Solution to magnetic circuits by means of mathematical modeling
NASA Astrophysics Data System (ADS)
Les?ák, Michal; Les?ák, Oldrich
1999-12-01
In the paper, authors describe results of their analysis using the numeric simulation of magnetic circuits of the flaw detecting apparatus for nondestructive checking of steel wire ropes by means of the finite element method. There were created not only 2D (rotationally symmetric model), but also 3D type models. The main goal of the work was to get the response of typical defects on wires located inside and on the surface of ropes. In order to get better response, various alternatives of magnetic circuits with different types of permanent magnets were evaluated. Materials used for flaw detecting apparatus construction as well as the geometry of the whole flaw detecting apparatus were studied in detail. These computations were performed on SGI computer with internal memory of 64 MB. Also, a computer type IBM SP/2 has been used. The models were created by using of the software ANSYS package.
An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design
NASA Technical Reports Server (NTRS)
Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.
2003-01-01
A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.
NASA Astrophysics Data System (ADS)
Nakamura, Kenji; Saito, Kenichi; Watanabe, Tadaaki; Ichinokura, Osamu
2005-04-01
Interior permanent magnet synchronous motors (IPMSMs) have high efficiency and torque, since the motors can utilize reluctance torque in addition to magnet torque. The IPMSMs are widely used for electric household appliances and electric bicycles and vehicles. A quantitative analysis method of dynamic characteristics of the IPMSMs, however, has not been clarified fully. For optimum design, investigation of dynamic characteristics considering magnetic nonlinearity is needed. This paper presents a new nonlinear magnetic circuit model of an IPMSM, and suggests a dynamic analysis method using the proposed magnetic circuit model.
Mohsen Zafarani; Mehdi Moallem; Ahmadreza Tabesh
2011-01-01
This paper presents an analytical magneto-static model for a class of transverse flux permanent magnet machines based on Improved Magnetic Equivalent Circuit (IMEC) of the machines. The model is useful for the design and performance evaluation of the transverse flux machine. The model consists of a series-parallel combination of flux tubes for different parts of the machine including air gaps,
A model for coupled magnetic-electric circuits in electric machines with skewed slots
F. Piriou; A. Razek
1990-01-01
A model permitting the simulation of skewed-slot saturated machines associated with nonlinear external circuits is proposed. To take the slot effects into account, the magnetic circuit is modeled through the combined two-dimensional calculations along the machine axis. In this simulation the electric circuit equation is directly coupled with the magnetic one. The solution of the resulting nonlinear time-dependent equation is
Reduced Order Model of Developed Magnetic Equivalent Circuit in Electrical Machine Modeling
Seyed Amin Saied; Karim Abbaszadeh; Mehdi Fadaie
2010-01-01
In this paper, we use a detailed magnetic equivalent circuit (MEC) to improve the analysis accuracy in modeling of electrical machines. We do this for those areas in which the flux routes and consequently the so-called flux tubes are not easily definable (e.g., the air gap or saturated parts). In deriving the MEC, we represent these parts by a detailed
Magnetic Circuit Model of PM Motor-Generator to Predict Radial Forces
NASA Technical Reports Server (NTRS)
McLallin, Kerry (Technical Monitor); Kascak, Peter E.; Dever, Timothy P.; Jansen, Ralph H.
2004-01-01
A magnetic circuit model is developed for a PM motor for flywheel applications. A sample motor is designed and modeled. Motor configuration and selection of materials is discussed, and the choice of winding configuration is described. A magnetic circuit model is described, which includes the stator back iron, rotor yoke, permanent magnets, air gaps and the stator teeth. Iterative solution of this model yields flux linkages, back EMF, torque, power, and radial force at the rotor caused by eccentricity. Calculated radial forces are then used to determine motor negative stiffness.
Modeling saturation of main magnetic circuit of cage induction motors in presence of eccentricity
T. J. Sobczyk; K. Weinreb; T. Wegiel; M. Sulowicz; A. Warzecha
2003-01-01
Nowadays, diagnostics and monitoring of rotor eccentricity in induction cage motors is based on Fourier spectrum of stator currents. To predict precisely the current spectrum an adequate mathematical model should be used. In this paper the authors presented an improved model of induction cage motor accounting for saturation of the magnetic circuit due to the main MMF harmonic in presence
A Magnetic Circuit Demonstration.
ERIC Educational Resources Information Center
Vanderkooy, John; Lowe, June
1995-01-01
Presents a demonstration designed to illustrate Faraday's, Ampere's, and Lenz's laws and to reinforce the concepts through the analysis of a two-loop magnetic circuit. Can be made dramatic and challenging for sophisticated students but is suitable for an introductory course in electricity and magnetism. (JRH)
Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions
Filiberto Bilotti; Alessandro Toscano; Lucio Vegni; Koray Aydin; Kamil Boratay Alici; Ekmel Ozbay
2007-01-01
In this paper, we derive quasi-static equivalent-circuit models for the analysis and design of different types of artificial magnetic resonators—i.e., the multiple split-ring resonator, spiral resonator, and labyrinth resonator—which represent popular in- clusions to synthesize artificial materials and metamaterials with anomalous values of the permeability in the microwave and mil- limeter-wave frequency ranges. The proposed models, derived in terms of
Analysis of circuits including magnetic cores (MTRAC)
NASA Technical Reports Server (NTRS)
Hanzen, G. R.; Nitzan, D.; Herndon, J. R.
1972-01-01
Development of automated circuit analysis computer program to provide transient analysis of circuits with magnetic cores is discussed. Allowance is made for complications caused by nonlinearity of switching core model and magnetic coupling among loop currents. Computer program is conducted on Univac 1108 computer using FORTRAN IV.
Electrically detected magnetic resonance modeling and fitting: An equivalent circuit approach
Leite, D. M. G., E-mail: dmgleite@fc.unesp.br [UNIFEI—Universidade Federal de Itajubá, Av. BPS, 1303, 37500-903 Itajubá, MG (Brazil); Batagin-Neto, A.; Nunes-Neto, O. [UNESP—Univ Estadual Paulista, POSMAT—Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP (Brazil); Gómez, J. A. [Departamento de Física, FFCLRP-USP, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP (Brazil); Graeff, C. F. O. [UNESP—Univ Estadual Paulista, POSMAT—Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP (Brazil); DF-FC, UNESP—Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, 17033-360 Bauru, SP (Brazil)
2014-01-21
The physics of electrically detected magnetic resonance (EDMR) quadrature spectra is investigated. An equivalent circuit model is proposed in order to retrieve crucial information in a variety of different situations. This model allows the discrimination and determination of spectroscopic parameters associated to distinct resonant spin lines responsible for the total signal. The model considers not just the electrical response of the sample but also features of the measuring circuit and their influence on the resulting spectral lines. As a consequence, from our model, it is possible to separate different regimes, which depend basically on the modulation frequency and the RC constant of the circuit. In what is called the high frequency regime, it is shown that the sign of the signal can be determined. Recent EDMR spectra from Alq{sub 3} based organic light emitting diodes, as well as from a-Si:H reported in the literature, were successfully fitted by the model. Accurate values of g-factor and linewidth of the resonant lines were obtained.
Magnetic compression laser driving circuit
Ball, Don G. (Livermore, CA); Birx, Dan (Brentwood, CA); Cook, Edward G. (Livermore, CA)
1993-01-01
A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.
Magnetic compression laser driving circuit
Ball, D.G.; Birx, D.; Cook, E.G.
1993-01-05
A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.
Surface polaritons in magnetic metamaterials from perspective of effective-medium and circuit models
NASA Astrophysics Data System (ADS)
Hadjicosti, K.; Sydoruk, O.; Maier, S. A.; Shamonina, E.
2015-04-01
Surface waves are responsible for many phenomena occurring in metamaterials and have been studied extensively. At the same time, the effects of inter-element coupling on surface electromagnetic waves (polaritons) remain poorly understood. Using two models, one relying on the effective-medium approximation and the other on equivalent circuits, we studied theoretically surface polaritons propagating along an interface between air and a magnetic metamaterial. The metamaterial comprised split rings that could be uncoupled or coupled to each other in the longitudinal or transverse directions (along or perpendicular to the propagation direction). A metamaterial without inter-element coupling supported a single polariton. When a moderate longitudinal coupling was included, it changed the wave dispersion only quantitatively, and the results of the effective-medium and the circuit models were shown to agree at low wavenumbers. However, the presence of a transverse coupling changed the polariton dispersion dramatically. The effective-medium model yielded two branches of polariton dispersion at low values of the transverse coupling. As the coupling increased, both polaritons disappeared. The validity of the effective-medium model was further tested by employing the circuit model. In this model, surface polaritons could exist in the presence of a transverse coupling only if the boundary layer of the metamaterial included additional impedances, which could become non-Foster. The results reveal that the inter-element coupling is a major mechanism affecting the properties of the polaritons. They also highlight the limitations of using bulk effective-medium parameters for interface problems in metamaterials.
NASA Astrophysics Data System (ADS)
Yamamoto, Shu; Yamaguchi, Tomonobu; Hirahara, Hideaki; Ara, Takahiro
This paper presents asymmetric circuit models and an inductance parameter measurement method for Permanent Magnet Linear Synchronous Motors (PMLSMs). The reason why the tested PMLSM with surface permanent magnet structure exhibits both asymmetry and salient pole natures is investigated. Asymmetric circuit models considering the saliency and inductance harmonic effects are discussed for PMLSM fed by three-phase three-wire power source systems. All fundamental and harmonic inductance parameters are easily determined by a standstill test using a single-phase commercial source. Experimental and simulation results on a single-sided PMLSM with a 3-phase, 4-pole and 14-slot mover demonstrate the validity of the proposed method.
Quantum Circuit Model Topological Model
Rowell, Eric C.
Quantum Circuit Model Topological Model Comparison of Models Topological Quantum Computation Eric Rowell Texas A&M University October 2010 Eric Rowell Topological Quantum Computation #12;Quantum Circuit Model Topological Model Comparison of Models Outline 1 Quantum Circuit Model Gates, Circuits
A Differential Magnetic Circuit for Teaching Purposes
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2010-01-01
A differential magnetic circuit (magnetic bridge) is described. The circuit separates the magnetic field sensor and the sample under study. A Hall probe serves as the sensor. The signal from the sensor can be enhanced by concentrating the magnetic flux. The magnetic bridge works even with dc magnetic fields. The device is used for displaying…
NASA Astrophysics Data System (ADS)
Pugh, Barry Kevin
While open-circuit magnetic measurements are noted to involve distortions related to the image effect and, most significantly, the sample's demagnetizing factor, closed-circuit measurements are generally considered to be free of these distortions. However, it has been reported and observed within this research that for certain sample geometries and materials operating near the magnetic saturation of the electromagnet poles, there are observed distortions of up to 40.7% of the maximum magnetization at a field level of 25 kiloOersteds for a cylindrical sample with an L/D ratio of 0.2. This observed distortion in the magnetic measurement in a closed-circuit has been referred to in the literature as an "apparent image effect" error. The intent of this research is to apply finite element modeling (FEM) to replicate original experimental and published data for cylindrical samples of both hard and soft magnetic material and to observe the phenomenology of the error within the results of the model. The hard magnetic material of interest is NdFeB and the soft magnetic material used is 1018 steel. Additionally, the sample data base is extended to rectangular prisms with data generated both experimentally and with FEM. Using a validated model it is possible to develop a corrective methodology and equations to address the magnetization measurement errors noted at high field levels within both the first and third quadrants of the hysteresis curve. The methodology developed through this research produced corrective surfaces with two dimensional polynomial fits with average adjusted R-values of 0.97. As a fault study secondary to the development of the corrective methodology, this project investigated the significance of the sample's surface mating to the poles of the hysteresigraph. It was determined that a 5° partial misalignment air gap has only approximately 0.5% variation in magnetization, 4thMmax, from the baseline of an ungapped sample. It is indicated that the sample gap becomes statistically significant at the t-test risk level of alpha = 0.05 significance level at approximately a 14° gap. The successful use of FEM in determining the closed circuit corrective methodology has led to the identification of the potential for a similar open circuit application. The calculation of the demagnetizing factor, N, required for open circuit measurements is a difficult exercise and, in the past, could only be precisely calculated for an ellipsoidal sample. For other regular geometries N was determined experimentally or calculated using certain assumptions. Either method introduces errors. This application used FEM to calculate the spherical demagnetizing factor of a magnetic sphere within a long solenoid. The FEM results indicated a demagnetizing factor N = 0.333 in all three axis. This result is in agreement with widely published and accepted results for such an arrangement. The hysteresis distortion complicates identifying and developing new magnetic materials. Only a comprehensive understanding of the phenomenon can help to establish effective correction methods, which is important for infrastructure enhancement in scientific research and for development of advanced modern technology to accurately characterize new magnetic materials.
Study on magnetic circuit of moving magnet linear compressor
NASA Astrophysics Data System (ADS)
Xia, Ming; Chen, Xiaoping; Chen, Jun
2015-05-01
The moving magnet linear compressors are very popular in the tactical miniature stirling cryocoolers. The magnetic circuit of LFC3600 moving magnet linear compressor, manufactured by Kunming institute of Physics, was studied in this study. Three methods of the analysis theory, numerical calculation and experiment study were applied in the analysis process. The calculated formula of magnetic reluctance and magnetomotive force were given in theoretical analysis model. The magnetic flux density and magnetic flux line were analyzed in numerical analysis model. A testing method was designed to test the magnetic flux density of the linear compressor. When the piston of the motor was in the equilibrium position, the value of the magnetic flux density was at the maximum of 0.27T. The results were almost equal to the ones from numerical analysis.
Magnetic Equivalent Circuit Simulations of Electrical Machines for Design Purposes
Marco Amrhein; Philip T. Krein
2007-01-01
New developments in power electronics technology, materials, and changing application requirements are driving advances in electric machines. But limitations of standard motor design, particularly induction machine design, limit performance capabilities in drive applications. Computer-aided design tools are not available to overcome these limitations. This paper presents a magnetic equivalent circuit modeling approach geared towards design. Magnetic equivalent circuits are flexible
NASA Astrophysics Data System (ADS)
Cui, Xiao-Le; Zhou, Hao-Miao
2015-07-01
The nonlinear thermo–magneto–mechanical magnetostrictive constitutive and the linear thermo–mechanical-electric piezoelectric constitutive are adopted in this paper. The bias magnetic field and ambient temperature are equivalent to a magnetic source and a thermo source, respectively. An equivalent circuit, which contains a magnetic source and a thermo source at the input, for the thermo–magneto–electric coupling effect in magnetoelectric (ME) laminates, is established. The theoretical models of the output voltage and static ME coefficient for ME laminates can be derived from this equivalent circuit model. The predicted static ME coefficient versus temperature curves are in excellent agreement with the experimental data available both qualitatively and quantitatively. It confirms the validity of the proposed model. Then the models are adopted to predict variations in the output voltages and ME coefficients in the laminates under different ambient temperatures, bias magnetic fields, and the volume ratios of magnetostrictive phases. This shows that the output voltage increases with both increasing temperature and increasing volume ratio of magnetostrictive phases; the ME coefficient decreases with increasing temperature; the ME coefficient shows an initial sharp increase and then decreases slowly with the increase in the bias magnetic field, and there is an optimum volume ratio of magnetostrictive phases that maximize the ME coefficient. This paper can not only provide a new idea for the study of the thermo–magneto–electric coupling characteristics of ME laminates, but also provide a theoretical basis for the design and application of ME laminates, operating under different sensors. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172285 and 11472259) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR13A020002).
Magnetic Direct-Current-Measuring Circuits
NASA Technical Reports Server (NTRS)
Sullender, Craig C.; Johnson, Daniel D.; Walker, Dan E.; Gajewski, Marek; Krasnow, Dale S.
1993-01-01
Two circuits measure large direct currents in main conductors by use of magnetic fields produced by currents in glassy metal toroidal ferromagnetic cores surrounding main conductors. In both circuits, direct currents to be measured deduced from transient voltages generated in multiturn windings by transitions between magnetic fields produced by measured currents and saturation magnetic fields of cores.
Development of a miniature permanent magnetic circuit for nuclear magnetic resonance chip
NASA Astrophysics Data System (ADS)
Lu, Rongsheng; Yi, Hong; Wu, Weiping; Ni, Zhonghua
2013-07-01
The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff's law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.
NASA Astrophysics Data System (ADS)
Gavrilovic, Branislav S.
The choice of new signaling and safety equipment for track circuits is dependent on individual railway management organizations. For that reason, before making any decisions, railway management has to be very well informed about all parameters relevant to the electro-magnetic compatibility with return traction current during stationary regimes of operation. An examination is neccesary of external electro-magnetic interference to return traction current on track circuit operations must identify suitable protection measures to ensure secure and reliable track circuit operations. Building on that requirement, this work describes results of mathematical modelling which examined the impact of return traction current through railway tracks on the proper functioning of signaling and safety systems in the track system. This mathematical model has been tested through experimentiion on electrified tracks belonging to the Yugoslav Railways.
Designing HTS coils for magnetic circuits
Jenkins, R.G.; Jones, H.; Goodall, R.M.
1996-07-01
The authors discuss some of the main considerations involved in the design of HTS coils to operate in liquid nitrogen and provide ampere-turns for magnetic circuits in general, and then in particular for a small-scale electromagnetic (i.e, attractive) maglev demonstrator. The most important factor affecting design is the sensitive and strongly anisotropic dependence of HTS tape`s critical current on magnetic field. Any successful design must limit the field in the windings, especially components perpendicular to the tape`s surface (radial components in the case of solenoids), to acceptably low levels such that local critical currents nowhere fall below the operating current. This factor is relevant to the construction of HTS coils for all applications. A second important factor is that the presence of an iron magnetic circuit can greatly alter the flux distribution within the coils from that found when they are in free space. FE modelling has been used to calculate accurate field profiles in proposed designs for comparison with short sample I{sub c}(B) data. They present a design for a maglev demonstrator, illustrating how some of the problems, in particular the reduction of radial field components, may be addressed, and describe its predicted performance.
Computer simulation of magnetic field circuits in ATF
White, J.A.; Googe, J.M.; Nickels, L.E.
1983-01-01
The proposed design of the Advanced Toroidal Facility (ATF) contains several closely coupled magnetic field circuits that are being modeled using the SUPER*SCEPTRE computer program in order to predict their transient behavior. The results of this transient analysis study will be used to determine component values and/or special precautions that may be required for power supply and other circuit element protection due to the mutual coupling between circuits. ATF is a continuous-coil torsatron device using resistive coils in a pulsed mode of operation in which a current fluctuation in one coil induces voltages in the other circuit element protection due to the mutual coupling between circuits. ATF is a continuous-coil torsatron device using resistive coils in a pulsed mode of operation in which a current fluctuation in one coil induces voltages in the other circuit that may not be desirable. The model contains the solid-state power supplies' equivalent circuits, the resistance and self-inductance of each magnetic field coil, and the mutual inductances of every coil combination. The SUPER*SCEPTRE program allows for the direct input of all electrical components as well as the mutual inductances. The power supply voltages are entered as preprogrammed wave shapes designed to achieve the desired magnetic field strengths. The outputs of this program are tables and plots of voltages and currents associated with each circuit component.
Magnetic circuit for hall effect plasma accelerator
NASA Technical Reports Server (NTRS)
Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)
2009-01-01
A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.
A Bistable Vibration Energy Harvester with Closed Magnetic Circuit
NASA Astrophysics Data System (ADS)
Sato, Takahiro; Sugisawa, Takeshi; Igarashi, Hajime
2014-11-01
In this work, to increase magnetic flux passing through the electric coil in a bistable vibration energy harvester, the magnetic circuit is made closed by introducing two coil systems which have magnetic core in their axis holes. The magnetic resistance of the magnetic circuit, composed of silicon steel and thin air gaps, is supressed to be small. The double well potential is realized from the spring force and nonlinear magnetic force between the magnets and the magnetic core. Two harvesters with opened and closed magnetic circuits are manufactured for comparison. It is also shown that the closed magnetic circuit can effectively improve the output power.
Coupling quantum circuits to magnetic molecular qubits
Mark D. Jenkins
2015-07-28
This thesis explores the coupling of magnetic systems to quantum circuits in the context of quantum computing applications. In particular we study the coupling of superconducting coplanar waveguide resonators to Single Molecule Magnets (SMMs) . The combination of approaches from the fields of Cavity Quantum electrodynamics (QED) and Circuit QED with those from the field of molecular magnetism con provide unique opportunities for quantum computing. We investigate the necessary conditions for coupling single spins and spin ensembles to resonators and what characteristics SMMs should have in order to provide interesting alternatives as quantum bits. We present test measurements of several magnetic samples using both broadband spectroscopy with open waveguides and EPR spectroscopy using coplanar waveguide resonators. We also design, fabricate, and test nanometric constrictions in superconducting resonators with the objective of improving their coupling to single spins. We evaluate the performance of these constricted resonators in comparison to unmodified resonators.
Local magnetic measurements in magnetic circuits with highly non-uniform electromagnetic fields
NASA Astrophysics Data System (ADS)
Abou-Elyazied Abdallh, Ahmed; Dupré, Luc
2010-04-01
In this paper, local magnetic measurements are carried out in magnetic circuits with non-uniform electromagnetic field patterns, including excitation windings and/or air gaps, as in the case of rotating electrical machines. The effects of sensor choice, sensor noise sensitivity and electromagnetic field inhomogeneity on the accuracy of the identification of the magnetic material properties are investigated. Moreover, the validity of the local magnetic measurements is confirmed by numerical models, based on the finite element method. The paper comprehensively discusses the possibilities, difficulties and limitations of local magnetic measurements in magnetic circuits with non-uniform electromagnetic fields. It is shown that higher accuracy is obtained when the measurements are performed in regions with less stray fields.
Optimum magnetic circuit configurations for permanent magnet aerospace generators
NASA Astrophysics Data System (ADS)
Amaratunga, G. A. J.; Acarnley, P. P.; McLaren, P. G.
1985-03-01
In the design of generators for aerospace applications, it is crucial that the specific output power (power/volume) is as high as possible. In such cases, other factors are relatively minor considerations. As specific output increases with operating speed, many aerospace generators operate at speeds in excess of 12,000 rev/min. Brush wear problems at high speeds, lead to the selection of the permanent magnet (pm) field alternator, which does not use brushes. This alternator has bipolar flux variation in the stator iron and so can be expected to have a high specific output. Magnetic circuit configurations for pm generators are related to radial-field, axial-field, and flux-switching types. The choice of the magnetic circuit configuration is a vital element of the design process. The present paper has the objective to provide for the first time quantitative comparisons of the specific output available from each of several magnetic circuit configurations. It is found that the flux-squeezing configuration has advantages for small sizes.
Biasing and fast degaussing circuit for magnetic materials
Dress, Jr., William B.; McNeilly, David R.
1984-01-01
A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a d.c. current and alternately apply a selectively damped a.c. current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.
Biasing and fast degaussing circuit for magnetic materials
Dress, W.B. Jr.; McNeilly, D.R.
1983-10-04
A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a dc current and alternately apply a selectively damped ac current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.
Fermionic Models with Superconducting Circuits
U. Las Heras; L. García-Álvarez; A. Mezzacapo; E. Solano; L. Lamata
2015-03-31
We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups.
Fast Algorithms for High Frequency Interconnect Modeling in VLSI Circuits and Packages
Yi, Yang
2011-02-22
to handle multiple dielectrics and magnetic materials. In this research, we solve three problems in interconnect modeling for high frequency circuits and packages. 1) Multiple dielectrics are common in integrated circuits and packages. We propose the first...
VLSI circuits implementing computational models of neocortical circuits.
Wijekoon, Jayawan H B; Dudek, Piotr
2012-09-15
This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 ?m CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling. PMID:22342970
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, Ann. N. (13170-B Central SE #188, Albuquerque, NM 87123); Anderson, Richard E. (2800 Tennessee NE, Albuquerque, NM 87110); Cole, Jr., Edward I. (2116 White Cloud NE, Albuquerque, NM 87112)
1995-01-01
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.
Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits
Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.
1995-11-07
A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.
Electric Magnetic Circuit Active Elements Based on Magnetorheological Elastomers
NASA Astrophysics Data System (ADS)
Catana, G.; Vatzulik, B.; Andrei, O. E.; Chirigiu, L.; Bica, I.
2010-08-01
The circuit magnetic active element presented in the paper is based on electroconductive magnetorheological elastomer. This element and the experimental set-up for studies in magnetic field are presented in some detail. It is shown that the voltage U at the outlet of the electric circuit depends on the intensity H of the magnetic field and is considerably influenced by the intensity Ic of the control current. The results obtained in this manner are discussed.
Multilayer magnetic circuit for millimeter scale MEMS air turbine generator
NASA Astrophysics Data System (ADS)
Takato, M.; Kaneko, M.; Nishi, T.; Saito, K.; Uchikoba, F.
2013-12-01
The multilayer magnetic circuit for the millimeter scale MEMS (Micro Electrical Mechanical System) air turbine generator is proposed in this paper. The dimensions of the fabricated air turbine generator were 3.6 mm, 3.4 mm and 3.5 mm, length, width and height, respectively. The air turbine was fabricated by the MEMS technology. Multilayer magnetic circuits were fabricated by the green sheet process. The achieved output voltage and output power of the generator were 6.2mV and 1.92?VA respectively. Moreover, the optimization of the ceramic magnetic circuit for the generator was performed to improve the output power. In this experiment, the horseshoe shape circuit and step-wise shape circuit were compared on the output power by the spindle machine. When two kinds magnetic circuit were compared, the output power of the step-wise shape circuit was higher than that of the horseshoe shape circuit. The output voltage and the output power of the step-wise shape circuit were 28mV and 1.53 mVA when load resistance of 0.512 ? was connected.
Embedded-Circuit Magnetic Metamaterial Substrate Performance for Patch Antennas
Sarabandi, Kamal
.02) and moderately enhanced permeability I ) Benelfts of Magnetic Materials: The permittivity of a composite (0.64%)and efficiency(77%). With magnetic materials, E, =p, =&tan& =tan& =0.001 field confinementisEmbedded-Circuit Magnetic Metamaterial Substrate Performance for Patch Antennas Kevin Buell
Lai, Dong
2012-01-01
The unipolar induction DC circuit model, originally developed by Goldreich & Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultra-compact white dwarf binaries, we find that DC circuit does not provide adequate energy dissipation to explain the observed X-ray luminosities of seve...
Domain structure and magnetic losses in laminated magnetic circuits upon laser treatment
NASA Astrophysics Data System (ADS)
Pudov, V. I.; Dragoshanskii, Yu. N.
2015-06-01
Methods of optimizing the magnetic domain structure and functional characteristics of electrical-sheet anisotropic steel based on the Fe-Si alloy and the laminated magnetic circuits of transformers have been developed. The use of an efficient complex based on the local laser treatment and application of magnetically active electrically insulating coatings provided a significant reduction in the magnetic losses in the sheets of the steel (by 18-22%) and in the magnetic circuits of transformers (by 9-14%).
Broadcasting in Hypercubes under Circuit Switched Model
Bermond, Jean-Claude
Broadcasting in Hypercubes under Circuit Switched Model J.-C. Bermond A. Bonnecaze y T. Kodate z S almost optimal broad- cast schemes on an n-dimensional hypercube in the circuit switched, -port model Model, Broadcasting, Hypercube, Connectivity, (Sym- metric) Flow networks,Wormhole routing. 1
Qian, Junbing; Chen, Xuedong; Chen, Han; Zeng, Lizhan; Li, Xiaoqing
2013-01-01
A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. PMID:23358368
Quantum computation beyond the circuit model
Jordan, Stephen Paul
2008-01-01
The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, ...
The Short Circuit Model of Reading.
ERIC Educational Resources Information Center
Lueers, Nancy M.
The name "short circuit" has been given to this model because, in many ways, it adequately describes what happens bioelectrically in the brain. The "short-circuiting" factors include linguistic, sociocultural, attitudinal and motivational, neurological, perceptual, and cognitive factors. Research is reviewed on ways in which each one affects any…
Resistive companion battery modeling for electric circuit simulations , R. Dougalb
Resistive companion battery modeling for electric circuit simulations B. Wua , R. Dougalb , R for electric circuit simulations. With a RC numerical solver, simulations of complex electric systems can reserved. Keywords: Battery modeling; Battery simulation; Electric circuit simulation; Resistive companion
Dong Lai
2012-06-17
The unipolar induction DC circuit model, originally developed by Goldreich & Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultra-compact white dwarf binaries, we find that DC circuit does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, magnetic torque and dissipation are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 10^3G.
Globally Clocked Magnetic Logic Circuits Michael Hall
Chamberlain, Roger
with the Stoner-Wohlfarth switching astroids for the spin valves. The possi- ble magnetic field vectors that can leaves the net field in the left half of the astroid. A high current (D=1) makes the net field positive that each alone will not result in a field outside of the stable region in the astroid. With enable low
Quantum Computation Beyond the "Standard Circuit Model"
K. Ch. Chatzisavvas; C. Daskaloyannis; C. P. Panos
2006-08-16
Construction of explicit quantum circuits follows the notion of the "standard circuit model" introduced in the solid and profound analysis of elementary gates providing quantum computation. Nevertheless the model is not always optimal (e.g. concerning the number of computational steps) and it neglects physical systems which cannot follow the "standard circuit model" analysis. We propose a computational scheme which overcomes the notion of the transposition from classical circuits providing a computation scheme with the least possible number of Hamiltonians in order to minimize the physical resources needed to perform quantum computation and to succeed a minimization of the computational procedure (minimizing the number of computational steps needed to perform an arbitrary unitary transformation). It is a general scheme of construction, independent of the specific system used for the implementation of the quantum computer. The open problem of controllability in Lie groups is directly related and rises to prominence in an effort to perform universal quantum computation.
MOS integrated circuit fault modeling
NASA Technical Reports Server (NTRS)
Sievers, M.
1985-01-01
Three digital simulation techniques for MOS integrated circuit faults were examined. These techniques embody a hierarchy of complexity bracketing the range of simulation levels. The digital approaches are: transistor-level, connector-switch-attenuator level, and gate level. The advantages and disadvantages are discussed. Failure characteristics are also described.
High bandwidth magnetically isolated signal transmission circuit
NASA Technical Reports Server (NTRS)
Repp, John Donald (Inventor)
2005-01-01
Many current electronic systems incorporate expensive or sensitive electrical components. Because electrical energy is often generated or transmitted at high voltages, the power supplies to these electronic systems must be carefully designed. Power supply design must ensure that the electrical system being supplied with power is not exposed to excessive voltages or currents. In order to isolate power supplies from electrical equipment, many methods have been employed. These methods typically involve control systems or signal transfer methods. However, these methods are not always suitable because of their drawbacks. The present invention relates to transmitting information across an interface. More specifically, the present invention provides an apparatus for transmitting both AC and DC information across a high bandwidth magnetic interface with low distortion.
Equivalent circuit model for left-handed metamaterials
NASA Astrophysics Data System (ADS)
Chen, Hongsheng; Ran, Lixin; Huangfu, Jiangtao; Grzegorczyk, Tomasz M.; Kong, Jin Au
2006-07-01
A general equivalent circuit model to calculate the effective permeability of various configurations of split-ring resonators (SRRs) is presented. In the proposed model, each column of the SRR units along the axis of the rings is modeled as a quasisolenoid under magnetic induction. The inductance per ring of the infinite column of these rings is calculated, assuming all the rings in this column support the same current. The electromagnetic coupling between these individual columns of the rings is integrated into this circuit model, which is then applied to a two dimensional cross embedded split-ring resonator. The agreement between the predicted results and numerical simulations shows the efficiency of the model in predicting the frequency band of negative permeability.
Lai Dong [Department of Astronomy, Cornell University, Ithaca, NY 14850 (United States)
2012-09-20
The unipolar induction DC circuit model, originally developed by Goldreich and Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such a model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to the breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultracompact white dwarf binaries, we find that unipolar induction does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, the magnetic torque and energy dissipation induced by the orbital motion are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 10{sup 3} G.
NASA Astrophysics Data System (ADS)
Lai, Dong
2012-09-01
The unipolar induction DC circuit model, originally developed by Goldreich and Lynden-Bell for the Jupiter-Io system, has been applied to different types of binary systems in recent years. We show that there exists an upper limit to the magnetic interaction torque and energy dissipation rate in such a model. This arises because when the resistance of the circuit is too small, the large current flow severely twists the magnetic flux tube connecting the two binary components, leading to the breakdown of the circuit. Applying this limit, we find that in coalescing neutron star binaries, magnetic interactions produce negligible correction to the phase evolution of the gravitational waveform, even for magnetar-like field strengths. However, energy dissipation in the binary magnetosphere may still give rise to electromagnetic radiation prior to the final merger. For ultracompact white dwarf binaries, we find that unipolar induction does not provide adequate energy dissipation to explain the observed X-ray luminosities of several sources. For exoplanetary systems containing close-in Jupiters or super-Earths, the magnetic torque and energy dissipation induced by the orbital motion are negligible, except possibly during the early T Tauri phase, when the stellar magnetic field is stronger than 103 G.
Using Magnetic Coupling to Improve the (1)H/(2)H Double Tuned Circuit.
Taber, Bob; Zens, Albert
2015-10-01
We report in this paper an analysis of double-tuned (1)H/(2)H circuits that are capacitively or inductively matched to 50? ports. In this analysis we use a novel new parameter called the circuit fill factor (CFF). It provides a means of characterizing the performance degradation associated with additional inductors in the circuit in addition to circuit losses. This parameter allows for quick and insightful analysis of multiple tuned circuits for efficiency. It is also shown that magnetically coupled double-tuned circuits are less prone to unwanted spurious resonances due to their general symmetry which eliminates multiple ground paths in the circuit. PMID:26319279
Introductory Invited Paper Electronic circuit reliability modeling
Shapira, Yoram
approach for accurately predicting circuit reliability and failure rate from the system point of view. Ó- rate system reliability modeling in the competing mecha- nisms era. In addition, a new simulation tool that based on this new approach is presented. 1.1. Reliability prediction from historical perspective
MODELING AND VISUALIZATION OF SYNTHETIC GENETIC CIRCUITS
Myers, Chris J.
bacteria to help produce a wide range of useful products from pharmaceuticals to food additives to laundry detergent [1]. Synthetic Biology is an emerging field that attempts to model the chemical reaction networks on Visualization of Genetic Circuits will give an overview on the use and effectiveness of the new visualization
Small signal equivalent circuit modeling of resonant converters
Arthur F. Witulski; Adhn F. Hernandez; Robert W. Erickson
1991-01-01
A general analytical procedure is presented for the equivalent circuit modeling of resonant converters, using the series and parallel resonant converters as examples. The switched tank elements of a resonant converter are modeled by a lumped parameter equivalent circuit. The tank element circuit model consists, in general, of discrete energy states, but may be approximated by a low-frequency continuous time
EE 202.3 (3L-3P alt weeks) Electric and Magnetic Fields and Circuits
Saskatchewan, University of
Module II: Electric circuits transient analysis of RL and RC circuits, AC and passive componentsEE 202.3 (3L-3P alt weeks) Electric and Magnetic Fields and Circuits Department of Electrical and Computer Engineering Fall 2015 Description: Further develops the theory and analysis of electric
Probabilistic Graphical Models for the Diagnosis of Analog Electrical Circuits
Borgelt, Christian
Probabilistic Graphical Models for the Diagnosis of Analog Electrical Circuits Christian Borgelt electrical circuit. This model can be used to do probabilis- tic diagnosis based on manufacturer supplied approaches to the diagnosis of electrical circuits have been developed [10, 11]. Examples are: the fault
Probabilistic Graphical Models for the Diagnosis of Analog Electrical Circuits
Borgelt, Christian
Probabilistic Graphical Models for the Diagnosis of Analog Electrical Circuits Christian Borgelt electrical circuit. This model can be used to do probabilis tic diagnosis based on manufacturer supplied approaches to the diagnosis of electrical circuits have been developed [10, 11]. Examples are: the fault
The Design of a RapidDischarge Varistor System for the MICE Magnet Circuits
Green, Michael A.
2008-07-23
The need for a magnet circuit discharge system, in order to protect the magnet HTS leads during a power failure, has been discussed in recent MICE reports [1], [2]. In order to rapidly discharge a magnet, one has to put enough resistance across the lead. The resistance in this case is varistor that is put across the magnet in the event of a power outage. The resistance consists of several diodes, which act as constant voltage resistors and the resistance of the cables connecting the magnets in the circuit to each other and to the power supply. In order for the rapid discharge system to work without quenching the magnets, the voltage across the magnets must be low enough so that the diodes in the quench protection circuit don't fire and cause the magnet current to bypass the superconducting coils. It is proposed that six rapid discharge varistors be installed across the three magnet circuits the power the tracker solenoids, which are connected in series. The focusing magnets, which are also connected in series would have three varistors (one for each magnet). The coupling magnets would have a varistor for each magnet. The peak voltage that is allowed per varistor depends on the number of quench protection diodes that make up the quench protection circuit for each magnet coil circuit. It is proposed that the varistors be water cooled as the magnet circuits are being discharged through them. The water cooling circuit can be supplied with tap water. The tap water flows only when the varistor temperature reaches a temperature of 45 C.
Analysis of quench properties of the Q3 magnets with and without open circuit heater elements
Lackey, Sharon; Marriner, John; Pfeffer, Howie; /Fermilab
1995-11-01
The Q3 magnets have 2 independent heater elements that are energized by the quench protection system. One heater element in the Q3 magnet at A4 became an open circuit after the initial cooldown. Recently the second element became an open circuit. The Q3 magnet at A4 is powered in series with a Q3 magnet at B1. The heaters in the magnet at B1 are still intact. The purpose of this study is to determine if the magnet circuit can be operated without undue risk of damage to the magnets. The risk of damage to the magnet at A4 is less of a concern since repairing the heaters is expected to be a major effort in any event. There is one spare Q3 magnet.
NSDL National Science Digital Library
Integrated Teaching and Learning Program,
Students are introduced to several key concepts of electronic circuits. They learn about some of the physics behind circuits, the key components in a circuit and their pervasiveness in our homes and everyday lives. Students learn about Ohm's law and how it is used to analyze circuits.
The Design of a RapidDischarge Varistor System for the MICE Magnet Circuits
Michael A
2008-01-01
The need for a magnet circuit discharge system, in order to protect the magnet HTS leads during a power failure, has been discussed in recent MICE reports [1], [2]. In order to rapidly discharge a magnet, one has to put enough resistance across the lead. The resistance in this case is varistor that is put across the magnet in the
NASA Astrophysics Data System (ADS)
Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo
We are developing a new high performance traction motor for railway vehicle using interior permanent magnet synchronous motor (IPMSM) and expecting it can reduce energy consumption. To estimate the losses and energy consumption of IPMSM, a simple motor model is needed. In this paper, We propose a simple equivalent circuit and loss model for IPMSM, the constants of which can be obtained from several simple test results. The calculation results using them show that the total loss of the IPMSM becomes about 60% of that of the induction motor when used as a traction motor for a typical commuter train.
Equivalent circuit models for ac impedance data analysis
NASA Technical Reports Server (NTRS)
Danford, M. D.
1990-01-01
A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.
Yield learning model for integrated circuit package
Balasubramaniam, Gaurishankar
1996-01-01
In a semiconductor industry, packaging of integrated circuit chips, product quality control and rapid problem diagnosis are very critical to economic success. The integrated circuit package makes up a large fraction of the total production cost...
ERIC Educational Resources Information Center
Fay, T. H.; Mead, L.
2006-01-01
The paper discusses an elementary spring model representing the motion of a magnet suspended from the ceiling at one end of a vertical spring which is held directly above a second magnet fixed on the floor. There are two cases depending upon the north-south pole orientation of the two magnets. The attraction or repelling force induced by the…
Reduced models for the behavior of VLSI circuits
NASA Astrophysics Data System (ADS)
Vangenderen, Arie Johannes
Several aspects of the modeling of the behavior of integrated circuits are addressed for verification purposes. The modeling of interconnect resistance in integrated circuits is described. The distribution of the interconnect capacitances over the resistance network is important to characterize the transmission behavior of the interconnections. The modeling of three dimensional capacitive effects between the interconnections of integrated circuits is discussed. The three dimensional capacitive effects become more prominent as the horizontal dimensions of the circuit are scaled down, while the vertical dimensions are unchanged. In order to compute reliable capacitance values for the most critical parts of the circuit, an accurate yet numerical technique that directly computes the capacitance values from the layout description of the circuit is described. A simulation model for quickly simulating the logic and timing behavior of large digital MOS circuits is described. Although the simulation model presented is not as accurate as the simulation model employed by a circuit simulator like Spice, it provides useful information about resistance division effects, charge sharing effects, delay times, spikes, and races occurring in the circuit, and it can be used, unlike Spice, to simulate on a workstation, in a reasonable amount of time, circuits containing over 100,000 transistors.
Lumped circuit model of RF amplifier for SPICE simulator
NASA Astrophysics Data System (ADS)
Opalska, Katarzyna
2014-11-01
The paper presents the lumped model of RF amplifier for the generic SPICE circuit simulator. Model is constructed on the basis of measured s-parameter data set of the amplifier. Data - transformed to admittance (y) domain - is approximated by rational functions, which later are synthesized as RLC (sub)circuits. Final amplifier model - obtained by representing Y matrix of two-port circuit by the set of passive components and controlled voltage/current sources - is shown to be equivalent to the original s-based model and may be used in any generic circuit simulator.
Numerical model for atomtronic circuit analysis
NASA Astrophysics Data System (ADS)
Chow, Weng W.; Straatsma, Cameron J. E.; Anderson, Dana Z.
2015-07-01
A model for studying atomtronic devices and circuits based on finite-temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to nonequilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. The model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.
Numerical model for atomtronic circuit analysis
Chow, Weng W; Anderson, Dana Z
2015-01-01
A model for studying atomtronic devices and circuits based on finite temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to non-equilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. The model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase-locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.
A General Model for Integrated Circuit Susceptibility Prediction
W. W. Cowles; R. M. Showers
1968-01-01
The major results of this study may be summarized as follows. First, a simple model is adequate for the estimation of the susceptibility of integrated circuit systems. This model does not differ in any respect from the equivalent model that one would use to calculate the susceptibility of a vacuum tube circuit. Only the numerical values of the parameters differ.
Fault Modeling for the Testing of Mixed Integrated Circuits
Anne Meixner; Wojciech Maly
1991-01-01
The goal of the research described in this paper is to introduce a fault-modeling technique for simulating defective analog components in Mixed Analog\\/Digital Integrated Circuits. The proposed fault- modeling strategy has been implemented to develop analog fault models representing the effect of spot defects in CMOS circuits. Results from an initial study of opamps are summarized and detailed results from
Quantum Computation Beyond the Circuit Model
Stephen P. Jordan
2008-09-13
The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, several other models of quantum computation exist which provide useful alternative frameworks for both discovering new quantum algorithms and devising new physical implementations of quantum computers. In this thesis, I first present necessary background material for a general physics audience and discuss existing models of quantum computation. Then, I present three results relating to various models of quantum computation: a scheme for improving the intrinsic fault tolerance of adiabatic quantum computers using quantum error detecting codes, a proof that a certain problem of estimating Jones polynomials is complete for the one clean qubit complexity class, and a generalization of perturbative gadgets which allows k-body interactions to be directly simulated using 2-body interactions. Lastly, I discuss general principles regarding quantum computation that I learned in the course of my research, and using these principles I propose directions for future research.
Low depth quantum circuits for Ising models
Iblisdir, S.; Cirio, M.; Boada, O.; Brennen, G.K.
2014-01-15
A scheme for measuring complex temperature partition functions of Ising models is introduced. Two applications of this scheme are presented. First, through appropriate Wick rotations, those amplitudes can be analytically continued to yield estimates for partition functions of Ising models. Bounds on the estimated error are provided through a central-limit theorem whose validity extends beyond the present context; it holds for example for estimations of the Jones polynomial. The kind of state preparations and measurements involved in this application can be made independent of the system size or the parameters of the system being simulated. Second, the scheme allows to accurately estimate non-trivial invariants of links. Another result concerns the computational power of estimations of partition functions for real temperature classical ferromagnetic Ising models. We provide conditions under which estimating such partition functions allows to reconstruct scattering amplitudes of quantum circuits, making the problem BQP-hard. We also show fidelity overlaps for ground states of quantum Hamiltonians, which serve as a witness to quantum phase transitions, can be estimated from classical Ising model partition functions. Finally, we discuss how accurate corner magnetisation measurements on thermal states of two-dimensional Ising models lead to fully polynomial random approximation schemes (FPRAS) for the partition function.
Short-Circuit Modeling of a Wind Power Plant: Preprint
Muljadi, E.; Gevorgian, V.
2011-03-01
This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. The short-circuit behavior will be presented. Both the simplified models and detailed models are used in the simulations and both symmetrical faults and unsymmetrical faults are discussed.
NASA Technical Reports Server (NTRS)
Penfield, P., Jr.; Peterson, D. F.; Steinbrecher, D. H.
1972-01-01
A nonlinear circuit model for avalanche diodes is proposed. The model was derived by assuming that the bias dependence of the elements in a known small-signal equivalent-circuit model for existing diodes arises in a manner consistent with the theory of an idealized Read-type device. The model contains a nonlinear R-L branch, a controlled source, and a linear depletion capacitance. The model is used in the nearly linear sense to predict intermodulation distortion and gain compression in avalanche diode amplifiers. Computed results for amplifiers with existing diodes are shown to be in good agreement with experiment.
A Wide Bandwidth Model for the Electrical Impedance of Magnetic BearingS
NASA Technical Reports Server (NTRS)
Meeker, David C.; Maslen, Eric H.; Noh, Myounggyu D.
1996-01-01
Magnetic bearings are often designed using magnetic circuit theory. When these bearings are built, however, effects not included in the usual circuit theory formulation have a significant influence on bearing performance. Two significant sources of error in the circuit theory approach are the neglect of leakage and fringing effects and the neglect of eddy current effects. This work formulates an augmented circuit model in which eddy current and flux leakage and fringing effects are included. Through the use of this model, eddy current power losses and actuator bandwidth can be derived. Electrical impedance predictions from the model are found to be in good agreement with experimental data from a typical magnetic bearing.
Computer models of hearing aid transducers for integrated circuit design.
Agnew, J
1992-03-01
Electronic circuit modeling using computer-based simulation tools is well established and device models are available for common electronic components. However, acoustic models of audio transducers for use during integrated circuit design are not readily available. This causes difficulty for designers of audio amplifiers, and increases the uncertainties of a successful silicon integration of a circuit design. This paper reports on a technique for the creation of electroacoustic models of hearing aid microphones and receivers that can be connected to an amplifier under design, and incorporated into PSPICE simulations. Verification of the technique and models was performed by comparing measured frequency response data with graphs created by PSPICE modeling. The conclusions were that the method developed for creating these models, and the models themselves, were accurate enough to be used for acoustic simulations of frequency response performance during amplifier design, and gave results comparable to data obtained from breadboard measurements of the same circuits. PMID:1564209
Verification of the predictive capabilities of the 4C code cryogenic circuit model
NASA Astrophysics Data System (ADS)
Zanino, R.; Bonifetto, R.; Hoa, C.; Richard, L. Savoldi
2014-01-01
The 4C code was developed to model thermal-hydraulics in superconducting magnet systems and related cryogenic circuits. It consists of three coupled modules: a quasi-3D thermal-hydraulic model of the winding; a quasi-3D model of heat conduction in the magnet structures; an object-oriented a-causal model of the cryogenic circuit. In the last couple of years the code and its different modules have undergone a series of validation exercises against experimental data, including also data coming from the supercritical He loop HELIOS at CEA Grenoble. However, all this analysis work was done each time after the experiments had been performed. In this paper a first demonstration is given of the predictive capabilities of the 4C code cryogenic circuit module. To do that, a set of ad-hoc experimental scenarios have been designed, including different heating and control strategies. Simulations with the cryogenic circuit module of 4C have then been performed before the experiment. The comparison presented here between the code predictions and the results of the HELIOS measurements gives the first proof of the excellent predictive capability of the 4C code cryogenic circuit module.
Noise Analysis of a Current-Mode Read Circuit for Sensing Magnetic Tunnel Junction Resistance
Chamberlain, Roger
magnetic tunnel junction (MTJ) devices. These devices are non-volatile, robust, and scale favorably junction (MTJ) are actively being researched for applica tions in memory [1], field-programmable gate-arrays (FPGAs) [2], and logic computation [3]. Memory or Magnetic RAM (MRAM) circuits typically use current
High Resolution PV Power Modeling for Distribution Circuit Analysis
Norris, B. L.; Dise, J. H.
2013-09-01
NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.
A circuit model for the hybrid resonance modes of paired SRR metamaterials.
Poo, Yin; Wu, Rui-xin; Liu, Min; Wang, Ling
2014-01-27
To better understand the resonance modes caused by the interelement couplings in the building block of metamaterials, we propose a circuit model for the hybrid resonance modes of paired split ring resonators. The model identifies the electromagnetic coupling between the paired rings by electric and magnetic coupling networks and well explains the variation of hybrid resonance modes with respect to the distance and the twist angle between the rings. The predictions of our model are further proved by experiments. PMID:24515201
Hybrid quantum magnetism in circuit QED: from spin-photon waves to many-body spectroscopy.
Kurcz, Andreas; Bermudez, Alejandro; García-Ripoll, Juan José
2014-05-01
We introduce a model of quantum magnetism induced by the nonperturbative exchange of microwave photons between distant superconducting qubits. By interconnecting qubits and cavities, we obtain a spin-boson lattice model that exhibits a quantum phase transition where both qubits and cavities spontaneously polarize. We present a many-body ansatz that captures this phenomenon all the way, from a the perturbative dispersive regime where photons can be traced out, to the nonperturbative ultrastrong coupling regime where photons must be treated on the same footing as qubits. Our ansatz also reproduces the low-energy excitations, which are described by hybridized spin-photon quasiparticles, and can be probed spectroscopically from transmission experiments in circuit QED, as shown by simulating a possible experiment by matrix-product-state methods. PMID:24856680
Wide-band corona circuit model for transient simulations
Marti, J.R.; Castellanos, F.; Santiago, N. [Univ. of British Columbia, Vancouver, British Columbia (Canada)] [Univ. of British Columbia, Vancouver, British Columbia (Canada)
1995-05-01
Corona in overhead transmission lines is a highly nonlinear and non-deterministic phenomenon. Circuit models have been developed to represent its behavior, but the response of these models is usually limited to a narrow set of frequencies. The circuit model presented in this paper achieves a much wider frequency response than previous models: (1) by matching more closely the topology of the circuit, and (2) by using a second-order circuit response to match the high-order dynamic response of the phenomenon. The resulting model is valid for a wide range of frequencies and is able to represent waveshapes from switching to lightning surges. The model is applied to the EMTP program and simulations of q-v measurements and travelling surges are presented.
Circuit-Level Model of Phase-Locked Spin-Torque Oscillators
NASA Astrophysics Data System (ADS)
Ahn, Sora; Lim, Hyein; Kim, Miryeon; Shin, Hyungsoon; Lee, Seungjun
2013-04-01
Spin-torque oscillators (STOs) are new oscillating devices based on spintronics technology with many advantageous features, i.e., nanoscale size, high tunability, and compatibility with standard silicon processing. Recent research has shown that two electrically connected STOs may operate as a single device when specific conditions are met. To overcome the limitation of the small output power of STOs, the phase-locking behavior of multiple STOs is hereby extensively investigated. In this paper, we present a circuit-level model of two coupled STOs considering the interaction between them such that it can represent the phase-locking behavior of multiple STOs. In our model, the characteristics of each STO are defined first as functions of applied DC current and external magnetic field. Then, the phase-locking condition is examined to determine the properties of the two coupled STOs on the basis of a theoretical model. The analytic model of two coupled STOs is written in Verilog-A hardware description language. The behavior of the proposed model is verified by circuit-level simulation using HSPICE with CMOS circuits including a current-mirror circuit and differential amplifiers. Simulation results with various CMOS circuits have confirmed the effectiveness of our model.
On the Circuit Model of Global Adiabatic Search Algorithm
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Liu, Fang; Zhang, Zhigang; Zhou, Qing
2015-10-01
Local adiabatic search has been implemented on the quantum circuit model, and the time steps necessary to guarantee the approximation precision are of the same order as the time complexity of the algorithm. However, it is easy to verify that this conclusion doesn't hold for global adiabatic search. But we know that adiabatic computing is equivalent to the circuit model of quantum computation. Therefore, there must exist a corresponding quantum circuit that correctly implements such a global adiabatic search. In this Letter, we show that this indeed could be true.
Note on homological modeling of the electric circuits
Eugen Paal; Märt Umbleja
2014-06-23
Based on a simple example, it is explained how the homological analysis may be applied for modeling of the electric circuits. The homological branch, mesh and nodal analyses are presented. Geometrical interpretations are given.
Modeling of three dimensional defects in integrated circuits
Dani, Sameer Manohar
1993-01-01
Although the majority of defects found in manufacturing lines of Integrated Circuits [ IC's] have predominantly 2- Dimensional [2D] effects, there are many situations in which 2D defect models do not suffice) e.g., tall layer bulks disrupting...
ERIC Educational Resources Information Center
Gabel, Dorothy; And Others
1992-01-01
Chemistry can be described on three levels: sensory, molecular, and symbolic. Proposes a particle approach to teaching chemistry that uses magnets to aid students construct molecular models and solve particle problems. Includes examples of Johnstone's model of chemistry phenomena, a problem worksheet, and a student concept mastery sheet. (MDH)
Simple SPICE model for comparison of CMOS output driver circuits
Hermann, John Karl
1993-01-01
SIMPLE SPICE MODEL FOR COMPARISON OF CMOS OUTPUT DRIVER CIRCUITS A Thesis by JOHN KARL HERMANN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1993 Major Subject: Electrical Engineering SIMPLE SPICE MODEL FOR COMPARISON OF CMOS OUTPUT DRIVER CIRCUITS A Thesis by JOHN KARL HERMANN Approved as to style and content by: Karan L. Watson (Chair of Committee) Barr lass (Member) d...
Digital Quantum Rabi and Dicke Models in Superconducting Circuits
Mezzacapo, A.; Las Heras, U.; Pedernales, J. S.; DiCarlo, L.; Solano, E.; Lamata, L.
2014-01-01
We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios. PMID:25500735
Digital quantum Rabi and Dicke models in superconducting circuits.
Mezzacapo, A; Las Heras, U; Pedernales, J S; DiCarlo, L; Solano, E; Lamata, L
2014-01-01
We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios. PMID:25500735
Model of magnetically enhanced, capacitive RF discharges
Lieberman, M.A.; Lichtenberg, A.J. (California Univ., Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences)
1991-04-01
Magnetically enhanced, capacitive RF discharges (so-called RF magnetrons or MERIE discharges) are playing an increasing role in thin film etching for integrated circuit processing. In these discharges, a weak dc magnetic field is imposed, lying parallel to the powered electrode surface. The authors determine the RF power transferred to the discharge electrons by the oscillating electron sheath in the presence of the magnetic field. Using this, along with particle and energy conservation, the authors obtain discharge parameters such as the ion flux and ion bombarding energy at the powered electrode as functions of pressure, RF power, and the magnetic field. This paper reports that some results of the model show good agreement with experiments done on a commercial MERIE system.
Natti, Satish
2010-01-14
New maintenance techniques for circuit breakers are studied in this dissertation by proposing a probabilistic maintenance model and a new methodology to assess circuit breaker condition utilizing its control circuit data. ...
NASA Astrophysics Data System (ADS)
Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete
2015-07-01
Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.
Circuit theory and model-based inference for landscape connectivity
Hanks, Ephraim M.; Hooten, Mevin B.
2013-01-01
Circuit theory has seen extensive recent use in the field of ecology, where it is often applied to study functional connectivity. The landscape is typically represented by a network of nodes and resistors, with the resistance between nodes a function of landscape characteristics. The effective distance between two locations on a landscape is represented by the resistance distance between the nodes in the network. Circuit theory has been applied to many other scientific fields for exploratory analyses, but parametric models for circuits are not common in the scientific literature. To model circuits explicitly, we demonstrate a link between Gaussian Markov random fields and contemporary circuit theory using a covariance structure that induces the necessary resistance distance. This provides a parametric model for second-order observations from such a system. In the landscape ecology setting, the proposed model provides a simple framework where inference can be obtained for effects that landscape features have on functional connectivity. We illustrate the approach through a landscape genetics study linking gene flow in alpine chamois (Rupicapra rupicapra) to the underlying landscape.
Qubit logic modeling by electronic circuits and electromagnetic signals
G. A. Kouzaev
2001-08-07
In the paper an approach is presented allowing to model quantum logic circuits by electronic gates for discrete spatially modulated electromagnetic signals. The designed circuitry is for modeling low scale quantum nets of general design and quantum devices based only on superposition principle of their work.
Wideband modeling of RF circuits using automatic physical augmentation
Yong-Xin Guo; A. Rasmita; A. Alphones
2009-01-01
A new wideband physical augmentation based modeling technique is proposed. In this method, all series augmentation elements are transformed into the parallel ones. Using this technique, the preliminary analysis of the circuit to decide the augmentation type is not needed. The type of augmentation to be performed can be determined automatically. The proposed methodology has been validated for broadband modeling
BATTERIES AND BULBS, BOOK 2, CIRCUITS AND MAGNETS.
ERIC Educational Resources Information Center
1966
THIS TRIAL EDITION OF A TEACHER'S GUIDE, BOOK TWO IN A SERIES OF FOUR, IS INTENDED TO PROVIDE RESOURCE MATERIAL FOR AN INTRODUCTORY STUDY OF ELECTRICITY AND MAGNETISM. IT IS SUITABLE FOR ADAPTION TO VARIOUS LEVELS FROM GRADES 2-10. USED IN CONJUNCTION WITH THE OTHER VOLUMES, IT PROVIDES MATERIAL FOR A PROGRAM OF FROM 5 TO 40 WEEKS, DEPENDING ON…
Using Hydraulic Network Models to Teach Electric Circuit Principles
NASA Astrophysics Data System (ADS)
Jones, Irvin; EERC (Engineering Education Research Center) Collaboration
2013-11-01
Unlike other engineering disciplines, teaching electric circuit principles is difficult for some students because there isn't a visual context to rely on. So concepts such as electric potential, current, resistance, capacitance, and inductance have little meaning outside of their definition and the derived mathematical relationships. As a work in progress, we are developing a tool to support teaching, learning, and research of electric circuits. The tool will allow the user to design, build, and operate electric circuits in the form of hydraulic networks. We believe that this system will promote greater learning of electric circuit principles by visually realizing the conceptual and abstract concepts of electric circuits. Furthermore, as a teaching and learning tool, the hydraulic network system can be used to teach and improve comprehension of electrical principles in K through 12 classrooms and in cross-disciplinary environments such as Bioengineering, Mechanical Engineering, Industrial Engineering, and Aeronautical Engineering. As a research tool, the hydraulic network can model and simulate micro/nano bio-electro-chemical systems. Unlike other engineering disciplines, teaching electric circuit principles is difficult for some students because there isn't a visual context to rely on. So concepts such as electric potential, current, resistance, capacitance, and inductance have little meaning outside of their definition and the derived mathematical relationships. As a work in progress, we are developing a tool to support teaching, learning, and research of electric circuits. The tool will allow the user to design, build, and operate electric circuits in the form of hydraulic networks. We believe that this system will promote greater learning of electric circuit principles by visually realizing the conceptual and abstract concepts of electric circuits. Furthermore, as a teaching and learning tool, the hydraulic network system can be used to teach and improve comprehension of electrical principles in K through 12 classrooms and in cross-disciplinary environments such as Bioengineering, Mechanical Engineering, Industrial Engineering, and Aeronautical Engineering. As a research tool, the hydraulic network can model and simulate micro/nano bio-electro-chemical systems. Organization within the Swanson School of Engineering at the University of Pittsburgh.
Analysis of bilinear noise models in circuits and devices
NASA Technical Reports Server (NTRS)
Willsky, A. S.; Marcus, S. I.
1976-01-01
There are a number of applications in which linear noise models are inappropriate. In the paper, the use of bilinear noise models in circuits and devices is considered. Several physical problems are studied in this framework. These include circuits involving varying parameters (such as variable resistance circuits constructed using field-effect transistors), the effect of switching jitter on sampled data system performance and communication systems involving voltage-controlled oscillators and phase-lock loops. In addition, several types of analytical techniques for stochastic bilinear systems are considered. Specifically, the moment equations of Brockett for bilinear systems driven by white noise are discussed, and closed-form expressions for certain bilinear systems (those that evolve an Abelian or solvable Lie groups) driven by white or colored noise are derived. In addition, an approximate statistical technique involving the use of harmonic expansions is described.
Distributed-element circuit model of edge magnetoplasmon transport
NASA Astrophysics Data System (ADS)
Hashisaka, Masayuki; Kamata, Hiroshi; Kumada, Norio; Washio, Kazuhisa; Murata, Ryuji; Muraki, Koji; Fujisawa, Toshimasa
2013-12-01
We report experimental and theoretical studies of edge magnetoplasmon (EMP) transport in quantum Hall (QH) devices. We develop a model that allows us to calculate the transport coefficients of EMPs in QH devices with various geometries. In our model, a QH system is described as a chiral distributed-element (CDE) circuit, where the effects of Coulomb interaction are represented by an electrochemical capacitance distributed along unidirectional transmission lines. We measure the EMP transport coefficients through single- and coupled-edge channels, a quantum point contact, and single- and double-cavity structures. These measured transmission spectra can be reproduced well by simulations using the corresponding CDE circuits. By fitting the experimental results with the simulations, we deduce the circuit parameters that characterize the electrostatic environment around the edge channels in a realistic QH system. The observed gate-voltage dependences of the EMP transport properties in gate-defined structures are explained in terms of the gate tuning of the circuit parameters in CDE circuits.
Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits.
Dallidis, Stylianos E; Karafyllidis, Ioannis G
2014-09-01
To coordinate their behavior and virulence and to synchronize attacks against their hosts, bacteria communicate by continuously producing signaling molecules (called autoinducers) and continuously monitoring the concentration of these molecules. This communication is controlled by biological circuits called quorum sensing (QS) circuits. Recently QS circuits and have been recognized as an alternative target for controlling bacterial virulence and infections without the use of antibiotics. Pseudomonas aeruginosa is a Gram-negative bacterium that infects insects, plants, animals and humans and can cause acute infections. This bacterium has three interconnected QS circuits that form a very complex and versatile QS system, the operation of which is still under investigation. Here we use Boolean networks to model the complete QS system of Pseudomonas aeruginosa and we simulate and analyze its operation in both synchronous and asynchronous modes. The state space of the QS system is constructed and it turned out to be very large, hierarchical, modular and scale-free. Furthermore, we developed a simulation tool that can simulate gene knock-outs and study their effect on the regulons controlled by the three QS circuits. The model and tools we developed will give to life scientists a deeper insight to this complex QS system. PMID:25163068
Generating Effective Models and Parameters for RNA Genetic Circuits.
Hu, Chelsea Y; Varner, Jeffrey D; Lucks, Julius B
2015-08-21
RNA genetic circuitry is emerging as a powerful tool to control gene expression. However, little work has been done to create a theoretical foundation for RNA circuit design. A prerequisite to this is a quantitative modeling framework that accurately describes the dynamics of RNA circuits. In this work, we develop an ordinary differential equation model of transcriptional RNA genetic circuitry, using an RNA cascade as a test case. We show that parameter sensitivity analysis can be used to design a set of four simple experiments that can be performed in parallel using rapid cell-free transcription-translation (TX-TL) reactions to determine the 13 parameters of the model. The resulting model accurately recapitulates the dynamic behavior of the cascade, and can be easily extended to predict the function of new cascade variants that utilize new elements with limited additional characterization experiments. Interestingly, we show that inconsistencies between model predictions and experiments led to the model-guided discovery of a previously unknown maturation step required for RNA regulator function. We also determine circuit parameters in two different batches of TX-TL, and show that batch-to-batch variation can be attributed to differences in parameters that are directly related to the concentrations of core gene expression machinery. We anticipate the RNA circuit models developed here will inform the creation of computer aided genetic circuit design tools that can incorporate the growing number of RNA regulators, and that the parametrization method will find use in determining functional parameters of a broad array of natural and synthetic regulatory systems. PMID:26046393
K. Pechrach; J. W. McBride; P. M. Weaver
2002-01-01
This paper examines arc root mobility in relation to magnetic and gas dynamic forces in low contact opening velocity circuit breakers (1 m\\/s). Arcing conditions of interest are short circuit faults (103-104 A) in low voltage (220-380 VAC) circuit breakers. Previously published experimental results have shown how the gas flow and venting in the contact region affects the arc root
NSDL National Science Digital Library
This is a summative activity about magnets. Learners will observe a demonstration of the action of a magnet on a test tube of iron filings, answer questions, and, using the concepts learned in previous activities, write an essay about their understanding of the demonstration. This is the fourth activity in the Mapping Magnetic Influence educators guide. Learners should complete the other three activities in that guide (Seeing Magnetism, What Do You Know about Magnets, and Magnet Map) prior to beginning this activity.
Fast and Accurate Circuit Design Automation through Hierarchical Model Switching.
Huynh, Linh; Tagkopoulos, Ilias
2015-08-21
In computer-aided biological design, the trifecta of characterized part libraries, accurate models and optimal design parameters is crucial for producing reliable designs. As the number of parts and model complexity increase, however, it becomes exponentially more difficult for any optimization method to search the solution space, hence creating a trade-off that hampers efficient design. To address this issue, we present a hierarchical computer-aided design architecture that uses a two-step approach for biological design. First, a simple model of low computational complexity is used to predict circuit behavior and assess candidate circuit branches through branch-and-bound methods. Then, a complex, nonlinear circuit model is used for a fine-grained search of the reduced solution space, thus achieving more accurate results. Evaluation with a benchmark of 11 circuits and a library of 102 experimental designs with known characterization parameters demonstrates a speed-up of 3 orders of magnitude when compared to other design methods that provide optimality guarantees. PMID:25916918
A neurocomputational model of the mammalian fear conditioning circuit
Anderson, Charles H.
A neurocomputational model of the mammalian fear conditioning circuit by Carter Kolbeck A thesis that reproduces the high-level behavioural results of well-known fear conditioning experiments: first these connections perform, I developed an information processing system that behaves analogously to the fear condi
GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model
Broadie, Kendal S.
GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model Cheryl L. Gatto, Daniel in a range of neurodevelop- mental disorders, including autism, epilepsy, Rett syndrome, and Fragile X Accepted 7 January 2014 Available online 12 January 2014 Keywords: Fragile X mental retardation protein
Mapping and Cracking Sensorimotor Circuits in Genetic Model Organisms
Clark, Damon A.; Freifeld, Limor; Clandinin, Thomas R.
2013-01-01
One central goal of systems neuroscience is to understand how neural circuits implement the computations that link sensory inputs to behavior. Work combining electrophysiological and imaging-based approaches to measure neural activity with pharmacological and electrophysiological manipulations has provided fundamental insights. More recently, genetic approaches have been used to monitor and manipulate neural activity, opening up new experimental opportunities and challenges. Here, we discuss issues associated with applying genetic approaches to circuit dissection in sensorimotor transformations, outlining important considerations for experimental design and considering how modeling can complement experimental approaches. PMID:23719159
Measured turbulent mixing in a small-scale circuit breaker model
Basse, Nils Plesner
.2960. 1. Introduction In high voltage (HV) gas circuit breakers [1,2], short- circuit currentsMeasured turbulent mixing in a small-scale circuit breaker model N. P. T. Basse,* R. Bini, and M circuit breakers depends on the temperature distribution of hot gas or plasma from the arc zone mixed
NASA Astrophysics Data System (ADS)
Kim, Hwan-Choong; Han, Chulhee; Kim, Pyunghwa; Choi, Seung-Bok
2015-08-01
This work proposes a new approach with which to measure the magnetic flux density using the characteristics of magnetorheological fluid (MRF) that is integrated with a variable resistor. For convenience, it is called a magnetorheological fluid variable resistor (MRF-VR) system in this study. The mechanism of the MRF-VR is based on the interaction between ferromagnetic iron particles of the MRF due to an external magnetic field, which causes its electrical resistance to be field dependent. Using this salient principle, the proposed MRF-VR system is constructed with electrodes and MRF, and its performance is demonstrated by evaluating its electrical resistive characteristics such as dimensional influence, response time, hysteresis and frequency response. After evaluating the performance characteristics, a feedback control system with a proportional–integral–derivative (PID) controller is established, and resistance-trajectory control experiments are carried out. Based on this MRF-VR system, a magnetic field–sensing system is constructed using a Wheatstone bridge circuit, and a polynomial model for calculating the magnetic flux density is formulated from the measured voltage. Finally, the accuracy and effectiveness of the proposed sensing system associated with the empirical polynomial model is successfully verified by comparing the calculated values of magnetic flux density with those measured by a commercial tesla meter.
Application of Least Squares MPE technique in the reduced order modeling of electrical circuits
Eindhoven, Technische Universiteit
Application of Least Squares MPE technique in the reduced order modeling of electrical circuits an unsolvable reduced order model. This means that a model of an electrical circuit can become ill processes is also applied to the least-square reduced order model of the electrical circuit. The least
NASA Astrophysics Data System (ADS)
Yamamoto, Shuu'ichirou; Kato, Takumi; Ishiwara, Hiroshi
2001-04-01
We have proposed a novel parallel-element simulation program with integrated circuit emphasis (SPICE) model for ferroelectric capacitors, in which Schmitt trigger circuits are used for representing dipoles in the ferroelectric films. It is found that the model expresses the hysteretic characteristics of polarization accurately, even when voltages are applied asymmetrically to the capacitors. We have also proposed a method to introduce the polarization reversal time in the proposed model and demonstrated the circuit response for high-speed pulses in which the polarization reversal time cannot be neglected.
Modelling and design for PM/EM magnetic bearings
NASA Technical Reports Server (NTRS)
Pang, D.; Kirk, J. A.; Anand, D. K.; Johnson, R. G.; Zmood, R. B.
1992-01-01
A mathematical model of a permanent magnet/electromagnet (PM/EM) radially active bearing is presented. The bearing is represented by both a reluctance model and a stiffness model. The reluctance model analyzes the magnetic circuit of the PM/EM bearings. By combining the two models, the performance of the bearing can be predicted given geometric dimensions, permanent magnet strength, and the parameters of the EM coils. The overall bearing design including the PM and EM design is subject to the performance requirement and physical constraints. A study of these requirements and constraints is discussed. The PM design is based on the required magnetic flux for proper geometric dimensions and magnet strength. The EM design is based on the stability and force slew rate consideration, and dictates the number of turns for the EM coils and the voltage and current of the power amplifier. An overall PM/EM bearing design methodology is proposed and a case study is also demonstrated.
Development of a numerical computer code and circuit element models for simulation of firing systems
Carpenter, K.H. . Dept. of Electrical and Computer Engineering)
1990-07-02
Numerical simulation of firing systems requires both the appropriate circuit analysis framework and the special element models required by the application. We have modified the SPICE circuit analysis code (version 2G.6), developed originally at the Electronic Research Laboratory of the University of California, Berkeley, to allow it to be used on MSDOS-based, personal computers and to give it two additional circuit elements needed by firing systems--fuses and saturating inductances. An interactive editor and a batch driver have been written to ease the use of the SPICE program by system designers, and the interactive graphical post processor, NUTMEG, supplied by U. C. Berkeley with SPICE version 3B1, has been interfaced to the output from the modified SPICE. Documentation and installation aids have been provided to make the total software system accessible to PC users. Sample problems show that the resulting code is in agreement with the FIRESET code on which the fuse model was based (with some modifications to the dynamics of scaling fuse parameters). In order to allow for more complex simulations of firing systems, studies have been made of additional special circuit elements--switches and ferrite cored inductances. A simple switch model has been investigated which promises to give at least a first approximation to the physical effects of a non ideal switch, and which can be added to the existing SPICE circuits without changing the SPICE code itself. The effect of fast rise time pulses on ferrites has been studied experimentally in order to provide a base for future modeling and incorporation of the dynamic effects of changes in core magnetization into the SPICE code. This report contains detailed accounts of the work on these topics performed during the period it covers, and has appendices listing all source code written documentation produced.
da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P
2011-05-01
In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD. PMID:21595710
An Equivalent Circuit Model for a Faraday Cage Substrate Crosstalk Isolation Structure
del Alamo, Jesús A.
An Equivalent Circuit Model for a Faraday Cage Substrate Crosstalk Isolation Structure Joyce H. Wu developed a physics-based equivalent circuit model for a novel Faraday cage substrate crosstalk isolation of a chip and has been proven effective up to 50 GHz. The Faraday cage equivalent- circuit model is based
NASA Technical Reports Server (NTRS)
Flatley, Thomas W.; Henretty, Debra A.
1995-01-01
The Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) will be deployed from the Space Shuttle and used as a target for a Shuttle-mounted laser. It will be a cylindrical satellite with several corner cube reflectors on the ends. The center of mass of the cylinder will be near one end, and aerodynamic torques will tend to align the axis of the cylinder with the spacecraft velocity vector. Magnetic hysteresis rods will be used to provide passive despin and oscillation-damping torques on the cylinder. The behavior of the hysteresis rods depends critically on the 'B/H' curves for the combination of materials and rod length-to-diameter ratio ('l-over-d'). These curves are qualitatively described in most Physics textbooks in terms of major and minor 'hysteresis loops'. Mathematical modeling of the functional relationship between B and H is very difficult. In this paper, the physics involved is not addressed, but an algorithm is developed which provides a close approximation to empirically determined data with a few simple equations suitable for use in computer simulations.
Development of circuit model for arcing on solar panels
NASA Astrophysics Data System (ADS)
Mehta, Bhoomi K.; Deshpande, S. P.; Mukherjee, S.; Gupta, S. B.; Ranjan, M.; Rane, R.; Vaghela, N.; Acharya, V.; Sudhakar, M.; Sankaran, M.; Suresh, E. P.
2010-02-01
The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 ?s duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator and conductor, arc resistance, stored charge in the solar cell coverglass and the external capacitor that simulates wire harness. A close correlation between the experiments and circuit model results has been observed.
Example of lumped parameter modeling of a quantum optics circuit
NASA Astrophysics Data System (ADS)
Werbos, Paul J.
2014-05-01
Is it possible for a simple lumped parameter model of a circuit to yield correct quantum mechanical predictions of its behavior, when there is quantum entanglement between components of that circuit? This paper shows that it is possible in a simple but important example - the circuit of the original Bell's Theorem experiments, for ideal polarizers. Correct predictions emerge from two alternative simple models, based on classical Markov Random Fields (MRF) across spacetime. Exact agreement with quantum mechanics does not violate Bell's Theorem itself, because the interplay between initial and final outcomes in these calculations does not meet the classical definition of time-forwards causality. Both models raise interesting questions for future research. The final section discusses several possible directions for following up on these results, both in lumped system modeling and in more formal and general approaches. It describes how a new triphoton experiment, not yet performed, may be able to discriminate between MRF models and the usual measurement formalism of Copenhagen quantum mechanics.
NASA Astrophysics Data System (ADS)
Ko, S. C.; Han, T. H.; Lim, S. H.
In this paper, we investigated the peak current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) with two magnetically coupled circuits. The flux-lock type SFCL with two magnetically coupled circuits has the similar fault current limiting characteristics to the flux-lock type SFCL using its third winding. The current limiting operation of the SFCL is performed by the generation of the magnetic flux between two coils when a fault happens and the fault current limiting characteristics of the SFCL are dependent on the winding direction of two coils. To confirm it, the peak current limiting characteristics of this SFCL were analyzed based on its electrical equivalent circuit and the fault limiting characteristics of this SFCL were investigated through the fault current limiting experiment. Through the analysis on the short-circuit results, it was shown that the limited fault current could be adjusted by the winding direction of two coils.
Rapid rise time pulsed magnetic field circuit for pump-probe field effect studies.
Salaoru, T A; Woodward, Jonathan R
2007-03-01
Here we describe an electronic circuit capable of producing rapidly switched dc magnetic fields of up to 20 mT with a rise time of 10 ns and a pulse length variable from 50 ns to more than 10 micros, suitable for use in the study of magnetic field effects on radical pair (RP) reactions. This corresponds to switching the field on a time scale short relative to the lifetime of typical RPs and maintaining it well beyond their lifetimes. Previous experiments have involved discharging a capacitor through a low inductance coil for a limited time using a switching circuit. These suffer from decaying field strength over the duration of the pulse given primarily by the ratio of the pulse width to the RC constant of the circuit. We describe here a simple yet elegant solution that completely eliminates this difficulty by employing a feedback loop. This allows a constant field to be maintained over the entire length of the pulse. PMID:17411229
An MOS transistor model for analog circuit design
A. I. A. Cunha; M. C. Schneider; C. Galup-Montoro
1998-01-01
This paper presents a physically based model for the metal-oxide-semiconductor (MOS) transistor suitable for analysis and design of analog integrated circuits. Static and dynamic characteristics of the MOS field-effect transistor are accurately described by single-piece functions of two saturation currents in all regions of operation. Simple expressions for the transconductance-to-current ratio, the drain-to-source saturation voltage, and the cutoff frequency in
Model of photovoltaic cell circuits under partial shading
Atsushi Kajihara; A. T. Harakawa
2005-01-01
The PV-cell and natural energy production systems have been much attracted. Together with global warning and extensive applications of solar power electric generation, defects on PV-cell under the partial shading become interesting technical issue. This paper investigates the equivalent circuit model and its characteristics under the partial shading condition. And we have clarified the mechanism of PV-cell under the partial
Modeling of the Inductance of a Blumlein Circuit Spark Gap
NASA Astrophysics Data System (ADS)
Aboites, V.; Rendón, L.; Hernández, A. I.; Valdés, E.
2015-01-01
In this paper we present an analysis of the time-varying inductance in the spark gap of a Blumlein circuit. We assume several mathematical expressions to describe the inductance and compare theoretical and computational calculations with experimental results. The time-varying inductance is approximated by a constant, a straight line and two parables which differ in their concavity. This is the first time to our knowledge, in which the time-varying ignition inductance of a nitrogen laser is modeled.
AN INFINITE DIMENSIONAL DESCRIPTOR SYSTEM MODEL FOR ELECTRICAL CIRCUITS WITH TRANSMISSION LINES
Reis, Timo
AN INFINITE DIMENSIONAL DESCRIPTOR SYSTEM MODEL FOR ELECTRICAL CIRCUITS WITH TRANSMISSION LINES TIMO REIS Abstract. In this paper a model of linear electrical circuits with transmission lines is de. Nowadays, electrical circuits consist of a very large number ( 107 ) of components like resistors
A Circuit Level Fault Model for Resistive Shorts of MOS Gate Oxide , Wangqi Qiu
Walker, Duncan M. "Hank"
A Circuit Level Fault Model for Resistive Shorts of MOS Gate Oxide Xiang Lu , Zhuo Li , Wangqi Qiu shorts to changes in the nominal circuit. Hao and McCluskey [5] studied the logic and delay behavior of resistive shorts. Their circuit level fault model is shown in Figure 1, which covers the external behaviors
To appear at ASYNC'05 Modeling and Verifying Circuits Using Generalized Relative Timing
Bryant, Randal E.
To appear at ASYNC'05 Modeling and Verifying Circuits Using Generalized Relative Timing Sanjit A circuits based on the notion of generalized rela- tive timing. Generalized relative timing constraints can constraints. Circuits modeled using generalized relative timing constraints are formally encoded as timed
Y. K. Chin; D. A. Staton
2004-01-01
This work presents the transient thermal analysis of a permanent magnet (PM) synchronous traction motor. The motor has magnets inset into the surface of the rotor to give a maximum field-weakening range of between 2 and 2.5. Both analytically based lumped circuit and numerical finite element methods have been used to simulate the motor. A comparison of the two methods
A MOS Transistor Model for Mixed Analog-digital Circuit Design and Simulation
Matthias Bucher; Christophe Lallement; François Krummenacher; Christian Enz
In the design cycle of complex integrated circuits, the compact device simulation models are the privileged vehicle of information\\u000a between the foundry and the designer. Effective circuit design, particularly in the context of analog and mixed analog-digital\\u000a circuits using silicon CMOS technology, requires a MOS transistor (MOST) circuit simulation model well adapted both to the\\u000a technology and to the designer’s
Lightning Modelling: From 3D to Circuit Approach
NASA Astrophysics Data System (ADS)
Moussa, H.; Abdi, M.; Issac, F.; Prost, D.
2012-05-01
The topic of this study is electromagnetic environment and electromagnetic interferences (EMI) effects, specifically the modelling of lightning indirect effects [1] on aircraft electrical systems present on deported and highly exposed equipments, such as nose landing gear (NLG) and nacelle, through a circuit approach. The main goal of the presented work, funded by a French national project: PREFACE, is to propose a simple equivalent electrical circuit to represent a geometrical structure, taking into account mutual, self inductances, and resistances, which play a fundamental role in the lightning current distribution. Then this model is intended to be coupled to a functional one, describing a power train chain composed of: a converter, a shielded power harness and a motor or a set of resistors used as a load for the converter. The novelty here, is to provide a pre-sizing qualitative approach allowing playing on integration in pre-design phases. This tool intends to offer a user-friendly way for replying rapidly to calls for tender, taking into account the lightning constraints. Two cases are analysed: first, a NLG that is composed of tubular pieces that can be easily approximated by equivalent cylindrical straight conductors. Therefore, passive R, L, M elements of the structure can be extracted through analytical engineer formulas such as those implemented in the partial element equivalent circuit (PEEC) [2] technique. Second, the same approach is intended to be applied on an electrical de-icing nacelle sub-system.
DISSECTING OCD CIRCUITS: FROM ANIMAL MODELS TO TARGETED TREATMENTS.
Ahmari, Susanne E; Dougherty, Darin D
2015-08-01
Obsessive-compulsive disorder (OCD) is a chronic, severe mental illness with up to 2-3% prevalence worldwide. In fact, OCD has been classified as one of the world's 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms.([1]) Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. PMID:25952989
Magnetic circuit of a contactless torque sensor for electric power steering
NASA Astrophysics Data System (ADS)
Fröhlich, Ekkehart; Jerems, Frank
Modern passenger cars are increasingly equipped with electromechanical steering assist rather than hydraulic systems known for many decades. Major benefits are reduced fuel consumption (up to 0.2l/100 km) and increased functionality. As such a system reacts to the drivers input in terms of steering torque or steering effort, a sensor is required that accurately measures the steering torque. Valeo has adopted a magnetic technology and has improved the performance by adding specially designed flux concentration devices. The magnetic circuit consists of a multi-pole ring magnet and a pair of ring-shaped soft magnetic parts rotating together with the steering shaft and an additional pair of soft magnetic flux concentration devices which are fixed stationary inside the housing. The steering torque causes a relative twist between magnet and the soft magnetic rings, therefore implementing a proportional magnetisation of the latter. A U-shape was chosen for the flux concentration devices in order to compensate mechanical tolerances of the system. The main focus of this paper will be on the tolerance behaviour of the sensor system and the impact of the flux concentration devices. Because of the nonlinear nature of the magnetisation curve of the NiFe alloy used extensive 3D FEM simulation was necessary. Simulation enables us to have a look inside the soft magnetic material and predict the spatial magnetisation distribution with the benefit of avoiding saturation. The result is an optimised sensor, which meets both the harsh environmental conditions inside the motor compartment as well as the cost pressure in the automotive business.
Modeling of magnetic cloud expansion
NASA Astrophysics Data System (ADS)
Vandas, Marek; Romashets, Eugene; Geranios, Athanassios
2015-04-01
A model of an expanding elliptic cylindrical force-free flux rope is used to interpret in-situ magnetic cloud observations by spacecraft. Input quantities are measurements of magnetic field components and velocity magnitudes along a spacecraft trajectory inside a magnetic cloud. During the fitting procedure flux-rope geometric parameters and cloud expansion velocity are determined. Observed separate velocity components are not used in the fitting procedure, but in radial (expansion) velocity construction which is compared to model one to test our model more strictly. 24 magnetic clouds with clearly expressed expansion were fitted by the model. Radial velocity profiles qualitatively correspond to model ones in majority of cases (83%), in more than half of them (58%) quantitatively.
Solar Array Panel Equivalent Circuit Model for Transient Analysis of Electrostatic Discharge
NASA Astrophysics Data System (ADS)
Maeshima, Junji; Cho, Mengu
The increase of spacecraft power increases the risk of electrostatic discharges on solar array panel. The discharge current may induce surge voltage and current at the power control electronics or the spacecraft payload. In order to study the surge effect via analysis, we need an equivalent circuit model of spacecraft, especially solar paddle circuit. We make an equivalent circuit of solar array string by a combination of simple LCR circuit, suitable for simulation via an electronic circuit simulation software (SPICE). The circuit is verified against the impedance over the wide range up to several megahertz. The circuit response to a pulse waveform is also verified. Surge voltage generated by a flashover current extending to 3.4m x 2.1m is studied using the equivalent circuit of a solar paddle. The flashover propagation is modeled by turning on parallel switches with time delays. Surge voltage of 20V or higher is expected to occur across the spacecraft load.
Characterization, Modeling and Circuit Design of Gallium-Arsenide Mesfet's.
NASA Astrophysics Data System (ADS)
Lee, Kang Woo
Gallium Arsenide (GaAs) has several advantages over Silicon (Si), such as high mobility, high saturation velocity, exceptional radiation hardness, and wide operating -temperature range. The planar GaAs device and integrated -circuit technology has been progressing for last twenty years. The early stage of development was very discouraging, because a native oxide and well-controlled impurity diffusion processes were not available in GaAs. The development of the Schottky-barrier Field-Effect Transistor (MESFET) in 1970 opened a new era for GaAs as a high-speed technology. Ion -implantation technology has been developed to replace the lacking diffusion technology. A few years ago, the first GaAs IC of LSI complexity with a speed performance about 10 times higher at the same power consumption than the best equivalent circuit available in silicon technology was reported. This remarkable evolution of high performance GaAs IC's is the result of continuous progress in material, process technology, and circuit design. Accurate device characterization and modeling are essential to the development of IC technology, simulation and design of GaAs IC's. A new technique which allows one to deduce the low-field mobility profiles under the gate of an ion-implanted GaAs MESFET with about 1(mu)m gate length has been developed. The new technique is based on measurements of the transconductance and the series resistances at very low drain-to-source voltages when the field in the conducting channel is much smaller than the saturation field and the Shockley model is applicable. New interpretation of "End" resistance measurement is described and this theory is applied to measure the source, drain, and gate series resistances. The electron saturation velocity was also obtained using "end" resistance method. The analytical models for the calculation of the current-voltage characteristics of ion-implanted GaAs MESFET's are described. The capacitance-voltage model is described, taking into account the pinch-off phenomena. These models are compared with the SPICE J-FET model. The scaling rules of the SPICE J-FET parameters are described. The simulations, designs, process, and test results of GaAs circuit families such as Schottky Diode FET Logic (SDFL), Direct Coupled FET Logic (DCFL), Buffered FET Logic (BFL), Source Coupled FET logic (SCFL), and Low Pinch-off FET Logic (LPFL) are presented.
Video Article Modeling Biological Membranes with Circuit Boards and Measuring Electrical
Cooper, Robin L.
Video Article Modeling Biological Membranes with Circuit Boards and Measuring Electrical Signals of electrical circuits is a valuable tool for understanding and conceptualizing many aspects of physiological along a nerve fiber. A word of caution: In standard everyday electrical circuits composed of metal wires
Universal analytic model for tunnel FET circuit simulation
NASA Astrophysics Data System (ADS)
Lu, Hao; Esseni, David; Seabaugh, Alan
2015-06-01
A simple analytic model based on the Kane-Sze formula is used to describe the current-voltage characteristics of tunnel field-effect transistors (TFETs). This model captures the unique features of the TFET including the decrease in subthreshold swing with drain current and the superlinear onset of the output characteristic. The model also captures the ambipolar current characteristic at negative gate-source bias and the negative differential resistance for negative drain-source biases. A simple empirical capacitance model is also included to enable circuit simulation. The model has fairly general validity and is not specific to a particular TFET geometry. Good agreement is shown with published atomistic simulations of an InAs double-gate TFET with gate perpendicular to the tunnel junction and with numerical simulations of a broken-gap AlGaSb/InAs TFET with gate in parallel with the tunnel junction.
Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits
Watanabe, Leandro H.; Myers, Chris J.
2014-01-01
This paper describes a hierarchical stochastic simulation algorithm, which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method. PMID:25506588
Modeling and simulation of insulated-gate field-effect transistor switching circuits
HAROLD SHICHMAN; DAVID A. HODGES
1968-01-01
A new equivalent circuit for the insulated-gate field-effect transistor (IGFET) is described. This device model is particularly useful for computer-aided analysis of monolithic integrated IGFET switching circuits. The results of computer simulations using the new equivalent circuit are in close agreement with experimental observations. As an example of a practical application, simulation results are shown for an integrated circuit IGFET
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; D?Ostilio, Kevin; Rothwell, John C.; Murphy, David L.
2014-10-01
Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.
D’Ostilio, Kevin; Rothwell, John C; Murphy, David L
2014-01-01
Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286
Simulations of magnetic field gradients due to micro-magnets on a triple quantum dot circuit
Poulin-Lamarre, G. [National Research Council of Canada, Ottawa, On., Canada, K1A-0R6 and Département de physique, Université de Sherbrooke, Sherbrooke, Qc. J1K-2R1 (Canada); Bureau-Oxton, C. [Département de physique, Université de Sherbrooke, Sherbrooke, Qc. J1K-2R1 (Canada); Kam, A. [National Research Council of Canada, Ottawa, On. K1A-0R6 (Canada); Zawadzki, P.; Aers, G. [National Research Council of Canada, Ottawa, On. K1A-0R6 (Canada); Studenikin, S. [National Research Council of Canada, Ottawa, On.K1A-0R6 (Canada); Pioro-Ladrière, M. [Département de physique, Université de Sherbrooke, Sherbrooke, Qc. J1K-2R1 (Canada); Sachrajda, A. S. [National Research Council of Canada, Ottawa, On., Canada, K1A-0R6 and Département de physique, Université de Sherbrooke, Sherbrooke, Qc. J1K-2R1 (Canada)
2013-12-04
To quantify the effects of local magnetic fields on triple quantum dots, the Heisenberg Hamiltonian has been diagonalized for three electrons coupled via the exchange interaction. In particular, we have investigated different geometries of micro-magnets located on top of the triple dot in order to optimize the field gradient characteristics. In this paper, we focus on two geometries which are candidates for an addressable EDSR triple quantum dot device.
NASA Astrophysics Data System (ADS)
Xia, Chun; Keppens, Rony
2014-01-01
The magnetic configuration hosting prominences can be a large-scale helical magnetic flux rope. As a necessary step towards future prominence formation studies, we report on a stepwise approach to study flux rope formation. We start with summarizing our recent three-dimensional (3D) isothermal magnetohydrodynamic (MHD) simulation where a flux rope is formed, including gas pressure and gravity. This starts from a static corona with a linear force-free bipolar magnetic field, altered by lower boundary vortex flows around the main polarities and converging flows towards the polarity inversion. The latter flows induce magnetic reconnection and this forms successive new helical loops so that a complete flux rope grows and ascends. After stopping the driving flows, the system relaxes to a stable helical magnetic flux rope configuration embedded in an overlying arcade. Starting from this relaxed isothermal endstate, we next perform a thermodynamic MHD simulation with a chromospheric layer inserted at the bottom. As a result of a properly parametrized coronal heating, and due to radiative cooling and anisotropic thermal conduction, the system further relaxes to an equilibrium where the flux rope and the arcade develop a fully realistic thermal structure. This paves the way to future simulations for 3D prominence formation.
Wideband passive multiport model order reduction and realization of RLCM circuits
Zhenyu Qi; Hao Yu; Pu Liu; Sheldon X.-D. Tan; Lei He
2006-01-01
This paper presents a novel compact passive modeling technique for high-performance RF passive and interconnect circuits modeled as high-order resistor-inductor-capacitor-mutual inductance circuits. The new method is based on a recently proposed general s-domain hierarchical modeling and analysis method and vector potential equivalent circuit model for self and mutual inductances. Theoretically, this paper shows that s-domain hierarchical reduction is equivalent to
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.
Digital quantum simulation of fermionic models with a superconducting circuit.
Barends, R; Lamata, L; Kelly, J; García-Álvarez, L; Fowler, A G; Megrant, A; Jeffrey, E; White, T C; Sank, D; Mutus, J Y; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Hoi, I-C; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Vainsencher, A; Wenner, J; Solano, E; Martinis, John M
2015-01-01
One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions. PMID:26153660
Digital quantum simulation of fermionic models with a superconducting circuit
NASA Astrophysics Data System (ADS)
Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.
2015-07-01
One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions.
Delay modeling and glitch estimation for CMOS circuits
Shiau, Yan-Chyuan
1988-01-01
. Y. H. Kim, "ELOGIC: A relaxation-based switch-level simulation technique", UCB/ERL M86/2, University of California, Berkeley, 1986. B. R. Chawala, H. K. Gummel, and P. Kozak, "MOTIS - an MOS timing simulator. " IEEE Trans. CAS-22, pp. 901-910, Dec...DELAY MODELING AND GLITCH ESTIMATION FOR CMOS CIRCUITS A Thesis by YAN-CHYUAN SHIAU Submitted to the Graduate College of Texas A8rM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1988 Major...
Maxwell's fluid model of magnetism
Robert Brady; Ross Anderson
2015-02-20
In 1861, Maxwell derived two of his equations of electromagnetism by modelling a magnetic line of force as a `molecular vortex' in a fluid-like medium. Later, in 1980, Berry and colleagues conducted experiments on a `phase vortex', a wave geometry in a fluid which is analogous to a magnetic line of force and also exhibits behaviour corresponding to the quantisation of magnetic flux. Here we unify these approaches by writing down a solution to the equations of motion for a compressible fluid which behaves in the same way as a magnetic line of force. We then revisit Maxwell's historical inspiration, namely Faraday's 1846 model of light as disturbances in lines of force. Using our unified model, we show that such disturbances resemble photons: they are polarised, absorbed discretely, obey Maxwell's full equations of electromagnetism to first order, and quantitatively reproduce the correlation that is observed in the Bell tests.
Mahmoodi, Hamid
. This reduces the effective switching capacitance and, hence, the dynamic power dissipation of a circuitFET logic gates to pre- dict their performance. An efficient circuit synthesis methodology comprised technology with no performance penalty. Index Terms--Analytical modeling, circuit synthesis, CMOS, Fin
A Circuit Level Fault Model for Resistive Opens and Bridges , Xiang Lu+
Walker, Duncan M. "Hank"
A Circuit Level Fault Model for Resistive Opens and Bridges Zhuo Li+ , Xiang Lu+ , Wangqi Qiu. Traditional open and bridge fault models are incomplete because only the functional fault or a subset of delay fault are modeled. In this paper, we propose a circuit level model for resistive open and bridge faults
Characteristics and computer model simulation of magnetic damping forces in maglev systems
He, J.L.; Rote, D.M.; Chen, S.S.
1994-05-01
This report discusses the magnetic damping force in electrodynamic suspension (EDS) maglev systems. The computer model simulations, which combine electrical system equations with mechanical motion equations on the basis of dynamic circuit theory, were conducted for a loop-shaped coil guideway. The intrinsic damping characteristics of the EDS-type guideway are investigated, and the negative damping phenomenon is confirmed by the computer simulations. The report also presents a simple circuit model to aid in understanding damping-force characteristics.
Modeling of magnetic island formation in magnetic reconnection experiment
Ji, Hantao
with larger normalized helicity. It also turns out that no magnetic island would be generated process, the re- leased magnetic energy is converted into kinetic and thermal energies, resultingModeling of magnetic island formation in magnetic reconnection experiment T.-H. Watanabe, T
NASA Astrophysics Data System (ADS)
Inoue, Tsuyoshi; Kobayashi, Mako; Ishida, Yukio
This paper investigates the vibration of one-degree-of-freedom magnetically levitated body. Especially, the influences of the nonlinearity of the system and the dynamical characteristics of electric circuit and magnetic circuit are focused. This paper's object is extended to the case that electric current supplied from a power-operational amplifier is limited in a positive range. Thus, the system may have piecewise nonlinearity when the vibration amplitude is large. The nonlinear analysis for this system is discussed. The dynamical characteristics of the system are clarified by numerical simulation and theoretical analysis. These obtained results are confirmed by experiment.
Single-pass beam measurements for the verification of the LHC magnetic model
Calaga, R.; Giovannozzi, M.; Redaelli, S.; Sun, Y.; Tomas, R.; Venturini-Delsolaro, W.; Zimmermann, F.
2010-05-23
During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator control system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.
NASA Technical Reports Server (NTRS)
Bailey, R. F.; Reekstin, J. P.
1974-01-01
The fabrication yield of an on-chip modifiable redundant circuit design for a 100M bit serial shift register is evaluated. The yield model is a redundancy design in which there is a primary loop and a set of secondary loops which can be enabled/disabled without introducing blanks to the data stream. This function has a finite yield, the loop-modification yield factor, which must be greater than 0.9 to make the system more economical than the simple nonredundant design. It is further established that small loop capacities greatly degrade the yield because of the effect of the modification yield factor, while large loop capacities degrade the yield because of defects in the operating area. As the modification yield increases the optimum loop capacity decreases. An optimum value for the number of redundant loops exists for each loop capacity. Other factors that affect the yield are the garnet film and the processed circuit.
Lunar magnetism. [primordial core model
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1975-01-01
It is shown, for a very simple model of the moon, that the existence of a primordial core magnetic field would give rise to a present day nonzero dipole external field. In the investigation a uniformly magnetized core embedded in a permeable mantle is considered. The significance of the obtained results for the conclusions reported by Runcorn (1975) is discussed. Comments provided by Runcorn to the discussion are also presented.
Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Poto?nik, A.; Mezzacapo, A.; Las Heras, U.; Lamata, L.; Solano, E.; Filipp, S.; Wallraff, A.
2015-04-01
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.
AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS
Peng, Huei
AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS-Circuit-Voltage (OCV) is an essential part of battery models for state-of-charge (SOC) estimation. In this paper, we for battery state-of-health monitoring. In particular, the new OCV model can be used for incremental capacity
Circuit modeling based optimization of high speed carrier depletion silicon modulators
NASA Astrophysics Data System (ADS)
Hosseini, Seyedreza; Jamshidi, Kambiz
2015-05-01
Simple RC model, which only considered PN junction capacitance and series resistor, and complete circuit model considering parasitic capacitances of a carrier depletion based optical modulators are studied. Modulation efficiency and bandwidth of the modulators are investigated using analytical models and numerical simulations respectively. Through particle swarm optimization (PSO) a repetitive algorithm is applied to find the feasible maximum of circuit bandwidth.
Extraction of Gate Level Models from Transistor Circuits by Four-Valued Symbolic Analysis
Bryant, Randal E.
Extraction of Gate Level Models from Transistor Circuits by Four-Valued Symbolic Analysis Randal E-level representation of an MOS transistor circuit. The resulting model contains only four-valued unit and zero delay transistors, stored charge, and multiple signal strengths. It produces models with size comparable to ones
A simple electric circuit model for proton exchange membrane fuel cells
Stavros Lazarou; Eleftheria Pyrgioti; Antonio T. Alexandridis
2009-01-01
A simple and novel dynamic circuit model for a proton exchange membrane (PEM) fuel cell suitable for the analysis and design of power systems is presented. The model takes into account phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The proposed circuit model includes three resistors to approach adequately these phenomena; however,
Circuital model for the spherical geodesic waveguide perfect drain
NASA Astrophysics Data System (ADS)
González, Juan C.; Grabovi?ki?, Dejan; Benítez, Pablo; Miñano, Juan C.
2012-08-01
The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to ?/3000.
Circuital model for the Maxwell Fish Eye perfect drain
Gonzalez, Juan C; Minano, Juan C; Benitez, Pablo
2012-01-01
Perfect drain for the Maxwell Fish Eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex electrical permittivity that depends on frequency. However, this material is only a theoretical material, so it can not be used in practical devices. Recently, the perfect drain has been claimed as necessary to achieve super-resolution [Leonhard 2009, New J. Phys. 11 093040], which has increased the interest for practical perfect drains suitable for manufacturing. Here, we analyze the super-resolution properties of a device equivalent to the MFE, known as Spherical Geodesic Waveguide (SGW), loaded with the perfect drain. In the SGW the source and drain are implemented with coaxial probes. The perfect drain is realized using a circuit (made of a resistance and a capacitor) connected to the drain coaxial probes. Super-resolution analysis for this device is done in Comso...
Experiments on Evolving Software Models of Analog Circuits
NASA Technical Reports Server (NTRS)
Lohn, Jason D.
1999-01-01
Analog circuits are of great importance in electronic system design since the world is fundamentally analog in nature. While the amount of digital design activity far outpaces that of analog design, most digital systems require analog modules for interfacing with the external world. It was recently estimated that approximately 60% of digital application- specific integrated circuit designs incorporated analog circuits. With challenging analog circuit design problems and few analog design engineers, there are economic reasons for automating the analog design process, especially time-to-market considerations. Techniques for analog circuit design automation began appearing about two decades ago. These methods incorporated heuristics [6], knowledge bases [1], simulated annealing [5], and other algorithms. Efforts using techniques from evolutionary computation began appearing over the last few years. These include the use of genetic algorithms to select electronic component values (for example, the resistance value of a resistor), to select circuit topologies, and to design amplifiers using a limited set of canned topologies [4]. A genetic programming-based analog circuit design system has been demonstrated in which the circuit sizes, component values, and the circuit topologies are determined automatically [3]. The genetic-algorithm systems typically represent circuit structures as vectors of parameters encoded in binary strings, while the genetic programming system manipulates tree data structures.
Modeling magnetically driven synthetic microcapsules
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Alexeev, Alexander
2009-11-01
Using computer simulations and theory, we examine how to design magnetically-responsive synthetic microcapsules that able to move in a steady manner in microfluidic channels. These compliant fluid-filled capsules encompass superparamagnetic nanoparticles in their solid shells and, thereby, can be manipulated by alternating magnetic forces. To model the magnetic capsules propelled in fluid-filled microchannels, we employ a hybrid computational method for fluid-structure interactions. This method integrates the lattice Boltzmann model for the fluid dynamics and the lattice spring model for the micromechanics of solids. We show that in circulating magnetic field the capsules propel along sticky microchannel walls. The direction of capsule motion depends on the relative location of the solid surface, whereas the propulsion speed can be regulated through the wall adhesiveness, amplitude and frequency of magnetic forces, and elasticity of capsule's shell. The results indicate that such mobile fluid-filled containers could find application in lab-on-chip systems for controlled delivery of minute amounts of fluidic samples.
How to model connection wires in a circuit: From physical vector fields to circuit scalar quantities
NASA Astrophysics Data System (ADS)
Vandenbosch, Guy A. E.
2013-09-01
Starting from the basic equations of electromagnetism, Maxwell's equations, the concepts of inductive coupling in a loop and capacitive coupling between two pieces of wire are formally explained. Inductive coupling is linked to Faraday's law and capacitive coupling to the Ampere-Maxwell law. Capacitive coupling is also inherently linked to the phenomenon of surface charges, which has been recently studied thoroughly in the literature, especially in static situations. It is shown that, when applied to the connecting wires in a circuit at higher frequencies, simple circuit theory must be significantly modified in order to take into account the effects of the two types of coupling between the wires.
Swidzinski, Jan
1997-01-01
transistors, statistical i-nodeling techniques for integrated circuits, statistical behavioral modeling of analog functional blocks, and finally statistical behavioral system level modeling and simulation. A full statistical model for the behavioral parameters...
A functional circuit model of interaural time difference processing.
McColgan, Thomas; Shah, Sahil; Köppl, Christine; Carr, Catherine; Wagner, Hermann
2014-12-01
Inputs from the two sides of the brain interact to create maps of interaural time difference (ITD) in the nucleus laminaris of birds. How inputs from each side are matched with high temporal precision in ITD-sensitive circuits is unknown, given the differences in input path lengths from each side. To understand this problem in birds, we modeled the geometry of the input axons and their corresponding conduction velocities and latencies. Consistent with existing physiological data, we assumed a common latency up to the border of nucleus laminaris. We analyzed two biological implementations of the model, the single ITD map in chickens and the multiple maps of ITD in barn owls. For binaural inputs, since ipsi- and contralateral initial common latencies were very similar, we could restrict adaptive regulation of conduction velocity to within the nucleus. Other model applications include the simultaneous derivation of multiple conduction velocities from one set of measurements and the demonstration that contours with the same ITD cannot be parallel to the border of nucleus laminaris in the owl. Physiological tests of the predictions of the model demonstrate its validity and robustness. This model may have relevance not only for auditory processing but also for other computational tasks that require adaptive regulation of conduction velocity. PMID:25185809
The Ebers-Moll model for magnetic bipolar transistors
NASA Astrophysics Data System (ADS)
Fabian, Jaroslav; Žuti?, Igor
2005-03-01
The equivalent electrical circuit of the Ebers-Moll-type is introduced for magnetic bipolar transistors. In addition to conventional diodes and current sources, the new circuit comprises two novel elements due to spin-charge coupling. A classification scheme of the operating modes of magnetic bipolar transistors in the low bias regime is presented.
The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model
NASA Astrophysics Data System (ADS)
Wenliang, Zhang; Yangjun, Zhu; Shuojin, Lu; Xiaoli, Tian
2014-02-01
A simple equivalent circuit model is proposed according to the device structure of reverse conducting insulated gate bipolar transistors (RC-IGBT). Mathematical derivation and circuit simulations indicate that this model can explain the snap-back effect (including primary snap-back effect, secondary snap-back effect, and reverse snap-back effect) and hysteresis effect perfectly.
A circuit model of the temporal pattern generator of Caenorhabditis egg-laying behavior
Schafer, William R.
A circuit model of the temporal pattern generator of Caenorhabditis egg-laying behavior stochastic equations can be used to simulate the time course of egg-laying according to our circuit model: p0 of egg-laying events. 1 #12;2 PARAMETERS 2 2 Parameters The constant probability p0 characterizes
CREATING DYNAMIC EQUIVALENT PV CIRCUIT MODELS WITH IMPEDANCE SPECTROSCOPY FOR ARC FAULT MODELING
CREATING DYNAMIC EQUIVALENT PV CIRCUIT MODELS WITH IMPEDANCE SPECTROSCOPY FOR ARC FAULT MODELING ® (NEC® ) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc of the arcing frequencies through PV components despite the potential for modules and other PV components
Zakaria, W.S. [United Arab Emirates Univ., El-Ain (United Arab Emirates)] [United Arab Emirates Univ., El-Ain (United Arab Emirates); Alwash, S.R. [Jordan Univ. of Science and Technology, Irbid (Jordan)] [Jordan Univ. of Science and Technology, Irbid (Jordan); Shaltout, A.A. [Cairo Univ. (Egypt)] [Cairo Univ. (Egypt)
1996-09-01
A new construction for the rotor windings of balanced wound-rotor induction motors employed in the slip-energy recovery drives is proposed, in this paper, to reduce the time harmonics which are commonly generated in the machine. The propose machine has a double-circuit in the rotor. One circuit is star connected while the other is delta connected. Each of these two circuits is connected to a diode-bride rectifier to achieve a twelve-pulse operation characteristics. The main objective of this paper is to develop a new model which is capable of simulating the proposed machine, neglecting nonlinearities due to magnetic saturation, and its associated converters. Such a model is further complicated due to the presence of the two rotor circuits and their mutual interaction.
Goetz, S M; Pfaeffl, M; Huber, J; Singer, M; Marquardt, R; Weyh, T
2012-01-01
Magnetic stimulation pulse sources are very inflexible high-power devices. The incorporated circuit topology is usually limited to a single pulse type. However, experimental and theoretical work shows that more freedom in choosing or even designing waveforms could notably enhance existing methods. Beyond that, it even allows entering new fields of application. We propose a technology that can solve the problem. Even in very high frequency ranges, the circuitry is very flexible and is able generate almost every waveform with unrivaled accuracy. This technology can dynamically change between different pulse shapes without any reconfiguration, recharging or other changes; thus the waveform can be modified also during a high-frequency repetitive pulse train. In addition to the option of online design and generation of still unknown waveforms, it amalgamates all existing device types with their specific pulse shapes, which have been leading an independent existence in the past years. These advantages were achieved by giving up the common basis of all magnetic stimulation devices so far, i.e., the high-voltage oscillator. Distributed electronics handle the high power dividing the high voltage and the required switching rate into small portions. PMID:23366977
Roldán, A., E-mail: amroldan@ugr.es; Roldán, J. B. [Department of Electronics and Computer Technology, University of Granada (Spain); Reig, C. [Department of Electronic Engineering, University of Valencia (Spain); Cardoso, S. [INESC-MN and IN, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Instituto Superior Técnico (IST), Av. Rovisco Pais, 1000-029 Lisbon (Portugal); Cardoso, F. [INESC-MN and IN, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Ferreira, R. [International Iberian Nanotechnology Laboratory, Braga (Portugal); Freitas, P. P. [INESC-MN and IN, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); International Iberian Nanotechnology Laboratory, Braga (Portugal)
2014-05-07
Full instrumentation bridges based on spin valve of giant magnetoresistance and magnetic tunnel junction devices have been microfabricated and experimentally characterized from the DC and noise viewpoint. A more realistic model of these devices was obtained in this work, an electrical and thermal model previously developed have been improved in such a way that noise effects are also included. We have implemented the model in a circuit simulator and reproduced the experimental measurements accurately. This provides a more realistic and complete tool for circuit design where magnetoresistive elements are combined with well-known complementary metal–oxide–semiconductor modules.
NASA Astrophysics Data System (ADS)
Mian, Muhammad Umer; Dennis, John Ojur; Khir, M. H. Md.; Riaz, Kashif; Iqbal, Abid; Bazaz, Shafaat A.; Tang, T. B.
2015-07-01
Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.
Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.
Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan
2011-06-01
Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.
Large signal circuit model of parallel-plate ferroelectric varactors
NASA Astrophysics Data System (ADS)
Rundqvist, P.; Vorobiev, A.; Kollberg, E.; Gevorgian, S.
2006-10-01
A simple one port reflection method is proposed to measure the large signal permittivity and loss tangent of ferroelectric films. The microwave power levels are changed in the range from -10to17dBm at 0V dc bias. Microwave power causes two effects: (i) generation of higher order harmonics due to the dielectric nonlinearities and (ii) heating of the ferroelectric film. The harmonic generation is measured as loss since the instruments (network analyzer and LCR meter) do not detect the higher order harmonics. The heating, on the contrary, is found to cause a reduction of observed microwave losses and at higher microwave power becomes dominant, partly compensating for the loss increase caused by harmonic generation. The heating effect is substantially reduced if the applied microwave signal is pulsed. The results are used to extract parameters for a simplified large signal circuit model of the thin film parallel-plate ferroelectric varactors in the frequency range of 10-45GHz. Only a limited number of measurements are used in modeling. The model is useful for zero bias mixer (up and down converter) and harmonic generator applications of ferroelectric varactors.
Zhou, Jingyu; Tian, Shulin; Yang, Chenglin
2014-01-01
Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments. PMID:25147853
A Systematic Approach to Modeling Impedances and Current Distribution in Planar Magnetics
Perreault, Dave
circuit model that captures the impact of skin and proximity effects on current distribution as switching frequencies increase [5][7]. However, the increasing skin and proximity effects and the resultedA Systematic Approach to Modeling Impedances and Current Distribution in Planar Magnetics Minjie
Development of magnetic force modeling equipment for magnetic levitation system
Ji-Hyuk Yang; Young-Sam Lee; Oh-Kyu Kwon
2010-01-01
In this paper, we propose a modeling equipment that obtains every equilibrium point of a magnetic levitation system automatically. To obtain every equilibrium point, we develop an automatic modeling equipment that measures the magnetic force exerted on the levitation object, the coil current of electromagnet, and the distance between the levitation object and the electromagnet. The modeling equipment is composed
Li, Xin
Post-Silicon Performance Modeling and Tuning of Analog/Mixed- Signal Circuits via Bayesian Model Avenue, Pittsburgh, PA 15213, USA xinli@ece.cmu.edu ABSTRACT Post-silicon tuning has recently emerged for efficient post-silicon performance modeling and tuning of analog and mixed-signal (AMS) circuits. The key
Bond, Bradley N.
This paper presents a system identification technique for generating stable compact models of typical analog circuit blocks in radio frequency systems. The identification procedure is based on minimizing the model error ...
An engineering model of lower thalamo-cortico-basal ganglionic circuit function
Lim, Eugene J. (Eugene Jungsud), 1980-
2003-01-01
An engineering model of lower thalamo-cortico-basal ganglionic circuit functionality was extended and tested. This model attempts to explain the circuitry of the basal ganglia, examine its functional properties, and integrate ...
Reliability-yield allocation for semiconductor integrated circuits: modeling and optimization
Ha, Chunghun
2005-11-01
This research develops yield and reliability models for fault-tolerant semiconductor integrated circuits and develops optimization algorithms that can be directly applied to these models. Since defects cause failures in microelectronics systems...
NASA Astrophysics Data System (ADS)
Yuan, Fang; Wang, Guang-Yi; Wang, Xiao-Yuan
2015-06-01
To develop real world memristor application circuits, an equivalent circuit model which imitates memductance (memory conductance) of the HP memristor is presented. The equivalent circuit can be used for breadboard experiments for various application circuit designs of memristor. Based on memductance of the realistic HP memristor and Chua’s circuit a new chaotic oscillator is designed. Some basic dynamical behaviors of the oscillator, including equilibrium set, Lyapunov exponent spectrum, and bifurcations with various circuit parameters are investigated theoretically and numerically. To confirm the correction of the proposed oscillator an analog circuit is designed using the proposed equivalent circuit model of an HP memristor, and the circuit simulations and the experimental results are given. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271064 and 60971046), the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ12F01001), and the Program for Zhejiang Leading Team of Science and Technology Innovation, China (Grant No. 2010R50010-07).
Modeling Magnetic Properties in EZTB
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul
2007-01-01
A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.
Log-Domain Circuit Models of Chemical Reactions Soumyajit Mandal and Rahul Sarpeshkar
Sarpeshkar, Rahul
Log-Domain Circuit Models of Chemical Reactions Soumyajit Mandal and Rahul Sarpeshkar Department to networks of chemical reactions. Our circuits can be used for transient and steady-state simulations the energy barrier of a chemical reaction, exponentially changing its speed. In an analogous fashion, gate
SELF-HEATING IN A COUPLED THERMO-ELECTRIC CIRCUIT-DEVICE MODEL
Jüngel, Ansgar
is discretized in time by the 2-stage backward difference for- mula and in space by a mixed finite-element method. The electric circuit is modeled by the network equations from modified nodal analysis coupled to a thermal. Energy-transport equations, lattice heating, thermal network, circuit equations, mixed finite
Modeling of Large Scale RF-MEMS Circuits Using Efficient Time-Domain Techniques
Tentzeris, Manos
Modeling of Large Scale RF-MEMS Circuits Using Efficient Time-Domain Techniques N. Bushyager, E Engineering Georgia Institute of Technology Atlanta, GA 30332-0250, USA Abstract RF-MEMS design is made difficult due to the lack of tools capable of simulating both MEMS devices and their surrounding circuits
Ham, Donhee
- coil array circuit incorporated in the IC generates spatially-pat- terned microscopic magnetic fields for Magnetic Manipulation of Biological Cells Hakho Lee, Yong Liu, Student Member, IEEE, Robert M. Westervelt system for magnetic manipulation of biological cells. The hybrid system consists of an IC
Strongly magnetized classical plasma models
NASA Technical Reports Server (NTRS)
Montgomery, D.; Peyraud, J.; Dewitt, C.
1974-01-01
Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model).
Log-domain circuit models of chemical reactions
Mandal, Soumyajit
We exploit the detailed similarities between electronics and chemistry to develop efficient, scalable bipolar or subthreshold log-domain circuits that are dynamically equivalent to networks of chemical reactions. Our ...
Advanced modeling of planarization processes for integrated circuit fabrication
Fan, Wei, Ph. D. Massachusetts Institute of Technology
2012-01-01
Planarization processes are a key enabling technology for continued performance and density improvements in integrated circuits (ICs). Dielectric material planarization is widely used in front-end-of-line (FEOL) processing ...
Basic neuron model electrical equivalent circuit: an undergraduate laboratory exercise.
Dabrowski, Katie M; Castaño, Diego J; Tartar, Jaime L
2013-01-01
We developed a hands-on laboratory exercise for undergraduate students in which they can build and manipulate a neuron equivalent circuit. This exercise uses electrical circuit components that resemble neuron components and are easy to construct. We describe the methods for creating the equivalent circuit and how to observe different neuron properties through altering the structure of the equivalent circuit. We explain how this hands-on laboratory activity allows for the better understanding of this fundamental neuroscience concept. At the conclusion of this laboratory exercise, undergraduate students will be able to apply the principles of Ohm's law, cable theory with regards to neurons, and understand the functions of resistance and capacitance in a neuron. PMID:24319391
Astrocyte regulation of sleep circuits: experimental and modeling perspectives
Halassa, Michael M.
Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates ...
Digital quantum simulation of fermionic models with a superconducting circuit
R. Barends; L. Lamata; J. Kelly; L. García-Álvarez; A. G. Fowler; A. Megrant; E. Jeffrey; T. C. White; D. Sank; J. Y. Mutus; B. Campbell; Yu Chen; Z. Chen; B. Chiaro; A. Dunsworth; I. -C. Hoi; C. Neill; P. J. J. O'Malley; C. Quintana; P. Roushan; A. Vainsencher; J. Wenner; E. Solano; John M. Martinis
2015-01-30
Simulating quantum physics with a device which itself is quantum mechanical, a notion Richard Feynman originated, would be an unparallelled computational resource. However, the universal quantum simulation of fermionic systems is daunting due to their particle statistics, and Feynman left as an open question whether it could be done, because of the need for non-local control. Here, we implement fermionic interactions with digital techniques in a superconducting circuit. Focusing on the Hubbard model, we perform time evolution with constant interactions as well as a dynamic phase transition with up to four fermionic modes encoded in four qubits. The implemented digital approach is universal and allows for the efficient simulation of fermions in arbitrary spatial dimensions. We use in excess of 300 single-qubit and two-qubit gates, and reach global fidelities which are limited by gate errors. This demonstration highlights the feasibility of the digital approach and opens a viable route towards analog-digital quantum simulation of interacting fermions and bosons in large-scale solid state systems.
Swaminathan, Madhavan
Modeling RF Passive Circuits using Coupled Lines and Scalable Models Sidharth Dalmia, Sung Hwan Min.swaminathan@ee.gatech.edu Abstract Coupled line sections are critical structures in distributed RF and microwave passive circuits the building blocks for other passive structures such as spiral inductors, transformers and capacitors [1
NASA Astrophysics Data System (ADS)
Miyazaki, T.; Mifune, T.; Matsuo, T.; Shindo, Y.; Takahashi, Y.; Fujiwara, K.
2015-05-01
This paper describes the development of an efficient and accurate dynamic hysteresis model that combines the Cauer circuit representations with the play model. The physical meaning of the standard Cauer circuit is discussed and is used to derive a mathematical representation of hysteretic inductors. The iron-loss and hysteresis loops of silicon steel that were obtained using the proposed model agree with experimental data measured under sinusoidal and pulse width modulation excitations.
Tosi, Guilherme, E-mail: g.tosi@unsw.edu.au; Mohiyaddin, Fahd A.; Morello, Andrea, E-mail: a.morello@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney, New South Wales 2052, Australia. (Australia); Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, D-80799 Munich, Germany. (Germany)
2014-08-15
Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified {sup 28}Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.
Circuit models and SPICE macro-models for quantum Hall effect devices
Ortolano, Massimo
2015-01-01
Quantum Hall effect (QHE) devices are a pillar of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a systematic analysis of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided.
Circuit models and SPICE macro-models for quantum Hall effect devices
NASA Astrophysics Data System (ADS)
Ortolano, Massimo; Callegaro, Luca
2015-08-01
Precise electrical measurement technology based on the quantum Hall effect is one of the pillars of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a concise review of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided.
NASA Astrophysics Data System (ADS)
Jazebi, Saeed
This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the iron core magnetizing characteristic is modified with the accurate measurement of the air-core inductance. The air-core inductance is measured using a non-ideal low-power rectifier. Its dc output serves to drive the transformer into deep saturation, and its ripple provides low-amplitude variable excitation. The principal advantage of this method is its simplicity. To model the eddy current effects in the windings, a novel equivalent circuit is proposed. The circuit is derived from the principle of duality and therefore, matches the electromagnetic physical behavior of the transformer windings. It properly models the flux paths and current distribution from dc to MHz. The model is synthesized from a non-uniform concentric discretization of the windings. Concise guidelines are given to optimally calculate the width of the sub-divisions for various transient simulations. To compute the circuit parameters only information about the geometry of the windings and about their material properties is needed. The calculation of the circuit parameters does not require an iterative process. Therefore, the parameters are always real, positive, and free from convergence problems. The proposed model is tested with single-phase transformers for the calculation of magnetizing inrush currents, series ferroresonance, and Geomagnetic Induced Currents (GIC). The electromagnetic transient response of the model is compared to laboratory measurements for validation. Also, 3D finite element simulations are used to validate the electromagnetic behavior of the transformer model. Large manufacturer of transformers, power system designers, and electrical utility companies can benefit from the new model. It simplifies the design and optimization of the transformers' insulation, thereby reducing cost, and enhancing reliability of the system. The model could also be used for inrush current and differential protection studies, geomagnetic induced current studies, harmonic penetration studies, and switching transient studies.
Modeling and fault simulation of photovoltaic generation systems using circuit-based model
Kuei-Hsiang Chao; Ching-Ju Li; Sheng-Han Ho
2008-01-01
In this paper, a circuit-based simulation model of a photovoltaic (PV) panel using PSIM software package is first developed. Then, 3 kW PV arrays established using the proposed PSIM model with series and parallel connections are not only employed to represent its I-V and P-V characteristics at variable surface temperatures and isolations under normal operation, but also to carry out
Nuclear matter magnetization in the Skyrme model
Aguirre, R. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP, CCT-La Plata, CONICET (Argentina)
2011-05-15
The effects of an external magnetic field on the nuclear medium are studied within the Skyrme model of the nuclear interaction. The equation of state, spin polarization, and magnetization are evaluated at zero temperature for both neutron matter and isospin symmetric nuclear matter. We consider the anomalous magnetic moments of the nucleons and the quantization induced by a magnetic field over the proton energy spectrum. A comparison of two versions of the model, allowing or not for spontaneous magnetization, is performed. We cover a range of magnetic-field strengths and matter densities appropriate for astrophysical studies.
Darvishi, Mostafa; Blaquière, Yves; Thibeault, Claude
2015-01-01
This paper presents a novel circuit level model that explains and confirms the extra combinational delays in a SRAM-FPGA (Virtex-5) due to radiation, which matches the experimental results by proton irradiation at TRIUMF.
Yu, Guo
2011-02-22
the circuits are robust and optimized with consideration of parametric variations. This research presents innovative computer-aided design approaches to address three such problems: (1) large analog/mixed-signal performance modeling under process variations, (2...
Characterization and modeling of plasma etch pattern dependencies in integrated circuits
Abrokwah, Kwaku O
2006-01-01
A quantitative model capturing pattern dependent effects in plasma etching of integrated circuits (ICs) is presented. Plasma etching is a key process for pattern formation in IC manufacturing. Unfortunately, pattern dependent ...
Modeling of single-event effects in circuit-hardened high-speed SiGe HBT logic
Guofu Niu; Ramkumar Krithivasan; John D. Cressler; Paul Marshall; Cheryl Marshall; Robert Reed; David L. Harame
2001-01-01
This paper presents single-event effect (SEE) modeling results of circuit-hardened SiGe heterojunction bipolar transistor logic circuits. A simple equivalent circuit is proposed to model the ion-induced currents at all of the terminals, including the p-type substrate. The SEE sensitivity of a D-flip-flop was simulated using the proposed equivalent circuit. The simulation results are qualitatively consistent with earlier SEE testing results.
GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model
Gatto, Cheryl L.; Pereira, Daniel; Broadie, Kendal
2014-01-01
Fragile X syndrome (FXS), caused by loss of FMR1 gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 protein (FMRP) translational regulator mediates activity-dependent control of synapses. In addition to the metabotropic glutamate receptor (mGluR) hyperexcitation FXS theory, the GABA theory postulates that hypoinhibition is causative for disease state symptoms. Here, we use the Drosophila FXS model to assay central brain GABAergic circuitry, especially within the Mushroom Body (MB) learning center. All 3 GABAA receptor (GABAAR) subunits are reportedly downregulated in dfmr1 null brains. We demonstrate parallel downregulation of glutamic acid decarboxylase (GAD), the rate-limiting GABA synthesis enzyme, although GABAergic cell numbers appear unaffected. Mosaic analysis with a repressible cell marker (MARCM) single-cell clonal studies show that dfmr1 null GABAergic neurons innervating the MB calyx display altered architectural development, with early underdevelopment followed by later overelaboration. In addition, a new class of extra-calyx terminating GABAergic neurons is shown to include MB intrinsic ?/? Kenyon Cells (KCs), revealing a novel level of MB inhibitory regulation. Functionally, dfmr1 null GABAergic neurons exhibit elevated calcium signaling and altered kinetics in response to acute depolarization. To test the role of these GABAergic changes, we attempted to pharmacologically restore GABAergic signaling and assay effects on the compromised MB-dependent olfactory learning in dfmr1 mutants, but found no improvement. Our results show that GABAergic circuit structure and function are impaired in the FXS disease state, but that correction of hypoinhibition alone is not sufficient to rescue a behavioral learning impairment. PMID:24423648
GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model.
Gatto, Cheryl L; Pereira, Daniel; Broadie, Kendal
2014-05-01
Fragile X syndrome (FXS), caused by loss of FMR1 gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 protein (FMRP) translational regulator mediates activity-dependent control of synapses. In addition to the metabotropic glutamate receptor (mGluR) hyperexcitation FXS theory, the GABA theory postulates that hypoinhibition is causative for disease state symptoms. Here, we use the Drosophila FXS model to assay central brain GABAergic circuitry, especially within the Mushroom Body (MB) learning center. All 3 GABAA receptor (GABAAR) subunits are reportedly downregulated in dfmr1 null brains. We demonstrate parallel downregulation of glutamic acid decarboxylase (GAD), the rate-limiting GABA synthesis enzyme, although GABAergic cell numbers appear unaffected. Mosaic analysis with a repressible cell marker (MARCM) single-cell clonal studies show that dfmr1 null GABAergic neurons innervating the MB calyx display altered architectural development, with early underdevelopment followed by later overelaboration. In addition, a new class of extra-calyx terminating GABAergic neurons is shown to include MB intrinsic ?/? Kenyon Cells (KCs), revealing a novel level of MB inhibitory regulation. Functionally, dfmr1 null GABAergic neurons exhibit elevated calcium signaling and altered kinetics in response to acute depolarization. To test the role of these GABAergic changes, we attempted to pharmacologically restore GABAergic signaling and assay effects on the compromised MB-dependent olfactory learning in dfmr1 mutants, but found no improvement. Our results show that GABAergic circuit structure and function are impaired in the FXS disease state, but that correction of hypoinhibition alone is not sufficient to rescue a behavioral learning impairment. PMID:24423648
A model for characterizing residential ground current and magnetic field fluctuations.
Mader, D L; Peralta, S B; Sherar, M D
1994-01-01
The current through the residential grounding circuit is an important source for magnetic fields; field variations near the grounding circuit accurately track fluctuations in this ground current. In this paper, a model is presented which permits calculation of the range of these fluctuations. A discrete network model is used to simulate a local distribution system for a single street, and a statistical model to simulate unbalanced currents in the system. Simulations of three-house and ten-house networks show that random appliance operation leads to ground current fluctuations which can be quite large, on the order of 600%. This is consistent with measured fluctuations in an actual house. PMID:8155070
Middle school students' mental models of magnets and magnetism
NASA Astrophysics Data System (ADS)
Sederberg, David
The purpose of this study was to conduct a detailed analysis of students' mental models across three themes related to magnetism: what magnets are, what it means to be magnetized, and how magnetic interactions occur. Mental models are organized collections of conceptions, run in one's mind, to help understand the world (Johnson-Laird, 1983). They also provide the learner a means to organize concepts in a way to help understand the world or to explain it to others (Clement & Sarama, 2004; Harrison & Treagust, 1996). While there has been considerable prior research documenting students' conceptions related to magnetism, the majority of the studies comprising this informative and valuable body of work has been confined to specific concepts at points in time. Comparatively, few studies have examined how students make sense of multiple concepts relating to magnetism and how the sophistication and explanatory power of their mental models comprised of these concepts change with instruction. Using an interpretive research design, the goal here was not to count concepts or individuals' representations of them, but rather to qualitatively search for patterns in representations of students' conceptions and lines of reasoning that are indicative of broader interpretations of experience (Strauss & Corbin, 1998) - students' mental models relating to magnetism. Using a variety of methods of elicitation, including free response items prior to and throughout instruction and semi-structured interviews, I identified five categories of concepts from which students constructed their mental models: (1) material-based properties; (2) two-sidedness; (3) internal features; (4) organization; and (5) external spatial features. Analysis of the representation of concepts among these categories yielded five levels of mental models based on model sophistication and ability to explain magnetic phenomena across diverse contexts. Results suggested that through explicitly scaffolded instruction based on a small number of fundamental principles, 8th grade students were able to construct level-appropriate microscale-based mental models of magnetic phenomena.
NASA Astrophysics Data System (ADS)
Taylan, O.; Berberoglu, H.
2014-07-01
This paper reports the electrical characterization and an equivalent circuit of a microhollow cathode discharge (MHCD) reactor in the self-pulsing regime. A MHCD reactor was prototyped for air plasma generation, and its current-voltage characteristics were measured experimentally in the self-pulsing regime for applied voltages from 2000 to 3000 V. The reactor was modeled as a capacitor in parallel with a variable resistor. A stray capacitance was also introduced to the circuit model to represent the capacitance of the circuit elements in the experimental setup. The values of the resistor and capacitors were recovered from experimental data, and the proposed circuit model was validated with independent experiments. Experimental data showed that increasing the applied voltage increased the current, self-pulsing frequency and average power consumption of the reactor, while it decreased the peak voltage. The maximum and the minimum voltages obtained using the model were in agreement with the experimental data within 2.5%, whereas the differences between peak current values were less than 1%. At all applied voltages, the equivalent circuit model was able to accurately represent the peak and average power consumption as well as the self-pulsing frequency within the experimental uncertainty. Although the results shown in this paper was for atmospheric air pressures, the proposed equivalent circuit model of the MHCD reactor could be generalized for other gases at different pressures.
Taylan, O.; Berberoglu, H., E-mail: berberoglu@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)
2014-07-28
This paper reports the electrical characterization and an equivalent circuit of a microhollow cathode discharge (MHCD) reactor in the self-pulsing regime. A MHCD reactor was prototyped for air plasma generation, and its current-voltage characteristics were measured experimentally in the self-pulsing regime for applied voltages from 2000 to 3000?V. The reactor was modeled as a capacitor in parallel with a variable resistor. A stray capacitance was also introduced to the circuit model to represent the capacitance of the circuit elements in the experimental setup. The values of the resistor and capacitors were recovered from experimental data, and the proposed circuit model was validated with independent experiments. Experimental data showed that increasing the applied voltage increased the current, self-pulsing frequency and average power consumption of the reactor, while it decreased the peak voltage. The maximum and the minimum voltages obtained using the model were in agreement with the experimental data within 2.5%, whereas the differences between peak current values were less than 1%. At all applied voltages, the equivalent circuit model was able to accurately represent the peak and average power consumption as well as the self-pulsing frequency within the experimental uncertainty. Although the results shown in this paper was for atmospheric air pressures, the proposed equivalent circuit model of the MHCD reactor could be generalized for other gases at different pressures.
NASA Astrophysics Data System (ADS)
Hai, Ling; Svensson, Olle; Isberg, Jan; Leijon, Mats
2015-04-01
There is a need to have a reliable tool to quickly assess wave energy converters (WECs). This paper explores whether it is possible to apply the equivalent electric circuit theory as an evaluation tool for point absorbing WEC system modelling. The circuits were developed starting from the force analysis, in which the hydrodynamic, mechanical, and electrical parameters were expressed by electrical components. A methodology on how to determine the parameters for electrical components has been explained. It is found that by using a multimeter, forces in the connection line and the absorbed electric power can be simulated and read directly from the electric circuit model. Finally, the circuit model has been validated against the full scale offshore experiment. The results indicated that the captured power could be predicted rather accurately and the line force could be estimated accurately near the designed working condition of the WEC.
Hsieh, Lung-Hwa
2004-09-30
Microstrip ring circuits have been extensively studied in the past three decades. A magnetic-wall model has been commonly used to analyze these circuits. Unlike the conventional magnetic-wall model, a simple transmission-line model, unaffected...
Equivalent circuit modeling of hybrid electric vehicle drive train
Routex, Jean-Yves
2001-01-01
this objective, a methodology based on electrical analogies and transducers theory is presented in this work. Using the powerful circuit theory to solve multi-disciplinary problems is not revolutionary, but applied to the design of advanced vehicles, it brings a...
Stochastic Computational Models for Accurate Reliability Evaluation of Logic Circuits
Han, Jie
computation, in which probabilities are encoded in the statistics of random binary bit streams. This downscaling makes circuits more susceptible to various factors that lead to manufacturing defects and power are for today. This increasing demand on reliability design calls for accurate evaluation tools
Superior model for fault tolerance computation in designing nano-sized circuit systems
NASA Astrophysics Data System (ADS)
Singh, N. S. S.; Asirvadam, V. S.; Muthuvalu, M. S.
2014-10-01
As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.
A Demonstration Model of Magnetic Resonance
ERIC Educational Resources Information Center
Sandhu, H. S.; Peemoeller, H.
1974-01-01
Describes a simple and inexpensive model to demonstrate the pulsed magnetic resonance phenomenon. Gives the details of construction of the device which can provide a direct demonstration of the precessional motion of a magnetic moment in a steady magnetic field. (Author/GS)
Sakimura, N.; Nebashi, R.; Sugibayashi, T.; Natsui, M.; Hanyu, T.; Ohno, H.
2014-05-07
This paper describes the possibility of a switching upset of a magnetic tunnel junction (MTJ) caused by a terrestrial radiation-induced single-event-upset (SEU) current in spintronic integrated circuits. The current waveforms were simulated by using a 3-D device simulator in a basic circuit including MTJs designed using 90-nm CMOS parameters and design rules. The waveforms have a 400?-?A peak and a 200-ps elapsed time when neutron particles with a linear energy transfer value of 14?MeV cm{sup 2}/mg enter the silicon surface. The authors also found that the SEU current may cause soft errors with a probability of more than 10{sup ?12} per event, which was obtained by approximate solution of the ordinary differential equation of switching probability when the intrinsic critical current (I{sub C0}) became less than 30??A.
Quasi-linear vacancy dynamics modeling and circuit analysis of the bipolar memristor.
Abraham, Isaac
2014-01-01
The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis. PMID:25390634
NASA Astrophysics Data System (ADS)
Iezekiel, Stavros; Christou, Andreas
2015-03-01
Equivalent circuit models of a transistor laser are used to investigate the suitability of this relatively new device for analog microwave photonic links. The three-terminal nature of the device enables transistor-based circuit design techniques to be applied to optoelectronic transmitter design. To this end, we investigate the application of balanced microwave amplifier topologies in order to enable low-noise links to be realized with reduced intermodulation distortion and improved RF impedance matching compared to conventional microwave photonic links.
MATLAB\\/simulink model of a MEMS accelerometer read-out circuit
S. Strache; R. Wunderlich; D. Droste; S. Heinen
2010-01-01
Many future applications for accelerometers demand resolution below 1 mg together with low power dissipation far below 1 mW. Under this conditions, state-of-the-art switched-capacitor read-out circuits reach their limits and continuous-time operation seems to be the superior alternative. This work focuses on the modeling of a continuous-time read-out circuit and its calibration cycles. For achieving an approximation of the system
NSDL National Science Digital Library
A database for electrical engineering students and professionals, the Circuits Archive provides diagrams of radio, computer, and other miscellaneous circuits (ASCII, .gif, and HTML formats). The archive is just one part of this metasite housed at the University of Washington's Electrical Engineering site. In addition to the circuit diagrams, a searchable database of transistor cross-references, a component reference page (both in the Data Sheets section), and links to models and microprocessors are featured. Other useful tools included are the Reading Capacitors page and links to software sites. Diagrams and links are voluntarily contributed and seem to be updated regularly. Note: the site includes a page on software in the Circuits Archive.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhao, Jiyun; Wang, Peng; Skyllas-Kazacos, Maria; Xiong, Binyu; Badrinarayanan, Rajagopalan
2015-09-01
Electrical equivalent circuit models demonstrate excellent adaptability and simplicity in predicting the electrical dynamic response of the all-vanadium redox flow battery (VRB) system. However, only a few publications that focus on this topic are available. The paper presents a comprehensive equivalent circuit model of VRB for system level analysis. The least square method is used to identify both steady-state and dynamic characteristics of VRB. The inherent features of the flow battery such as shunt current, ion diffusion and pumping energy consumption are also considered. The proposed model consists of an open-circuit voltage source, two parasitic shunt bypass circuits, a 1st order resistor-capacitor network and a hydraulic circuit model. Validated with experimental data, the proposed model demonstrates excellent accuracy. The mean-error of terminal voltage and pump consumption are 0.09 V and 0.49 W respectively. Based on the proposed model, self-discharge and system efficiency are studied. An optimal flow rate which maximizes the system efficiency is identified. Finally, the dynamic responses of the proposed VRB model under step current profiles are presented. Variables such as SOC and stack terminal voltage can be provided.
Modeling of circuits and architectures for molecular electronics
Paolo Lugli; Gyorgy Csaba; Christoph Erlen
2009-01-01
The considerable progress of recent years have demonstrated the potential of molecular electronics to first enhance the capabilities\\u000a of silicon electronics and, possibly, to substitute it when the intrinsic physical limits of scalability will be reached by\\u000a CMOS technology. Despite such advances, a real alternative will only be possible if novel circuit and architecture concepts\\u000a will be developed, which are
Magnetic field diffusion modeling of a small enclosed firing system
Warne, L.K.; Merewether, K.O.
1996-01-01
Intense magnetic fields exist in the immediate vicinity of a lightning strike (and near power lines). Conducting barriers increase the rise time (and thus decrease the rise rate) interior to the barrier, but typically do not prevent penetration of the magnetic field, since the lightning current fall time may be larger than the barrier diffusion time. Thus, substantial energy is present in the interior field, although the degradation of rise rate makes it more difficult to couple into electrical circuits. This report assesses the threat posed by the diffusive magnetic field to interior components and wire loops (where voltages are induced). Analytical and numerical bounding analyses are carried out on a pill box shaped conducting barrier to develop estimates for the worst case magnetic field threats inside the system. Worst case induced voltages and energies are estimated and compared with threshold charge voltages and energies on the output capacitor of the system. Variability of these quantities with respect to design parameters are indicated. The interior magnetic field and induced voltage estimates given in this report can be used as excitations for more detailed interior and component models.
Makowiecki, Kalina; Harvey, Alan R.; Sherrard, Rachel M.
2014-01-01
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5?/? (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5?/? mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5?/? mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5?/? mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS. PMID:25100609
A breakdown model for the bipolar transistor to be used with circuit simulators
Keshavarz, A.A. [Alliance Technologies, Inc., Albuquerque, NM (United States); Raney, C.W.; Campbell, D.C. [Sandia National Labs., Albuquerque, NM (United States)
1993-08-01
A breakdown model for the output characteristics of the bipolar transistor (bjt) has been developed. The behavioral modeling capability of PSPICE, a popular SPICE program (with Emphasis on Integrated circuits) was used to implement the macromodel. The model predicts bjt output characteristics under breakdown conditions. Experimental data was obtained to verify the macromodel. Good agreement exits between the measured and the simulated results.
Computer modelling of amorphous magnetic materials
M. E. Lines
1983-01-01
A review of the techniques of computer modelling of amorphous magnetic materials is presented. The magnetic materials discussed fall mainly into three categories, the ferromagnetic transition-metal metalloid alloys, the `ferrimagnetic' transition-metal rare-earth alloys, and the speromagnetic amorphous magnetic insulators. Although all have primarily been computer modelled using simulations based on a common structural concept - that of the dense random
Meinhardt, Jürgen P; Annich, Gail M; Miskulin, Judiann; Kawai, Toshinori; Ashton, Brian A; Bartlett, Robert H
2003-01-01
In an effort to better mimic the thromboresistive nature of vascular endothelium, extracorporeal circuits bonded with heparin or phospholipids were developed. Using no systemic heparinization, these circuits were compared with standard poly(vinyl)chloride (PVC) (Tygon) in a rabbit model of extracorporeal circulation (ECC). Control circuits were run with and without systemic heparinization and used as comparison groups against the test circuits. Two New Zealand White rabbits were used per study: One was used as the platelet donor for 111Indium platelet labeling; the other animal was placed on bicaval ECC for 4 hours. Circuits (heparin coated n = 6, phospholipid coated n = 8, nonheparinized controls n = 14, heparinized controls n = 18) consisted of 1 m of tubing, two downsizing connectors, and two venous cannulae. ECC blood flow was at least 75 ml/min. Platelet and fibrinogen measurements were made hourly, and circuit dosimetry was performed at the end of the study or on circuit thrombosis. Thrombosis of the circuit occurred in one heparin coated, two phospholipid coated, and eight nonheparinized control circuits. None of the heparinized control circuits thrombosed. There was no significant difference between the groups with regard to platelet count or platelet adhesion. Test circuits exhibited preservation of fibrinogen levels. In this rabbit model of ECC, circuits coated with heparin or phospholipids appeared to preserve fibrinogen levels but did not reduce platelet adhesion or consumption. PMID:12918580
Forward modelling of oceanic lithospheric magnetization
NASA Astrophysics Data System (ADS)
Masterton, S. M.; Gubbins, D.; Müller, R. D.; Singh, K. H.
2013-03-01
We construct a model of remanence for the oceans, combine it with a model of induced magnetization for the whole Earth from a previous study, compute the predicted lithospheric geomagnetic field and compare the result with a model, MF7, that is based on satellite data. Remanence is computed by assigning magnetizations to the oceanic lithosphere acquired at the location and time of formation. The magnetizing field is assumed to be an axial dipole that switches polarity with the reversal time scale. The magnetization evolves with time by decay of thermal remanence and acquisition of chemical remanence. The direction of remanence is calculated by Euler rotation of the original geomagnetic field direction with respect to an absolute reference frame, significantly improving previous results which did not include realistic oceanic magnetization computed this way. Remanence only accounts for 24 per cent of the energy of the oceanic magnetization, the induced magnetization being dominant, increasing slightly to 30 per cent of the part of the magnetization responsible for generating geomagnetic anomalies and 39 per cent of the Lowes energy of the geomagnetic anomalies. This is because our model of oceanic crust and lithosphere is fairly uniform, and a uniform layer magnetized by a magnetic field of internal origin produces no external field. The largest anomalies are produced by oceanic lithosphere magnetized during the Cretaceous Normal Superchron. Away from ridges and magnetic quiet zones the prediction fails to match the MF7 values; these are also generally, but not always, somewhat smaller than the observations. This may indicate that the magnetization estimates are too small, in which case the most likely error is in the poorly-known magnetization deep in the crust or upper mantle, or it may indicate some other source such as locally underplated continental lithosphere or anomalous oceanic crust, or even small-scale core fields.
An equivalent circuit model for terahertz quantum cascade lasers: Modeling and experiments
NASA Astrophysics Data System (ADS)
Yao, Chen; Xu, Tian-Hong; Wan, Wen-Jian; Zhu, Yong-Hao; Cao, Jun-Cheng
2015-09-01
Terahertz quantum cascade lasers (THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model. Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61404149), the Major National Development Project of Scientific Instrument and Equipment, China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the Major Project, China (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300).
NASA Astrophysics Data System (ADS)
Ito, Mitsuyo; Koya, Yoshiharu; Mizoshiri, Isao
Presently, many of the already proposed blood circulation models are mainly partial models although they are precise models. A complete model that is a combination of these partial models are difficult to analyze because it is complicated to consider both the viscosity of blood and circulatory details at the same time. So, it is difficult to control the model parameters in order to adapt to various cases of circulatory diseases. This paper proposes a complete circulation model as a lumped electrical circuit, which is comparatively simple. In the circuit model, total blood is modeled as seven lumped capacitors, representing the functions of atriums, ventricles, arteries, veins and lungs. We regard the variation of the ventricle capacitance as the driving force of the complete circulation model. In our model, we considered only the variation of pressure between each part and the blood capacity of each part. In particular, the contraction function of the left ventricle is examined under the consideration of whole blood circulation.
A digital neurmorphic circuit for a simplified model of astrocyte dynamics.
Nazari, Soheila; Faez, Karim; Karami, Ehsan; Amiri, Mahmood
2014-10-17
Recent neurophysiologic findings have shown that astrocytes (the most abundant type of glial cells) are active partners in neural information processing and regulate the synaptic transmission dynamically. Motivated by these findings, in the present research, a digital neuromorphic circuit to implement the astrocyte dynamics is developed. To model the dynamics of the intracellular Ca(2+) waves produced by astrocytes, we utilize a simplified model which considers the main physiological pathways of neuron-astrocyte interactions. Next, a digital circuit for the astrocyte dynamic is proposed which is simulated using ModelSim and finally, it is implemented in hardware on the ZedBoard. The results of hardware synthesis, FPGA implementations are in agreement with MATLAB and ModelSim simulations and confirm that the proposed digital astrocyte is suitable for applications in reconfigurable neuromorphic devices which implement biologically brain circuits. PMID:25108256
Equivalent circuit-level model and improvement of terahertz quantum cascade lasers
Wei Zhou; Shaobin Liu; Jie Wu; Xiaoliu Zhang; Wu Tang [State Key Lab. of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Peoples Republic of China (China)
2014-04-28
An equivalent circuit-level model of terahertz (THz) quantum cascade lasers (QCLs) is developed by using rate equations. This model can be employed to investigate the characteristics of THz QCLs accurately and to improve their design. We use the circuit-level model to analyse a new active structure, which can improve the performance of THz QCLs by means of enhancing carrier injection. The simulation result shows that THz QCLs with the new active structure have a much higher performance compared with conventional THz QCLs. The high-performance THz QCLs are expected to be operated at higher temperatures. (lasers)
Qiu, S. S.; Zhuang, G.; Zhang, M.; Xia, D. H.; Rao, B.; Zhang, X. Q.; Pan, Y. [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Gentle, K. [Institute of Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
2010-10-15
Four sets of magnetic diagnostic coils, which are printed on machinable ceramic printed circuit boards (PCB), are designed, fabricated, installed, and tested in the Joint Texas Experimental Tokamak (J-TEXT) vacuum vessel for detecting the plasma radial and vertical displacements relative to the geometric center of the vacuum vessel in Ohmic discharges. Each coordinate is determined by a pair of variable cross-section Rogowski and saddle coils, which measure the tangential and normal magnetic fields (relative to the coil surface). These coils are suitable for mass production and offer advantages in vacuum compatibility and temperature tolerance that are important for J-TEXT. Position measurements using PCB coils are compared with those from soft x-ray image system and match the position well.
V.DMOS transistor modeling for simulation of power electronic circuits
NASA Astrophysics Data System (ADS)
Napieralska, Malgorzata
1991-08-01
A nonlinear, short channel model of a power V.DMOS transistor, the elements of which depend only on physical and technological data, is presented. By an analysis of the active regions of the V.DMOS structure, in order to study switching modes, this model is simplified to a topology compatible with the SPICE circuit simulator. Parameter extraction methods and validation programs are described. A software library of the SPICE models is created by testing the transistors (N and P channels) covering the available current handling capability 2A to 50A and blocking range 50V to 1000V. A V.DMOS unified model is presented. It requires establishment of two parameters: drain source breakdown voltage, and silicon chip area. An established program linked in Hypercard with SPICE, gives an exact model for characterizing transistors as well as a model for new devices. This modeling takes into account the crystal temperature and several validation tests. Adaptation of the model for irradiation applications is pointed out by comparison between measured and computed characteristics. Use of this model to analyze bridge leg circuit properties and comparison between simulated results and measured data, confirms its application in power electronic circuits. Some problems associated with parasitic elements in these circuits are described.
A new circuit model of HgCdTe photodiode for SPICE simulation of integrated IRFPA
NASA Astrophysics Data System (ADS)
Saxena, Raghvendra Sahai; Saini, Navneet Kaur; Bhan, R. K.; Sharma, R. K.
2014-11-01
We propose a novel sub circuit model to simulate HgCdTe infrared photodiodes in a circuit simulator, like PSPICE. We have used two diodes of opposite polarity in parallel to represent the forward biased and the reverse biased behavior of an HgCdTe photodiode separately. We also connected a resistor in parallel with them to represent the ohmic shunt and a constant current source to represent photocurrent. We show that by adjusting the parameters in standard diode models and the resistor and current values, we could actually fit the measured data of our various HgCdTe photodiodes having different characteristics. This is a very efficient model that can be used for simulation of readout integrated circuit (ROIC) for HgCdTe IR photodiode arrays. This model also allows circuit level Monte Carlo simulation on a complete IRFPA at a single circuit simulator platform to estimate the non-uniformity for given processes of HgCdTe device fabrication and Si ROIC fabrication.
Yang, Shaolin; Ajilore, Olusola; Wu, Minjie; Lamar, Melissa; Kumar, Anand
2015-01-01
Previous research has shown that type 2 diabetes mellitus (T2DM) is associated with white matter microstructural changes, cognitive impairment, and decreased resting-state functional connectivity and spontaneous brain activity. This study used magnetization transfer imaging to examine, for the first time, the integrity of macromolecular protein pools in fronto-striato-thalamic circuits and its clinical and cognitive correlates in patients with T2DM. T2DM patients without mood disorders (n = 20, aged 65.05 ± 11.95 years) and healthy control subjects (HCs; n = 26, aged 62.92 ± 12.71 years) were recruited. Nodes of fronto-striato-thalamic circuits-head of the caudate nucleus (hCaud), putamen, globus pallidus, thalamus-and four cortical regions-rostral and dorsal anterior cingulate cortex, dorsolateral prefrontal cortex, and lateral orbitofrontal cortex-were examined. Compared with HCs, patients with T2DM had significantly lower magnetization transfer ratio (MTR) in bilateral anterior cingulate and hCaud. Reduced MTRs in the above regions showed correlations with T2DM-related clinical measures, including hemoglobin A1c level and vascular risk factors, and neuropsychological task performance in the domains of learning and memory, executive function, and attention and information processing. The impaired biophysical integrity of brain macromolecular protein pools and their local microenvironments in T2DM patients may provide insights into the neurological pathophysiology underlying diabetes-associated clinical and cognitive deficits. PMID:25092675
Functional Model of Carbon Nanotube Programmable Resistors for Hybrid Nano/CMOS Circuit Design
NASA Astrophysics Data System (ADS)
Zhao, Weisheng; Agnus, Guillaume; Derycke, Vincent; Filoramo, Ariana; Gamrat, Christian; Bourgoin, Jean-Philippe
Hybrid Nano (e.g. Nanotube and Nanowire) /CMOS circuits combine both the advantages of Nano-devices and CMOS technologies; they have thus become the most promising candidates to relax the intrinsic drawbacks of CMOS circuits beyond Moore’s law. A functional simulation model for an hybrid Nano/CMOS design is presented in this paper. It is based on Optically Gated Carbon NanoTube Field Effect Transistors (OG-CNTFET), which can be used as 2-terminal programmable resistors. Their resistance can be adjusted precisely, reproducibly and in a non-volatile way, over three orders of magnitude. These interesting behaviors of OG-CNTFET promise great potential for developing the non-volatile memory and neuromorphic adaptive computing circuits. The model is developed in Verilog-A language and implemented on Cadence Virtuoso platform with Spectre 5.1.41 simulator. Many experimental parameters are included in this model to improve the simulation accuracy.
Computer model for air-cooled refrigerant condensers with specified refrigerant circuiting
Ellison, R.D.; Creswick, F.A.; Fischer, S.K.; Jackson, W.L.
1981-01-01
A computer model for an air-cooled refrigerant condensor is presented; the model is intended for use in detailed design analyses or in simulation of the performance of existing heat exchangers that have complex refrigerant circuiting or unusual air-side geometries. The model relies on a tube-by-tube computational approach calculating the thermal and fluid-flow performance of each tube in the heat exchanger individually, using local temperatures and heat transfer coefficients. The refrigerant circuiting must be specified; the joining or branching of parallel circuits is accommodated using appropriate mixing expressions. Air-side heat exchange correlations may be specified so that various surface geometries can be investigated. Results of the analyses of two condensers are compared to experiment.
Ali Alaeldine; Richard Perdriau; Ali Haidar
2009-01-01
This paper presents a comprehensive modelling methodology for the electromagnetic immunity of integrated circuits (ICs) to direct power injection (DPI). The aim of this study is to predict the susceptibility of ICs by the means of simulations performed on an appropriate electrical model of different integrated logic cores located in the same die. These cores are identical from a functional
Design of basic digital circuit blocks based on an OFET device charge model
NASA Astrophysics Data System (ADS)
Shu, Shen
2013-05-01
An OFET charge model, as well as its parameter extraction method are presented. The fitting results are also discussed and different OFET model characters are compared. Some basic OFET based digital circuit blocks, including the inverter, NAND, and ring oscillator are also developed, which would be considered to be helpful to the design of relevant applications.
NASA Technical Reports Server (NTRS)
Valentinuzzi, M.
1973-01-01
Results of a previous metric analysis and an electronic simulation of acceleratory nystagmus are given. On this basis, a tentative mathematical model for describing acceleratory nystagmus is reported. The essential content of the model is Lorente de No's neuron circuit, to which the two-factor theory of excitation has been applied.
A General Approach to Sampled-Data Modeling for Power Electronic Circuits
George C. Verghese; Malik E. Elbuluk; John G. Kassakian
1986-01-01
A general sampled-data representation of the dynamics of arbitrary power electronic circuits is proposed to unify existing approaches. It leads, via compact and powerful notation, to disciplined modeling and straightforward derivation of small-signal models that describe perturbations about a nominal cyclic steady state. Its usefulness is further illustrated by considering the representation and analysis of a class of symmetries in
Taesic Kim; Wei Qiao
2011-01-01
A high-fidelity battery model capable of accurately predicting battery performance is required for proper design and operation of battery-powered systems. However, the existing bat- tery models have at least one of the following drawbacks: 1) requir- ing intensive computation due to high complexity; 2) not applicable for electrical circuit design and simulation; and 3) not capable of accurately capturing the
Magnetic field screening effect in electroweak model
A. S. Bakry; D. G. Pak; P. M. Zhang; L. P. Zou
2014-10-03
It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of this phenomenon can be traced to the mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in the finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying a variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that a corresponding magnetic bound state exists in the electroweak theory and can be detected by experiment.
Branislav S. Gavrilovic
2004-01-01
The choice of new signaling and safety equipment for track circuits is dependent on individual railway management organizations. For that reason, before making any decisions, railway management has to be very well informed about all parameters relevant to the electro-magnetic compatibility with return traction current during stationary regimes of operation. An examination is neccesary of external electro-magnetic interference to return
Microelectronic Devices and Circuits
NSDL National Science Digital Library
del Alamo, Jesus
The topics of this course include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.
NASA Astrophysics Data System (ADS)
Harish, B. P.; Bhat, Navakanta; Patil, Mahesh B.
2006-07-01
A technique for modeling the effect of variations in multiple process parameters on circuit delay performance is proposed. The variation in saturation current Ion at the device level, and the variation in rising/falling edge stage delay for the NAND gate at the circuit level, are taken as performance metrics. The delay of a two-input NAND gate with 65 nm gate length transistors is extensively characterized by mixed-mode simulations, which is then used as a library element. Appropriate templates for the NAND gate library are incorporated in a general purpose circuit simulator SEQUEL. A 4-bit × 4-bit Wallace tree multiplier circuit, consisting of two-input NAND gates is used to demonstrate the proposed methodology. The variation in the multiplier delay is characterized, by generating delay distributions, using an extensive Monte Carlo analysis. The use of linear interpolation and linear superposition is evaluated to study simultaneous variations in two and more process parameters. An analytical model for gate delays, in terms of device drive current Ion, is proposed, which can be used to extend this methodology for a generic technology library with a variety of library elements. The model is validated against Monte Carlo simulations and is shown to have a typical error of less than 0.1% for simultaneous variations in multiple process parameters. The proposed methodology can be used for statistical timing analysis and circuit simulation at the gate level.
A global magnetic topology model for magnetic clouds. III
Hidalgo, M. A.
2014-03-20
In two previous papers, we presented a global model for the analysis of magnetic clouds (MCs), where the three components of the magnetic field were fitted to the corresponding Geocentric Solar Ecliptic experimental data, obtaining reliable information, for example, about the orientation of these events in the interplanetary medium. That model, due to its non-force-free character, (?p ? 0), could be extended to determine the plasma behavior. In the present work, we develop that extension, now including the plasma behavior inside the cloud through the analysis of the plasma pressure, and define a fitting procedure where the pressure and the magnetic field components are fitted simultaneously. After deducing the magnetic field topology and the current density components of the model, we calculate the expression of the pressure tensor and, in particular, its trace. In light of the results, we conclude that incorporating the plasma behavior in the analysis of the MCs can give us a better scenario in which to understand the physical mechanisms involved in the evolution of such magnetic structures in the interplanetary medium.
Some Advances in the Circuit Modeling of Extraordinary Optical Transmission
Francisco MEDINA; Francisco MESA
2009-01-01
The phenomenon of extraordinary optical trans- mission (EOT) through electrically small holes perforated on opaque metal screens has been a hot topic in the optics com- munity for more than one decade. This experimentally ob- served frequency-selective enhanced transmission of electro- magnetic power through holes, for which classical Bethe's theory predicts very poor transmission, later attracted the attention of engineers
Transmission line circuit model of a PPy based trilayer mechanical sensor
NASA Astrophysics Data System (ADS)
Khalili, Nazanin; Naguib, Hani E.; Kwon, Roy H.
2015-04-01
Many efforts have been devoted to modeling the diffusive impedance of conjugated polymer (CP) based actuators using their equivalent electrical circuits. Employing the same methodology, CP based mechanical sensors can also be treated by an equivalent transmission line circuit and their overall impedance can be modeled, correspondingly. Due to the large number of resources to study the electrical circuits, this technique is a practical tool. Therefore, in this study, an equivalent RC-circuit model including electrochemical parameters is determined to obtain a better perception of the sensing mechanism of these mechanical sensors. Conjugated polymers are capable of generating an output current or voltage upon an induced mechanical deformation or force. This observed behavior in polymer based mechanical sensors is considered as the reverse actuation process. Many outstanding properties of the conjugated polymer actuators including their light weight and biocompatibility are still retained by these sensors. Sensors with a trilayer configuration are capable of operating in air in response to a mechanically induced bending deformation. However, due to their nonlinear behavior and multivariable characteristics, it is required to propose a systematic approach in order to optimize their performance and gain the optimal values of their constituent decision variable. Therefore, the proposed mathematical model is used to define the output voltage of the PPy based mechanical sensor along with the sensitivity of the model to the applied frequency of the induced deformation. Applying a multiobjective optimization algorithm, the optimization problem was solved and the tracking ability of the proposed model was then verified.
Vazquez-Leal, H; Jimenez-Fernandez, V M; Benhammouda, B; Filobello-Nino, U; Sarmiento-Reyes, A; Ramirez-Pinero, A; Marin-Hernandez, A; Huerta-Chua, J
2014-01-01
We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157
Vazquez-Leal, H.; Jimenez-Fernandez, V. M.; Benhammouda, B.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Ramirez-Pinero, A.; Marin-Hernandez, A.; Huerta-Chua, J.
2014-01-01
We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157
Mathematical model of magnetically interacting rigid bodies
Stanislav Zub
2008-01-01
Dynamics of two bodies, which interact by magnetic forces, is considered. The model of inter- action is built on quasi-stationary approach for electroma gnetic field, and symmetric tops with different moments of inertia of the bodies are considered. The general form of the interaction energy is discovered for the case of coincidence of mass and magnetic symmetries. Since the energy
NASA Astrophysics Data System (ADS)
Tong, Shijie
Energy storage is one of society's grand challenges for the 21st century. Lithium ion batteries (LIBs) are widely used in mobile devices, transportation, and stationary energy storages due to lowering cost combined with excellent power/energy density as well as cycle durability. The need for a battery management system (BMS) arises from a demand to improve cycle life, assure safety, and optimize the full pack performance. In this work, we proposed a model based battery on-line state of charge (SoC) and state of health (SoH) estimator for LIBs. The estimator incorporates a comprehensive Equivalent Circuit Model (ECM) as reference, an Extended Kalman Filter (EKF) as state observer, a Recursive Least Square (RLS) algorithm as parameter identifier, and Parameter Varying Approach (PVA) based optimization algorithms for the parameter function regressions. The developed adaptive estimator was applied to a 10kW smart grid energy storage application using retired electric vehicle batteries. The estimator exhibits a high numerical efficiency as well as an excellent accuracy in estimating SoC and SoH. The estimator also provides a novel method to optimize the correlation between battery open circuit voltage (OCV) and SoC, which further improves states estimation accuracy.
Computer circuit analysis of induced currents in the MFTF-B magnet system
Magnuson, G.D.; Woods, E.L.
1981-10-23
An analysis was made of the induced current behavior of the MFTF-B magnet system. Although the magnet system consists of 22 coils, because of its symmetry we considered only 11 coils in the analysis. Various combinations of the coils were dumped either singly or in groups, with the current behavior in all magnets calculated as a function of time after initiation of the dump.
Vector spin modeling for magnetic tunnel junctions with voltage dependent effects
Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.
2014-05-07
Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.
An Advanced Time Averaging Modelling Technique for Power Electronic Circuits
NASA Astrophysics Data System (ADS)
Jankuloski, Goce
For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.
Average Modeling and Equivalent Circuit Simulation of Switched Capacitors Converters Shmuel (Sam) Ben-Yaakov, Fellow, IEEE Abstract--A generic behavioral average circuit model of a switched capacitor converter (SCC, switched capacitor converters. I. INTRODUCTION SWITCHED capacitor converters (denoted as SCC for sin- gular
Threshold flux-controlled memristor model and its equivalent circuit implementation
NASA Astrophysics Data System (ADS)
Wu, Hua-Gan; Bao, Bo-Cheng; Chen, Mo
2014-11-01
Modeling a memristor is an effective way to explore the memristor properties due to the fact that the memristor devices are still not commercially available for common researchers. In this paper, a physical memristive device is assumed to exist whose ionic drift direction is perpendicular to the direction of the applied voltage, upon which, corresponding to the HP charge-controlled memristor model, a novel threshold flux-controlled memristor model with a window function is proposed. The fingerprints of the proposed model are analyzed. Especially, a practical equivalent circuit of the proposed model is realized, from which the corresponding experimental fingerprints are captured. The equivalent circuit of the threshold memristor model is appropriate for various memristors based breadboard experiments.
Modeling and optimization of permanent magnetic motors
Pinkham, Andrew P
2008-01-01
This thesis develops analytic models for the prediction and optimization of radial-flux permanent magnet motor torque and efficiency. It also facilitates the design optimization of electromagnetically-powered rotorcraft ...
NASA Technical Reports Server (NTRS)
Courey, Karim; Wright, Clara; Asfour, Shihab; Onar, Arzu; Bayliss, Jon; Ludwig, Larry
2009-01-01
In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed. This empirical model can be used to improve existing risk simulation models. FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied. FIB cross-section of the card guides verified that the tin finish was bright tin.
ECE 586 Fault Detection in Digital Circuits Lecture 05 Modeling III
Wang, Jia
4/18 #12;Bipartite Graph Model (Abramovici et al., 1990) Two groups of nodes: elements and signals Edges are between nodes from different groups. Need a data structure to support queries of fanins/fanouts. ECE 586 Fault Detection in Digital Circuits Spring 2015 5/18 #12;Element Table (Fig. 2
Triangular Bose-Hubbard trimer as a minimal model for a superfluid circuit Doron Cohen
Cohen, Doron
Triangular Bose-Hubbard trimer as a minimal model for a superfluid circuit Doron Cohen Ben: Arwas, Vardi, Cohen (PRA 2014) http://www.bgu.ac.il/dcohen $ISF 2 N Mott regime 1 2 /2 u self trapping for mesoscopic thermalization [8]. [1] Maya Chuchem, Smith-Mannschott, Hiller, Kottos, Vardi, Cohen (PRA 2010
A fast model for analysis and improvement of gate-level circuit reliability
Chen, Chunhong
A fast model for analysis and improvement of gate-level circuit reliability Chunhong Chen n , Ran 2015 Accepted 24 February 2015 Available online 5 March 2015 Keywords: Equivalent reliability Signal and reliability correlation Reliability analysis and improvement a b s t r a c t Reliability is becoming one
Test Method and Equivalent Circuit Modeling of a PEM Fuel Cell in a Passive State
Shannon C. Page; Adnan H. Anbuky; Susan P. Krumdieck; Jack Brouwer
2007-01-01
A novel test protocol is proposed for fuel cells that are in a nonfunctioning or passive state. Standard fuel-cell test methods are reviewed, along with the equivalent circuit models (ECMs) used to represent functioning or active fuel cells. Standard active tests focus on single cells, while the passive test is shown to be applicable to testing multiple cells. The passive
Wood, Thomas K.
A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis by intricate and multimodal QS signal transduction processes. The LuxS/AI-2 QS system is highly conserved among Eubacteria and AI-2 is reported as a `universal' signal molecule. To understand the hierarchical organization
Steam-circuit Model for the Compact Linear Fresnel Reflector , G. L. Morrison1
.pye@student.unsw.edu.au Abstract The Compact Linear Fresnel Reflector (CLFR) is a linear-concentrating solar thermal energy systemSteam-circuit Model for the Compact Linear Fresnel Reflector Prototype J. D. Pye1 , G. L. Morrison1 of New South Wales, NSW, 2052 2 School of Physics, University of Sydney, NSW 2006 3 Solar Heat and Power
Circuit Model of Carbon-Nanotube Inks for Microelectronic and Microwave Tunable Devices
Tentzeris, Manos
Circuit Model of Carbon-Nanotube Inks for Microelectronic and Microwave Tunable Devices Rosa De candidate for the design of microelectronic and microwave devices with customized behavior (i.e., variable for a large variety of applications in microelectronics and in nanotechnologies. In particular, CNTs
Linear Compositional Delay Model for the Timing Analysis of Sub-Powered Combinational Circuits
Cotofana, Sorin
in unpredictable device behaviour. The issue is even aggravated by low power requirements which are stretching to accurately capture the circuit behaviour. In view of this we introduce an Inverse Gaussian Distribution (IGD) based delay model, which accurately captures the delay distribution under process variations at ultra
Equivalent circuit modeling of UWB antennas for system co-design
Yongxin Guo; Yaqiong Zhang; Abdullah Rasmita; Mook-Seng Leong
2010-01-01
A new wideband physical augmentation based modeling technique has been presented. In this method, all series augmentation elements are transformed into the parallel ones. Using this technique, the preliminary analysis of the circuit to decide the augmentation type is not needed. The type of augmentation to be performed can be determined automatically. The proposed methodology has been employed to extract
Surface-Charge-Based Micro-Models--A Solid Foundation for Learning about Direct Current Circuits
ERIC Educational Resources Information Center
Hirvonen, P. E.
2007-01-01
This study explores how the use of a surface-charge-based instructional approach affects introductory university level students' understanding of direct current (dc) circuits. The introduced teaching intervention includes electrostatics, surface-charge-based micro-models that explain the existence of an electric field inside the current-carrying…
Improved cement quality and grinding efficiency by means of closed mill circuit modeling
Mejeoumov, Gleb Gennadievich
2009-05-15
in the industrial mill are not available. Based on a population balance principle and stochastic representation of the particle movement within the grinding system, the Markov chain model for the circuit consisting of a tube ball mill and a high efficiency separator...
A logic-level model for ?-particle hits in CMOS circuits
Hungse Cha; Janak H. Patel
1993-01-01
Systems designed for reliability must be validated through simulations. However, traditional SPICE like simulators or even mixed-mode simulators are too slow for the task of simulating the effects of ?-particle hits on relatively large circuits. Gate-level simulators offer tremendous speedup over these electrical level simulators, but they are only as good as the model which captures the ?-particle effect at
Approaches for modeling magnetic nanoparticle dynamics.
Reeves, Daniel B; Weaver, John B
2014-01-01
Magnetic nanoparticles are useful biological probes as well as therapeutic agents. Several approaches have been used to model nanoparticle magnetization dynamics for both Brownian as well as Neel rotation. Magnetizations are often of interest and can be compared with experimental results. Here we summarize these approaches, including the Stoner-Wohlfarth approach and stochastic approaches including thermal fluctuations. Non-equilibrium-related temperature effects can be described by a distribution function approach (Fokker-Planck equation) or a stochastic differential equation (Langevin equation). Approximate models in several regimes can be derived from these general approaches to simplify implementation. PMID:25271360
NeuroGPS: automated localization of neurons for brain circuits using L1 minimization model
NASA Astrophysics Data System (ADS)
Quan, Tingwei; Zheng, Ting; Yang, Zhongqing; Ding, Wenxiang; Li, Shiwei; Li, Jing; Zhou, Hang; Luo, Qingming; Gong, Hui; Zeng, Shaoqun
2013-04-01
Drawing the map of neuronal circuits at microscopic resolution is important to explain how brain works. Recent progresses in fluorescence labeling and imaging techniques have enabled measuring the whole brain of a rodent like a mouse at submicron-resolution. Considering the huge volume of such datasets, automatic tracing and reconstruct the neuronal connections from the image stacks is essential to form the large scale circuits. However, the first step among which, automated location the soma across different brain areas remains a challenge. Here, we addressed this problem by introducing L1 minimization model. We developed a fully automated system, NeuronGlobalPositionSystem (NeuroGPS) that is robust to the broad diversity of shape, size and density of the neurons in a mouse brain. This method allows locating the neurons across different brain areas without human intervention. We believe this method would facilitate the analysis of the neuronal circuits for brain function and disease studies.
A phenomenological constitutive model for magnetic shape memory alloys
Kiefer, Bjoern
2007-04-25
A thermodynamics-based constitutive model is derived which predicts the nonlinear strain and magnetization response that magnetic shape memory alloys (MSMAs) exhibit when subjected to mechanical and magnetic loads. The model development is conducted...
Hu, Chia-Ren; HUANG, CH.
1991-01-01
VOLUME 43, NUMBER 10 1 APRIL 1991 Phase boundary of a cubic superconducting circuit in a magnetic field of arbitrary magnitude and direction Chia-Ren Hu and Chen-Hong Huang Center for Theoretical Physics, Department ofPhysics, Texas Ad'cM University... and the definition of [ 6;,i = 1 ?8 I relative to the coordinate system. 7720 CHIA-REN HU AND CHEN-HONG HUANG with ci =bi b?z/3, co=2bi/27 ?bib2/3+bc, and b2 = ?a2, b, =a,a, ?4ao, bo = ?(a, +aoa, ?4aoa, ).2 2 These four roots gives four positive values for (a /g...
Bellesia, B; Todesco, E
2006-01-01
In this report the method for the localization of the electric shorts circuits in the main LHC dipoles using the magnetic measurements at room temperature is presented. The steps of the method are discussed, and two cases are studied in detail. A complete statistics of the 12 cases analyzed up to now is given.
Li, Dongling; Wen, Zhiyu; Wen, Zhongquan; He, Xuefeng; Yang, Yinchuan; Shang, Zhengguo
2009-01-01
A novel high-precision vacuum microelectronic accelerometer has been successfully fabricated and tested in our laboratory. This accelerometer has unique advantages of high sensitivity, fast response, and anti-radiation stability. It is a prototype intended for navigation applications and is required to feature micro-g resolution. This paper briefly describes the structure and working principle of our vacuum microelectronic accelerometer, and the mathematical model is also established. The performances of the accelerometer system are discussed after Matlab modeling. The results show that, the dynamic response of the accelerometer system is significantly improved by choosing appropriate parameters of signal detecting circuit, and the signal detecting circuit is designed. In order to attain good linearity and performance, the closed-loop control mode is adopted. Weak current detection technology is studied, and integral T-style feedback network is used in I/V conversion, which will eliminate high-frequency noise at the front of the circuit. According to the modeling parameters, the low-pass filter is designed. This circuit is simple, reliable, and has high precision. Experiments are done and the results show that the vacuum microelectronic accelerometer exhibits good linearity over -1 g to +1 g, an output sensitivity of 543 mV/g, and a nonlinearity of 0.94 %. PMID:22408515
Thomas Banwell; Stefano Galli
2005-01-01
Multiconductor Transmission Line (MTL) theory is utilized here for modeling the transfer function of power cables in the indoor environment. This approach allows us to determine a circuit model that well characterizes the underlying physics of signal propagation over power-line (PL) cables and that also allows us to account for particular wiring practices common in residential and business environments. In
An enhanced BSIM modeling framework for selfheating aware circuit design
NASA Astrophysics Data System (ADS)
Schleyer, M.; Leuschner, S.; Baumgartner, P.; Mueller, J.-E.; Klar, H.
2014-11-01
This work proposes a modeling framework to enhance the industry-standard BSIM4 MOSFET models with capabilities for coupled electro-thermal simulations. An automated simulation environment extracts thermal information from model data as provided by the semiconductor foundry. The standard BSIM4 model is enhanced with a Verilog-A based wrapper module, adding thermal nodes which can be connected to a thermal-equivalent RC network. The proposed framework allows a fully automated extraction process based on the netlist of the top-level design and the model library. A numerical analysis tool is used to control the extraction flow and to obtain all required parameters. The framework is used to model self-heating effects on a fully integrated class A/AB power amplifier (PA) designed in a standard 65 nm CMOS process. The PA is driven with +30 dBm output power, leading to an average temperature rise of approximately 40 °C over ambient temperature.
Physics based lumped element circuit model for nanosecond pulsed dielectric barrier discharges
NASA Astrophysics Data System (ADS)
Underwood, Thomas; Roy, Subrata; Glaz, Bryan
2013-02-01
This work presents a physics based circuit model for calculating the total energy dissipated into neutral species for nanosecond pulsed direct current (DC) dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that the nanosecond pulsed DBD's which have been proposed for aerodynamic flow control can be approximated by two independent regions of homogeneous electric field. An equivalent circuit model is developed for both homogeneous regions based on a combination of a resistor, capacitors, and a zener diode. Instead of fitting the resistance to an experimental data set, a formula is established for approximating the resistance by modeling plasmas as a conductor with DC voltage applied to it. Various assumptions are then applied to the governing Boltzmann equation to approximate electrical conductivity values for weakly ionized plasmas. The developed model is then validated with experimental data of the total power dissipated by plasmas.
NASA Astrophysics Data System (ADS)
Brand, Jonathan; Zhang, Zheming; Agarwal, Ramesh K.
2014-02-01
A simple but reasonably accurate battery model is required for simulating the performance of electrical systems that employ a battery for example an electric vehicle, as well as for investigating their potential as an energy storage device. In this paper, a relatively simple equivalent circuit based model is employed for modeling the performance of a battery. A computer code utilizing a multi-objective genetic algorithm is developed for the purpose of extracting the battery performance parameters. The code is applied to several existing industrial batteries as well as to two recently proposed high performance batteries which are currently in early research and development stage. The results demonstrate that with the optimally extracted performance parameters, the equivalent circuit based battery model can accurately predict the performance of various batteries of different sizes, capacities, and materials. Several test cases demonstrate that the multi-objective genetic algorithm can serve as a robust and reliable tool for extracting the battery performance parameters.
The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.
Kiani, Mehdi; Ghovanloo, Maysam
2012-09-01
Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory. PMID:24683368
EM-ANN models for microstrip vias and interconnects in dataset circuits
Paul M. Watson; Kuldip C. Gupta
1996-01-01
A novel approach for accurate and efficient modeling of monolithic microwave\\/millimeter wave integrated circuit (MMIC) components by using electromagnetically trained artificial neural network (EM-ANN) software modules is presented. Full-wave EM analysis is employed to characterize MMIC components. Structures for simulation are chosen using design of experiments (DOE) methodology. EM-ANN models are then trained using physical parameters as inputs and S-parameters
Branching Patterns and Stepped Leaders in an Electric-Circuit Model for Creeping Discharge
NASA Astrophysics Data System (ADS)
Hidetsugu Sakaguchi,; Sahim M. Kourkouss,
2010-06-01
We construct a two-dimensional electric circuit model for creeping discharge. Two types of discharge, surface corona and surface leader, are modeled by a two-step function of conductance. Branched patterns of surface leaders surrounded by the surface corona appear in numerical simulation. The fractal dimension of branched discharge patterns is calculated by changing voltage and capacitance. We find that surface leaders often grow stepwise in time, as is observed in lightning leaders of thunder.
Modeling for infrared readout integrated circuit based on Verilog-A
NASA Astrophysics Data System (ADS)
Wang, Xiao; Shi, Zelin
2015-04-01
Infrared detectors are the core of infrared imaging systems, while readout integrated circuits are the key components of detectors. In order to grasp the performance of circuits quickly and accurately, a method of circuit modeling using Verilog-A language is proposed, which present a behavioral simulation model for the ROIC. At first, a typical capacitor trans-impedance amplifier(CTIA) ROIC unit is showed, then the two essential parts of it,operational amplifier and switch are modeled on behavioral level. The op amp model concludes these non-ideal factors, such as finite gain-bandwidth product, input and output offset, output resistance and so on. Non-deal factors that affect switches are considered in the switch behavioral model, such as rise and fall time, on-resistance and so on. At last time-domain modeling method for noise is presented, which is compared with the classical frequency domain method for difference. The analysis results shows that in the situation that noise interested bandwidth(NIBW) is more than 5MHz, the difference between the two methods leads to less than 1% if the sample rate of noise is larger 4 times of the NIBW
SiC JFET Transistor Circuit Model for Extreme Temperature Range
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2008-01-01
A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.
Models for Examining Impact of Cosmic Rays on Integrated Circuits
NASA Astrophysics Data System (ADS)
Atkinson, William; William J Atkinson Collaboration
2015-04-01
The Soft Error Rate (SER) produced by SEUs in microelectronic devices in near-earth orbits and in the atmosphere has been computed using a common model developed at Boeing, TSAREME. In space, TSAREME models protons, alphas, and heavy ions with atomic numbers up to 26 (iron) for GCR and peak solar flares. In the atmosphere, TSAREME computes the neutron flux fluxes produced by charged particles interacting with air molecules, accounting for magnetosphere variations with latitude. The devices include Complementary Metal on Oxide (CMOS) and Silicon on Insulator (SOI) transistors with feature sizes varying from a micron to 15 nm. Validation of model results to empirical data discussed.
Total dose and dose rate models for bipolar transistors in circuit simulation.
Campbell, Phillip Montgomery; Wix, Steven D.
2013-05-01
The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.
ERIC Educational Resources Information Center
Asami, Noriaki; King, Julien; Monk, Martin
2000-01-01
Focuses on the familiar problem of students' understanding of elementary electrical circuits from a much neglected point of view. Suggests that the patterning commonly found in students' ideas might have its roots in the cognitive processing with which students operate their mental models of d.c. electrical circuits. Studies Japanese 10-11 year…
Tentzeris, Manos
A Novel Circuit Model of Nanotechnology-Enabled Inkjet-Printed Gas Sensors Using Multi-Wall Carbon-scale nanotechnology- enabled inkjet-printed modules. Index Terms -- Gas sensing, carbon nanotube, inkjet printing, equivalent circuit, nanotechnology. I. INTRODUCTION Due to their excellent mechanical and electronic
JunLing Zhang; XiaoYun Feng; Ke Li; Jun Zheng; Dandan Huang
2010-01-01
DC traction power supply with 24-pulse rectifier is widely used in urban railway transit system. It is necessary to consider short circuit fault protection, because it is crucial for the design of equipments to meet requirements of safety and reliability. This paper presents a 24-pulse rectifier model, based on which the closeup and remote short circuit currents are obtained by
Numerical Based Linear Model for Dipole Magnets
Li,Y.; Krinsky, S.; Rehak, M.
2009-05-04
In this paper, we discuss an algorithm for constructing a numerical linear optics model for dipole magnets from a 3D field map. The difference between the numerical model and K. Brown's analytic approach is investigated and clarified. It was found that the optics distortion due to the dipoles' fringe focusing must be properly taken into account to accurately determine the chromaticities. In NSLS-II, there are normal dipoles with 35-mm gap and dipoles for infrared sources with 90-mm gap. This linear model of the dipole magnets is applied to the NSLS-II lattice design to match optics parameters between the DBA cells having dipoles with different gaps.
Linear and nonlinear equivalent circuit modeling of CMUTs
Annette Lohfink; Peter-Christian Eccardt
2005-01-01
Using piston radiator and plate capacitance theory capacitive micromachined ultrasound transducers (CMUT) membrane cells can be described by one-dimensional (1-D) model parameters. This paper describes in detail a new method, which derives a 1-D model for CMUT arrays from finite-element methods (FEM) simulations. A few static and harmonic FEM analyses of a single CMUT membrane cell are sufficient to derive
A Toy Model for Magnetic Extraction of Energy from Black Hole Accretion Disc
Ding-Xiong Wang; Yong-Chun Ye; Ren-Yi Ma
2004-05-07
A toy model for magnetic extraction of energy from black hole (BH) accretion disk is discussed by considering the restriction of the screw instability to the magnetic field configuration. Three mechanisms of extracting energy magnetically are involved. (1) The Blandford-Znajek (BZ) process is related to the open magnetic field lines connecting the BH with the astrophysical load; (2) the magnetic coupling (MC) process is related to the closed magnetic field lines connecting the BH with its surrounding disk; and (3) a new scenario (henceforth the DL process) for extracting rotational energy from the disk is related to the open field lines connecting the disk with the astrophysical load. The expressions for the electromagnetic powers and torques are derived by using the equivalent circuits corresponding to the above energy mechanisms. It turns out that the DL power is comparable with the BZ and MC powers as the BH spin approaches unity. The radiation from a quasi-steady thin disk is discussed in detail by applying the conservation laws of mass, energy and angular momentum to the regions corresponding to the MC and DL processes. In addition, the poloidal currents and the current densities in BH magnetosphere are calculated by using the equivalent circuits.
Spin Circuit Model for Spin Orbit Torques in 2D Channels
NASA Astrophysics Data System (ADS)
Hong, Seokmin
2015-03-01
Recently, the unique coupling between charge and spin in topological insulators has been explored through various types of electrical measurements, which could have interesting applications. In this talk, we present a spin circuit model for spin orbit torques in topological insulator surface states and other 2D channels. We show with a simple example that results from the circuit model agree well with those obtained from nonequilibrium Green's function (NEGF) based quantum transport simulation. Some predictions of our model have already received experimental support and we hope this model can provide a unifying framework that can be used to critically evaluate experimental results, to explore new types of devices as well as to answer fundamental questions regarding these materials. The model for spin-orbit torques described here can be incorporated into a broader spin-circuit approach which, we believe, provides a natural platform for multi-physics, multi-component spintronic devices. This work was supported by FAME, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.
Magnetic control assembly qualification model
NASA Technical Reports Server (NTRS)
Shen, R. C.; Fleming, R.; Rutkowski, M. Z.; Fowler, R. Z.
1972-01-01
Fabrication and testing of the magnetic control assembly (MCA) are summarized. The MCA was designed as an add-on unit for certain existing components of the Nimbus and ERTS attitude control system. The MCA system consists of three orthogonal electromagnets; a magnetometer probe capable of sensing external fields in the X, Y, and Z axes; and the control electronics. An operational description of the system is given along with all major drawings and photographs. Manufacturing and inspection procedures are outlined and a chronological list of events is included with the fabrication summary.
Coupling in the cortico-basal ganglia circuit is aberrant in the ketamine model of schizophrenia.
Cordon, Ivan; Nicolás, María Jesús; Arrieta, Sandra; Lopetegui, Eneko; López-Azcárate, Jon; Alegre, Manuel; Artieda, Julio; Valencia, Miguel
2015-08-01
Recent studies have suggested the implication of the basal ganglia in the pathogenesis of schizophrenia. To investigate this hypothesis, here we have used the ketamine model of schizophrenia to determine the oscillatory abnormalities induced in the rat motor circuit of the basal ganglia. The activity of free moving rats was recorded in different structures of the cortico-basal ganglia circuit before and after an injection of a subanesthesic dose of ketamine (10mg/kg). Spectral estimates of the oscillatory activity, phase-amplitude cross-frequency coupling interactions (CFC) and imaginary event-related coherence together with animals? behavior were analyzed. Oscillatory patterns in the cortico-basal ganglia circuit were highly altered by the effect of ketamine. CFC between the phases of low-frequency activities (delta, 1-4; theta 4-8Hz) and the amplitude of high-gamma (~80Hz) and high-frequency oscillations (HFO) (~150Hz) increased dramatically and correlated with the movement increment shown by the animals. Between-structure analyses revealed that ketamine had also a massive effect in the low-frequency mediated synchronization of the HFO's across the whole circuit. Our findings suggest that ketamine administration results in an aberrant hypersynchronization of the whole cortico-basal circuit where the tandem theta/HFO seems to act as the main actor in the hyperlocomotion shown by the animals. Here we stress the importance of the basal ganglia circuitry in the ketamine model of schizophrenia and leave the door open to further investigations devoted to elucidate to what extent these abnormalities also reflect the prominent neurophysiological deficits observed in schizophrenic patients. PMID:25910422
Equivalent Circuit Modeling for Carbon Nanotube Schottky Barrier Modulation in Polarized Gases
NASA Technical Reports Server (NTRS)
Yamada, Toshishige
2005-01-01
We study the carbon nanotube Schottky barrier at the metallic electrode interface in polarized gases using an equivalent circuit model. The gas-nanotube interaction is often weak and very little charge transfer is expected [l]. This is the case with'oxygen, but the gas-electrode interaction is appreciable and makes the oxygen molecules negatively charged. In the closed circuit condition, screening positive charges appear in the nanotube as well as in the electrode, and the Schottky barrier is modulated due to the resultant electrostatic effects [2]. In the case of ammonia, both the gas-nanotube and gas-electrode interactions are weak, but the Schottky barrier can still be modulated since the molecules are polarized and align in the preferred orientation within the gap between the electrode and nanotube in the open circuit condition (dipole layer formation). In the closed circuit condition, an electric field appears in the gap and strengthens or weakens the preferred dipole alignment reflecting the nanotube Fermi level. The modulation is visible when the nanotube depletion mode is involved, and the required dipole density is as low as 2 x 10(exp 13) dipoles/sq cm, which is quite feasible experimentally,
MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.
2000-01-01
This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.
Design and Modeling of a 3-D Magnetic Actuator for Magnetic Microbead Manipulation
Zhang, Zhipeng; Menq, Chia-Hsiang
2013-01-01
This paper presents the design, implementation, modeling, and analyses of a hexapole magnetic actuator that is capable of 3-D manipulation of a magnetic microbead. The magnetic actuator employs six sharp-tipped magnetic poles placed in hexapole configuration, six actuating coils, and a magnetic yoke. The magnetic poles concentrate the magnetic flux generated by the coils to the workspace, resulting in a high magnetic field with a large field gradient for magnetic force generation on the magnetic microbead. A lumped-parameter magnetic force model is then established to characterize nonlinearity of the magnetic force exerting on the magnetic microbead with respect to the applied currents to the coils and the position dependence of the magnetic force in the workspace. The force generation capability of the designed system is then explored using the force model. Moreover, an inverse force model is derived and its effect on the magnetic actuation capability is investigated. The inverse force model facilitates the implementation of a feedback control law to stabilize and control the motion of a magnetic microbead. Experimental results in terms of the magnetic force in relation to stable motion control of a magnetic microbead are used to validate the force model. PMID:24382943
NASA Astrophysics Data System (ADS)
Pinkham, Raymond; Anderson, Daniel F.
1986-08-01
The continuing advancements in integrated circuit technology have placed new burdons on the circuit design engineer, who must rely extensively upon computer simulation to correctly predict circuit behavior. One challenge is to develop better modelling techniques to more accurately deal with complex p- n junction structures often used in modern VLSI designs. This paper presents an easily implemented method for deriving parameters which accurately model the behavior of MOS VLSI structures containing complex p- n junction capacitance components. The methodology is applicable to both planar and laterally diffused junctions, whether formed by direct ion implantation or by diffusion from a finite or infinite source. The theories behind the equations used and results of the application of this new technique are discussed. A flow chart for a fitter program based on the new method is presented and described. The corresponding program written for the TI-59 scientific programmable calculator is available. Final model parameters are given and are shown to produce a numerical capacitance model which is accurate to within 2%.
Testing the Model of Oscillating Magnetic Traps
NASA Astrophysics Data System (ADS)
Szaforz, ?.; Tomczak, M.
2015-01-01
The aim of this paper is to test the model of oscillating magnetic traps (the OMT model), proposed by Jakimiec and Tomczak ( Solar Phys. 261, 233, 2010). This model describes the process of excitation of quasi-periodic pulsations (QPPs) observed during solar flares. In the OMT model energetic electrons are accelerated within a triangular, cusp-like structure situated between the reconnection point and the top of a flare loop as seen in soft X-rays. We analyzed QPPs in hard X-ray light curves for 23 flares as observed by Yohkoh. Three independent methods were used. We also used hard X-ray images to localize magnetic traps and soft X-ray images to diagnose thermal plasmas inside the traps. We found that the majority of the observed pulsation periods correlates with the diameters of oscillating magnetic traps, as was predicted by the OMT model. We also found that the electron number density of plasma inside the magnetic traps in the time of pulsation disappearance is strongly connected with the pulsation period. We conclude that the observations are consistent with the predictions of the OMT model for the analyzed set of flares.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1997-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.
Translating Non-Trivial Algorithms from the Circuit Model to the Measurement
Smith IV, Amos M; Alsing, Paul; Lott, Capt. Gordon; Fanto, Michael
2015-01-01
We provide a set of prescriptions for implementing a circuit model algorithm as measurement based quantum computing via a large discrete cluster state constructed sequentially, from qubits implemented as single photons. We describe a large optical discrete graph state capable of searching logical 4 and 8 element lists as an example. To do so we have developed several prescriptions based on analytic evaluation of the evolution of discrete cluster states and graph state equations. We describe the cluster state as a sequence of repeated entanglement and measurement steps using a small number of single photons for each step. These prescriptions can be generalized to implement any logical circuit model operation with appropriate single photon measurements and feed forward error corrections. Such a cluster state is not guaranteed to be optimal (i.e. minimum number of photons, measurements, run time).
Modifications and Modeling of the Fission Surface Power Primary Test Circuit (FSP-PTC)
NASA Technical Reports Server (NTRS)
Garber, Anne E.
2008-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, underwent a range of tests at MSFC in early 2007. During this period, system transient responses and the performance of the liquid metal pump were evaluated. In May of2007, the circuit was drained and cleaned to prepare for multiple modifications: the addition of larger upper and lower reservoirs, the installation of an annular linear induction pump (ALIP), and the inclusion of a closeable orifice in the test section. Performance of the ALIP, provided by Idaho National Laboratory (INL), will be evaluated when testing resumes. Data from the first round of testing has been used to refine the working system model, developed using the Generalized Fluid System Simulation Program (GFSSP). This paper covers the modifications of the FSP-PTC and the updated GFSSP system model.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, J. A., Jr.
1998-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.
Accurate Cold-Test Model of Helical TWT Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1998-01-01
Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAxwell's equations by the Finite Integration Algorithm (MAFIA). Cold-test parameters have been calculated for several helical traveLing-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making It possible, for the first time, to design complete TWT via computer simulation.
Regression Models for Identifying Noise Sources in Magnetic Resonance Images
Rowe, Daniel B.
. PETERSON Stochastic noise, susceptibility artifacts, magnetic field and radiofrequency inhomogeneities physiological processes, eddy currents, artifacts from the differing magnetic field susceptibilitiesRegression Models for Identifying Noise Sources in Magnetic Resonance Images Hongtu ZHU, Yimei LI
NASA Astrophysics Data System (ADS)
Clark, D.
2012-12-01
Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer potassic zone that contains less abundant, but still significant, magnetite. The inner potassic zone represents relatively intense development of qtz-mt-Kfsp veins, whereas the outer potassic zone corresponds to bio-Kfsp-qtz-mt alteration. A shell of magnetite-destructive phyllic alteration with very low susceptibility envelops the potassic zones. The phyllic zone is surrounded by a zone of intense propylitic alteration, which is partially magnetite-destructive, which passes out into weak propylitic alteration and then into unaltered, moderately magnetic volcanics. For such a system, emplaced into magnetic intermediate-mafic igneous host rocks and exposed after removal by erosion of ~ 1 km of overburden, a strong central RTP high is surrounded by a relatively weak annular low over the phyllic zone, gradually returning to background levels over the propylitic zone (an "archery target" signature). For a completely buried system, however, the signature is basically an alteration low due to the large volume of magnetite-destructive alteration surrounding the deeply buried magnetic core.
NASA Astrophysics Data System (ADS)
Rose, D. V.; Miller, C. L.; Welch, D. R.; Clark, R. E.; Madrid, E. A.; Mostrom, C. B.; Stygar, W. A.; Lechien, K. R.; Mazarakis, M. A.; Langston, W. L.; Porter, J. L.; Woodworth, J. R.
2010-09-01
A 3D fully electromagnetic (EM) model of the principal pulsed-power components of a high-current linear transformer driver (LTD) has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim , Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.
An Analysis on Synchronous Reluctance Motors by Use of Magnetic Circuit
NASA Astrophysics Data System (ADS)
Kondo, Minoru
The synchronous reluctance motors operated by a PWM inverter can be designed for the maximum saliency ratio (Ld/Lq). The saliency ratio is the most important parameter for achieving a high torque capability, high power factor and wide constant-power speed range. Generally, flux guides for the d-axis and flux barriers for the q-axis are provided to achieve a high Ld and low Lq, respectively, in order to maximize the saliency ratio. In this paper, the optimal shape and thickness of the flux barriers are investigated analytically. It is also demonstrated that the optimal rotor flux barrier shape can be expressed as the contour line of the function that shows the magnetic potential in a uniform material rotor. The effects of the magnetic resistance of the stator and the gap are also analyzed.
Aparna M. Dhirde; Nilesh V. Dale; Hossein Salehfar; Michael D. Mann; Tae-Hee Han
2010-01-01
In this paper, equivalent electric circuit models of a commercial 1.2-kW proton exchange membrane (PEM) fuel cell stack are proposed based on AC impedance studies. The PEM fuel cell stack was operated using room air and pure hydrogen (99.995%). Using electrochemical impedance spectroscopy (EIS) technique, impedance data were collected in the laboratory under various loading conditions. Impedance data were analyzed
The interplay of plasticity and adaptation in neural circuits: a generative model
Bernacchia, Alberto
2014-01-01
Multiple neural and synaptic phenomena take place in the brain. They operate over a broad range of timescales, and the consequences of their interplay are still unclear. In this work, I study a computational model of a recurrent neural network in which two dynamic processes take place: sensory adaptation and synaptic plasticity. Both phenomena are ubiquitous in the brain, but their dynamic interplay has not been investigated. I show that when both processes are included, the neural circuit is able to perform a specific computation: it becomes a generative model for certain distributions of input stimuli. The neural circuit is able to generate spontaneous patterns of activity that reproduce exactly the probability distribution of experienced stimuli. In particular, the landscape of the phase space includes a large number of stable states (attractors) that sample precisely this prior distribution. This work demonstrates that the interplay between distinct dynamical processes gives rise to useful computation, and proposes a framework in which neural circuit models for Bayesian inference may be developed in the future. PMID:25400577
The interplay of plasticity and adaptation in neural circuits: a generative model.
Bernacchia, Alberto
2014-01-01
Multiple neural and synaptic phenomena take place in the brain. They operate over a broad range of timescales, and the consequences of their interplay are still unclear. In this work, I study a computational model of a recurrent neural network in which two dynamic processes take place: sensory adaptation and synaptic plasticity. Both phenomena are ubiquitous in the brain, but their dynamic interplay has not been investigated. I show that when both processes are included, the neural circuit is able to perform a specific computation: it becomes a generative model for certain distributions of input stimuli. The neural circuit is able to generate spontaneous patterns of activity that reproduce exactly the probability distribution of experienced stimuli. In particular, the landscape of the phase space includes a large number of stable states (attractors) that sample precisely this prior distribution. This work demonstrates that the interplay between distinct dynamical processes gives rise to useful computation, and proposes a framework in which neural circuit models for Bayesian inference may be developed in the future. PMID:25400577
NASA Astrophysics Data System (ADS)
Zhao, Hongliang; Liu, Xinghui; Xu, Chao
2013-11-01
A low power cryogenic readout integrated circuit (ROIC) for 512 × 512-pixel infrared focal plane array (IRFPA) image system, is presented. In order to improve the precision of the circuit simulation at cryogenic temperatures, a modified MOS device model is proposed. The model is based on BSIM3 model, and uses correction parameters to describe carrier freeze-out effect at low temperatures to improve the fitting accuracy for low temperature MOS device simulation. A capacitive trans-impedance amplifier (CTIA) with inherent correlated double sampling (CDS) configuration is employed to realize a high performance readout interfacing circuit in a pixel area of 30 × 30 ?m2. Optimized column readout timing and structure are applied to reduce the power consumption. The experimental chip fabricated by a standard 0.35 ?m 2P4M CMOS process shows more than 10 MHz readout rate with less than 70 mW power consumption under 3.3 V supply voltage at 77-150 K operated temperatures. And it occupies an area of 18 × 17 mm2.
Modeling Solar Magnetic Fields Using Satellite Data
NASA Astrophysics Data System (ADS)
Lee, G.; Malanushenko, A. V.; DeRosa, M. L.
2014-12-01
Previous research reconstructed a three-dimensional model of the magnetic field of an active region on the Sun from using solar coronal loops as guides for modeling(Malanushenko et al., ApJ,2009, 707:1044). In this study, we test the consistency of such reconstructions with data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) by applying the aformentioned method to additional active regions with varying amounts of solar activity. To create an initial model of a magnetic field surrounding an active region, we first manually trace the coronal loops on the coronal images in the following wavelengths: 171Å, 193Å, 211Å, 94Å, 131Å, and 335Å. The manually traced loops are then used as a guide for a computer reconstruction of the individual three-dimensional field lines with differing heights and degrees of local twist. The reconstructed field lines are then adjusted by a partially automated algorithm, so that the constructed field line would correspond to a coronal loop on the Sun. These fitted loops serve as a skeleton to create a model of the magnetic field of the active region. We expect that our modeling can be used in future works to predict future solar events. Implications of this ability include being able to prepare a response for a solar event before it happens.
Bipolar junction transistor models for circuit simulation of cosmic-ray-induced soft errors
NASA Technical Reports Server (NTRS)
Benumof, R.; Zoutendyk, J.
1984-01-01
This paper examines bipolar junction transistor models suitable for calculating the effects of large excursions of some of the variables determining the operation of a transistor. Both the Ebers-Moll and Gummel-Poon models are studied, and the junction and diffusion capacitances are evaluated on the basis of the latter model. The most interesting result of this analysis is that a bipolar junction transistor when struck by a cosmic particle may cause a single event upset in an electronic circuit if the transistor is operated at a low forward base-emitter bias.
Bipolar junction transistor models for circuit simulation of cosmic-ray-induced soft errors
NASA Astrophysics Data System (ADS)
Benumof, R.; Zoutendyk, J.
1984-11-01
This paper examines bipolar junction transistor models suitable for calculating the effects of large excursions of some of the variables determining the operation of a transistor. Both the Ebers-Moll and Gummel-Poon models are studied, and the junction and diffusion capacitances are evaluated on the basis of the latter model. The most interesting result of this analysis is that a bipolar junction transistor when struck by a cosmic particle may cause a single event upset in an electronic circuit if the transistor is operated at a low forward base-emitter bias.
Elimination of linezolid by an in vitro extracorporeal circuit model.
Schroeder, T H; Hansen, M; Stephan, M; Hoffmann, E; Unertl, K; Krueger, W A
2004-06-01
Linezolid is an oxazolidinone antibiotic with activity against important grampositive aerobic bacteria, including nosocomial pathogens. It is not known whether dosage adjustments are necessary in patients treated with continuous renal replacement therapies. This in vitro study was conducted to investigate the elimination of linezolid in an in vitro continuous hemo(dia)filtration model using different filter materials (polysulfone, polyacrylonitrile, polyamide), surface areas, and different modes of renal replacement therapies. Linezolid was measured using HPLC with UV-detection. No adsorption of linezolid to any of the tested membranes was detected. Recovery of linezolid in the ultrafiltrate was 98.2 +/- 10.5% in the filtration mode. During dialysis, recovery was significantly less (87.6 +/- 16.1%; p = 0.02). Linezolid elimination was not altered by filter size, when polysulfone filters with surface areas of 0.7 m2 and 1.3 m2 were tested. In conclusion, the dosage recommendations for linezolid are independent of the filter materials. However, the elimination is significantly higher during hemofiltration compared to dialysis. PMID:15293354
Coupled wave model for large magnet coils
NASA Technical Reports Server (NTRS)
Gabriel, G. J.
1980-01-01
A wave coupled model based on field theory is evolved for analysis of fast electromagnetic transients on superconducting coils. It is expected to play a useful role in the design of protection methods against damage due to high voltages or any adverse effects that might arise from unintentional transients. The significant parameters of the coil are identified to be the turn to turn wave coupling coefficients and the travel time of an electromagnetic disturbance around a single turn. Unlike circuit theoretic inductor, the coil response evolves in discrete steps having durations equal to this travel time. It is during such intervals that high voltages are likely to occur. The model also bridges the gap between the low and high ends of the frequency spectrum.
Models: Electric and Magnetic Interactions, Teacher's Guide.
ERIC Educational Resources Information Center
Karplus, Robert
The unit presented in this teacher's guide is one of two developed for the sixth and final year in the Science Curriculum Improvement Study (SCIS) curriculum. The concept of a scientific model is introduced in this unit with activities directed toward increasing student understanding of electric and magnetic phenomena through concrete experience…
DeGeorge, V; Shen, S; Ohodnicki, P; Andio, M; Mchenry, ME
2013-12-05
New power conversion systems that offer promise to transform electricity grids into unified interactive supply networks require high-resistivity soft-magnetic materials to allow for switching of magnetic materials at frequencies approaching 100 kHz for power transformation in the megawatt range. Amorphous and nanocomposite soft-magnetic materials, which represent the state of the art in terms of high power densities and low losses at high frequencies, have resistivities that depend on the structures and spatial distributions of multiple phases in thin ribbons. We present a multiphase resistivity model applicable to nanocomposite materials by considering an equivalent circuit approach considering paths through an amorphous, crystalline, and growth inhibitor shell phase. We detail: (a) identification of amorphous, crystalline, and shell phases; (b) consideration of the role of the morphology of each phase in an equivalent circuit model for the resistance; (c) a two-band model for the Fe/Co composition dependence of the resistivity in crystalline and amorphous phases; (d) a virtual bound state model for resistivity to explain increased resistivity due to early transition-metal growth inhibitors in the shell surrounding the nanocrystalline phase; and (e) disorder effects on amorphous phase resistivity. Experimental design and results for systems of interest in high-frequency power transformation are discussed in the context of our model including: (a) techniques for measurements of cross-section and density, (b) four-point probe and surface resistivity measurements, and (c) measurements in Fe- and Co-rich systems comparing amorphous and nanocomposite materials.
Vitarelli, Michael J; Prakash, Shaurya; Talaga, David S
2011-01-15
Solid-state nanopores and nanocapillaries find increasing use in a variety of applications including DNA sequencing, synthetic nanopores, next-generation membranes for water purification, and other nanofluidic structures. This paper develops the use of electrochemical impedance spectroscopy to determine the geometry of nanocapillaries. A network equivalent circuit element is derived to include the effects of the capacitive double layer inside the nanocapillaries as well as the influence of varying nanocapillary radius. This variable topology function is similar to the finite Warburg impedance in certain limits. Analytical expressions for several different nanocapillary shapes are derived. The functions are evaluated to determine how the impedance signals will change with different nanocapillary aspect ratios and different degrees of constriction or inflation at the capillary center. Next, the complex impedance spectrum of a nanocapillary array membrane is measured at varying concentrations of electrolyte to separate the effects of nanocapillary double layer capacitance from those of nanocapillary geometry. The variable topology equivalent circuit element model of the nanocapillary is used in an equivalent circuit model that included contributions from the membrane and the measurement apparatus. The resulting values are consistent with the manufacturer's specified tolerances of the nanocapillary geometry. It is demonstrated that electrochemical impedance spectroscopy can be used as a tool for in situ determination of the geometry of nanocapillaries. PMID:21188971
An equivalent circuit model and power calculations for the APS SPX crab cavities.
Berenc, T. (Accelerator Systems Division (APS))
2012-03-21
An equivalent parallel resistor-inductor-capacitor (RLC) circuit with beam loading for a polarized TM110 dipole-mode cavity is developed and minimum radio-frequency (rf) generator requirements are calculated for the Advanced Photon Source (APS) short-pulse x-ray (SPX) superconducting rf (SRF) crab cavities. A beam-loaded circuit model for polarized TM110 mode crab cavities was derived. The single-cavity minimum steady-state required generator power has been determined for the APS SPX crab cavities for a storage ring current of 200mA DC current as a function of external Q for various vertical offsets including beam tilt and uncontrollable detuning. Calculations to aid machine protection considerations were given.
Circuit modeling and performance analysis of SWCNT bundle 3D interconnects
NASA Astrophysics Data System (ADS)
Libo, Qian; Zhangming, Zhu; Ruixue, Ding; Yintang, Yang
2013-09-01
Metallic carbon nanotubes (CNTs) have been proposed as a promising alternative to Cu interconnects in future integrated circuits (ICs) for their remarkable conductive, mechanical and thermal properties. Compact equivalent circuit models for single-walled carbon nanotube (SWCNT) bundles are described, and the performance of SWCNT bundle interconnects is evaluated and compared with traditional Cu interconnects at different interconnect levels for through-silicon-via-based three dimensional (3D) ICs. It is shown that at a local level, CNT interconnects exhibit lower signal delay and smaller optimal wire size. At intermediate and global levels, the delay improvement becomes more significant with technology scaling and increasing wire lengths. For 1 mm intermediate and 10 mm global level interconnects, the delay of SWCNT bundles is only 49.49% and 52.82% that of the Cu wires, respectively.
New Models of Magnetic Interactions for Bound Magnetic Polarons in Dilute Magnetic Semiconductors
NASA Astrophysics Data System (ADS)
McIntyre, Cynthia R.
The goal of the first part of this thesis is to develop a solvable model that better approximates the true exchange Hamiltonian of bound magnetic polarons (BMPs). The model replaces the single exchange constant (one-step) of the previous model by two exchange parameters (two-steps) of different coupling strengths. This formulation of the Hamiltonian breaks up some of the degeneracy of the one -step model. Determination of the relevant parameters is done using a Feynman (17) variational method. This method gives the optimal values for parameters in the model. A comparison of parameters, significant to the one-step model, using Feynman's variational method and a technique by Ryabchenko (14) will be presented. The second part of this thesis will focus on the effects of anisotropic exchange interaction, Dzyaloshinski (15) -Moriya (16) (DM) interaction, on the magnetization of the dilute magnetic semiconductors. Anisotropic exchange (DM) is the largest of the known non-spin conserving interactions. Because of its non-spin conserving property, anisotropic exchange is a probable mechanism for affecting the magnetization of Mn^{+2} pairs. Recent experimental research (22) on these materials has focused on the contribution of the DM interaction at the energy level crossings of Mn^{+2} pairs. We calculate the contribution of DM to the magnetization and compare to the linewidth of magnetization steps obtained from experiment. Also, we theoretically investigate the role of spin-lattice interactions on the relaxation of Mn^{+2} pairs and compare the theoretical time to the estimated experimental time (22). (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened with permission of school.).
Quark matter under strong magnetic fields in chiral models
Rabhi, Aziz [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal); Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences de Tunis, Campus Universitaire, Le Belvedere-1060 (Tunisia); Providencia, Constanca [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal)
2011-05-15
The chiral model is used to describe quark matter under strong magnetic fields and is compared to other models, the MIT bag model and the two-flavor Nambu-Jona-Lasinio model. The effect of vacuum corrections due to the magnetic field is discussed. It is shown that if the magnetic-field vacuum corrections are not taken into account explicitly, the parameters of the models should be fitted to low-density meson properties in the presence of the magnetic field.
Catastrophe Model for Fast Magnetic Reconnection Onset
Cassak, P.A.; Shay, M.A.; Drake, J.F.
2005-12-02
A catastrophe model for the onset of fast magnetic reconnection is presented that suggests why plasma systems with magnetic free energy remain apparently stable for long times and then suddenly release their energy. For a given set of plasma parameters there are generally two stable reconnection solutions: a slow (Sweet-Parker) solution and a fast (Alfvenic) Hall reconnection solution. Below a critical resistivity the slow solution disappears and fast reconnection dominates. Scaling arguments predicting the two solutions and the critical resistivity are confirmed with two-fluid simulations.
Nonlinear Solar Dynamo Model with Magnetic Helicity
I. N. Kitiashvili; A. G. Kosovichev
2009-02-11
Variations of the sunspot number are important indicators of the solar activity cycles. The sunspot formation is a result of a dynamo process inside the Sun, which is far from being understood. We use simple dynamical models of the dynamo process to simulate the magnetic field evolution and investigate general properties of the sunspot number variations during the solar cycles. We have found that the classical Parker's model with a standard kinetic helicity quenching cannot represent the typical profiles of the solar-cycle variations of the sunspot number, and also does not give chaotic solutions. For modeling of the solar cycle properties we use a nonlinear dynamo model of Kleeorin and Ruzmaikin (1982), which takes into account dynamics of the turbulent magnetic helicity. We have obtained a series of periodic and chaotic solutions for different layers of the convective zone. The solutions qualitatively reproduce some basic observational features of the solar cycle properties, in particular, the relationship between the growth time and the cycle amplitude. Also, on the longer time scale the dynamo model with the magnetic helicity has intermittent solutions, which may be important for modeling long-term variations of the solar cycles.
NASA Astrophysics Data System (ADS)
Fireteanu, V.
2013-06-01
Based on the time domain finite element analysis of the electromagnetic field, this paper studies the signature of the short-circuit faults inside the stator winding in the magnetic field outside induction motors. The detection of the such a fault is based on the evaluation of the output voltage of coil sensors placed in the motors neighbouring and the comparison of amplitudes of harmonics of this voltage for the healthy and faulty operation states.
NASA Technical Reports Server (NTRS)
1976-01-01
Twenty-nine circuits and circuit techniques developed for communications and instrumentation technology are described. Topics include pulse-code modulation, phase-locked loops, data coding, data recording, detection circuits, logic circuits, oscillators, and amplifiers.
Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications
NASA Technical Reports Server (NTRS)
Boghosian, Mary; Narvaez, Pablo; Herman, Ray
2012-01-01
The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Goglia, G. L.
1979-01-01
The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated.
Dynamo Models for Saturn's Axisymmetric Magnetic Field
NASA Astrophysics Data System (ADS)
Stanley, S.; Tajdaran, K.
2012-12-01
Magnetic field measurements by the Cassini mission have confirmed the earlier Pioneer 11 and Voyager missions' results that Saturn's observed magnetic field is extremely axisymmetric . For example, Saturn's dipole tilt is less than 0.06 degrees (Cao et al., 2011) . The nearly-perfect axisymmetry of Saturn's dipole is troubling because of Cowling's Theorem which states that an axisymmetric magnetic field cannot be maintained by a dynamo. However, Cowling's Theorem applies to the magnetic field generated inside the dynamo source region and we can avert any contradiction with Cowling's Theorem if we can find reason for a non-axisymmetric field generated inside the dynamo region to have an axisymmetrized potential field observed at satellite altitude. Stevenson (1980) proposed a mechanism for this axisymmetrization. He suggested that differential rotation in a stably-stratified electrically conducting layer (i.e. the helium rain-out layer) surrounding the dynamo could act to shear out the non-axisymmetry and hence produce an axisymmetric observed magnetic field. In previous work, we used three-dimensional self-consistent numerical dynamo models to demonstrate that a thin helium rain-out layer can produce a more axisymmetrized field (Stanley, 2010). We also found that the direction of the zonal flows in the layer is a crucial factor for magnetic field axisymmetry. Here we investigate the influence of the thickness of the helium rain-out layer and the intensity of the thermal winds on the axisymmetrization of the field. We search for optimal regions in parameter space for producing axisymmetric magnetic fields with similar spectral properties to the observed Saturnian field.
A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition
Sorooshyari, Siamak; Huerta, Ramón; de Lecea, Luis
2015-01-01
Identifying the neuronal circuits and dynamics of sleep-to-wake transition is essential to understanding brain regulation of behavioral states, including sleep–wake cycles, arousal, and hyperarousal. Recent work by different laboratories has used optogenetics to determine the role of individual neuromodulators in state transitions. The optogenetically driven data do not yet provide a multi-dimensional schematic of the mechanisms underlying changes in vigilance states. This work presents a modeling framework to interpret, assist, and drive research on the sleep-regulatory network. We identify feedback, redundancy, and gating hierarchy as three fundamental aspects of this model. The presented model is expected to expand as additional data on the contribution of each transmitter to a vigilance state becomes available. Incorporation of conductance-based models of neuronal ensembles into this model and existing models of cortical excitability will provide more comprehensive insight into sleep dynamics as well as sleep and arousal-related disorders. PMID:25767461
Geospace Environmental Modeling (GEM) magnetic reconnection challenge
NASA Astrophysics Data System (ADS)
Birn, J.; Drake, J. F.; Shay, M. A.; Rogers, B. N.; Denton, R. E.; Hesse, M.; Kuznetsova, M.; Ma, Z. W.; Bhattacharjee, A.; Otto, A.; Pritchett, P. L.
2001-03-01
The Geospace Environmental Modeling (GEM) Reconnection Challenge project is presented and the important results, which are presented in a series of companion papers, are summarized. Magnetic reconnection is studied in a simple Harris sheet configuration with a specified set of initial conditions, including a finite amplitude, magnetic island perturbation to trigger the dynamics. The evolution of the system is explored with a broad variety of codes, ranging from fully electromagnetic particle in cell (PIC) codes to conventional resistive magnetohydrodynamic (MHD) codes, and the results are compared. The goal is to identify the essential physics which is required to model collisionless magnetic reconnection. All models that include the Hall effect in the generalized Ohm's law produce essentially indistinguishable rates of reconnection, corresponding to nearly Alfvénic inflow velocities. Thus the rate of reconnection is insensitive to the specific mechanism which breaks the frozen-in condition, whether resistivity, electron inertia, or electron thermal motion. The reconnection rate in the conventional resistive MHD model, in contrast, is dramatically smaller unless a large localized or current dependent resistivity is used. The Hall term brings the dynamics of whistler waves into the system. The quadratic dispersion property of whistlers (higher phase speed at smaller spatial scales) is the key to understanding these results. The implications of these results for trying to model the global dynamics of the magnetosphere are discussed.
Busby, Cathy
Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal models. Busby (2007), Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal] Satellite constellations enable the efficient collection of in situ measurements over large volumes of space
Quantum gate circuit model of signal integration in bacterial quorum sensing.
Karafyllidis, Ioannis G
2012-01-01
Bacteria evolved cell to cell communication processes to gain information about their environment and regulate gene expression. Quorum sensing is such a process in which signaling molecules, called autoinducers, are produced, secreted and detected. In several cases bacteria use more than one autoinducers and integrate the information conveyed by them. It has not yet been explained adequately why bacteria evolved such signal integration circuits and what can learn about their environments using more than one autoinducers since all signaling pathways merge in one. Here quantum information theory, which includes classical information theory as a special case, is used to construct a quantum gate circuit that reproduces recent experimental results. Although the conditions in which biosystems exist do not allow for the appearance of quantum mechanical phenomena, the powerful computation tools of quantum information processing can be carefully used to cope with signal and information processing by these complex systems. A simulation algorithm based on this model has been developed and numerical experiments that analyze the dynamical operation of the quorum sensing circuit were performed for various cases of autoinducer variations, which revealed that these variations contain significant information about the environment in which bacteria exist. PMID:21788673
Constraining the galactic magnetic field models
NASA Astrophysics Data System (ADS)
Keivani, Azadeh
2012-03-01
Ultra-high energy cosmic rays (UHECRs) are deflected by the Galactic magnetic field (GMF) on their way to Earth. If UHECR properties were well-understood, it would be straightforward to model the intervening GMF. However uncertainties on the composition and source distribution complicate the issue. An independent method of constraining GMF models is using Faraday rotation measurements (RMs) of Galactic and extra-Galactic radio sources. Here we investigate a new composite method for constraining GMF models using simultaneous fits of UHECR and RM simulations. A simulated universe of UHECRs and Galactic RMs are used to test this method.
Maximum Acceleration Recording Circuit
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.
Mcconaghy, Trent; Gielen, Georges
2011-01-01
This paper presents a method to automatically generate compact symbolic performance models of analog circuits with no prior specification of an equation template. The approach takes SPICE simulation data as input, which enables modeling of any nonlinear circuits and circuit characteristics. Genetic programming is applied as a means of traversing the space of possible symbolic expressions. A grammar is specially designed to constrain the search to a canonical form for functions. Novel evolutionary search operators are designed to exploit the structure of the grammar. The approach generates a set of symbolic models which collectively provide a tradeoff between error and model complexity. Experimental results show that the symbolic models generated are compact and easy to understand, making this an effective method for aiding understanding in analog design. The models also demonstrate better prediction quality than posynomials.
Finite element modeling of multipolar buckets with permanent magnets
NASA Astrophysics Data System (ADS)
Vukovic, Mirko
1999-10-01
The efficiency of the multipolar bucket is determined largely by the trapping of energetic electrons in the magnetic field. The calculation of fields generated by permanent magnets is not trivial, as the field strength depends on the energy stored in the magnetic field and the demagnetization curve of the permanent magnets. The magnetic field properties of multipolar buckets are modeled for a variety of magnet dimensions and number of columns using a finite element modeling software package. The energy of the magnetic field is combined with demagnetization curves for permanent magnets to predict the magnetic field strength. Field strength, decay length, and leak width are determined for a variety of chamber sizes, magnet dimensions and strengths. These parameters are also computed for experiments on optimization of multipolar bucket plasma confinement(Leung, K. N. et al.,Phys.Lett.51A(1975)490). Criteria for optimizing the magnetic bucket configuration are proposed.
Smyth, Katherine; Kim, Sang-Gook
2015-04-01
An analytical Mason equivalent circuit is derived for a circular, clamped plate piezoelectric micromachined ultrasonic transducer (pMUT) design in 31 mode, considering an arbitrary electrode configuration at any axisymmetric vibration mode. The explicit definition of lumped parameters based entirely on geometry, material properties, and defined constants enables straightforward and wide-ranging model implementation for future pMUT design and optimization. Beyond pMUTs, the acoustic impedance model is developed for universal application to any clamped, circular plate system, and operating regimes including relevant simplifications are identified via the wave number-radius product ka. For the single-electrode fundamental vibration mode case, sol-gel Pb(Zr0.52)Ti0.48O3 (PZT) pMUT cells are microfabricated with varying electrode size to confirm the derived circuit model with electrical impedance measurements. For the first time, experimental and finite element simulation results are successfully applied to validate extensive electrical, mechanical, and acoustic analytical modeling of a pMUT cell for wide-ranging applications including medical ultrasound, nondestructive testing, and range finding. PMID:25881352
William Pinello; Andreas C. Cangellaris; Albert Ruehli
1997-01-01
The partial-element equivalent-circuit (PEEC) method is used to develop a flexible, hierarchical electromagnetic modeling and simulation environment for the analysis of noise generation and signal degradation mechanisms in packaged electronic components and systems. The circuit-oriented approach used by the method for the development of the numerical approximation of the electric-field integral equation leads to SPICE-compatible, yet fully dynamic, discrete approximation
Doll, Caleb A.; Broadie, Kendal
2014-01-01
Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent (A-D) developmental processes are specifically impaired in autism spectrum disorders (ASDs). ASD genetic models in both mouse and Drosophila have pioneered our insights into normal A-D neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic fragile X syndrome (FXS), a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in A-D critical period processes. The fragile X mental retardation protein (FMRP) is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the A-D remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor A-D processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of A-D mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model. PMID:24570656
Landau Fluid Models for Magnetized Plasmas
Sulem, P. L.; Passot, T.; Marradi, L. [Universite de Nice Sophia Antipolis, CNRS Observatoire de la Cote d'Azur, BP 4229, 06304 Nice Cedex 4 (France)
2008-10-15
A Landau fluid model for a magnetized plasma, that retains a linear description of low-frequency kinetic effects involving transverse scales significantly smaller than the ion Larmor radius, is discussed and validated in the context of nonlinear wave dynamics. Preliminary simulations of the turbulent regime are presented in one space dimension, as a first step towards more realistic three-dimensional computations, aimed to analyze the combined effect of dispersion and collisionless dissipation on the energy cascade.
Characterization and Modeling of 4H-SiC Lateral MOSFETs for Integrated Circuit Design
Mudholkar, M; Mantooth, HA
2013-06-01
A new process in 4H-SiC is developed that features n-type buried and inversion channel lateral MOSFETs that are fabricated with several different channel lengths (2-8 mu m) and widths (8-32 mu m) and characterized over a wide temperature range (25 degrees C-225 degrees C). It is shown that the on-resistance of enhancement-mode SiC MOSFETs reduces with temperature despite a reduction in inversion mobility because of the interaction of interface states with temperature. To enable integrated circuit development using the developed MOSFETs, their electrical characteristics are modeled over geometry and temperature using the industry standard PSP MOSFET model. A new mathematical formulation to describe the presence of the interface states is also developed and implemented in the PSP model, and excellent agreement is shown between measurement and simulation using the modified PSP model.
Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model.
Hokmabadi, Mohammad Parvinnezhad; Wilbert, David S; Kung, Patrick; Kim, Seongsin M
2013-07-15
Metamaterial terahertz absorbers composed of a frequency selective layer followed by a spacer and a metallic backplane have recently attracted great attention as a device to detect terahertz radiation. In this work, we present a quasistatic dynamic circuit model that can decently describe operational principle of metamaterial terahertz absorbers based on interference theory of reflected waves. The model comprises two series LC resonance components, one for resonance in frequency selective surface (FSS) and another for resonance inside the spacer. Absorption frequency is dominantly determined by the LC of FSS while the spacer LC changes slightly the magnitude and frequency of absorption. This model fits perfectly for both simulated and experimental data. By using this model, we study our designed absorber and we analyze the effect of changing in spacer thickness and metal conductivity on absorption spectrum. PMID:23938496
NASA Technical Reports Server (NTRS)
Guseynov, F. G.; Abbasova, E. M.
1977-01-01
The equivalent representation of brakes and coupling by lumped circuits is investigated. Analytical equations are derived for relating the indices of the transients to the parameters of the equivalent circuits for arbitrary rotor speed. A computer algorithm is given for the calculations.
Simplified Modeling of Active Magnetic Regenerators
NASA Astrophysics Data System (ADS)
Burdyny, Thomas
Active magnetic regenerator (AMR) refrigeration is an alternative technology to conventional vapor-compression refrigerators that has the potential to operate at higher efficiencies. Based on the magnetocaloric effect, this technology uses the magnetization and demagnetization of environmentally neutral solid refrigerants to produce a cooling effect. To become competitive however, a large amount of research into the optimal device configurations, operating parameters and refrigerants is still needed. To aid in this research, a simplified model for predicting the general trends of AMR devices at a low computational cost is developed. The derivation and implementation of the model for an arbitrary AMR is presented. Simulations from the model are compared to experimental results from two different devices and show good agreement across a wide range of operating parameters. The simplified model is also used to study the impacts of Curie temperature spacing, material weighting and devices on the performance of multilayered regenerators. Future applications of the simplified AMR model include costing and optimization programs where the low computational demand of the model can be fully exploited.
NASA Astrophysics Data System (ADS)
Lucas, G.; Bayona, V.; Flyer, N.; Baumgaertner, A. J. G.; Thayer, J. P.
2014-12-01
We introduce a new numeric solver for the partial differential equations of the Global Electric Circuit (GEC). The model is applied to derive the ionospheric potential with respect to the Earth, as well as the current distribution and electric fields throughout the atmosphere. We will discuss its advantages to previously published approaches, and introduce the model's application within a larger model framework that consistently describes the thunderstorm/electrified cloud current source distribution and conductivity. The new source and conductivity distributions will be utilized in the new numeric GEC solver to demonstrate the effect that temporal and spatial variability of these inputs have on electric fields and currents throughout the domain.
An improved electrical and thermal model of a microbolometer for electronic circuit simulation
NASA Astrophysics Data System (ADS)
Würfel, D.; Vogt, H.
2012-09-01
The need for uncooled infrared focal plane arrays (IRFPA) for imaging systems has increased since the beginning of the nineties. Examples for the application of IRFPAs are thermography, pedestrian detection for automotives, fire fighting, and infrared spectroscopy. It is very important to have a correct electro-optical model for the simulation of the microbolometer during the development of the readout integrated circuit (ROIC) used for IRFPAs. The microbolometer as the sensing element absorbs infrared radiation which leads to a change of its temperature due to a very good thermal insulation. In conjunction with a high temperature coefficient of resistance (TCR) of the sensing material (typical vanadium oxide or amorphous silicon) this temperature change results in a change of the electrical resistance. During readout, electrical power is dissipated in the microbolometer, which increases the temperature continuously. The standard model for the electro-optical simulation of a microbolometer includes the radiation emitted by an observed blackbody, radiation emitted by the substrate, radiation emitted by the microbolometer itself to the surrounding, a heat loss through the legs which connect the microbolometer electrically and mechanically to the substrate, and the electrical power dissipation during readout of the microbolometer (Wood, 1997). The improved model presented in this paper takes a closer look on additional radiation effects in a real IR camera system, for example the radiation emitted by the casing and the lens. The proposed model will consider that some parts of the radiation that is reflected from the casing and the substrate is also absorbed by the microbolometer. Finally, the proposed model will include that some fraction of the radiation is transmitted through the microbolometer at first and then absorbed after the reflection at the surface of the substrate. Compared to the standard model temperature and resistance of the microbolometer can be modelled more realistically when these higher order effects are taken into account. A Verilog-A model for electronic circuit simulations is developed based on the improved thermal model of the microbolometer. Finally, a simulation result of a simple circuit is presented.
Imad Chahine; Moncef Kadi; Eric Gaboriaud; Anne Louis; BÉlahcÈne Mazari
2008-01-01
This paper deals with the characterization, as well as the modeling, of the susceptibility of integrated circuits (ICs) to conducted electromagnetic disturbances such as a continuous-wave disturbance. Based on accurate measurement results, a robust mathematical model to predict the susceptibility of a CMOS inverter is developed. This model is based on a neural network approach and is validated up to
The calculational modeling of impurity mass transfer in NPP circuits with liquid metal coolant
NASA Astrophysics Data System (ADS)
Alexeev, V.; Kozlov, F.; Kumaev, V.; Orlova, E.; Klimanova, Yu; Torbenkova, I.
2008-02-01
The authors create three levels of models (one-dimensional, two-dimensional and three-dimensional) for estimation of impurity mass transfer in sodium circuits units as well as applicable computational programs. In the one-dimensional model the flow path elements are simulated by annular channels. The Lagrange coordinate system is used in the mathematical description of processes in channels. The two-dimensional model is based on the porous body approximation and enables one to simulate global spatial distributions of coolant flow velocity fields, coolant and fuel rods temperatures, and concentration distribution of transferred substances. The mathematical description of passive multicomponent impurity transfer is carried out using the system of the differential equations with sources and impurity diffusion, written for each component. The equations are solved by the finite-difference method. The developed version of the three-dimensional code is based on a general approach of the spatial three-dimensional description of thermal-hydraulic and mass-transfer processes in fuel rod bundles. The determining system of finite-difference equations of hydrodynamics and heat exchange is obtained using the control volume approach. As a result of the performed calculations, valuable data on corrosion products transfer in the primary circuit of the BN-600 reactor are obtained.
Integrated simulation and modeling capability for alternate magnetic fusion concepts
Cohen, B. I.; Hooper, E.B.; Jarboe, T. R.; LoDestro, L. L.; Pearlstein, L. D.; Prager, S. C.; Sarff, J. S.
1998-11-03
This document summarizes a strategic study addressing the development of a comprehensive modeling and simulation capability for magnetic fusion experiments with particular emphasis on devices that are alternatives to the mainline tokamak device. A code development project in this area supports two defined strategic thrust areas in the Magnetic Fusion Energy Program: (1) comprehensive simulation and modeling of magnetic fusion experiments and (2) development, operation, and modeling of magnetic fusion alternate- concept experiment
Yuhua Cheng; Min-Chie Jeng; Zhihong Liu; Kai Chen; Mansun Chan; Chenming Hu; Ping Keung Kox
1996-01-01
We present an accurate and unified MOSFET model with benchmark test results for analog\\/digital circuit simulation. The results show that the model can pass most benchmarks suggested for a model used in circuit simulation by SEMATECH recently, and ensures good scalability and accuracy. The model has been implemented in HSpice, Spectre, SmartSpice and Spice3e2
Evolutionary Models of Cold, Magnetized, Interstellar Clouds
NASA Technical Reports Server (NTRS)
Gammie, Charles F.; Ostriker, Eve; Stone, James M.
2004-01-01
We modeled the long-term and small-scale evolution of molecular clouds using direct 2D and 3D magnetohydrodynamic (MHD) simulations. This work followed up on previous research by our group under auspices of the ATP in which we studied the energetics of turbulent, magnetized clouds and their internal structure on intermediate scales. Our new work focused on both global and smallscale aspects of the evolution of turbulent, magnetized clouds, and in particular studied the response of turbulent proto-cloud material to passage through the Galactic spiral potential, and the dynamical collapse of turbulent, magnetized (supercritical) clouds into fragments to initiate the formation of a stellar cluster. Technical advances under this program include developing an adaptive-mesh MHD code as a successor to ZEUS (ATHENA) in order to follow cloud fragmentation, developing a shearing-sheet MHD code which includes self-gravity and externally-imposed gravity to follow the evolution of clouds in the Galactic potential, and developing radiative transfer models to evaluate the internal ionization of clumpy clouds exposed to external photoionizing UV and CR radiation. Gammie's work at UIUC focused on the radiative transfer aspects of this program.
Multi-coil magnetic field modeling.
Juchem, Christoph; Green, Dan; de Graaf, Robin A
2013-11-01
The performance of multi-coil (MC) magnetic field modeling is compared to dedicated wire patterns for the generation of spherical harmonic (SH) shapes as these are the workhorse for spatial encoding and magnetic field homogenization in MR imaging and spectroscopy. To this end, an example 48 channel MC setup is analyzed and shown to be capable of generating all first through fourth order SH shapes over small and large regions-of-interest relevant for MR investigations. The MC efficiency for the generation of linear gradient fields shares the same order of magnitude with classic and state-of-the-art SH gradient coils. MC field modeling becomes progressively more efficient with the synthesis of more complex field shapes that require the combination of multiple SH terms. The possibility of a region-specific optimization of both magnetic field shapes and generation performance with the MC approach are discussed with emphasis on the possible trade-off between the field accuracy and generation efficiency. MC shimming has been shown previously to outperform current SH shimming. Along with the efficiency gains of MC shimming shown here, the MC concept has the potential to (1) replace conventional shim systems that are based on sets of dedicated SH coils and (2) allow optimal object-specific shim solutions similar to object-specific RF coils. PMID:24095841
Geller, Michael R.
Quantum computing with electrical circuits: Hamiltonian construction for basic qubit circuits--where macroscopic collective variables such as polarization charge and electric current exhibit processing are probing a new and fascinating regime of electrical engineering--that of quantum electrical
A spatially continuous magnetization model for Mars K. A. Whaler
] The Mars Global Surveyor (MGS) mission has produced a step change in our knowledge of the magnetic fieldA spatially continuous magnetization model for Mars K. A. Whaler School of GeoSciences, University model for Mars. The magnetized layer was assumed to be 40 km thick, an average value based on previous
NASA Computational Case Study: Modeling Planetary Magnetic and Gravitational Fields
NASA Technical Reports Server (NTRS)
Simpson, David G.; Vinas, Adolfo F.
2014-01-01
In this case study, we model a planet's magnetic and gravitational fields using spherical harmonic functions. As an exercise, we analyze data on the Earth's magnetic field collected by NASA's MAGSAT spacecraft, and use it to derive a simple magnetic field model based on these spherical harmonic functions.
Development of Circuit Models for Extractor Components in High Power Microwave Sources
NASA Astrophysics Data System (ADS)
Luginsland, John; Cartwright, Keith
2005-10-01
The state-of-the-art in High Power Microwave (HPM) sources has greatly improved in recent years, in part due to advances in the computational tools available to analyze such devices. Chief among these advances is the widespread use of parallel, particle-in-cell (PIC) techniques. Despite these advances, however, parallel PIC software could be greatly supplemented by fast-running parametric codes specifically designed to mimic the behavior of the source in question. These tools can then be used to develop zero-order point designs for eventual assessment via full PIC simulation. Building on the extensive literature from the vacuum electronics community, this poster will investigate the circuit models associated with the purely electromagnetic components of the extractor in the absence-of-space charge. Specifically, three-dimensional, time-domain computational electromagnetics (AFRL's ICEPIC software) will be used to investigate the modification of the resonant frequencies and mode-quality factors as a function of slot and load geometry. These field calculations will be reduced to circuit parameters for potential inclusion in parametric models and the fidelity of the resulting description will be assessed.
Modifications and Modelling of the Fission Surface Power Primary Test Circuit (FSP-PTC)
NASA Technical Reports Server (NTRS)
Garber, Ann E.
2008-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, underwent a range of tests at MSFC in early 2007. During this period, system transient responses and the performance of the liquid metal pump were evaluated. In May of 2007, the circuit was drained and cleaned to prepare for multiple modifications: the addition of larger upper and lower reservoirs, the installation of an annular linear induction pump (ALIP), and the inclusion of the Single Flow Cell Test Apparatus (SFCTA) in the test section. Performance of the ALIP, provided by Idaho National Laboratory (INL), will be evaluated when testing resumes. The SFCTA, which will be tested simultaneously, will provide data on alkali metal flow behavior through the simulated core channels and assist in the development of a second generation thermal simulator. Additionally, data from the first round of testing has been used to refine the working system model, developed using the Generalized Fluid System Simulation Program (GFSSP). This paper covers the modifications of the FSP-PTC and the updated GFSSP system model.
A Global Circuit Tool for Modeling Lightning Indirect Effects on Aircraft
NASA Astrophysics Data System (ADS)
Moussa, H.; Abdi, M.; Issac, F.; Prost, D.
The topic of this study is electromagnetic environment and electromagnetic interference (EMI) effects, specifically the modeling of lightning indirect effects on aircraft electrical systems present on embedded and highly exposed equipments, such as nose landing gear (NLG) and nacelles, through a circuit approach. The main goal of the presented work, funded by a French national project, PREFACE, is to propose a simple equivalent electrical circuit to represent a geometrical structure, taking into account mutual, self-inductances, and resistances, which play a fundamental role in the lightning current distribution. Then this model is intended to be coupled to a functional one, describing a power train chain composed of a converter, a shielded power harness, and a motor or a set of resistors used as a load for the converter. The novelty here is to provide a pre-sizing qualitative approach allowing playing on integration in pre-design phases. This tool intends to offer a user-friendly way for replying rapidly to calls for tender, taking into account the lightning constraints.
Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits
Winkler, Mark T.; Cox, Casandra R.; Nocera, Daniel G.; Buonassisi, Tonio
2013-01-01
We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency limitations that arise from using solar cells with a single band gap, an arrangement that describes the use of currently economic solar cell technologies such as Si or CdTe. Steady-state equivalent circuit analysis permits modeling of practical systems. For the water-splitting reaction, modeling defines parameters that enable a solar-to-fuels efficiency exceeding 18% using laboratory GaAs cells and 16% using all earth-abundant components, including commercial Si solar cells and Co- or Ni-based oxygen evolving catalysts. Circuit analysis also provides a predictive tool: given the performance of the separate photovoltaic and electrochemical systems, the behavior of the coupled photovoltaic–electrochemical system can be anticipated. This predictive utility is demonstrated in the case of water oxidation at the surface of a Si solar cell, using a Co–borate catalyst.
Modeling and analysis of a magnetically levitated synchronous permanent magnet planar motor
NASA Astrophysics Data System (ADS)
Kou, Baoquan; Zhang, Lu; Li, Liyi; Zhang, Hailin
2012-04-01
In this paper, a new magnetically levitated synchronous permanent magnet planar motor (MLSPMPM) driven by composite-current is proposed, of which the mover is made of a copper coil array and the stator are magnets and magnetic conductor. The coil pitch ?t and permanent magnet pole pitch ?p satisfy the following relationship 3n?t = (3n ± 1)?p. Firstly, an analytical model of the planar motor is established, flux density distribution of the two-dimensional magnet array is obtained by solving the equations of the scalar magnetic potential. Secondly, the expressions of the electromagnetic forces induced by magnetic field and composite current are derived. To verify the analytical model and the electromagnetic forces, finite element method (FEM) is used for calculating the flux density and electromagnetic forces of the MLSPMPM. And the results from FEM are in good agreement with the results from the analytical equations. This indicates that the analytical model is reasonable.
Magnetic microspheres and tissue model studies for therapeutic applications
NASA Technical Reports Server (NTRS)
Ramachandran, Narayanan; Mazuruk, Konstantin
2004-01-01
The use of magnetic fluids and magnetic particles in combinatorial hyperthermia therapy for cancer treatment is reviewed. The investigation approach adopted for producing thermoregulating particles and tissue model studies for studying particle retention and heating characteristics is discussed.
Spin-Based Neuron Model with Domain Wall Magnets as Synapse
Sharad, Mrigank; Panagopoulos, Georgios; Roy, Kaushik
2012-01-01
We present artificial neural network design using spin devices that achieves ultra low voltage operation, low power consumption, high speed, and high integration density. We employ spin torque switched nano-magnets for modelling neuron and domain wall magnets for compact, programmable synapses. The spin based neuron-synapse units operate locally at ultra low supply voltage of 30mV resulting in low computation power. CMOS based inter-neuron communication is employed to realize network-level functionality. We corroborate circuit operation with physics based models developed for the spin devices. Simulation results for character recognition as a benchmark application shows 95% lower power consumption as compared to 45nm CMOS design.
Comparison of single particle and equivalent circuit analog models for a lithium-ion cell
NASA Astrophysics Data System (ADS)
Rahimian, Saeed Khaleghi; Rayman, Sean; White, Ralph E.
2011-10-01
The physics-based single particle (SP) model was compared to the semi-empirical equivalent circuit analog (ECA) model to predict the cell voltage under constant current charge and discharge for different sets of Li-ion cell data. The parameters of the models were estimated for each set of data using nonlinear least squares regression. In order to enhance the probability of finding the global optima, a combination of the trust region method with a genetic algorithm was applied to minimize the objective function (the sum of squared residuals). Several statistical quantities such as sum of the squared errors, adjusted R2, root mean squared error, confidence intervals of the parameters, and prediction bounds were included to compare the models. A significance test (t test) on the parameters and the analysis of the variances (F and ?2 tests) were also performed to discriminate between the goodness of the fit obtained from the two models. The statistical results indicate that the SP model superiorly predicts all sets of data compared to the ECA model, while the computation times of both models are on the same order of magnitude.
Modeling Skin Effect With Reduced Decoupled R-L Circuits S.Mei and Y. 1.Ismail
Ismail, Yehea
Modeling Skin Effect With Reduced Decoupled R-L Circuits S.Mei and Y. 1.Ismail Electrical-chip conductors such as clock and power distribution networks require accurately modeling skin effect. Furthermore, to incorporate skin effect in the existing generic simulation tools such as SPICE, simple frequency independent
Plasma beta limits for magnetic annihilation models
Inverarity, G.W.; Priest, E.R.
1996-10-01
Magnetic annihilation occurs when two oppositely directed magnetic fields are brought together by a plasma flow. Several exact nonlinear solutions exist which typically depend on the ratios of plasma pressure to magnetic pressure (the plasma beta), inflow speed to global Alfv{acute e}n speed (the Alfv{acute e}n Mach number) and of the advective to diffusive terms of the induction equation (the Lundquist number). Ensuring that the plasma pressure is everywhere positive restricts the freedom of choice of these parameters, however. Restrictions on the plasma beta are derived for the cases of two- and three-dimensional annihilation and two-dimensional reconnective annihilation. At the inflow speeds typically required for fast reconnection in diffuse astrophysical plasmas the minimum plasma beta is several orders of magnitude larger than the observed values of unity or less. In other words, at the observed plasma beta the models are only valid for extremely small annihilation rates. {copyright} {ital 1996 American Institute of Physics.}
Observations and models of magnetic reconnection
NASA Astrophysics Data System (ADS)
Barta, Miroslav
2015-08-01
Magnetic reconnection is now almost unanimously considered to be a key plasma process for energy release in solar and stellar flares. Recent decade have seen rapid development in the theory, simulations and searching for observational evidences of magnetic reconnection being in action in the core of flares. Modern modeling approach involves many realistic aspects of magnetic reconnection such as intrinsically 3D nature of the process and, namely, its highly dynamic character connected with violent formation of plasmoids at many scales. The cascade of plasmoid formation represents natural process of fast, turbulent energy transfer to the kinetic dissipation scale. This concept, revealed by numerical simulations, has found its ground in the theory of (ideal) plasmoid instability in current layers with high aspect ratio. The plasmoid dominated reconnection regime is capable to account for many puzzling dilemmas in the flare physics ranging from the observation-demanded energy release rate vs. standard reconnection-regime timescales, observed organized large-scale structures vs. signatures of fragmented energy release etc. The talk aims at reviewing recent theoretical and simulation development in this direction and observational support for the concept of plasmoid-driven reconnection cascade namely in solar flares.
Terry, Bryan; Gunst, Gordy; Melchior, Richard; Wolfe, David; Feocco, Nancy; Graham, Susan; Searles, Bruce; Darling, Edward
2005-09-01
In the United States, standardization of neonatal extracorporeal membrane oxygenation (ECMO) circuit was achieved during the 1980s. Since that time, the consoles and components of the ECMO circuit have remained fundamentally unchanged (bladder, rollerpump, silicone membrane oxygenator). Extracorporeal technology, however, has witnessed many significant advancements in components during the past two decades. These new technologies have characteristics that may improve outcomes when applied in the ECMO arena. Understanding how these technologies perform in long-term applications is necessary. Therefore, the purpose of this project is to evaluate the performance of a miniature ECMO circuit consisting of current generation technologies in an animal model. An ECMO circuit (prime volume 145 mL) was designed that included a hollow fiber oxygenator and a remote mounted centrifugal pump. All circuit tubing and components were surface coated. Three sheep (approx 13 kg) were placed on ECMO using standard neck cannulation techniques and maintained according to clinical protocols. Technical implementation, oxygenator function, and hematological parameters were accessed. Duration of ECMO was 20, 48, and 58 hours. There was no evidence of oxygenator failure, as measured by pressure drop and oxygen transfer, in any of the procedures. No plasma leak was observed in any oxygenators. Platelet count trended downward after 24 hours. Visual inspection after ECMO showed very little evidence of gross thrombosis. This ECMO circuit design departs dramatically from the typical North American systems. The use of this console and components facilitated a 70% reduction in priming volume over a traditional ECMO circuit. Further investigations should be conducted to determine if circuit miniaturization can reduce the morbidity associated with blood product consumption and the bloods contact with the artificial surfaces of the ECMO circuitry. PMID:16350388
Circuit model for the inverse Z-pinch wire array switch.
Waisman, Eduardo Mario; Cuneo, Michael Edward; Harvey-Thompson, A.; Lebedev, Sergey V.
2010-06-01
A 0D circuit code is introduced to study the wire array switch concept introduced in. It has been implemented and researched at Imperial College. An exploding wire array, the switch, is in parallel with the load, an imploding wire array. Most of the current flows in the exploding array until it expands and becomes highly resistive. The 0D code contains simple models of Joule energy deposition and plasma expansion for W and Al wires. The purpose of the device is to produce fast Z-pinch implosion, below 100ns on MAGPIE and the Sandia Z machine. Self and mutual inductances are taken into consideration as well as the rocket model for wire ablation. The switch characteristics of the exploding array are prescribed and tuned up to agree with MAGPIE shots. The dependence of the device on the configuration of the arrays is studied and scaling to ZR conditions is explored.
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki
2015-10-01
Transient space charge phenomena at high step voltages are interesting since they play a central role in many exotic nonequilibrium phenomena of ion dynamics in an electrolyte. However, the fundamental equations [i.e., the nonsteady Poisson–Nernst–Planck (PNP) equations] have not been solved analytically at high applied voltages because of their large nonlinearity. In this study, on the basis of the steady PNP solution, we propose an electrical circuit model that considers transient space charge effects and find that the dc and ac responses of the total charge of the electrical double layer are in fairly good agreement with the numerical results even at large applied voltages. Furthermore, on the basis of this model, we find approximate analytical solutions for the nonsteady PNP equations that are in good agreement with the numerical solutions of the concentration, charge density, and potential distribution at high applied voltages at each time in a surface region.
Investigation of galvanic-coupled intrabody communication using the human body circuit model.
Kibret, Behailu; Seyedi, MirHojjat; Lai, Daniel T H; Faulkner, Micheal
2014-07-01
Intrabody Communication (IBC) is a technique that uses the human body as a transmission medium for electrical signals to connect wearable electronic sensors and devices. Understanding the human body as the transmission medium in IBC paves way for practical implementation of IBC in body sensor networks. In this study, we propose a model for galvanic coupling-type IBC based on a simplified equivalent circuit representation of the human upper arm. We propose a new way to calculate the electrode-skin contact impedance. Based on the model and human experimental results, we discuss important characteristics of galvanic coupling-type IBC, namely, the effect of tissues, anthropometry of subjects, and electrode configuration on signal propagation. We found that the dielectric properties of the muscle primarily characterize the received signal when receiver electrodes are located close to transmitter electrodes. When receiver and transmitter electrodes are far apart, the skin dielectric property affects the received signal. PMID:25014932
Integration of MHD load models with circuit representations the Z generator.
Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.
2013-03-01
MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.
Planetary magnetic fields: Observations and models
NASA Astrophysics Data System (ADS)
Schubert, G.; Soderlund, K. M.
2011-08-01
The state of knowledge and understanding of planetary magnetic fields is reviewed. All of the planets, with the possible exception of Venus, have had active dynamos at some time in their evolution. The properties and characteristics of the dynamos are as diverse as the planets themselves. Even within the subclasses of terrestrial and giant planets, the contrasting compositions, sizes, and internal pressures and temperatures of the planets result in strikingly different dynamos. As an example, the dynamos in Mercury and Ganymede are likely driven by compositional buoyancy distributions different from that in the Earth's core. Dynamo models operate far from the parameter regimes appropriate to the real planets, yet provide insight into the dynamics of their interiors. While Boussinesq models are generally adequate for simulating terrestrial planet dynamos, anelastic models that also account for large density and electrical conductivity variations are needed to simulate the dynamos in giant planets. Future spacecraft missions to planets with active dynamos are needed to learn about the character and temporal variability of the planetary magnetic fields.
Magnetic field contribution to the Lorentz model.
Oughstun, Kurt E; Albanese, Richard A
2006-07-01
The classical Lorentz model of dielectric dispersion is based on the microscopic Lorentz force relation and Newton's second law of motion for an ensemble of harmonically bound electrons. The magnetic field contribution in the Lorentz force relation is neglected because it is typically small in comparison with the electric field contribution. Inclusion of this term leads to a microscopic polarization density that contains both perpendicular and parallel components relative to the plane wave propagation vector. The modified parallel and perpendicular polarizabilities are both nonlinear in the local electric field strength. PMID:16783441
Modeling Magnetic Fields with FEMM 3.1
NASA Astrophysics Data System (ADS)
Gumbart, James
2003-03-01
FEMM (Finite Element Method Magnetics) 3.1, a freeware program, is useful for modeling problems involving magnets, currents and magnetic fields. The applications of such a program involve both education and upper-level research. The program interface is intuitive and robust. As an educational tool, this program is useful because it handles internally the complicated equations needed to be solved when working with magnetism in matter. Since most elementary applications of magnetism involve permanent magnets, this program enables the user to calculate field energies and forces between magnets and magnetic materials, which would otherwise be impossible to obtain. An analysis of a popular physics demonstration, that of a diamagnetic-assisted levitating magnet, will be used to illustrate these concepts in more detail. The sensitivity of the equilibrium points to the spacing of the diamagnetic plates and the position of the upper attracting magnet is well-reproduced in this simulation.
Xie, Zhijian; Harrison, Scott H; Torti, Suzy V; Torti, Frank M; Han, Jian
2013-01-01
Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modeling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS), we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt) receptor, T cell immunoglobulin and mucin domain-2 (TIM-2). The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt (Fe-HFt) was 2.17 pmol per million cells. TIM-2 binding probability with Fe-HFt was 16.6%. An average of 8.5 min was required for the complex of TIM-2 and Fe-HFt to form an endosome. The endosome containing HFt lasted roughly 2 h. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP) and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method. PMID:23761763
Effects of rest time on discharge response and equivalent circuit model for a lead-acid battery
NASA Astrophysics Data System (ADS)
Devarakonda, Lalitha; Hu, Tingshu
2015-05-01
This work carries out a detailed investigation on the effects of rest time on the discharge response and the parameters of the Thevenin's equivalent circuit model for a lead acid battery. Traditional methods for battery modeling require a long rest time before a discharging test so that a steady state is reached for the open circuit voltage. In a recent work, we developed an algebraic method for parameter identification of circuit models for batteries by applying discharging tests after variable and possibly very short rest time. This new method opens a door to the understanding of the effects of rest time on battery behavior, which may be used for better simulation, analysis and design of battery powered systems for improved battery efficiency and state of health. As we used the new method to extract circuit parameters after different rest times, we observed some unexpected results on the relationship between the rest time and circuit parameters. The initial voltages on the capacitors can be negative and becomes more negative as the rest time is increased. We also observed that the time constants increase with rest time. Relationships between rest time and other parameters are also reported in this paper.
Robust modelling of the Earth's magnetic field
NASA Astrophysics Data System (ADS)
Walker, Matthew R.; Jackson, Andrew
2000-12-01
We consider the consequences of a priori assumptions made about the probability density function used for historical geomagnetic data modelling. We describe a method, based on penalized maximum likelihood estimation, that can model data under any (for p>=1) p-norm measure of misfit, although only p=1 and p=2 are considered here. For p=2 it is implicitly assumed that the errors in the data originate from a Gaussian distribution, whereas p=1 assumes that the errors arise from a double exponential (or Laplace) distribution. We show that the geomagnetic main field models are consistent (in the sense that their residuals give excellent agreement with the assumed error distribution) only when modelled under the 1-norm measure of misfit. Least-squares (2-norm) methods that reject data at a pre-assigned residual level depend critically on the correct assignment of a priori error estimates, which are almost never known accurately. We demonstrate that main field models of the Earth's magnetic field generated by 1-norm modelling are robust, and therefore the ad hoc data rejection procedure, required by 2-norm modelling, should not be implemented.
NASA Astrophysics Data System (ADS)
Chen, Tingsu; Eklund, Anders; Iacocca, Ezio; Rodriguez, Saul; Malm, B. Gunnar; Akerman, Johan; Rusu, Ana
2015-03-01
Magnetic tunnel junction (MTJ) spin torque oscillators (STO) have shown the potential to be used in a wide range of microwave and sensing applications. To evaluate potential uses of MTJ STO technology in various applications, an analytical model that can capture MTJ STO's characteristics, while enabling system- and circuit-level designs, is of great importance. An analytical model based on macrospin approximation is necessary for these designs since it allows implementation in hardware description languages. This paper presents a new macrospin-based, comprehensive and compact MTJ STO model, which can be used for various MTJ STOs to estimate the performance of MTJ STOs together with their application-specific integrated circuits. To adequately present the complete model, this paper is divided into two parts. In Part I, the analytical model is introduced and verified by comparing it against measured data of three different MTJ STOs, varying the angle and magnitude of the magnetic field, as well as the DC biasing current. The proposed analytical model is suitable for being implemented in Verilog-A and used for efficient simulations at device-, circuit- and system-levels. In Part II, the full Verilog-A implementation of the analytical model with accurate phase noise generation is presented and verified by simulations.
Modeling and design of a vibration energy harvester using the magnetic shape memory effect
NASA Astrophysics Data System (ADS)
Saren, A.; Musiienko, D.; Smith, A. R.; Tellinen, J.; Ullakko, K.
2015-09-01
In this study, a vibration energy harvester is investigated which uses a Ni–Mn–Ga sample that is mechanically strained between 130 and 300 Hz while in a constant biasing magnetic field. The crystallographic reorientation of the sample during mechanical actuation changes its magnetic properties due to the magnetic shape memory (MSM) effect. This leads to an oscillation of the magnetic flux in the yoke which generates electrical energy by inducing an alternating current within the pick-up coils. A power of 69.5 mW (with a corresponding power density of 1.37 mW mm?3 compared to the active volume of the MSM element) at 195 Hz was obtained by optimizing the biasing magnetic field, electrical resistance and electrical resonance. The optimization of the electrical resonance increased the energy generated by nearly a factor of four when compared to a circuit with no resonance. These results are strongly supported by a theoretical model and simulation which gives corresponding values with an error of approximately 20% of the experimental data. This model will be used in the design of future MSM energy harvesters and their optimization for specific frequencies and power outputs.
Constraining groundwater modeling with magnetic resonance soundings.
Boucher, Marie; Favreau, Guillaume; Nazoumou, Yahaya; Cappelaere, Bernard; Massuel, Sylvain; Legchenko, Anatoly
2012-01-01
Magnetic resonance sounding (MRS) is a noninvasive geophysical method that allows estimating the free water content and transmissivity of aquifers. In this article, the ability of MRS to improve the reliability of a numerical groundwater model is assessed. Thirty-five sites were investigated by MRS over a ?5000 km(2) domain of the sedimentary Continental Terminal aquifer in SW Niger. Time domain electromagnetic soundings were jointly carried out to estimate the aquifer thickness. A groundwater model was previously built for this section of the aquifer and forced by the outputs from a distributed surface hydrology model, to simulate the observed long-term (1992 to 2003) rise in the water table. Uncertainty analysis had shown that independent estimates of the free water content and transmissivity values of the aquifer would facilitate cross-evaluation of the surface-water and groundwater models. MRS results indicate ranges for permeability (K = 1 × 10(-5) to 3 × 10(-4) m/s) and for free water content (w = 5% to 23% m(3) /m(3) ) narrowed by two orders of magnitude (K) and by ?50% (w), respectively, compared to the ranges of permeability and specific yield values previously considered. These shorter parameter ranges result in a reduction in the model's equifinality (whereby multiple combinations of model's parameters are able to represent the same observed piezometric levels), allowing a better constrained estimate to be derived for net aquifer recharge (?22 mm/year). PMID:22150349
Texas at Arlington, University of
dimensional integrated circuits (3D ICs) Analytical modeling Thermal conduction Floorplanning a b s t r a c-dimensional temperature field in a multi-die 3D IC. The non-iterative model is much faster and accurate in com- parison. The analytical model is used to compute the temperature field of a 3D IC with a large number of die. The model
Magnetic Actuator Modelling for Rotating Machinery Analysis
NASA Astrophysics Data System (ADS)
Mendes, Ricardo Ugliara; de Castro, Hélio Fiori; Cavalca, Kátia Lucchesi; Ferreira, Luiz Otávio Saraiva
Rotating machines have a wide range of application such as airplanes, factories, laboratories and power plants. Lately, with computer aid design, shafts finite element models including bearings, discs, seals and couplings have been developed, allowing the prediction of the machine behavior. In order to keep confidence during operation, it is necessary to monitor these systems, trying to predict future failures. One of the most applied technique for this purpose is the modal analysis. It consists of applying a perturbation force into the system and then to measure its response. However, there is a difficulty that brings limitations to the excitation of systems with rotating shafts when using impact hammers or shakers, once due to friction, undesired tangential forces and noise can be present in the measurements. Therefore, the study of a non-contact technique of external excitation becomes of high interest. In this sense, the present work deals with the study and development of a finite element model for rotating machines using a magnetic actuator as an external excitation source. This work also brings numerical simulations where the magnetic actuator was used to obtain the frequency response function of the rotating system.
STDP installs in Winner-Take-All circuits an online approximation to hidden Markov model learning.
Kappel, David; Nessler, Bernhard; Maass, Wolfgang
2014-03-01
In order to cross a street without being run over, we need to be able to extract very fast hidden causes of dynamically changing multi-modal sensory stimuli, and to predict their future evolution. We show here that a generic cortical microcircuit motif, pyramidal cells with lateral excitation and inhibition, provides the basis for this difficult but all-important information processing capability. This capability emerges in the presence of noise automatically through effects of STDP on connections between pyramidal cells in Winner-Take-All circuits with lateral excitation. In fact, one can show that these motifs endow cortical microcircuits with functional properties of a hidden Markov model, a generic model for solving such tasks through probabilistic inference. Whereas in engineering applications this model is adapted to specific tasks through offline learning, we show here that a major portion of the functionality of hidden Markov models arises already from online applications of STDP, without any supervision or rewards. We demonstrate the emergent computing capabilities of the model through several computer simulations. The full power of hidden Markov model learning can be attained through reward-gated STDP. This is due to the fact that these mechanisms enable a rejection sampling approximation to theoretically optimal learning. We investigate the possible performance gain that can be achieved with this more accurate learning method for an artificial grammar task. PMID:24675787
NASA Astrophysics Data System (ADS)
Yang, Xiankun; Chen, Haoyuan; Cheng, Linan; Zheng, Xitao
2012-04-01
The circuit model was applied to predict the pin load distribution of composite multiple bolt-joint structure. The load, flexibility and deformation of the mechanics model were equivalent to the current, resistance and voltage of the circuit model, respectively. Based on the above assumption, it could be found that the Hooke's law and the deformation compatibility equation in the origin mechanics model transformed into the Ohm's law and the voltage balance equation in the new circuit model. This approach translated the complex model of composite multiple bolt-jointed into a simple circuit model which consisted of some series circuits and parallel circuits. The analysis of the new circuit model had formed n-1 independence voltage balance equations and a current balance equation, thus, the current and load of each bolt could be calculated. In the new model, power sources which were added as required in some branch circuits could also simulate the clearance or interference in the origin model. Compared with the result of the multiple bolt-joints composite laminate test, the new approach could make an excellent performance to estimate the load distribution.
NASA Astrophysics Data System (ADS)
Yang, Xiankun; Chen, Haoyuan; Cheng, Linan; Zheng, Xitao
2011-11-01
The circuit model was applied to predict the pin load distribution of composite multiple bolt-joint structure. The load, flexibility and deformation of the mechanics model were equivalent to the current, resistance and voltage of the circuit model, respectively. Based on the above assumption, it could be found that the Hooke's law and the deformation compatibility equation in the origin mechanics model transformed into the Ohm's law and the voltage balance equation in the new circuit model. This approach translated the complex model of composite multiple bolt-jointed into a simple circuit model which consisted of some series circuits and parallel circuits. The analysis of the new circuit model had formed n-1 independence voltage balance equations and a current balance equation, thus, the current and load of each bolt could be calculated. In the new model, power sources which were added as required in some branch circuits could also simulate the clearance or interference in the origin model. Compared with the result of the multiple bolt-joints composite laminate test, the new approach could make an excellent performance to estimate the load distribution.
NASA Astrophysics Data System (ADS)
Quan, Tingwei; Li, Jing; Zhou, Hang; Li, Shiwei; Zheng, Ting; Yang, Zhongqing; Luo, Qingming; Gong, Hui; Zeng, Shaoqun
2014-05-01
Mapping the neuronal circuits is essential to understand brain function. Recent technological advancements have made it possible to acquire the brain atlas at single cell resolution. Digital reconstruction of the neural circuits down to this level across the whole brain would significantly facilitate brain studies. However, automatic reconstruction of the dense neural connections from microscopic image still remains a challenge. Here we developed a spherical-coordinate based variational model to reconstruct the shape of the cell body i.e. soma, as one of the procedures for this purpose. When intuitively processing the volumetric images in the spherical coordinate system, the reconstruction of somas with variational model is no longer sensitive to the interference of the complicated neuronal morphology, and could automatically and robustly achieve accurate soma shape regardless of the dense spatial distribution, and diversity in cell size, and morphology. We believe this method would speed drawing the neural circuits and boost brain studies.
Quan, Tingwei; Li, Jing; Zhou, Hang; Li, Shiwei; Zheng, Ting; Yang, Zhongqing; Luo, Qingming; Gong, Hui; Zeng, Shaoqun
2014-01-01
Mapping the neuronal circuits is essential to understand brain function. Recent technological advancements have made it possible to acquire the brain atlas at single cell resolution. Digital reconstruction of the neural circuits down to this level across the whole brain would significantly facilitate brain studies. However, automatic reconstruction of the dense neural connections from microscopic image still remains a challenge. Here we developed a spherical-coordinate based variational model to reconstruct the shape of the cell body i.e. soma, as one of the procedures for this purpose. When intuitively processing the volumetric images in the spherical coordinate system, the reconstruction of somas with variational model is no longer sensitive to the interference of the complicated neuronal morphology, and could automatically and robustly achieve accurate soma shape regardless of the dense spatial distribution, and diversity in cell size, and morphology. We believe this method would speed drawing the neural circuits and boost brain studies. PMID:24829141
NASA Astrophysics Data System (ADS)
Chu, J.; Chang, X. L.; Zhao, M.; Man, M. H.; Yuan, L.; Wei, M.
2013-03-01
With the continuous improvement of circuit integration and working clock frequency in the electronic system, it is increasingly easy for the system to be affected by electromagnetic waves, and electromagnetic susceptibility and vulnerability become more severe. However, living beings in nature have shown extraordinary compatibility, immunity and adaptability to the electromagnetism at the same time. In addition, the ion channel on the neuron cytomembrane is a typical representation of "bioelectrical immunity". So the Hodgkin-Huxley circuit model with one capacitor in parallel with some power supplies and resistors was adopted to simulate the ion channel on the neuron cytomembrane. Through analysis, the circuit model can be used to simulate some electrical characteristics of biological neuron cells, and then acquire a certain level of anti-electromagnetic interference ability. This method will be useful for improving the reliability, compatibility and anti-interference capability of the electronic system in the complicated electromagnetic environment.
A Systematic Approach to Modeling Impedances and Current Distribution in Planar Magnetics
Chen, Minjie
Planar magnetic components using printed-circuit-board windings are attractive due to their high repeatability, good thermal performance and usefulness for realizing intricate winding patterns. To enable higher system ...
Development of models of magnetic films on a liquid substrate
Taktarov, N.G.
1985-07-01
The authors present new results of simple experiments conducted with films of magnetic surface-active materials (SAM) deposited on the surface of water. They use magnetic liquid with the following composition: kerosene, oleic acid, magnetite. They conclude that in constructing models of magnetic films it is necessary to take account of their mass exchange with volummetric masses.
Epson, Martin; Rodol, Liban; Bloom, Joseph D
2012-01-01
Pretrial detainees have a constitutionally protected right to refuse medical treatment in most circumstances; however, individuals found incompetent to stand trial (IST) due to a mental disorder can be treated involuntarily by clinicians who adhere to careful medical and legal procedures. The process of involuntary treatment of IST pretrial detainees begins with categorization into particular legal and medical groups. These different categories affect the individual's access to treatment. In this article, we review the relevant case law for the jurisdiction of the Ninth Circuit and place the medical-legal debate regarding these procedures in the context of recent cases. To address the medical-legal disjunction, we propose and discuss a model for managing treatment refusal in pretrial detainees found IST. PMID:22960925
Feedback and sensitivity in an electrical circuit: An analog for climate models
Schwartz, S.E.
2010-07-27
Earth's climate sensitivity is often interpreted in terms of feedbacks that can alter the sensitivity from that of a no-feedback Stefan-Boltzmann radiator, with the feedback concept and algebra introduced by analogy to the use of this concept in the electronics literature. This analogy is quite valuable in interpreting the sensitivity of the climate system, but usage of this algebra and terminology in the climate literature is often inconsistent, with resultant potential for confusion and loss of physical insight. Here a simple and readily understood electrical resistance circuit is examined in terms of feedback theory to introduce and define the terminology that is used to quantify feedbacks. This formalism is applied to the feedbacks in an energy-balance model of Earth's climate and used to interpret the magnitude of feedback in the climate system that corresponds to present estimates of Earth's climate sensitivity.
Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome.
Witton, Jonathan; Padmashri, Ragunathan; Zinyuk, Larissa E; Popov, Victor I; Kraev, Igor; Line, Samantha J; Jensen, Thomas P; Tedoldi, Angelo; Cummings, Damian M; Tybulewicz, Victor L J; Fisher, Elizabeth M C; Bannerman, David M; Randall, Andrew D; Brown, Jonathan T; Edwards, Frances A; Rusakov, Dmitri A; Stewart, Michael G; Jones, Matt W
2015-09-01
Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus-CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior in vivo. These results highlight the vulnerability of dentate gyrus-CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome. PMID:26237367
Shagoshtasbi, Hooman; Deng, Peigang; Lee, Yi-Kuen
2015-08-01
Electroporation (EP) is a process of applying a pulsed intense electric field on the cell membrane to temporarily induce nanoscale electropores on the plasma membrane of biological cells. A nonlinear size-dependent equivalent circuit model of a single-cell electroporation system is proposed to investigate dynamic electromechanical behavior of cells on microfluidic chips during EP. This model consists of size-dependent electromechanical components of a cell, electrical components of poration media, and a microfluidic chip. A single-cell microfluidic EP chip with 3D microelectrode arrays along a microchannel is designed and fabricated to experimentally analyze the permeabilization of a cell. Predicted electrical current responses of the model are in good agreement (average error of 6%) with that of single-cell EP. The proposed model can successfully predict the time responses of transmembrane voltage, pore diameter, and pore density at four different stages of permeabilization. These stages are categorized based on electromechanical changes of the lipid membrane. The current-voltage characteristic curve of the cell membrane during EP is also investigated at different EP stages in detail. The model can precisely predict the electric breakdown of different cell lines at a specific critical cell membrane voltage of the target cell lines. PMID:25735616
A kinematically distorted flux rope model for magnetic clouds
California at Berkeley, University of
A kinematically distorted flux rope model for magnetic clouds M. J. Owens,1 V. G. Merkin,1 and P 2006. [1] Constant-a force-free magnetic flux rope models have proven to be a valuable first step, noncircular cross section flux rope model that is constrained by observations of CMEs/ICMEs and knowledge
NASA Technical Reports Server (NTRS)
Radys, R. G.
1968-01-01
Pulse shaper circuit exhibits low power dissipation, self setting, and easy triggering. It is basically a magnetic one-shot multivibrator consisting of two blocking oscillators and an inhibit circuit.
NASA Astrophysics Data System (ADS)
Guo, Y. G.; Zhu, J. G.; Zhong, J. J.
2006-07-01
This paper reports the measurement and modelling of magnetic properties of SOMALOY TM 500, a soft magnetic composite (SMC) material, under different 2D vector magnetisations, such as alternating along one direction, circularly and elliptically rotating in a 2D plane. By using a 2D magnetic property tester, the B- H curves and core losses of the SMC material have been measured with different flux density patterns on a single sheet square sample. The measurements can provide useful information for modelling of the magnetic properties, such as core losses. The core loss models have been successfully applied in the design of rotating electrical machines with SMC core.
Liao Chenglin; Li Huiju; Wang Lifang
2009-01-01
With excellent performance, LiFePO4 cathode material for lithium ion batteries attracts more and more attention on HEVs. In this paper, the dynamic characteristics of the batteries are investigated over different current profiles. A dynamic equivalent circuit model is proposed to describe the dynamic characteristics of the batteries. Simulation results over different tests show the dynamic equivalent circuit model can represent
Physical Si(1-x)Ge(x)/Si heterojunction bipolar transistor model for device and circuit simulation
NASA Astrophysics Data System (ADS)
Andersson, M.; Xia, Z.; Kuivalainen, P.; Pohjonen, H.
1994-05-01
A physical but compact Si(1-x)Ge(x)/Si heterojunction bipolar transistor (HBT) model suited for device design and circuit simulation is presented. The model is based on the de Graaf-Kloosterman formalism for the modeling of the bipolar transistors, but adds important heterostructure device physics as well as physical properties of SiGe material. The model, implemented in the APLAC circuit simulator, shows how currents and charges depend on minority carrier concentrations, which in turn are functions of the heterojunction voltages. In this way the influence of the built-in electric fields due to Ge concentration and doping density gradients, the bias-dependent transit times and the Early effect can be incorporated naturally. Comparisons between the model prediction and the experimental data for the DC current/voltage characteristics and cutoff frequencies in Si(1-x)Ge(x)/Si HBT's are included to demonstrate the model utility and accuracy.
NASA Astrophysics Data System (ADS)
Baumgaertner, A. J.; Lehto, E.; Neely, R. R.; English, J. M.; Zhu, Y.; Lucas, G.; Thayer, J. P.
2013-12-01
Electrical conductivity in the troposphere and stratosphere is an important quantity that determines the distribution of currents in the GEC (Global Electric Circuit), as well as the potential difference between the Earth and the ionosphere. Recently, progress in modeling atmospheric conductivity has been achieved by integrating the conductivity calculation into an AC-GCM (atmospheric chemistry general circulation model), which provides all relevant data. In this study, WACCM (Whole Atmosphere Community Climate Model) is used for conductivity calculations and an analysis of the effects of strong disturbances on the GEC. This includes volcanic eruptions of Pinatubo in 1991 and the super volcano Toba, polar stratospheric clouds, radioactive releases, and the recent strong galactic cosmic ray maximum. In general, there is a decrease in conductivity from enhanced aerosol number densities, resulting from volcanic eruptions or polar stratospheric clouds. Conductivity is increased by additional ionization sources such as radioactive releases, or galactic cosmic ray increases such as during the last solar minimum. The effects of such events on conductivity, column and total resistance, and estimate effects on current distribution and the earth-ionosphere potential difference will be quantified. Percentage change in conductivity at 20 km altitude two months after the Toba volcanic eruption (WACCM model simulation). The enhanced aerosol concentrations lead to a "conductivity hole" between 30°S and 45° N.
A physical and scalable IV model in BSIM3v3 for analog\\/digital circuit simulation
Yuhua Cheng; Min-Chie Jeng; Zhihong Liu; Jianhui Huang; Mansun Chan; Kai Chen; Ping Keung Ko; Chenming Hu
1997-01-01
A new physical and continuous BSIM (Berkeley Short-Channel IGFET Model) I-V model in BSIM3v3 is presented for circuit simulation. Including the major physical effects in state-of-the art MOS devices, the model describes current characteristics from subthreshold to strong inversion as well as from the linear to the saturation operating regions with a single I-V expression, and guarantees the continuities of
NASA Astrophysics Data System (ADS)
Seaman, Aden; Dao, Thanh-Son; McPhee, John
2014-06-01
In this paper, we survey two kinds of mathematics-based battery models intended for use in hybrid and electric vehicle simulation. The first is circuit-based, which is founded upon the electrical behaviour of the battery, and abstracts away the electrochemistry into equivalent electrical components. The second is chemistry-based, which is founded upon the electrochemical equations of the battery chemistry.
System and Circuit Level Power Modeling of Energy-Efficient 3D-Stacked Wide I/O DRAMs
System and Circuit Level Power Modeling of Energy-Efficient 3D-Stacked Wide I/O DRAMs Karthik--JEDEC recently introduced its new standard for 3D- stacked Wide I/O DRAM memories, which defines their archi generation DRAMs, Wide I/O DRAMs provide an extremely energy-efficient green memory solution required
Sakallah, Karem A.
of which Bounded Model Checking (BMC) [1, 2] is one. BMC checks safety and liveness properties of a system computation as a logical inference problem for Quantified Boolean Formulas. We introduce a novel technique to simplify the complexity of the constructed formulas by applying simple transformations to the circuit
ERIC Educational Resources Information Center
Balta, Nuri
2015-01-01
Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…
NSDL National Science Digital Library
2014-09-18
Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.
Comments on Magnetic Reconnection Models of Canceling Magnetic Features on the Sun
NASA Astrophysics Data System (ADS)
Litvinenko, Yuri E.
2015-06-01
Data analysis and theoretical arguments support magnetic reconnection in a chromospheric current sheet as the mechanism of the observed photospheric magnetic flux cancellation on the Sun. Flux pile-up reconnection in a Sweet-Parker current sheet can explain the observed properties of canceling mag-netic features, including the speeds of canceling magnetic fragments, the magnetic uxes in the fragments, and the flux cancellation rates, inferred from the data. It is discussed how more realistic chromospheric reconnection models can be developed by relaxing the assumptions of a negligible current sheet curvature and a constant height of the reconnection site above the photosphere.
Magnetization modeling of silicon steel using a simplified domain structure model
NASA Astrophysics Data System (ADS)
Sudo, M.; Matsuo, T.
2012-04-01
A simplified domain structure model with shape anisotropy and cubic crystalline anisotropy is applied to the analysis of the mesoscopic magnetization of silicon steel sheets. Alternating magnetization is analytically described by the transition among several magnetization states, such as the single-domain, 180° domain-wall-motion, and magnetization-rotation types. The magnetic field vector is calculated from a given average magnetization vector under the rotational magnetization condition. The loci of the magnetic field vector qualitatively reconstruct the rotational magnetization properties of non-oriented and grain-oriented silicon steel sheets.
NASA Astrophysics Data System (ADS)
Costa Branco, P. J.; Dente, J. A.
2006-04-01
Biomedical engineering applications of ionic polymer metal composites such as motion devices for endoscopy, pumps, valves, catheter navigation mechanisms and spinal pressure sensors make it important to properly model IPMCs for engineering design. In particular, IPMC continuum models and their electric equivalent circuit representation are critical to a more efficient design of IPMC devices. In this paper, we propose a new continuum electromechanical model to understand and predict the electrical/mechanical behavior of the IPMC. An IPMC lumped-parameter circuit is derived from its continuum model to predict the relationship between its voltage and current signals. Although based on previous works of Shahinpoor and Nemat-Nasser, our model was derived on a macroscopic level, the water effects were assumed negligible when compared with the electrical effects of mobile ions for the IPMC motion, the model parameters were clearly identified in their physical meaning, and an equivalent-circuit IPMC model was determined from the established continuum electromechanical model. Experiments are done with two IPMC pieces having different dimensions, which were previously immersed in a sodium solution. The IPMCs are current driven, the transverse displacement and voltage signals being measured for different current values, avoiding the water electrolysis phenomenon. Simulations using the analytic models derived are compared with the experimental results and they are found to predict the electrical and mechanical relations very accurately.
Reynolds, R.L.; Webring, M.; Grauch, V.J.S.; Tuttle, M.
1990-01-01
Magnetic forward models of the Cement oil field, Oklahoma, were generated to assess the possibility that ferrimagnetic pyrrhotite related to hydrocarbon seepage in the upper 1 km of Permian strata contributes to aeromagnetic anomalies at Cement. Six bodies having different magnetizations were constructed for the magnetic models. Total magnetizations of the bodies of highest pyrrhotite content range from about 3 ?? 10-3 to 56 ?? 10-3 A/m in the present field direction and yield magnetic anomalies (at 120 m altitude) having amplitudes of less than 1 nT to ~6 to 7 nT, respectively. Numerous assumptions were made in the generation of the models, but nevertheless, the results suggest that pyrrhotite, formed via hydrocarbon reactions and within a range of concentrations estimated at Cement, is capable of causing magnetic anomalies. -from Authors
NASA Astrophysics Data System (ADS)
Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Martínez-Ortiz, P.; Chávez-González, A. F.; de la Rosa, J. M.
2013-12-01
A microscopic model of magnetic Barkhausen noise (MBN) in carbon steel is proposed. The model uses the quasi-static magnetic formulation of Maxwell equations for electromagnetic fields combined with a microscopic model of the magnetic Barkhausen noise, and its equations are solved by means of finite difference formulation. The simulated MBN signal obtained presents high similarities to the measured MBN signal. Using this model, the influences of the uniformity and waveform profile of the excitation magnetic field on the envelope of the MBN signal were studied. The results show that the lack of uniformity of the excitation magnetic field increases the amplitude of the MBN envelope at the right of its main peak, and the waveform profile influences the shape of the MBN envelope. The proposed model can be used as a tool for studying the influence of several excitation parameters on the Barkhausen Noise in order to improve this technique.
Meechan, Daniel W; Maynard, Thomas M; Tucker, Eric S; Fernandez, Alejandra; Karpinski, Beverly A; Rothblat, Lawrence A; LaMantia, Anthony-S
2015-07-01
Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic "model" syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that "modeling a model", in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development. PMID:25866365
Charge balance and ionospheric potential dynamics in time-dependent global electric circuit model
NASA Astrophysics Data System (ADS)
Jánský, Jaroslav; Pasko, Victor P.
2014-12-01
We have developed a time-dependent model of global electric circuit (GEC) in spherical coordinates. The model solves time-dependent charge continuity equation coupled with Poisson's equation. An implicit time stepping is used to avoid a strict dielectric relaxation time step condition, and boundary conditions for Poisson's equation are implemented to allow accurate description of time evolution of the ionospheric potential. The concept of impulse response of GEC is introduced that allows effective representation of complex time dynamics of various physical quantities in the circuit using model results obtained for instantaneous deposition of a point charge. The more complex problems are then reconstructed using convolution and linearity principles. For a point charge instantaneously deposited at a typical thundercloud altitude the impulse response of the charge density shows induction of the same value and polarity charge at the ionospheric boundary, while charge of the same value but opposite sign is moving down logarithmically with time and neutralizes the source point charge on time scale corresponding to the dielectric relaxation time at altitude of the source point charge. The ionospheric potential is modified immediately with input of the source point charge based on free space solution of Poisson's equation. Then the ionospheric potential relaxes. It is shown that during formation of two main charge centers of the thundercloud, typically represented by a current dipole, the ionospheric potential can be determined from the difference of time integrals of two ionospheric potential impulse responses corresponding to charge locations at the opposite ends of the current dipole. For latitude- and longitude-independent conductivity model, the total charge on the Earth is exactly zero at all times. During cloud-to-ground lightning discharge, the ionospheric potential changes instantaneously by a value proportional to the charge moment change produced by lightning and then relaxes to zero. For a typical charge moment change of 35Ckm and lightning frequency 10s-1, the ionospheric potential changes by 9.3kV; this value agrees well with the results presented by Rycroft et al. and Rycroft and Odzimek.
Anomalous transport in discrete arcs and simulation of double layers in a model auroral circuit
NASA Technical Reports Server (NTRS)
Smith, Robert A.
1987-01-01
The evolution and long-time stability of a double layer (DL) in a discrete auroral arc requires that the parallel current in the arc, which may be considered uniform at the source, be diverted within the arc to charge the flanks of the U-shaped double layer potential structure. A simple model is presented in which this current redistribution is effected by anomalous transport based on electrostatic lower hybrid waves driven by the flank structure itself. This process provides the limiting constraint on the double layer potential. The flank charging may be represented as that of a nonlinear transmission line. A simplified model circuit, in which the transmission line is represented by a nonlinear impedance in parallel with a variable resistor, is incorporated in a one-dimensional simulation model to give the current density at the DL boundaries. Results are presented for the scaling of the DL potential as a function of the width of the arc and the saturation efficiency of the lower hybrid instability mechanism.
A Model for Quantum Jumps in Magnetic Resonance Force Microscopy
G. P. Berman; F. Borgonovi; V. I. Tsifrinovich
2004-02-09
We propose a simple model which describes the statistical properties of quantum jumps in a single-spin measurement using the oscillating cantilever-driven adiabatic reversals technique in magnetic resonance force microscopy. Our computer simulations based on this model predict the average time interval between two consecutive quantum jumps and the correlation time to be proportional to the characteristic time of the magnetic noise and inversely proportional to the square of the magnetic noise amplitude.
AC magnetic measurements of the ALS Booster Synchrotron Dipole Magnet engineering model
Green, M.I.; Hoyer, E.; Keller, R.; Nelson, D.H.
1988-09-01
We made a minimal set of AC magnetic measurements of the engineering model of the ALS Booster Dipole Magnet as part of the process of qualifying its design for production. Magnetic induction integrals over paths approximating electron-beam trajectories were measured with long curved coils connected to an electronic integrator. Magnetic induction was measured with point coils and an integrator and independently with a Hall-effect Gaussmeter. These quantities, and magnet current, were displayed on a commercial digital storage oscilloscope as parametric functions of time. The displayed waveforms were stored, processed and redisplayed as representations of selected magnet parameters. A waveform representing the magnet's effective-length was created by dividing the integral waveform by the magnetic induction waveform. Waveforms of the transfer functions were produced by dividing both the integral waveform and the magnetic induction waveform by the current waveform. Pairs of matched coils, connected in series opposition, provided differential measurements of field uniformity. Quadrupole and sextupole coefficients were derived from the uniformity data. These magnet parameters were measured at 2 and 10 Hz frequencies. Together with measurements of the magnetic field at selected dc levels, the ac measurements demonstrated that the magnet design met specifications and qualified it for production. 7 refs., 7 figs., 3 tabs.
Abstract Modeling and Simulation Aided Verification of Analog/Mixed-Signal Circuits
Myers, Chris J.
and Chris Myers University of Utah, Salt Lake City, UT 84112, USA {little,myers}@vlsigroup.ece.utah.edu Abstract. Analog/Mixed-signal (AMS) circuit verification is a growing problem as process variation-level design and verification challenges are growing as analog/mixed- signal (AMS) circuit designs
A model for quantum jumps in magnetic resonance force microscopy
G. P. Berman; F. Borgonovi; V. I. Tsifrinovich
2005-01-01
We propose a simple model which describes the statistical properties of quantum jumps in a single-spin measurement using the oscillating cantilever-driven adiabatic reversals technique in magnetic resonance force microscopy. Our computer simulations based on this model predict the average time interval between two consecutive quantum jumps and the correlation time to be proportional to the characteristic time of the magnetic
Advanced optical position sensors for magnetically suspended wind tunnel models
S. Lafleur
1985-01-01
A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System
Modeling the magnetic pickup of an electric guitar
NASA Astrophysics Data System (ADS)
Horton, Nicholas G.; Moore, Thomas R.
2009-02-01
The magnetic pickup of an electric guitar uses electromagnetic induction to convert the motion of a ferromagnetic guitar string to an electrical signal. Although the magnetic pickup is often cited as an everyday application of Faraday's law, few sources mention the distortion that the pickup generates when converting the motion of a string to an electric signal, and fewer analyze and explain this distortion. We model the magnet and ferromagnetic wire as surfaces with magnetic charge and construct an intuitive model that accurately predicts the output of a magnetic guitar pickup. This model can be understood by undergraduate students and provides an excellent learning tool due to its straightforward mathematics and intuitive algorithm. Experiments show that it predicts the change in a magnetic field due to the presence of a ferromagnetic wire with a high degree of accuracy.
E&S 2 model for vector magnetic hysteresis property
NASA Astrophysics Data System (ADS)
Shimoji, H.; Enokizono, M.
2003-01-01
This paper presents a new modeling of the vector magnetic property with an integration term. Recently the studies of the two-dimensional magnetic property have made progress rapidly and those achievements have become a center of attraction. The magnetic materials can be measured using the two-dimensional magnetic measuring technique. We enable the magnetic field analysis, which considered the anisotropy, by combining the finite element method and a new E&S 2(Enokizono, Soda and Shimoji) modeling. A good convergence characteristics by using conventional molding was hard to obtain in the calculation process. This new modeling can improve the defect of the E&S modeling. This paper shows the comparison of the experimental results with the calculated results by using the new modeling.
Estimation of respiratory impedance and source pressure using a Thévenin equivalent circuit model.
Cha, E J; Park, K S; Lee, C W; Kim, K Y; Min, B G
1983-01-01
The objective of this paper is to present a new technique which can provide both active respiration source pressure and lung impedance in a single noninvasive test. The method is based upon a Thévenin equivalent circuit model of respiratory mechanics. Using this model, the equivalent source pressure and source impedance can be computed from the measured changes of respiratory pressures and flows in two consecutive cycles before and after addition of purely resistive loads to the mouth. In maximal breathing the source parameters were reproducible in six normal human subjects. The total respiratory resistance during maximal breathing had an average value of 3.46 cmH2O l-1 s-1, and the total dynamic compliance had an average value of 0.078 l cmH2O-1. The airway resistances measured using a plethysmographic method were within the range of 45-65% of the estimated total respiratory resistances. These two resistances were related with a correlation coefficient of 0.98. An average value of the magnitudes of the fundamental components of the source pressure was 6.73 cmH2O during maximal breathing and 2.09 cmH2O during spontaneous breathing. PMID:6643534
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
NASA Astrophysics Data System (ADS)
Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecapl?o?lu, Özgür E.
2015-02-01
We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
Ferdi Altintas; Ali Ü. C. Hardal; Özgür E. Müstecapl?o?lu
2015-02-18
We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygen's clocks. The engine operates in quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four stroke cycle; while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to Carnot bound when it operates at low temperatures and in the ultrastrong coupling regime. Interplay of quantum coherence and quantum correlations on the engine performance is discussed in terms of second order coherence, quantum mutual information and logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with the modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission line resonators.
A network flow model for load balancing in circuit-switched multicomputers
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1990-01-01
In multicomputers that utilize circuit switching or wormhole routing, communication overhead depends largely on link contention - the variation due to distance between nodes is negligible. This has a major impact on the load balancing problem. In this case, there are some nodes with excess load (sources) and others with deficit load (sinks) and it is required to find a matching of sources to sinks that avoids contention. The problem is made complex by the hardwired routing on currently available machines: the user can control only which nodes communicate but not how the messages are routed. Network flow models of message flow in the mesh and the hypercube were developed to solve this problem. The crucial property of these models is the correspondence between minimum cost flows and correctly routed messages. To solve a given load balancing problem, a minimum cost flow algorithm is applied to the network. This permits one to determine efficiently a maximum contention free matching of sources to sinks which, in turn, tells one how much of the given imbalance can be eliminated without contention.
A network flow model for load balancing in circuit-switched multicomputers
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1993-01-01
In multicomputers that utilize circuit switching or wormhole routing, communication overhead depends largely on link contention - the variation due to distance between nodes is negligible. This has a major impact on the load balancing problem. In this case, there are some nodes with excess load (sources) and others with deficit load (sinks) and it is required to find a matching of sources to sinks that avoids contention. The problem is made complex by the hardwired routing on currently available machines: the user can control only which nodes communicate but not how the messages are routed. Network flow models of message flow in the mesh and the hypercube were developed to solve this problem. The crucial property of these models is the correspondence between minimum cost flows and correctly routed messages. To solve a given load balancing problem, a minimum cost flow algorithm is applied to the network. This permits one to determine efficiently a maximum contention free matching of sources to sinks which, in turn, tells one how much of the given imbalance can be eliminated without contention.
NASA Technical Reports Server (NTRS)
Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.
2009-01-01
To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.
Fernandez, Thomas
Abstract--This paper presents CAFFEINE, a method to auto- matically generate compact, interpretable. CAFFEINE uses SPICE simulation data, to model arbitrary nonlinear circuits and circuit characteristics. CAFFEINE expressions are canonical form functions: product- of-sum layers alternating with sum
Fernandez, Thomas
Double-Strength CAFFEINE: Fast Template-Free Symbolic Modeling of Analog Circuits via Implicit-MICAS Kasteelpark Arenberg 10 B-3001 Leuven, Belgium Abstract CAFFEINE, introduced previously, automatically of analog circuits, CAFFEINE was shown to have the best predictive ability from among 10 regression
Faults in permanent magnet traction motors: state of the art and modelling approaches
A. Djerdir; J.-A. Farooq; A. Rezig; A. Miraoui
2010-01-01
This paper deals with faults in permanent magnet machines used in the traction chain of electrical and hybrid vehicles. First a state of the art is presented on the most encountered faults in these motors: that is permanent magnet demagnetisation, rotor eccentricity and short-circuits of stator windings. Then, an overview of electromagnetic and mechanical signatures of these faults is exposed
Improved magnetic field analysis of induction motor models
Enokizono, Masato; Sadanaga, Yuichiro
1998-09-01
This paper presents an improved magnetic field analysis for induction motor models. In the analysis with the conventional numerical modeling of magnetic materials, the vector relations between the flux density and the field intensity under a rotating field cannot be expressed exactly. In this paper, the authors derived the tensor magnetic reluctivity from the data measured with two-dimensional measurement method. This expression is applied to analyze a three-phase induction motor model core. The examples show that the calculated results obtained by the new method are different from those of the conventional modeling.
Demonstrations with an "LCR" Circuit
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2011-01-01
The "LCR" circuit is an important topic in the course of electricity and magnetism. Papers in this field consider mainly the forced oscillations and resonance. Our aim is to show how to demonstrate the free and self-excited oscillations in an "LCR" circuit. (Contains 4 figures.)
Twelve-state Potts model in a magnetic field
NASA Astrophysics Data System (ADS)
Kassan-Ogly, F. A.; Filippov, B. N.; Proshkin, A. I.; Zarubin, A. V.
2015-02-01
In this work, we have obtained an exact solution to the one-dimensional modified 12-state Potts model using the Kramers-Wannier transfer matrix with allowance for the exchange interaction between nearest neighbors in an external magnetic field. Analytical expressions have been derived for the heat capacity, magnetization, magnetic susceptibility, magnetic entropy, and magnetocaloric effect as functions of temperature, magnitude and sign of exchange interaction, and the magnitude and direction of the magnetic field. The behavior of all of these parameters has been investigated in detail using numerical methods. The possibility of applying the results obtained to explain the observed magnetic properties of real cubic magnets with a NaCl structure and easy axes oriented along the [110] crystallographic directions has been discussed.
Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence
Nigro, Giuseppina; Carbone, Vincenzo
2010-07-15
The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process.
NASA Astrophysics Data System (ADS)
Maillard, Pierre
The purpose of this PhD work has been to investigate, model, test, develop and provide hardening techniques and guidelines for the mitigation of single event transients (SETs) in analog mixed-signal (AMS) delay locked loops (DLLs) for radiation-hardened applications. Delay-locked-loops (DLLs) are circuit substructures that are present in complex ASIC and system-on-a-chip designs. These circuits are widely used in on-chip clock distribution systems to reduce clock skew, to reduce jitter noise, and to recover clock signals at regional points within a global clock distribution system. DLLs are critical to the performance of many clock distribution systems, and in turn, the overall performance of the associated integrated system; as such, complex systems often employ multiple DLLs for clock deskew and distribution tasks. In radiation environments such as on-orbit, these critical circuits represent at-risk points of malfunction for large sections of integrated circuits due to vulnerabilities to radiation-generated transients (i.e. single event transients) that fan out across the system. The analysis of single event effects in analog DLLs has shown that each DLL sub-circuit primitive is vulnerable to single event transients. However, we have identified the voltage controlled delay line (VCDL) sub-circuit as the most sensitive to radiation-induced single event effects generating missing clock pulses that increase with the operating frequency of the circuit. This vulnerability increases with multiple instantiation of DLLs as clock distribution nodes throughout an integrated system on a chip. To our knowledge, no complete work in the rad-hard community regarding the hardening of mixed-signal DLLs against single event effects (missing pulses) has been developed. Most of the work present in the literature applies the "brute force" and well-established digital technique of triple modular redundancy (TMR) to the digital subcomponents. We have developed two novel design techniques for the mitigation of DLL missing pulses that are fully implementable in modern CMOS technologies. These techniques offer to the community the choice of hardening using a restoring current technique in the VCDL sub-circuit to inhibit the creation of missing pulse errors, or using a combinational logic error monitoring technique to correct missing pulses after they occur in real time. We have implemented both of these techniques with minimal area and power penalties when compared to TMR. In addition, these hardening techniques have been extrapolated to other clock circuits, such as digital PLLs. The first hardening technique uses a hardened complementary differential pair VCDL to increase the critical charge (Qcrit) necessary for single event transient generation and thus mitigate missing pulses at the source. Our implementation of this technique at 180 nm, 90 nm and 40 nm required less than a 2% area penalty over a non-hardened design. To experimentally validate this technique, hardened VCDLs were designed and fabricated in 180-nm IBM and 40-nm UMC technologies, then tested at the Naval Research Lab in Washington D.C. The second hardening technique, based on combinational logic pulse monitoring, uses an error correction circuit to mitigate the missing pulses as they occur. This ECC technique is implemented via a "peeled" VCDL (i.e. each transistor is split in area but doubled in multiplicity). We have shown the effectiveness of this technique by implementing it in a Xilinx Virtex 5 FPGA. Furthermore, this new ECC technique is independent of technology scaling -- a highly valuable attribute for sub-50 nm design applications. In addition to the formulation, simulation, prototyping, fabrication, and testing of these new hardening solutions, we developed a unique single event analytical model to guide future hardened DLL designs at advanced technology nodes. The model was furthermore generalized to PLL and DLLs. These analytical models were then used to provide a set of equations to the designer for important insight into hardening choices an
Stellar model atmospheres with magnetic line blanketing. III. The role of magnetic field inclination
S. A. Khan; D. V. Shulyak
2006-07-20
Context. See abstract in the paper. Aims. In the last paper of this series we study the effects of the magnetic field, varying its strength and orientation, on the model atmosphere structure, the energy distribution, photometric colors and the hydrogen Balmer line profiles. We compare with the previous results for an isotropic case in order to understand whether there is a clear relation between the value of the magnetic field angle and model changes, and to study how important the additional orientational information is. Also, we examine the probable explanation of the visual flux depressions of the magnetic chemically peculiar stars in the context of this work. Methods. We calculated one more grid of the model atmospheres of magnetic A and B stars for different effective temperatures (Teff=8000K, 11000K, 15000K), magnetic field strengths (B=0, 5, 10, 40 kG) and various angles of the magnetic field (Omega=0-90 degr) with respect to the atmosphere plane. We used the LLmodels code which implements a direct method for line opacity calculation, anomalous Zeeman splitting of spectral lines, and polarized radiation transfer. Results. We have not found significant changes in model atmosphere structure, photometric and spectroscopic observables or profiles of hydrogen Balmer lines as we vary the magnetic field inclination angle Omega. The strength of the magnetic field plays the main role in magnetic line blanketing. We show that the magnetic field has a clear relation to the visual flux depressions of the magnetic CP stars. Conclusions. See abstract in the paper.
Magnetic field measurements of 1. 5 meter model SSC collider dipole magnets at Fermilab
Lamm, M.J.; Bleadon, M.; Coulter, K.J.; Delchamps, S.; Hanft, R.; Jaffery, T.S.; Kinney, W.; Koska, W.; Ozelis, J.P.; Strait, J.; Wake, M. ); DiMarco, J. )
1991-09-01
Magnetic field measurements have been performed at Fermilab on 1.5 m magnetic length model dipoles for the Superconducting Supercollider. Harmonic measurements are recorded at room temperature before and after the collared coil is assembled into the yoke and at liquid helium temperature. Measurements are made as a function of longitudinal position and excitation current. High field data are compared with room temperature measurements of both the collared coil and the completed yoked magnet and with the predicted fields for both the body of the magnet and the coil ends.
MODELS FOR AN ANESTHESIA BREATHING CIRCUIT Paul E. Bigeleisen + and Margaret Cheney ++
Cheney, Margaret
, called preoxygenation or denitrogenation, is accom plished a few minutes before the anesthetic drugs. This circuit is also con nected to the anesthesia vapor machine and is used to administer anesthetic gases
Kim, Sang-Gook
An analytical Mason equivalent circuit is derived for a circular, clamped plate piezoelectric micromachined ultrasonic transducer (pMUT) design in 31 mode, considering an arbitrary electrode configuration at any axisymmetric ...
Full circuit calculation for electromagnetic pulse transmission in a high current facility
NASA Astrophysics Data System (ADS)
Zou, Wenkang; Guo, Fan; Chen, Lin; Song, Shengyi; Wang, Meng; Xie, Weiping; Deng, Jianjun
2014-11-01
We describe herein for the first time a full circuit model for electromagnetic pulse transmission in the Primary Test Stand (PTS)—the first TW class pulsed power driver in China. The PTS is designed to generate 8-10 MA current into a z -pinch load in nearly 90 ns rise time for inertial confinement fusion and other high energy density physics research. The PTS facility has four conical magnetic insulation transmission lines, in which electron current loss exists during the establishment of magnetic insulation. At the same time, equivalent resistance of switches and equivalent inductance of pinch changes with time. However, none of these models are included in a commercially developed circuit code so far. Therefore, in order to characterize the electromagnetic transmission process in the PTS, a full circuit model, in which switch resistance, magnetic insulation transmission line current loss and a time-dependent load can be taken into account, was developed. Circuit topology and an equivalent circuit model of the facility were introduced. Pulse transmission calculation of shot 0057 was demonstrated with the corresponding code FAST (full-circuit analysis and simulation tool) by setting controllable parameters the same as in the experiment. Preliminary full circuit simulation results for electromagnetic pulse transmission to the load are presented. Although divergences exist between calculated and experimentally obtained waveforms before the vacuum section, consistency with load current is satisfactory, especially at the rising edge.
Field Weakening in Buried Permanent Magnet AC Motor Drives
Brigette Sneyers; Donald W. Novotny; Thomas A. Lipo
1985-01-01
The usual uncoupled d - q model of salient pole synchronous machines (Park's model) may be insufficient for accurate modeling of buried magnet permanent magnet machines. The addition of a nonbilateral coupling between the direct and quadrature axis equivalent circuits is shown to improve the steady-state model greatly. The cross coupling reactance has important implications in improving operation in the
Speckle measurements of density and temperature profiles in a model gas circuit breaker
NASA Astrophysics Data System (ADS)
Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.
2015-01-01
Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone–Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.
Rapid-eye-movement sleep involves the memory-conversion circuits in a brain model.
Wong, C W
2000-11-01
People can remember the content of a dream in rapid eye movement (REM) sleep but cannot do so in slow-wave sleep. According to a brain model, memory is stored in encoding synapses as presynaptic axonal 'on-off' patterns and modulating synapses help encoding synapses convert short-term memory into long-term memory. These lead to the hypothesis that REM sleep involves modulating synapses of the memory-conversion circuits including the anterior nuclei and dorsomedial nuclei of the thalamus. Cortical neurons get more rest in slow-wave sleep than in REM sleep. The locus coeruleus, raphe nuclei, and tuberomammillary nuclei get more rest during REM sleep when these nuclei cease to fire. The paralyses of peripheral muscles during REM sleep and cataplexy, and cessation of chorea, athetosis, hemiballismus, and parkinsonism tremor during sleep may result from spinal cord inhibition by the gigantocellular nuclei and raphe nuclei at the reticular formation. Sleep and wake relate to the light-dark cycle on the Earth. Were the light-dark cycle 50 hours a day, the human circadian clock might be around 50 hours. With increasing use of artificial light to keep people awake at night, it may affect the circadian rhythm and firing rate of neurons, the presynaptic axonal 'on-off' patterns as content of consciousness, and the mood. PMID:11058419
NASA Astrophysics Data System (ADS)
Greenleaf, M.; Li, H.; Zheng, J. P.
2014-12-01
A physical electric circuit model (PECM) was used to identify several electrochemical processes occurring in two commercial Li-ion batteries of different cathode materials (LixFePO4 and LixCoO2) via electrochemical impedance spectroscopy (EIS). Through defining these electrochemical processes in these two cells, it was determined that the charge transfer resistance (or exchange current density) observed via EIS was due to the cathodic exchange current densities in both the LixFePO4 and LixCoO2 full cells. In discussing the ionic diffusion of the examined cells, the anode of one cell and the cathode of the other were primarily responsible for the observed diffusion of the full cells. Lastly, the measured double layer capacitance was determined to be represented in EIS scans by the anodes of both full cells. The diffusion coefficient was calculated using Fick's1st Law estimation, and from this coefficient, the particle size was calculated and evaluated against scanning electron microscopy (SEM).
Chung, Wen Yuan; Gravante, Gianpiero; Al-Leswas, Dhya; Arshad, Ali; Sorge, Roberto; Watson, Chris C; Pollard, Cristina; Metcalfe, Matthew S; Dennison, Ashley R
2013-05-01
We already developed an ex vivo liver-kidney model perfused for 6 h in which the kidney acted as a homeostatic organ to improve the circuit milieu compared to liver alone. In the current study, we extended the multiorgan perfusions to 24 h to evaluate the results and eventual pitfalls manifesting with longer durations. Five livers and kidneys were harvested from female pigs and perfused over 24 h. The extracorporeal circuit included a centrifugal pump, heat exchanger, and oxygenator. The primary end point of the study was the evaluation of the organ functions as gathered from biochemical and acid-base parameters. In the combined liver-kidney circuit, the organs survived and maintained an acceptable homeostasis for different lengths of time, longer for the liver (up to 19-23 h of perfusions) than the kidney (9-13 h of perfusions). Furthermore, glucose and creatinine values decreased significantly over time (from the 5th and 9th hour of perfusion onward). The addition of a kidney to the perfusion circuit improved the biochemical environment by removing excess products from ongoing metabolic processes. The consequence is a more physiological milieu that could improve results from future experimental studies. However, it is likely that long perfusions require some nutritional support over the hours to maintain the organ's vitality and functionality throughout the experiments. PMID:23489088
NASA Astrophysics Data System (ADS)
de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR
2014-12-01
Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.
Modeling the efficiency of a magnetic needle for collecting magnetic cells
NASA Astrophysics Data System (ADS)
Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.
2014-07-01
As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.
Modeling the Efficiency of a Magnetic Needle for Collecting Magnetic Cells
Butler, Kimberly S; Adolphi, Natalie L.; Bryant, H C; Lovato, Debbie M; Larson, Richard S; Flynn, Edward R
2014-01-01
As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in 1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and 2) water in which 3, 5, 10 and 100 % of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency vs. time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. PMID:24874577
Macro model for stochastic behavior of resistance distribution of magnetic tunnel junction
NASA Astrophysics Data System (ADS)
Kil, Gyuhyun; Choi, Juntae; Song, Yunheub
2015-04-01
In this work, we fabricated MgO-based magnetic tunnel junction (MTJ) samples to observe behavior of resistance variation, and investigated a stochastic behavior model for MTJ resistance from measured real data. We found the relationship between parallel resistance (RP), anti-parallel resistance (RAP), and TMR from the measurements. The variation of barrier thickness affects not only resistance but also TMR. This means that broad RAP distribution is caused by RP distribution. In addition, RAP distribution can be reduced by increasing temperature and bias voltage. We developed a macro model that can evaluate resistance distribution based on the stochastic behavior of MTJ resistance variation from only tox varied. The amount of resistance variation, which is considered with regard to the circuit performance, can be obtained from ?tox designed by designer. In addition, the impact for operating circumstance such as bias and temperature can be considered by using fit equations.
Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems
Levin, E. M.; Bud' ko, S. L.
2011-04-28
Bulk magnetization and {sup 1}H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe{sub 2}O{sub 3} nano- or micro-particles have been studied. In LAP+Fe{sub 2}O{sub 3}, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe{sub 2}O{sub 3}, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. {sup 1}H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ?1 emu/cm{sup 3} affects the {sup 1}H NMR signal width in a way that is similar to an increase of the proton concentration by ?2×10{sup 22}/cm{sup 3}. {sup 1}H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.
NASA Astrophysics Data System (ADS)
Jovanovi?, B.; Brum, R. M.; Torres, L.
2014-04-01
After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.
Jovanovi?, B., E-mail: bojan.jovanovic@lirmm.fr, E-mail: lionel.torres@lirmm.fr; Brum, R. M.; Torres, L. [LIRMM—University of Montpellier 2/UMR CNRS 5506, 161 Rue Ada, 34095 Montpellier (France)
2014-04-07
After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45?nm × 45?nm round MTJs for the magnetic part and 28?nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.
Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro
2014-01-01
In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170
Phenomenological band structure model of magnetic coupling in semiconductors
Gong, Xingao
Phenomenological band structure model of magnetic coupling in semiconductors Gustavo M. Dalpian a,1 the magnetic ordering in Mn-doped semiconductors. This model is based on the pd and dd level repulsions doped IIVI and IIIV semiconductors such as CdTe, GaAs, ZnO, and GaN. The model can also be used
Numerical modeling of higher order magnetic moments in UXO discrimination
Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.
2008-01-01
The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.
Explaining how electric circuits work
Haase, Markus
Explaining how electric circuits work Science teaching unit #12;Disclaimer The Department Explaining how electric circuits work © Crown copyright 200800094-2008DVD-EN Teaching approach The sequence the scientific electric circuit model, which is the central teaching goal for this sequence, and the teaching
A semi-analytic model of magnetized liner inertial fusion
McBride, Ryan D
2015-01-01
Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized alpha-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original Ma...
Simple model of plasma acceleration in a magnetic nozzle
NASA Technical Reports Server (NTRS)
Sercel, Joel C.
1990-01-01
A collisionless, steady-state, cold-plasma model is used to calculate the three-dimensional trajectory of a plasma as it is accelerated through a diverging magnetic field. The magnetic field is assumed to be axisymmetric with nonzero radial and axial components and zero azimuthal component. Although random thermal motion of plasma species is neglected in the cold plasma approximation, an important effect of plasma thermal energy is accounted for in the model as the kinetic energy of electrons in their Larmor motion about magnetic field lines. Calculations based on this model confirm previous studies which suggested that plasma separation from the field of a magnetic nozzle can take place even in the absence of collisional diffusion. It is shown that plasma divergence in a magnetic nozzle can be controlled by tailoring the field geometry.
Parsons, W.M.
1988-01-01
A water-cooled vacuum interrupter was designed and tested for use at 25 kA and 10 kV. This device is expected to have a lifetime approximately one order of magnitude greater than commercial dc circuit breakers. Testing showed that, although the device could successfully carry and interrupt 25 kA, interruption reliabililty was only about 95% with a 10 kV recovery voltage. In addition, a structural crack developed in one electrode from either thermal or mechanical stresses or a combination thereof. 11 refs., 4 figs., 1 tab.
The joint US/UK 1990 epoch world magnetic model
NASA Technical Reports Server (NTRS)
Quinn, John M.; Coleman, Rachel J.; Peck, Michael R.; Lauber, Stephen E.
1991-01-01
A detailed summary of the data used, analyses performed, modeling techniques employed, and results obtained in the course of the 1990 Epoch World Magnetic Modeling effort are given. Also, use and limitations of the GEOMAG algorithm are presented. Charts and tables related to the 1990 World Magnetic Model (WMM-90) for the Earth's main field and secular variation in Mercator and polar stereographic projections are presented along with useful tables of several magnetic field components and their secular variation on a 5-degree worldwide grid.
Modelling magnetically dominated and radiatively cooling jets
Huarte-Espinosa, Martin; Blackman, Eric
2010-01-01
Using 3D-MHD Eulerian-grid numerical simulations, we study the formation and evolution of rising magnetic towers propagating into an ambient medium. The towers are generated from a localized injection of pure magnetic energy. No rotation is imposed on the plasma. We compare the evolution of a radiatively cooling tower with an adiabatic one, and find that both bend due to pinch instabilities. Collimation is stronger in the radiative cooling case; the adiabatic tower tends to expand radially. Structural similarities are found between these towers and the millimeter scale magnetic towers produced in laboratory experiments.
A STRUCTURAL-MAGNETIC STRAIN MODEL FOR MAGNETOSTRICTIVE TRANSDUCERS
in response to the eld and the elastic properties of the material. The magnetic behavior is characterized properties is necessary to account for the dynamics of the material as it vibrates. This is modeled through when the materials are subjected to magnetic elds. For rare-earth alloys such as Terfenol-D Tb0:3Dy0
Macroscopic modeling of Magnetic Shape Memory Alloys Ulisse Stefanelli
Stefanelli, Ulisse
Macroscopic modeling of Magnetic Shape Memory Alloys Ulisse Stefanelli (joint work with F. Auricchio, A.-L. Bessoud, A. Reali) In the last decade a new class of materials called magnetic shape memory and shape memory effects along with a giant magnetostrictive be- havior (up to 5-8%) which is the effect
Note on a noncritical holographic model with a magnetic field
Cui Shengliang; Gao Yihong [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Seo, Yunseok [Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of); Sin Sangjin [Physics Department, Hanyang University, Seoul 133-791 (Korea, Republic of); Xu Weishui [Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of); Physics Department, Hanyang University, Seoul 133-791 (Korea, Republic of)
2010-03-15
We consider a noncritical holographic model constructed from an intersecting brane configuration D4/D4-D4 with an external magnetic field. We investigate the influences of this magnetic field on strongly coupled dynamics by the gauge/gravity correspondence.
Modeling magnetic field amplification in nonlinear diffusive shock acceleration
NASA Astrophysics Data System (ADS)
Vladimirov, Andrey
2009-02-01
This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.
Magnetic lumped parameter modeling of rotor eccentricity in brushless permanent-magnet motors
Wang, J.P.; Lieu, D.K.
1999-09-01
Vibration, giving rise to acoustical noise, is an important index of motor performance. The unbalanced force due to rotor eccentricity caused by manufacturing imprecision or bearing defects is one possible source of excitation to vibration. The previously developed fast design package for permanent magnet motors, based on magnetic lumped parameter modeling, is modified to predict the influence of rotor eccentricity. Both static and dynamic cases are investigated. Magnetic material nonlinearity is taken into consideration. A two-dimensional relative permeance function is derived by conformal transformation followed by the modification of permeances modeling the air gap. Static and dynamic rotor eccentricity bring different effects to symmetric and asymmetric motors and are discussed separately.
Polygonal current model: an effective quantifier of aromaticity on the magnetic criterion.
Pelloni, Stefano; Lazzeretti, Paolo
2013-09-19
To explain peculiar effects of electron delocalization on the magnetic response of planar cyclic molecules, a basic model that accounts for their actual geometrical structure has been developed by integrating the differential Biot-Savart law. Such a model, based on a single polygonal circuit with ideal features, is shown to be applicable to electrically neutral or charged monocyclic compounds, as well as linear polycyclic condensed hydrocarbons. Two theoretical quantities, easily computed via quantum chemistry codes (the out-of-plane components of the magnetizability, ??, and the magnetic shielding ??(h) of points P on the symmetry axis orthogonal to the molecular plane, at distance h from the center of mass) are shown to be linearly connected, for example, for monocyclic structures, via the relationship ??(h) = ±(?0/2?)??D(h), where D(h) is a simple function of geometrical parameters. Equations of this type are useful to rationalize scan profiles of magnetic shielding and nucleus-independent chemical shift along the highest symmetry axis. For a regular polygon, D(h) depends approximately on the third inverse power of the distance d of the vertices from the center, and ?? is proportional to the area of the polygon, that is, ?d(2); hence, the shielding ??(0) and the related nucleus-independent chemical shift NICS?(0) are unsafe quantifiers of magnetotropicity; they are biased by a spurious geometrical dependence on d(-1), incorrectly exhalting them in cyclic systems with smaller size. A more reliable magnetotropicity measure for a cyclic compound, in the presence of a magnetic field Bext applied at right angles to the molecular plane, is defined within the polygonal current model by the current susceptibility or current strength, ?I/?Bext = -??/Aeff, expressed in nanoampère per tesla, where Aeff is a properly defined area enclosed with the polygonal circuit. An extended numerical test on a wide series of mono- and polycyclic compounds and a comparison with corresponding ab initio current susceptibilities prove the superior quality of this indicator over other commonly employed aromaticity/antiaromaticity benchmarks on the magnetic criterion. PMID:23952986
An evaluation of recent internal field models. [of earth magnetism
NASA Technical Reports Server (NTRS)
Mead, G. D.
1979-01-01
The paper reviews the current status of internal field models and evaluates several recently published models by comparing their predictions with annual means of the magnetic field measured at 140 magnetic observatories from 1973 to 1977. Three of the four models studied, viz. AWC/75, IGS/75, and Pogo 8/71, were nearly equal in their ability to predict the magnitude and direction of the current field. The fourth model, IGRF 1975, was significantly poorer in its ability to predict the current field. All models seemed to be able to extrapolate predictions quite well several years outside the data range used to construct the models.
Phenomenological modelling of first order phase transitions in magnetic systems
NASA Astrophysics Data System (ADS)
Melikhov, Yevgen; Hadimani, R. L.; Raghunathan, Arun
2014-05-01
First order phase transitions may occur in several magnetic systems, with two structural phases having different magnetic properties each and a structural transition between them. Here, a novel physics based phenomenological model of such systems is proposed, in which magnetization is represented by the volumetric amounts of ferromagnetism (described by extended Jiles-Atherton theory) and paramagnetism (described by the Curie-Weiss law) in respective phases. An identification procedure to extract material parameters from experimental data is proposed. The proposed phenomenological approach was successfully applied to magnetocaloric Gd5(SixGe1-x)4 system and also has the potential to describe the behavior of Griffiths phase magnetic systems.
Capacitive Stress Gauges in Model Dipole Magnets
Ragland, R. Blake
2009-06-09
Capacitive transducers are used to measure mechanical stress in the windings of superconducting magnets. The transducer consists of a bonded laminate of alternating thin foils of stainless steel and high-strength polymer (polyimide). The thin...
Power-Invariant Magnetic System Modeling
Gonzalez Dominguez, Guadalupe Giselle
2012-10-19
generalized as a function of these two parameters: effort and flow, P = effort * flow. Analyzing various power transfer media this is true for at least three regimes: electrical, mechanical and hydraulic but not for magnetic. This implies...
Magnetic Design and Code Benchmarking of the SMC (Short Model Coil) Dipole Magnet
Manil, P; Rochford, J; Fessia, P; Canfer, S; Baynham, E; Nunio, F; de Rijk, G; Védrine, P
2010-01-01
The Short Model Coil (SMC) working group was set in February 2007 to complement the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb3Sn dipole magnet. In 2009, the EuCARD/HFM (High Field Magnets) program took over these programs. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet is designed to reach a peak field of about 13 Tesla (T) on conductor, using a 2500 A/mm2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb3Sn cable, by applying different levels of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has been realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. The goal of the magnetic design presented in this paper is to match the high field region with the high stress region, located alo...
Magnetization loop modelling for superconducting/ferromagnetic tube of an ac magnetic cloak
NASA Astrophysics Data System (ADS)
Gömöry, F.; Solovyov, M.; Šouc, J.
2015-04-01
From the combination of superconducting (SC) and ferromagnetic (FM) materials, one can prepare composites with unusual magnetic properties, e.g. for the cloaking of a dc or low-frequency ac magnetic field by a shell from a SC/FM composite. In the design and optimisation of such SC/FM structures, numerical modelling is essential. Non-linear magnetic permeability, as well as the hysteresis of both kinds of materials, are to be incorporated in the calculations aimed at achieving reliable estimates. We present a technique that allows the prediction of the ac magnetization loops of SC/FM composites. The critical state model-based approach is used to describe the properties of the superconducting material. The ferromagnetic part is characterized by its (non-hysteretic) nonlinear permeability. With these ingredients, the distributions of the magnetic field are calculated in subsequent instants of the ac cycle and are used to evaluate the preliminary data for the magnetization loop, which is still missing the hysteresis of the FM part. Afterward, the latter component is added to the magnetization loop by an approximation deduced from the known dependence of the hysteresis loss in the FM material on the ac magnetic field. In spite of its approximate nature, this approach demonstrated very good predictability in experimental tests.
Modeling high gradient magnetic separation from biological fluids.
Bockenfeld, D.; Chen, H.; Rempfer, D.; Kaminski, M. D.; Rosengart, A. J.; Chemical Engineering; Illinois Inst. of Tech.; Univ. of Chicago, Pritzker School of Medicine
2006-01-01
A proposed portable magnetic separator consists of an array of biocompatible capillary tubing and magnetizable wires immersed in an externally applied homogeneous magnetic field. While subject to the homogeneous magnetic field, the wires create high magnetic field gradients, which aid in the collection of blood-borne magnetic nanospheres from blood flow. In this study, a 3-D numerical model was created using COMSOL Multiphysics 3.2 software to determine the configuration of the wire-tubing array from two possible configurations, one being an array with rows alternating between wires and tubing, and the other being an array where wire and tubing alternate in two directions. The results demonstrated that the second configuration would actually capture more of the magnetic spheres. Experimental data obtained by our group support this numerical result.
Calculation and Analysis of Magnetic Gradient Tensor Components of Global Magnetic Models
NASA Astrophysics Data System (ADS)
Schiffler, M.; Queitsch, M.; Schneider, M.; Goepel, A.; Stolz, R.; Krech, W.; Meyer, H. G.; Kukowski, N.
2014-12-01
Global Earth's magnetic field models like the International Geomagnetic Reference Field (IGRF), the World Magnetic Model (WMM) or the High Definition Geomagnetic Model (HDGM) are harmonic analysis regressions to available magnetic observations stored as spherical harmonic coefficients. Input data combine recordings from magnetic observatories, airborne magnetic surveys and satellite data. The advance of recent magnetic satellite missions like SWARM and its predecessors like CHAMP offer high resolution measurements while providing a full global coverage. This deserves expansion of the theoretical framework of harmonic synthesis to magnetic gradient tensor components. Measurement setups for Full Tensor Magnetic Gradiometry equipped with high sensitive gradiometers like the JeSSY STAR system can directly measure the gradient tensor components, which requires precise knowledge about the background regional gradients which can be calculated with this extension. In this study we develop the theoretical framework for calculation of the magnetic gradient tensor components from the harmonic series expansion and apply our approach to the IGRF and HDGM. The gradient tensor component maps for entire Earth's surface produced for the IGRF show low gradients reflecting the variation from the dipolar character, whereas maps for the HDGM (up to degree N=729) reveal new information about crustal structure, especially across the oceans, and deeply situated ore bodies. From the gradient tensor components, the rotational invariants, the Eigenvalues, and the normalized source strength (NSS) are calculated. The NSS focuses on shallower and stronger anomalies. Euler deconvolution using either the tensor components or the NSS applied to the HDGM reveals an estimate of the average source depth for the entire magnetic crust as well as individual plutons and ore bodies. The NSS reveals the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.
NASA Astrophysics Data System (ADS)
Gvozdev, Vasilii I.; Kuzaev, G. A.; Nefedov, E. I.; Yashin, A. A.
1992-03-01
The fundamental principles, physical models, and design fundamentals of three-dimensional microwave integrated circuits are presented. The principles of mathematical modeling of transmission lines and basic elements are discussed. The topological approach to the description of the electromagnetic field in the elements of three-dimensional microwave integrated circuits is examined at the electrodynamic level. The structures of the base elements, functional units, and devices for processing signals from pickups as well as the physical and technological aspects of their fabrication based on three-dimensional microwave integrated circuits are examined.
Qinghai Wu; Wei Ni; Tao Zhang; Defei Jin; Shasha Wu
2011-01-01
In this paper, an AC 2-degree freedom hybrid magnetic bearing (HMB) is proposed, which is driven by a 3-phase AC power inverter. The configuration and the operating principle producing magnetic suspension forces of the AC 2-degree freedom HMB are introduced. By using equivalent magnetic circuit method, the calculation formulas of magnetic suspension forces and the mathematics models of the system