% DS of CD is as high as 1.36-fold than that of CS nanoparticles. Moreover, notably KTP is released from the nanoparticles in a controlled-release manner and is pH-responsive on DS of CD. In summary, these results suggest that the CD-g-CS nanoparticles, as a general promising drug delivery system, can be used as a potential biodegradable nano-drug delivery system for controlled release of poorly water-soluble drugs with pH-responsive capability. PMID:23422276

  12. PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection**

    PubMed Central

    Kievit, Forrest M.; Veiseh, Omid; Bhattarai, Narayan; Fang, Chen; Gunn, Jonathan W.; Lee, Donghoon; Ellenbogen, Richard G.; Olson, James M.

    2009-01-01

    Gene therapy offers the potential of mediating disease through modification of specific cellular functions of target cells. However, effective transport of nucleic acids to target cells with minimal side effects remains a challenge despite the use of unique viral and non-viral delivery approaches. Here we present a non-viral nanoparticle gene carrier that demonstrates effective gene delivery and transfection both in vitro and in vivo. The nanoparticle system (NP-CP-PEI) is made of a superparamagnetic iron oxide nanoparticle (NP), which enables magnetic resonance imaging, coated with a novel copolymer (CP-PEI) comprised of short chain polyethylenimine (PEI) and poly(ethylene glycol) (PEG) grafted to the natural polysaccharide, chitosan (CP), which allows efficient loading and protection of the nucleic acids. The function of each component material in this nanoparticle system is illustrated by comparative studies of three nanoparticle systems of different surface chemistries, through material property characterization, DNA loading and transfection analyses, and toxicity assessment. Significantly, NP-CP-PEI demonstrates an innocuous toxic profile and a high level of expression of the delivered plasmid DNA in a C6 xenograft mouse model, making it a potential candidate for safe in vivo delivery of DNA for gene therapy. PMID:20160995

  13. Synergistic Combination of Chitosan Acetate with Nanoparticle Silver as a Topical Antimicrobial: Efficacy against Bacterial Burn Infections ▿

    PubMed Central

    Huang, Liyi; Dai, Tianhong; Xuan, Yi; Tegos, George P.; Hamblin, Michael R.

    2011-01-01

    Chitosan and nanoparticle silver are both materials with demonstrated antimicrobial properties and have been proposed singly or in combination as constituents of antimicrobial burn dressings. Here, we show that they combine synergistically to inhibit the in vitro growth of Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative bacteria (Pseudomonas aeruginosa, Proteus mirabilis, and Acinetobacter baumannii), as judged by bioluminescence monitoring and isobolographic analysis, and also produce synergistic killing after 30 min of incubation, as measured by a CFU assay. The hypothesized explanation involves chitosan-mediated permeabilization of bacterial cells, allowing better penetration of silver ions into the cell. A dressing composed of freeze-dried chitosan acetate incorporating nanoparticle silver was compared with a dressing of chitosan acetate alone in an in vivo burn model infected with bioluminescent P. aeruginosa. The survival rates of mice treated with silver-chitosan or regular chitosan or left untreated were 64.3% (P = 0.0082 versus regular chitosan and P = 0.0003 versus the control), 21.4%, and 0%, respectively. Most of the fatalities occurred between 2 and 5 days postinfection. Silver-chitosan dressings effectively controlled the development of systemic sepsis, as shown by blood culture. These data suggest that a dressing combining chitosan acetate with silver leads to improved antimicrobial efficacy against fatal burn infections. PMID:21502618

  14. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior.

    PubMed

    López-León, T; Carvalho, E L S; Seijo, B; Ortega-Vinuesa, J L; Bastos-González, D

    2005-03-15

    Some physical properties of nanogel particles formed by chitosan ionically cross-linked by tripolyphosphate (TPP) have been studied. Electrokinetic properties and colloidal stability were analyzed as a function of pH and ionic strength of the medium. Chitosan particles showed volume phase transitions (swelling/shrinking processes) when the physicochemical conditions of the medium were changed. Experimental data were mainly obtained by electrophoretic mobility measurements and by photon correlation spectroscopy and static light scattering techniques. Chitosan chains possess glucosamine groups that can be deprotonated if the pH increases. Therefore, modification of pH from acid to basic values caused a deswelling process based on a reduction of the intramolecular electric repulsions inside the particle mesh. Electrophoretic mobility data helped to corroborate the above electrical mechanism as responsible for the size changes. Additionally, at those pH values around the isoelectric point of the chitosan-TPP particles, the system became colloidally unstable. Ionic strength variations also induced important structural changes. In this case, the presence of KCl at low and moderate concentrations provoked swelling, which rapidly turned on particle disintegration due to the weakness of chitosan-TPP ionic interactions. These last results were in good agreement with the predictions of gel swelling theory by salt in partially ionized networks. PMID:15721903

  15. Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications

    NASA Astrophysics Data System (ADS)

    Jung, Gyeong-Bok; Kim, Ji-Hye; Burm, Jin Sik; Park, Hun-Kuk

    2013-05-01

    We propose a simple, low-cost, large-area, and functional surface enhanced Raman scattering (SERS) substrate for biomedical applications. The SERS substrate with chitosan-silver nanoparticles (chitosan-Ag NPs) hybrid 3D porous structure was fabricated simply by a one-step method. The chitosan was used as a template for the Ag NPs deposition. SERS enhancement by the chitosan-Ag NPs substrate was experimentally verified using rhodamine B as an analyte. Thiolated single stranded DNA was also measured for atopic dermatitis genetic markers (chemokines CCL17) at a low concentration of 5 pM. We successfully designed a novel SERS substrate with silver nanoparticle hybridized 3D porous chitosan that has the potential to become a highly sensitive and selective tool for biomedical applications.

  16. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion.

    PubMed

    Ou, Hongxiang; Chen, Qunhui; Pan, Jianming; Zhang, Yunlei; Huang, Yong; Qi, Xueyong

    2015-05-30

    Magnetic imprinted polymers (MIPs) were synthesized by Pickering emulsion polymerization and used to adsorb erythromycin (ERY) from aqueous solution. The oil-in-water Pickering emulsion was stabilized by chitosan nanoparticles with hydrophobic Fe3O4 nanoparticles as magnetic carrier. The imprinting system was fabricated by radical polymerization with functional and crosslinked monomer in the oil phase. Batches of static and dynamic adsorption experiments were conducted to analyze the adsorption performance on ERY. Isotherm data of MIPs well fitted the Freundlich model (from 15 °C to 35 °C), which indicated heterogeneous adsorption for ERY. The ERY adsorption capacity of MIPs was about 52.32 μmol/g at 15 °C. The adsorption kinetics was well described by the pseudo-first-order model, which suggested that physical interactions were primarily responsible for ERY adsorption. The Thomas model used in the fixed-bed adsorption design provided a better fit to the experimental data. Meanwhile, ERY exhibited higher affinity during adsorption on the MIPs compared with the adsorption capacity of azithromycin and chloramphenicol. The MIPs also exhibited excellent regeneration capacity with only about 5.04% adsorption efficiency loss in at least three repeated adsorption-desorption cycles. PMID:25704432

  17. Magnetism in nanoparticles: tuning properties with coatings.

    PubMed

    Crespo, Patricia; de la Presa, Patricia; Marín, Pilar; Multigner, Marta; Alonso, José María; Rivero, Guillermo; Yndurain, Félix; González-Calbet, José María; Hernando, Antonio

    2013-12-01

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications. PMID:24201075

  18. Magnetic Separation Dynamics of Colloidal Magnetic Nanoparticles

    SciTech Connect

    Kaur, M.; Huijin Zhang,; You Qiang,

    2013-01-01

    Surface functionalized magnetic nanoparticles (MNPs) are appealing candidates for analytical separation of heavy metal ions from waste water and separation of actinides from spent nuclear fuel. This work studies the separation dynamics and investigates the appropriate magnetic-field gradients. A dynamic study of colloidal MNPs was performed for steady-state flow. Measurements were conducted to record the separation time of particles as a function of magnetic field gradient. The drag and magnetic forces play a significant role on the separation time. A drop in saturation magnetization and variation of particle size occurs after surface functionalization of the MNPs; these are the primary factors that affect the separation time and velocity of the MNPs. The experimental results are correlated to a theoretical one-dimensional model.

  19. Microwave-synthesized magnetic chitosan microparticles for the immobilization of yeast cells.

    PubMed

    Safarik, Ivo; Pospiskova, Kristyna; Maderova, Zdenka; Baldikova, Eva; Horska, Katerina; Safarikova, Mirka

    2015-01-01

    An extremely simple procedure has been developed for the immobilization of Saccharomyces cerevisiae cells on magnetic chitosan microparticles. The magnetic carrier was prepared using an inexpensive, simple, rapid, one-pot process, based on the microwave irradiation of chitosan and ferrous sulphate at high pH. Immobilized yeast cells have been used for sucrose hydrolysis, hydrogen peroxide decomposition and the adsorption of selected dyes. PMID:24753015

  20. In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chiriac, Horia; Petreus, Tudor; Carasevici, Eugen; Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta

    2015-04-01

    The heating potential, cytotoxicity, and efficiency of Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe68.2Cr11.5Nb0.3B20 MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell-particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  1. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.

    PubMed

    Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E

    2015-12-01

    Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pH<2 due to the instability of CH particles in acid media. Langmuir isotherm described better than Freundlich and Temkin equations the equilibrium adsorption data. Pseudo-second order rate provided the best fitting to the kinetic data in comparison to pseudo-first order and Elovich equations. Chemical analysis to determine the oxidation state of the adsorbed Cr, showed that Cr(VI) was adsorbed on CH particles without further reduction; in contrast Cr(VI) removed from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water. PMID:26151484

  2. Synthesis and characterization of chitosan and grape polyphenols stabilized palladium nanoparticles and their antibacterial activity.

    PubMed

    Amarnath, Kanchana; Kumar, Jayanthi; Reddy, Tejesh; Mahesh, Vakka; Ayyappan, Senniyanallur Rathakrishnan; Nellore, Jayshree

    2012-04-01

    Based on enhanced effectiveness, the new age drugs are nanoparticles of polymers, metals or ceramics, which can combat conditions like cancer and fight human pathogens like bacteria. In this present study we aimed for a green approach to synthesize palladium nanoparticles by reducing palladium chloride salts with nontoxic and biodegradable polymeric chitosan and grape polyphenols and confirmed by FTIR, TEM, SEM and UV-spectroscopy. We also extended our study to show the efficacy of the grape and chitosan impregnated palladium nanoparticles as an antibacterial agent against Escherichia coli. Antibacterial assays were carried out with a representative gram-negative bacterium, E. coli and a gram-positive bacterium, Staphylococcus aureus. Commendable efforts have been made to explore this property using electron microscopy, which has revealed size dependent interaction of palladium nanoparticles conjugates with bacteria by disrupting cell membranes and the leakage of cytoplasm. Therefore, the observed results imply that grape and chitosan-based nano palladium conjugates prepared in our present system are promising candidates for a wide range of biomedical and general applications. PMID:22225943

  3. Biofilm Formation within the Interface of Bovine Root Dentin Treated with Conjugated Chitosan and Sealer Containing Chitosan Nanoparticles

    PubMed Central

    DaSilva, Luis; Finer, Yoav; Friedman, Shimon; Basrani, Bettina; Kishen, Anil

    2013-01-01

    Objective To assess biofilm formation within sealer-dentin interfaces of root segments filled with gutta-percha and sealer incorporated with chitosan (CS) nanoparticles, without and with canal surface treatment with different formulations of CS. Methods Standardized canals of 4 mm bovine root segments (n=35) were filled with gutta-percha and Pulp Canal Sealer incorporated with CS nanoparticles without surface treatment (group CS), or after surface treatment with phosphorylated CS (group PHCS), CS-conjugated Rose Bengal and photodynamic irradiation (group CSRB) and a combination of both PHCS and CSRB (group RBPH). The control group was filled with gutta-percha and unmodified sealer. After 7 d of setting, specimens were aged in buffered solution at 37° C for 1 or 4 wks. Monospecies biofilms of Enterococcus faecalis were grown on specimens for 7 d in a chemostat-based biofilm fermentor. Biofilm formation within the sealer-dentin interface was assessed with confocal laser scanning microscopy. Results In the 4-wk aged specimens only, the mean biofilm areas were significantly smaller than in the control for CS (p=0.008), PHCS (p=0.012) and RBPH (p=0.034). Percentage of biofilm-covered interface also was significantly lower than in the control for CS (p=0.024) and PHCS (p=0.003). CS, PHCS and RBPH did not differ significantly. Conclusions Incorporating CS nanoparticles into the zinc-oxide eugenol sealer inhibited biofilm formation within the sealer-dentin interface. This effect was maintained when canals were treated with phosphorylated CS, and it was moderated by canal treatment with chitosan-conjugated Rose Bengal and irradiation. PMID:23321239

  4. Microfluidic assisted synthesis of silver nanoparticle-chitosan composite microparticles for antibacterial applications.

    PubMed

    Yang, Chih-Hui; Wang, Lung-Shuo; Chen, Szu-Yu; Huang, Mao-Chen; Li, Ya-Hua; Lin, Yun-Chul; Chen, Pei-Fan; Shaw, Jei-Fu; Huang, Keng-Shiang

    2016-08-30

    Silver nanoparticle (Ag NP)-loaded chitosan composites have numerous biomedical applications; however, fabricating uniform composite microparticles remains challenging. This paper presents a novel microfluidic approach for single-step and in situ synthesis of Ag NP-loaded chitosan microparticles. This proposed approach enables obtaining uniform and monodisperse Ag NP-loaded chitosan microparticles measuring several hundred micrometers. In addition, the diameter of the composites can be tuned by adjusting the flow on the microfluidic chip. The composite particles containing Ag NPs were characterized using UV-vis spectra and scanning electron microscopy-energy dispersive X-ray spectrometry data. The characteristic peaks of Ag NPs in the UV-vis spectra and the element mapping or pattern revealed the formation of nanosized silver particles. The results of antibacterial tests indicated that both chitosan and composite particles showed antibacterial ability, and Ag NPs could enhance the inhibition rate and exhibited dose-dependent antibacterial ability. Because of the properties of Ag NPs and chitosan, the synthesized composite microparticles can be used in several future potential applications, such as bactericidal agents for water disinfection, antipathogens, and surface plasma resonance enhancers. PMID:26780124

  5. Effects of chitosan nanoparticle-mediated BRAF siRNA interference on invasion and metastasis of gastric cancer cells.

    PubMed

    Huo, Jian

    2016-08-01

    To observe the changes in invasion capacity of gastric cancer BGC823 cells after being treated with chitosan-encapsulated BRAF siRNA nanoparticles, and to evaluate the effects of the nanoparticle-mediated BRAF siRNA interference on cell invasion and metastasis, BRAF siRNA was encapsulated with chitosan into nanoparticles sized 350 nm to treat gastric cancer cells. Silencing of BRAF was detected by Western blot and PCR, and cell invasion was observed by the Transwell assay. The nanoparticles significantly downregulated BRAF expression in BGC823 cells (P < 0.01) and inhibited their invasion (P < 0.001). Chitosan nanoparticle-mediated BRAF siRNA interference evidently reduced the invasion capacity of gastric cancers. PMID:25794798

  6. Intravenous magnetic nanoparticle cancer hyperthermia

    PubMed Central

    Huang, Hui S; Hainfeld, James F

    2013-01-01

    Magnetic nanoparticles heated by an alternating magnetic field could be used to treat cancers, either alone or in combination with radiotherapy or chemotherapy. However, direct intratumoral injections suffer from tumor incongruence and invasiveness, typically leaving undertreated regions, which lead to cancer regrowth. Intravenous injection more faithfully loads tumors, but, so far, it has been difficult achieving the necessary concentration in tumors before systemic toxicity occurs. Here, we describe use of a magnetic nanoparticle that, with a well-tolerated intravenous dose, achieved a tumor concentration of 1.9 mg Fe/g tumor in a subcutaneous squamous cell carcinoma mouse model, with a tumor to non-tumor ratio > 16. With an applied field of 38 kA/m at 980 kHz, tumors could be heated to 60°C in 2 minutes, durably ablating them with millimeter (mm) precision, leaving surrounding tissue intact. PMID:23901270

  7. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations.

    PubMed

    Özcan, Ipek; Azizoğlu, Erkan; Senyiğit, Taner; Özyazıcı, Mine; Özer, Özgen

    2013-01-01

    The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders. PMID:23390364

  8. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations

    PubMed Central

    Özcan, İpek; Azizoğlu, Erkan; Şenyiğit, Taner; Özyazıcı, Mine; Özer, Özgen

    2013-01-01

    The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders. PMID:23390364

  9. Preparation, characterization and magnetic properties of the BaFe12O19 @ chitosan composites

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Zunju; Xie, Yu; Zhao, Jie

    2016-07-01

    The BaFe12O19 @ chitosan composites are synthesized by the crosslinking reaction through chitosan and glutaraldehyde onto the surface of BaFe12O19. The structures of the samples were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The shape and size were observed by scanning electron microscopy and transmission electron microscopy. These results showed that chitosan has been decorated onto the surface of BaFe12O19, and the chitosan-glutaraldehyde Schiff-base composites have also been formed within the chitosan layers. Then, the magnetic properties of the samples were tested with the vibrating sample magnetometer. The magnetic saturation (MS), residual magnetization (Mr) and coercive force (Hc) values of the BaFe12O19 @ chitosan Schiff-base composite have achieved 44.94 emu/g, 27.82 emu/g and 3580.7 Oe, respectively. Compared with single BaFe12O19, the MS, and Mr of the BaFe12O19 @ chitosan composites decreases 12.31 emu/g and 8.58 emu/g, respectively. Finally, based on the experimental results, the probable formation mechanism of this composite has been investigated.

  10. Evaluation of Chitosan-Tripolyphosphate Nanoparticles as a p-shRNA Delivery Vector: Formulation, Optimization and Cellular Uptake Study

    PubMed Central

    Karimi, Mahdi; Avci, Pinar; Ahi, Mohsen; Gazori, Tarane; Hamblin, Michael R.; Naderi-Manesh, Hossein

    2015-01-01

    Polysaccharides (especially chitosan) have recently attracted much attention as gene therapy delivery vehicles for their unique properties such as biocompatibility, biodegradability, low toxicity, and controlled release. Nanoparticles have strong potential as a carrier of plasmid short hairpin RNA (p-shRNA). This study aimed to find the optimum conditions for obtaining Chitosan/triphosphate (TPP)/p-shRNA nanoparticles by the ionic gelation method, and investigating the cellular uptake of the optimized nanoparticles. After applying the central composite design of response surface methodology (RSM), the optimum conditions for preparation of nanoparticles with small size and high loading efficiency were: chitosan/TPP ratio = 10, pH = 5.5 and N/P ratio = 11. The resulting nanoparticles had an average size of 172.8 ± 7 nm and loading efficiency of 71.5 ± 5%. SEM images showed spherical and smooth nanoparticles. The nanoparticles complexed with p-shRNA and may protect it against nuclease digestion. Cytotoxicity studies with HeLa and PC3 human cancer cells demonstrated that chitosan/TPP nanoparticles had low toxicity. Cellular uptake studies using HeLa cells showed that the nanoparticles entered the cells (cellular uptake) and delivered DNA, probably due to their favorable Zeta potential (approximately +28 mV) and small size. PMID:26989641

  11. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

    PubMed Central

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452

  12. Silver Nanoparticles Stabilized Using Chitosan Films: Preparation, Properties and Antibacterial Activity.

    PubMed

    Kolarova, K; Vosmanska, V; Rimpelova, S; Ulbrich, P; Svorcik, V

    2015-12-01

    In this work we present silver nanoparticles coated with chitosan films synthesized by a simple, environmentally friendly method. Silver nanoparticles were prepared and stabilized by reduction of silver nitrate with chitosan without addition of harmful reduction agents. The presence of silver nanoparticles in the solid films was studied by the X-ray diffraction spectroscopy and X-ray photoelectron spectroscopy. Solid films were dissolved and the solution was observed by the ultraviolet-visible spectroscopy and transmission electron microscopy. The amount of silver in the solid samples was studied by atomic absorption spectroscopy. Antibacterial activity of solid films with silver nanoparticles was tested by disc test on two bacterial strains, Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli. The presence of silver nanoparticles was confirmed both in solid film and in solution by the above mentioned methods. The films exhibited strong antibacterial activity against both bacterial strains. These films could be used as a wound dressing, antimicrobial packaging material or for long-term storage of silver nanoparticles for various applications. PMID:26682457

  13. Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery.

    PubMed

    Chen, Zhipeng; Zhang, Liujie; Song, Yang; He, Jiayu; Wu, Li; Zhao, Can; Xiao, Yanyu; Li, Wei; Cai, Baochang; Cheng, Haibo; Li, Weidong

    2015-06-01

    The overwhelming majority of drugs exert their pharmacological effects after reaching their target sites of action, however, these target sites are mainly located in the cytosol or intracellular organelles. Consequently, delivering drugs to the specific organelle is the key to achieve maximum therapeutic effects and minimum side-effects. In the work reported here, we designed, synthesized, and evaluated a novel mitochondrial-targeted multifunctional nanoparticles (MNPs) based on chitosan derivatives according to the physiological environment of the tumor and the requirement of mitochondrial targeting drug delivery. The intelligent chitosan nanoparticles possess various functions such as stealth, hepatocyte targeting, multistage pH-response, lysosomal escape and mitochondrial targeting, which lead to targeted drug release after the progressively shedding of functional groups, thus realize the efficient intracellular delivery and mitochondrial localization, inhibit the growth of tumor, elevate the antitumor efficacy, and reduce the toxicity of anticancer drugs. It provides a safe and efficient nanocarrier platform for mitochondria targeting anticancer drug delivery. PMID:25818430

  14. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    SciTech Connect

    Garza-Navarro, Marco; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-15

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  15. Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications.

    PubMed

    Jayalekshmi, A C; Victor, Sunita Prem; Sharma, Chandra P

    2013-01-01

    The present study focuses on the development of a biocompatible and biodegradable iron oxide incorporated chitosan-gelatin bioglass composite nanoparticles [Fe-BG]. The developed composite nanoparticle was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermo gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC). The size of the negatively charged composite nanoparticle was in the range of 43-51 nm. The in vitro analysis of the composite nanoparticles was carried out by cell aggregation, protein adsorption and haemolytic activity. The magnetic hysteresis value of the composite nanoparticle showed that it is a soft magnetic material. The presence of iron oxide in the chitosan-gelatin bioglass [BG] matrix enhances biodegradability as indicated in the TG studies. Iron-oxide in equal amount to bioglass in the polymer matrix has been obtained as the optimized system. The developed composite nanoparticle is a soft magnetic material and is suitable for the magnetic hyperthermia treatment and drug delivery. More detailed in vivo studies are needed to confirm the biodegradation profile and biological activity of the material. PMID:22809595

  16. Development and in vitro characterization of galactosylated low molecular weight chitosan nanoparticles bearing doxorubicin.

    PubMed

    Jain, Nitin K; Jain, Sanjay K

    2010-06-01

    The aim of the present research was to evaluate the potential of galactosylated low molecular weight chitosan (Gal-LMWC) nanoparticles bearing positively charged anticancer, doxorubicin (DOX) for hepatocyte targeting. The chitosan from crab shell was depolymerized, and the lactobionic acid was coupled with LMWC using carbodiimide chemistry. The depolymerized and galactosylated polymers were characterized. Two types of Gal-LMWC(s) with variable degree of substitution were employed to prepare the nanoparticles using ionotropic gelation with pentasodium tripolyphosphate anions. Factors affecting nanoparticles formation were discussed. The nanoparticles were characterized by transmission electron microscopy and photon correlation spectroscopy and found to be spherical in the size range 106-320 nm. Relatively higher percent DOX entrapment was obtained for Gal-LMWC(s) nanoparticles than for LMWC nanoparticles. A further increase in drug entrapment was found with nanoparticles prepared by Gal-LMWC with higher degree of substitution. A hypothesis which correlates the ionic concentration of DOX in nanoparticles preparation medium and percent DOX entrapment in cationic polymer has been proposed to explain the enhanced DOX entrapment. In-vitro drug release study demonstrated an initial burst release followed by a sustained release. The targeting potential of the prepared nanoparticles was assessed by in vitro cytotoxicity study using the human hepatocellular carcinoma cell line (HepG(2)) expressing the ASGP receptors on their surfaces. The enthusiastic results showed the feasibility of Gal-LMWC(s) to entrap the cationic DOX and targeting potential of developed Gal-LMWC(s) nanoparticles to HepG(2) cell line. PMID:20414758

  17. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends.

    PubMed

    Ghorbani, Fereshte Mohammad; Kaffashi, Babak; Shokrollahi, Parvin; Akhlaghi, Shahin; Hedenqvist, Mikael S

    2016-02-01

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox-Merz theory for this system shows that the polymer-nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends. PMID:26652456

  18. Synthesis of chitosan supported palladium nanoparticles and its catalytic activity towards 2-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.

    2016-05-01

    Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.

  19. Current understanding of synergistic interplay of chitosan nanoparticles and anticancer drugs: merits and challenges.

    PubMed

    Kandra, Prameela; Kalangi, Hemalatha Padma Jyoti

    2015-03-01

    Recent advances have been made in cancer chemotherapy through the development of conjugates for anticancer drugs. Many drugs have problems of poor stability, water insolubility, low selectivity, high toxicity, and side effects. Most of the chitosan nanoparticles showed to be good drug carriers because of their biocompatibility, biodegradability, and it can be readily modified. The anticancer drug with chitosan nanoparticles displays efficient anticancer effects with a decrease in the adverse effects of the original drug due to the predominant distribution into the tumor site and a gradual release of free drug from the conjugate which enhances drug solubility, stability, and efficiency. In this review, we discuss wider applications of numerous modified chitosan nanoparticles against different tumors and also focusing on the administration of anticancer drugs through various routes. We propose the interaction between nanosized drug carrier and tumor tissue to understand the synergistic interplay. Finally, we elaborate merits of drug delivery system at the tumor site, with emphasizing future challenges in cancer chemotherapy. PMID:25698508

  20. Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery.

    PubMed

    Gao, Ping; Xia, Guixue; Bao, Zixian; Feng, Chao; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Chen, Xiguang

    2016-10-01

    This study aimed to investigate the efficacy of nanoparticles based on chitosan as a vehicle for oral antigen delivery in fish vaccination. Carboxymethyl chitosan/chitosan nanoparticles (CMCS/CS-NPs) loaded extracellular products (ECPs) of Vibrio anguillarum were successfully developed by ionic gelation method. The prepared ECPs-loaded CMCS/CS-NPs were characterized for various parameters including morphology, particle size (312±7.18nm), zeta potential (+17.4±0.38mV), loading efficiency (57.8±2.54%) and stability under the simulated gastrointestinal (GI) tract conditions in turbot. The in vitro profile showed that the cumulative release of ECPs from nanoparticles was higher in pH 7.4 (58%) than in pH 2.0 (37%) and pH 4.5 (29%) after 48h. Fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) was used as model protein antigen and encapsulated in CMCS/CS-NPs for investigating the biodistribution of antigen after oral delivery to turbot in 24h. Oral immunization of ECPs-loaded CMCS/CS-NPs group in turbot showed elevated specific antibody and higher concentrations of lysozyme activity and complement activity in fish serum than ECPs solution. CMCS/CS-NPs loaded with ECPs could enhance both adaptive and innate immune responses than the group treated with ECPs solution and suggested to be a potential antigen delivery system. PMID:27287772

  1. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    SciTech Connect

    Sun, Yudie; Liu, Honglin; Yang, Liangbao; Sun, Bai; Liu, Jinhuai

    2014-05-01

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties.

  2. Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid and chitosan.

    PubMed

    Liu, Yong; Sun, Yan; Xu, Yaoxing; Feng, Hai; Fu, Sida; Tang, Jiangwu; Liu, Wei; Sun, Dongchang; Jiang, Hua; Xu, Shaochun

    2013-08-01

    To improve the application of lysozymes, methods for coating lysozymes with poly-γ-glutamic acid and chitosan were studied. Several lysozyme-loaded chitosan/poly-γ-glutamic acid composite nanosystems for loading and controlling the release of lysozymes were established. The lysozyme loading content and efficiency of the different systems were examined. The antibacterial activity of the composite nanoparticles was also investigated. Results showed that when the lysozymes were coated with poly-γ-glutamic acid and further rewrapped with chitosan, smooth spherical composite nanoparticles were obtained; the loading efficiency and loading content reached 76% and 40%, respectively. The lysozyme release in vitro was slow and presented a two-stage programmed release. Antibacterial testing in vitro indicated that lysozyme-loaded nanoparticles coated with poly-γ-glutamic acid/chitosan had outstanding antibacterial activity. An obvious assembly of bacterial cells and composite nanoparticles was observed during co-incubation. Therefore, the poly-γ-glutamic acid/chitosan composite coating broadened the antibacterial spectrum of the composite lysozyme nanoreagent, and presented satisfactory antibacterial effect. The lysozyme-loaded chitosan/poly-γ-glutamic acid nanocoating system established in this research could provide reference for coating and controlled releasing of alkaline proteins. PMID:23628585

  3. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.

    PubMed

    Hwang, Ho-Young; Kim, In-San; Kwon, Ick Chan; Kim, Yong-Hee

    2008-05-22

    Hydrophobically modified glycol chitosan (HGC) nanoparticles, a new nano-sized drug carrier, were prepared by introducing a hydrophobic molecule, cholanic acid, to water soluble glycol chitosan. The HGC nanoparticles were easily loaded with the anticancer drug docetaxel (DTX) using a dialysis method, and the resulting docetaxel-loaded HGC (DTX-HGC) nanoparticles formed spontaneously self-assembled aggregates with a mean diameter of 350 nm in aqueous condition. The DTX-HGC nanoparticles were well dispersed and stable for 2 weeks under physiological conditions (pH 7.4 and 37 degrees C) and a sustained drug release profile, in vitro. In addition, the DTX-HGC nanoparticles were reasonably stable in the presence of excess bovine serum albumin, which suggested that the DTX-HGC nanoparticles might also be stable in the blood stream. The DTX-HGC nanoparticles exhibited a distinctive deformability in aqueous conditions, in that they could easily pass through a filter membrane with 200 nm pores despite their mean diameter of 350 nm. We also evaluated the time-dependent excretion profile, in vivo biodistribution, prolonged circulation time, and tumor targeting ability of DTX-HGC nanoparticles by using a non-invasive live animal imaging technology. Finally, under optimal conditions for cancer therapy, the DTX-HGC nanoparticles showed higher antitumor efficacy such as reduced tumor volume and increased survival rate in A549 lung cancer cells-bearing mice and strongly reduced the anticancer drug toxicity compared to that of free DTX in tumor-bearing mice. Together our results showed that the anticancer loaded nano-sized drug carriers are a promising nano-sized drug formulation for cancer therapy. PMID:18374444

  4. Preparation and cytotoxicity of N,N,N-trimethyl chitosan/alginate beads containing gold nanoparticles.

    PubMed

    Martins, Alessandro F; Facchi, Suelen P; Monteiro, Johny P; Nocchi, Samara R; Silva, Cleiser T P; Nakamura, Celso V; Girotto, Emerson M; Rubira, Adley F; Muniz, Edvani C

    2015-01-01

    Polyelectrolyte complex beads based on N,N,N-trimethyl chitosan (TMC) and sodium alginate (ALG) were obtained. This biomaterial was characterised by FTIR, TGA/DTG, DSC and SEM analysis. The good properties of polyelectrolyte complex hydrogel beads were associated, for the first time, with gold nanoparticles (AuNPs). Through a straightforward methodology, AuNPs were encapsulated into the beads. The in vitro cytotoxicity assays on the Caco-2 colon cancer cells and healthy VERO cells showed that the beads presented good biocompatibility on both cell lines, whereas the beads loaded with gold nanoparticles (beads/AuNPs) was slightly cytotoxic on the Caco-2 and VERO cells. PMID:25159881

  5. Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water.

    PubMed

    Li, Kun; Wang, Yawen; Huang, Mu; Yan, Han; Yang, Hu; Xiao, Shoujun; Li, Aimin

    2015-10-01

    A novel magnetic composite microsphere based on polyacrylamide (PAM)-grafted chitosan and silica-coated Fe3O4 nanoparticles (CS-PAM-MCM) was successfully synthesized by a simple method. The molecular structure, surface morphology, and magnetic characteristics of the composite microsphere were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), and scanning electron microscopy (SEM). The prepared CS-PAM-MCM was applied as an efficient adsorbent for the removal of copper(II), lead(II), and mercury(II) ions from aqueous solutions in respective single, binary, and ternary metal systems. Compared with chitosan magnetic composite microsphere (CS-MCM) without modification, CS-PAM-MCM showed improved adsorption capacity for each metal ion and highly selective adsorption for Hg from Pb and Cu. This improvement is attributed to the formation of stronger interactions between Hg and the amide groups of PAM branches for chelating effects. The adsorption isotherms of Hg/Cu and Hg/Pb binary metal systems onto CS-PAM-MCM are both well-described by extended and modified Langmuir models, indicating that the removal of the three aforementioned metal ions may follow a similar adsorption manner; that is, through a homogeneous monolayer chemisorption process. Furthermore, these magnetic adsorbents could be easily regenerated in EDTA aqueous solution and reused virtually without any adsorption capacity loss. PMID:26073848

  6. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    PubMed Central

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. PMID:25709439

  7. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme.

    PubMed

    Piras, Anna Maria; Maisetta, Giuseppantonio; Sandreschi, Stefania; Esin, Semih; Gazzarri, Matteo; Batoni, Giovanna; Chiellini, Federica

    2014-06-01

    A commercially available chitosan (CS) was employed in the formulation of nanoparticles loaded with lysozyme (LZ) as antimicrobial protein drug model. Due to the variability of commercially available batches of chitosans and to the strict dependence of their physical and biological properties to the molecular weight (Mw) and deacetylation degree (DD) of the material, the CS was fully characterized resulting in weight-average molecular weight of 108,120g/mol and DD of 92%. LZ-loaded nanoparticles (LZ-NPs) of 150nm diameter were prepared by inotropic gelation. The nanoparticles were effectively preserving the antibacterial activity of the loaded enzyme, which was slowly released over 3 weeks in vitro and remained active toward Staphylococcus epidermidis up to 5 days of incubation. Beyond the intrinsic antibacterial activity of CS and LZ, the LZ-NPs evidenced a sustained antibacterial activity that resulted in about 2 log reduction of the number of viable S. epidermidis compared to plain CS nanoparticles. Furthermore, the LZ-NPs showed a full in vitro cytocompatibility toward murine fibroblasts and, in addition to the potential antimicrobial applications of the developed system, the proposed study could serve as an optimal model for development of CS nanoparticles carrying antimicrobial peptides for biomedical applications. PMID:24661890

  8. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    PubMed Central

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P.C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications. PMID:26813942

  9. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr.

    PubMed

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P C; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications. PMID:26813942

  10. Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs.

    PubMed

    Abdel-Hafez, Salma M; Hathout, Rania M; Sammour, Omaima A

    2014-03-01

    The aim of this study is to utilize statistical designs and mathematical modeling to end the continuous debate about the different variables that influence the production of nanoparticles using the ionic gelation method between the biopolymer chitosan (CS) and tripolyphosphate (TPP) ion. Preliminary experiments were adopted to extract the optimum conditions for the nanoparticles preparation and model construction. Critical process parameters were screened using the one-factor-at-a-time (OFAT) approach to select optimum experimental regions. Finally, these factors were optimized using two different methods of response surface modeling; the Box-Behnken and the D-optimal. The significant models showed excellent fitting of the data. The two methods were validated using a set of check points and were subsequently compared. Good agreement between actual and predicted values was obtained though the D-optimal model was more successful in predicting the particle size of the prepared nanoparticles with percentage bias as small as 1.49%. Nanoparticles were produced with diameters ranging from 52.21 nm to 400.30 nm, particle polydispersity from 0.06 to 0.40 and suitable morphology. This work provides an overview on the production of chitosan nanoparticles with desirable size enabling their successful use in drugs delivery and targeting or in any nanotechnology or interfacial application. PMID:24355618