Science.gov

Sample records for magnetic compass orientation

  1. Magnetic compass orientation in the European eel.

    PubMed

    Durif, Caroline M F; Browman, Howard I; Phillips, John B; Skiftesvik, Anne Berit; Vllestad, L Asbjrn; Stockhausen, Hans H

    2013-01-01

    European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (~ 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (12-17C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eel's seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier. PMID:23554997

  2. Magnetic Compass Orientation in the European Eel

    PubMed Central

    Durif, Caroline M. F.; Browman, Howard I.; Phillips, John B.; Skiftesvik, Anne Berit; Vllestad, L. Asbjrn; Stockhausen, Hans H.

    2013-01-01

    European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (? 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (1217C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eels seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier. PMID:23554997

  3. Orientation of churches by magnetic compasses?

    NASA Astrophysics Data System (ADS)

    Arneitz, Patrick; Draxler, Andrea; Rauch, Roman; Leonhardt, Roman

    2014-07-01

    In Christian religion the sunrise is of great symbolic importance. Therefore, many churches constructed in the Middle Ages point towards geographic East. Although `easting' of churches actually refers to the alignment towards the azimuth of sunrise on the individual churches' patron's day, deviation of nave alignment from the geographic East direction is often assumed to be caused by the use of magnetic compasses. Therefore, the church alignment could provide information about historical magnetic declination. We investigate 124 churches in Lower Austria and 68 in northern Germany to clarify this question as well as the `easting' hypothesis. Church orientations are determined from georeferenced satellite images. Metadata such as the construction year, possible reconstructions and the church patron are gathered to determine the date when current church direction was appointed, and to perform sunrise calculations. However, due to uncertainties of construction years and the declining importance of orientation tradition after the 15th century several churches are excluded from the study. Thus, 32 churches with reliable metadata remain for evaluation in each region. The analysis reveals a preferred alignment of naves towards geographic East in Lower Austria and northern Germany. The construction and alignment of churches was often affected by the pre-existing buildings and streets or topography and natural surroundings. Therefore, deviations from geographic East are more likely caused by town or landscape. The mean deviations from magnetic East in both regions are large compared to the mean deviations from geographic East and sunrise azimuths. Hence, the use of compasses cannot be confirmed. Despite a few churches indicating orientation according to their patron's day, a general trend cannot be observed in the data reviewed.

  4. A Visual Pathway Links Brain Structures Active during Magnetic Compass Orientation in Migratory Birds

    PubMed Central

    Heyers, Dominik; Manns, Martina; Luksch, Harald; Güntürkün, Onur; Mouritsen, Henrik

    2007-01-01

    The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, “Cluster N”, show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds “see” the reference compass direction provided by the geomagnetic field. PMID:17895978

  5. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus.

    PubMed

    Oliveriusov, Ludmila; N?mec, Pavel; Pavelkov, Zuzana; Sedl?ek, Frantiek

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species-the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents. PMID:24913128

  6. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus

    NASA Astrophysics Data System (ADS)

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

  7. Polarized light modulates light-dependent magnetic compass orientation in birds.

    PubMed

    Muheim, Rachel; Sjberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-02-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field. PMID:26811473

  8. Evidence of light-dependent magnetic compass orientation in urodele amphibian larvae.

    PubMed

    Diego-Rasilla, Francisco J; Luengo, Rosa M; Phillips, John B

    2015-09-01

    Experiments were conducted to investigate whether larval palmate newts undertake orientation toward or away from the home shoreline (y-axis orientation) using the geomagnetic field to steer the most direct route, and if they accomplish this task through a light-dependent magnetoreception mechanism similar to that found in anuran tadpoles and adult newts. Larval palmate newts trained and then tested under full-spectrum light showed bimodal magnetic compass orientation that coincided with the magnetic direction of the trained y-axis. In contrast, larvae trained under long-wavelength (?500nm) light and then tested under full-spectrum light displayed bimodal orientation perpendicular to the trained y-axis direction. These results offer evidence for the use of magnetic compass cues in orienting urodele amphibian larvae, and provide additional support for the light-dependent magnetoreception mechanism since they are in complete agreement with earlier studies showing that the observed 90 shift in the direction of magnetic compass orientation under long-wavelength light (?500nm) is due to a direct effect of light on the underlying magnetoreception mechanism. This study is the first to provide evidence of a light-dependent magnetic compass in larval urodeles. PMID:25981491

  9. Migration, Orientation and Navigation: Magnetic Compasses in Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of magnetic information for orientation and navigation is a widespread phenomenon in animals. In contrast to navigational systems in vertebrates, our understanding of the mechanisms underlying the insect magnetic perception and use of the information is at an early stage. Some insects use ma...

  10. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus

    SciTech Connect

    Deutschlander, Mark E.; Freake, Michael J.; Borland, Christopher; Phillips, John B.; Madden, R C.; Anderson, Larry E.; Wilson, B W.

    2003-04-01

    Magnetic orientation has been demonstrated in Siberian hamsters, Phodopus sungorus. The behavior, using a nest building assay, shows a directional preference in nest position and appears in this animal to be a learned behavior. Hamsters were housed prior to testing in rectangular cages aligned along perpendicular axes. When subsequently tested in a radially-symmetrical arena, the hamsters positioned their nests in a bimodal distribution that coincided with the magnetic direction of the long-axis of the holding cages. In addition, results are presented that illustrate some of the factors that can influence behavioral responses to the magnetic field. In particular for P. sungorus, holding conditions prior to testing and the presence of non-magnetic cues may influence the strength and expression of magnetic orientation. Failure to consider these and other factors may help to explain why previous attempts to demonstrate magnetic orientation in a number of rodent species have failed or, when positive results have been obtained, have been difficult to replicate in other laboratories.

  11. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird.

    PubMed

    Engels, Svenja; Schneider, Nils-Lasse; Lefeldt, Nele; Hein, Christine Maira; Zapka, Manuela; Michalik, Andreas; Elbers, Dana; Kittel, Achim; Hore, P J; Mouritsen, Henrik

    2014-05-15

    Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions. No effect has therefore been widely accepted as scientifically proven. Here we show that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise. When European robins, Erithacus rubecula, were exposed to the background electromagnetic noise present in unscreened wooden huts at the University of Oldenburg campus, they could not orient using their magnetic compass. Their magnetic orientation capabilities reappeared in electrically grounded, aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50?kHz to 5?MHz by approximately two orders of magnitude. When the grounding was removed or when broadband electromagnetic noise was deliberately generated inside the screened and grounded huts, the birds again lost their magnetic orientation capabilities. The disruptive effect of radiofrequency electromagnetic fields is not confined to a narrow frequency band and birds tested far from sources of electromagnetic noise required no screening to orient with their magnetic compass. These fully double-blinded tests document a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate. PMID:24805233

  12. Use of a light-dependent magnetic compass for y-axis orientation in European common frog (Rana temporaria) tadpoles.

    PubMed

    Diego-Rasilla, Francisco J; Luengo, Rosa M; Phillips, John B

    2013-07-01

    We provide evidence for the use of a magnetic compass for y-axis orientation (i.e., orientation along the shore-deep water axis) by tadpoles of the European common frog (Rana temporaria). Furthermore, our study provides evidence for a wavelength-dependent effect of light on magnetic compass orientation in amphibians. Tadpoles trained and then tested under full-spectrum light displayed magnetic compass orientation that coincided with the trained shore-deep water axes of their training tanks. Conversely, tadpoles trained under long-wavelength (?500nm) light and tested under full-spectrum light, and tadpoles trained under full-spectrum light and tested under long-wavelength (?500nm) light, exhibited a 90 shift in magnetic compass orientation relative to the trained y-axis direction. Our results are consistent with earlier studies showing that the observed 90 shift in the direction of magnetic compass orientation under long-wavelength (?500nm) light is due to a direct effect of light on the underlying magnetoreception mechanism. These findings also show that wavelength-dependent effects of light do not compromise the function of the magnetic compass under a wide range of natural lighting conditions, presumably due to a large asymmetry in the relatively sensitivity of antagonistic short- and long-wavelength inputs to the light-dependent magnetic compass. PMID:23525820

  13. Orientations Of Minoan Buildings On Crete May Indicate The First Recorded Use Of The Magnetic Compass

    NASA Astrophysics Data System (ADS)

    Downey, W. S.

    Archaeomagnetic research has enabled the determination of the secular variation record of the past geomagnetic field and has been used as a tool for absolute and relative dating. The archaeomagnetic secular variation of declination can be used in conjunction with architectural building plan orientation angles (strike directions) to establish, whether or not, a magnetic compass was possibly used to align buildings. Until now, it has been speculative as to, how or why, Minoan buildings were orientated in an approximate North-South direction or at 'askew' angles to one another. Here, it is observed, that, the orientation angles, of some significant Minoan buildings on Crete which have been compared to the archaeomagnetic (secular variation of declination) reference curve record (Bulgaria) for that period, are consistent with the possible use of a magnetic compass. Four of the six main Palaces and other significant buildings may have been oriented using this method. This may indicate the first recorded use, by the Minoans of a magnetic compass. These findings have archaeological implications (chronology) and are of significant interest architecturally. They are also relevant to Minoan religious and cult studies and may have implications for Minoan maritime navigation studies.

  14. Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference?

    PubMed

    Oliveriusov, Ludmila; N?mec, Pavel; Krlov, Zuzana; Sedl?ek, Frantiek

    2012-10-15

    Evidence for magnetoreception in mammals remains limited. Magnetic compass orientation or magnetic alignment has been conclusively demonstrated in only a handful of mammalian species. The functional properties and underlying mechanisms have been most thoroughly characterized in Ansell's mole-rat, Fukomys anselli, which is the species of choice due to its spontaneous drive to construct nests in the southeastern sector of a circular arena using the magnetic field azimuth as the primary orientation cue. Because of the remarkable consistency between experiments, it is generally believed that this directional preference is innate. To test the hypothesis that spontaneous southeastern directional preference is a shared, ancestral feature of all African mole-rats (Bathyergidae, Rodentia), we employed the same arena assay to study magnetic orientation in two other mole-rat species, the social giant mole-rat, Fukomys mechowii, and the solitary silvery mole-rat, Heliophobius argenteocinereus. Both species exhibited spontaneous western directional preference and deflected their directional preference according to shifts in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Because all of the experiments were performed in total darkness, our results strongly suggest that all African mole-rats use a light-independent magnetic compass for near-space orientation. However, the spontaneous directional preference is not common and may be either innate (but species-specific) or learned. We propose an experiment that should be performed to distinguish between these two alternatives. PMID:22855619

  15. Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and mice.

    PubMed

    Painter, Michael S; Dommer, David H; Altizer, William W; Muheim, Rachel; Phillips, John B

    2013-04-01

    We provide evidence for spontaneous quadramodal magnetic orientation in a larval insect. Second instar Berlin, Canton-S and Oregon-R Canton-S strains of Drosophila melanogaster exhibited quadramodal orientation with clusters of bearings along the four anti-cardinal compass directions (i.e. 45, 135, 225 and 315 deg). In double-blind experiments, Canton-S Drosophila larvae also exhibited quadramodal orientation in the presence of an earth-strength magnetic field, while this response was abolished when the horizontal component of the magnetic field was cancelled, indicating that the quadramodal behavior is dependent on magnetic cues, and that the spontaneous alignment response may reflect properties of the underlying magnetoreception mechanism. In addition, a re-analysis of data from studies of learned magnetic compass orientation by adult Drosophila melanogaster and C57BL/6 mice revealed patterns of response similar to those exhibited by larval flies, suggesting that a common magnetoreception mechanism may underlie these behaviors. Therefore, characterizing the mechanism(s) of magnetoreception in flies may hold the key to understanding the magnetic sense in a wide array of terrestrial organisms. PMID:23239891

  16. A magnetic compass aids monarch butterfly migration

    PubMed Central

    Guerra, Patrick A; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species. Here we use flight simulator studies to show that migrants indeed possess an inclination magnetic compass to help direct their flight equatorward in the fall. The use of this inclination compass is light-dependent utilizing ultraviolet-A/blue light between 380 and 420 nm. Notably, the significance of light <420 nm for inclination compass function was not considered in previous monarch studies. The antennae are important for the inclination compass because they appear to contain light-sensitive magnetosensors. For migratory monarchs, the inclination compass may serve as an important orientation mechanism when directional daylight cues are unavailable and may also augment time-compensated sun compass orientation for appropriate directionality throughout the migration. PMID:24960099

  17. A magnetic compass aids monarch butterfly migration.

    PubMed

    Guerra, Patrick A; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species. Here we use flight simulator studies to show that migrants indeed possess an inclination magnetic compass to help direct their flight equatorward in the fall. The use of this inclination compass is light-dependent utilizing ultraviolet-A/blue light between 380 and 420 nm. Notably, the significance of light <420 nm for inclination compass function was not considered in previous monarch studies. The antennae are important for the inclination compass because they appear to contain light-sensitive magnetosensors. For migratory monarchs, the inclination compass may serve as an important orientation mechanism when directional daylight cues are unavailable and may also augment time-compensated sun compass orientation for appropriate directionality throughout the migration. PMID:24960099

  18. Ontogenetic development of magnetic compass orientation in domestic chickens (Gallus gallus).

    PubMed

    Denzau, Susanne; Niener, Christine; Rogers, Lesley J; Wiltschko, Wolfgang

    2013-08-15

    Domestic chickens (Gallus gallus) can be trained to search for a social stimulus in a specific magnetic direction, and cryptochrome 1a, found in the retina, has been proposed as a receptor molecule mediating magnetic directions. The present study combines immuno-histochemical and behavioural data to analyse the ontogenetic development of this ability. Newly hatched chicks already have a small amount of cryptochrome 1a in their violet cones; on day 5, the amount of cryptochrome 1a reached the same level as in adult chickens, suggesting that the physical basis for magnetoreception is present. In behavioural tests, however, young chicks 5 to 7 days old failed to show a preference of the training direction; on days 8, 9 and 12, they could be successfully trained to search along a specific magnetic axis. Trained and tested again 1 week later, the chicks that had not shown a directional preference on days 5 to 7 continued to search randomly, while the chicks tested from day 8 onward preferred the correct magnetic axis when tested 1 week later. The observation that the magnetic compass is not functional before day 8 suggests that certain maturation processes in the magnetosensitive system in the brain are not yet complete before that day. The reasons why chicks that have been trained before that day fail to learn the task later remain unclear. PMID:23661773

  19. How Things Work: A Magnetic Compass with No Moving Parts.

    ERIC Educational Resources Information Center

    Crane, H. Richard

    1988-01-01

    Introduced is a magnetic compass with no moving parts. Presented are the principles of the compass and the method to make the compass. Shows a lodestone compass which is the most primitive compass form. (YP)

  20. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  1. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this

  2. Light-Activated Magnetic Compass in Birds

    NASA Astrophysics Data System (ADS)

    Solov'yov, Ilia A.; Greiner, Walter

    Migrating birds fly thousand miles without having a map, or a GPS unit. But they may carry their own sensitive navigational tool, which allows them "see" the Earth's magnetic field. Here we review the important physical and chemical constraints on a possible compass sensor and discuss the suggestion that radical pairs in a photoreceptor cryptochrome might provide a biological realization for a magnetic compass. Finally, we review the current evidence supporting a role for radical pair reactions in the magnetic compass of birds.

  3. Light-dependent magnetic compass in Iberian green frog tadpoles

    NASA Astrophysics Data System (ADS)

    Diego-Rasilla, Francisco Javier; Luengo, Rosa Milagros; Phillips, John B.

    2010-12-01

    Here, we provide evidence for a wavelength-dependent effect of light on magnetic compass orientation in Pelophylax perezi (order Anura), similar to that observed in Rana catesbeiana (order Anura) and Notophthalmus viridescens (order Urodela), and confirm for the first time in an anuran amphibian that a 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500 nm) is due to a direct effect of light on the underlying magnetoreception mechanism. Although magnetic compass orientation in other animals (e.g., birds and some insects) has been shown to be influenced by the wavelength and/or intensity of light, these two amphibian orders are the only taxa for which there is direct evidence that the magnetic compass is light-dependent. The remarkable similarities in the light-dependent magnetic compasses of anurans and urodeles, which have evolved as separate clades for at least 250 million years, suggest that the light-dependent magnetoreception mechanism is likely to have evolved in the common ancestor of the Lissamphibia (Early Permian, ~294 million years) and, possibly, much earlier. Also, we discuss a number of similarities between the functional properties of the light-dependent magnetic compass in amphibians and blue light-dependent responses to magnetic stimuli in Drosophila melanogaster, which suggest that the wavelength-dependent 90° shift in amphibians may be due to light activation of different redox forms of a cryptochrome photopigment. Finally, we relate these findings to earlier studies showing that the pineal organ of newts is the site of the light-dependent magnetic compass and recent neurophysiological evidence showing magnetic field sensitivity in the frog frontal organ (an outgrowth of the pineal).

  4. The magnetic compass of domestic chickens.

    PubMed

    Denzau, Susanne; Niener, Christine; Rogers, Lesley J; Wiltschko, Wolfgang

    2013-11-01

    In a recent paper, we showed that domestic chickens can be trained to search for a social stimulus in specific magnetic directions. Chickens can hardly fly and have only small home ranges, hence their having a functional magnetic compass may seem rather surprising. Yet considering the natural habitat of their ancestors and their lifestyle until recently, the advantages of a magnetic compass become evident. PMID:24753787

  5. Compass Games: An Introduction to Orienteering Skills

    ERIC Educational Resources Information Center

    Sension-Hall, Debra

    2011-01-01

    Compasses are useful tools for teaching the basics of navigation. Knowing where you are, where you are going, and how to get there are important facets of outdoor recreation. Compass games are a fun way to teach introductory navigation skills, and this article describes how they can be used as innovative, nontraditional activities in physical

  6. Exploring Magnetic Fields with a Compass

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.

  7. Do leaf-cutter ants Atta colombica orient their path-integrated, home vector with a magnetic compass?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-cutter ants Atta colombica forage over 250 m in structurally-complex, Neotropical rainforests that occlude sun or polarized light cues. Night foraging makes the use of celestial cues and landmarks all the more difficult. We investigated the directional cues used by leaf-cutter ants to orient h...

  8. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vcha, Martin; Drtkov, Dana; P?ov, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, usein contrast to another previously researched Arthropod, spiny lobsterthe inclination compass.

  9. On the use of magnets to disrupt the physiological compass of birds

    NASA Astrophysics Data System (ADS)

    Wang, K.; Mattern, E.; Ritz, T.

    2006-09-01

    Behavioral researchers have attached magnets to birds during orientation experiments, assuming that such magnets will disrupt their ability to obtain magnetic information. Here, we investigate the effect of an attached magnet on the ability to derive directional information from a radical-pair based compass mechanism. We outline in some detail the geometrical symmetries that would allow a bird to identify magnetic directions in a radical-pair based compass. We show that the artificial field through an attached magnet will quickly disrupt the birds' ability to distinguish pole-ward from equator-ward headings, but that much stronger fields are necessary to disrupt their ability to detect the magnetic axis. Together with estimates of the functional limits of a radical-pair based compass, our calculations suggest that artificial fields of comparable size to the geomagnetic field are not generally sufficient to render a radical-pair based compass non-functional.

  10. Backup compass mechanisms in pigeon orientation with the sun in the zenith.

    PubMed

    Ranvaud, R D; Gasparotto, O C; Britto, L R

    1996-10-01

    The sun is known to guide homing pigeons as a priority cue. The literature indicates that under total overcast conditions pigeons rely on a backup mechanism akin to the magnetic inclination compass for which there is much laboratory evidence in migratory birds. Total overcast conditions are not favorable for orientation research in the State of So Paulo, Brazil. The orientation of homing pigeons raised near the tropic of Capricorn was therefore observed around the time of the December solstice, when the sun culminated directly overhead, with a consequent interruption of the sun compass for a short time every day. In these experiments, carried out between 1981 and 1993, local geomagnetic field inclination was -25 degrees to -29 degrees 30', so that a functioning magnetic inclination compass should have been available to the birds. Whereas the birds released with sun to zenith angles between 10 degrees and 30 degrees were well oriented, both in the morning (99 vanishing bearings) and in the afternoon (143 vanishing bearings), those released with the sun less than 5 degrees away from the zenith showed random orientation (105 vanishing bearings), with no evidence of an alternative magnetic compass mechanism. PMID:9181107

  11. Chinese tombs oriented by a compass: evidence from paleomagnetic declination changes versus tombs age

    NASA Astrophysics Data System (ADS)

    Charvatova, Ivanka; Klokocnik, Jaroslav; Kolmas, Josef; Kostelecky, Jan

    2010-05-01

    The use of the magnetic compass in China is documented at least since the Han dynasty (206 BC-220 AD), but may be older. Geomancy (fengshui) practicised for a long time had a profound influence on the face of China's landscape and city plans. The tombs (pyramids) near Xian (together with suburban fields and roads) have strange space orientations, sometimes in the basic south-north direction (with respect to the geographic pole), but ussually with deviations of several degrees to east or west. The use of the compass means that the needle is directed to the actual magnetic pole at the time of construction or last reconstruction of the given tomb. The magnetic pole however, relative to the 'fixed' geographic pole, wanders significantly in time. We successfully correlated (found a close trends), by using paleomagnetic data (for the central China and the time interval of interest), the starting date of pyramids building with respect to the magnetic pole position at that time. As in Mesoamerica, where according to Fuson hypothesis, the Olmecs and Maya oriented their ceremonial buildings and pyramids by compass even before the Chinese, here in central China the same technique may have been used. The agreeement of building alignments with likely magnetic pole positions at the time is fairly good. There are several written records that the knowledge of the various ancient types of compass in China is older than from the Han period but paleomagnetic declinations for China are generally so far not too precise.

  12. Orientation at night: an innate moon compass in sandhoppers (Amphipoda: Talitridae).

    PubMed

    Ugolini, Alberto; Fantini, Tiziana; Innocenti, Riccardo

    2003-02-01

    The supralittoral amphipod Talitrus saltator is well known for its capacity for astronomical orientation using the sun and moon as compasses. It has also been demonstrated that the sun compass is innate in this species. In our experiments, we released inexpert (naive) young born in the laboratory into a confined environment under the full moon and in the absence of the horizontal component of the magnetic field. They were allowed to see the natural sky and the moon only at the moment of release. The young individuals were obtained in the laboratory by crossing adult individuals from the same and different populations of sandhoppers. The young from intrapopulation crosses were well oriented towards the directions corresponding to those of their parents, whereas the young from interpopulation crosses were oriented in an intermediate direction. Therefore, our experiments demonstrate in the sandhopper T. saltator that sea-land moon orientation relies on an innate chronometrically compensated mechanism. PMID:12614577

  13. Orientation at night: an innate moon compass in sandhoppers (Amphipoda: Talitridae).

    PubMed Central

    Ugolini, Alberto; Fantini, Tiziana; Innocenti, Riccardo

    2003-01-01

    The supralittoral amphipod Talitrus saltator is well known for its capacity for astronomical orientation using the sun and moon as compasses. It has also been demonstrated that the sun compass is innate in this species. In our experiments, we released inexpert (naive) young born in the laboratory into a confined environment under the full moon and in the absence of the horizontal component of the magnetic field. They were allowed to see the natural sky and the moon only at the moment of release. The young individuals were obtained in the laboratory by crossing adult individuals from the same and different populations of sandhoppers. The young from intrapopulation crosses were well oriented towards the directions corresponding to those of their parents, whereas the young from interpopulation crosses were oriented in an intermediate direction. Therefore, our experiments demonstrate in the sandhopper T. saltator that sea-land moon orientation relies on an innate chronometrically compensated mechanism. PMID:12614577

  14. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Magnetic compass and gyrocompass. 108.715 Section 108.715 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment 108.715 Magnetic compass and gyrocompass. (a) Each...

  15. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have a gyrocompass in addition to...

  16. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have a gyrocompass in addition to...

  17. 46 CFR 167.40-45 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NAUTICAL SCHOOL SHIPS Certain Equipment Requirements 167.40-45 Magnetic compass and gyrocompass. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with...

  18. 46 CFR 167.40-45 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NAUTICAL SCHOOL SHIPS Certain Equipment Requirements 167.40-45 Magnetic compass and gyrocompass. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with...

  19. 46 CFR 167.40-45 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NAUTICAL SCHOOL SHIPS Certain Equipment Requirements 167.40-45 Magnetic compass and gyrocompass. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b) All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with...

  20. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have a gyrocompass in addition to...

  1. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have a gyrocompass in addition to...

  2. Monarch butterflies (Danaus plexippus L.) use a magnetic compass for navigation

    PubMed Central

    Etheredge, Jason A.; Perez, Sandra M.; Taylor, Orley R.; Jander, Rudolf

    1999-01-01

    Fall migratory monarch butterflies, tested for their directional responses to magnetic cues under three conditions, amagnetic, normal, and reversed magnetic fields, showed three distinct patterns. In the absence of a magnetic field, monarchs lacked directionality as a group. In the normal magnetic field, monarchs oriented to the southwest with a group pattern typical for migrants. When the horizontal component of the magnetic field was reversed, the butterflies oriented to the northeast. In contrast, nonmigratory monarchs lacked directionality in the normal magnetic field. The results are a direct demonstration of magnetic compass orientation in migratory insects. PMID:10570160

  3. Development of lateralization of the magnetic compass in a migratory bird.

    PubMed

    Gehring, Dennis; Wiltschko, Wolfgang; Gntrkn, Onur; Denzau, Susanne; Wiltschko, Roswitha

    2012-10-22

    The magnetic compass of a migratory bird, the European robin (Erithacus rubecula), was shown to be lateralized in favour of the right eye/left brain hemisphere. However, this seems to be a property of the avian magnetic compass that is not present from the beginning, but develops only as the birds grow older. During first migration in autumn, juvenile robins can orient by their magnetic compass with their right as well as with their left eye. In the following spring, however, the magnetic compass is already lateralized, but this lateralization is still flexible: it could be removed by covering the right eye for 6 h. During the following autumn migration, the lateralization becomes more strongly fixed, with a 6 h occlusion of the right eye no longer having an effect. This change from a bilateral to a lateralized magnetic compass appears to be a maturation process, the first such case known so far in birds. Because both eyes mediate identical information about the geomagnetic field, brain asymmetry for the magnetic compass could increase efficiency by setting the other hemisphere free for other processes. PMID:22933375

  4. Avian magnetic compass can be tuned to anomalously low magnetic intensities

    PubMed Central

    Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-01-01

    The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 T field (i.e. a field of less than 10 per cent of the local intensity of 47 T). Birds can adjust to this low intensity: they turned out to be disoriented under 4 T after a pre-exposure time of 8 h to 4 T, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 T field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds. PMID:23720547

  5. Avian magnetic compass can be tuned to anomalously low magnetic intensities.

    PubMed

    Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-07-22

    The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 T field (i.e. a field of less than 10 per cent of the local intensity of 47 T). Birds can adjust to this low intensity: they turned out to be disoriented under 4 T after a pre-exposure time of 8 h to 4 T, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 T field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds. PMID:23720547

  6. Re-calibration of the magnetic compass in hand-raised European robins (Erithacus rubecula).

    PubMed

    Alert, Bianca; Michalik, Andreas; Thiele, Nadine; Bottesch, Michael; Mouritsen, Henrik

    2015-01-01

    Migratory birds can use a variety of environmental cues for orientation. A primary calibration between the celestial and magnetic compasses seems to be fundamental prior to a bird's first autumn migration. Releasing hand-raised or rescued young birds back into the wild might therefore be a problem because they might not have established a functional orientation system during their first calendar year. Here, we test whether hand-raised European robins that did not develop any functional compass before or during their first autumn migration could relearn to orient if they were exposed to natural celestial cues during the subsequent winter and spring. When tested in the geomagnetic field without access to celestial cues, these birds could orient in their species-specific spring migratory direction. In contrast, control birds that were deprived of any natural celestial cues throughout remained unable to orient. Our experiments suggest that European robins are still capable of establishing a functional orientation system after their first autumn. Although the external reference remains speculative, most likely, natural celestial cues enabled our birds to calibrate their magnetic compass. Our data suggest that avian compass systems are more flexible than previously believed and have implications for the release of hand-reared migratory birds. PMID:26388258

  7. Re-calibration of the magnetic compass in hand-raised European robins (Erithacus rubecula)

    PubMed Central

    Alert, Bianca; Michalik, Andreas; Thiele, Nadine; Bottesch, Michael; Mouritsen, Henrik

    2015-01-01

    Migratory birds can use a variety of environmental cues for orientation. A primary calibration between the celestial and magnetic compasses seems to be fundamental prior to a birds first autumn migration. Releasing hand-raised or rescued young birds back into the wild might therefore be a problem because they might not have established a functional orientation system during their first calendar year. Here, we test whether hand-raised European robins that did not develop any functional compass before or during their first autumn migration could relearn to orient if they were exposed to natural celestial cues during the subsequent winter and spring. When tested in the geomagnetic field without access to celestial cues, these birds could orient in their species-specific spring migratory direction. In contrast, control birds that were deprived of any natural celestial cues throughout remained unable to orient. Our experiments suggest that European robins are still capable of establishing a functional orientation system after their first autumn. Although the external reference remains speculative, most likely, natural celestial cues enabled our birds to calibrate their magnetic compass. Our data suggest that avian compass systems are more flexible than previously believed and have implications for the release of hand-reared migratory birds. PMID:26388258

  8. 20. View of magnetic compass; "bigeyes," used for surveying ships ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of magnetic compass; "bigeyes," used for surveying ships and shore; and signal lights (covered). - U.S. Coast Guard Cutter BRAMBLE, Waterfront at Lincoln Avenue, Port Huron, St. Clair County, MI

  9. Sun-Compass Orientation in Mediterranean Fish Larvae

    PubMed Central

    Faillettaz, Robin; Blandin, Agathe; Paris, Claire B.; Koubbi, Philippe; Irisson, Jean-Olivier

    2015-01-01

    Mortality is very high during the pelagic larval phase of fishes but the factors that determine recruitment success remain unclear and hard to predict. Because of their bipartite life history, larvae of coastal species have to head back to the shore at the end of their pelagic episode, to settle. These settlement-stage larvae are known to display strong sensory and motile abilities, but most work has been focused on tropical, insular environments and on the influence of coast-related cues on orientation. In this study we quantified the in situ orientation behavior of settlement-stage larvae in a temperate region, with a continuous coast and a dominant along-shore current, and inspected both coast-dependent and independent cues. We tested six species: one Pomacentridae, Chromis chromis, and five Sparidae, Boops boops, Diplodus annularis, Oblada melanura, Spicara smaris and Spondyliosoma cantharus. Over 85% of larvae were highly capable of keeping a bearing, which is comparable to the orientation abilities of tropical species. Sun-related cues influenced the precision of bearing-keeping at individual level. Three species, out of the four tested in sufficient numbers, oriented significantly relative to the sun position. These are the first in situ observations demonstrating the use of a sun compass for orientation by wild-caught settlement-stage larvae. This mechanism has potential for large-scale orientation of fish larvae globally. PMID:26308915

  10. Night-Migratory Songbirds Possess a Magnetic Compass in Both Eyes

    PubMed Central

    Lefeldt, Nele; Prior, Helmut; Mouritsen, Henrik

    2012-01-01

    Previous studies on European robins, Erithacus rubecula, and Australian silvereyes, Zosterops lateralis, had suggested that magnetic compass information is being processed only in the right eye and left brain hemisphere of migratory birds. However, recently it was demonstrated that both garden warblers, Sylvia borin, and European robins have a magnetic compass in both eyes. These results raise the question if the strong lateralization effect observed in earlier experiments might have arisen from artifacts or from differences in experimental conditions rather than reflecting a true all-or-none lateralization of the magnetic compass in European robins. Here we show that (1) European robins having only their left eye open can orient in their seasonally appropriate direction both during autumn and spring, i.e. there are no strong lateralization differences between the outward journey and the way home, that (2) their directional choices are based on the standard inclination compass as they are turned 180 when the inclination is reversed, and that (3) the capability to use the magnetic compass does not depend on monocular learning or intraocular transfer as it is already present in the first tests of the birds with only one eye open. PMID:22984416

  11. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies.

    PubMed

    Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2009-09-25

    During their fall migration, Eastern North American monarch butterflies (Danaus plexippus) use a time-compensated Sun compass to aid navigation to their overwintering grounds in central Mexico. It has been assumed that the circadian clock that provides time compensation resides in the brain, although this assumption has never been examined directly. Here, we show that the antennae are necessary for proper time-compensated Sun compass orientation in migratory monarch butterflies, that antennal clocks exist in monarchs, and that they likely provide the primary timing mechanism for Sun compass orientation. These unexpected findings pose a novel function for the antennae and open a new line of investigation into clock-compass connections that may extend widely to other insects that use this orientation mechanism. PMID:19779201

  12. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies#

    PubMed Central

    Merlin, Christine; Gegear, Robert J.

    2009-01-01

    During their fall migration, Eastern North American monarch butterflies (Danaus plexippus) use a time-compensated sun compass to aid navigation to their overwintering grounds in central Mexico. It has been assumed that the circadian clock that provides time compensation resides in the brain, although this assumption has never been examined directly. Here we show that the antennae are necessary for proper time-compensated sun compass orientation in migratory monarch butterflies, that antennal clocks exist in monarchs, and that they likely provide the primary timing mechanism for sun compass orientation. These unexpected findings pose a novel function for the antennae and open a new line of investigation into clock-compass connections that may extend widely to other insects that use this orientation mechanism. PMID:19779201

  13. Magnetic properties of nanoscale compass-Heisenberg planar clusters

    NASA Astrophysics Data System (ADS)

    Trousselet, Fabien; Ole?, Andrzej M.; Horsch, Peter

    2012-10-01

    We study a model of spins 1/2 on a square lattice, generalizing the quantum compass model via the addition of perturbing Heisenberg interactions between nearest neighbors, and investigate its phase diagram and magnetic excitations. This model has motivations both from the field of strongly correlated systems with orbital degeneracy and from that of solid-state based devices proposed for quantum computing. We find that the high degeneracy of ground states of the compass model is fragile and changes into twofold degenerate ground states for any finite amplitude of Heisenberg coupling. By computing the spin structure factors of finite clusters with Lnczos diagonalization, we evidence a rich variety of phases characterized by Z2 symmetry that are either ferromagnetic, C-type antiferromagnetic, or of the Nel type and analyze the effects of quantum fluctuations on phase boundaries. In the ordered phases, the anisotropy of compass interactions leads to a finite excitation gap to spin waves. We show that for small nanoscale clusters with large anisotropy gap the lowest excitations are column-flip excitations that emerge due to Heisenberg perturbing interactions from the manifold of degenerate ground states of the compass model. We derive an effective one-dimensional XYZ model that faithfully reproduces the exact structure of these excited states and elucidates their microscopic origin. The low-energy column-flip or compass-type excitations are robust against decoherence processes and are therefore well designed for storing information in quantum computing. We also point out that the dipolar interactions between nitrogen-vacancy centers forming a rectangular lattice in a diamond matrix may permit a solid-state realization of the anisotropic compass-Heisenberg model.

  14. Interacting Compasses

    ERIC Educational Resources Information Center

    Riveros, Hector G.; Betancourt, Julian

    2009-01-01

    The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur

  15. Interacting Compasses

    ERIC Educational Resources Information Center

    Riveros, Hector G.; Betancourt, Julian

    2009-01-01

    The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur…

  16. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass

    NASA Astrophysics Data System (ADS)

    Mller, Andrea; Sagasser, Sven; Wiltschko, Wolfgang; Schierwater, Bernd

    2004-12-01

    The currently discussed model of magnetoreception in birds proposes that the direction of the magnetic field is perceived by radical-pair processes in specialized photoreceptors, with cryptochromes suggested as potential candidate molecules mediating magnetic compass information. Behavioral studies have shown that magnetic compass orientation takes place in the eye and requires light from the blue-green part of the spectrum. Cryptochromes are known to absorb in the same spectral range. Because of this we searched for cryptochrome (CRY) in the retina of European robins, Erithacus rubecula, passerine birds that migrate at night. Here, we report three individually expressed cryptochromes, eCRY1a, eCRY1b, and eCRY2. While eCRY1a and eCRY2 are similar to the cryptochromes found in the retina of the domestic chicken, eCRY1b has a unique carboxy (C)-terminal. In light of the radical-pair model, our findings support a potential role of cryptochromes as transducers for the perception of magnetic compass information in birds.

  17. A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun

    PubMed Central

    Holland, Richard A.; Borissov, Ivailo; Siemers, Björn M.

    2010-01-01

    Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa. PMID:20351296

  18. Fuzzy calibration of a magnetic compass for vehicular applications

    NASA Astrophysics Data System (ADS)

    Keighobadi, Jafar

    2011-08-01

    In a strapdown compass on a vehicle, three-axis magnetometers measure the Earth's magnetic field vector along the body axes of the vehicle to determine its heading angle. Owing to the local magnetic effects, the measurements frequently deviate from the geomagnetic field vector coordinated in the body frame. Therefore, online calibration of the compass should be considered to satisfy the requirements of the vehicle navigation system. In this paper, a new intelligent method is developed to implement online calibration of the compass system. First, a regression model is proposed to increase the convergence probability of the calibration process using the attitude angles in the measurement equations. Second, based on the knowledge of expert engineers, a Mamdani type fuzzy batch least-square (FBLS) algorithm is designed to estimate the calibration bias and scaling parameters. Generalized likelihood ratio (GLR) and the changes of estimated parameters are considered as the main information of the fuzzy system in which the length of data batch and the associated weighting factor are updated continuously. The results of simulations and experiments reveal the superiority of the proposed approach to the non-fuzzy methods.

  19. Probing a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance.

    PubMed

    Maeda, Kiminori; Storey, Jonathan G; Liddell, Paul A; Gust, Devens; Hore, P J; Wedge, C J; Timmel, Christiane R

    2015-02-01

    We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception. PMID:25537133

  20. Sky Compass Orientation in Desert Locusts—Evidence from Field and Laboratory Studies

    PubMed Central

    Homberg, Uwe

    2015-01-01

    Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults are largely downwind following seasonal shifts of the tropical convergence zone taking the animals to areas of rainfall. Only a few studies provided evidence for active orientation mechanisms, including the involvement of a sun compass. This scarcity of evidence stands in contrast to recent neurobiological data showing sophisticated neuronal adaptations suited for sky compass navigation. These include a special dorsal eye region with photoreceptors suited to analyze the polarization pattern of the sky and a system of topographically arranged sky compass neurons in the central complex of the brain. Laboratory experiments, moreover, demonstrated polarotaxis in tethered flying animals. The discrepancy of these findings call for more rigorous field studies on active orientation mechanisms in locusts. It remains to be shown how locusts use their internal sky compass during mass migrations and what role it plays to guide solitarious locusts in their natural habitat. PMID:26733834

  1. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation.

    PubMed

    Reppert, S M

    2007-01-01

    The circadian clock has a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, which contributes to navigation to the overwintering grounds. The location of circadian clock cells in monarch brain has been identified in the dorsolateral protocerebrum (pars lateralis); these cells express PERIOD, TIMELESS, and a Drosophila-like cryptochrome designated CRY1. Monarch butterflies, like all other nondrosophilid insects examined so far, express a second cry gene (designated insect CRY2) that encodes a vertebrate-like CRY that is also expressed in pars lateralis. An ancestral circadian clock mechanism has been defined in monarchs, in which CRY1 functions as a blue light photoreceptor for photic entrainment, whereas CRY2 functionswithin the clockwork as themajor transcriptional repressor of an intracellular negative transcriptional feedback loop. A CRY1-staining neural pathway has been identified that may connect the circadian (navigational) clock to polarized light input important for sun compass navigation, and a CRY2-positive neural pathway has been discovered that may communicate circadian information directly from the circadian clock to the central complex, the likely site of the sun compass. The monarch butterfly may thus use the CRY proteins as components of the circadian mechanism and also as output molecules that connect the clock to various aspects of the sun compass apparatus. PMID:18419268

  2. Dispositional attachment orientations, contextual variations in attachment security, and compassion fatigue among volunteers working with traumatized individuals.

    PubMed

    Pardess, Eleanor; Mikulincer, Mario; Dekel, Rachel; Shaver, Phillip R

    2014-10-01

    In the present article, we report a series of studies examining the links between attachment orientations and compassion fatigue among volunteers working with traumatized individuals. Participants were volunteers in several trauma-related organizations, ranging in age from 18 to 69 years. In Study 1 (N?=?148), we examined associations between self-reports of attachment insecurities and compassion fatigue. In Study 2 (N?=?54), we used a diary design to assess attachment-related differences in emotional reactions to actual helping encounters over a 2-month period. In Study 3 (N?=?108), we examined the effects of the experimental enhancement of attachment security (security priming) on reactions to a hypothetical helping encounter. As expected, attachment insecurities, either anxiety or avoidance, were associated with heightened compassion fatigue. Moreover, security priming reduced compassion fatigue in response to a hypothetical helping encounter. These findings underscore the relevance of attachment theory for understanding and preventing compassion fatigue. PMID:23909745

  3. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  4. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  5. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... addition to the magnetic compass. (c) Each tankship must have an illuminated repeater for the gyrocompass required under paragraph (b) that is at the main steering stand unless the gyrocompass is illuminated...

  6. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... addition to the magnetic compass. (c) Each tankship must have an illuminated repeater for the gyrocompass required under paragraph (b) that is at the main steering stand unless the gyrocompass is illuminated...

  7. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... addition to the magnetic compass. (c) Each tankship must have an illuminated repeater for the gyrocompass required under paragraph (b) that is at the main steering stand unless the gyrocompass is illuminated...

  8. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... addition to the magnetic compass. (c) Each tankship must have an illuminated repeater for the gyrocompass required under paragraph (b) that is at the main steering stand unless the gyrocompass is illuminated...

  9. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... addition to the magnetic compass. (c) Each tankship must have an illuminated repeater for the gyrocompass required under paragraph (b) that is at the main steering stand unless the gyrocompass is illuminated...

  10. Research on self-calibration method for tri-axial magnetic compass

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Li, Xiang

    2013-01-01

    A novel method for the self-calibration of a tri-axial magnetic compass is discussed in this paper. Firstly, the conventional calibration method of tri-axial magnetometer in compass based on ellipsoid fitting is theoretically analyzed, and its weakness is demonstrated. Secondly, an improved calibration scheme for both the magnetometer and accelerometer in a tri-axial magnetic compass is proposed, which utilize the invariance of the dot product of two constant vectors and can overcome the disadvantages of the ellipsoid fitting method. The proposed method is verified by numerical simulation and experiment, and the results prove its superiority over the conventional algorithm of ellipsoid fitting.

  11. Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed Plus Water Maze

    PubMed Central

    Phillips, John B.; Youmans, Paul W.; Muheim, Rachel; Sloan, Kelly A.; Landler, Lukas; Painter, Michael S.; Anderson, Christopher R.

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Nave mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180 so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673

  12. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.

    PubMed

    Phillips, John B; Youmans, Paul W; Muheim, Rachel; Sloan, Kelly A; Landler, Lukas; Painter, Michael S; Anderson, Christopher R

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673

  13. Sun Compass Orientation Helps Coral Reef Fish Larvae Return to Their Natal Reef.

    PubMed

    Mouritsen, Henrik; Atema, Jelle; Kingsford, Michael J; Gerlach, Gabriele

    2013-01-01

    Reef fish sustain populations on isolated reefs and show genetic diversity between nearby reefs even though larvae of many species are swept away from the natal site during pelagic dispersal. Retention or recruitment to natal reefs requires orientation capabilities that enable larvae to find their way. Although olfactory and acoustically based orientation has been implicated in homing when larvae are in the reef's vicinity, it is still unclear how they cope with greater distances. Here we show evidence for a sun compass mechanism that can bring the larvae to the vicinity of their natal reef. In a circular arena, pre-settlement larvae and early settlers (<24 hours) of the cardinal fish, Ostorhinchus doederleini, showed a strong SSE directional swimming response, which most likely has evolved to compensate for the locally prevailing large scale NNW current drift. When fish were clock-shifted 6 hours, they changed their orientation by ca. 180 as predicted by the tropical sun curve at One Tree Island, i.e. they used a time-compensated sun compass. Furthermore, the fish oriented most consistently at times of the day when the sun azimuth is easy to determine. Microsatellite markers showed that the larvae that had just arrived at One Tree Island genetically belonged to either the local reef population or to Fitzroy Reef located 12 kilometers to the SSE. The use of a sun compass adds a missing long-distance link to the hierarchy of other sensory abilities that can direct larvae to the region of origin, including their natal reef. Predominant local recruitment, in turn, can contribute to genetic isolation and potential speciation. PMID:23840396

  14. Sun Compass Orientation Helps Coral Reef Fish Larvae Return to Their Natal Reef

    PubMed Central

    Mouritsen, Henrik; Atema, Jelle; Kingsford, Michael J.; Gerlach, Gabriele

    2013-01-01

    Reef fish sustain populations on isolated reefs and show genetic diversity between nearby reefs even though larvae of many species are swept away from the natal site during pelagic dispersal. Retention or recruitment to natal reefs requires orientation capabilities that enable larvae to find their way. Although olfactory and acoustically based orientation has been implicated in homing when larvae are in the reefs vicinity, it is still unclear how they cope with greater distances. Here we show evidence for a sun compass mechanism that can bring the larvae to the vicinity of their natal reef. In a circular arena, pre-settlement larvae and early settlers (<24 hours) of the cardinal fish, Ostorhinchus doederleini, showed a strong SSE directional swimming response, which most likely has evolved to compensate for the locally prevailing large scale NNW current drift. When fish were clock-shifted 6 hours, they changed their orientation by ca. 180 as predicted by the tropical sun curve at One Tree Island, i.e. they used a time-compensated sun compass. Furthermore, the fish oriented most consistently at times of the day when the sun azimuth is easy to determine. Microsatellite markers showed that the larvae that had just arrived at One Tree Island genetically belonged to either the local reef population or to Fitzroy Reef located 12 kilometers to the SSE. The use of a sun compass adds a missing long-distance link to the hierarchy of other sensory abilities that can direct larvae to the region of origin, including their natal reef. Predominant local recruitment, in turn, can contribute to genetic isolation and potential speciation. PMID:23840396

  15. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies

    PubMed Central

    Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565

  16. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies.

    PubMed

    Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2012-01-01

    To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565

  17. Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions.

    PubMed

    Bernth, Balzs; Blah, Mikls; Egri, Adm; Barta, Andrs; Kriska, Gyrgy; Horvth, Gbor

    2013-09-01

    It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible. PMID:24085076

  18. Magnetic order and spin excitations in layered Heisenberg antiferromagnets with compass-model anisotropies

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. A.; Ihle, D.; Plakida, N. M.

    2015-02-01

    The spin-wave excitation spectrum, magnetization, and Nel temperature for the quasi-two-dimensional spin-1/2 antiferromagnetic Heisenberg model with the compass-model interaction in the plane proposed for iridates are calculated in the random phase approximation. The spin-wave spectrum agrees well with data of Lanczos diagonalization. We find that the Nel temperature is enhanced by the compass-model interaction and is close to the experimental value for Ba2IrO4.

  19. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field

    PubMed Central

    Kavokin, Kirill; Chernetsov, Nikita; Pakhomov, Alexander; Bojarinova, Julia; Kobylkov, Dmitry; Namozov, Barot

    2014-01-01

    We report on the experiments on orientation of a migratory songbird, the garden warbler (Sylvia borin), during the autumn migration period on the Courish Spit, Eastern Baltics. Birds in experimental cages, deprived of visual information, showed the seasonally appropriate direction of intended flight with respect to the magnetic meridian. Weak radiofrequency (RF) magnetic field (190 nT at 1.4 MHz) disrupted this orientation ability. These results may be considered as an independent replication of earlier experiments, performed by the group of R. and W. Wiltschko with European robins (Erithacus rubecula). Confirmed outstanding sensitivity of the birds' magnetic compass to RF fields in the lower megahertz range demands for a revision of one of the mainstream theories of magnetoreception, the radical-pair model of birds' magnetic compass. PMID:24942848

  20. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field.

    PubMed

    Kavokin, Kirill; Chernetsov, Nikita; Pakhomov, Alexander; Bojarinova, Julia; Kobylkov, Dmitry; Namozov, Barot

    2014-08-01

    We report on the experiments on orientation of a migratory songbird, the garden warbler (Sylvia borin), during the autumn migration period on the Courish Spit, Eastern Baltics. Birds in experimental cages, deprived of visual information, showed the seasonally appropriate direction of intended flight with respect to the magnetic meridian. Weak radiofrequency (RF) magnetic field (190 nT at 1.4 MHz) disrupted this orientation ability. These results may be considered as an independent replication of earlier experiments, performed by the group of R. and W. Wiltschko with European robins (Erithacus rubecula). Confirmed outstanding sensitivity of the birds' magnetic compass to RF fields in the lower megahertz range demands for a revision of one of the mainstream theories of magnetoreception, the radical-pair model of birds' magnetic compass. PMID:24942848

  1. Freely oriented portable superconducting magnet

    DOEpatents

    Schmierer, Eric N. (Los Alamos, NM); Prenger, F. Coyne (Los Alamos, NM); Hill, Dallas D. (Los Alamos, NM)

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  2. The depth of the honeybee's backup sun-compass systems.

    PubMed

    Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F

    2013-06-01

    Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation. PMID:23430992

  3. Teaching Basic Geographical Skills: Map and Compass Activities.

    ERIC Educational Resources Information Center

    Trussell, Margaret Edith

    1986-01-01

    Presents a unit on map and compass activities which introduces compass direction, magnetic declination and conversion of map measurement to familiar units. Requires four, one-hour class meetings and may be followed by a half-day orienteering activity. (Author/JDH)

  4. Magnetic compasses in biological systems: Does quantum physics play a role?

    NASA Astrophysics Data System (ADS)

    Ritz, Thorsten

    2011-03-01

    One hypothesis of the process underlying the magnetic compass of animals surmises that the magnetic field is perceived by its effect on the coherent spin evolution within a non-equilibrium photochemical radical pair reaction. If this hypothesis were proven, it would be a dramatic demonstration of a quantum process with clear biological significance. We will review the physics of the radical pair mechanism and the current state of evidence supporting it. Experimentally, we will focus on the use radio-frequency magnetic fields to affect a radical-pair based mechanism in birds and discuss the approach and its limitations. Theoretically, we will focus on the question of how one should design a radical pair to be optimally sensitive to the direction of a weak magnetic field. Regardless of whether or not a radical pair mechanism is indeed used by birds or other animals, optimal design features could be used to manufacture biologically inspired, but man-made magnetic compass systems.

  5. Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not at 88 degrees magnetic inclination.

    PubMed

    Lefeldt, Nele; Dreyer, David; Schneider, Nils-Lasse; Steenken, Friederike; Mouritsen, Henrik

    2015-01-15

    Migratory birds are known to use the Earth's magnetic field as an orientation cue on their tremendous journeys between their breeding and overwintering grounds. The magnetic compass of migratory birds relies on the magnetic field's inclination, i.e. the angle between the magnetic field lines and the Earth's surface. As a consequence, vertical or horizontal field lines corresponding to 0 or 90 deg inclination should offer no utilizable information on where to find North or South. So far, very little is known about how small the deviations from horizontal or vertical inclination are that migratory birds can detect and use as a reference for their magnetic compass. Here, we asked: what is the steepest inclination angle at which a migratory bird, the Eurasian blackcap (Sylvia atricapilla), can still perform magnetic compass orientation in Emlen funnels? Our results show that blackcaps are able to orient in an Earth's strength magnetic field with inclination angles of 67 and 85 deg, but fail to orient in a field with 88 deg inclination. This suggests that the steepest inclination angle enabling magnetic compass orientation in migratory blackcaps tested in Emlen funnels lies between 85 and 88 deg. PMID:25452505

  6. Orientation and Magnitude of Mars' Magnetic Field

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  7. Spin-orbit coupling, compass anisotropy and skyrmions in 2D chiral magnets

    NASA Astrophysics Data System (ADS)

    Banerjee, Sumilan; Erten, Onur; Rowland, James; Randeria, Mohit

    2014-03-01

    Spin-orbit coupling (SOC) gives rise to the chiral Dzyaloshinskii-Moriya (DM) interaction in systems that lack inversion symmetry like non-centrosymmetric helimagnets, and two-dimensional magnetism at surfaces and interfaces. We explore here the role of SOC in several microscopic exchange mechanisms - superexchange, double exchange and RKKY - in insulating and itinerant electron systems. We show that, in addition to giving rise to the DM interaction, SOC generically leads to compass anisotropy terms. Although seemingly negligible, the compass terms are energetically comparable to DM and play a crucial role in deciding the fate of the magnetic ground state. We demonstrate that the compass terms act as an effective easy-plane anisotropy in 2D chiral magnets and lead to extremely large region of stable skyrmion crystal (SkX) phase in a perpendicular magnetic field. We discuss the electronic properties of SkX in this hitherto unexplored region of the anisotropy-field plane for itinerant systems. We also comment on the possibility of realizing such SkX phase in the oxide interfaces. JR and MR supported by NSF MRSEC DMR-0820414 and SB by DOE-BES DE-SC0005035.

  8. Magnetic order in the two-dimensional compass-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Vladimirov, Artem A.; Ihle, Dieter; Plakida, Nikolay M.

    2015-06-01

    A Green-function theory for the dynamic spin susceptibility in the square-lattice spin-1/2 antiferromagnetic compass-Heisenberg model employing a generalized mean-field approximation is presented. The theory describes magnetic long-range order (LRO) and short-range order (SRO) at arbitrary temperatures. The magnetization, Nel temperature TN, specific heat, and uniform static spin susceptibility ? are calculated self-consistently. As the main result, we obtain LRO at finite temperatures in two dimensions, where the dependence of TN on the compass-model interaction is studied. We find that TN is close to the experimental value for Ba2IrO4. The effects of SRO are discussed in relation to the temperature dependence of ?.

  9. Exact treatment of magnetism-driven ferroelectricity in the one-dimensional compass model

    NASA Astrophysics Data System (ADS)

    You, Wen-Long; Liu, Guang-Hua; Horsch, Peter; Ole?, Andrzej M.

    2014-09-01

    We consider a class of one-dimensional compass models with antisymmetric Dzyaloshinskii-Moriya exchange interaction in an external magnetic field. Based on the exact solution derived by means of Jordan-Wigner transformation, we study the excitation gap, spin correlations, ground-state degeneracy, and critical properties at phase transitions. The phase diagram at finite electric and magnetic field consists of three phases: ferromagnetic, canted antiferromagnetic, and chiral. Dzyaloshinskii-Moriya interaction induces an electrical polarization in the ground state of the chiral phase, where the nonlocal string order and special features of entanglement spectra arise, while strong chiral correlations emerge at finite temperature in the other phases and are controlled by a gap between the nonchiral ground state and the chiral excitations. We further show that the magnetoelectric effects in all phases disappear above a typical temperature corresponding to the total bandwidth of the effective fermionic model. To this end we explore the entropy, specific heat, magnetization, electric polarization, and the magnetoelectric tensor at finite temperature. We identify rather peculiar specific-heat and polarization behavior of the compass model which follows from highly frustrated interactions.

  10. Migration along orthodromic sun compass routes by arctic birds.

    PubMed

    Alerstam, T; Gudmundsson, G A; Green, M; Hedenstrom, A

    2001-01-12

    Flight directions of birds migrating at high geographic and magnetic latitudes can be used to test bird orientation by celestial or geomagnetic compass systems under polar conditions. Migration patterns of arctic shorebirds, revealed by tracking radar studies during an icebreaker expedition along the Northwest Passage in 1999, support predicted sun compass trajectories but cannot be reconciled with orientation along either geographic or magnetic loxodromes (rhumb lines). Sun compass routes are similar to orthodromes (great circle routes) at high latitudes, showing changing geographic courses as the birds traverse longitudes and their internal clock gets out of phase with local time. These routes bring the shorebirds from high arctic Canada to the east coast of North America, from which they make transoceanic flights to South America. The observations are also consistent with a migration link between Siberia and the Beaufort Sea region by way of sun compass routes across the Arctic Ocean. PMID:11209079

  11. How do honeybees use their magnetic compass? Can they see the North?

    PubMed

    Vlkov, T; Vcha, M

    2012-08-01

    While seeking food sources and routes back to their hive, bees make use of their advanced nervous and sensory capacities, which underlie a diverse behavioral repertoire. One of several honeybee senses that is both exceptional and intriguing is magnetoreception - the ability to perceive the omnipresent magnetic field (MF) of the Earth. The mechanism by which animals sense MFs has remained fascinating as well as elusive because of the intricacies involved, which makes it one of the grand challenges for neural and sensory biology. However, investigations in recent years have brought substantial progress to our understanding of how such magneto-receptor(s) may work. Some terrestrial animals (birds) are reported to be equipped even with a dual perception system: one based on diminutive magnetic particles - in line with the original model which has also always been hypothesized for bees - and the other one, as the more recent model describes, based on a sensitivity of some photochemical reactions to MF (radical-pair or chemical mechanism). The latter model postulates a close link to vision and supposes that the animals can see the position of the geomagnetic North as a visible pattern superimposed on the picture of the environment. In recent years, a growing body of evidence has shown that radical-pair magnetoreception might also be used by insects. It is realistic to expect that such evidence will inspire a re-examination and extension or confirmation of established views on the honeybee magnetic-compass mechanism. However, the problem of bee magnetoreception will not be solved at the moment that a receptor is discovered. On the contrary, the meaning of magnetoreception in insect life and its involvement in the orchestration of other senses is yet to be fully understood. The crucial question to be addressed in the near future is whether the compass abilities of the honeybee could suffer from radio frequency (RF) smog accompanying modern civilization and whether the fitness of this dominant pollinator might be affected by RF fields. The goal of this review is to provide an overview of the path that the behavioral research on honeybee magnetoreception has taken and to discuss it in the context of contemporary data obtained on other insects. PMID:22313997

  12. 28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS STAND FOR DETERMINING CORE'S FIELD ORIENTATION; INSECTICIDE DISPENSER MODIFIED TO LUBRICATE CORE DRILLING PROCESS. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  13. Compact Optoelectronic Compass

    NASA Technical Reports Server (NTRS)

    Christian, Carl

    2004-01-01

    A compact optoelectronic sensor unit measures the apparent motion of the Sun across the sky. The data acquired by this chip are processed in an external processor to estimate the relative orientation of the axis of rotation of the Earth. Hence, the combination of this chip and the external processor finds the direction of true North relative to the chip: in other words, the combination acts as a solar compass. If the compass is further combined with a clock, then the combination can be used to establish a threeaxis inertial coordinate system. If, in addition, an auxiliary sensor measures the local vertical direction, then the resulting system can determine the geographic position. This chip and the software used in the processor are based mostly on the same design and operation as those of the unit described in Micro Sun Sensor for Spacecraft (NPO-30867) elsewhere in this issue of NASA Tech Briefs. Like the unit described in that article, this unit includes a small multiple-pinhole camera comprising a micromachined mask containing a rectangular array of microscopic pinholes mounted a short distance in front of an image detector of the active-pixel sensor (APS) type (see figure). Further as in the other unit, the digitized output of the APS in this chip is processed to compute the centroids of the pinhole Sun images on the APS. Then the direction to the Sun, relative to the compass chip, is computed from the positions of the centroids (just like a sundial). In the operation of this chip, one is interested not only in the instantaneous direction to the Sun but also in the apparent path traced out by the direction to the Sun as a result of rotation of the Earth during an observation interval (during which the Sun sensor must remain stationary with respect to the Earth). The apparent path of the Sun across the sky is projected on a sphere. The axis of rotation of the Earth lies at the center of the projected circle on the sphere surface. Hence, true North (not magnetic North), relative to the chip, can be estimated from paths of the Sun images across the APS. In a test, this solar compass has been found to yield a coarse estimate of the North (within tens of degrees) in an observation time of about ten minutes. As expected, the accuracy was found to increase with observation time: after a few hours, the estimated direction of the rotation axis becomes accurate to within a small fraction of a degree.

  14. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.

    PubMed

    Niener, Christine; Denzau, Susanne; Stapput, Katrin; Ahmad, Margaret; Peichl, Leo; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-11-01

    The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp/FAD radical pair formed during photoreduction is crucial for detecting magnetic directions. PMID:23966619

  15. Compass models: Theory and physical motivations

    NASA Astrophysics Data System (ADS)

    Nussinov, Zohar; van den Brink, Jeroen

    2015-01-01

    Compass models are theories of matter in which the couplings between the internal spin (or other relevant field) components are inherently spatially (typically, direction) dependent. A simple illustrative example is furnished by the 90 compass model on a square lattice in which only couplings of the form ?ix?jx (where {?ia}a denote Pauli operators at site i ) are associated with nearest-neighbor sites i and j separated along the x axis of the lattice while ?iy?jy couplings appear for sites separated by a lattice constant along the y axis. Similar compass-type interactions can appear in diverse physical systems. For instance, compass models describe Mott insulators with orbital degrees of freedom where interactions sensitively depend on the spatial orientation of the orbitals involved as well as the low-energy effective theories of frustrated quantum magnets, and a host of other systems such as vacancy centers, and cold atomic gases. The fundamental interdependence between internal (spin, orbital, or other) and external (i.e., spatial) degrees of freedom which underlies compass models generally leads to very rich behaviors, including the frustration of (semi-)classical ordered states on nonfrustrated lattices, and to enhanced quantum effects, prompting, in certain cases, the appearance of zero-temperature quantum spin liquids. As a consequence of these frustrations, new types of symmetries and their associated degeneracies may appear. These intermediate symmetries lie midway between the extremes of global symmetries and local gauge symmetries and lead to effective dimensional reductions. In this article, compass models are reviewed in a unified manner, paying close attention to exact consequences of these symmetries and to thermal and quantum fluctuations that stabilize orders via order-out-of-disorder effects. This is complemented by a survey of numerical results. In addition to reviewing past works, a number of other models are introduced and new results established. In particular, a general link between flat bands and symmetries is detailed.

  16. Trough Compass with Case, 1916

    USGS Multimedia Gallery

    The storage case has a sliding lid. The compass is marked Troughton & Simms Ltd, London, 1916, No.9214. A trough compass is used with either a plane table or a theodolite. The needle is a long magnetized bar of steel which is pointed at both ends. Object ID: USGS-000824...

  17. Sensitivity and entanglement in the avian chemical compass.

    PubMed

    Zhang, Yiteng; Berman, Gennady P; Kais, Sabre

    2014-10-01

    The radical pair mechanism can help to explain avian orientation and navigation. Some evidence indicates that the intensity of external magnetic fields plays an important role in avian navigation. In this paper, using a two-stage model, we demonstrate that birds could reasonably detect the directions of geomagnetic fields and gradients of these fields using a yield-based chemical compass that is sensitive enough for navigation. Also, we find that the lifetime of entanglement in this proposed compass is angle dependent and long enough to allow adequate electron transfer between molecules. PMID:25375523

  18. Sensitivity and entanglement in the avian chemical compass

    NASA Astrophysics Data System (ADS)

    Zhang, Yiteng; Berman, Gennady P.; Kais, Sabre

    2014-10-01

    The radical pair mechanism can help to explain avian orientation and navigation. Some evidence indicates that the intensity of external magnetic fields plays an important role in avian navigation. In this paper, using a two-stage model, we demonstrate that birds could reasonably detect the directions of geomagnetic fields and gradients of these fields using a yield-based chemical compass that is sensitive enough for navigation. Also, we find that the lifetime of entanglement in this proposed compass is angle dependent and long enough to allow adequate electron transfer between molecules.

  19. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  20. Orientations of overdamped magnetic nanorod-gyroscopes.

    PubMed

    Dhar, Prajnaparamita; Swayne, Cheryl D; Fischer, Thomas M; Kline, Timothy; Sen, Ayusman

    2007-04-01

    Overdamped magnetic nanorod-gyroscopes driven by a rotating magnetic field undergo a series of reorientations when sedimenting on top of a surface in a viscous liquid. By changing the amplitude and the rotation frequency of the driving magnetic field, the nanorod-gyroscope either synchronizes or desynchronizes with the field and rotates either around its long or short axis. The different regimes of motion are explained theoretically by coupling the nanorod-gyroscopes motion to the creeping flow equations of the surrounding fluid. It is shown that friction anisotropy plays an important role for the orientation of the nanorod-gyroscopes. PMID:17378617

  1. Self-Compassion and Social Anxiety Disorder

    PubMed Central

    Werner, Kelly H.; Jazaieri, Hooria; Goldin, Philippe R.; Ziv, Michal; Heimberg, Richard G.; Gross, James J.

    2014-01-01

    Self-compassion refers to having an accepting and caring orientation towards oneself. Although self-compassion has been studied primarily in healthy populations, one particularly compelling clinical context in which to examine self-compassion is social anxiety disorder (SAD). SAD is characterized by high levels of negative self-criticism as well as an abiding concern about others evaluation of ones performance. In the present study, we tested the hypotheses that (1) people with SAD would demonstrate less self-compassion than healthy controls (HCs), (2) self-compassion would relate to severity of social anxiety and fear of evaluation among people with SAD, and (3) age would be negatively correlated with self-compassion for people with SAD, but not for HC. As expected, people with SAD reported less self-compassion than HCs on the Self-Compassion Scale and its subscales (Neff, 2003b). Within the SAD group, lesser self-compassion was not generally associated with severity of social anxiety, but it was associated with greater fear of both negative and positive evaluation. Age was negatively correlated with self-compassion for people with SAD, whereas age was positively correlated with self-compassion for HC. These findings suggest that self-compassion may be a particularly important target for assessment and treatment in persons with SAD. PMID:21895450

  2. Coupled solar-magnetic orientation during leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) long-distance migration

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.

    2010-12-01

    Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional precision of these humpback whale track segments is far better than the ±25°-40° precision of the avian magnetic compass. The positional and directional orientation data presented suggests signal transduction provides spatial information to migrating animals with better than 1° precision.

  3. A Compass and Clinometer Modified for Structural Analysis

    ERIC Educational Resources Information Center

    Amenta, Roddy V.

    1977-01-01

    Describes the modification of the SUUNTO compass and clinometer precision sighting instruments to make a compact geologic compass useful for measuring orientations of S-surfaces and rake angles of lineations. (SL)

  4. Conceptualizing and experiencing compassion

    PubMed Central

    Condon, Paul; Barrett, Lisa Feldman

    2014-01-01

    Does compassion feel pleasant or unpleasant? People tend to categorize compassion as a pleasant or positive emotion, but laboratory compassion inductions, which present another’s suffering, may elicit unpleasant feelings. Across two studies, we examined whether prototypical conceptualizations of compassion (as pleasant) differ from experiences of compassion (as unpleasant). Following laboratory-based neutral or compassion inductions, participants made abstract judgments about compassion relative to various emotion-related adjectives, thereby providing a prototypical conceptualization of compassion. Participants also rated their own affective states, thereby indicating experiences of compassion. Conceptualizations of compassion were pleasant across neutral and compassion inductions. Following exposure to others’ suffering, however, participants felt increased levels of compassion and unpleasant affect, but not pleasant affect. Following neutral inductions, participants reported more pleasant than unpleasant affect, with moderate levels of compassion. Thus, prototypical conceptualizations of compassion are pleasant, but experiences of compassion can feel pleasant or unpleasant. The implications for emotion theory in general are discussed. PMID:23914766

  5. A PURPOSE ORIENTED MAGNETIC SEPARATOR: SKIMMER

    SciTech Connect

    Salih Ersayin

    2005-08-09

    A magnetic separator was designed to selectively separate fine-liberated magnetite. The conceptual design was simulated using CFD techniques. A separator tank was fabricated and a magnetic drum was used to capture magnetic particles. The initial tank design was modified to eliminate application oriented problems. The new separator was able to produce a fine product as a concentrate at relatively high feed rates. A plant simulation showed that such a device could lower circulating loads around ball mills by 16%, thereby creating room for a 5-8% increase in throughput at the same energy level. However, it was concluded that further improvements in terms of both size and mineral selectivity are needed to have a marketable product.

  6. The sun compass revisited

    PubMed Central

    Guilford, Tim; Taylor, Graham K.

    2014-01-01

    Many animals, and birds in particular, are thought to use directional information from the sun in the form of a time-compensated sun compass, with predictably deviated orientation under clock shift being regarded as the litmus test of this. We suggest that this paradigm obscures a number of other ways in which solar-derived information could be important in animal orientation. We distinguish between the known use of the sun's azimuth to provide absolute geographical direction (compass mechanism) and its possible use to detect changes in heading (heading indicator mechanism). Just as in an aircraft, these two kinds of information may be provided by separate mechanisms and used for different functions, for example for navigation versus steering. We also argue that although a solar compass must be time-referenced to account for the sun's apparent diurnal movement, this need not entail full time compensation. This is because animals might also use time-dependent solar information in an associatively acquired, and hence time-limited, way. Furthermore, we show that a solar heading indicator, when used on a sufficiently short timescale, need not require time compensation at all. Finally, we suggest that solar-derived cues, such as shadows, could also be involved in navigation in ways that depend explicitly upon position, and are therefore not strictly compass-related. This could include giving directionality to landmarks, or acting as time-dependent landmarks involved in place recognition. We conclude that clock shift experiments alone are neither necessary nor sufficient to identify the occurrence of all conceivable uses of solar information in animal orientation, so that a predictable response to clock shift should not be regarded as an acid test of the use of solar information in navigation. PMID:25389374

  7. Compassion: An Evolutionary Analysis and Empirical Review

    PubMed Central

    Goetz, Jennifer L.; Keltner, Dacher; Simon-Thomas, Emiliana

    2010-01-01

    What is compassion? And how did it evolve? In this review, we integrate three evolutionary arguments that converge on the hypothesis that compassion evolved as a distinct affective experience whose primary function is to facilitate cooperation and protection of the weak and those who suffer. Our empirical review reveals compassion to have distinct appraisal processes attuned to undeserved suffering, distinct signaling behavior related to caregiving patterns of touch, posture, and vocalization, and a phenomenological experience and physiological response that orients the individual to social approach. This response profile of compassion differs from those of distress, sadness, and love, suggesting that compassion is indeed a distinct emotion. We conclude by considering how compassion shapes moral judgment and action, how it varies across different cultures, and how it may engage specific patterns of neural activation, as well as emerging directions of research. PMID:20438142

  8. The orientation and navigation of juvenile alligators: evidence of magnetic sensitivity

    USGS Publications Warehouse

    Rodda, Gordon H.

    1984-01-01

    Displaced juvenile alligators, Alligator mississipiensis, were released on land in a 9 m diameter dodecagonal arena to test their ability to orient in the absence of terrestrial landmarks. Navigational ability seemed to improve with age. When displaced along a fairly direct route yearlings (age 714 months) compensated for their displacement, moving in the direction from the arena to their home sites. When displaced by a circuitous route, yearlings failed to compensate for their displacement, exhibiting instead simple compass orientation in a direction that would have returned them to water had they been released on land near the site where they were captured. The older juveniles were oriented in a homeward direction under all displacement and test conditions. The latter animals may have been using geomagnetic map information to select their homeward directions as the errors in their homeward bearings correlated with small deviations in the geomagnetic field's dip angle at the time of the test (1980r s=?0.6047,P=0.0131, all testsr s= ?0.4652,P=0.0084). This effect appeared to depend on a very short-term assessment of geomagnetic conditions, as values measured 20 min before or 30 min after the tests began did not correlate with the directions the animals moved. The older juveniles appeared to use magnetically quiet hours on the night of their capture as the baseline from which to measure the geomagnetic deviations that occurred at the time of the arena test. The magnitude of the magnetic effect in the older animals suggests that the geomagnetic information may have been used to perform a map step, as small fluctuations in dip angle correlated with much larger deviations in homeward bearings. In addition, the compass-oriented yearlings and the seemingly route-based behavior of the homeward-oriented yearlings did not appear to be influenced by geomagnetic conditions. These findings have many parallels in results obtained from bird orientation studies, providing evidence that navigation may share a common basis in different vertebrate groups.

  9. Remotely readable fiber optic compass

    DOEpatents

    Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM); Garrett, Steven L. (Pebble Beach, CA)

    1986-01-01

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  10. Remotely readable fiber optic compass

    DOEpatents

    Migliori, A.; Swift, G.W.; Garrett, S.L.

    1985-04-30

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  11. Self-Compassion among College Counseling Center Clients: An Examination of Clinical Norms and Group Differences

    ERIC Educational Resources Information Center

    Lockard, Allison J.; Hayes, Jeffrey A.; Neff, Kristin; Locke, Benjamin D.

    2014-01-01

    There has been growing interest in the mental health benefits of self-compassion. This study was designed to establish norms on the Self-Compassion Scale-Short Form, a popular measure of self-compassion for individuals seeking counseling, and to examine group differences in self-compassion based on gender, race/ethnicity, sexual orientation,

  12. 46 CFR 169.709 - Compass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compass. 169.709 Section 169.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment 169.709 Compass. (a) Each vessel must be fitted with a magnetic...

  13. 46 CFR 169.709 - Compass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compass. 169.709 Section 169.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment 169.709 Compass. (a) Each vessel must be fitted with a magnetic...

  14. 46 CFR 169.709 - Compass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compass. 169.709 Section 169.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment 169.709 Compass. (a) Each vessel must be fitted with a magnetic...

  15. An fMRI study of caring vs self-focus during induced compassion and pride

    PubMed Central

    Godzik, Jakub; Castle, Elizabeth; Antonenko, Olga; Ponz, Aurelie; Kogan, Aleksander; Keltner, Dacher J.

    2012-01-01

    This study examined neural activation during the experience of compassion, an emotion that orients people toward vulnerable others and prompts caregiving, and pride, a self-focused emotion that signals individual strength and heightened status. Functional magnetic resonance images (fMRI) were acquired as participants viewed 55?s continuous sequences of slides to induce either compassion or pride, presented in alternation with sequences of neutral slides. Emotion self-report data were collected after each slide condition within the fMRI scanner. Compassion induction was associated with activation in the midbrain periaqueductal gray (PAG), a region that is activated during pain and the perception of others pain, and that has been implicated in parental nurturance behaviors. Pride induction engaged the posterior medial cortex, a region that has been associated with self-referent processing. Self-reports of compassion experience were correlated with increased activation in a region near the PAG, and in the right inferior frontal gyrus (IFG). Self-reports of pride experience, in contrast, were correlated with reduced activation in the IFG and the anterior insula. These results provide preliminary evidence towards understanding the neural correlates of important interpersonal dimensions of compassion and pride. Caring (compassion) and self-focus (pride) may represent core appraisals that differentiate the response profiles of many emotions. PMID:21896494

  16. Detection of alterations in human sperm using magnetic orientation techniques

    NASA Astrophysics Data System (ADS)

    Sakhnini, Lama; Dairi, Maheen; Manaa, Hacene

    2007-09-01

    In this study we report on magnetic orientation of human sperms. Samples were taken from 17 donors. Normal human sperms became oriented with their long axis perpendicular to the magnetic field ( 1 Tesla maximum). Total orientation was achieved with magnetic field at about one Tesla, while for abnormal sperms the magnetic behavior was different. The dependence of the measured degree of orientation on the intensity of the magnetic field was in good agreement with the theoretical equation for the magnetic orientation of diamagnetic substances. As a result for a numerical analysis based on the equation, the anisotropic diamagnetic susceptibility of normal sperm was found to be ? ?= 810 -20 J/T2. The degree of orientation was influenced by the alterations in the shape of the head, body or the tail. It has been suggested that the DNA in the sperm head retain the strong magnetic anisotropy to counter balance the magnetic anisotropy retained by flagellum microtubules. Recent studies demonstrated a well-defined nuclear architecture in human sperm nucleus, where the head morphology has significant correlation with sperm chromatin structure assay SCSA. Then as the methods to evaluate SCSA can be difficult and expensive our simple magnetic orientation technique can be an alternative to diagnose alteration in DNA.

  17. Aircraft compass characteristics

    NASA Technical Reports Server (NTRS)

    Peterson, John B; Smith, Clyde W

    1937-01-01

    A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing.

  18. Do leaf-cutter ants orient their path-integrated, home vector with a magnetic compass?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-cutter ants Atta colombica forage over 250 m in structurally-complex, Neotropical rainforests that occlude sun or polarized light cues. Night foraging makes the use of celestial cues and landmarks all the more difficult. Typically leaf-cutter ants follow architecturally-modified, pheromonally-m...

  19. Environment-induced anisotropy and sensitivity of the radical pair mechanism in the avian compass

    NASA Astrophysics Data System (ADS)

    Carrillo, Alejandro; Cornelio, Marcio F.; de Oliveira, Marcos C.

    2015-07-01

    Several experiments over the years have shown that the earth's magnetic field is essential for orientation in birds' migration. The most promising explanation for this orientation is the photo-stimulated radical pair (RP) mechanism. In order to define a reference frame for the orientation task radicals must have an intrinsic anisotropy. We show that this kind of anisotropy and consequently the entanglement in the model are not necessary for the proper functioning of the compass. Classically correlated initial conditions for the RP, subjected to a fast decoherence process, are able to provide the anisotropy required. Even a dephasing environment can provide the necessary frame for the compass to work and also implies fast decay of any quantum correlation in the system without damaging the orientation ability. This fact significantly expands the range of applicability of the RP mechanism providing more elements for experimental search.

  20. Environment-induced anisotropy and sensitivity of the radical pair mechanism in the avian compass.

    PubMed

    Carrillo, Alejandro; Cornelio, Marcio F; de Oliveira, Marcos C

    2015-07-01

    Several experiments over the years have shown that the earth's magnetic field is essential for orientation in birds' migration. The most promising explanation for this orientation is the photo-stimulated radical pair (RP) mechanism. In order to define a reference frame for the orientation task radicals must have an intrinsic anisotropy. We show that this kind of anisotropy and consequently the entanglement in the model are not necessary for the proper functioning of the compass. Classically correlated initial conditions for the RP, subjected to a fast decoherence process, are able to provide the anisotropy required. Even a dephasing environment can provide the necessary frame for the compass to work and also implies fast decay of any quantum correlation in the system without damaging the orientation ability. This fact significantly expands the range of applicability of the RP mechanism providing more elements for experimental search. PMID:26274215

  1. Chemical compass model for avian magnetoreception as a quantum coherent device.

    PubMed

    Cai, Jianming; Plenio, Martin B

    2013-12-01

    It is known that more than 50 species use the Earth's magnetic field for orientation and navigation. Intensive studies, particularly behavior experiments with birds, provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting global quantum coherence rather than any subsystem coherence. Within the framework of quantum metrology, we quantify global quantum coherence and correlate it with the function of chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm a direct connection between quantum coherence and the function of a chemical compass. PMID:24476240

  2. Chemical Compass Model for Avian Magnetoreception as a Quantum Coherent Device

    NASA Astrophysics Data System (ADS)

    Cai, Jianming; Plenio, Martin B.

    2013-12-01

    It is known that more than 50 species use the Earths magnetic field for orientation and navigation. Intensive studies, particularly behavior experiments with birds, provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting global quantum coherence rather than any subsystem coherence. Within the framework of quantum metrology, we quantify global quantum coherence and correlate it with the function of chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm a direct connection between quantum coherence and the function of a chemical compass.

  3. Deflection of the Interstellar Neutral Hydrogen Flow Across the Heliospheric Interface: an Interstellar Magnetic Compass

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Eric, Q.; Jean-Loup, B.; Dimitra, K.; Risto, P.

    2005-05-01

    Analyses of SOHO-SWAN observations show that the interstellar neutral H flow direction differs by about 4 degrees from the neutral He flow direction recently derived with an unprecedented accuracy using combined data sets (Mobius et al, 2004). The most likely explanation is a distortion of the heliospheric interface under the action of an inclined interstellar magnetic field, with imprints of the distorsion on the neutral H flow due to charge-transfer reactions between H atoms and ions. The direction of the ambient interstellar magnetic field and the heliospheric shape can be derived from the observed deviation. Implications for Voyager trajectories are discussed.

  4. From Compass to Hard Drive--Integrated Activities for Studying Magnets

    ERIC Educational Resources Information Center

    Dean, J.; Allwood, D. A.

    2014-01-01

    We describe a range of practical activities that allows students to investigate the properties and applications of magnets. The activities can be used in isolation or used together to build a rounded understanding of the subject area. The activities include simple demonstrations using common or inexpensive equipment, hands-on experiments for small…

  5. From Compass to Hard Drive--Integrated Activities for Studying Magnets

    ERIC Educational Resources Information Center

    Dean, J.; Allwood, D. A.

    2014-01-01

    We describe a range of practical activities that allows students to investigate the properties and applications of magnets. The activities can be used in isolation or used together to build a rounded understanding of the subject area. The activities include simple demonstrations using common or inexpensive equipment, hands-on experiments for small

  6. Pion Polarizability at CERN COMPASS

    NASA Astrophysics Data System (ADS)

    Moinester, Murray; Cern Compass Collaboration

    2013-10-01

    The electric ?? and magnetic ?? charged pion Compton polarizabilities provide stringent tests of Chiral Perturbation Theory. The combination (??-??) was measured at CERN COMPASS via radiative pion Primakoff scattering (Bremsstrahlung of 190 GeV/c ?-s) in the nuclear Coulomb field: ? + Z --> ? + ? + Z. This reaction is identified experimentally by virtue of the very small momentum transfer to the target nucleus; and is equivalent to ? + ? --> ? + ? Compton scattering for laboratory ?'s of order 1 GeV/c incident on a target pion at rest. COMPASS data analysis (assuming ?? +?? = 0 based on theory) gives a preliminary value of ?? = -?? = (1 . 9 +/- 0 .7stat +/- 0 .8syst) 10-4 fm3 .

  7. From compass to hard driveintegrated activities for studying magnets

    NASA Astrophysics Data System (ADS)

    Dean, J.; Allwood, D. A.

    2014-11-01

    We describe a range of practical activities that allows students to investigate the properties and applications of magnets. The activities can be used in isolation or used together to build a rounded understanding of the subject area. The activities include simple demonstrations using common or inexpensive equipment, hands-on experiments for small groups, and interactive problem solving suitable for whole classes. These can be tailored for students in either primary or secondary education.

  8. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect

    Roy, Debangsu Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  9. Can compassion be taught?

    PubMed Central

    Pence, G E

    1983-01-01

    Socrates (in the Meno) denied that virtues like courage could be taught, whereas Protagoras defended this claim. Compassion is discussed below in this context; it is distinguished from related, but different, moral qualities, and the role of imagination is emphasised. 'Sympathy's and role-modelling views of compassion's acquisition are criticised. Compassion can indeed be taught, but neither by the example of a few, isolated physicians nor by creation of Departments of Compassion. In replying to one standard objection to teaching compassion, it is emphasised that scientific competence and compassion aren't mutually exclusive. PMID:6668583

  10. Can compassion be taught?

    PubMed

    Pence, G E

    1983-12-01

    Socrates (in the Meno) denied that virtues like courage could be taught, whereas Protagoras defended this claim. Compassion is discussed below in this context; it is distinguished from related, but different, moral qualities, and the role of imagination is emphasised. 'Sympathy's and role-modelling views of compassion's acquisition are criticised. Compassion can indeed be taught, but neither by the example of a few, isolated physicians nor by creation of Departments of Compassion. In replying to one standard objection to teaching compassion, it is emphasised that scientific competence and compassion aren't mutually exclusive. PMID:6668583

  11. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schfer, H; Mdler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  12. Orientation of lipid tubules by a magnetic field.

    PubMed Central

    Rosenblatt, C; Yager, P; Schoen, P E

    1987-01-01

    Lipid tubules, which are straight hollow cylinders consisting of lipid bilayers, are shown to orient in strong magnetic fields. Birefringence measurements were made of dilute samples of tubules of 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC23PC) in magnetic fields of up to 4 T. The tubules were found to orient with their long axes parallel to the field direction, with saturated orientation [P2 (cos theta] approximately greater than 0.95) found at approximately 2 T. From known distributions of lengths and the number of bilayers in the walls, a value delta chi = (-7 +/- 1) X 10(-9) erg cm-3 G-2 was calculated for the tubules, which compares well with some previously reported values for phosphatidylcholines. Magnetic alignment will permit more sophisticated structural studies of monomeric and polymeric tubules, and provide a method of orienting macromolecules in the tubule walls or interior. PMID:3663833

  13. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  14. Conditioned discrimination of magnetic inclination in a spatial-orientation arena task by homing pigeons (Columba livia).

    PubMed

    Mora, Cordula V; Acerbi, Merissa L; Bingman, Verner P

    2014-12-01

    It has been well established that homing pigeons are able to use the Earth's magnetic field to obtain directional information when returning to their loft and that their magnetic compass is based, at least in part, on the perception of magnetic inclination. Magnetic inclination has also been hypothesized in pigeons and other long-distance navigators, such as sea turtles, to play a role providing positional information as part of a map. Here we developed a behavioral paradigm which allows us to condition homing pigeons to discriminate magnetic inclination cues in a spatial-orientation arena task. Six homing pigeons were required to discriminate in a circular arena between feeders located either in a zone with a close to 0 deg inclination cue or in a zone with a rapidly changing inclination cue (-3 deg to +85 deg when approaching the feeder and +85 deg to -3 deg when moving away from the feeder) to obtain a food reward. The pigeons consistently performed this task above chance level. Control experiments, during which the coils were turned off or the current was running anti-parallel through the double-wound coil system, confirmed that no alternative cues were used by the birds in the discrimination task. The results show that homing pigeons can be conditioned to discriminate differences in magnetic field inclination, enabling investigation into the peripheral and central neural processing of geomagnetic inclination under controlled laboratory conditions. PMID:25278470

  15. Are migrating raptors guided by a geomagnetic compass?

    USGS Publications Warehouse

    Thorup, Kasper; Fuller, Mark R.; Alerstam, T.; Hake, M.; Kjellen, N.; Standberg, R.

    2006-01-01

    We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.

  16. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    SciTech Connect

    Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  17. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2 static peak-to-peak error and <5 dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  18. Accurate orientation estimation using AHRS under conditions of magnetic distortion.

    PubMed

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2 static peak-to-peak error and <5 dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  19. Magnetorheological effect in the magnetic field oriented along the vorticity

    SciTech Connect

    Kuzhir, P. Magnet, C.; Fezai, H.; Meunier, A.; Bossis, G.; Rodrguez-Arco, L.; Lpez-Lpez, M. T.; Zubarev, A.

    2014-11-01

    In this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR response in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency ?{sub Y}??{sup 2.2}, revealed in experiments. The practical interest of this study lies in the development of MR smart devices with the magnetic field nonperpendicular to the channel walls.

  20. MD Simulation of Particle Orientation in Magnetic Inks

    NASA Astrophysics Data System (ADS)

    Visscher; Gnal

    1997-03-01

    We have done molecular-dynamics type simulations of particle re-orientation in a magnetic colloid, by a magnetic field during tape and disk manufacture. The model takes into account switching (in a Stoner- Wohlfarth model) as well as particle translation and rotation in response to magnetic, steric, Brownian, and hydrodynamic drag forces and torques. Magnetic interactions are fully included; hysteresis loops with and without magnetic interaction will be displayed, with corresponding ? M curves. Images of the network structure at various points of the hysteresis loop will be shown. Further information is available at http:// www.mint.ua.edu/colloids/march.html.

  1. Micromotors with built-in compasses.

    PubMed

    Zhao, Guanjia; Sanchez, Samuel; Schmidt, Oliver G; Pumera, Martin

    2012-10-18

    We demonstrate here that iron containing rolled-up microtubular engines can be magnetized and act as compass needles - they sense the direction of an external magnetic field from afar and align the directionalities of their movements according to the external field, in a similar fashion to magnetotactic bacteria. PMID:22955117

  2. FEA Simulations of Magnets with Grain Oriented Steel

    SciTech Connect

    Witte H.

    2012-08-06

    One of the potential successors of the Large Hadron Collider is a Muon Col- lider. Muons are short-lived particles, which therefore require fast acceleration. One potential avenue is a very fast cycling cyclotron, where the bending is sup- plied by a combination of fixed-field superconducting magnets and fast ramping normal conducting iron-cored coils. Due to the high ramping rate (around 1 kHz) eddy current and hysteresis losses are a concern. One way to overcome these is by using grain-oriented soft-iron, which promises superior magnetic properties in the direction of the grains. This note summarizes efforts to include the anisotropic material properties of grain-oriented steel in finite element analysis to predict the behaviour of the dipole magnets for this accelerator. It was found that including anisotropic material properties has a detrimental effect on model convergence. During this study it was not possible to include grain oriented steel with an accuracy necessary to study the field quality of a dipole magnet.

  3. The Enterprise Compass

    ERIC Educational Resources Information Center

    McCardle, Ken

    2005-01-01

    As a CIO leading an IT department through change and reorganization, the author developed the Enterprise Compass--a four-point guide to reaching goals and focusing achievement. The Enterprise Compass directs staff to look forward to future accomplishment, back for performance assessments, across campus for better understanding of practical working

  4. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    PubMed

    Alert, Bianca; Michalik, Andreas; Helduser, Sascha; Mouritsen, Henrik; Gntrkn, Onur

    2015-01-01

    Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy. PMID:25807499

  5. Perceptual Strategies of Pigeons to Detect a Rotational CentreA Hint for Star Compass Learning?

    PubMed Central

    Helduser, Sascha; Mouritsen, Henrik; Gntrkn, Onur

    2015-01-01

    Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy. PMID:25807499

  6. Magnetic anisotropy and organization of nanoparticles in heads and antennae of neotropical leaf-cutter ants, Atta colombica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oriented magnetic nanoparticles have been suggested as a good candidate for a magnetic sensor in ants. Behavioral evidence for a magnetic compass in Neotropical leafcutter ants, Atta colombica (Formicidae: Attini), motivated a study of the arrangement of magnetic particles in the ants’ four major bo...

  7. Dynamical orientation of carbon nanotubes by pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Takeyama, S.; Nakamura, S.; Uchida, K.

    2006-11-01

    We have studied the dynamical orientation of single-walled carbon nanotubes (SWNT) dissolved in D2Oinduced by pulsed magnetic fields. A wave-form of the field was varied from micro-to mili-sec in time, and the field strength was varied from several Tesla up to 100 T. Optical transmission through the liquid sample was detected in a pulsed magnet at room temperature. The linear polarization degree of the optical transmission was used as a measure for the average alignment of the SWNTs in the liquid. The application of a 40 T pulse field aligned the tubes by 12 degrees on average. A harmonic oscillator model with simple geostatics was used for a simulation. Our model well explains all the investigated cases in which a magnetic-field-dependent magnetic moment of the system is taken into account. Our experimental results agreed qualitatively with those of Ajiki and Ando. The term induced by the flux change (dB/dt) became important in low magnetic fields and during short pulses, which require a dynamical part of the magnetic susceptibility.

  8. Pigeon orientation: effects of the application of magnets under overcast skies

    NASA Astrophysics Data System (ADS)

    Ioalè, P.

    To verify the existence of a magnetic compass in birds, researchers have often released homing pigeons under overcast skies that are equipped with bar magnets on various parts of their body. In particular, Keeton was successful in finding disorientation in overcast conditions in a first series of tests, but not in a second series. The experiments reported here attempt to explain this contradiction on the basis of findings obtained by releasing pigeons equipped in a way similar to that reported in Keeton's tests and pigeons equipped in a way similar to that reported by other authors.

  9. Compass Coordinate System

    NASA Astrophysics Data System (ADS)

    Wei, Ziqing; Liu, Guangming; Wu, Fumei

    2013-04-01

    This presentation addresses the definition and realization of the Compass Coordinate System, which is utilized by the BeiDou/Compass satellite navigation system. The definition follows the criteria described by the IERS Technical Note No.21. The reference ellipsoid used is the GRS80 ellipsoid except that the IERS recommended value of 3986004.418´108m3s-2 is adopted for the Earth's gravitational constant. The realization has been done in such a way that the system is closely aligned to the ITRF 2008. The relationship between the Compass Coordinate System and the China Geodetic Coordinate System 2000 (CGCS 2000) is also outlined in the presentation.

  10. Testing avian compass calibration: comparative experiments with diurnal and nocturnal passerine migrants in South Sweden

    PubMed Central

    Åkesson, Susanne; Odin, Catharina; Hegedüs, Ramón; Ilieva, Mihaela; Sjöholm, Christoffer; Farkas, Alexandra; Horváth, Gábor

    2015-01-01

    ABSTRACT Cue-conflict experiments were performed to study the compass calibration of one predominantly diurnal migrant, the dunnock (Prunella modularis), and two species of nocturnal passerine migrants, the sedge warbler (Acrocephalus schoenobaenus), and the European robin (Erithacus rubecula) during autumn migration in South Sweden. The birds' orientation was recorded in circular cages under natural clear and simulated overcast skies in the local geomagnetic field, and thereafter the birds were exposed to a cue-conflict situation where the horizontal component of the magnetic field (mN) was shifted +90° or −90° at two occasions, one session starting shortly after sunrise and the other ca. 90 min before sunset and lasting for 60 min. The patterns of the degree and angle of skylight polarization were measured by full-sky imaging polarimetry during the cue-conflict exposures and orientation tests. All species showed orientation both under clear and overcast skies that correlated with the expected migratory orientation towards southwest to south. For the European robin the orientation under clear skies was significantly different from that recorded under overcast skies, showing a tendency that the orientation under clear skies was influenced by the position of the Sun at sunset resulting in more westerly orientation. This sun attraction was not observed for the sedge warbler and the dunnock, both orientating south. All species showed similar orientation after the cue-conflict as compared to the preferred orientation recorded before the cue-conflict, with the clearest results in the European robin and thus, the results did not support recalibration of the celestial nor the magnetic compasses as a result of the cue-conflict exposure. PMID:25505150

  11. Testing avian compass calibration: comparative experiments with diurnal and nocturnal passerine migrants in South Sweden.

    PubMed

    kesson, Susanne; Odin, Catharina; Hegeds, Ramn; Ilieva, Mihaela; Sjholm, Christoffer; Farkas, Alexandra; Horvth, Gbor

    2014-01-01

    Cue-conflict experiments were performed to study the compass calibration of one predominantly diurnal migrant, the dunnock (Prunella modularis), and two species of nocturnal passerine migrants, the sedge warbler (Acrocephalus schoenobaenus), and the European robin (Erithacus rubecula) during autumn migration in South Sweden. The birds' orientation was recorded in circular cages under natural clear and simulated overcast skies in the local geomagnetic field, and thereafter the birds were exposed to a cue-conflict situation where the horizontal component of the magnetic field (mN) was shifted +90 or -90 at two occasions, one session starting shortly after sunrise and the other ca. 90?min before sunset and lasting for 60?min. The patterns of the degree and angle of skylight polarization were measured by full-sky imaging polarimetry during the cue-conflict exposures and orientation tests. All species showed orientation both under clear and overcast skies that correlated with the expected migratory orientation towards southwest to south. For the European robin the orientation under clear skies was significantly different from that recorded under overcast skies, showing a tendency that the orientation under clear skies was influenced by the position of the Sun at sunset resulting in more westerly orientation. This sun attraction was not observed for the sedge warbler and the dunnock, both orientating south. All species showed similar orientation after the cue-conflict as compared to the preferred orientation recorded before the cue-conflict, with the clearest results in the European robin and thus, the results did not support recalibration of the celestial nor the magnetic compasses as a result of the cue-conflict exposure. PMID:25505150

  12. Theory of fluorescence polarization in magnetically oriented photosynthetic systems.

    PubMed Central

    Knox, R S; Davidovich, M A

    1978-01-01

    Many cells and cell fragments are known to assume specific alignments with respect to an applied magnetic field. One indicator of this alignment is a difference between the intensities of fluorescence observed in polarizations parallel and perpendicular to the magnetic filed. We calculate these two intensities using a model that assumes axially symmetric membranes and that covers a wide variety of shapes from flat disk to right cylinder. The fluorescence is assumed to originate at chromophores randomly exicted but nonrandomly oriented in the membranes. The membrane alignment is assumed to be due to the net torque on a nonrandom distribution of diamagnetically anisotropic molecules. The predicted results are consistent with most magnetoorientation data from green cells, but we are able to show that Chlorella data are not consistent with the hypothesis that the membranes have, and maintain, a cuplike configuration. Images FIGURE 4 FIGURE 5 PMID:737283

  13. Relativistic filamentation instability in an arbitrarily oriented magnetic field

    NASA Astrophysics Data System (ADS)

    Prez-lvaro, E.; Bret, A.

    2013-07-01

    Although high-energy cosmic rays (HECRs) and gamma-ray bursts (GRBs) are the most energetic phenomena occurring in the universe, their origin are important enigmas in the field of astrophysics. Today, the most studied scenario that attempts to explain them is known as the Fireball Model. This theory assumes that the particles are accelerated by a shock developing in the interior of a relativistic plasma from a supernova (SN). The filamentation (sometimes called "Weibel") instability is believed to mediate collisionless shock formation from the collision of two plasma shells. It has been known for long that a flow aligned magnetic field can completely cancel this instability. In this work, we analyze the robustness of the filamentation instability which develops inside a plasma immersed in an arbitrarily oriented magnetic field.

  14. Anisotropy study of grain oriented steels with Magnetic Barkhausen Noise

    NASA Astrophysics Data System (ADS)

    de Campos, M. F.; Campos, M. A.; Landgraf, F. J. G.; Padovese, L. R.

    2011-07-01

    Grain oriented electrical steels present strong anisotropy, due to a {110} <001> texture (Goss), with [100] direction parallel to rolling direction (RD) and [110] direction parallel to transverse direction (TD). MBN (Magnetic Barkhausen Noise) were employed to measure magnetic properties in several angles towards RD using a 15° step. For 90° to the rolling direction (i.e., TD), the MBN signal changes, decreasing the MBNrms. It is found a connection between initial permeability and MBNrms. The lower initial permeability for the TD is related to a larger contribution of irreversible rotation in the hysteresis. The MBN procedure is non-destructive and provides rapid understanding of the anisotropy of the material, without the use of laborious methods like Epstein frame or toroidal coils.

  15. The Magnetic Behaviour of the :111:-ORIENTED Iron Whisker.

    NASA Astrophysics Data System (ADS)

    Hanham, Scott Douglas

    The magnetic behaviour of {111}-oriented iron whiskers is studied as a function of magnetic field applied along the whisker length and as a function of temperature. Based on ac susceptibility measurements and observed Bitter patterns in low applied fields, a domain structure is proposed for this orientation of whisker. This is compared with observations made of {100} and the rare {110}-oriented iron whiskers. The technique of growing iron whiskers is described. Theories of whisker growth are discussed. The role of carbon in iron whisker growth and its detection in small concentrations is considered. The approach to saturation in the {111} direction for an iron whisker with its long axis in that direction is studied by ac susceptibility measurements. The data at room temperature is analyzed to give the magnetization, intrinsic susceptibility, and demagnetizing field at each of 15 cross-sections along the length for applied fields from 10 to (TURN) 1000 oe. It is concluded that mean field anisotropy theory does not account for the results. The approach to saturation in the {111} direction may represent the behaviour of the 3-state Potts model. The magnetic response of a {111}-oriented iron whisker is measured up to and through the Curie temperature. The anisotropy constant is found from the response in the range of fields between that necessary to bring the magnetization in the central cross-section of the whisker to M(,s)/SQRT.(3(' )and that to reach M(,s). We extract an anisotropy field H(,k) proportional to K(,1)/M(,s) and analyze its dependence on M(,s) and on temperature. The results indicate that K(,1)/M(,s) (TURN) M(,s)('n) with n = 3.11 (+OR-) 0.05 for the temperature range 0.0005 < (T(,c) - T)/T(,c) < 0.002 with n increasing at lower temperatures. To our knowledge this is the first observation of the power law behaviour of the anisotropy in a cubic ferromagnet just below the Curie temperature. At lower temperatures the analysis is complicated by the field dependence of the demagnetizing field. The anisotropy field H(,k) is extracted from the critical applied field which just saturates the centre of a {111} whisker at each temperature. This is accomplished by calculating the demagnetizing field using a method of modelling the sources of the demagnetizing field on the surface of a cylinder. The sensitivity of the method permits extraction of K(,1) values over five orders of magnitude. The results are compared with those of others from torque curve and FMR measurements. For the purposes of the above analysis, the temperature dependence of the spontaneous magnetization M(,s) is measured from room temperature to the Curie temperature. This is derived from the departure field which just saturates the centre of a {100} iron whisker. Minor corrections for the anisotropy are made. The results agree well with the measurements of others. A fit function to the data is given which can be used as the calibration curve of an iron whisker magnetic thermometer.

  16. Electromagnetic imaging with an arbitrarily oriented magnetic dipole

    NASA Astrophysics Data System (ADS)

    Guillemoteau, Julien; Sailhac, Pascal; Behaegel, Mickael

    2013-04-01

    We present the theoretical background for the geophysical EM analysis with arbitrarily oriented magnetic dipoles. The first application of such a development is that we would now be able to correct the data when they are not acquired in accordance to the actual interpretation methods. In order to illustrate this case, we study the case of airborne TEM measurements over an inclined ground. This context can be encountered if the measurements are made in mountain area. We show in particular that transient central loop helicopter borne magnetic data should be corrected by a factor proportional to the angle of the slope under the system. In addition, we studied the sensitivity function of a grounded multi-angle frequency domain system. Our development leads to a general Jacobian kernel that could be used for all the induction number and all the position/orientation of both transmitter and receiver in the air layer. Indeed, if one could design a system controlling the angles of Tx and Rx, the present development would allow to interpret such a data set and enhance the ground analysis, especially in order to constrain the 3D anisotropic inverse problem.

  17. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  18. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  19. Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.

    2010-01-01

    Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.

  20. Influence of magnetic field on the orientation of anisotropic magnetic particles at liquid interfaces.

    PubMed

    Newton, Bethany J; Brakke, Kenneth A; Buzza, D Martin A

    2014-12-21

    We study theoretically the influence of an external magnetic field on the orientation of an ellipsoidal magnetic particle adsorbed at a liquid interface. Using the finite element program Surface Evolver, we calculate the equilibrium meniscus shape around the ellipsoidal particle and its equilibrium tilt angle with respect to the undeformed interface ?t when a magnetic field B is applied perpendicular to the interface. We find that as we increase field strength, ?t increases and at a critical magnetic field Bc1 and tilt angle ?c1, the particle undergoes a discontinuous transition to the 'perpendicular' orientation (?t = 90). Our results agree qualitatively with the simplified theory of Bresme and Faraudo [F. Bresme and J. Faraudo, J. Phys.: Condens. Matter, 2007, 19, 375110] which assumes that the liquid interface is flat, while they agree quantitatively with recent lattice-Boltzmann simulations of Davies et al. [G. Davies et al., Soft Matter, 2014, 10, 6742] which account for the deformation of the liquid meniscus. We also show for the first time that upon reducing the external magnetic field, at a critical magnetic field Bc2 < Bc1, the particle undergoes a second discontinuous transition from the perpendicular orientation to a finite tilt angle ?c2 < ?c1. In other words, for micron-sized particles where the thermal energy kBT is negligible compared to the interfacial energy, the tilt angle vs. magnetic field curve exhibits hysteresis behaviour. Due to the higher degree of accuracy of the Surface Evolver method, we are able to analyse the behaviour of the particles near these orientational transitions accurately and study how the critical quantities Bc1, Bc2, ?c1 and ?c2 vary with particle aspect ratio and contact angle. PMID:25360885

  1. Smart Compass-Clinometer: A smartphone application for easy and rapid geological site investigation

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-dong

    2013-12-01

    This study presents a smartphone application for geological site investigation. The application allows a smartphone to replace a diverse array of instrumentation and processes required for data measurement, visualization, and analysis. This application, named Smart Compass-Clinometer, consists of a digital compass-clinometer module, a data visualization module, a data analysis module, and a data management module. The compass-clinometer module measures the orientation of geological structures using data collected from built-in sensors. It converts the sensor data to orientation information using an algorithm developed specifically for this purpose. The visualization module plots the measured data on stereographic projections using three different methods, and can be used concurrently with the compass-clinometer module. The analysis module conducts instability analyses on the measured data, and can present the results in graphical and statistical forms. Users can send or receive data wirelessly with the data management module, even without a connection to a cellular network. To evaluate and validate the precision and accuracy of the compass-clinometer module, indoor and outdoor tests were conducted using Smart Compass-Clinometer and a conventional compass-clinometer. The minimum standard deviation of measured values with Smart Compass-Clinometer was 0.096 for dip and 0.122 for dip direction. The average difference between values measured using Smart Compass-Clinometer and the conventional compass-clinometer in the outdoor test was 1.70 for dip and 2.63 for dip direction. In an underground mine, the average discrepancies between Smart Compass-Clinometer and the conventional compass-clinometer were 2.57 in dip and 4.57 in dip direction. Smart Compass-Clinometer offers geoscientists a fast, reliable, and convenient tool for geological investigation.

  2. Monolithic integration of focused 2D GMR spin valve magnetic field sensor for high-sensitivity (compass) applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ueberschär, Olaf; Almeida, Maria J.; Matthes, Patrick; Müller, Mathias; Ecke, Ramona; Exner, Horst; Schulz, Stefan E.

    2015-09-01

    We have designed and fabricated 2D GMR spin valve sensors on the basis of IrMn/CoFe/Cu/CoFe/NiFe nanolayers in monolithic integration for high sensitivity applications. For a maximum signal-to-noise ratio, we realize a focused double full bridge layout featuring an antiparallel exchange bias pinning for neighbouring meanders and an orthogonal pinning for different bridges. This precise alignment is achieved with microscopic precision by laser heating and subsequent in-field cooling. Striving for maximum signal sensitivity and minimum hysteresis, we study in detail the impact of single meander geometry on the total magnetic structure and electronic transport properties. The investigated geometrical parameters include stripe width, stripe length, cross bar material and total meander length. In addition, the influence of the relative alignment between reference magnetization (pinned layer) and shape anisotropy (free layer) is studied. The experimentally obtained data are moreover compared to the predictions of tailored micromagnetic simulations. Using a set of optimum parameters, we demonstrate that our sensor may readily be employed to measure small magnetic fields, such as the ambient (geomagnetic) field, in terms of a 2D vector with high spatial (~200 μm) and temporal (~1 ms) resolution.

  3. A molecular compass for bird navigation

    NASA Astrophysics Data System (ADS)

    Hore, Peter

    2015-03-01

    Migratory birds travel spectacular distances, navigating and orienting by a variety of means, most of which are poorly understood. Among them is a remarkable ability to perceive the intensity and direction of the Earth's magnetic field. Biologically credible mechanisms for the sensing of such weak fields (25-65 microtesla) are scarce and in recent years just two proposals have emerged as frontrunners. One involves biogenic iron-containing nanoparticles; the other relies on the magnetic sensitivity of short-lived photochemical intermediates known as radical pairs. The latter began to attract attention following the proposal 15 years ago that the necessary physics and chemistry could take place in the bird's retina in specialised photoactive proteins called cryptochromes. The coherent dynamics of the electron-nuclear spin systems of pairs of photo-induced radicals is conjectured to form the basis of the sensing mechanism even though the interaction of an electron spin with the geomagnetic field is six orders of magnitude smaller than the thermal energy. The possibility that slowing decohering, entangled electron spins could form the basis of an important sensory mechanism has qualified radical pair magnetoreception for a place under the umbrella of ``Quantum Biology.'' In this talk, I will introduce the radical pair mechanism, comment on the roles of entanglement and quantum coherence, outline some of the experimental evidence for the cryptochrome hypothesis, and summarize what still needs to be done to determine whether birds (and maybe other animals) really do use a chemical compass to find their way around. This work was supported by grants from DARPA, AFOSR, ERC and the EMF Biological Research Trust.

  4. Bow Compass with Case

    USGS Multimedia Gallery

    Bow Compass with Case. Also known as a Drop Bow Pen or Spring Bow, serial #760 C. This instrument was made by Eugene Dietzgen & Company, Chicago and New York and used by the U.S. Geological Survey Topographic Branch after 1945-1960s. Object ID: USGS-000645...

  5. Compassion: Practical Classroom Activities

    ERIC Educational Resources Information Center

    Wong, Lily; Duffy, Roslyn Ann

    2010-01-01

    Compassion is a deep feeling of sharing the suffering of another. It is a mixture of words, thoughts, and actions that allow a child to be sympathetic to the needs of others. Young children today witness many conflicting values. Values promoted in the media and popular culture often glorify disrespect and unkindness, with beauty and possessions

  6. Compassion and Curiosity - TCGA

    Cancer.gov

    William Kim, M.D., is motivated by two things: compassion and curiosity. Dr. Kim has taken these dual motivations and created a career in which he cares directly for patients and spearheads research that may lead to improved treatment options.

  7. Amorphous soft magnetic composite-cores with various orientations of the powder-flakes

    NASA Astrophysics Data System (ADS)

    Zheng, Y. Y.; Wang, Y. G.; Xia, G. T.

    2015-12-01

    Fe78Si9B13 amorphous powder cores were prepared by cold pressing the amorphous powders crushed from amorphous ribbons and orientated with an external magnetic field. Three orientations of magnetic powder cores were obtained: (i) the disorderedly orientated amorphous magnetic powder core (DOAMP), (ii) the circularly orientated amorphous magnetic powder core (COAMP), and (iii) the radially orientated amorphous magnetic powder core (ROAMP). The effect of the shape anisotropy of the flake powders on the magnetic properties of the powder cores was investigated. The powders parallel to external magnetic field is beneficial for achieving the excellent performance of the cores. Below 100 kHz the product of the effective permeability and the quality factor of COAMP core increases by 9.1% and 21.2% compared to that of the DOAMP and the ROAMP cores, respectively, while the coercive field and the magnetic induction intensity keep almost the same. Pressing magnetic powders under a magnetic field to form preferred orientation is suitable for optimal design of soft magnetic cores toward practical applications.

  8. Effect of electric and magnetic fields on the orientation structure of a ferronematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Zakhlevnykh, A. N.; Makarov, D. V.

    2014-09-01

    We analyze uniform orientation phases in soft ferronematics (suspensions of magnetic nanoparticles in nematic liquid crystals) induced by electric and magnetic fields. It is shown that the competition between the electric and magnetic fields can lead to various sequences of orientation transitions in a ferronematic depending on the energy of coupling between the director and magnetization. We obtain and analyze phase diagrams of these transitions. A sequence of re-entrant transitions in the orientation structure (angular phase-homeotropic phase-angular phase-planar phase) is predicted for a certain range of the coupling energies and electric field strengths.

  9. Probing dynamical magnetization pinning in circular dots as a function of the external magnetic field orientation

    NASA Astrophysics Data System (ADS)

    Kakazei, G. N.; Aranda, G. R.; Bunyaev, S. A.; Golub, V. O.; Tartakovskaya, E. V.; Chumak, A. V.; Serga, A. A.; Hillebrands, B.; Guslienko, K. Y.

    2012-08-01

    We performed ferromagnetic resonance measurements of square arrays of noninteracting Permalloy circular dots for different orientations of external magnetic field with respect to the patterned film plane (?). Out-of-plane angular dependence of the main resonance peak was measured in the whole range of the field angles 0 ? ? ? 90. The main eigenmodespatial distribution is strongly nonuniform due to the dot nonellipsoidal shape. Nevertheless, for dots with small aspect ratio b=L/R?0.1 (where R is dot radius and L is dot thickness) Kittel's equation, assuming uniform dynamic magnetization (no pinning at the dot lateral edges), describes the peak position with high accuracy. Analytical calculations and micromagnetic simulations confirmed the gradual evolution of the main mode profile and a smooth transition from the strong to relatively weak pinning conditions with the change of external magnetic field angle.

  10. Perception of suffering and compassion experience: brain gender disparities.

    PubMed

    Mercadillo, Roberto E; Daz, Jos Luis; Pasaye, Erick H; Barrios, Fernando A

    2011-06-01

    Compassion is considered a moral emotion related to the perception of suffering in others, and resulting in a motivation to alleviate the afflicted party. We compared brain correlates of compassion-evoking images in women and men. BOLD functional images of 24 healthy volunteers (twelve women and twelve men; age=272.5 y.o.) were acquired in a 3T magnetic resonance scanner while subjects viewed pictures of human suffering previously verified to elicit compassion and indicated their compassionate experience by finger movements. Functional analysis revealed that while women manifested activation in areas involved in basic emotional, empathic, and moral processes, such as basal regions and cingulate and frontal cortices, activation in men was restricted mainly to the occipital cortex and parahippocampal gyrus. These findings suggest that compassion and its moral elements constitute gender-relative subjective phenomena emerging from differently evolved neural mechanisms and socially learned features possibly related to nurturing skills. PMID:21492980

  11. Object-Oriented Fast Multipole Simulation: Magnetic Colloids

    NASA Astrophysics Data System (ADS)

    Visscher, Pieter; Gnal, Yksel

    1997-08-01

    In simulating a system of N particles, if the interaction is long-ranged all pair interactions must be calculated, requiring CPU time of order N^2. Recently-developed ``fast multipole'' methods (FMM) can reduce this time to order N, at the cost of considerable programming complexity. We have developed an object-oriented approach which uses similar ideas but is conceptually much simpler. The system is represented by a hierarchical tree whose root is the entire system and whose lowest nodes are the particles. The entire calculation of the particle interactions consists of a single call to a recursive function CalculateInteractions(A,B) with A=B=root, which uses a simple opening-angle criterion to choose between multipole expansion and calling itself (subdividing A and B.) The resulting algorithm is essentially equivalent to the FMM, but the choice of when to subdivide (which is laboriously hard-wired in FMM) is made automatically. We will discuss the implementation of periodic BCs and the application of the method to continuum systems (cylindrical magnetic particles).

  12. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.

    PubMed

    Lau, Jason C S; Rodgers, Christopher T; Hore, P J

    2012-12-01

    According to the radical pair model, the magnetic compass sense of migratory birds relies on photochemical transformations in the eye to detect the direction of the geomagnetic field. Magnetically sensitive radical pairs are thought to be generated in cryptochrome proteins contained in magnetoreceptor cells in the retina. A prerequisite of the current model is for some degree of rotational ordering of both the cryptochromes within the cells and of the cells within the retina so that the directional responses of individual molecules do not average to zero. Here, it is argued that anisotropic distributions of radical pairs can be generated by the photoselection effects that arise from the directionality of the light entering the eye. Light-induced rotational order among the transient radical pairs rather than intrinsic ordering of their molecular precursors is seen as the fundamental condition for a magnetoreceptor cell to exhibit an anisotropic response. A theoretical analysis shows that a viable compass magnetoreceptor could result from randomly oriented cryptochromes contained in randomly oriented cells distributed around the retina. PMID:22977104

  13. Compassion fatigue: a nurse's primer.

    PubMed

    Lombardo, Barbara; Eyre, Caryl

    2011-01-01

    Most nurses enter the field of nursing with the intent to help others and provide empathetic care for patients with critical physical, mental, emotional, and spiritual needs. Empathic and caring nurses, however, can become victims of the continuing stress of meeting the often overwhelming needs of patients and their families, resulting in compassion fatigue. Compassion fatigue affects not only the nurse in terms of job satisfaction and emotional and physical health, but also the workplace environment by decreasing productivity and increasing turnover. We begin this article with a case study of a reactive nurse who did not seek help for her continuing stress. This is followed by a review of Watson's theoretical perspective related to compassion fatigue. Next we delineate symptoms of, and describe interventions for addressing compassion fatigue. We conclude by presenting a case study of a proactive nurse who avoided developing compassion fatigue and a discussion of future research needed to better prevent and ameliorate compassion fatigue. PMID:21800934

  14. Electro-optical sun compass with a very high degree of accuracy.

    PubMed

    Bollanti, Sarah; De Meis, Domenico; Di Lazzaro, Paolo; Flora, Francesco; Gallerano, Gian Piero; Mezi, Luca; Murra, Daniele; Torre, Amalia; Vicca, Davide

    2015-08-01

    We present a novel electro-optical solar compass that is able to determine the true North direction with an accuracy better than 1/100 of degree, superior to that of any other magnetic or electronic compass that does not resort to differential GPS. The compass has an electronic sensor to determine the line of sight of the Sun and a simple but effective algorithm to calculate the position of the Sun. The excellent results obtained during the experimental tests demonstrate the advantages of this compass, which is also compact and not expensive. PMID:26258372

  15. Two-stage magnetic orientation of uric acid crystals as gout initiators

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.

    2014-01-01

    The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.

  16. Magnetic reversal in perpendicularly oriented thin films subjected to picosecond magnetic fields (abstract)

    NASA Astrophysics Data System (ADS)

    Heidmann, Juergen; Weller, Dieter; Siegmann, Hans C.; Garwin, E. L.

    1996-04-01

    The magnetic reversal mechanism in perpendicularly oriented, premagnetized Co based thin film alloys, induced by ultra short magnetic field exposure of a few picoseconds duration has been studied. Field pulses with a magnitude of several thousand Tesla were generated by the 50 GeV final focus electron beam at the Stanford Linear Accelerator Center (SLAC). Characteristic remanent domain patterns are observed in these films long after field exposure using polar Kerr microscopy. Complete reversal of the magnetization is found to occur during a single spin precession event of 6.0 ps duration where the inplane-field amplitude is greater or equal to the macroscopically determined perpendicular anisotropy field. Further, a wide transition range, dividing the reversed and nonreversed regions is observed which is broken into a quasi periodic stripe domain structure with stripe-width 0.3 ?m. As a main result of this experimental study we find that magnetization reversal on this time scale is solely governed by the intrinsic effective field, i.e., anisotropy- and demagnetization-field contributions, rather then by complex curling and buckling mechanisms. Unique insight into fundamental spin reversal mechanisms and their ultimate speed in thin magnetic recording films is provided by these experiments.

  17. The COMPASS Project

    NASA Astrophysics Data System (ADS)

    Duley, A. R.; Sullivan, D.; Fladeland, M. M.; Myers, J.; Craig, M.; Enomoto, F.; Van Gilst, D. P.; Johan, S.

    2011-12-01

    The Common Operations and Management Portal for Airborne Science Systems (COMPASS) project is a multi-center collaborative effort to advance and extend the research capabilities of the National Aeronautics and Space Administration's (NASA) Airborne Science Program (ASP). At its most basic, COMPASS provides tools for visualizing the position of aircraft and instrument observations during the course of a mission, and facilitates dissemination, discussion, and analysis and of multiple disparate data sources in order to more efficiently plan and execute airborne science missions. COMPASS targets a number of key objectives. First, deliver a common operating picture for improved shared situational awareness to all participants in NASA's Airborne Science missions. These participants include scientists, engineers, managers, and the general public. Second, encourage more responsive and collaborative measurements between instruments on multiple aircraft, satellites, and on the surface in order to increase the scientific value of these measurements. Fourth, provide flexible entry points for data providers to supply model and advanced analysis products to mission team members. Fifth, provide data consumers with a mechanism to ingest, search and display data products. Finally, embrace an open and transparent platform where common data products, services, and end user components can be shared with the broader scientific community. In pursuit of these objectives, and in concert with requirements solicited by the airborne science research community, the COMPASS project team has delivered a suite of core tools intended to represent the next generation toolset for airborne research. This toolset includes a collection of loosely coupled RESTful web-services, a system to curate, register, and search, commonly used data sources, end-user tools which leverage web socket and other next generation HTML5 technologies to aid real time aircraft position and data visualization, and an extensible a framework to rapidly accommodate mission specific requirements and mission tools.

  18. Compassion Fatigue in Pediatric Nurses.

    PubMed

    Berger, Jill; Polivka, Barbara; Smoot, Elizabeth Ann; Owens, Heather

    2015-01-01

    Compassion fatigue in nursing has been shown to impact the quality of patient care and employee satisfaction and engagement. The aims of this study were to determine the prevalence and severity of compassion fatigue among pediatric nurses and variations in prevalence based on respondent demographics using a cross-sectional survey design. Nurses under 40 years of age, with 6-10 years of experience and/or working in a medical-surgical unit had significantly lower compassion satisfaction and higher levels of burnout. Secondary traumatic stress from caring for children with severe illness or injury or end of life was a key contributor to compassion fatigue. PMID:25800590

  19. The role of the sun in the celestial compass of dung beetles

    PubMed Central

    Dacke, M.; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16 at solar elevations below 60 to an error of 29 at solar elevations above 75. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day. PMID:24395963

  20. Differential effects of magnetic pulses on the orientation of naturally migrating birds

    PubMed Central

    Holland, Richard A.

    2010-01-01

    In migratory passerine birds, strong magnetic pulses are thought to be diagnostic of the remagnetization of iron minerals in a putative sensory system contained in the beak. Previous evidence suggests that while such a magnetic pulse affects the orientation of migratory birds in orientation cages, no effect was present when pulse-treated birds were tested in natural migration. Here we show that two migrating passerine birds treated with a strong magnetic pulse, designed to alter the magnetic sense, migrated in a direction that differed significantly from that of controls when tested in natural conditions. The orientation of treated birds was different depending on the alignment of the pulse with respect to the magnetic field. These results can aid in advancing understanding of how the putative iron-mineral-based receptors found in birds' beaks may be used to detect and signal the intensity and/or direction of the Earth's magnetic field. PMID:20453067

  1. Orientation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets

    NASA Astrophysics Data System (ADS)

    Legrand, B. A.; Chateigner, D.; Perrier de la Bathie, R.; Tournier, R.

    1997-02-01

    The solidification of molten alloys in a static magnetic field is proposed as a new way of orienting polycrystalline materials. A high degree of orientation is obtained with samarium-cobalt compounds solidified in a static magnetic field. Whatever the cooling condition used from the liquid state, a magnetic field of several tesla induces crystallographic orientation in the solid. The easy magnetization axis of the polycrystal lies along the direction of the field applied during solidification. This texturing process is applied to the elaboration of Sm 2Co 17 permanent magnets. Anisotropic bulk magnets with a coercive field up to 2250 kA/m and energy product above 160 kJ/m 3 are obtained. This process provides an alternative to the currently used industrial technology which is based on powder metallurgy. The paramagnetic susceptibility of the substituted Sm 2Co 17 compounds is measured at high temperatures from which the susceptibility anisotropy at solidification temperature is determined. The orientation of the sample, solidified in a cold induction crucible, is analysed as a function of the applied magnetic field. Assuming a model in which particles are free to orient before complete solidification takes place, a critical size of these particles is deduced.

  2. Crystallographic orientation of Cr in longitudinal recording media and its relation to magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ajan, Antony; Okamoto, Iwao

    2002-08-01

    A specific growth of Cr layer grains is found to exist when grown on the mechanically textured NiP-Al substrates used for longitudinal recording. High resolution transmission electron microscopy analysis of a large number of individual Cr grains indicate a Cr110 preferential growth along the textured direction (groove or circumferential direction). This particular orientation of the Cr underlayer is found to be the cause of an in-plane magnetic anisotropy of the Co based magnetic layer. The temperature dependence of this in-plane magnetic anisotropy study indicated the importance of the specific crystallographic orientations of both the underlayer and the magnetic layer.

  3. Fabrication of Tri-axially Oriented RE-Ba-Cu-O Ceramics by Magnetic Alignment

    NASA Astrophysics Data System (ADS)

    Yamaki, M.; Furuta, M.; Doi, T.; Shimoyama, J.; Horii, S.

    Magnetic alignment is a new crystal alignment process which enables tri-axial orientation without epitaxial growth at room temperature. In order to investigate the effectiveness of this magnetic tri-axial alignment process, we attempted to fabricate tri-axially oriented ErBa2Cu4O8 (Er124) ceramics by a slip-casting technique under two different modulated rotation magnetic fields (MRFs); uni-directional rotation type and oscillation type. For improvement of the degrees of tri-axial orientation in the Er124 green compacts slip-casted under MRFs, appropriate choice of sample-rotation method, magnetic field condition, control of mean diameter of source powders, and viscosity of slurry was found to be important in the case of MRFs induced by the sample-rotation. At the current stage, the degree of inplane orientation with ?10? in Er124 was achieved.

  4. Cultivating Compassion: Rhetoric or Reality?

    ERIC Educational Resources Information Center

    Lovette-Colyer, Michael

    2014-01-01

    Despite the massive amounts of research conducted on the effect of college on students, almost no empirical work has been done on whether students grow in compassion during their undergraduate studies. Designed to address this gap, this longitudinal study of more than 500 students found that the majority demonstrated change in compassion across

  5. Noncontact orientation of objects in three-dimensional space using magnetic levitation.

    PubMed

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M

    2014-09-01

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136

  6. Noncontact orientation of objects in three-dimensional space using magnetic levitation

    PubMed Central

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K.; Soh, Siowling; Whitesides, George M.

    2014-01-01

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136

  7. Estimating body segment orientation by applying inertial and magnetic sensing near ferromagnetic materials.

    PubMed

    Roetenberg, Daniel; Baten, Chris T M; Veltink, Peter H

    2007-09-01

    Inertial and magnetic sensors are very suitable for ambulatory monitoring of human posture and movements. However, ferromagnetic materials near the sensor disturb the local magnetic field and, therefore, the orientation estimation. A Kalman-based fusion algorithm was used to obtain dynamic orientations and to minimize the effect of magnetic disturbances. This paper compares the orientation output of the sensor fusion using three-dimensional inertial and magnetic sensors against a laboratory bound opto-kinetic system (Vicon) in a simulated work environment. With the tested methods, the difference between the optical reference system and the output of the algorithm was 2.6 degrees root mean square (rms) when no metal was near the sensor module. Near a large metal object instant errors up to 50 degrees were measured when no compensation was applied. Using a magnetic disturbance model, the error reduced significantly to 3.6 degrees rms. PMID:17894280

  8. Interplanetary magnetic field orientation for transient events in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Newell, P. T.

    1995-01-01

    It is generally believed that flux transfer events (FTEs) in the outer dayside magneosphere, usually identified by transient (approximately 1 min) bipolar magneitc field perturbations in the direction normal to the nominal magnetopause, occur when the magnetosheath magetic field has a southward component. We compare the results of three methods for determining the magnetosheath magnetic field orientationat the times of previously identified UKS/IRM events: (1) the average magnetosheath magnetic field orientation in the 30-min period adjacent to the nearest magnetopause crossing, (2) the magnetosheath magnetic field orientation observed just outside the magnetopause, and (3) the lagged interplanetary magnetic field (IMF) orientation at the time of the transient events. Whereas the results of method 2 indicate that the events tend to occur for a southward magnetosheath magnetic field, the results of methods 1 and 3 show no such tnedency. The fact that the three methods yield significantly diffeent results emphasizes the need for caution in future studies.

  9. Connecting for compassion.

    PubMed

    Mnage, Diane

    2015-03-01

    On a mission to promote compassion in midwifery practice I was looking for effective methods of sharing and developing my ideas. I recognised the benefits of networking through more traditional methods but was not really utilising social media. Then another midwife encouraged me to use Twitter. Although not particularly confident with social media and unsure about how it could support me professionally, I decided to try it. Six months later I have some new skills and I am part of a dynamic and stimulating online community. This article is a personal account of that learning journey in which I reflect on some of the benefits that I have discovered so far. PMID:26349330

  10. Spin orientation driven static and dynamic magnetic process in amorphous FeCoBSi thin films

    SciTech Connect

    Zhou, Peiheng; Luo, Xiaojia; Zhang, Li; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-06-07

    The spin orientation dependence of magnetic hysteresis and microwave ferromagnetic resonance data are investigated in FeCoBSi amorphous thin films. Demagnetization effect allows the weak interface-rooted out-of-plane anisotropy to build up local spin orientation domains under the dominant in-plane anisotropy. As a result, two phase magnetization reversal and double-peak ferromagnetic resonance traces with varying damping behavior are observed. Due to the distribution of in-plane and out-of-plane spin orientations, the ferromagnetic resonance bandwidth has been extensively expanded with the full width at half maximum increased from 1.2?GHz to 3.5?GHz.

  11. Sensing magnetic directions in birds: radical pair processes involving cryptochrome.

    PubMed

    Wiltschko, Roswitha; Wiltschko, Wolfgang

    2014-09-01

    Birds can use the geomagnetic field for compass orientation. Behavioral experiments, mostly with migrating passerines, revealed three characteristics of the avian magnetic compass: (1) it works spontaneously only in a narrow functional window around the intensity of the ambient magnetic field, but can adapt to other intensities, (2) it is an "inclination compass", not based on the polarity of the magnetic field, but the axial course of the field lines, and (3) it requires short-wavelength light from UV to 565 nm Green. The Radical Pair-Model of magnetoreception can explain these properties by proposing spin-chemical processes in photopigments as underlying mechanism. Applying radio frequency fields, a diagnostic tool for radical pair processes, supports an involvement of a radical pair mechanism in avian magnetoreception: added to the geomagnetic field, they disrupted orientation, presumably by interfering with the receptive processes. Cryptochromes have been suggested as receptor molecules. Cry1a is found in the eyes of birds, where it is located at the membranes of the disks in the outer segments of the UV-cones in chickens and robins. Immuno-histochemical studies show that it is activated by the wavelengths of light that allow magnetic compass orientation in birds. PMID:25587420

  12. Magnetic fields and orientation in homing pigeons: experiments of the late W. T. Keeton.

    PubMed Central

    Moore, B R

    1988-01-01

    The late W. T. Keeton conducted 35 experiments examining the effects of bar magnets upon the navigation of experienced homing pigeons on overcast days. Six statistics summarize the consistency and accuracy of the birds' initial orientation and the speed and success of their subsequent homing. Magnets had no significant overall effect upon these measures. PMID:3387447

  13. Prediction of particle orientation in simple upsetting process of NdFeB magnets

    SciTech Connect

    Chang, Chao-Cheng; Hsiao, Po-Jen; You, Jr-Shiang; Chen, Yen-Ju; Chang, Can-Xun

    2013-12-16

    The magnetic properties of NdFeB magnets are strongly affected by crystallographic texture which is highly associated with particle orientation. This study proposed a method for predicting the particle orientation in the simple upsetting process of NdFeB magnets. The method is based on finite element simulation with flow net analysis. The magnets in a cylindrical form were compressed by two flat dies in a chamber filled with argon at 750°C. Three forming speeds were taken into account in order to obtain flow stress curves used in simulations. The micrographs of the cross sections of the deformed magnets show that the particle deformation significantly increases with the compression. The phenomenon was also predicted by the proposed method. Both simulated and experimental results show that the inhomogeneity of the texture of the NdFeB magnets can be increased by the simple upsetting process. The predicted particle orientations were in a good agreement with those examined in the deformed magnets. The proposed method for predicting particle orientations can also be used in other forming processes of NdFeB magnets.

  14. Quantitative vertebral compression fracture evaluation using a height compass

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Burns, Joseph E.; Wiese, Tatjana; Summers, Ronald M.

    2012-03-01

    Vertebral compression fractures can be caused by even minor trauma in patients with pathological conditions such as osteoporosis, varying greatly in vertebral body location and compression geometry. The location and morphology of the compression injury can guide decision making for treatment modality (vertebroplasty versus surgical fixation), and can be important for pre-surgical planning. We propose a height compass to evaluate the axial plane spatial distribution of compression injury (anterior, posterior, lateral, and central), and distinguish it from physiologic height variations of normal vertebrae. The method includes four steps: spine segmentation and partition, endplate detection, height compass computation and compression fracture evaluation. A height compass is computed for each vertebra, where the vertebral body is partitioned in the axial plane into 17 cells oriented about concentric rings. In the compass structure, a crown-like geometry is produced by three concentric rings which are divided into 8 equal length arcs by rays which are subtended by 8 common central angles. The radius of each ring increases multiplicatively, with resultant structure of a central node and two concentric surrounding bands of cells, each divided into octants. The height value for each octant is calculated and plotted against octants in neighboring vertebrae. The height compass shows intuitive display of the height distribution and can be used to easily identify the fracture regions. Our technique was evaluated on 8 thoraco-abdominal CT scans of patients with reported compression fractures and showed statistically significant differences in height value at the sites of the fractures.

  15. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    SciTech Connect

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  16. Drastic effect of V film orientation on the Fe adatoms magnetism

    NASA Astrophysics Data System (ADS)

    Yartseva, N. S.; Yartsev, S. V.; Demangeat, C.

    2015-11-01

    Effect of surface orientation of nonmagnetic bed material on magnetic properties of the peculiar magnetic adatoms groups (MAGs) is found by simulation. Here we present the results of periodic Anderson model calculations for MAGs on V. The MAGs are formed of the Fe adatoms arranged in triangles, ovals, or short chains and placed over V substrate with (001) or (110) surface orientation. It is shown that magnetism of the Fe-MAGs on V(001) surface can be totally suppressed by the V surroundings, whereas the V(110) surface orientation results in magnetization of the Fe-MAGs and onset of noncollinear atomic moments distribution. Noncollinearity strictly depends on symmetry of the Fe-MAG.

  17. Spin orientation, structure, morphology, and magnetic properties of hematite nanoparticles

    SciTech Connect

    Xu, S.; Habib, A. H.; Gee, S. H.; Hong, Y. K.; McHenry, M. E.

    2015-05-07

    Monodisperse hematite (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by forced hydrolysis of acidic Fe{sup 3+} solution. Rietveld analysis was applied to the X-ray powder diffraction data to refine the lattice constants and atomic positions. The lattice constants for a hexagonal unit cell were determined to be a ∼ 0.50327 and c ∼ 1.37521 nm. High resolution transmission electron microscopy was employed to study the morphology of the particles. Atomic scale micrographs and diffraction patterns from several zone axes were obtained. These reveal the high degree of crystallinity of the particles. A series of observations made on the particles by tilting them through a range of ±45° revealed the particles to be micaceous with stacking of platelets with well defined crystallographic orientations. The Morin transition in these nanoparticles was found to occur at 210 K, which is lower temperature than 263 K of bulk hematite. It was ascertained from the previous Mössbauer studies that the spin orientation for nano-sized hematite particle flips from 90° to 28° with respect to the c-axis of the hexagonal structure during the Morin transition, which is in contrast to that observed in bulk hematite where spin orientation flips from 90° to 0°.

  18. GEM Detectors for Compass

    NASA Astrophysics Data System (ADS)

    Simon, Frank; Friedrich, Jan; Grube, Boris; Konorov, Igor; Paul, Stephan; Altunbas, Cem; Kappler, Steffen; Ketzer, Bernhard; Placci, Alfredo; Ropelewski, Leszek; Sauli, Fabio

    2002-11-01

    For the small-area tracking of the COMPASS experiment, GEM detectors with an active area of 31 31 cm2 are employed. These detectors use three cascaded GEM foils with asymmetric voltage sharing and Ar:CO2 (70/30) as detector gas. The GEMs have a non-uniformity in gain of less than 15% and achieve an efficiency of 99.0 0.1% and a spatial resolution of 46 3 ?m for minimum-ionizing particles at nominal gain of ~ 8000. The narrow charge correlation (?rat< 0.1) between the orthogonal coordinates of the 2D projective readout improves the reconstruction capability for multiple hits. High rate tolerance and low discharge probability make the GEM detectors well suited for operation in intense muon and hadron beams.

  19. Assembling a COMPASS.

    PubMed

    Couture, Jean-Francois; Skiniotis, Georgios

    2013-04-01

    Post-translational modifications of histone proteins lie at the heart of the epigenetic landscape in the cell's nucleus and the precise regulation of gene expression. A myriad of studies have showed that several histone-modifying enzymes are controlled by modulatory protein partner subunits and other post-transcriptional modifications deposited in the vicinity of the targeted site. All together, these mechanisms create an intricate network of interactions that regulate enzymatic activities and ultimately control the site-specific deposition of covalent modifications. In this Point-of-View, we discuss our evolving understanding on the assembly and architecture of histone H3 Lys-4 (H3K4) methyltransferase COMPASS complexes and the techniques that progressively allowed us to better define the molecular basis of complex formation and function. We further briefly discuss some of the challenges lying ahead and additional approaches required to understand mechanistic details for the function of such complexes. PMID:23470558

  20. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes.

    PubMed

    Moltke, S; Nevzorov, A A; Sakai, N; Wallat, I; Job, C; Nakanishi, K; Heyn, M P; Brown, M F

    1998-08-25

    The orientation of prosthetic groups in membrane proteins is of considerable importance in understanding their functional role in energy conversion, signal transduction, and ion transport. In this work, the orientation of the retinylidene chromophore of bacteriorhodopsin (bR) was investigated using 2H NMR spectroscopy. Bacteriorhodopsin was regenerated with all-trans-retinal stereospecifically deuterated in one of the geminal methyl groups on C1 of the cyclohexene ring. A highly oriented sample, which is needed to obtain individual bond orientations from 2H NMR, was prepared by forming hydrated lamellar films of purple membranes on glass slides. A Monte Carlo method was developed to accurately simulate the 2H NMR line shape due to the distribution of bond angles and the orientational disorder of the membranes. The number of free parameters in the line shape simulation was reduced by independent measurements of the intrinsic line width (1.6 kHz from T2e experiments) and the effective quadrupolar coupling constant (38. 8-39.8 kHz from analysis of the line shape of a powder-type sample). The angle between the C1-(1R)-1-CD3 bond and the purple membrane normal was determined with high accuracy from the simultaneous analysis of a series of 2H NMR spectra recorded at different inclinations of the uniaxially oriented sample in the magnetic field at 20 and -50 degrees C. The value of 68.7 +/- 2.0 degrees in dark-adapted bR was used, together with the previously determined angle of the C5-CD3 bond, to calculate the possible orientations of the cyclohexene ring in the membrane. The solutions obtained from 2H NMR were then combined with additional constraints from linear dichroism and electron cryomicroscopy to obtain the allowed orientations of retinal in the noncentrosymmetric membrane structure. The combined data indicate that the methyl groups on the polyene chain point toward the cytoplasmic side of the membrane and the N-H bond of the Schiff base to the extracellular side, i.e., toward the side of proton release in the pump pathway. PMID:9718305

  1. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I.-Ming

    2014-10-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  2. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    PubMed Central

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  3. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  4. Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.

    2015-01-01

    Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.

  5. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation. PMID:22319365

  6. Field orientation dependent decorrelation of magnetization reversal in uniaxial Co-films

    NASA Astrophysics Data System (ADS)

    Arregi, J. A.; Idigoras, O.; Vavassori, P.; Berger, A.

    2012-06-01

    Magnetization reversal correlation is studied as a function of the applied field angle for thin Co-films showing in-plane uniaxial magnetocrystalline anisotropy. We find that the field orientation angle has a profound effect onto the magnetization reversal process leading to a suppression of long-range correlation at sufficiently large field angles in the presence of grain alignment disorder. Correspondingly, this behavior allows for a tuning and the local confinement of magnetization reversal even in strongly exchange-coupled films and therefore presents a most desirable scenario for ultrahigh density magnetic recording.

  7. Sensitive chemical compass assisted by quantum criticality

    NASA Astrophysics Data System (ADS)

    Cai, C. Y.; Ai, Qing; Quan, H. T.; Sun, C. P.

    2012-02-01

    A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction. The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup, inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of weak magnetic fields.

  8. Effects of Instructional Technology Integration Strategies in Orientation Programs on Nurse Retention in Magnet and Non-Magnet Hospitals

    ERIC Educational Resources Information Center

    Hancharik, Sharon D.

    2008-01-01

    This applied dissertation study was designed to learn if the increased use of instructional technology integration strategies in nursing orientation programs resulted in an increased retention of new nurses. The study attempted to uncover the current retention rate and use of technology at the participating hospitals. The data obtained from Magnet

  9. Compassion and professional care: exploring the domain.

    PubMed

    van der Cingel, Margreet

    2009-04-01

    Compassion unites people during times of suffering and distress. Unfortunately, compassion cannot take away suffering. Why then, is compassion important for people who suffer? Nurses work in a domain where human suffering is evidently present. In order to give meaning to compassion in the domain of professional care, it is necessary to describe what compassion is. The purpose of this paper is to explore questions and contradictions in the debate on compassion related to nursing care. The paper reviews classical philosophers as well as contemporary scientists' main arguments on compassion. First, I will examine the relationship between compassion and suffering. Second, how does one recognize serious suffering? This issue raises questions about the role of imagination and the need for identification. Third, literature describes compassion as an emotion. Some philosophers consider emotions uncontrollable feelings; others see a clear rational dimension in emotions. In order to determine what compassion is, it is necessary to weigh these contradictional arguments. Fourth, I will discuss motives for compassion. Is compassion an act of altruism or egoism? In this debate Nietzsche and Schopenhauer are well-known opponents. Today, analysis of their arguments leads to some surprising conclusions. Fifth, there is the issue of fault and compassion. Can we only feel compassionate when people who suffer are not to blame for their own suffering? Such a condition faces professional caretakers with a dilemma which needs a thorough analysis if compassion is to be of use in the field of professional care. Finally, I will explore the moral meaning of compassion. Compassion, described as a concept with cognitive as well as affective dimensions, also has volitional and behavioural aspects. These aspects specifically are of importance to nursing care and further research of compassion in the nursing domain. PMID:19291200

  10. Using an electronic compass to determine telemetry azimuths

    USGS Publications Warehouse

    Cox, R.R., Jr.; Scalf, J.D.; Jamison, B.E.; Lutz, R.S.

    2002-01-01

    Researchers typically collect azimuths from known locations to estimate locations of radiomarked animals. Mobile, vehicle-mounted telemetry receiving systems frequently are used to gather azimuth data. Use of mobile systems typically involves estimating the vehicle's orientation to grid north (vehicle azimuth), recording an azimuth to the transmitter relative to the vehicle azimuth from a fixed rosette around the antenna mast (relative azimuth), and subsequently calculating an azimuth to the transmitter (animal azimuth). We incorporated electronic compasses into standard null-peak antenna systems by mounting the compass sensors atop the antenna masts and evaluated the precision of this configuration. This system increased efficiency by eliminating vehicle orientation and calculations to determine animal azimuths and produced estimates of precision (azimuth SD=2.6 deg., SE=0.16 deg.) similar to systems that required orienting the mobile system to grid north. Using an electronic compass increased efficiency without sacrificing precision and should produce more accurate estimates of locations when marked animals are moving or when vehicle orientation is problematic.

  11. Orientation and open-sea navigation in sea turtles

    PubMed

    Lohmann; Lohmann

    1996-01-01

    Loggerhead sea turtle hatchlings (Caretta caretta L.) emerge from underground nests, scramble to the sea and begin a transoceanic migration by swimming away from their natal beach and into the open ocean. Evidence suggests that hatchlings sequentially use three different sets of cues to maintain orientation during their initial migration offshore. While on the beach, hatchlings find the ocean by crawling towards the lower, brighter seaward horizon and away from the dark, elevated silhouettes of vegetation and dunes. Upon entering the ocean, turtles initially orient seawards by swimming into waves, which can be detected as orbital movements from under water. Laboratory experiments have demonstrated that turtles can transfer a course initiated on the basis of waves or visual cues to a course mediated by a magnetic compass. Thus, by setting a magnetic course on the basis of nearshore cues that indicate the seaward direction, hatchlings may continue on offshore headings after entering deep water beyond sight of land. Sea turtles may use the earth's magnetic field not only as a cue for compass orientation but also as a source of world-wide positional information. Recent experiments have demonstrated that loggerheads can detect subtle differences in magnetic field inclination and intensity, two geomagnetic features that vary across the surface of the earth. Because most nesting beaches and oceanic regions are marked by a unique combination of these features, these findings raise the possibility that adult sea turtles navigate using a bicoordinate magnetic map. PMID:9317364

  12. 78 FR 35073 - Compass Efficient Model Portfolios, LLC and Compass EMP Funds Trust; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... COMMISSION Compass Efficient Model Portfolios, LLC and Compass EMP Funds Trust; Notice of Application June 4.... Applicants: Compass Efficient Model Portfolios, LLC (the ``Adviser'') and Compass EMP Funds Trust (``the... perspective of the investor, the role of the Subadvisers is comparable to that of the individual...

  13. Orientation of migratory birds under ultraviolet light.

    PubMed

    Wiltschko, Roswitha; Munro, Ursula; Ford, Hugh; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2014-05-01

    In view of the finding that cryptochrome 1a, the putative receptor molecule for the avian magnetic compass, is restricted to the ultraviolet single cones in European Robins, we studied the orientation behaviour of robins and Australian Silvereyes under monochromatic ultraviolet (UV) light. At low intensity UV light of 0.3 mW/m(2), birds showed normal migratory orientation by their inclination compass, with the directional information originating in radical pair processes in the eye. At 2.8 mW/m(2), robins showed an axial preference in the east-west axis, whereas silvereyes preferred an easterly direction. At 5.7 mW/m(2), robins changed direction to a north-south axis. When UV light was combined with yellow light, robins showed easterly 'fixed direction' responses, which changed to disorientation when their upper beak was locally anaesthetised with xylocaine, indicating that they were controlled by the magnetite-based receptors in the beak. Orientation under UV light thus appears to be similar to that observed under blue, turquoise and green light, albeit the UV responses occur at lower light levels, probably because of the greater light sensitivity of the UV cones. The orientation under UV light and green light suggests that at least at the level of the retina, magnetoreception and vision are largely independent of each other. PMID:24718656

  14. The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury's surface

    NASA Astrophysics Data System (ADS)

    Varela, J.; Pantellini, F.; Moncuquet, M.

    2015-12-01

    The aim of this paper is to study the plasma flows on the Mercury surface for different interplanetary magnetic field orientations on the day side of the planet. We use a single fluid MHD model in spherical coordinates to simulate the interaction of the solar wind with the Hermean magnetosphere for six solar wind realistic configurations with different magnetic field orientations: Mercury-Sun, Sun-Mercury, aligned with the magnetic axis of Mercury (Northward and Southward) and with the orbital plane perpendicular to the previous cases. In the Mercury-Sun (Sun-Mercury) simulation the Hermean magnetic field is weakened in the South-East (North-East) of the magnetosphere leading to an enhancement of the flows on the South (North) hemisphere. For a Northward (Southward) orientation there is an enhancement (weakening) of the Hermean magnetic field in the nose of the bow shock so the fluxes are reduced and drifted to the poles (enhanced and drifted to the equator). If the solar wind magnetic field is in the orbital plane the magnetosphere is tilted to the West (East) and weakened at the nose of the shock, so the flows are enhanced and drifted to the East (West) in the Northern hemisphere and to the West (East) in the Southern hemisphere.

  15. Compassion, compassion fatigue, and burnout: key insights for oncology professionals.

    PubMed

    Back, Anthony L; Deignan, Paul F; Potter, Patricia A

    2014-01-01

    When cancer care clinicians become stressed, sad, isolated--and unaware of this--they are placing themselves at risk for burnout and their patients at risk for suboptimal care. Despite their best intentions, clinicians can sink from a healthy work state of compassion, empathy, and well-being into compassion fatigue and burnout. Lessons from first responders demonstrate the importance for clinicians to recognize the warning signs of compassion and fatigue and burnout, as this recognition can enable them to take action towards prevention and/or recovery. The recognition of these issues as a threat to clinician performance has outstripped the development of evidence-based interventions, but interventions tested to date are effective, feasible, and scalable. These interventions could be incorporated systematically into cancer care. PMID:24857139

  16. Incorporating Orienteering in School Programs.

    ERIC Educational Resources Information Center

    Bradford, Douglas

    Orienteering has been described as being "either a serious sport, or a relaxing recreation". Orienteering can be a family affair or an individual fight against the clock. In its simplest form, orienteering can be described as a cross-country run, jog, or walk on a predetermined course, using a map and a compass to find several control points on…

  17. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  18. Orientation Dependence of the Critical Magnetic Field for Multiferroic BiFeO3

    SciTech Connect

    Fishman, Randy Scott

    2013-01-01

    Multiferroic BiFeO3 undergoes a transition from a distorted spiral phase to a G-type antiferromagnet above a critical field Hc that depends on the orientation m of the field. We show that Hc(m) has a maximum when oriented along a cubic diagonal parallel to the electric polarization P and a minimum in the equatorial plane normal to P when two magnetic domains with the highest critical fields are degenerate. The measured critical field along a cubic axis is about 19 T but Hc is predicted to vary by as much as 2.5 T above and below this value. The orientational dependence of Hc(m) is more complex than indicated by earlier work, which did not consider the competition between magnetic domains.

  19. Rousseau and the Education of Compassion

    ERIC Educational Resources Information Center

    White, Richard

    2008-01-01

    In this paper I examine Rousseau's strategy for teaching compassion in "Book Four of Emile." In particular, I look at the three maxims on compassion that help to organise Rousseau's discussion, and the precise strategy that Emile's tutor uses to instil compassion while avoiding other passions, such as anger, fear and pride. The very idea of an

  20. Self-Compassion and Interpersonal Cognitive Distortions

    ERIC Educational Resources Information Center

    Akin, Ahmet

    2010-01-01

    The purpose of this study is to examine the relationships between self-compassion and interpersonal cognitive distortions. Participants were 338 university students. In this study, the Self-compassion Scale and the Interpersonal Cognitive Distortions Scale were used. The relationships between self-compassion and interpersonal cognitive distortions

  1. Self-Compassion and Automatic Thoughts

    ERIC Educational Resources Information Center

    Akin, Ahmet

    2012-01-01

    The aim of this research is to examine the relationships between self-compassion and automatic thoughts. Participants were 299 university students. In this study, the Self-compassion Scale and the Automatic Thoughts Questionnaire were used. The relationships between self-compassion and automatic thoughts were examined using correlation analysis…

  2. Effect of a weak transverse magnetic field on the morphology and orientation of directionally solidified Al-Ni alloys

    NASA Astrophysics Data System (ADS)

    Li, Hanxiao; Fautrelle, Yves; Hou, Long; Du, Dafan; Zhang, Yikun; Ren, Zhongming; Lu, Xionggang; Moreau, Rene; Li, Xi

    2016-02-01

    The influence of a weak transverse magnetic field on the morphology and orientation of Al3Ni dendrites in directionally solidified Al-12 wt% Ni alloys was investigated. The experimental results indicated that the magnetic field caused segregation. It was also found that the application of a magnetic field decreased the primary dendrite spacing. By means of electronic backscatter diffraction (EBSD) analysis, the orientation of the Al3Ni dendrite was studied. In the case of no magnetic field, the <010> crystal direction of the Al3Ni crystal was oriented along the solidification direction. When a transverse magnetic field was applied, the <001> crystal direction rotated to the magnetic field direction, whereas the <010> crystal direction remained oriented along the solidification direction. The above experimental results are discussed in the context of thermoelectric magnetic convection (TEMC) and crystal anisotropy.

  3. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms

    PubMed Central

    Mouritsen, Henrik; Frost, Barrie J.

    2002-01-01

    A newly developed flight simulator allows monarch butterflies to fly actively for up to several hours in any horizontal direction while their fall migratory flight direction can be continuously recorded. From these data, long segments of virtual flight paths of tethered, flying, migratory monarch butterflies were reconstructed, and by advancing or retarding the butterflies' circadian clocks, we have shown that they possess a time-compensated sun compass. Control monarchs on local time fly approximately southwest, those 6-h time-advanced fly southeast, and 6-h time-delayed butterflies fly in northwesterly directions. Moreover, butterflies flown in the same apparatus under simulated overcast in natural magnetic fields were randomly oriented and did not change direction when magnetic fields were rotated. Therefore, these experiments do not provide any evidence that monarch butterflies use a magnetic compass during migration. PMID:12107283

  4. Quantification of cardiac magnetic field orientation during ventricular de- and repolarization

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, Peter; Hailer, Birgit; Lange, Silke; Klein, Anita; Geue, Daniel; Seybold, Katrin; Poplutz, Christian; Grnemeyer, Dietrich

    2008-05-01

    We compared the stability and discriminatory power of different methods of determining cardiac magnetic field map (MFM) orientation within the context of coronary artery disease (CAD). In 27 healthy subjects and 24 CAD patients, multichannel magnetocardiograms were registered at rest. MFM orientation was determined during QT interval using: (a) locations of the positive and negative centres-of-gravity, (b) locations of the field extrema and (c) the direction of the maximum field gradient. Deviation from normal orientation quantified the ability of each approach to discriminate between healthy and CAD subjects. Although the course of orientation was similar for all methods, receiver operating characteristic analysis showed the best discrimination of CAD patients for the centre-of-gravity approach (area-under-the-curve = 86%), followed by the gradient (84%) and extrema (76%) methods. Consideration of methodological and discriminatory advantages with respect to noninvasive diagnosis of CAD suggests that the centres-of-gravity method is the most suited one.

  5. [Changes in magnetic coil orientation affect the stimulation effects of human peripheral nerve].

    PubMed

    Sun, S J

    1996-03-01

    Transcranial magnetic stimulation is a non-invasive method for assessing the motor function in humans. It is well established that orientation of the magnetic coil plays an important role on the stimulation effects of the motor cortex. However, there has been a few study regarding the effect of magnetic coil orientation on the efficacy of peripheral nerve stimulation. Therefore, in the present study, I carried out two experiments to clarify the relationship between the magnetic coil orientation and the stimulation effects of human peripheral nerve. First, median nerve was stimulated at the elbow and compound muscle action potentials (CMAPs) of abductor pollicis brevis muscle were recorded in 8 subjects at 4 different directions of the induced current. Two eight-shaped coils, 10 cm and 3.5 cm in outer diameter, were used. Stimulus intensities of big and small coils were 850 V and 90%, respectively. Motor threshold was measured at 4 directions with the big coil by increasing stimulus intensity up to 850 V from 150 V at a step of 50 V. It was found that the amplitude of the CMAP was the greatest in outer direction (toward the radial side) using either the big coil or the small coil. There was no significant difference between the amplitude in outer direction and that of supramaximal electrical stimulation. Motor threshold was the lowest in outer direction. Then, I measured the induced current of the big and small coils in a tank filled with saline that mimicked the forearm. The induced currents by both big and small coils were the largest and the first spatial derivatives of the induced electric field were the greatest in outer direction. These results suggest that the orientation of the eight-shaped coil is important for peripheral nerve magnetic stimulation. The fact that the forearm is a restrictive volume conductor may result in the different effects of coil orientation on the excitement of the peripheral nerve. PMID:8727356

  6. Transport driven plasma flows in the scrape-off layer of ADITYA Tokamak in different orientations of magnetic field

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.

    2014-06-15

    Parallel plasma flows in the scrape-off layer of ADITYA tokamak are measured in two orientations of total magnetic field. In each orientation, experiments are carried out by reversing the direction of the toroidal magnetic field and the plasma current. The transport-driven component is determined by averaging flow Mach numbers, measured in two directions of the toroidal magnetic field and the plasma current for the same orientation. It is observed that there is a significant transport-driven component in the measured flow and the component depends on the field orientation.

  7. Preparation of non-oriented silicon steel with high magnetic induction using columnar grains

    NASA Astrophysics Data System (ADS)

    Cheng, Ling; Yang, Ping; Fang, Yupei; Mao, Weimin

    2012-11-01

    Columnar grains can lead to detrimental surface ridging and an inhomogeneous microstructure, although their {1 0 0}<0 v w> texture is considered desirable due to their good magnetic properties in non-oriented silicon steel. Based on the hereditary tendency of {1 0 0}<0 v w> texture, the effects of lubrication and heating rate on texture and on final magnetic properties were investigated using a cast slab containing 100% columnar grains. Hot rolling with lubrication, normalization at low heating rate, two-stage cold rolling, and final annealing at 1000 °C helped achieve high performance. As a result, a new non-oriented silicon steel with high magnetic induction (B50=1.82 T) and low core loss (P1.5=2.35 W/kg) was prepared. The possibility of further performance optimization was also discussed.

  8. Biophysics of Magnetic Orientation: Radical Pairs, Biogenic Magnetite, or both?

    NASA Astrophysics Data System (ADS)

    Kirschvink, Joe

    2011-03-01

    Two major biophysical mechanisms for magnetoreception in terrestrial animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, have been the subject of experiment and debate for the past 30 years. The magnetite hypothesis has stood the test of time: biogenic magnetite is synthesized biochemically in Bacteria, Protists, and numerous Animal phyla, as well as in some plants. Chains of single-domain crystals have been detected by clean-lab based SQUID magnetometry in animal tissues in all major phyla, followed by high-resolution TEM in selected model organisms, as well as by electrophysiological studies demonstrating the role of the ophthalmic branch of the trigeminal nerve in the magnetoreceptive process. Pulse-remagnetization - configured to uniquely flip the polarity of single-domain ferromagnets - has dramatic effects on the behavior of many birds, honeybees, mole rats, turtles, and bats, to cite a growing list. Magnetite-containing cells in the vicinity of these neurons in fish are now the subject of intense study by our consortium. The existence of a specialized class of magnetite-containing magnetoreceptor cells in animal tissues is no longer controversial. In contrast, less success has been achieved in gaining experimental support across a range of taxa for the radical-pair hypothesis. Although this mechanism was proposed to explain an early observation that birds would not respond to complete inversion of the magnetic vector, many organisms (even some birds) do indeed respond to the field polarity. We also note that few, if any, of these critical experiments have been done using fully double-blind methods. This is joint work with: M. M. Walker (University of Auckland, New Zealand) and M. Winklhofer (LMU Munich, Germany).

  9. Orientation of the magnetization easy axes of interacting nanoparticles: Influence on the hyperthermia properties

    NASA Astrophysics Data System (ADS)

    Conde-Leborn, Ivn; Serantes, David; Baldomir, Daniel

    2015-04-01

    The relative orientation between anisotropy easy axes of magnetization of magnetic nanoparticles (MNPs) and the applied magnetic field direction determines their heating properties and thus needs to be considered for accurate heating applications. In this work we systematically study the heating properties of a system of interacting MNPs with ferromagnetic-like behavior (i.e. in the blocked state), randomly distributed in space, as a function of the degree of collinearity of their easy anisotropy axes along the magnetic field direction. The easy-axes of the particles were distributed at random within cones of different aperture angles (0, 10, 22.5 and 45 degrees with respect to the field direction), under different conditions of magnetic field amplitude and interparticle interactions. Our results show that easy-axes collinearity marks a clear threshold for heat dissipation at low interacting conditions, but increasing interactions tends to attenuate this effect.

  10. Mechanics of a magnet and a Meissner superconducting ring at arbitrary position and orientation

    NASA Astrophysics Data System (ADS)

    Perez-Diaz, J. L.; Garcia-Prada, J. C.; Diaz-Garcia, J. A.

    2009-04-01

    The force and torque exerted by a magnetic dipole on a superconducting ring (or hollow cylinder) in the Meissner state at arbitrary position and orientation are calculated using a Maxwell-London model previously proposed by the authors. The center of the ring is an unstable equilibrium point for the magnet. At this point the ring tends to align the magnet but tends to expel it for any small axial deviation from the center. There is also a non-monotonic and oscillatory dependence of the forces and torques on the position caused by the finiteness of the ring and a torque arises when the magnet is displaced both radially and axially from the center of the cylinder which corresponds to the experimental data. Therefore, the use of a magnet in a Meissner superconducting ring as a self aligning bearing requires a centered position and that the axial unstability to be compensated by additional mechanical means.

  11. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Grsoy, D.; Scharfetter, H.

    2009-10-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors.

  12. Anomalous Magnetic Orientations of Magnetosome Chains in a Magnetotactic Bacterium: Magnetovibrio blakemorei Strain MV-1

    PubMed Central

    Kalirai, Samanbir S.; Bazylinski, Dennis A.; Hitchcock, Adam P.

    2013-01-01

    There is a good deal of published evidence that indicates that all magnetosomes within a single cell of a magnetotactic bacterium are magnetically oriented in the same direction so that they form a single magnetic dipole believed to assist navigation of the cell to optimal environments for their growth and survival. Some cells of the cultured magnetotactic bacterium Magnetovibrio blakemorei strain MV-1 are known to have relatively wide gaps between groups of magnetosomes that do not seem to interfere with the larger, overall linear arrangement of the magnetosomes along the long axis of the cell. We determined the magnetic orientation of the magnetosomes in individual cells of this bacterium using Fe 2p X-ray magnetic circular dichroism (XMCD) spectra measured with scanning transmission X-ray microscopy (STXM). We observed a significant number of cases in which there are sub-chains in a single cell, with spatial gaps between them, in which one or more sub-chains are magnetically polarized opposite to other sub-chains in the same cell. These occur with an estimated frequency of 4.0±0.2%, based on a sample size of 150 cells. We propose possible explanations for these anomalous cases which shed insight into the mechanisms of chain formation and magnetic alignment. PMID:23308202

  13. Current profilers and current meters: compass and tilt sensors errors and calibration

    NASA Astrophysics Data System (ADS)

    Le Menn, M.; Lusven, A.; Bongiovanni, E.; Le D, P.; Rouxel, D.; Lucas, S.; Pacaud, L.

    2014-08-01

    Current profilers and current meters have a magnetic compass and tilt sensors for relating measurements to a terrestrial reference frame. As compasses are sensitive to their magnetic environment, they must be calibrated in the configuration in which they will be used. A calibration platform for magnetic compasses and tilt sensors was built, based on a method developed in 2007, to correct angular errors and guarantee a measurement uncertainty for instruments mounted in mooring cages. As mooring cages can weigh up to 800?kg, it was necessary to find a suitable place to set up this platform, map the magnetic fields in this area and dimension the platform to withstand these loads. It was calibrated using a GPS positioning technique. The platform has a table that can be tilted to calibrate the tilt sensors. The measurement uncertainty of the system was evaluated. Sinusoidal corrections based on the anomalies created by soft and hard magnetic materials were tested, as well as manufacturers calibration methods.

  14. Crystal-oriented tungsten-bronze type ceramics prepared by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Doshida, Y.; Shimizu, H.; Furushima, R.; Uematsu, K.

    2011-03-01

    Forming and sintering of c-axis-oriented Sr2NaNb5O15 (SNN) ceramics were examined. Particle-oriented SNN was fabricated by using a rotating high magnetic field and subsequent sintering without magnetic field. SNN ceramics are tungsten-bronze-type ferroelectric materials with a tetragonal crystal system. The diamagnetic susceptibilities of the c-axis are smaller than that of the a- and b-axis (?c < ?a,b < 0). SNN powder was prepared by conventional solid-state reaction. The synthesized powder was mixed with distilled water and a dispersant by using ball milling to give a slurry with solid loading of 30 vol%. The slurry was poured into a plastic mold and this was placed in a 10Tesla magnetic field in a superconducting magnet. The mold was rotated at 30 rpm while the slurry dried at room temperature. The resulting powder compact with a columnar shape was heated at 5 K/min to 1473 K, held for 6 h, and then heated at 1525 K for 2 h to prevent exaggerated grain growth. XRD patterns showed that c-axis-oriented SNN polycrystalline ceramics were produced in the presence of the rotating magnetic field. In XRD patterns viewed from the top surface of the sintered specimens, peaks from the c-planes of the crystal, such as 001 and 002, were very strong. Diffraction peaks which were very strong in the ceramics, such as 320 and 410, were absent in the specimen. Oriented microstructure was developed well by sintering. Grain-growth along to c-axis was observed in the SNN ceramics heated at 1525 K.

  15. Classroom Compass, 1995-96.

    ERIC Educational Resources Information Center

    Classroom Compass, 1995

    1995-01-01

    This document is comprised of the four 1995-1996 issues of "Classroom Compass," a newsletter of the Eisenhower Southwest Consortium for the Improvement of Mathematics and Science Teaching. Each issue contains a "Resources and Opportunities" section, a reading list, excerpts from the National Science Education Standards, and learning activities.

  16. Distinctive uniaxial magnetic anisotropy and positive magnetoresistance in (110)-oriented Fe3O4 films

    NASA Astrophysics Data System (ADS)

    Dho, Joonghoe; Kim, Byeong-geon; Ki, Sanghoon

    2015-04-01

    Magnetite (Fe3O4) films were synthesized on (110)-oriented MgO, MgAl2O4, and SrTiO3 substrates for comparative studies of the substrates' effects on magnetic and magnetoresistance properties of the films. For the [-110] direction, the hysteresis loops of the Fe3O4 film on MgAl2O4 exhibited a good squareness with the largest coercivity of 1090 Oe, and the ratio of remanent magnetization to saturation magnetization was 0.995. For the [001] direction, positive magnetoresistance in weak magnetic fields was most distinct for the (110) SrTiO3 substrate with the largest lattice mismatch. Positive magnetoresistance in the (110) Fe3O4 films was presumably affected by imperfect atomic arrangements at anti-phase boundaries.

  17. A novel method for assessing the 3-D orientation accuracy of inertial/magnetic sensors.

    PubMed

    Faber, Gert S; Chang, Chien-Chi; Rizun, Peter; Dennerlein, Jack T

    2013-10-18

    A novel method for assessing the accuracy of inertial/magnetic sensors is presented. The method, referred to as the "residual matrix" method, is advantageous because it decouples the sensor's error with respect to Earth's gravity vector (attitude residual error: pitch and roll) from the sensor's error with respect to magnetic north (heading residual error), while remaining insensitive to singularity problems when the second Euler rotation is close to 90. As a demonstration, the accuracy of an inertial/magnetic sensor mounted to a participant's forearm was evaluated during a reaching task in a laboratory. Sensor orientation was measured internally (by the inertial/magnetic sensor) and externally using an optoelectronic measurement system with a marker cluster rigidly attached to the sensor's enclosure. Roll, pitch and heading residuals were calculated using the proposed novel method, as well as using a common orientation assessment method where the residuals are defined as the difference between the Euler angles measured by the inertial sensor and those measured by the optoelectronic system. Using the proposed residual matrix method, the roll and pitch residuals remained less than 1 and, as expected, no statistically significant difference between these two measures of attitude accuracy was found; the heading residuals were significantly larger than the attitude residuals but remained below 2. Using the direct Euler angle comparison method, the residuals were in general larger due to singularity issues, and the expected significant difference between inertial/magnetic sensor attitude and heading accuracy was not present. PMID:24016678

  18. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature.

    PubMed

    Phillips, L C; Cherifi, R O; Ivanovskaya, V; Zobelli, A; Infante, I C; Jacquet, E; Guiblin, N; Ünal, A A; Kronast, F; Dkhil, B; Barthélémy, A; Bibes, M; Valencia, S

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  19. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature

    PubMed Central

    Phillips, L. C.; Cherifi, R. O.; Ivanovskaya, V.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Guiblin, N.; Ünal, A. A.; Kronast, F.; Dkhil, B.; Barthélémy, A.; Bibes, M.; Valencia, S.

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  20. Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model

    PubMed Central

    Wu, Fang; Moon, Seung Ki; Son, Hungsun

    2014-01-01

    This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage. On the other hand, an analytical method provides simple and fast-computing solutions but is also flawed due to its difficulties in handling realistic and complex geometries such as complicated designs and boundary conditions, etc. In this paper, the extended distributed multi-pole model (eDMP) is developed to characterize a time-varying magnetic field based on an existing DMP model analyzing static magnetic fields. The method has been further exploited to compute the mutual inductance between coils at arbitrary locations and orientations. Simulation and experimental results of various configurations of the coils are presented. Comparison with the previously published data shows not only good performance in accuracy, but also effectiveness in computation. PMID:24977389

  1. Magnetic and transport properties of Mn{sub 2}CoAl oriented films

    SciTech Connect

    Jamer, Michelle E.; Assaf, Badih A.; Devakul, Trithep; Heiman, Don

    2013-09-30

    The structure, magnetic, and transport properties of thin films of the Heusler ferrimagnet Mn{sub 2}CoAl have been investigated for properties related to spin gapless semiconductors. Oriented films were grown by molecular beam epitaxy on GaAs substrates and the structure was found to transform from tetragonal to cubic for increasing annealing temperature. The anomalous Hall resistivity is found to be proportional to the square of the longitudinal resistivity and magnetization expected for a topological Berry curvature origin. A delicate balance of the spin-polarized carrier type when coupled with voltage gate-tuning could significantly impact advanced electronic devices.

  2. Magnetic and transport properties of Mn2CoAl oriented films

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.; Assaf, Badih A.; Devakul, Trithep; Heiman, Don

    2013-09-01

    The structure, magnetic, and transport properties of thin films of the Heusler ferrimagnet Mn2CoAl have been investigated for properties related to spin gapless semiconductors. Oriented films were grown by molecular beam epitaxy on GaAs substrates and the structure was found to transform from tetragonal to cubic for increasing annealing temperature. The anomalous Hall resistivity is found to be proportional to the square of the longitudinal resistivity and magnetization expected for a topological Berry curvature origin. A delicate balance of the spin-polarized carrier type when coupled with voltage gate-tuning could significantly impact advanced electronic devices.

  3. Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO.

    PubMed Central

    Sanders, C R; Prestegard, J H

    1990-01-01

    Buffered mixtures of the detergent 3-(cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate (CHAPSO) and dimyristoylphosphatidylcholine (DMPC) orient in the presence of a strong magnetic field over a wide range of water contents (at least 65-85%) and CHAPSO:DMPC molar ratios (typically 1:10-1:3). 31P NMR studies show that the phospholipid in such mixtures is oriented with its director axis perpendicular to the magnetic field. 31P and 2H NMR results also suggest that the structure and dynamics of the DMPC molecules are similar to that of pure phospholipids existing in the liquid crystalline (L alpha) bilayer phase. The ability of 1:5 CHAPSO:DMPC samples to orient is highly tolerant of large changes in temperature, pH, and ionic strength, as well as to the addition of substantial amounts of charged amphiphiles or soluble protein. However, 2H NMR studies of deuterated beta-dodecyl melibiose (DD-MB) solubilized in the system indicate the head group conformation and/or dynamics of this glycolipid analogue is dependent upon the CHAPSO concentration. Despite the latter results, the orientational versatility of the system, together with the nondenaturing properties of CHAPSO, makes this system useful in spectroscopic studies of membrane-associated phenomena. PMID:2207249

  4. The COMPASS Polarized Target in 2006 and 2007

    SciTech Connect

    Doshita, N.; Iwata, T.; Kondo, K.; Michigami, T.; Ball, J.; Magnon, A.; Marchand, C.; Baum, G.; Gautheron, F.; Goertz, St.; Hasegawa, T.; Matsuda, T.; Heckmann, J.; Hess, Ch.; Kisselev, Y.; Koivuniemi, J.; Meyer, W.; Radtke, E.; Reicherz, G.; Horikawa, N.

    2008-02-06

    The COMPASS experiment has been taking data since 2002. Its polarized target was upgraded during the 2005 CERN SPS shutdown. With the high acceptance magnet we obtained +56.0% and -53.0% deuteron polarization in {sup 6}LiD. In 2007 ammonia is used as a proton target which has a relaxation time of {approx}4000 h at 0.6 T.

  5. Orientation and autumn migration routes of juvenile sharp-tailed sandpipers at a staging site in Alaska.

    PubMed

    Grnroos, Johanna; Muheim, Rachel; Akesson, Susanne

    2010-06-01

    Arctic waders are well known for their impressive long-distance migrations between their high northerly breeding grounds and wintering areas in the Southern hemisphere. Performing such long migrations requires precise orientation mechanisms. We conducted orientation cage experiments with juvenile sharp-tailed sandpipers (Calidris acuminata) to investigate what cues they rely on when departing from Alaska on their long autumn migration flights across the Pacific Ocean to Australasia, and which possible migration routes they could use. Experiments were performed under natural clear skies, total overcast conditions and in manipulated magnetic fields at a staging site in Alaska. Under clear skies the juvenile sharp-tailed sandpipers oriented towards SSE, which coincides well with reported sun compass directions from their breeding grounds in Siberia towards Alaska and could reflect their true migratory direction towards Australasia assuming that they change direction towards SW somewhere along the route. Under overcast skies the sandpipers showed a mean direction towards SW which would lead them to Australasia, if they followed a sun compass route. However, because of unfavourable weather conditions (headwinds) associated with overcast conditions, these south-westerly directions could also reflect local movements. The juvenile sharp-tailed sandpipers responded clearly to the manipulated magnetic field under overcast skies, suggesting the use of a magnetic compass for selecting their courses. PMID:20472769

  6. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Valach, Fridrich; Bochn?ek, Josef; Hejda, Pavel; Revallo, Milo

    2014-02-01

    The paper deals with the relation of the southern orientation of the north-south component Bz of the interplanetary magnetic field to geomagnetic activity (GA) and subsequently a method is suggested of using the found facts to forecast potentially dangerous high GA. We have found that on a day with very high GA hourly averages of Bz with a negative sign occur at least 16 times in typical cases. Since it is very difficult to estimate the orientation of Bz in the immediate vicinity of the Earth one day or even a few days in advance, we have suggested using a neural-network model, which assumes the worse of the possibilities to forecast the danger of high GA - the dominant southern orientation of the interplanetary magnetic field. The input quantities of the proposed model were information about X-ray flares, type II and IV radio bursts as well as information about coronal mass ejections (CME). In comparing the GA forecasts with observations, we obtain values of the Hanssen-Kuiper skill score ranging from 0.463 to 0.727, which are usual values for similar forecasts of space weather. The proposed model provides forecasts of potentially dangerous high geomagnetic activity should the interplanetary CME (ICME), the originator of geomagnetic storms, hit the Earth under the most unfavorable configuration of cosmic magnetic fields. We cannot know in advance whether the unfavorable configuration is going to occur or not; we just know that it will occur with the probability of 31%.

  7. Signal Transduction Model of Magnetic Sensing in Cryptochrome Mediated Photoreception

    NASA Astrophysics Data System (ADS)

    Todd, Phillise Tiffeny

    While migratory birds have long been known to use the Earth's magnetic field for navigation, the precise biophysical mechanism behind this magnetic sense remains unconfirmed. A leading theory of magnetoreception suggests a chemical compass model with a yet undetermined molecular reaction site and unknown magnetically sensitive reactants. The cryptochrome photoreceptor has emerged as a promising candidate site. This investigation numerically models the first order kinetics of cryptochrome mediated photoreception, in order to evaluate its ability to function as a magnetic sensor and transduce orientation information along a neural pathway. A signal-to-noise ratio is defined to quantify the threshold for the functioning of a cryptochrome-based chemical compass. The model suggests that a flavin-superoxide radical pair in cryptochrome functions as the chemical reactants for magnetoreception. Such a cryptochrome-based signal transduction model reasonably predicts the general light intensity and wavelength effects that have been experimentally observed in migratory birds.

  8. Magnetically Actuated Propellant Orientation, Controlling Fluids in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Holt, James B.

    2000-01-01

    Cryogenic fluid management (CFM) is a technology area common to virtually every space transportation propulsion concept envisioned. Storage, supply, transfer and handling of sub-critical cryogenic fluids are basic capabilities that have long been needed by multiple programs and the need is expected to continue in the future. The use of magnetic fields provides another method, which could replace or augment current/traditional approaches, potentially simplifying vehicle operational constraints. The magnetically actuated propellant orientation (MAPO) program effort focused on the use of magnetic fields to control fluid motion as it relates to positioning (i.e. orientation and acquisition) of a paramagnetic substance such as LO2. Current CFM state- of-the-art systems used to control and acquire propellant in low gravity environments rely on liquid surface tension devices which employ vanes, fine screen mesh channels and baskets. These devices trap and direct propellant to areas where it's needed and have been used routinely with storable (non-cryogenic) propellants. However, almost no data exists r,egarding their operation in cryogenics and the use of such devices confronts designers with a multitude of significant technology issues. Typical problems include a sensitivity to screen dry out (due to thermal loads and pressurant gas) and momentary adverse accelerations (generated from either internal or external sources). Any of these problems can potentially cause the acquisition systems to ingest or develop vapor and fail. The use of lightweight high field strength magnets may offer a valuable means of augmenting traditional systems potentially mitigating or at least easing operational requirements. Two potential uses of magnetic fields include: 1) strategically positioning magnets to keep vent ports clear of liquid (enabling low G vented fill operations), and 2) placing magnets in the center or around the walls of the tank to create an insulating vapor pocket (between the liquid and the tank wall) which could effectively lower heat transfer to the liquid (enabling increased storage time).

  9. Seedlayer and underlayer effects on the crystallographic orientation and magnetic recording performance of glass media

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Choe, Geon; Johnson, Kenneth E.

    2002-05-01

    Seedlayer and underlayer effects on crystallographic orientation and recording performance were studied for CoCrPtB media sputtered on glass substrates. For this study, the seedlayers are XAl (X=Ni, Co, Ti, and Ru) and the underlayers are CrY (Y=V, Mo, W, and Ti). It was found that not only different seedlayers, but also different combinations of seedlayer and underlayer, led to different magnetic performance. NiAl and CoAl seedlayers orient the Co c axis to (10.0) and TiAl and RuAl seedlayers produce (11.0) Co orientation. For the NiAl and CoAl seedlayer, CrV and CrW underlayers develop less out-of-plane c-axis orientation and higher coercivity and coercive squareness while CrTi and CrMo underlayers work better for TiAl and RuAl seedlayers, respectively. Media with RuAl seedlayers have better parametric performance than media with NiAl and CoAl seedlayers. The detailed relationship between seedlayer and underlayer types and crystal orientation and recording performance is discussed.

  10. Is the blind cave salamander Proteus anguinus equiped for magnetic orientation ?

    NASA Astrophysics Data System (ADS)

    Bouquerel, H.; Valet, J. P.

    2003-04-01

    The Proteus anguinus is a blind cave salamander which can develop the ability of using the earths magnetic field for orientation and navigation. It has been shown that the strength of the geomagnetic field is not strong enough to excite the electroreceptors of these animals through induction mechanism so that the most likely hypothesis is that they would use cristals of magnetite as permanent magnets. We have been looking for evidence of remanent magnetism in several proteus collected from the underground CNRS laboratory at Moulis (France). Because the level of natural remanent magnetization, if any, was too low to be measured with confidence using a 3 axis squid 2G magnetometer (even bringing the animals as close as possible to the sensors), we stepwise remagnetized the samples between 0.2 and 1.2T. Measurements were performed in different parts of three proteus bodies. No significant magnetization was detected in the head, most of the signal being concentrated in the lower body of the animal. Saturation was attained after 0.2T while stepwise demagnetization by alternating field showed that most magnetization was removed after 40 mT (medium destructive field, MDF of about 10 mT), which is typical of magnetite. Independent measurements of clay soils taken from the surrounding immediate environment of the animals reveal a different magnetic signature for saturation, MDF and viscosity. Thus there is no apparent and direct link between food absorbed from their environment and the magnetic remamence of the animals. New experiments are currently in progress to determine whether magnetite is the unique magnetic carrier and also to provide better clue about the magnetic granulometry and its distribution.

  11. Influence of nonuniform magnetic fields on orientation of plant seedlings in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Nechitailo, G. S.; Mashinsky, A. L.; Kuznetsov, A. A.; Chikov, V. M.; Kuznetsov, O. A.

    2001-01-01

    Experiments on the spatial behavior of the flax ( Linum usitatissimum, L.) seedlings in a nonuniform magnetic field were conducted on the orbital space stations «Salutå and «Mirå. This field can displace sensory organelles (statoliths) inside receptor cells and such displacement should cause a physiological reaction of the plant - tropistic curvature. Experiments were conducted in the custom-built «Magnetogravistatå facility, where seeds were germinated and grown for 3-4 days in a magnetic field with the dynamic factor grad(H 2/2)≈ 10 7 Oe 2/cm, then fixed on orbit and returned to Earth for analysis. It was found, that 93% of the seedlings were oriented in the field consistently with curvature in response to displacement of statoliths along the field gradient by ponderomotive magnetic forces, while control seedlings grew in the direction of the initial orientation of the seed. This suggests, that gravity receptors of plants recognized magnetic forces on statoliths as gravity, and that gravity stimulus can be substituted for plants by a force of a different physical nature.

  12. Structural and magnetic properties of Co films on highly textured and randomly oriented C60 layers

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ok; Choi, Jun Woo; Lee, Dong Ryeol

    2016-03-01

    The structural and magnetic properties of Co/C60/pentacene and Co/C60 thin film structures were investigated. Atomic force microscopy and x-ray reflectivity analysis show that the presence or absence of a pentacene buffer layer leads to a highly textured or randomly oriented C60 layer, respectively. A Co film deposited on a randomly oriented C60 layer penetrates into the C60 layer when it is deposited at a slow deposition rate. The Co penetration can be minimized, regardless of the Co deposition rate, by growth on a highly textured and nanostructured C60/pentacene layer. Vibrating sample magnetometry measurements show that the saturation magnetization of Co/C60/pentacene is significantly reduced compared to that of Co/C60. On the other hand, the Co penetration does not seem to have an effect on the magnetic properties, suggesting that the structural properties of the Co and C60 layer, rather than the Co penetration into the organic C60 layer, are critical to the magnetic properties of the Co/C60.

  13. Is compassion essential to nursing practice?

    PubMed

    Hem, Marit Helene; Heggen, Kristin

    2004-01-01

    The Norwegian Nurses' Association recently (2001) approved a new code of ethics that included compassion as one of the basic values in nursing care. This paper examines the idea of compassion in the context of the Bible story of the Good Samaritan using an analysis of qualitative data from nurses' clinical work with psychiatric patients. The aim is to show how the idea of compassion challenges nursing practice. Thereafter, the paper discusses the benefits of and premises for compassion in care work. The results show that nurses tend not to be guided by compassion in their work with patients. The organisation of the day-to-day work in the hospital ward, the division of labour between nurses and doctors, and the nurses' approach to nursing were identified as influencing this tendency. The study shows that compassion is a radical concept with a potential to promote greater respect for patients' dignity. PMID:17929733

  14. Nucleation controlled magnetization reversal mechanism in oriented L10 FeCoPt ternary alloys

    NASA Astrophysics Data System (ADS)

    Goyal, Rajan; Sehdev, Neeru; Lamba, S.; Annapoorni, S.

    2016-01-01

    The angular dependence of scaled coercivity is investigated within the framework of various theoretical models to gather an insight into the magnetization reversal mechanism in hard magnetic materials. FeCoPt ternary alloy thin films with low concentration of Co were successfully fabricated on an <100> Si substrate with different working pressures in order to attain an optimum energy product. The structural and hysteresis curve analysis show an improvement in atomic ordering and orientation of easy axis with annealing temperature. The experimental data for angular dependence of coercivity along with the theoretical predications based on the nucleation model indicates that the dominant reversal mechanism is nucleation along with a slight contribution from pinning. The magnetic force microscopy (MFM) imaging also supports the above model. The evolution of morphology and microstructure characterized by atomic force microscopy (AFM) was directly linked to an increase in surface roughness.

  15. Magnetically Actuated Propellant Orientation Experiment, Controlling Fluid Motion With Magnetic Fields in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Holt, J. B.

    2000-01-01

    This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.

  16. Electric and Magnetic Field Detection in Elasmobranch Fishes

    NASA Astrophysics Data System (ADS)

    Kalmijn, Ad. J.

    1982-11-01

    Sharks, skates, and rays receive electrical information about the positions of their prey, the drift of ocean currents, and their magnetic compass headings. At sea, dogfish and blue sharks were observed to execute apparent feeding responses to dipole electric fields designed to mimic prey. In training experiments, stingrays showed the ability to orient relative to uniform electric fields similar to those produced by ocean currents. Voltage gradients of only 5 nanovolts per centimeter would elicit either behavior.

  17. Penetrant-Indication-Measuring Compass

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd

    1991-01-01

    Modified drafting compass well suited to measurement of length of crack or width of area stained by penetrant-dye-inspection method. Equipped with any of variety of standard curved or straight pointed tips. Modification consists in coating tips with dye that fluoresces light pink under same ultraviolet inspection light causing penetrant dye to fluoresce yellow green. Used in locations inaccessible to conventional fluorescent comparator. Eliminates errors of optical distortion in comparator, also eliminates errors of interpolation.

  18. Integration of polarization and chromatic cues in the insect sky compass.

    PubMed

    el Jundi, Basil; Pfeiffer, Keram; Heinze, Stanley; Homberg, Uwe

    2014-06-01

    Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way. PMID:24589854

  19. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway.

    PubMed

    Fuxjager, Matthew J; Eastwood, Brian S; Lohmann, Kenneth J

    2011-08-01

    Young loggerhead sea turtles (Caretta caretta) from the east coast of Florida, USA, undertake a transoceanic migration around the North Atlantic Gyre, the circular current system that flows around the Sargasso Sea. Previous experiments indicated that loggerhead hatchlings, when exposed to magnetic fields replicating those that exist at five widely separated locations along the migratory pathway, responded by swimming in directions that would, in each case, help turtles remain in the gyre and advance along the migratory route. In this study, hatchlings were exposed to several additional magnetic fields that exist along or outside of the gyre's northern boundary. Hatchlings responded to fields that exist within the gyre currents by swimming in directions consistent with their migratory route at each location, whereas turtles exposed to a field that exists north of the gyre had an orientation that was statistically indistinguishable from random. These results are consistent with the hypothesis that loggerhead turtles entering the sea for the first time possess a navigational system in which a series of regional magnetic fields sequentially trigger orientation responses that help steer turtles along the migratory route. By contrast, hatchlings may fail to respond to fields that exist in locations beyond the turtles' normal geographic range. PMID:21753042

  20. A functional role of the sky's polarization pattern for orientation in the greater mouse-eared bat.

    PubMed

    Greif, Stefan; Borissov, Ivailo; Yovel, Yossi; Holland, Richard A

    2014-01-01

    Animals can call on a multitude of sensory information to orient and navigate. One such cue is the pattern of polarized light in the sky, which for example can be used by birds as a geographical reference to calibrate other cues in the compass mechanism. Here we demonstrate that the female greater mouse-eared bat (Myotis myotis) uses polarization cues at sunset to calibrate a magnetic compass, which is subsequently used for orientation during a homing experiment. This renders bats the only mammal known so far to make use of the polarization pattern in the sky. Although there is currently no clear understanding of how this cue is perceived in this taxon, our observation has general implications for the sensory biology of mammalian vision. PMID:25050897

  1. A functional role of the skys polarization pattern for orientation in the greater mouse-eared bat

    PubMed Central

    Greif, Stefan; Borissov, Ivailo; Yovel, Yossi; Holland, Richard A.

    2014-01-01

    Animals can call on a multitude of sensory information to orient and navigate. One such cue is the pattern of polarized light in the sky, which for example can be used by birds as a geographical reference to calibrate other cues in the compass mechanism. Here we demonstrate that the female greater mouse-eared bat (Myotis myotis) uses polarization cues at sunset to calibrate a magnetic compass, which is subsequently used for orientation during a homing experiment. This renders bats the only mammal known so far to make use of the polarization pattern in the sky. Although there is currently no clear understanding of how this cue is perceived in this taxon, our observation has general implications for the sensory biology of mammalian vision. PMID:25050897

  2. Variable-State-Dimension Kalman-Based Filter for Orientation Determination Using Inertial and Magnetic Sensors

    PubMed Central

    Sabatini, Angelo Maria

    2012-01-01

    In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately. PMID:23012502

  3. Variable-State-Dimension Kalman-based Filter for orientation determination using inertial and magnetic sensors.

    PubMed

    Sabatini, Angelo Maria

    2012-01-01

    In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately. PMID:23012502

  4. The impact of turbulence and magnetic field orientation on star-forming filaments

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Walch, S.

    2015-09-01

    We present simulations of collapsing filaments studying the impact of turbulence and magnetic field morphologies on their evolution and star formation properties. We vary the mass per unit length of the filaments as well as the orientation of the magnetic field with respect to the major axis. We find that the filaments, which have no or a perpendicular magnetic field, typically reveal a smaller width than the universal width of 0.1 pc proposed by e.g. Arzoumanian et al. We show that this also holds in the presence of supersonic turbulence and that accretion driven turbulence is too weak to stabilize the filaments along their radial direction. On the other hand, we find that a magnetic field that is parallel to the major axis can stabilize the filament against radial collapse resulting in widths of 0.1 pc. Furthermore, depending on the filament mass and magnetic field configuration, gravitational collapse and fragmentation in filaments occurs either in an edge-on way, uniformly distributed across the entire length, or in a mixed way. In the presence of initially moderate density perturbations, a centralized collapse towards a common gravitational centre occurs. Our simulations can thus reproduce different modes of fragmentation observed recently in star-forming filaments. Moreover, we find that turbulent motions influence the distance between individual fragments along the filament, which does not always match the results of a Jeans analysis.

  5. Control of proliferation rate of N27 dopaminergic neurons using Transcranial Magnetic Stimulation orientation

    NASA Astrophysics Data System (ADS)

    Meng, Yiwen; Hadimani, Ravi; Anantharam, Vellareddy; Kanthasamy, Anumantha; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) has been used to investigate possible treatments for a variety of neurological disorders. However, the effect that magnetic fields have on neurons has not been well documented in the literature. We have investigated the effect of different orientation of magnetic field generated by TMS coils with a monophasic stimulator on the proliferation rate of N27 neuronal cells cultured in flasks and multi-well plates. The proliferation rate of neurons would increase by exposed horizontally adherent N27 cells to a magnetic field pointing upward through the neuronal proliferation layer compared with the control group. On the other hand, proliferation rate would decrease in cells exposed to a magnetic field pointing downward through the neuronal growth layer compared with the control group. We confirmed results obtained from the Trypan-blue and automatic cell counting methods with those from the CyQuant and MTS cell viability assays. Our findings could have important implications for the preclinical development of TMS treatments of neurological disorders and represents a new method to control the proliferation rate of neuronal cells.

  6. Orientational and relaxation features of the dynamic magnetic susceptibility of PbFe12O19 upon transition from the magnetically ordered to paramagnetic state

    NASA Astrophysics Data System (ADS)

    Bezlepkin, A. A.; Kuntsevich, S. P.; Kostyukov, V. I.

    2015-11-01

    The dynamic magnetic susceptibility of lead hexaferrite has been experimentally studied in the temperature range of the transition from the magnetically ordered to paramagnetic state. As the vector of the ac magnetic field is oriented in the easy-magnetization direction along hexagonal axis c, anomalous peakshaped decrease in the real part of the magnetic susceptibility has been observed near the Curie temperature. The observed effect depends on the ac magnetic field frequency and disappears at a frequency near 12 MHz. The observed features have been interpreted as the effects caused by the relaxation resonance.

  7. Solving the Orientation Specific Constraints in Transcranial Magnetic Stimulation by Rotating Fields

    PubMed Central

    Neef, Nicole E.; Agudelo-Toro, Andres; Rakhmilevitch, David; Paulus, Walter; Moses, Elisha

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS) efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback) and will enable stimulation in brain regions where a preferred axonal orientation does not exist. PMID:24505266

  8. Self-compassion: a concept analysis.

    PubMed

    Reyes, Darcel

    2012-06-01

    This concept analysis uses a modification of the evolutionary method (Rodgers, 1989) to identify the antecedent, attributes, and consequences of self-compassion. The antecedent to self-compassion is suffering, experienced in six possible realms: an event, a situation, an emotional response, a psychological state, spiritual alienation, or a physical response to illness or pain. Suffering has three dimensions: intrapersonal, interpersonal, and contextual. Suffering manifests as a pattern of decreased self-care, decreased ability to relate to others, and diminished autonomy. The attributes of self-compassion are self-kindness, mindfulness, commonality, and wisdom. The consequences of self-compassion are the opposite of the antecedent: self-compassion manifests as a pattern of increased self-care capacity, compassion for others, and increased relatedness, autonomy, and sense of self. Ideal, borderline and contrary cases of self-compassion provide examples of the concept. The article concludes with a discussion of implications of the concept of self-compassion for nursing practice and research. PMID:22024954

  9. Self-Compassion and Internet Addiction

    ERIC Educational Resources Information Center

    Iskender, Murat; Akin, Ahmet

    2011-01-01

    The purpose of this research is to examine the relationship of self-compassion and internet addiction. Participants were 261 university students who completed a questionnaire package that included the Self-compassion Scale and the Online Cognition Scale. The hypothesis model was tested through structural equation modeling. In correlation analysis,…

  10. 46 CFR 184.402 - Compasses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compasses. 184.402 Section 184.402 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment 184.402 Compasses. (a) Except as otherwise...

  11. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (?1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  12. Kalman-Filter-Based Orientation Determination Using Inertial/Magnetic Sensors: Observability Analysis and Performance Evaluation

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    In this paper we present a quaternion-based Extended Kalman Filter (EKF) for estimating the three-dimensional orientation of a rigid body. The EKF exploits the measurements from an Inertial Measurement Unit (IMU) that is integrated with a tri-axial magnetic sensor. Magnetic disturbances and gyro bias errors are modeled and compensated by including them in the filter state vector. We employ the observability rank criterion based on Lie derivatives to verify the conditions under which the nonlinear system that describes the process of motion tracking by the IMU is observable, namely it may provide sufficient information for performing the estimation task with bounded estimation errors. The observability conditions are that the magnetic field, perturbed by first-order Gauss-Markov magnetic variations, and the gravity vector are not collinear and that the IMU is subject to some angular motions. Computer simulations and experimental testing are presented to evaluate the algorithm performance, including when the observability conditions are critical. PMID:22163689

  13. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. PMID:25313485

  14. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Fujimura, Hiroshi; Nitomi, Hirokatsu; Yashiki, Hiroyoshi

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner.

  15. Evaluation of Microcracks orientation at Stromboli volcano using a Magnetic Ferrofluid and the Method of Anisotropy of Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Lewis, O.; Benson, P. M.; Vinciguerra, S.; Meredith, P. G.

    2005-12-01

    Most crustal rocks are anisotropic. In volcanic areas, anisotropy primarily results due to preferred directions of microcracks as magma cools. This effect is, in turn, enhanced due to local stress fields during deposition. The combined effects of these processes may thus give rise to a complex anisotropic fabric. Such fabrics can play crucial roles when enhancing the formation of slip surfaces which can lead to sector collapses of volcanic edifices, as is the case of Stromboli volcano (Italy) which experienced 4 sector collapses in the past 13ka. However, the rapid analysis of anisotropic microcrack fabrics (in terms of magnitude and principal direction) remains non-trivial. Current methods range from time consuming microcrack analysis of thin sections to the preparation of oriented cores for elastic-wave velocity measurement. To further our understanding of how microcrack fabrics influence the bulk properties of volcanic basalt, we employ a novel method which rapidly evaluates the 3-D microcrack orientation using technique of Anisotropy of Magnetic Susceptibility (AMS). First, we determine the rock matrix AMS (mAMS) using standard methods (via a Agico KLY-4 Kappabridge). Samples are then saturated with a magnetic ferrofluid, filling the microcrack network with a magnetically susceptible suspension of microscopic (10nm) magnetite particles. The AMS is then re-measured, with the matrix susceptibility values subtracted from these readings to yield the average 3-D pore space shape, size and orientation (pAMS). We describe the use of this method using basalt from Stromboli and comparing to a granite (Takidani) from the Japanese Alps in order to verify the technique and to investigate the relationship between the basalt microcrack geometry and field scale observation. For Takidani granite we find the structural anisotropy formed by the void space, as measured by pAMS, is well described by elastic wave velocity measurement; exhibiting anisotropy values of 19.1% and 7.6% for P-waves and S-waves respectively. Stromboli basalt possesses a weaker anisotropy of 4.7% and 3.0% (P-wave and S-wave velocity). We relate our pore space AMS measurements to the layering observed in Stromboli basalt on the flanks of the volcanic edifice; and infer that the microcrack network is both formed by this deposition and active tectonics as well as providing a key control on its physical properties. Such data has crucial significance upon the accurate assessment of flank stability, with consequences to hazard assessment for the surrounding area.

  16. Highlights from the COMPASS Experiment

    SciTech Connect

    Bradamante, F.

    2008-10-13

    An update is given of the ongoing experimental investigation of the spin structure of the nucleon carried on by the COMPASS Collaboration at CERN. Both longitudinal and transverse spin phenomena are covered. In the first case, the hot topic is the direct measurement of the gluon polarisation. Evidence is presented for {delta}G/G being small around x{sub g}{approx_equal}0.1, and its first moment should not be larger than 0.2-0.3 in absolute value. About transverse spin effects, evidence is given for new phenomena, associated with transverse momentum dependent distribution and fragmentation functions.

  17. Magnetic susceptibility anisotropy: cylindrical symmetry from macroscopically ordered anisotropic molecules and accuracy of MRI measurements using few orientations

    PubMed Central

    Wisnieff, Cynthia; Liu, Tian; Spincemaille, Pascal; Wang, Shuai; Zhou, Dong; Wang, Yi

    2013-01-01

    White matter is an essential component of the central nervous system and is of major concern in neurodegenerative diseases such as multiple sclerosis (MS). Recent MRI studies have explored the unique anisotropic magnetic properties of white matter using susceptibility tensor imaging. However, these measurements are inhibited in practice by the large number of different head orientations needed to accurately reconstruct the susceptibility tensor. Adding reasonable constraints reduces the number of model parameters and can help condition the tensor reconstruction from a small number of orientations. The macroscopic magnetic susceptibility is decomposed as a sum of molecular magnetic polarizabilities, demonstrating that macroscopic order in molecular arrangement is essential to the existence of and symmetry in susceptibility anisotropy and cylindrical symmetry is a natural outcome of an ordered molecular arrangement. Noise propagation in the susceptibility tensor reconstruction is analyzed through its condition number, showing that the tensor reconstruction is highly susceptible to the distribution of acquired subject orientations and to the tensor symmetry properties, with a substantial over- or under-estimation of susceptibility anisotropy in fiber directions not favorably oriented with respect to the acquired orientations. It was found that a careful acquisition of three non-coplanar orientations and the use of cylindrical symmetry guided by diffusion tensor imaging allowed reasonable estimation of magnetic susceptibility anisotropy in certain major white matter tracts in the human brain. PMID:23296181

  18. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    PubMed

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. PMID:24621307

  19. Impact of a High Magnetic Field on the Orientation of Gravitactic Unicellular OrganismsA Critical Consideration about the Application of Magnetic Fields to Mimic Functional Weightlessness

    PubMed Central

    Simon, Anja; Waer, Kai; Hauslage, Jens; Christianen, Peter C.M.; Albers, Peter W.; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-01-01

    Abstract The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. Key Words: LevitationMicrogravityGravitaxisGravikinesisGravity. Astrobiology 14, 205215. PMID:24621307

  20. Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti.

    PubMed

    Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken

    2011-03-15

    Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti. PMID:21346116

  1. Quick recovery of orientation after 100 Hz magnetic seizure therapy (MST) for major depressive disorder

    PubMed Central

    Kirov, George; Ebmeier, Klaus P.; Scott, Allan I F; Atkins, Maria; Khalid, Najeeb; Carrick, Lucy; Stanfield, Andrew; O'Carroll, Ronan E.; Husain, Mustafa M.; Lisanby, Sarah H.

    2008-01-01

    Introduction Magnetic seizure therapy (MST), in which seizures are elicited with a high-frequency magnetic field, is under development as a new treatment for major depressive disorder. Its use may be justified if it produces the antidepressant effects of ECT, coupled with limited cognitive side effects. This pilot study reports shortened recovery times after MST compared with ECT as a preliminary step to evaluate the usefulness of a new 100Hz MST device. Methods We induced seizures with 100Hz magnetic transcranial stimulation in eleven patients with major depressive disorder during one session of a regular course of ECT. Recovery times after these MST and ECT induced seizures were compared. Results Seizures could be elicited in ten of the eleven patients. Stimulation over the vertex produced tonic-clonic activity on nine out of eleven occasions. Stimulation over the prefrontal midpoint elicited seizures on three out of seven occasions. The mean duration of magnetically induced seizures was 31.3 sec, ranging from 10-86 sec. All patients had an exceptionally quick recovery of orientation: mean of 7 min 12 sec (SD = 2 min 7 sec, range 4 min 20 sec – 9 min 41 sec). The recovery times were on average 15 min 35 sec shorter with MST than with ECT in the same patients (paired-samples t-test: p = 0.00009). Patients reported feeling less confused after MST. Side effects were confined to myoclonic movements, associated with the use of etomidate. Conclusions The new 100 Hz magnetic stimulator elicits seizures in the majority of patients when administered over the vertex. MST was associated with shorter recovery times and less confusion following treatment. Subsequent work will be required to assess the safety and effectiveness of MST in the treatment of depression. PMID:18670002

  2. Bats respond to polarity of a magnetic field

    PubMed Central

    Wang, Yinan; Pan, Yongxin; Parsons, Stuart; Walker, Michael; Zhang, Shuyi

    2007-01-01

    Bats have been shown to use information from the Earth's magnetic field during orientation. However, the mechanism underlying this ability remains unknown. In this study we investigated whether bats possess a polarity- or inclination-based compass that could be used in orientation. We monitored the hanging position of adult Nyctalus plancyi in the laboratory in the presence of an induced magnetic field of twice Earth-strength. When under the influence of a normally aligned induced field the bats showed a significant preference for hanging at the northern end of their roosting basket. When the vertical component of the field was reversed, the bats remained at the northern end of the basket. However, when the horizontal component of the field was reversed, the bats changed their positions and hung at the southern end of the basket. Based on these results, we conclude that N. plancyi, unlike all other non-mammalian vertebrates tested to date, uses a polarity-based compass during orientation in the roost, and that the same compass is also likely to underlie bats' long-distance navigation abilities. PMID:17848365

  3. Pediatric novice nurses: examining compassion fatigue as a mediator between stress exposure and compassion satisfaction, burnout, and job satisfaction.

    PubMed

    Meyer, Rika M L; Li, Angela; Klaristenfeld, Jessica; Gold, Jeffrey I

    2015-01-01

    We investigated whether compassion fatigue mediated associations between nurse stress exposure and job satisfaction, compassion satisfaction, and burnout, controlling for pre-existing stress. The Life Events Checklist was administered to 251 novice pediatric nurses at the start of the nurse residency program (baseline) and 3 months after to assess pre-existing and current stress exposure. Compassion satisfaction, compassion fatigue, and burnout were assessed 3 months after baseline and job satisfaction 6 months after. Stress exposure significantly predicted lower compassion satisfaction and more burnout. Compassion fatigue partially mediated these associations. Results demonstrate a need for hospitals to prevent compassion fatigue in healthcare providers. PMID:24444742

  4. Dayside Magnetopause Transients Correlated with Changes of the Magnetosheath Magnetic Field Orientation

    NASA Technical Reports Server (NTRS)

    Tkachenko, O.; Safrankova, J.; Nemecek, Z.; Sibeck, D. G.

    2011-01-01

    The paper analyses one long-term pass (26 August 2007) of the THEMIS spacecraft across the dayside low-latitude magnetopause. THEMIS B, serving partly as a magnetosheath monitor, observed several changes of the magnetic field that were accompanied by dynamic changes of the magnetopause location and/or the structure of magnetopause layers observed by THEMIS C, D, and E, whereas THEMIS A scanned the inner magnetosphere. We discuss the plasma and the magnetic field data with motivation to identify sources of observed quasiperiodic plasma transients. Such events at the magnetopause are usually attributed to pressure pulses coming from the solar wind, foreshock fluctuations, flux transfer events or surface waves. The presented transient events differ in nature (the magnetopause surface deformation, the low-latitude boundary layer thickening, the crossing of the reconnection site), but we found that all of them are associated with changes of the magnetosheath magnetic field orientation and with enhancements or depressions of the plasma density. Since these features are not observed in the data of upstream monitors, the study emphasizes the role of magnetosheath fluctuations in the solar wind-magnetosphere coupling.

  5. Magnetic properties of Mn3O4 film with a coexistence of two preferential orientations

    NASA Astrophysics Data System (ADS)

    Ren, Lizhu; Zhou, Wenqi; Wang, Yunjia; Meng, Meng; Wu, Shuxiang; Li, Shuwei

    2014-07-01

    A Mn3O4 film with a coexistence of two preferential orientations has been grown on a Pt(111)//Si(100) substrate by plasma-assisted molecular beam epitaxy. The structural characteristics and chemical compositions of the film are investigated by using X-ray diffraction, Raman, and X-ray photoelectron spectra in detail. Together with the magnetic tests, the film is demonstrated to be a polycrystalline hausmannite Mn3O4 with no other impurities. Moreover, the hysteresis loops of the film are found to display a step or a characteristic shrinking at low fields. On the other hand, similar magnetic characteristics have also been discovered on the film with two phases grown on a MgAl2O4(001) substrate. In our opinion, considering the large magnetocrystalline anisotropy and shape anisotropy of the single crystal Mn3O4 film reported in previous works, the special structures and phases of the two films result in both of them as soft+hard magnetic composites, in agreement with some other reports.

  6. (110) Orientation growth of magnetic metal nanowires with face-centered cubic structure using template synthesis technique

    SciTech Connect

    Wang Xuewei; Yuan Zhihao; Li Jushan

    2011-06-15

    A template-assisted assembly technique has been used to synthesize magnetic metal nanowire arrays. Fe, Co, Ni nanowires are fabricated using direct-current electrodeposition in the pores of anodic alumina membranes. The morphology and the crystal structure of the samples are characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometer. The results indicate that Fe, Co, and Ni nanowires all have face-centered cubic (FCC) structure and a preferred orientation along the [110] direction. The ability to prepare well-defined orientation growth of magnetic metal nanowires with FCC structure opens up new opportunities for both fundamental studies and nanodevice applications. - Research Highlights: {yields} Fe, Co, and Ni nanowires are fabricated in the AAM templates by electrodeposition. {yields} Well-defined orientation growth of the nanowires with FCC structure were investigated. {yields} The electrodeposition parameters affect the crystal structure and growth orientation.

  7. Orientation control of a synthetic columnar perfluorinated supramolecular dendrimer: Surface anchoring and magnetic-field induced alignments

    NASA Astrophysics Data System (ADS)

    Ki Yoon, Dong; Rim Lee, Su; Ho Kim, Yun; Seong, Baek-Seok; Soo Han, Young; Jung, Hee-Tae

    2006-11-01

    Orientation ordering of a synthetic perfluorinated supramolecule containing a hydrophilic core group and perfluorinated tails is strongly affected by the functionality, molecular shape, surface anchoring and magnetic field. Small-angle neutron scattering (SANS), synchrotron X-ray diffraction, polarized light microscopy (PLM) and transmission electron microscopy (TEM) results show that the molecule exhibits hexagonal columnar mesophase upon cooling from isotropic phase. The orientation of the columns was controlled by surface anchoring; the columnar axes were perpendicular to the hydrophobic carbon substrates, while planar alignment is favored on hydrophilic surfaces. Furthermore, the columnar domains align with the magnetic field lines, which is due to diamagnetism of these fan-shaped molecules containing aromatic rings. We show that the magnetic-induced alignment is much effective for the large-scale control of the orientation of the perfluorinated columnar mesophase.

  8. Orientation of lamellar phases of lyotropic multicomponent mixtures, based on cetyltrimethylammonium bromide cationic detergent, in magnetic field

    NASA Astrophysics Data System (ADS)

    Kiirend, E. O.; Chumakova, S. P.; Pekhk, T. I.; Ivanov, N. R.

    2013-11-01

    The orientation of the lamellar phases in lyotropic systems based on cetyltrimethylammonium bromide (CTAB) detergent has been studied by polarization optical microscopy and 2H-NMR methods. The lamellar lyotropics studied are shown to align under a strong magnetic field of 11.7 T. According to 2H-NMR data, structural transformations of the lamellar phases may occur during orientation when the sample temperature increases.

  9. The spin physics results from COMPASS

    SciTech Connect

    Kouznetsov, O.

    2015-04-10

    COMPASS (COmmon Muon and Proton Apparatus for Structure and Spectroscopy) is a fixed target experiment at CERN dedicated to studies of the spin structure of the nucleon and of the spectroscopy of hadrons. During the years 2002-2004, 2006-2007 and 2010-2011 the COMPASS collaboration has collected a large amount of data by scattering polarized 160(200) GeV/c muons on polarized {sup 6}LiD and NH{sub 3} targets. The COMPASS results on quark and gluon helicities are discussed, as well as results on transverse spin and transverse momentum effects in semi-inclusive deeply inelastic scattering.

  10. Exploring compassion: a meta-analysis of the association between self-compassion and psychopathology.

    PubMed

    MacBeth, Angus; Gumley, Andrew

    2012-08-01

    Compassion has emerged as an important construct in studies of mental health and psychological therapy. Although an increasing number of studies have explored relationships between compassion and different facets of psychopathology there has as yet been no systematic review or synthesis of the empirical literature. We conducted a systematic search of the literature on compassion and mental health. We identified 20 samples from 14 eligible studies. All studies used the Neff Self Compassion Scale (Neff, 2003b). We employed meta-analysis to explore associations between self-compassion and psychopathology using random effects analyses of Fisher's Z correcting for attenuation arising from scale reliability. We found a large effect size for the relationship between compassion and psychopathology of r=-0.54 (95% CI=-0.57 to -0.51; Z=-34.02; p<.0001). Heterogeneity was significant in the analysis. There was no evidence of significant publication bias. Compassion is an important explanatory variable in understanding mental health and resilience. Future work is needed to develop the evidence base for compassion in psychopathology, and explore correlates of compassion and psychopathology. PMID:22796446

  11. Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.

    2012-08-01

    The angular motion of an axisymmetrical satellite equipped with the active magnetic attitude control system is examined. Attitude control system has to ensure necessary orientation of the axis of symmetry in the inertial space. It implements the following strategy: coarse reorientation of the axis of symmetry with nutation damping or "-Bdot" without initial detumbling; spinning-up about the axis of symmetry to achieve the property of a gyro; fine reorientation of the axis in the inertial space. Dynamics of the satellite is analytically studied using averaging technique on the complete control loop consisting of five algorithms. Solutions of the equations of motion are obtained in terms of quadratures for most cases or even in closed-form. The latter allowed to study the dependence of motion parameters including time-response with respect to the orbit inclination and other parameters for all algorithms.

  12. Preparation and characterization of Grain-Oriented Barium Titanate Ceramics Using Electrophoresis Deposition Method under A High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kita, T.; Kondo, S.; Takei, T.; Kumada, N.; Nakashima, K.; Fujii, I.; Wada, S.; Suzuki, T. S.; Uchikoshi, T.; Sakka, Y.; Miwa, Y.; Kawada, S.; Kimura, M.

    2011-10-01

    Barium titanate (BaTiO3) grain-oriented ceramics were prepared using electrophoresis deposition (EPD) method under high magnetic field of 12 T. First, BaTiO3 nanoparticles with high c/a ratio of 1.008 and size of 84 nm were prepared by two-step thermal decomposition method with barium titanyl oxalate nanoparticles. Using the BaTiO3 slurry, BaTiO3 nanoparticle accumulations were prepared by EPD method under high magnetic field. After binder burnout, the accumulations were sintered and BaTiO3 grain-oriented ceramics were prepared. Moreover, dielectric properties of their ceramics were investigated

  13. The advanced stellar compass onboard the Oersted satellite

    NASA Technical Reports Server (NTRS)

    Jorgensen, John L.; Liebe, Carl Christian; Eisenman, Allan R.; Jensen, Gunnar B.

    1997-01-01

    The advanced stellar compass (ASC) star tracker installed onboard the Danish Oersted satellite designed to map the earth's magnetic vector field is presented. The ASC instrument will provide attitude data for the satellite and its payload. It consists of a CCD camera connected to a microcomputer, and operates by comparing star images from camera frames with its internal star catalogs. The instrument design is detailed, considering its key parameters, operating principles, and the different types of noise and error sources. A ground-based real sky evaluation and the calibration of the ASC are reported.

  14. Polarization of the large COMPASS 14NH3 target

    NASA Astrophysics Data System (ADS)

    Koivuniemi, J.; Doshita, N.; Gautheron, F.; Hess, C. H.; Iwata, T.; Kisselev, Y. U.; Kondo, K.; Meyer, W.; Michigami, T.; Reicherz, G.

    2009-02-01

    The COMPASS experiment in the CERN M2 beam line is using 1508 cm3 granular solid 14NH3 as polarized proton target material to study the nuclear spin with deep inelastic scattering of polarized muons. The target consists of 2.5 T solenoid and 0.63 T dipole magnets, microwave cavity and large dilution cryostat. Continuous wave NMR is used to determine the polarization of the nuclei that are polarized with dynamic nuclear polarization method using 4 mm microwaves. Determination of the target proton polarization with thermal equilibrium NMR signals at temperatures 1.0 - 1.6 K is discussed.

  15. Moon and sun compasses in sandhoppers rely on two separate chronometric mechanisms

    PubMed Central

    Ugolini, A.; Melis, C.; Innocenti, R.; Tiribilli, B.; Castellini, C.

    1999-01-01

    The relationship between the chronometric system of compensation for the apparent movement of the sun and that for the moon has been the subject of several, never proven, hypotheses. Our studies on sandhoppers have demonstrated that the chronometric mechanism of the moon compass is separate from that of the sun compass. They show (i) that a period of seven days in constant darkness has no influence on the capacity for orientation, either solar or lunar, and indicates the presence of one or more continuously operating timing mechanisms; (ii) that two different shifts in the lightdark phase have no effect on the chronometric mechanism of lunar orientation, but they do affect that of solar orientation; and (iii) that exposure to an artificial moon delayed by seven days with respect to the natural cycle causes the expected change in the mean direction of individuals tested under the natural moon, but not of those tested under the sun.

  16. Raman spectra and magnetization of all-ferromagnetic superlattices grown on (110) oriented SrTiO3

    NASA Astrophysics Data System (ADS)

    Behera, B. C.; Ravindra, A. V.; Padhan, P.; Prellier, W.

    2014-03-01

    Superlattices consist of two ferromagnets La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO) were grown in (110)-orientation on SrTiO3 (STO) substrates. The x-ray diffraction and Raman spectra of these superlattices show the presence of in-plane compressive strain and orthorhombic structure of less than 4 u.c. thick LSMO spacer, respectively. Magnetic measurements reveal several features including reduced magnetization, enhanced coercivity, antiferromagnetic coupling, and switching from antiferromagnetic to ferromagnetic coupling with magnetic field orientations. These magnetic properties are explained by the observed orthorhombic structure of spacer LSMO in Raman scattering which occurs due to the modification in the stereochemistry of Mn at the interfaces of SRO and LSMO.

  17. Raman spectra and magnetization of all-ferromagnetic superlattices grown on (110) oriented SrTiO{sub 3}

    SciTech Connect

    Behera, B. C.; Ravindra, A. V.; Padhan, P.; Prellier, W.

    2014-03-03

    Superlattices consist of two ferromagnets La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and SrRuO{sub 3} (SRO) were grown in (110)-orientation on SrTiO{sub 3} (STO) substrates. The x-ray diffraction and Raman spectra of these superlattices show the presence of in-plane compressive strain and orthorhombic structure of less than 4 u.c. thick LSMO spacer, respectively. Magnetic measurements reveal several features including reduced magnetization, enhanced coercivity, antiferromagnetic coupling, and switching from antiferromagnetic to ferromagnetic coupling with magnetic field orientations. These magnetic properties are explained by the observed orthorhombic structure of spacer LSMO in Raman scattering which occurs due to the modification in the stereochemistry of Mn at the interfaces of SRO and LSMO.

  18. Exploring the compassion deficit debate.

    PubMed

    Stenhouse, Rosie; Ion, Robin; Roxburgh, Michelle; Devitt, Patric Ffrench; Smith, Stephen D M

    2016-04-01

    Several recent high profile failures in the UK health care system have promoted strong debate on compassion and care in nursing. A number of papers articulating a range of positions within this debate have been published in this journal over the past two and a half years. These articulate a diverse range of theoretical perspectives and have been drawn together here in an attempt to bring some coherence to the debate and provide an overview of the key arguments and positions taken by those involved. In doing this we invite the reader to consider their own position in relation to the issues raised and to consider the impact of this for their own practice. Finally the paper offers some sense of how individual practitioners might use their understanding of the debates to ensure delivery of good nursing care. PMID:27006028

  19. Recent results from COMPASS on exclusive muoproduction

    NASA Astrophysics Data System (ADS)

    Sandacz, Andrzej

    2016-02-01

    The 160 GeV polarised muon beam available at CERN, with positive or negative charge, makes COMPASS a unique place for GPD studies. The first GPD related COMPASS results come from exclusive vector meson production on transversely polarised protons and deuterons. The data were taken in 2003-2010 with large solid-state polarised targets, although without detection of recoil particles. Results on various transverse target spin dependent azimuthal asymmetries are presented and their relations to GPDs are discussed. The dedicated COMPASS GPD program started in 2012 with commissioning of a new long liquid hydrogen target and new detectors such as the large recoil proton detector and the large-angle electromagnetic calorimeter. It was followed by a short pilot 'DVCS run'. The performance of the setup and first results on DVCS and exclusive π0 channels have been demonstrated. The full data taking for the GPD program approved within COMPASS-II proposal is planned for 2016 and 2017.

  20. Self-compassion in clinical practice.

    PubMed

    Germer, Christopher K; Neff, Kristin D

    2013-08-01

    Self-compassion is conceptualized as containing 3 core components: self-kindness versus self-judgment, common humanity versus isolation, and mindfulness versus overidentification, when relating to painful experiences. Research evidence demonstrates that self-compassion is related to psychological flourishing and reduced psychopathology. Mindful Self-Compassion (MSC) is an 8-week training program, meeting 2.5 hours each week, designed to help participants cultivate self-compassion. MSC contains a variety of meditations (e.g., loving-kindness, affectionate breathing) as well as informal practices for use in daily life (e.g., soothing touch, self-compassionate letter writing). A detailed clinical case illustrates the journey of a client through the 8 weeks of MSC training, describing the key features of each session and the client's response. PMID:23775511

  1. Robustness of the filamentation instability in arbitrarily oriented magnetic field: Full three dimensional calculation

    SciTech Connect

    Bret, A.

    2014-02-15

    The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceled for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.

  2. Access to generalized parton distributions at COMPASS

    SciTech Connect

    Nowak, Wolf-Dieter

    2015-04-10

    A brief experimentalist's introduction to Generalized Parton Distributions (GPDs) is given. Recent COMPASS results are shown on transverse target-spin asymmetries in hard exclusive ρ{sup 0} production and their interpretation in terms of a phenomenological model as indication for chiral-odd, transverse GPDs is discussed. For deeply virtual Compton scattering, it is briefly outlined how to access GPDs and projections are shown for future COMPASS measurements.

  3. Compassion Fatigue and Compassion Satisfaction among Residential Child Care Workers: The Role of Personality Resources

    ERIC Educational Resources Information Center

    Zerach, Gadi

    2013-01-01

    This study assessed compassion fatigue (CF) and compassion satisfaction (CS) among Israeli residential child-care workers (RCWs) working in residential treatment facilities for children and youth at risk (N = 147) as compared to educational boarding schools workers (BSWs; N = 74). Furthermore, we assessed the relationship of potential

  4. Compassion Fatigue and Compassion Satisfaction among Residential Child Care Workers: The Role of Personality Resources

    ERIC Educational Resources Information Center

    Zerach, Gadi

    2013-01-01

    This study assessed compassion fatigue (CF) and compassion satisfaction (CS) among Israeli residential child-care workers (RCWs) working in residential treatment facilities for children and youth at risk (N = 147) as compared to educational boarding schools workers (BSWs; N = 74). Furthermore, we assessed the relationship of potential…

  5. Compassion Fatigue, Compassion Satisfaction, and Burnout: Factors Impacting a Professional's Quality of Life

    ERIC Educational Resources Information Center

    Sprang, Ginny; Whitt-Woosley, Adrienne; Clark, James J.

    2007-01-01

    This study examined the relationship between three variables, compassion fatigue (CF), compassion satisfaction (CS), and burnout, and provider and setting characteristics in a sample of 1,121 mental health providers in a rural southern state. Respondents completed the Professional Quality of Life Scale as part of a larger survey of provider

  6. Honeybee navigation: critically examining the role of the polarization compass

    PubMed Central

    Evangelista, C.; Kraft, P.; Dacke, M.; Labhart, T.; Srinivasan, M. V.

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the waggle dance. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90 to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it. PMID:24395964

  7. Honeybee navigation: critically examining the role of the polarization compass.

    PubMed

    Evangelista, C; Kraft, P; Dacke, M; Labhart, T; Srinivasan, M V

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the 'waggle dance'. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it. PMID:24395964

  8. Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti.

    PubMed

    Wystrach, Antoine; Schwarz, Sebastian; Schultheiss, Patrick; Baniel, Alice; Cheng, Ken

    2014-06-01

    The Central Australian desert ant Melophorus bagoti is known to use celestial cues for compass orientation. We manipulated the available celestial cues for compass orientation for ants that had arrived at a feeder, were captured and then released at a distant test site that had no useful terrestrial panoramic cues. When tested in an enclosed transparent box that blocked some or most of the ultraviolet light, the ants were still well oriented homewards. The ants were again significantly oriented homewards when most of the ultraviolet light as well as the sun was blocked, or when the box was covered with tracing paper that eliminated the pattern of polarised light, although in the latter case, their headings were more scattered than in control (full-cue) conditions. When the position of the sun was reflected 180° by a mirror, the ants headed off in an intermediate direction between the dictates of the sun and the dictates of unrotated cues. We conclude that M. bagoti uses all available celestial compass cues, including the pattern of polarised light, the position of the sun, and spectral and intensity gradients. They average multiple cues in a weighted fashion when these cues conflict. PMID:24643623

  9. Magnetic domain structure, crystal orientation, and magnetostriction of Tb0.27Dy0.73Fe1.95 solidified in various high magnetic fields

    NASA Astrophysics Data System (ADS)

    Gao, Pengfei; Liu, Tie; Dong, Meng; Yuan, Yi; Wang, Qiang

    2016-03-01

    In this paper, we studied how applying a high magnetic field during solidification of Tb0.27Dy0.73Fe1.95 alloys affected their magnetic domain structure, crystal orientation, and magnetostriction. We observed the morphology of the magnetic domain during solidification, finding it change with the applied field: from fiber like (0 T) to dot like and closure mixed (4.4 T) to fiber like (8.8 T) to fishbone like (11.5 T). The alloy solidified at 4.4 T showed the best contrast of light and dark in its domain image, widest magnetic domain, fastest magnetization, and highest magnetostriction; this alloy is followed in descending order by the alloys solidified at 11.5 T, 8.8 T, and 0 T. The orientation of the (Tb, Dy)Fe2 phase changed with magnetic field from random (0 T) to <111> (4.4 T) to <113> (8.8 T) to <110> (11.5 T). The improvement in magnetostriction was likely caused by modification of both the magnetization process and the alloy microstructure.

  10. Loving-kindness and compassion meditation: potential for psychological interventions.

    PubMed

    Hofmann, Stefan G; Grossman, Paul; Hinton, Devon E

    2011-11-01

    Mindfulness-based meditation interventions have become increasingly popular in contemporary psychology. Other closely related meditation practices include loving-kindness meditation (LKM) and compassion meditation (CM), exercises oriented toward enhancing unconditional, positive emotional states of kindness and compassion. This article provides a review of the background, the techniques, and the empirical contemporary literature of LKM and CM. The literature suggests that LKM and CM are associated with an increase in positive affect and a decrease in negative affect. Preliminary findings from neuroendocrine studies indicate that CM may reduce stress-induced subjective distress and immune response. Neuroimaging studies suggest that LKM and CM may enhance activation of brain areas that are involved in emotional processing and empathy. Finally, preliminary intervention studies support application of these strategies in clinical populations. It is concluded that, when combined with empirically supported treatments, such as cognitive-behavioral therapy, LKM and CM may provide potentially useful strategies for targeting a variety of different psychological problems that involve interpersonal processes, such as depression, social anxiety, marital conflict, anger, and coping with the strains of long-term caregiving. PMID:21840289

  11. Loving-Kindness and Compassion Meditation: Potential for Psychological Interventions

    PubMed Central

    Hofmann, Stefan G.; Grossman, Paul; Hinton, Devon E.

    2011-01-01

    Mindfulness-based meditation interventions have become increasingly popular in contemporary psychology. Other closely related meditation practices include loving-kindness meditation (LKM) and compassion meditation (CM), exercises oriented toward enhancing unconditional, positive emotional states of kindness and compassion. This article provides a review of the background, the techniques, and the empirical contemporary literature of LKM and CM. The literature suggests that LKM and CM are associated with an increase in positive affect and a decrease in negative affect. Preliminary findings from neuroendocrine studies indicate that CM may reduce stress-induced subjective distress and immune response. Neuroimaging studies suggest that LKM and CM may enhance activation of brain areas that are involved in emotional processing and empathy. Finally, preliminary intervention studies support application of these strategies in clinical populations. It is concluded that, when combined with empirically supported treatments, such as cognitive behavioral therapy, LKM and CM may provide potentially useful strategies for targeting a variety of different psychological problems that involve interpersonal processes, such as social anxiety, marital conflict, anger, and coping with the strains of long-term caregiving. PMID:21840289

  12. Synthesis of c-axis-oriented Sm123 superconductors and their performance as superconducting permanent magnets

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Mase, A.; Tazoe, K.; Ikuta, H.; Oka, T.; Itoh, Y.; Yanagi, Y.; Yoshikawa, M.

    2000-06-01

    The addition of Ag 2O up to 20 wt.% could reinforce its mechanical strength and led us to grow the c-axis-oriented single-domain Sm123 superconductors up to a diameter of 36 mm. The trapped field at 77 K reached 2.1 T and increased to 9 T at 25 K. The maximum trapped field is found to be limited by fracture due to the magnetic stress, which causes the crack to initiate from the region under the seed crystal near the center of the sample with its subsequent propagation through voids. The amount of voids can be substantially reduced when the oxygen partial pressure is increased at the early stage of the melt-processing. The Ba/Sm substitution effect degrades the superconducting performance and lowers the superconducting transition temperature to 80 K only near the central region. The trapped field after drilling a hole through the center of the sample was measured. Its potential use is suggested in practical application.

  13. Control of the magnetization orientation in L10 FePt films by means of annealing in a magnetic field near the Curie temperature

    NASA Astrophysics Data System (ADS)

    Kamzin, A. S.; Cao, J. W.; Ma, B.; Wei, F. L.; Valiullin, A. A.; Ganeev, V. R.; Zaripova, L. D.

    2015-09-01

    Films of the L10 Fe50Pt50 phase with a thickness of 20 nm in the multilayer Fe(2 nm)/Fe50Pt50(20 nm)/Pt(2 nm) magnetic structure have been prepared by magnetron sputtering. The multilayer structures have been annealed at 700C for 30 min and then at 430-600C for 1 h either in an external magnetic field of 3500 Oe, which is applied perpendicular to the film plane (the A mode), or without an external magnetic field (the B mode). X-ray diffraction and Mssbauer studies have revealed that the annealing of FePt films in the composition of the multilayer magnetic structure in an external magnetic field at the temperature T C = 478C ( T C is the Curie temperature for FePt films) leads to the formation of the L10 structure with the magnetic moments oriented along the normal to the film surface. In this case, the atomic force microscopy images have demonstrated changes in the grain sizes. When the annealing temperature is close to the Curie temperature T C for FePt films, the thermal perturbation is comparable in magnitude to the magnetization exchange energy; consequently, the external magnetic field of 3500 Oe, which is applied perpendicular to the film surface, effectively contributes to the formation of the L10 structure. The annealing of FePt structures in an external magnetic field makes it possible to form the L10 (001) texture in these materials and to orient magnetic moments in the direction of the field.

  14. Exact solution for a quantum compass ladder

    NASA Astrophysics Data System (ADS)

    Brzezicki, Wojciech; Oleś, Andrzej M.

    2009-07-01

    We present a spin ladder with antiferromagnetic Ising ZZ interactions along the legs and interactions on the rungs which interpolate between the Ising ladder and the quantum compass ladder. We show that the entire energy spectrum of the ladder may be determined exactly for finite number of spins 2N by mapping to the quantum Ising chain and using Jordan-Wigner transformation in invariant subspaces. We also demonstrate that subspaces with spin defects lead to excited states using finite-size scaling, and the ground state corresponds to the quantum Ising model without defects. At the quantum phase transition to maximally frustrated interactions of the compass ladder, the ZZ spin-correlation function on the rungs collapses to zero and the ground-state degeneracy increases by two. We formulate a systematic method to calculate the partition function for a mesoscopic system and employ it to demonstrate that fragmentation of the compass ladder by kink defects increases with increasing temperature. The obtained heat capacity of a large compass ladder consisting of 2N=104 spins reveals two relevant energy scales and has a broad maximum due to dense energy spectrum. The present exact results elucidate the nature of the quantum phase transition from ordered to disordered ground state found in the compass model in two dimensions.

  15. Self-Compassion and the Dynamics of Investigating Sexual Harassment

    ERIC Educational Resources Information Center

    Serri, Conchita Franco

    2006-01-01

    What role does compassion play in one's work? In the author's organization, the word "compassion" has been mostly linked to their values, mission, and programs. She has generally understood the concept of compassion as a deep feeling of empathy that flows from oneself towards others during certain situations and conditions. In her mind, "having…

  16. Understanding the Transformation of Compassion in Nurses Who Become Patients

    ERIC Educational Resources Information Center

    Pucino, Carrie L.

    2013-01-01

    The purpose of this study was to examine how nurses who become patients learn compassion toward patients in their professional practice, and examine the role of empathy in the process of learning compassion. The process of learning compassion represents a significant change in the way nurses perceive this aspect of practice. Therefore,

  17. Nursing on empty: compassion fatigue signs, symptoms, and system interventions.

    PubMed

    Harris, Chelsia; Griffin, Mary T Quinn

    2015-01-01

    Few healthcare organizations acknowledge, discuss, or provide interventions for assisting with compassion fatigue. Yet, it is an important concept due to its individual, professional, and financial costs. This article defines compassion fatigue, differentiates it from burnout, and offers system interventions for supporting nurses and reducing compassion fatigue. PMID:25898441

  18. Self-Compassion and the Dynamics of Investigating Sexual Harassment

    ERIC Educational Resources Information Center

    Serri, Conchita Franco

    2006-01-01

    What role does compassion play in one's work? In the author's organization, the word "compassion" has been mostly linked to their values, mission, and programs. She has generally understood the concept of compassion as a deep feeling of empathy that flows from oneself towards others during certain situations and conditions. In her mind, "having

  19. Compassion Fatigue among Social Work Students in Field Placements

    ERIC Educational Resources Information Center

    Harr, Cynthia; Moore, Brenda

    2011-01-01

    This pilot study, conducted with BSW and MSW field students at a public university in Southwestern United States, explored the psychological effect of compassion fatigue and compassion satisfaction on social work students in field placements. Results from the Professional Quality of Life Scale's compassion satisfaction and fatigue subscales

  20. Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.

  1. First results from EBW emission diagnostics on COMPASS.

    PubMed

    Zajac, J; Preinhaelter, J; Urban, J; Aftanas, M; Blkov, P; Bhm, P; Fuchs, V; Nanobashvili, S; Weinzettl, V; Zcek, F

    2012-10-01

    COMPASS tokamak shots at low magnetic field feature overdense plasmas during the extended current flat-top phase. The first harmonic of the electron cyclotron emission is completely cutoff for O and X modes and so the emission caused by electron Bernstein waves (EBWs) propagating obliquely with respect to the magnetic field and undergoing so called EBW-X-O conversion process can be observed. We perform an angular scan of the EBW emission during a set of comparable shots in order to determine the optimum antenna direction. A weak dependence of the radiative temperature on the antenna angles indicates an influence of multiple reflections from the vessel wall. The low temperature at the mode conversion region is responsible for the collisional damping of EBW, which can explain several times lower measured radiative temperature than the electron temperature measured by the Thomson scattering system. PMID:23126985

  2. Application of Pulse Techniques to Nuclear Magnetic Resonance of Oriented Nuclei

    NASA Astrophysics Data System (ADS)

    Foster, Herbert Reginald

    This thesis is based on an experimental study in nuclear orientation NMR in which the radio frequency field was applied in the form of pulses or pulse sequences. The experiments described represent the development and subsequent applications of the techniques of pulsed single passage NMR/ON, pulsed NMR/ON, spin echo NMR/ON and pulsed FM (frequency modulated) NMR/ON. In order to develop these new techniques an adiabatic demagnetization cryostat with base temperature down to 4 mK and useful cryogenic run time of up to 14 hours was built and a variety of RF pulse circuits centred around a 1 kW broadband amplifier also developed. The techniques were applied to samples of ('60)Co in polycrystalline iron. The resonant processes were observed via the effects of the RF field upon the ('60)Co gamma anisotropy. The experiments have shown that large resonant effects can be produced by intense RF pulses without excessive eddy current heating. In the case of pulsed single passage NMR/ON it is shown that high intensity pulsed sweeps can provide an estimate of the quadrupole interaction strength for a random distribution of EFG's and can also provide useful qualitative information on the strength of the nuclear spin spin interaction. It is also shown that the pulsed FM and pulsed single passage techniques adequately compensate for reduction in the ferromagnetic enhancement factor with increasing applied magnetic field thereby allowing the first unambiguous measurement of an impurity Knight shift (('60)CoFe, K = 1.5 (+OR-) 0.4%). It is also shown that the classic pulse sequences of conventional pulsed NMR, providing quantitative measurements of the nuclear spin spin relaxation time T(,2) and spin lattice relaxation time T(,1), can be applied to nuclear orientation samples through the application of one additional pulse, thus affording a sensitivity enhancement of six to seven orders of magnitude over conventional pulsed NMR on stable isotopes. The spin echo NMR/ON experiments provide a direct measurement of the irreversible dephasing of the ('60)Co spins and it is found that this is 5 (+OR-) 3 ms.

  3. The neurobiological link between compassion and love

    PubMed Central

    Esch, Tobias; Stefano, George B.

    2011-01-01

    Summary Love and compassion exert pleasant feelings and rewarding effects. Besides their emotional role and capacity to govern behavior, appetitive motivation, and a general ‘positive state’, even ‘spiritual’ at times, the behaviors shown in love and compassion clearly rely on neurobiological mechanisms and underlying molecular principles. These processes and pathways involve the brain’s limbic motivation and reward circuits, that is, a finely tuned and profound autoregulation. This capacity to self-regulate emotions, approach behaviors and even pair bonding, as well as social contact in general, i.e., love, attachment and compassion, can be highly effective in stress reduction, survival and overall health. Yet, molecular biology is the basis of interpersonal neurobiology, however, there is no answer to the question of what comes first or is more important: It is a cybernetic capacity and complex circuit of autoregulation that is clearly ‘amazing’. PMID:21358615

  4. Quantum dynamics of the avian compass.

    PubMed

    Walters, Zachary B

    2014-10-01

    The ability of migratory birds to orient relative to the Earth's magnetic field is believed to involve a coherent superposition of two spin states of a radical electron pair. However, the mechanism by which this coherence can be maintained in the face of strong interactions with the cellular environment has remained unclear. This paper addresses the problem of decoherence between two electron spins due to hyperfine interaction with a bath of spin-1/2 nuclei. Dynamics of the radical pair density matrix are derived and shown to yield a simple mechanism for sensing magnetic field orientation. Rates of dephasing and decoherence are calculated ab initio and found to yield millisecond coherence times, consistent with behavioral experiments. PMID:25375526

  5. Quantum dynamics of the avian compass

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.

    2014-10-01

    The ability of migratory birds to orient relative to the Earth's magnetic field is believed to involve a coherent superposition of two spin states of a radical electron pair. However, the mechanism by which this coherence can be maintained in the face of strong interactions with the cellular environment has remained unclear. This paper addresses the problem of decoherence between two electron spins due to hyperfine interaction with a bath of spin-1/2 nuclei. Dynamics of the radical pair density matrix are derived and shown to yield a simple mechanism for sensing magnetic field orientation. Rates of dephasing and decoherence are calculated ab initio and found to yield millisecond coherence times, consistent with behavioral experiments.

  6. Distinctive uniaxial magnetic anisotropy and positive magnetoresistance in (110)-oriented Fe{sub 3}O{sub 4} films

    SciTech Connect

    Dho, Joonghoe Kim, Byeong-geon; Ki, Sanghoon

    2015-04-28

    Magnetite (Fe{sub 3}O{sub 4}) films were synthesized on (110)-oriented MgO, MgAl{sub 2}O{sub 4}, and SrTiO{sub 3} substrates for comparative studies of the substrates' effects on magnetic and magnetoresistance properties of the films. For the [-110] direction, the hysteresis loops of the Fe{sub 3}O{sub 4} film on MgAl{sub 2}O{sub 4} exhibited a good squareness with the largest coercivity of ?1090?Oe, and the ratio of remanent magnetization to saturation magnetization was ?0.995. For the [001] direction, positive magnetoresistance in weak magnetic fields was most distinct for the (110) SrTiO{sub 3} substrate with the largest lattice mismatch. Positive magnetoresistance in the (110) Fe{sub 3}O{sub 4} films was presumably affected by imperfect atomic arrangements at anti-phase boundaries.

  7. Orientation within a high magnetic field determines swimming direction and laterality of c-Fos induction in mice.

    PubMed

    Houpt, Thomas A; Kwon, Bumsup; Houpt, Charles E; Neth, Bryan; Smith, James C

    2013-10-01

    High-strength static magnetic fields (>7 tesla) perturb the vestibular system causing dizziness, nystagmus, and nausea in humans; and head motion, locomotor circling, conditioned taste aversion, and c-Fos induction in brain stem vestibular nuclei in rodents. To determine the role of head orientation, mice were exposed for 15 min within a 14.1-tesla magnet at six different angles (mice oriented parallel to the field with the head toward B+ at 0; or pitched rostrally down at 45, 90, 90 sideways, 135, and 180), followed by a 2-min swimming test. Additional mice were exposed at 0, 90, and 180 and processed for c-Fos immunohistochemistry. Magnetic field exposure induced circular swimming that was maximal at 0 and 180 but attenuated at 45 and 135. Mice exposed at 0 and 45 swam counterclockwise, whereas mice exposed at 135 and 180 swam clockwise. Mice exposed at 90 (with their rostral-caudal axis perpendicular to the magnetic field) did not swim differently than controls. In parallel, exposure at 0 and 180 induced c-Fos in vestibular nuclei with left-right asymmetries that were reversed at 0 vs. 180. No significant c-Fos was induced after 90 exposure. Thus, the optimal orientation for magnetic field effects is the rostral-caudal axis parallel to the field, such that the horizontal canal and utricle are also parallel to the field. These results have mechanistic implications for modeling magnetic field interactions with the vestibular apparatus of the inner ear (e.g., the model of Roberts et al. of an induced Lorenz force causing horizontal canal cupula deflection). PMID:23720133

  8. Magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Silva, Nicolas

    2012-09-01

    Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

  9. Microwave complex permeability of Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation

    NASA Astrophysics Data System (ADS)

    Liu, Xianguo; Wing Or, Siu; Ming Leung, Chung; Ho, S. L.

    2013-05-01

    Magnetite (Fe3O4) nanoflakes with widths of 100-200 nm and thicknesses of 10-80 nm were prepared by a hydrothermal synthesis method. Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation of flake planes of Fe3O4 nanoflakes in paraffin binder were fabricated using 35 wt. % Fe3O4 nanoflakes. The rotationally oriented composite showed higher permeability and resonance frequency than the nonoriented one, and its value of (?0-1)fr reached 214.8 GHz and exceeded the Snoek's limit. Considering a uniform and a random distribution of flake planes of Fe3O4 nanoflakes in the oriented and nonoriented composites, respectively, the complex permeability of both composites was calculated using the Landau-Lifshitz-Gilbert equation and the Bruggeman's effective medium theory in the 2-18 GHz microwave frequency range.

  10. Investigating Factors that Generate and Maintain Variation in Migratory Orientation: A Primer for Recent and Future Work

    PubMed Central

    Delmore, Kira E.; Liedvogel, Miriam

    2016-01-01

    The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation. PMID:26834592

  11. Investigating Factors that Generate and Maintain Variation in Migratory Orientation: A Primer for Recent and Future Work.

    PubMed

    Delmore, Kira E; Liedvogel, Miriam

    2016-01-01

    The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation. PMID:26834592

  12. The polarization trajectory of terahertz magnetic dipole radiation in (110)-oriented PrFeO{sub 3} single crystal

    SciTech Connect

    Song, Gaibei; Jin, Zuanming; Lin, Xian; Jiang, Junjie; Wang, Xinyan; Wu, Hailong; Ma, Guohong E-mail: sxcao@shu.edu.cn; Cao, Shixun E-mail: sxcao@shu.edu.cn

    2014-04-28

    By using the polarized terahertz (THz) time-domain spectroscopy, the macro-magnetization motion in (110)-oriented PrFeO{sub 3} single crystal was constructed. We emphasize that the trajectory of the emitted THz waveforms relies on not only the motion of macroscopic magnetization vector, but also the spin configuration in the ground state and the propagation of THz pulse. The azimuthal angle (the incident THz pulse polarization with respect to the crystal axes) enables us to control the polarization trajectories of the quasiferromagnetic and quasiantiferromagnetic mode radiations that can lead to further applications on multiple information storing and quantum processing.

  13. Influence of magnetic field orientation on the Zeeman spin-splitting in InGaAs quantum point contacts

    NASA Astrophysics Data System (ADS)

    Martin, Theodore; Szorkovszky, Alex; Micolich, Adam; Hamilton, Alex; Marlow, Colleen; Taylor, Richard; Linke, Heiner; Xu, Hongqi

    2010-03-01

    We present measurements of the Zeeman spin-splitting in a quantum point contact (QPC) etched into an InGaAs/InP heterostructure [1], comparing magnetic field orientations in the plane and perpendicular to the InGaAs quantum well. We observe an isotropic Zeeman splitting for fields oriented in the plane of the quantum well, with a magnitude that is enhanced by up to a factor of two compared to two-dimensional electron systems in InGaAs/InP [2]. The Zeeman splitting is much larger when the magnetic field is perpendicular to the quantum well, resulting in a g-factor of 15.7 in the one dimensional limit. [4pt] [1] T. P. Martin, et al., Appl. Phys. Lett. 93, 012105 (2008).[0pt] [2] B. Kowalski, et al., Phys. Rev. B 49, 14786 (1994).

  14. Conditions database system of the COMPASS experiment

    NASA Astrophysics Data System (ADS)

    Toeda, T.; Lamanna, M.; Duic, V.; Manara, A.

    2003-05-01

    The CERN SPS experiment COMPASS has integrated a Conditions Database System in its off-line software. The system is used to manage time-dependent information, detector condition, calibration, and geometrical alignment information, by using a package provided by the CERN IT/DB. This integrated system consists of administration tools, a data handling library, and data transfer software from the detector control system to the Conditions Database. In this paper, the status of the Conditions Database project is described, and the results of the performance test on the COMPASS computing farm are given.

  15. Compassion fatigue in military healthcare teams.

    PubMed

    Owen, Regina Peterson; Wanzer, Linda

    2014-02-01

    Since the onset of the Iraq war and Afghanistan conflicts, military healthcare teams have had increasing exposure to the traumatic effects of caring for wounded warriors, leading to a phenomenon termed compassion fatigue. The purpose of this integrative review was to develop a proposed definition for compassion fatigue in support of these teams. There is no current standardized formal definition, and this lack of clarity can inhibit intervention. Seven main themes evolved from the literature review and were integrated with the core elements of the Bandura Social Cognitive Theory Model as the first step in developing a uniformed definition. PMID:24506980

  16. Choreographing Compassion: A Clinical Adventure of Rhythms.

    PubMed

    Yopst, Charles George

    2015-06-01

    Compassion is a primary catalyst motivating positive human relationships, especially of those less fortunate. Our rhythms Expand-Contract of our own non-verbal body joints movements and of the law of counter-balance, enable us to identify which of nine innate affects-emotions is directing the body's movements. With this reading, a trained person can synchronize choreography of these into fully authentic compassion between two or more persons. Primary references for this are the late Silvan S. Tomkins's four volumes "Affect Imagery Consciousness," and choreographers the late Rudolf Laban, Warren Lamb, Irmgard Bartenieff, and Marian Chace. Professionals, clinicians, and laity counselors can all use these. PMID:26227934

  17. Domain wall assisted magnetization switching in (111) oriented L1{sub 0} FePt grown on a soft magnetic metallic glass

    SciTech Connect

    Kaushik, Neelam; Sharma, Parmanand; Yubuta, Kunio; Makino, Akihiro; Inoue, Akihisa

    2010-08-16

    We report on growth and magnetic properties of exchange-coupled (111)-L1{sub 0} FePt hard/CoFeTaB soft magnetic metallic glass bilayered structure processed at lower temperature ({approx}400 deg. C). Single phaselike hysteresis loops with tailorable coercivity (<8.2 kOe) in out of plane direction are obtained. The magnetization switching mechanism is identified as domain wall assisted. In views of excellent nanofabrication abilities of metallic glass thin film and the ability to grow preferred oriented L1{sub 0} FePt, the present bilayered structure is very promising for the fabrication of high density bit--patterned magnetic recording media and other spintronic devices.

  18. Nuclear magnetic resonance on oriented rare-earth nuclei in rare-earth hosts: Application to /sup 160/Tb

    SciTech Connect

    Brewer, W.D.; Roman, P.; Boettcher, M.; Illerhaus, B.; Marshak, H.; Freitag, K.; Herzog, P.

    1988-12-01

    We summarize the application of nuclear magnetic resonance of oriented nuclei to rare-earth impurities implanted in ferromagnetic crystals of heavy rare-earth hosts. The experimental aspects are treated in some detail; we present results obtained on /sup 160/TbTb, and give a formal description of the experiments. A discussion of extension to other, similar systems with applications in nuclear, solid-state, and low-temperature physics is given.

  19. Performance of large pixelised Micromegas detectors in the COMPASS environment

    NASA Astrophysics Data System (ADS)

    Thibaud, F.; Abbon, P.; Andrieux, V.; Anfreville, M.; Bedfer, Y.; Burtin, E.; Capozza, L.; Coquelet, C.; Curiel, Q.; d'Hose, N.; Desforge, D.; Dupraz, K.; Durand, R.; Ferrero, A.; Giganon, A.; Jourde, D.; Kunne, F.; Magnon, A.; Makke, N.; Marchand, C.; Neyret, D.; Paul, B.; Platchkov, S.; Usseglio, M.; Vandenbroucke, M.

    2014-02-01

    New large-size Micromegas detectors are being developed for the future physics program of the COMPASS experiment at CERN. These detectors will have a pixelised readout in their center to detect particles in the beam region, where the particle flux can reach several MHz/cm2 in nominal conditions, and will have to handle high intensity hadron beams (up to a few 107 hadrons/s) with a discharge rate lower than 0.01 to 0.001 discharge/s. Several prototypes with two different discharge rate reduction technologies (preamplification stage with a GEM foil and resistive readout with buried resistors) have been studied in the COMPASS beam since 2010. Four of them have been included in the spectrometer since 2012, and have been used for the track reconstruction. Their performance (detection efficiency, space and time resolutions, and discharge rates) for different beam intensities and magnetic fields environments are presented. These detectors play an important role in the track reconstruction at very small angle; their impact is presented, with a particular emphasis on the effect of the background reduction due to an improved cluster selection.

  20. Seed orientation and magnetic field strength have more influence on tomato seed performance than relative humidity and duration of exposure to non-uniform static magnetic fields.

    PubMed

    Poinapen, Danny; Brown, Daniel C W; Beeharry, Girish K

    2013-09-15

    Different factors (e.g., light, humidity, and temperature) including exposure to static magnetic fields (SMFs), referred here as critical factors, can significantly affect horticultural seed performance. However, the link between magnetic field parameters and other interdependent factors affecting seed viability is unclear. The importance of these critical factors affecting tomato (Solanum lycopersicum L.) var. MST/32 seed performance was assessed after performing several treatments based on a L9 (3(4)) (four factors at three levels) orthogonal array (OA) design. The variable factors in the design were magnetic flux density (R1=332.137.8mT; R2=108.726.9mT; and R3=50.610.5mT), exposure time (1, 2, and 24h), seed orientation (North polarity, South polarity, and control - no magnetic field), and relative humidity (RH) (7.0, 25.5, and 75.5%). After seed moisture content stabilisation at the different chosen RH, seeds were exposed in dark under laboratory conditions to several treatments based on the OA design before performance evaluation. Treatments not employing magnetic field exposure were used as controls. Results indicate that electrolyte leakage rate was reduced by a factor of 1.62 times during seed imbibition when non-uniform SMFs were employed. Higher germination (?11.0%) was observed in magnetically-exposed seeds than in non-exposed ones, although seedlings emerging from SMF treatments did not show a consistent increase in biomass accumulation. The respective influence of the four critical factors tested on seed performance was ranked (in decreasing order) as seed orientation to external magnetic fields, magnetic field strength, RH, and exposure time. This study suggests a significant effect of non-uniform SMFs on seed performance with respect to RH, and more pronounced effects are observed during seed imbibition rather than during later developmental stages. PMID:23759543

  1. Suffering and compassion: The links among adverse life experiences, empathy, compassion, and prosocial behavior.

    PubMed

    Lim, Daniel; DeSteno, David

    2016-03-01

    Experiencing past adversity traditionally has been linked to negative life outcomes. However, emerging evidence suggests that heterogeneity exists with respect to links between adversity and resilience, with adversity often enhancing cooperation in the face of joint suffering. Here, the authors present 2 studies designed to examine if the severity of past adversity is associated with an enduring propensity for empathy-mediated compassion, and, if so, whether the resulting compassion directly is, in turn, linked to behavior meant to relieve the suffering of others. Using both MTurk and laboratory-based paradigms, the authors find that increasing severity of past adversity predicts increased empathy, which in turn, is linked to a stable tendency to feel compassion for others in need. In addition, they demonstrate that the resulting individual differences in compassion appear to engender behavioral responses meant to assist others (i.e., charitable giving, helping a stranger). (PsycINFO Database Record PMID:26751630

  2. Compassion training alters altruism and neural responses to suffering

    PubMed Central

    Weng, Helen Y.; Fox, Andrew S.; Shackman, Alexander J.; Stodola, Diane E.; Caldwell, Jessica Z. K.; Olson, Matthew C.; Rogers, Gregory M.; Davidson, Richard J.

    2013-01-01

    Compassion is a key motivator of altruistic behavior, but little is known about individuals’ capacity to cultivate compassion through training. We examined whether compassion may be systematically trained by testing whether (i) short-term compassion training increases altruistic behavior, and (ii) individual differences in altruism are associated with training-induced changes in neural responses to suffering. In healthy young adults, we found that compassion training increased altruistic redistribution of funds to a victim encountered outside of the training context. Furthermore, greater altruistic behavior after compassion training was associated with altered activation in regions implicated in social cognition and emotion regulation, including the inferior parietal cortex, dorsolateral prefrontal cortex (DLPFC), and DLPFC connectivity with the nucleus accumbens. These results suggest that compassion can be cultivated with training, where greater altruistic behavior may emerge from increased engagement in neural systems implicated in understanding the suffering of others, executive and emotional control, and reward processing. PMID:23696200

  3. Study of the Influence of the Orientation of a 50-Hz Magnetic Field on Fetal Exposure Using Polynomial Chaos Decomposition

    PubMed Central

    Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo

    2015-01-01

    Human exposure modelling is a complex topic, because in a realistic exposure scenario, several parameters (e.g., the source, the orientation of incident fields, the morphology of subjects) vary and influence the dose. Deterministic dosimetry, so far used to analyze human exposure to electromagnetic fields (EMF), is highly time consuming if the previously-mentioned variations are considered. Stochastic dosimetry is an alternative method to build analytical approximations of exposure at a lower computational cost. In this study, it was used to assess the influence of magnetic flux density (B) orientation on fetal exposure at 50 Hz by polynomial chaos (PC). A PC expansion of induced electric field (E) in each fetal tissue at different gestational ages (GA) was built as a function of B orientation. Maximum E in each fetal tissue and at each GA was estimated for different exposure configurations and compared with the limits of the International Commission of Non-Ionising Radiation Protection (ICNIRP) Guidelines 2010. PC theory resulted in an efficient tool to build accurate approximations of E in each fetal tissue. B orientation strongly influenced E, with a variability across tissues from 10% to 43% with respect to the mean value. However, varying B orientation, maximum E in each fetal tissue was below the limits of ICNIRP 2010 at all GAs. PMID:26024363

  4. Study of the influence of the orientation of a 50-Hz magnetic field on fetal exposure using polynomial chaos decomposition.

    PubMed

    Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo

    2015-06-01

    Human exposure modelling is a complex topic, because in a realistic exposure scenario, several parameters (e.g., the source, the orientation of incident fields, the morphology of subjects) vary and influence the dose. Deterministic dosimetry, so far used to analyze human exposure to electromagnetic fields (EMF), is highly time consuming if the previously-mentioned variations are considered. Stochastic dosimetry is an alternative method to build analytical approximations of exposure at a lower computational cost. In this study, it was used to assess the influence of magnetic flux density (B) orientation on fetal exposure at 50 Hz by polynomial chaos (PC). A PC expansion of induced electric field (E) in each fetal tissue at different gestational ages (GA) was built as a function of B orientation. Maximum E in each fetal tissue and at each GA was estimated for different exposure configurations and compared with the limits of the International Commission of Non-Ionising Radiation Protection (ICNIRP) Guidelines 2010. PC theory resulted in an efficient tool to build accurate approximations of E in each fetal tissue. B orientation strongly influenced E, with a variability across tissues from 10% to 43% with respect to the mean value. However, varying B orientation, maximum E in each fetal tissue was below the limits of ICNIRP 2010 at all GAs. PMID:26024363

  5. Mining-machine orientation control based on inertial, gravitational, and magnetic sensors. Report of Investigations/1990

    SciTech Connect

    Sammarco, J.J.

    1990-01-01

    The U.S. Bureau of Mines seeks to increase safety and efficiency in U.S. coal mines. One approach is to develop technology for automation of a continuous mining machine. Realization of an autonomous mining machine requires development of subsystems for machine intelligence, navigation-positioning, and computer control. The report focuses on investigation of one subsystem, an onboard heading system, which would be responsible for determining and controlling machine heading. The onboard heading system investigated is a multisensor system to determine machine heading, pitch, and roll. A directional gyroscope provides heading (yaw), fluxgate sensors provide a compass heading, and gravity-referenced clinometers give machine pitch and roll. The system utilizes a dedicated microcontroller networked to an external system of computers. Tram commands, supplied to the network from external computers, are executed by the onboard system. Sensor feedback is employed for closed-loop control of machine heading by controlling pivots and turns. The report discusses operating limitations and error sources of system sensors and presents test results of closed-loop control of machine heading.

  6. Artifacts in the Wake: Leadership via an Oriented Compass Model

    ERIC Educational Resources Information Center

    Fallon, Paul D.

    2013-01-01

    Although inextricable, the act of leading, the leader, and outcome of leadership are unique entities. Lack of such differentiation may ensnare novice leaders in broad suppositions. This conceptual article introduces a tool for analyzing leadership. Leaders can leverage the model to evaluate the act of leading, in route, via a measurable trajectory

  7. Artifacts in the Wake: Leadership via an Oriented Compass Model

    ERIC Educational Resources Information Center

    Fallon, Paul D.

    2013-01-01

    Although inextricable, the act of leading, the leader, and outcome of leadership are unique entities. Lack of such differentiation may ensnare novice leaders in broad suppositions. This conceptual article introduces a tool for analyzing leadership. Leaders can leverage the model to evaluate the act of leading, in route, via a measurable trajectory…

  8. Utilization of gyroscopic compass with borehole television camera in Devonian shale wells, Appalachian basin

    SciTech Connect

    Walbe, K.

    1988-08-01

    The color Borehole Television Camera has, in the three short years since its introduction in the Appalachian basin, become an extremely valuable tool in evaluating wells in Devonian shale. This has been due to the camera's ability to detect fracturing and small hydrocarbon entries that are below the resolution threshold of conventional geophysical logging. This potential of the camera has been greatly enhanced by the addition of a gyroscopic compass to the basic tool. This compass gives the added value of orientation to observed phenomena in both open and cased holes. In the open hole, the camera can be used to determine the orientation of fracturing. This feature is extremely important because fracture orientation can vary with depth, which may be the reason that some previously observed fractures make gas, whereas others within the same well bore do not. The productive fracture orientation can also be tied back to regional lineation studies. Within the open hole, the gyroscope can also be used to orient sidewall coring operations so that cores can, in addition to regular analyses, be evaluated for directional properties, such as permeability and direction of the source beds. Induced fractures, created by open-hole stress testing, can also be observed and their orientation determined.

  9. Transfer of directional information between the polarization compass and the sun compass in desert ants.

    PubMed

    Lebhardt, Fleur; Ronacher, Bernhard

    2015-06-01

    Desert ants, Cataglyphis fortis, perform large foraging excursions during which they continuously compute a home vector that allows them to return to the nest on the shortest way. This type of navigation, termed path integration, needs a compass system and an odometer. Ants use several cues to determine their walking direction, two of the most important ones being the sun position and the polarization pattern of the sky. We tested whether an information transfer is possible from one compass system to the other, which depend on different anatomical substrates. Since the sky's polarization pattern is detected by UV-photoreceptors located in the dorsal rim area (DRA), we used an orange Perspex filter that eliminated the UV part of the spectrum to prevent the use of the polarization compass. The use of the sun compass could be excluded by appropriate screens. In the critical tests the ants had learned a nest-feeder direction with e.g. the sun compass only, and were later tested with the polarization compass, or vice versa. The results show that a transfer is possible in both directions. PMID:25062650

  10. Practical compassions: repertoires of practice and compassion talk in acute mental healthcare.

    PubMed

    Brown, Brian; Crawford, Paul; Gilbert, Paul; Gilbert, Jean; Gale, Corinne

    2014-03-01

    This article reports an exploratory study of the concept of compassion in the work of 20 mental health practitioners in a UK Midlands facility. Using notions of practice derived from phenomenology and Bourdieusian sociology and notions of emotional labour we identify two contrasting interpretive repertoires in discussions of compassion. The first, the practical compassion repertoire, evokes the practical, physical and bodily aspects of compassion. It involves organising being with patients, playing games, anticipating disruption and taking them outside for cigarettes. Practitioners described being aware that these practical, bodily activities could lead to patients 'opening up', disclosing their interior concerns and enabling practical, compassionate mental health work to take place. In contrast, the second, organisational repertoire, concerns organisational constraints on compassionate practice. The shortage of staff, the record-keeping and internal processes of quality control were seen as time-greedy and apt to detract from contact with patients. The findings are discussed in relation to Bourdieu and Merleau-Ponty's phenomenological accounts of practice and habit and set in context in the growing interest in placing compassion centrally in healthcare. We also explore how the exercise of compassion in the way our participants describe it can afford the more effective exercise of medical power. PMID:24117523

  11. The influence of trait-negative affect and compassion satisfaction on compassion fatigue in Australian nurses.

    PubMed

    Craigie, Mark; Osseiran-Moisson, Rebecca; Hemsworth, David; Aoun, Samar; Francis, Karen; Brown, Janie; Hegney, Desley; Rees, Clare

    2016-01-01

    For this study, we examined the nature of the unique relationships trait-negative affect and compassion satisfaction had with compassion fatigue and its components of secondary traumatic stress and burnout in 273 nurses from 1 metropolitan tertiary acute hospital in Western Australia. Participants completed the Professional Quality of Life Scale (Stamm, 2010), Depression Anxiety Stress Scale (Lovibond & Lovibond, 2004), and the State-Trait Anxiety Inventory (Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983). Bivariate correlation and hierarchical regression analyses were performed to examine and investigate 4 hypotheses. The results demonstrate a clear differential pattern of relationships with secondary traumatic stress and burnout for both trait-negative affect and compassion satisfaction. Trait-negative affect was clearly the more important factor in terms of its contribution to overall compassion fatigue and secondary traumatic stress. In contrast, compassion satisfaction's unique protective relationship only related to burnout, and not secondary traumatic stress. The results are therefore consistent with the view that compassion satisfaction may be an important internal resource that protects against burnout, but is not directly influential in protecting against secondary traumatic stress for nurses working in an acute-care hospital environment. With the projected nursing workforce shortages in Australia, it is apparent that a further understanding is warranted of how such personal variables may work as protective and risk factors. (PsycINFO Database Record PMID:25961866

  12. Influence of lattice-preferred orientation with respect to magnetizing field on intensity of remanent magnetization in polycrystalline hemo-ilmenite

    NASA Astrophysics Data System (ADS)

    Robinson, P.; Fabian, K.; McEnroe, S. A.; Heidelbach, F.

    2013-02-01

    New experimental and computational approaches to interpret orientation and intensity of natural remanent magnetization (NRM) carried by lamellar magnetism are applied to historic magnetic measurements on a collection of 82 massive hemo-ilmenite samples from the Allard Lake District in the Grenville Province, Quebec. The anisotropy of magnetic susceptibility (AMS), together with declination and inclination of NRM, indicate a systematic deflection ? of the NRM vector away from the unit vector v that represents the Mesoproterozoic magnetizing field direction. The deflection ? is caused by a statistical lattice-preferred orientation (LPO) of the individual (0001) basal planes, to which the NRM is confined in hemo-ilmenite crystals. Here, we study a second deflection ? that is the angle the NRM makes with the statistical (0001) basal plane of the crystal assemblage, in relation to the angle ? between the statistical (0001) basal plane and v. The relation between these two angles depends on the scatter of the distribution of crystal platelets, which also influences the AMS of the assemblage. For a Fisher distribution of basal planes, the distribution parameter K can be determined from ? and ?. It is then further possible to infer the single-crystal anisotropy of individual platelets. Typical crystals of hemo-ilmenite turn out to have a relatively weak AMS so that samples with a narrow Fisher distribution of platelets nevertheless can have a weak AMS. This has been confirmed in two samples by measurement of the (0001) basal plane distribution of crystals using electron backscatter diffraction, and in one of these two samples by measuring AMS and NRM of a single hemo-ilmenite crystal. Based on our estimated K values for selected samples, we calculate values of ?, NRM intensity and ? for any value of ?. These data provide striking examples of the influence of the orientation of the crystal LPO on the intensity of lamellar magnetism, and explain the large variation of observed NRM intensities by varying orientation with respect to the magnetizing field, without requiring large variations of the paleomagnetic field intensity. This relation between NRM and LPO is also important for anomaly interpretation in areas with strong foliation.

  13. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input

    PubMed Central

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock. PMID:26630286

  14. 46 CFR 121.402 - Compasses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Compasses. 121.402 Section 121.402 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND...

  15. Compassion: How Do You Teach It?

    ERIC Educational Resources Information Center

    Kohler-Evans, Patty; Barnes, Candice Dowd

    2015-01-01

    Evidence suggests that there is a correlation between the violent images and stories we view through media and the effects those stories have on children and young adults, namely the suppression of compassion. With so much emphasis on academic standards, sometimes social emotional skills are grossly neglected. Students are being taught how to

  16. Magnetic monitoring of earth and space

    USGS Publications Warehouse

    Love, Jeffrey J.

    2008-01-01

    For centuries, navigators of the world's oceans have been familiar with an effect of Earth's magnetic field: It imparts a directional preference to the needle of a compass. Although in some settings magnetic orientation remains important, the modern science of geomagnetism has emerged from its romantic nautical origins and developed into a subject of great depth and diversity. The geomagnetic field is used to explore the dynamics of Earth's interior and its surrounding space environment, and geomagnetic data are used for geophysical mapping, mineral exploration, risk mitigation, and other practical applications. A global distribution of ground-based magnetic observatories supports those pursuits by providing accurate records of the magnetic-field direction and intensity at fixed locations and over long periods of time.

  17. Magnetic monitoring of earth and space

    USGS Publications Warehouse

    Love, J.J.

    2008-01-01

    For centuries, navigators of the world's oceans have been familiar with an effect of Earth's magnetic field: It imparts a directional preference to the needle of a compass. Although in some settings magnetic orientation remains important, the modern science of geomagnetism has emerged from its romantic nautical origins and developed into a subject of great depth and diversity. The geomagnetic field is used to explore the dynamics of Earth's interior and its surrounding space environment, and geomagnetic data are used for geophysical mapping, mineral exploration, risk mitigation, and other practical applications. A global distribution of ground-based magnetic observatories supports those pursuits by providing accurate records of the magnetic-field direction and intensity at fixed locations and over long periods of time. ?? 2008 American Institute of Physics.

  18. Rheological properties and orientational distributions of dilute ferromagnetic spherocylinder particle dispersions. Part II. Analysis for the two typical magnetic field directions.

    PubMed

    Aoshima, Masayuki; Satoh, Akira; Chantrell, Roy W; Coverdale, Geoff N

    2002-09-15

    We have investigated the orientational distributions and rheological properties of dilute colloidal dispersions, which consist of ferromagnetic spherocylinder particles. First, the governing equation of the orientational distribution function has been derived for the typical two cases of magnetic field directions: the direction parallel to the shear flow and the direction parallel to the angular velocity vector of the shear flow. The equation has been solved approximately by Galerkin's method. With these numerical solutions we have obtained the results of the orientational distribution and viscosity. The results obtained for the magnetic field in the shear flow direction are summarized as follows. In the case of a weak magnetic field, the particle tends to orient nearly toward the shear flow direction and its opposite direction. As the magnetic field increases, the orientation of the particle is restricted and the viscosity increases significantly. As the influence of the magnetic field becomes dominant, an overshoot in the viscosity curve appears. This is due to the fact that there is a maximum deviation of the averaged particle direction from the magnetic field direction. When the strength of the magnetic field increases significantly, the particle inclines close to the magnetic field direction and the viscosity converges to a constant value. Particles with a larger aspect ratio give rise to a larger increment in the viscosity since such elongated particles induce larger resistance in a flow field. We also have obtained results for the case of the magnetic field in the direction parallel to the angular velocity vector of the shear flow. When the flow field is dominant over both the rotational Brownian motion and the magnetic interaction, the particle rotates in the plane nearly perpendicular to the magnetic field direction. As the magnetic field increases, the particle inclines toward the magnetic direction. For this direction of field, the viscosity is independent of the magnetic field and is always zero. PMID:16290877

  19. Anchor Node Localization for Wireless Sensor Networks Using Video and Compass Information Fusion

    PubMed Central

    Pescaru, Dan; Curiac, Daniel-Ioan

    2014-01-01

    Distributed sensing, computing and communication capabilities of wireless sensor networks require, in most situations, an efficient node localization procedure. In the case of random deployments in harsh or hostile environments, a general localization process within global coordinates is based on a set of anchor nodes able to determine their own position using GPS receivers. In this paper we propose another anchor node localization technique that can be used when GPS devices cannot accomplish their mission or are considered to be too expensive. This novel technique is based on the fusion of video and compass data acquired by the anchor nodes and is especially suitable for video- or multimedia-based wireless sensor networks. For these types of wireless networks the presence of video cameras is intrinsic, while the presence of digital compasses is also required for identifying the cameras' orientations. PMID:24594614

  20. Anchor node localization for wireless sensor networks using video and compass information fusion.

    PubMed

    Pescaru, Dan; Curiac, Daniel-Ioan

    2014-01-01

    Distributed sensing, computing and communication capabilities of wireless sensor networks require, in most situations, an efficient node localization procedure. In the case of random deployments in harsh or hostile environments, a general localization process within global coordinates is based on a set of anchor nodes able to determine their own position using GPS receivers. In this paper we propose another anchor node localization technique that can be used when GPS devices cannot accomplish their mission or are considered to be too expensive. This novel technique is based on the fusion of video and compass data acquired by the anchor nodes and is especially suitable for video- or multimedia-based wireless sensor networks. For these types of wireless networks the presence of video cameras is intrinsic, while the presence of digital compasses is also required for identifying the cameras' orientations. PMID:24594614

  1. How dim is dim? Precision of the celestial compass in moonlight and sunlight

    PubMed Central

    Dacke, M.; Byrne, M. J.; Baird, E.; Scholtz, C. H.; Warrant, E. J.

    2011-01-01

    Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dimand the polarization pattern too weakto provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision. PMID:21282173

  2. How dim is dim? Precision of the celestial compass in moonlight and sunlight.

    PubMed

    Dacke, M; Byrne, M J; Baird, E; Scholtz, C H; Warrant, E J

    2011-03-12

    Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim--and the polarization pattern too weak--to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision. PMID:21282173

  3. Polarized skylight does not calibrate the compass system of a migratory bat.

    PubMed

    Lindecke, Oliver; Voigt, Christian C; P?tersons, Gun?rs; Holland, Richard A

    2015-09-01

    In a recent study, Greif et al. (Greif et al. Nat Commun 5, 4488. (doi:10.1038/ncomms5488)) demonstrated a functional role of polarized light for a bat species confronted with a homing task. These non-migratory bats appeared to calibrate their magnetic compass by using polarized skylight at dusk, yet it is unknown if migratory bats also use these cues for calibration. During autumn migration, we equipped Nathusius' bats, Pipistrellus nathusii, with radio transmitters and tested if experimental animals exposed during dusk to a 90 rotated band of polarized light would head in a different direction compared with control animals. After release, bats of both groups continued their journey in the same direction. This observation argues against the use of a polarization-calibrated magnetic compass by this migratory bat and questions that the ability of using polarized light for navigation is a consistent feature in bats. This finding matches with observations in some passerine birds that used polarized light for calibration of their magnetic compass before but not during migration. PMID:26382077

  4. Rise of pairwise thermal entanglement for an alternating Ising and Heisenberg spin chain in an arbitrarily oriented magnetic field

    NASA Astrophysics Data System (ADS)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2014-03-01

    Typically two particles (spins) could be maximally entangled at zero temperature, and for a certain temperature the phenomenon of entanglement vanishes at the threshold temperature. For the Heisenberg coupled model or even the Ising model with a transverse magnetic field, one can observe some rise of entanglement even for a disentangled region at zero temperature. So we can understand this emergence of entanglement at finite temperature as being due to the mixing of some maximally entangled states with some other untangled states. Here, we present a simple one-dimensional Ising model with alternating Ising and Heisenberg spins in an arbitrarily oriented magnetic field, which can be mapped onto the classical Ising model with a magnetic field. This model does not show any evidence of entanglement at zero temperature, but surprisingly at finite temperature rise a pairwise thermal entanglement between two untangled spins at zero temperature when an arbitrarily oriented magnetic field is applied. This effect is a purely magnetic field, and the temperature dependence, as soon as the temperature increases, causes a small increase in concurrence, achieving its maximum at around 0.1. Even for long-range entanglement, a weak concurrence still survives. There are also some real materials that could serve as candidates that would exhibit this effect, such as Dy(NO3)(DMSO)2Cu(opba)(DMSO)2 [DMSO = dimethyl sulfoxide; opba = o-phenylenebis(oxamoto)] [J. Stre?ka, M. Hagiwara, Y. Han, T. Kida, Z. Honda, and M. Ikeda, Condens. Matter Phys. 15, 43002 (2012), 10.5488/CMP.15.43002].

  5. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    DOE PAGESBeta

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less

  6. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    SciTech Connect

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. The range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.

  7. Effects of Instructional Technology Integration Strategies in Orientation Programs on Nurse Retention in Magnet and Non-Magnet Hospitals

    ERIC Educational Resources Information Center

    Hancharik, Sharon D.

    2008-01-01

    This applied dissertation study was designed to learn if the increased use of instructional technology integration strategies in nursing orientation programs resulted in an increased retention of new nurses. The study attempted to uncover the current retention rate and use of technology at the participating hospitals. The data obtained from Magnet…

  8. Nel-type skyrmion lattice with confined orientation in the polar magnetic semiconductorGaV4S8.

    PubMed

    Kzsmrki, I; Bordcs, S; Milde, P; Neuber, E; Eng, L M; White, J S; Rnnow, H M; Dewhurst, C D; Mochizuki, M; Yanai, K; Nakamura, H; Ehlers, D; Tsurkan, V; Loidl, A

    2015-11-01

    Following the early prediction of the skyrmion lattice (SkL)--a periodic array of spin vortices--it has been observed recently in various magnetic crystals mostly with chiral structure. Although non-chiral but polar crystals with Cnv symmetry were identified as ideal SkL hosts in pioneering theoretical studies, this archetype of SkL has remained experimentally unexplored. Here, we report the discovery of a SkL in the polar magnetic semiconductor GaV4S8 with rhombohedral (C3v) symmetry and easy axis anisotropy. The SkL exists over an unusually broad temperature range compared with other bulk crystals and the orientation of the vortices is not controlled by the external magnetic field, but instead confined to the magnetic easy axis. Supporting theory attributes these unique features to a new Nel-type of SkL describable as a superposition of spin cycloids in contrast to the Bloch-type SkL in chiral magnets described in terms of spin helices. PMID:26343913

  9. Nel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8

    NASA Astrophysics Data System (ADS)

    Kzsmrki, I.; Bordcs, S.; Milde, P.; Neuber, E.; Eng, L. M.; White, J. S.; Rnnow, H. M.; Dewhurst, C. D.; Mochizuki, M.; Yanai, K.; Nakamura, H.; Ehlers, D.; Tsurkan, V.; Loidl, A.

    2015-11-01

    Following the early prediction of the skyrmion lattice (SkL)--a periodic array of spin vortices--it has been observed recently in various magnetic crystals mostly with chiral structure. Although non-chiral but polar crystals with Cnv symmetry were identified as ideal SkL hosts in pioneering theoretical studies, this archetype of SkL has remained experimentally unexplored. Here, we report the discovery of a SkL in the polar magnetic semiconductor GaV4S8 with rhombohedral (C3v) symmetry and easy axis anisotropy. The SkL exists over an unusually broad temperature range compared with other bulk crystals and the orientation of the vortices is not controlled by the external magnetic field, but instead confined to the magnetic easy axis. Supporting theory attributes these unique features to a new Nel-type of SkL describable as a superposition of spin cycloids in contrast to the Bloch-type SkL in chiral magnets described in terms of spin helices.

  10. Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World

    PubMed Central

    Bockhorst, Tobias; Homberg, Uwe

    2015-01-01

    The central complex of the insect brain comprises a group of neuropils involved in spatial orientation and memory. In fruit flies it mediates place learning based on visual landmarks and houses neurons that encode the orientation for goal-directed locomotion, based on landmarks and self-motion cues for angular path-integration. In desert locusts, the central complex holds a compass-like representation of head directions, based on the polarization pattern of skylight. Through intracellular recordings from immobilized locusts, we investigated whether sky compass neurons of the central complex also represent the position or any salient feature of possible landmarks, in analogy to the observations in flies. Neurons showed strongest responses to the novel appearance of a small moving square, but we found no evidence for a topographic representation of object positions. Responses to an individual square were independent of direction of motion and trajectory, but showed rapid adaptation to successive stimulation, unaffected by changing the direction of motion. Responses reappeared, however, if the moving object changed its trajectory or if it suddenly reversed moving direction against the movement of similar objects that make up a coherent background-flow as induced by ego-motion. Response amplitudes co-varied with the precedent state of dynamic background activity, a phenomenon that has been related to attention-dependent saliency coding in neurons of the mammalian primary visual cortex. The data show that neurons of the central complex of the locust brain are visually bimodal, signaling sky compass direction and the novelty character of moving objects. These response properties might serve to attune compass-aided locomotor control to unexpected events in the environment. The difference to data obtained in fruit flies might relate to differences in the lifestyle of landmark learners (fly) and compass navigators (locust), point to the existence of parallel networks for the two orientation strategies, or reflect differences in experimental conditions. PMID:26636334

  11. Investigation on magnetic properties of parallel and perpendicular oriented Nd2Fe14B/Fe65Co35/Nd2Fe14B films by the micro-magnetism finite element method

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Yue, M.; Wu, Q.; Wang, T.; Cheng, C. X.; Chen, H. X.

    2015-11-01

    In present study, the hysteresis loops and the magnetic reversal process of both the parallel and the perpendicular oriented Nd2Fe14B/Fe65Co35/Nd2Fe14B trilayers with different soft phase thicknesses were studied by the micro-magnetism finite element method. Analysis of magnetization vectors' evolution in demagnetization process indicates that the parallel and the perpendicular oriented trilayers exhibit different magnetic reversal behaviors. All the demagnetization curves of the perpendicular oriented trilayers exhibits "single phase" behavior, while noticeable kinks presents in the demagnetization curves of the parallel oriented trilayers with the soft phase thickness equal to or larger than 12 nm. Moreover, as the thickness of the soft phase increases, the remanence (Br) of the parallel and the perpendicular oriented trilayers increases first, peaks respectively at 1.90 and 1.93 T, respectively, and then decreases again. On the other hand, the coercivity (?0Hc) of the parallel and the perpendicular oriented trilayers drops monotonically with the increase of soft layers thickness. As a result, the optimal maximum energy product [(BH)max] of the parallel and the perpendicular oriented trilayers are 630 kJ/m3 and 592 kJ/m3, respectively. Deviation degree of orientation was simulated for the perpendicular oriented trilayers with Ls=10 nm.

  12. Is it possible to receive information about the historical geomagnetic declination from church orientations?

    NASA Astrophysics Data System (ADS)

    Draxler, Andrea; Rauch, Roman; Gruber, Karin; Leohardt, Roman

    2013-04-01

    It is widely known that the main structure of many churches was planned and built in an east-ward direction. This procedure, called "easting", was used for centuries especially in catholic structures. "Easting" usually refers to the direction of sunrise at the church patron's day. Assuming however that this direction is estimated by compasses there could be a significant correlation between the geographic orientation of the churches and the value of magnetic declination at the date of building. In Europe compasses are known since the 11th century. For this study altogether 124 churches located in lower Austria and built between 1100 to 1900 were analysed. Of primary interest is the geographic orientation of the churches, which was extracted out of georeferenced satellite images in Google Earth and the NO Atlas. The measured orientation of the church's nave is then compared to the geographic east direction as well as to the magnetic east direction, according to the magnetic field in the church's construction year which is determined by published geomagnetic field models. The resulting deviations for the geographic east direction split our data into two groups: churches that were built before 1500 and churches that were constructed after 1500. The boundary between these two data sets is marked by the Ottoman wars in the 16th century, where a lot of churches were destroyed. After 1500 the differences between the church's orientation and the geographic east direction are significantly bigger than before the Ottoman wars, so we shifted our focus for the following calculations on the time span from 1100 to 1500, where we found quite small deviations for both the geographic and the magnetic east direction. The principle idea of church orientation, usually referred to as "Easting" is to direct the church to the point of sunrise on the patron saint's day. Therefore we also calculated the solar azimuth on the patron saint's day and compared it to the orientation of the church. The differences we found were bigger than the deviations we got from the comparisons to the geographic and magnetic east directions, so this indicates that practically the solar azimuth was not used for the church's direction. Furthermore, our investigations indicate that the orientation of the investigated churches is more likely to be related to the geographic east direction than to magnetic east.

  13. Effect of deformation route and intermediate annealing on magnetic anisotropy and magnetic properties of a 1 wt% Si non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Sonboli, Ali; Toroghinejad, Mohammad Reza; Edris, Hossein; Szpunar, Jerzy A.

    2015-07-01

    In the present work the influence of intermediate annealing and the strain path during a two-stage cold rolling on the microstructure and texture of a 1 wt% Si non-oriented electrical steel was investigated. Different processing conditions were tasted to develop favorable texture and better understand the relation between texture and important magnetic properties. The texture parameter (TP) was defined as "theta fiber/gamma fiber" ratio. The results showed that the samples with the highest TP have the lowest magnetic anisotropy. Also average magnetocrystalline energy was calculated and it was demonstrated that the lowest energy can be correlated with the highest "theta fiber/gamma fiber" ratio. Regardless of the condition of intermediate annealing process, the uni-directional rolling produced very similar texture parameter (~2). However, the cross rolled samples have very different texture parameters upon intermediate annealing. The cross rolled samples after intermediate annealing at 650 C have the highest texture parameter (~3). The proposed thermo-mechanical processing allow diminishing gamma fiber which is deleterious for magnetic properties of non-oriented electrical steels.

  14. Influence of magnetic field on zebrafish activity and orientation in a plus maze.

    PubMed

    Osipova, Elena A; Pavlova, Vera V; Nepomnyashchikh, Valentin A; Krylov, Viacheslav V

    2016-01-01

    We describe an impact of the geomagnetic field (GMF) and its modification on zebrafish's orientation and locomotor activity in a plus maze with four arms oriented to the north, east, south and west. Zebrafish's directional preferences were bimodal in GMF: they visited two arms oriented in opposed directions (east-west) most frequently. This bimodal preference remained stable for same individuals across experiments divided by several days. When the horizontal GMF component was turned 90 clockwise, the preference accordingly shifted by 90 to arms oriented to the north and south. Other modifications of GMF (reversal of both vertical and horizontal GMF components; reversal of vertical component only; and reversal of horizontal component only) did not exert any discernible effect on the orientation of zebrafish. The 90 turn of horizontal component also resulted in a significant increase of fish's locomotor activity in comparison with the natural GMF. This increase became even more pronounced when the horizontal component was repeatedly turned by 90 and back with 1min interval between turns. Our results show that GMF and its variations should be taken into account when interpreting zebrafish's directional preferences and locomotor activity in mazes and other experimental devices. PMID:26589739

  15. Time-varying magnetic fields: effects of orientation on chondrocyte proliferation

    SciTech Connect

    Elliott, J.P.; Smith, R.L.; Block, C.A.

    1988-01-01

    The purpose of this study was to determine the effect of orientation of pulsed electromagnetic fields (PEMFs) on cellular proliferation and extracellular matrix synthesis. Bovine articular chondrocytes were cultured in PEMFs (repetitive pulse at 72 Hz) generated using Helmholtz coils oriented either parallel (horizontal) or perpendicular (vertical) to the plane of cell adhesion. Dissipation of signal energy in the form of heat increased the temperature of the PEMF coils by 2 degrees C and the tissue culture medium by 1 degree C. Therefore, control coils, which emitted no PEMFs, were heated to the temperature of PEMF coils by circulating water. Chondrocytes were cultured in 16-mm-well culture plates, and the data for individual wells were pooled as triplicates. Although not observed by microscopic examination of individual wells, positionally dependent electric field effects may be minimized by this approach. PEMFs generated by coils oriented vertically significantly decreased chondrocyte proliferation. The effect was dependent on the concentration of serum in the culture media. At 3% serum concentration, the total cell number attained after 10 days of culture was reduced by 50% in stimulated cultures when compared with controls. At 5% serum concentration, there was no effect. PEMFs applied by coils oriented horizontally did not alter proliferation of articular chondrocytes. PEMFs had no effect on synthesis of extracellular matrix by chondrocytes plated at high density, irrespective of orientation.

  16. Compassion fatigue and burnout: what managers should know.

    PubMed

    Slatten, Lise Anne; David Carson, Kerry; Carson, Paula Phillips

    2011-01-01

    Most health care employees experience and are bolstered by compassion satisfaction as they deal with patients in need. However, the more empathetic a health care provider is, the more likely he or she will experience compassion fatigue. Compassion fatigue is a negative syndrome that occurs when dealing with the traumatic experiences of patients, and examples of symptoms include intrusive thoughts, sleeping problems, and depression. Compassion fatigue is different from burnout. Compassion fatigue is a rapidly occurring disorder for primary health care workers who work with suffering patients, whereas burnout, a larger construct, is a slowly progressing disorder for employees who typically are working in burdensome organizational environments. Managers can mitigate problems associated with compassion fatigue with a number of interventions including patient reassignments, formal mentoring programs, employee training, and a compassionate organizational culture. With burnout, health care managers will want to focus primarily on chronic organizational problems. PMID:22042140

  17. Microstructure and magnetic properties of (001) oriented FePt/B{sub 4}C composite films

    SciTech Connect

    Yang, F. J.; Wang Hao; Wang, H. B.; Cao, X.; Yang, C. P.; Li, Q.; Zhou, M. J.; Chong, Y. M.; Zhang, W. J.

    2007-11-15

    FePt/B{sub 4}C multilayer composite films have been prepared by magnetron sputtering and subsequent annealing in vacuum. It was found that the B{sub 4}C layers effectively serve as spacers to separate the FePt layers, enhancing (001) orientation of FePt alloy. Our results show that highly (001) oriented [Fe{sub 45}Pt{sub 55}(8 nm)/B{sub 4}C (4 nm)]{sub 3} film with satisfactory perpendicular coercivity (4.75 kOe) has significant potential as a perpendicular recording medium.

  18. Vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    With the use of a power integral formulation, a study is made of the vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma. Expressions for the ray patterns are initially developed that apply for arbitrary values of driving frequency, static magnetic-field strength, plasma density, and composition. These expressions are subsequently specialized to vlf/elf radiation in a plasma modeled on the magnetosphere. A series of representative pattern plots are presented for frequencies between the proton and electron gyrofrequencies. These patterns illustrate the fact that focusing effects that arise from the geometrical properties of the refractive index surface tend to dominate the radiation distribution over the entire range from the electron gyrofrequency to 4.6 times the proton gyrofrequency. It is concluded that focusing effects should be of significant importance in the design of a vlf/elf satellite transmitting system in the magnetosphere.

  19. Proposal for GPD studies at COMPASS

    SciTech Connect

    Burtin, E.

    2011-10-24

    The study of nucleon structure through Generalised Parton Distributions (GPD) is one major part of the future COMPASS-II physics program and can be performed using exclusive reactions like Deeply Virtual Compton Scattering (DVCS) and Meson Production. The high energy of the muon beam allows to measure the x{sub B}-dependence of the t-slope of the DVCS cross section. The use of positive and negative polarised muon beams allows to determine the Beam Charge and Spin Difference of the DVCS cross sections to access the real part of the Compton form factor related to the dominant GPD H. The sensitivity of both measurements is examined and confronted to existing models or global fits of the data. Preliminary beam test data were analyzed and demonstrated the feasibility of the identification of the DVCS reaction using the COMPASS experimental set-up.

  20. Monitoring tools of COMPASS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Bodlak, M.; Frolov, V.; Huber, S.; Jary, V.; Konorov, I.; Levit, D.; Novy, J.; Salac, R.; Tomsa, J.; Virius, M.

    2015-12-01

    This paper briefly introduces the data acquisition system of the COMPASS experiment and is mainly focused on the part that is responsible for the monitoring of the nodes in the whole newly developed data acquisition system of this experiment. The COMPASS is a high energy particle experiment with a fixed target located at the SPS of the CERN laboratory in Geneva, Switzerland. The hardware of the data acquisition system has been upgraded to use FPGA cards that are responsible for data multiplexing and event building. The software counterpart of the system includes several processes deployed in heterogenous network environment. There are two processes, namely Message Logger and Message Browser, taking care of monitoring. These tools handle messages generated by nodes in the system. While Message Logger collects and saves messages to the database, the Message Browser serves as a graphical interface over the database containing these messages. For better performance, certain database optimizations have been used. Lastly, results of performance tests are presented.

  1. Transverse Spin Effects in SIDIS at COMPASS

    SciTech Connect

    Joosten, Rainer

    2009-12-17

    The measurement of single spin asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) on a transversely polarized target is an important part of the COMPASS physics program. It allows us to investigate the transversity distribution functions as well as transverse momentum dependent distribution functions by measuring azimuthal asymmetries in the hadron production. After COMPASS took data in the years 2002-2004 by scattering a 160 GeV/c muon beam off a transversely polarized deuteron ({sup 6}LiD) target, in 2007 additional data was collected on a transversely polarized proton (NH{sub 3}) target. In this contribution, the latest results on the Collins and Sivers asymmetries in single hadron production as well as two-hadron asymmetries from the analysis of the proton data are presented and compared with existing model predictions.

  2. Examining compassion and resilience through various lenses.

    PubMed

    Nolan, Mary; Oliver, Fiona; McIntosh, Laura; Lee, Jodie

    2014-09-01

    In the aftermath of the Mid-Staffs Enquiry, as part of our midwifery students' enquiry-based learning curriculum, a session was devised with the aim of enabling the students to harness the energy for change of the Francis report (Francis 2013) to explore their understanding and experience of compassion. In this article, Mary Nolan describes the structure of the sessions, and three of the students give an account of the work they undertook in small groups to explore strategies for remaining resilient in the face of the inevitable challenges they will meet once qualified. While they were already keenly aware of threats to compassion in midwifery, they were optimistic that their passion for their chosen profession, and their increased understanding of factors promoting resilience, would be protective. PMID:25326961

  3. Transverse Momentum Dependent Hadron Multiplicities at COMPASS

    NASA Astrophysics Data System (ADS)

    Makke, Nour

    2016-02-01

    Unpolarised semi-inclusive deep inelastic scattering is receiving a growing interest as a powerful tool to access poorly known transverse momentum dependent parton distributions and fragmentation functions that play a key role in many processes, in particular in the study of the spin structure of the nucleon. These functions can be investigated through experimental observables. New results on these observables by the COMPASS experiment at CERN will be shown and discussed.

  4. Valuing compassion through definition and measurement.

    PubMed

    Dewar, Belinda; Pullin, Simon; Tocheris, Ria

    2011-02-01

    The Leadership in Compassionate Care programme aims to embed compassionate care in practice and education. This article describes a project within the programme that explores with staff, patients and families the meaning of compassion and how this can be measured. The project has involved developing practice statements from noticing the aspects of compassionate care that work well. Staff were provided with support to consider, develop and implement actions that would help ensure consistency in developing compassionate care. PMID:21473217

  5. The installation and correction of compasses in airplanes

    NASA Technical Reports Server (NTRS)

    Schoeffel, M F

    1927-01-01

    The saving of time that results from flying across country on compass headings is beginning to be widely recognized. At the same time the general use of steel tube fuselages has made a knowledge of compass correction much more necessary than was the case when wooden fuselages were the rule. This paper has been prepared primarily for the benefit of the pilot who has never studied navigation and who does not desire to go into the subject more deeply than to be able to fly compass courses with confidence. It also contains material for the designer who wishes to install his compasses with the expectation that they may be accurately corrected.

  6. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design

    PubMed Central

    Kirschvink, Joseph L.; Winklhofer, Michael; Walker, Michael M.

    2010-01-01

    The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli. PMID:20071390

  7. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design.

    PubMed

    Kirschvink, Joseph L; Winklhofer, Michael; Walker, Michael M

    2010-04-01

    The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli. PMID:20071390

  8. Magnetic anisotropy and organization of nanoparticles in heads and antennae of neotropical leaf-cutter ants, Atta colombica

    NASA Astrophysics Data System (ADS)

    Alves, Odivaldo C.; Srygley, Robert B.; Riveros, Andre J.; Barbosa, Marcia A.; Esquivel, Darci M. S.; Wajnberg, Eliane

    2014-10-01

    Oriented magnetic nanoparticles have been suggested as a good candidate for a magnetic sensor in ants. Behavioural evidence for a magnetic compass in neotropical leaf-cutter ants, Atta colombica (Formicidae: Attini), motivated a study of the arrangement of magnetic particles in the ants four major body parts by measuring the angular dependence of the ferromagnetic resonance spectra at room temperature. Spectra of the thoraces and those of the abdomens showed no significant angular dependence, while those of the antennae and those of the heads exhibited a periodic dependence relative to the magnetic field. Fitting of the angular dependence of the resonant field resulted in an unexpected magnetic anisotropy with uniaxial symmetry. High values of the first order anisotropy constant were observed for the magnetic material in antennae (-2.9? ?105?erg?cm-3) and heads (-1? ?106?erg?cm-3) as compared to body parts of other social insects. In addition, the magnitude of the anisotropy in the heads was comparable to that observed in magnetite nanoparticles of 4-5?nm diameter. For the antennae, the mean angle of the particles easy magnetization axis (EA) was estimated to be 41 relative to the straightened antennas long axis. For the heads, EA was approximately 60 relative to the heads axis running from midway between the spines to the clypeus. These physical characteristics indicate organized magnetic nanoparticles with a potential for directional sensitivity, which is an important feature of magnetic compasses.

  9. Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field

    NASA Astrophysics Data System (ADS)

    Garca-Rubio, F.; Ruocco, A.; Sanz, J.

    2016-01-01

    Plasma expansion into a vacuum with an external magnetic field is studied under the ideal magnetohydrodynamic hypothesis. The inclination of the magnetic field with respect to the expansion direction is arbitrary, and both the perpendicular and the oblique cases are separately analyzed. A self-similar solution satisfying the boundary conditions is obtained. The interface with the vacuum is treated as a fluid surface, and jump conditions concerning the momentum conservation are imposed. The effect of the intensity of the magnetic field and its inclination is thoroughly studied, and the consistency of the solution for small and large inclinations is investigated.

  10. On the Magnetic Field Orientation and Plasma Flows in Solar Filament Barbs

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.

    2000-10-01

    Speeds of vertical flows in quiescent solar filaments are typically much less than the local Alfvn speed. This is why the flows in filament barbs can be modeled by perturbing a magnetostatic solution describing a balance between the Lorentz force, gravity, and gas pressure in a barb. This approach explains why some of the flows are neither aligned with the magnetic field nor controlled by gravity. Both the observed upflows and the magnetic field dips in barbs are likely to be caused by photospheric magnetic reconnection.

  11. Magnetic field and field orientation dependence of the critical current density in Bi-2212 round wires and other HTS conductors

    SciTech Connect

    Willis, J.O.; Holesinger, T.G.; Coulter, J.Y.; Maley, M.P.

    1996-10-01

    The authors have performed measurements of the magnetic field dependence of the critical current density J{sub c} of Bi-2212/Ag round wire produced by isothermal melt processing. In contrast to the case for flat tape, there is very little dependence of J{sub c} on the direction of the magnetic field as it is rotated normal to the wire axis, which is the direction of the nominal current flow. However, when the angle of the magnetic field direction is rotated from normal to the wire axis to parallel to that axis, J{sub c} at 64 K and 0.2 T increases by more than a factor of four. Again, this is in contrast to the results observed for Bi-2212/Ag and Bi-2223/Ag flat tapes, which show no anisotropy under similar experimental conditions. They can explain these differences in angular anisotropy by referring to the microstructure of these two conductor types, which have distinctly different types of grain alignment. They discuss the general behavior of the dependence of J{sub c} on the orientation of a magnetic field for high temperature superconductors.

  12. Eurasian reed warblers compensate for virtual magnetic displacement.

    PubMed

    Kishkinev, Dmitry; Chernetsov, Nikita; Pakhomov, Alexander; Heyers, Dominik; Mouritsen, Henrik

    2015-10-01

    Displacement studies have shown that long-distance, night-migrating songbirds are able to perform true navigation from their first spring migration onwards [1,2]. True navigation requires both a map and a compass. Whereas birds are known to have sun, star, and magnetic compasses, the nature of the map cues used has remained highly controversial. There is quite strong experimental evidence for the involvement of olfactory map cues in pigeon and seabird homing [3]. In contrast, the evidence for the use of magnetic map cues has remained weak and very little is known about the map cues used by long-distance migratory songbirds. In earlier experiments [2,4], we have shown that Eurasian reed warblers physically displaced 1,000 km eastward from Rybachy to Zvenigorod (Figure 1) re-orient towards their breeding destinations by changing their orientation in Emlen funnels from the NE to the NW. We have also previously shown that this re-orientation cannot be explained by a 'jetlag effect' [5]. We have now used this model system to show that Eurasian reed warblers use geomagnetic map cues to determine their position. PMID:26439333

  13. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    SciTech Connect

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Yuan, Lixin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup }0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80?W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup }0)//?-Fe{sub 2}O{sub 3}(112{sup }0)//Al{sub 2}O{sub 3}(112{sup }0)

  14. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhi; Yue, Zhenxing; Meng, Siqin; Yuan, Lixin

    2014-12-01

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane ( 11 2 0 ) sapphire (Al2O3) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (Mr/Ms of 0.96) along the in-plane easy axis and low Mr/Ms of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM ( 10 1 0 ) //?-Fe2O3 ( 11 2 0 ) //Al2O3 ( 11 2 0 ) .

  15. Characterization of circular differential selective scattering in randomly and magnetically oriented chloroplasts and light harvesting chlorophyll a/b aggregates

    SciTech Connect

    Garab, G.; Faludi-Daniel, A.; Sutherland, J.C.; Hind, G.

    1986-01-01

    Comparative circular dichroism studies were carried out in chloroplasts and the aggregated chlorophyll a/b light harvesting pigment protein complex (LHC). Much of the intense circular dichroism (CD) signal of chloroplasts and that of aggregated, isolated LHC were found to originate in circular differential light scattering (CDS). The difference spectra obtained between the CD spectra of randomly and magnetically oriented thylakoids resembled the selective light scattering spectra of chloroplasts. Furthermore, orientation-dependent changes in the CDS signal outside the principal absorbance bands were correlated with changes in the non-selective forward light scattering. These results provide evidence of a significant contribution by CDS to the CD spectrum of chloroplasts. A comparison between the CD signals of chloroplasts and aggregated LHC revealed that both preparations exhibit ''anomalous'' CD bands. The spectral shape and amplitude of these bands are changed dramatically upon magnetic alignment of the particles. These similarities are suggestive of the existence of similar helical domains in chloroplasts and the isolated LHC aggregate; hence our experimental results support the hypothesis of Faludi-Daniel and Mustardy that the LHC in the thylakoid membrane is aggregated in a liquid crystal-like structure resembling that which self-assembles in vitro. 17 refs., 4 figs.

  16. Mean Magnetic Susceptibility Regularized Susceptibility Tensor Imaging (MMSR-STI) for Estimating Orientations of White Matter Fibers in Human Brain

    PubMed Central

    Li, Xu; van Zijl, Peter C. M.

    2014-01-01

    Purpose There is an increasing number of studies showing that magnetic susceptibility in white matter fibers is anisotropic and may be described by a tensor. However, the limited head rotation possible for in vivo human studies leads to an ill-conditioned inverse problem in susceptibility tensor imaging (STI). Here we suggest combined use of limiting the susceptibility anisotropy to white matter and imposing morphology constraints on the mean magnetic susceptibility (MMS) for regularizing the STI inverse problem. Methods The proposed MMS regularized STI (MMSR-STI) method was tested using computer simulations and in vivo human data collected at 3T. The fiber orientation estimated from both the STI and MMSR-STI method was compared to that from diffusion tensor imaging (DTI). Results Computer simulations show that MMSR-STI method provides a more accurate estimation of the susceptibility tensor than the conventional STI approach. Similarly, in vivo data show that use of MMSR-STI method leads to a smaller difference between the fiber orientation estimated from STI and DTI for most selected white matter fibers. Conclusion The proposed regularization strategy for STI can improve estimation of the susceptibility tensor in white matter. PMID:24974830

  17. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  18. Smartstones: a small e-compass, accelerometer and gyroscope embedded in stones

    NASA Astrophysics Data System (ADS)

    Gronz, Oliver; Hiller, Priska H.; Wirtz, Stefan; Becker, Kerstin; Iserloh, Thomas; Aberle, Jochen; Casper, Markus C.

    2015-04-01

    Pebbles or rock fragments influence soil erosion processes in various ways: they can protect the soil but also enhance the erosion as soon as they are moved by water and impact onto soil. So far, stone-embedded devices to measure the movements have been quite big, up to several decimetres, which does not allow for the analysis of pebbles from medium and coarse gravel classes. In this study, we used a novel device called Smartstones, which is significantly smaller. The Smartstone device's dimensions are 55 mm in length, 8 mm in diameter and an approximately 70 mm long flexible antenna (device developer: SMART-RFID solutions Rheinberg, Germany). It is powered by two button cells, contains an own data storage and is able to wait inactive for longer times until it is activated by movement. It communicates via active RFID (radio frequency identification) technology to a Linux gateway, which stores the sensor data in a database after transmission and is able to handle several devices simultaneously. The device contains a Bosch sensor that measures magnetic flux density, acceleration and rotation, in each case for / around three axes. In our study, the device has been used in a laboratory flume (270 cm in length, 5° to 10° slope, approx. 2 cm water level, mean flow velocities between 0.66 and 1 ms-1) in combination with a high speed camera to capture the movement of the pebbles. The simultaneous usage of two capture devices allows for a comparison of the results: movement patterns derived from image analysis and sensor data analysis. In the device's first software version, all three sensors - acceleration, compass, and gyroscope - were active. The acquisition of all values resulted in a sampling rate of 10 Hz. After the experiments using this setup, the data analysis of the high speed images and the device's data showed that the pebble reached rotation velocities beyond 5 rotations per second, even on the relatively short flume and low water levels. Thus, the device produced only sub-Nyquist sampling values and the rotation velocity of the pebble could not be derived correctly using solely the device's data. Consequently, the device's software was adapted by the developers: the second (and current) version of the device only acquires acceleration and compass, as the acquisition of the gyroscope's value does not allow for higher sampling rates. The second version samples every 12 ms. All aforementioned experiments have been repeated using the adapted device. For data analysis, the high-speed camera images were merged with the device data using a MATLAB script. Furthermore, the derived relative pebble orientation - yaw, pitch and roll - is illustrated using a rotated CAD model of the pebble. The pebble's orientation is derived from compass and accelerometer data using sensor fusion and algorithms for tilt compensated compasses. The results show that the device is perfectly able to capture the movement of the pebble such as rotation (including the rotation axis), sliding or saltation. The interacting forces between the pebble and the underground can be calculated from the acceleration data. However, the accelerometer data also showed that the range of the sensor is not sufficiently large: clipping of values occurred. According to present instrument specifications, the sensor is able to capture up to 4 g for each axis but the resulting vectors for acceleration along all three axes showed values greater than 4 g, even up to the theoretical maximum of approximately 6.9 g. Thus, an impact of this strength that only stresses one axis cannot be measured. As a result of this clipping, the derivation of the pebble's absolute position using double integration of acceleration values is associated with flaws. Besides this clipping, the derived position will deviate from the true position for larger distances or longer experiment durations as the noise of the data will be integrated, too. Several requirements for the next device version were formulated: The range of the accelerometer will be set to the sensor's maximum of 16 g. The device will be water proof. Data analysis will include further methods like Hidden Markov Models or Kalman Filtering as the tilt-compensation is actually not intended for irregular moving devices. These techniques are well-established for other devices and purposes like navigation using GPS. In near future, the Smartstone device will be used outside the laboratory in natural rills and rill experiments. In these experiments, the water is turbid and the pebble will not be visible at all, which does not allow for the usage of the high speed camera. However, the present results showed that the movement of the pebble in addition to the applied forces to the underground and the rill's sidewalls can be captured solely by the Smartstone.

  19. Fidelity and entanglement entropy in the one-dimensional transverse-field quantum compass model

    NASA Astrophysics Data System (ADS)

    Motamedifar, Mostafa; Mahdavifar, Saeed; Farjami Shayesteh, Saber; Nemati, Somayyeh

    2013-07-01

    The one-dimensional extended quantum compass model in the presence of a transverse magnetic field is considered. Induced effects of the transverse magnetic field on the ground state of the system are studied from the viewpoint of fidelity. Using the numerical Lanczos method, the fidelity and susceptibility of fidelity are computed in finite chains. The critical exponent of the fidelity susceptibility is obtained in good agreement with the scaling behavior of the correlation length. In addition, the von Neumann entropy is calculated and its signature on the quantum phase transition is shown.

  20. Magnetic field-dependent polarization of (111)-oriented PZT-Co ferrite nanobilayer: Effect of Co ferrite composition

    NASA Astrophysics Data System (ADS)

    Khodaei, M.; Seyyed Ebrahimi, S. A.; Jun Park, Yong; Son, Junwoo; Baik, Sunggi

    2015-05-01

    The perfect (111)-oriented PZT/CFO (CFO=CoFe2O4, Co0.8Fe2.2O4 and Co0.6Mn0.2Fe2.2O4) bilayer multiferroic thin films were grown on Pt(111)/Si substrate at 600 °C using pulsed laser deposition technique. The precision X-ray diffraction analysis (avoiding the shift of peak due to the sample misalignment) revealed that the CFO films on Pt(111)/Si substrate were under an out-of-plane contraction and deposition of PZT top layer led to more increase in the out-of-plane contraction, i.e. increase in the residual stresses. The PZT and CFO layers have significant effects on magnetic and ferroelectric properties of PZT/CFO bilayer films, respectively, leading to an enhanced in-plane magnetic anisotropy as well as increased and asymmetric polarization. The effect of composition of CFO layer on magnetic field-dependent polarization of PZT/CFO bilayer films was investigated by applying the magnetic field during P-E measurement. The polarization of PZT films were increased by applying the magnetic field as a result of strain transferred from magnetostrictive CFO underlayer. This increase in polarization for PZT/Co0.6Mn0.2Fe2.2O4 was higher than that for PZT/Co0.8Fe2.2O4 and both of them were significantly higher than that for PZT/CoFe2O4 bilayer film, which was discussed based on their magnetostriction properties.

  1. Molecular Dynamics Simulation of Magnetic Field Induced Orientation of Nanotube-Polymer Composite

    NASA Astrophysics Data System (ADS)

    Al-Haik, Marwan S.; Hussaini, M. Yousuff

    2006-11-01

    Molecular dynamics simulations are carried out to study the reorientation of single wall carbon nanotubes in a polyethylene matrix under the influence of a 25 T magnetic field. The simulations are based on a variant of velocity Verlet algorithm, which relaxes the Larmor time-step restriction while preserving second-order accuracy. Simulations reveal that the unfolding and reorganization of the polyethylene (PE) chain facilitates the reorientation of the single wall carbon nanotubes closer to the direction of the applied magnetic field. Also, they bring out the difference between the behavior of the carbon nanotubes of zigzag chirality and that of armchair chirality.

  2. Magnetic field-induced ferroelectric domain structure evolution and magnetoelectric coupling for [110]-oriented PMN-PT/Terfenol-D multiferroic composites

    NASA Astrophysics Data System (ADS)

    Fang, F.; Jing, W. Q.

    2016-01-01

    Magnetic field-induced polarization rotation and magnetoelectric coupling effects are studied for [110]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3/Tb0.3Dy0.7Fe2(PMN-xPT/Terfenol-D) multiferroic composites. Two compositions of the [110]-oriented relaxor ferroelectric single crystals, PMN-28PT and PMN-33PT, are used. In [110]-oriented PMN-28PT, domains of rhombohedral (R) and monoclinic (MB) phases coexist prior to the magnetic loadings. Upon the applied magnetic loadings, phase transition from monoclinic MB to R phase occurs. In [110]-oriented PMN-33PT, domains are initially of mixed orthorhombic (O) and MB phases, and the phase transition from O to MB phase takes place upon the external magnetic loading. Compared to PMN-28PT, the PMN-33PT single crystal exhibits much finer domain boundary structure prior to the magnetic loadings. Upon the magnetic loadings, more domain variants are induced via the phase transition in PMN-33PT than that in PMN-28PT single crystal. The finer domain band structure and more domain variants contribute to stronger piezoelectric activity. As a result, the composite of PMN-33PT/Terfenol-D manifests a stronger ME coupling than PMN-28PT/Terfenol-D composite.

  3. Magnetic properties of Mn{sub 3}O{sub 4} film with a coexistence of two preferential orientations

    SciTech Connect

    Ren, Lizhu; Zhou, Wenqi; Wang, Yunjia; Meng, Meng; Wu, Shuxiang; Li, Shuwei

    2014-07-14

    A Mn{sub 3}O{sub 4} film with a coexistence of two preferential orientations has been grown on a Pt(111)//Si(100) substrate by plasma-assisted molecular beam epitaxy. The structural characteristics and chemical compositions of the film are investigated by using X-ray diffraction, Raman, and X-ray photoelectron spectra in detail. Together with the magnetic tests, the film is demonstrated to be a polycrystalline hausmannite Mn{sub 3}O{sub 4} with no other impurities. Moreover, the hysteresis loops of the film are found to display a step or a characteristic shrinking at low fields. On the other hand, similar magnetic characteristics have also been discovered on the film with two phases grown on a MgAl{sub 2}O{sub 4}(001) substrate. In our opinion, considering the large magnetocrystalline anisotropy and shape anisotropy of the single crystal Mn{sub 3}O{sub 4} film reported in previous works, the special structures and phases of the two films result in both of them as soft+hard magnetic composites, in agreement with some other reports.

  4. Combined effect of oriented strain and external magnetic field on electrical properties of superlattice-graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Khoeini, Farhad

    2015-10-01

    Using the tight-binding model, electronic quantum transport properties of strained superlattice-graphene nanoribbons (SGNRs) attached to two semi-infinite metallic leads are studied in real space and numerically. Then, with the combination of mode space (MS) and renormalization methods, general analytical formulas for the conductance and energy band gap of the strained system are derived. The formulas are useful in studying the impact of slice-like defects and uniaxial strains on the electronic transport properties of the system as well as in reducing the computation time. The calculations are based on the Greens function method, in which the effects of uniaxial strains and the concentration of boron nitride (BN) slices as well as magnetic fields on the electrical conductance and the band gap of the armchair SGNR are studied. It is shown that the conductance of the system reduces with increasing BN concentration so a gap opens and its value increases. Both uniaxial strains and the BN impurities cause the metal-semiconductor phase transition, while the magnetic fields induce a periodic metal-semiconductor transition. The electronic transport properties of the systems can be controlled by tunable parameters such as the BN concentration, oriented strain and magnetic field.

  5. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    NASA Astrophysics Data System (ADS)

    Sai, Ranajit; Endo, Yasushi; Shimada, Yutaka; Yamaguchi, Masahiro; Shivashankar, S. A.

    2015-05-01

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (fFMR) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of fFMR has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.

  6. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    SciTech Connect

    Sai, Ranajit; Endo, Yasushi; Shimada, Yutaka; Yamaguchi, Masahiro; Shivashankar, S. A.

    2015-05-07

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f{sub FMR}) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f{sub FMR} has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.

  7. Perception of Suffering and Compassion Experience: Brain Gender Disparities

    ERIC Educational Resources Information Center

    Mercadillo, Roberto E.; Diaz, Jose Luis; Pasaye, Erick H.; Barrios, Fernando A.

    2011-01-01

    Compassion is considered a moral emotion related to the perception of suffering in others, and resulting in a motivation to alleviate the afflicted party. We compared brain correlates of compassion-evoking images in women and men. BOLD functional images of 24 healthy volunteers (twelve women and twelve men; age=27 [plus or minus] 2.5 y.o.) were

  8. Intranasal administration of oxytocin increases compassion toward women.

    PubMed

    Palgi, Sharon; Klein, Ehud; Shamay-Tsoory, Simone G

    2015-03-01

    It has been suggested that the degree of compassion-the feeling of warmth, understanding and kindness that motivates the desire to help others, is modulated by observers' views regarding the target's vulnerability and suffering. This study tested the hypothesis that as compassion developed to protect vulnerable kinships, hormones such as oxytocin, which have been suggested as playing a key role in 'tend-and-befriend' behaviors among women, will enhance compassion toward women but not toward men. Thirty subjects participated in a double-blind, placebo-controlled, within-subject study. Following administration of oxytocin/placebo, participants listened to recordings of different female/male protagonists describing distressful emotional conflicts and were then asked to provide compassionate advice to the protagonist. The participants' responses were coded according to various components of compassion by two clinical psychologists who were blind to the treatment. The results showed that in women and men participants oxytocin enhanced compassion toward women, but did not affect compassion toward men. These findings indicate that the oxytocinergic system differentially mediates compassion toward women and toward men, emphasizing an evolutionary perspective that views compassion as a caregiving behavior designed to help vulnerable individuals. PMID:24711542

  9. Effectiveness of CompassLearning's Odyssey Reading for Middle School

    ERIC Educational Resources Information Center

    Empirical Education Inc., 2010

    2010-01-01

    Odyssey Reading, published by CompassLearning, is a comprehensive reading/language arts program using adaptive software for core instruction. This is the first study of CompassLearning's Odyssey Reading (CLO) in PUSD and was based on data from the school years 2006-2008. For this study, Odyssey Reading was implemented in reading classes in grades

  10. Map and Compass. Outdoor Living Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Ludwig, Gail S.

    Designed for instructors with little or no map and compass experience, the self-contained manual contains background information, lesson plans, student handouts, and references for teaching the basic skills of map and compass use to junior high and senior high school students and youth groups. An introductory section briefly discusses the

  11. Prediction of magnetic orientation in driver gas associated -Bz events. [in interplanetary medium observed at earth when solar source is identified

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.; Zhao, Xuepu

    1992-01-01

    The source regions of five strong -Bz events detected at 1 AU for which solar sources were identified by Tang et al. (1989) and Tsurutani et al. (1992) are investigated in order to determine whether the magnetic orientation of driver gas in the interplanetary medium observed at the earth can be predicted when its solar source is identified. Three -Bz events were traced to flare-associated coronal mass ejections (CMEs), one to an eruptive prominence associated CME, and one to three possible solar sources. The computed magnetic orientations at the candidate 'release height' (the height where the front of a CME ceases to accelerate) above the flare sites associated with CMEs show the existence of the expected southward field component. It is concluded that the magnetic orientation in flare-associated CME generated driver gas may be predictable.

  12. Compassion fatigue resiliency training: the experience of facilitators.

    PubMed

    Potter, Patricia; Pion, Sarah; Gentry, J Eric

    2015-02-01

    This qualitative evaluation examined compassion fatigue facilitators' perceptions of the effects of a compassion fatigue resiliency training program in an urban medical center in the midwestern United States. Nine months after completing a compassion fatigue resiliency facilitator training program, 15 participants wrote short narratives describing how the program affected them. Participants described how the training program benefited them both personally and professionally. Two main themes were identified from the narrative analysis: self-improvement and application of resiliency. All of the participants described one or more self-improvements as a result of the program, particularly in regard to emotional health. All of the participants also described how they regularly applied one or more of the resiliency skills taught in the class to improve their ability to manage stress and prevent compassion fatigue. This program shows promise in ameliorating compassion fatigue and burnout in health care providers. PMID:25522376

  13. Orbit and clock analysis of Compass GEO and IGSO satellites

    NASA Astrophysics Data System (ADS)

    Steigenberger, P.; Hugentobler, U.; Hauschild, A.; Montenbruck, O.

    2013-06-01

    China is currently focussing on the establishment of its own global navigation satellite system called Compass or BeiDou. At present, the Compass constellation provides four usable satellites in geostationary Earth orbit (GEO) and five satellites in inclined geosynchronous orbit (IGSO). Based on a network of six Compass-capable receivers, orbit and clock parameters of these satellites were determined. The orbit consistency is on the 1-2 dm level for the IGSO satellites and on the several decimeter level for the GEO satellites. These values could be confirmed by an independent validation with satellite laser ranging. All Compass clocks show a similar performance but have a slightly lower stability compared to Galileo and the latest generation of GPS satellites. A Compass-only precise point positioning based on the products derived from the six-receiver network provides an accuracy of several centimeters compared to the GPS-only results.

  14. The preferred orientation of Mn3 spins in magnetic multiferroic CaMn7O12

    NASA Astrophysics Data System (ADS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2015-12-01

    The remarkable ferroelectricity in CaMn7O12 originates from the helicoidal spin spiral, in which the Mn3 (3b Wyckoff position) spin direction remains controversial. In this paper, the total energy, phase transition path, and spontaneous polarization of CaMn7O12 are investigated by using first-principle methods. We show that, in order to account for the giant electric polarization and the correct phase transition sequence, the relative orientation between the spins of Mn3 and Mn2 (9d Wyckoff position) sites with the same coordinate along the hexagonal c-axis can not be antiparallel, i.e. their relative orientation angle should be ϕ≈0.84π instead of ϕ=π. The most likely reason for the observation of ϕ=π can be attributed to the withdrawal of spin-orbital coupling between the Mn2 and Mn3 spins, which is caused by doping Cu2+ in the samples for neutron powder diffraction measurements.

  15. Different responses of two strains of chickens to different training procedures for magnetic directions.

    PubMed

    Denzau, Susanne; Niessner, Christine; Wiltschko, Roswitha; Wiltschko, Wolfgang

    2013-05-01

    In previous conditioning experiments training domestic chickens to magnetic directions, a brown strain solved the task, whereas a white strain seemed unable to do so (Freire et al. Anim Cogn 11:547-552, 2008). To test whether this was possibly caused by loss of magnetic compass orientation in the white chickens, we analyzed the distribution of cryptochrome 1a, the candidate receptor molecule mediating magnetic compass information, in the retinae of Lohmann Browns and White Leghorns and found no difference between the two strains. Yet, subsequent training experiments replicated the former findings: Lohmann Browns used the magnetic field to find an imprinting stimulus hidden behind the screen in a specific magnetic direction, whereas White Leghorns did not solve the task. However, when we altered the training method by training also in a magnetic field with North shifted to geographic East and including a punishment for incorrect choices, the performance of White Leghorns improved to a significant preference for the expected directions. The Lohmann Browns, on the other hand, seemed frightened and chose randomly. Our results thus demonstrate the crucial role of the training method for conditioning to magnetic stimuli, with differences found even between strains of the same species. PMID:23179110

  16. Orientation of planetary O/plus/ fluxes and magnetic field lines in the Venus wake

    NASA Technical Reports Server (NTRS)

    Perez-De-tejada, H.; Intriligator, D. S.; Russell, C. T.

    1982-01-01

    The presence of 'contaminant' heavy ions of planetary origin in the solar wind has long been the subject of intense theoretical and experimental research. Studies of their abundance, acceleration, and direction of motion are important because of their implications on the composition and dynamics of planetary and cometary plasma wakes. The plasma and magnetic field observations made with the Pioneer Venus Orbiter (PVO) at Venus have provided the opportunity to examine the conditions in which planetary ions are picked up by the solar wind. We show here that in the outer regions of the Venusian far wake the displacement of planetary O(plus) particles, characteristic of the Venus upper ionosphere, does not occur necessarily along the magnetic field lines but approximately in the direction of the shocked solar wind.

  17. Stage-III recovery in α-iron studied by means of nuclear magnetic resonance on oriented 131I nuclei

    NASA Astrophysics Data System (ADS)

    Metz, A.; Niesen, L.

    1989-02-01

    Nuclear magnetic resonance measurements were performed on oriented 131I nuclei implanted into decarburized single crystals of α-Fe. Satellite resonances, centered around 633 MHz, that are well described by an additional quadrupole interaction with a <111> symmetry appeared both after room-temperature implantation and after low-temperature Frenkel pair production followed by annealing at a temperature corresponding with recovery stage III. The results from a defect-antidefect reaction with mobile stage-I defects strongly indicate that these satellite resonances are caused by trapping of mobile vacancies. Implantation at 20 K and a comparatively low dose resulted in a high-field fraction of 0.9, which is much higher than usually obtained after room-temperature implantation. Two newly discovered satellite patterns, centered around 647 and 660 MHz, are attributed to additional trapping of oxygen and hydrogen impurities, respectively.

  18. Compassion Fatigue Risk and Self-Care Practices among Residential Treatment Center Childcare Workers

    ERIC Educational Resources Information Center

    Eastwood, Callum D.; Ecklund, Kathryn

    2008-01-01

    Exploration of the presence of risk for compassion fatigue among residential childcare workers (RCW) at residential treatment facilities and the relationship between self-care practices and compassion fatigue were explored. Using the Professional Quality of Life Survey (ProQOL-R III) to assess compassion fatigue, burnout, and compassion

  19. Enhancement of in-plane magnetic anisotropy in (111)-oriented Co0.8Fe2.2O4 thin film by deposition of PZT top layer

    NASA Astrophysics Data System (ADS)

    Khodaei, M.; Seyyed Ebrahimi, S. A.; Park, Yong Jun; Ok, Jong Mok; Kim, Jun Sung; Son, Junwoo; Baik, Sunggi

    2014-05-01

    The CoFe2O4 and Co0.8Fe2.2O4 single layer (CFO) as well as PZT/CoFe2O4 and PZT/Co0.8Fe2.2O4 bilayer thin films were grown using the pulsed laser deposition technique on Pt(111)/Si substrates at 600 C. All films had a perfect (111)-orientation and the degree of orientation of CFO films was improved by the deposition of a PZT top layer. Precision X-ray diffraction analysis (avoiding the shift of peaks due to sample misalignment) revealed that the CFO films on Pt(111)/Si substrate were under an out-of-plane contraction and the deposition of a PZT top layer led to the increase in the out-of-plane contraction. The (111)-oriented CFO single layer films had a strong in-plane magnetic anisotropy as a result of orientation as well as the stress-induced magnetic anisotropy. The magnetic properties of CFO film were altered by the deposition of a PZT top layer leading to the enhancement of in-plane magnetic anisotropy. The enhanced in-plane magnetic anisotropy was more detectable in PZT/Co0.8Fe2.2O4 rather than PZT/CoFe2O4 bilayer film, which could be expected from its higher magnetocrystalline as well as magnetostriction constants.

  20. Robustness of the filamentation instability for asymmetric plasma shells collision in arbitrarily oriented magnetic field

    SciTech Connect

    Bret, A.

    2013-10-15

    The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.

  1. COMPASS Final Report: Lunar Relay Satellite (LRS)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2012-01-01

    The Lunar Relay Satellite (LRS) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session was tasked to design a satellite to orbit in an elliptical lunar polar orbit to provide relay communications between lunar South Pole assets and the Earth. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The LRS is a half-TDRSS sized box spacecraft, which provides communications and navigation relay between lunar outposts (via Lunar Communications Terminals (LCT)) or Sortie parties (with user radios) and large ground antennas on Earth. The LRS consists of a spacecraft containing all the communications and avionics equipment designed by NASA Jet Propulsion Laboratory s (JPL) Team X to perform the relay between lunar-based assets and the Earth. The satellite design is a standard box truss spacecraft design with a thermal control system, 1.7 m solar arrays for 1 kWe power, a 1 m diameter Ka/S band dish which provides relay communications with the LCT, and a Q-band dish for communications to/from the Earth based assets. While JPL's Team X and Goddard Space Flight Center s (GSFC) I M Design Center (IMDC) have completed two other LRS designs, this NASA Glenn Research Center (GRC) COMPASS LRS design sits between them in terms of physical size and capabilities.

  2. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks

    PubMed Central

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  3. Changes of inclusion, texture and magnetic property of non-oriented Si steel treated by Ca alloy

    NASA Astrophysics Data System (ADS)

    Lv, X.; Zhang, F.; Chen, X.

    2015-04-01

    Based on the industrial production of non-oriented Si steel, Ca treatment by Ca alloy adding during the RH refining process was studied. The changes of inclusion, crystal texture and microstructure, and its effect on magnetic properties of final steel sheets were analyzed. The results showed that, in present work, Ca treatment can improve the texture proportion of {110} and {111} significantly, and the formation of MnS and AlN inclusions were restrained. Meanwhile, the recrystallization effects of hot rolled strip get bad and the fiber structure enhanced obviously. The grain size of finished steel sheets increased as the increase of Ca alloy adding amount quickly, and then decreased. Compared with the non-Ca treatment charge, the numbers of inclusions whose size below 1.0?m will decrease by 68.06%, 87.50% and 94.94%, the texture proportion of {110} and {111} was 30.3%, 39.1%, 17.6% and 2.8%, 5.5%, 20.6%, while the correspondent Ca alloy adding amount is 0.67 kg/t steel, 1.00 kg/t steel and 1.67 kg/t steel, respectively. In addition, the core loss gradually decreases to a stable level as the increasing of Ca added, and the magnetic induction decreases quickly after slow increasing, respectively. The optimal Ca treatment mode depends on the chemical compositions of steel grades.

  4. Electronic and magnetic properties of (1 1 1)-oriented CoCr2O4 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoran; Kareev, Michael; Cao, Yanwei; Liu, Jian; Middey, Srimanta; Meyers, Derek; Freeland, John; Chakhalian, Jak; Department of Physics, University of California, Berkeley Collaboration; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley Collaboration; Advanced Photon Source, Argonne National Laboratory Collaboration

    2015-03-01

    We report on the fabrication of high quality (1 1 1)-oriented ferrimagnetic normal spinel CoCr2O4 epitaxial thin films on single crystal Al2O3 substrates. The structural, electronic and magnetic properties were characterized by in - situ reflection high energy electron diffraction, atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, SQUID magnetometry and element resolved resonant X-ray magnetic scattering. The comprehensive characterization reveals that no disorder in the cation distribution or multivalency issue is present in the samples. As a result, Kagom and triangular layers are naturally formed via this specific growth approach. These findings offer a pathway to fabricate two dimensional Kagom heterostructures with novel quantum many-body phenomena by means of geometrical design. J.C. was supported by the DOD-ARO under Grant No. 0402-17291. Work at the Advanced Photon Source, Argonne is supported by the U.S. DOE under Grant No. DEAC0206CH11357.

  5. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks.

    PubMed

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  6. Intranasal administration of oxytocin increases compassion toward women

    PubMed Central

    Palgi, Sharon; Klein, Ehud

    2015-01-01

    It has been suggested that the degree of compassion—the feeling of warmth, understanding and kindness that motivates the desire to help others, is modulated by observers’ views regarding the target’s vulnerability and suffering. This study tested the hypothesis that as compassion developed to protect vulnerable kinships, hormones such as oxytocin, which have been suggested as playing a key role in ‘tend-and-befriend’ behaviors among women, will enhance compassion toward women but not toward men. Thirty subjects participated in a double-blind, placebo-controlled, within-subject study. Following administration of oxytocin/placebo, participants listened to recordings of different female/male protagonists describing distressful emotional conflicts and were then asked to provide compassionate advice to the protagonist. The participants’ responses were coded according to various components of compassion by two clinical psychologists who were blind to the treatment. The results showed that in women and men participants oxytocin enhanced compassion toward women, but did not affect compassion toward men. These findings indicate that the oxytocinergic system differentially mediates compassion toward women and toward men, emphasizing an evolutionary perspective that views compassion as a caregiving behavior designed to help vulnerable individuals. PMID:24711542

  7. Texture and magnetic property evolution of non-oriented Fe-Si steel due to mechanical cutting

    NASA Astrophysics Data System (ADS)

    Xiong, Xuesong; Hu, Shubing; Hu, Ke; Zeng, Siqi

    2016-03-01

    Microstructures and textures as well as magnetic properties of a non-oriented Fe-Si steel with thickness of 0.5 mm and medium silicon content after mechanical cutting were investigated. The results from electron backscatter diffraction (EBSD) analysis indicated that in the cut edge zone, mechanical cutting resulted in a significant increase in low-angle boundaries (LAGBs, 2°≤θ≤15°) and dislocation densities from both the upper surface (in the shear zone) and the lower surface (in the fracture zone). Mechanical cutting also led to a visible change in textures, such as, intensity decrease of λ fiber (<001>∥normal direction [ND]) and γ fiber (<111>∥ND) components from the upper surface as well as Goss texture ({110}<001>texture) from the lower surface. Microstructure and texture changes from the upper surface seem to be more obvious than these from the lower surface. The results from single sheet testing showed mechanical cutting induced an evident deterioration in magnetic properties and a clear change in hysteresis loop of the steel, and these variations became more obvious with increasing cutting length per mass from 0.86 m/kg to 2.57 m/kg. The largest increment of iron loss reached to 18.45% and 21.76% when the flux density was at 1.0 T and 1.5 T, respectively. The possible main reasons for the changes in magnetic properties and hysteresis loops were discussed in terms of the texture factor TF or residual stress.

  8. Healthcare and Compassion: Towards an Awareness of Intersubjective Vulnerability

    PubMed Central

    Kenny, Kate

    2015-01-01

    How to instill compassion in a healthcare organization? In this article, I respond to Marianna Fotaki’s proposals in her piece,‘Why and how is compassion necessary to provide good quality healthcare?’ by drawing on insights from organization studies. Following Fotaki, I argue that to instill targets and formal measures for assessing compassion would be problematic. I conclude by drawing on psychoanalytic and feminist theories to introduce alternatives, specifically proposing an approach that is grounded in a shared sense of a common, embodied precarity, which necessitates our commitment to preserving the conditions in which life might flouris PMID:26340496

  9. Collinear ferromagnetism and spin orientation in the molecule-based magnets M[N(CN){sub 2}]{sub 2} (M=Co,Ni)

    SciTech Connect

    Kmety, C.R.; Manson, J.L.; Huang, Q.; Lynn, J.W.; Erwin, R.W.; Miller, J.S.; Epstein, A.J.

    1999-07-01

    Zero-field unpolarized neutron powder diffraction has been used to study the low-T magnetic structure and {ital T}-dependent crystal structure of M[N(CN){sub 2}]{sub 2} (M=Co,Ni). Both compounds show collinear ferromagnetism with spin orientation along the {ital c} axis. The results provide the determination of a complete magnetic structure in the ordered state for a molecule-based magnet. The {ital c} lattice parameter exhibits negative thermal expansion, explained by a wine-rack-like deformation. {copyright} {ital 1999} {ital The American Physical Society}

  10. Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs

    PubMed Central

    Hernndez, Moiss; Guerrero, Gins D.; Cecilia, Jos M.; Garca, Jos M.; Inuggi, Alberto; Jbabdi, Saad; Behrens, Timothy E. J.; Sotiropoulos, Stamatios N.

    2013-01-01

    With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation. PMID:23658616

  11. (abstract) Realization of a Faster, Cheaper, Better Mission and Its New Paradigm Star Tracker, the Advanced Stellar Compass

    NASA Technical Reports Server (NTRS)

    Eisenman, Allan Read; Liebe, Carl Christian; Joergensen, John Lief; Jensen, Gunnar Bent

    1997-01-01

    The first Danish satellite, rsted, will be launched in August of 1997. The scientific objective of sted is to perform a precision mapping of the Earth's magnetic field. Attitude data for the payload and the satellite are provided by the Advanced Stellar Compass (ASC) star tracker. The ASC consists of a CCD star camera and a capable microprocessor which operates by comparing the star image frames taken by the camera to its internal star catalogs.

  12. Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Naumoski, H.; Riedmüller, B.; Minkow, A.; Herr, U.

    2015-10-01

    The process of manufacturing iron cores for electric machines out of electrical steel sheets can strongly affect the magnetic properties of the material. In order to better understand the influence of cutting on the iron losses, a characterization of the magnetization behavior near the cutting edge is needed. The local magnetic properties of the material are modified by the cutting process which leads to an increase in the iron losses measured for 5 mm wide ring core samples by nearly 160% at low inductions. We present investigations on the effect of cutting by observation of the magnetic domain structure of 0.35 mm thick non-oriented electrical steel. By using the magneto-optical Kerr-effect on a ring samples the local magnetic properties of the material after processing are characterized in the form of domain wall displacements under an applied external ac-field. The influence of various cutting techniques on the magnetic properties was studied before and after stress relief annealing. This method allows a quantitative analysis of the influence of different cutting techniques on the micro-magnetic properties of non-oriented electrical steel for rotating machines.

  13. Effects of Fe(Pt) single layer thickness and carbon doping on (001) orientation and magnetic properties of FePt thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Cheng, Haibo; Yu, Yongsheng; Liu, Mei; Li, Haibo

    2015-09-01

    The effects of the Fe(Pt) single layer thickness and carbon doping on the chemical ordering, (001) orientation, and magnetic properties of the [Fe/Pt]n thin films have been studied. The [Fe/Pt]n thin films with various Fe(Pt) single layer thicknesses and carbon contents were prepared on thermally oxidized Si(100) substrates by using magnetron sputtering at room temperature and annealed in hydrogen atmosphere at 600 C. It was found that the annealed [Fe/Pt]n film with a single layer thickness of 0.5 nm exhibited high chemical ordering and (001) preferred orientation. Suitable carbon doping induced high (001) texture and enhanced soft and hard magnetic exchange couple. The hard magnetic property of the films deteriorated with increasing carbon content.

  14. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for spin I = 1

    NASA Astrophysics Data System (ADS)

    Nilsson, Tomas; Halle, Bertil

    2012-08-01

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 ?s. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water 1H and 2H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water 2H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like 2H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally important dilute regime, for which approximate analytical results are derived. As shown by the analytical expressions, and confirmed by exact numerical calculations, the dispersion is governed by the pure nuclear quadrupole resonance frequencies in the ultraslow-motion regime, where the relaxation rate also exhibits a much stronger dependence on the electric field gradient asymmetry than in the motional-narrowing regime.

  15. Anisotropy of magnetic susceptibility versus lattice- and shape-preferred orientation in the Lac Tio hemo-ilmenite ore body (Grenville province, Quebec)

    NASA Astrophysics Data System (ADS)

    Bolle, Olivier; Charlier, Bernard; Bascou, Jérôme; Diot, Hervé; McEnroe, Suzanne A.

    2014-08-01

    The Lac Tio hemo-ilmenite ore body crops out in the outer portion of the 1.06 Ga Lac Allard anorthosite, a member of the Havre-Saint-Pierre anorthosite suite from the Grenville province of North America. It is made up of ilmenitite (commonly with more than 95% hemo-ilmenite) associated with noritic lithologies and anorthosite. The present study compares the magnetic fabric of the ore body, as deduced from anisotropy of magnetic susceptibility (AMS) measurements, with the crystallographic and shape fabrics, obtained from lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) measurements made using electron backscattered diffraction (EBSD) and 3D image analysis, respectively. Room-temperature hysteresis measurements, thermomagnetic curves and values of the bulk magnetic susceptibility reveal a magnetic mineralogy dominated by a mixed contribution of hemo-ilmenite and magnetite. The hemo-ilmenite grains display a LPO characterized by a strong preferred orientation of the basal (0001) plane of ilmenite along which hematite was exsolved. This LPO and the magnetic fabric fit well (angle between the crystallographic c-axis and the axis of minimum susceptibility ≤ ca. 15° for most samples), and the latter is thus strongly influenced by the hemo-ilmenite magneto-crystalline anisotropy. A magnetite SPO, concordant with the hemo-ilmenite LPO, may also influence and even dominate the magnetic fabric. The rock shape fabric is coaxial with the magnetic fabric that can thus be used to perform detailed structural mapping. Interpretation of the magnetic fabric and field structural data suggests that the Lac Tio ore body would be a sag point at the margin of the Lac Allard anorthosite, deformed by ballooning during the final stage of diapiric emplacement of the anorthosite body.

  16. The compass rose pattern in electricity prices.

    PubMed

    Batten, Jonathan A; Hamada, Mahmoud

    2009-12-01

    The "compass rose pattern" is known to appear in the phase portraits, or scatter diagrams, of the high-frequency returns of financial series. We first show that this pattern is also present in the returns of spot electricity prices. Early researchers investigating these phenomena hoped that these patterns signaled the presence of rich dynamics, possibly chaotic or fractal in nature. Although there is a definite autoregressive and conditional heteroscedasticity structure in electricity returns, we find that after simple filtering no pattern remains. While the series is non-normal in terms of their distribution and statistical tests fail to identify significant chaos, there is evidence of fractal structures in periodic price returns when measured over the trading day. The phase diagram of the filtered returns provides a useful visual check on independence, a property necessary for pricing and trading derivatives and portfolio construction, as well as providing useful insights into the market dynamics. PMID:20059202

  17. Tuning magnetic anisotropy in (001) oriented L1{sub 0} (Fe{sub 1-x}Cu{sub x}){sub 55}Pt{sub 45} films

    SciTech Connect

    Gilbert, Dustin A.; Liu, Kai; Wang, Liang-Wei; Lai, Chih-Huang; Klemmer, Timothy J.; Thiele, Jan-Ulrich

    2013-04-01

    We have achieved (001) oriented L1{sub 0} (Fe{sub 1-x}Cu{sub x}){sub 55}Pt{sub 45} thin films, with magnetic anisotropy up to 3.6 Multiplication-Sign 10{sup 7} erg/cm{sup 3}, using atomic-scale multilayer sputtering and post annealing at 400 Degree-Sign C for 10 s. By fixing the Pt concentration, structure and magnetic properties are systematically tuned by the Cu addition. Increasing Cu content results in an increase in the tetragonal distortion of the L1{sub 0} phase, significant changes to the film microstructure, and lowering of the saturation magnetization and anisotropy. The relatively convenient synthesis conditions, along with the tunable magnetic properties, make such materials highly desirable for future magnetic recording technologies.

  18. Phenomenology of COMPASS data: Multiplicities and phenomenology - part II

    SciTech Connect

    Anselmino, M.; Boglione, M.; Gonzalez H., J. O.; Melis, S.; Prokudin, A.

    2015-01-23

    In this study, we present some of the main features of the multidimensional COMPASS multiplicities, via our analysis using the simple Gaussian model. We briefly discuss these results in connection with azimuthal asymmetries.

  19. 52. Patent steering gear, hatch and steering compass binnacle, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Patent steering gear, hatch and steering compass binnacle, view from starboard looking aft. Photograph by Jet Lowe, April 1988. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA

  20. Trauma Care Workers At Risk for 'Compassion Fatigue'

    MedlinePLUS

    ... put them at risk for "compassion fatigue" and burnout, a small new study says. Previous research has ... fatigue. One-third had a combination of high burnout and low levels of positive experiences helping patients, ...

  1. Sun compass integration of skylight cues in migratory monarch butterflies.

    PubMed

    Heinze, Stanley; Reppert, Steven M

    2011-01-27

    Migrating monarch butterflies (Danaus plexippus) use a time-compensated sun compass to navigate from eastern North America to their overwintering grounds in central Mexico. Here we describe the neuronal layout of those aspects of the butterfly's central complex likely to establish part of the internal sun compass and find them highly homologous to those of the desert locust. Intracellular recordings from neurons in the monarch sun compass network reveal responses tuned to specific E-vector angles of polarized light, as well as azimuth-dependent responses to unpolarized light, independent of spectral composition. The neural responses to these two stimuli in individual neurons are mediated through different regions of the compound eye. Moreover, these dual responses are integrated to create a consistent representation of skylight cues in the sun compass throughout the day. The results advance our understanding of how ambiguous sensory signals are processed by the brain to elicit a robust behavioral response. PMID:21262471

  2. Mindfulness, self-compassion, and empathy among health care professionals: a review of the literature.

    PubMed

    Raab, Kelley

    2014-01-01

    The relationship between mindfulness and self-compassion is explored in the health care literature, with a corollary emphasis on reducing stress in health care workers and providing compassionate patient care. Health care professionals are particularly vulnerable to stress overload and compassion fatigue due to an emotionally exhausting environment. Compassion fatigue among caregivers in turn has been associated with less effective delivery of care. Having compassion for others entails self-compassion. In Kristin Neff's research, self-compassion includes self-kindness, a sense of common humanity, and mindfulness. Both mindfulness and self-compassion involve promoting an attitude of curiosity and nonjudgment towards one's experiences. Research suggests that mindfulness interventions, particularly those with an added lovingkindness component, have the potential to increase self-compassion among health care workers. Enhancing focus on developing self-compassion using MBSR and other mindfulness interventions for health care workers holds promise for reducing perceived stress and increasing effectiveness of clinical care. PMID:24926896

  3. Do monarch butterflies use polarized skylight for migratory orientation?

    PubMed

    Stalleicken, Julia; Mukhida, Maya; Labhart, Thomas; Wehner, Rüdiger; Frost, Barrie; Mouritsen, Henrik

    2005-06-01

    To test if migratory monarch butterflies use polarized light patterns as part of their time-compensated sun compass, we recorded their virtual flight paths in a flight simulator while the butterflies were exposed to patches of naturally polarized blue sky, artificial polarizers or a sunny sky. In addition, we tested butterflies with and without the polarized light detectors of their compound eye being occluded. The monarchs' orientation responses suggested that the butterflies did not use the polarized light patterns as a compass cue, nor did they exhibit a specific alignment response towards the axis of polarized light. When given direct view of the sun, migratory monarchs with their polarized light detectors painted out were still able to use their time-compensated compass: non-clockshifted butterflies, with their dorsal rim area occluded, oriented in their typical south-southwesterly migratory direction. Furthermore, they shifted their flight course clockwise by the predicted approximately 90 degrees after being advance clockshifted 6 h. We conclude that in migratory monarch butterflies, polarized light cues are not necessary for a time-compensated celestial compass to work and that the azimuthal position of the sun disc and/or the associated light-intensity and spectral gradients seem to be the migrants' major compass cue. PMID:15939779

  4. Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes

    PubMed Central

    Pittman, Shannon E.; Hart, Kristen M.; Cherkiss, Michael S.; Snow, Ray W.; Fujisaki, Ikuko; Smith, Brian J.; Mazzotti, Frank J.; Dorcas, Michael E.

    2014-01-01

    Navigational ability is a critical component of an animal's spatial ecology and may influence the invasive potential of species. Burmese pythons (Python molurus bivittatus) are apex predators invasive to South Florida. We tracked the movements of 12 adult Burmese pythons in Everglades National Park, six of which were translocated 21–36 km from their capture locations. Translocated snakes oriented movement homeward relative to the capture location, and five of six snakes returned to within 5 km of the original capture location. Translocated snakes moved straighter and faster than control snakes and displayed movement path structure indicative of oriented movement. This study provides evidence that Burmese pythons have navigational map and compass senses and has implications for predictions of spatial spread and impacts as well as our understanding of reptile cognitive abilities. PMID:24647727

  5. Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes.

    PubMed

    Pittman, Shannon E; Hart, Kristen M; Cherkiss, Michael S; Snow, Ray W; Fujisaki, Ikuko; Smith, Brian J; Mazzotti, Frank J; Dorcas, Michael E

    2014-03-01

    Navigational ability is a critical component of an animal's spatial ecology and may influence the invasive potential of species. Burmese pythons (Python molurus bivittatus) are apex predators invasive to South Florida. We tracked the movements of 12 adult Burmese pythons in Everglades National Park, six of which were translocated 21-36 km from their capture locations. Translocated snakes oriented movement homeward relative to the capture location, and five of six snakes returned to within 5 km of the original capture location. Translocated snakes moved straighter and faster than control snakes and displayed movement path structure indicative of oriented movement. This study provides evidence that Burmese pythons have navigational map and compass senses and has implications for predictions of spatial spread and impacts as well as our understanding of reptile cognitive abilities. PMID:24647727

  6. Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes

    USGS Publications Warehouse

    Pittman, Shannon E.; Hart, Kristen M.; Cherkiss, Michael S.; Snow, Ray W.; Fujisaki, Ikuko; Mazzotti, Frank J.; Dorcas, Michael E.

    2014-01-01

    Navigational ability is a critical component of an animal's spatial ecology and may influence the invasive potential of species. Burmese pythons (Python molurus bivittatus) are apex predators invasive to South Florida. We tracked the movements of 12 adult Burmese pythons in Everglades National Park, six of which were translocated 21–36 km from their capture locations. Translocated snakes oriented movement homeward relative to the capture location, and five of six snakes returned to within 5 km of the original capture location. Translocated snakes moved straighter and faster than control snakes and displayed movement path structure indicative of oriented movement. This study provides evidence that Burmese pythons have navigational map and compass senses and has implications for predictions of spatial spread and impacts as well as our understanding of reptile cognitive abilities.

  7. The Role of Compassion in Altruistic Helping and Punishment Behavior.

    PubMed

    Weng, Helen Y; Fox, Andrew S; Hessenthaler, Heather C; Stodola, Diane E; Davidson, Richard J

    2015-01-01

    Compassion, the emotional response of caring for another who is suffering and that results in motivation to relieve suffering, is thought to be an emotional antecedent to altruistic behavior. However, it remains unclear whether compassion enhances altruistic behavior in a uniform way or is specific to sub-types of behavior such as altruistic helping of a victim or altruistic punishment of a transgressor. We investigated the relationship between compassion and subtypes of altruistic behavior using third-party paradigms where participants 1) witnessed an unfair economic exchange between a transgressor and a victim, and 2) had the opportunity to either spend personal funds to either economically a) help the victim or b) punish the transgressor. In Study 1, we examined whether individual differences in self-reported empathic concern (the emotional component of compassion) was associated with greater altruistic helping or punishment behavior in two independent samples. For participants who witnessed an unfair transaction, trait empathic concern was associated with greater helping of a victim and had no relationship to punishment. However, in those who decided to punish the transgressor, participants who reported greater empathic concern decided to punish less. In Study 2, we directly enhanced compassion using short-term online compassion meditation training to examine whether altruistic helping and punishment were increased after two weeks of training. Compared to an active reappraisal training control group, the compassion training group gave more to help the victim and did not differ in punishment of the transgressor. Together, these two studies suggest that compassion is related to greater altruistic helping of victims and is not associated with or may mitigate altruistic punishment of transgressors. PMID:26655837

  8. The Role of Compassion in Altruistic Helping and Punishment Behavior

    PubMed Central

    Weng, Helen Y.; Fox, Andrew S.; Hessenthaler, Heather C.; Stodola, Diane E.; Davidson, Richard J.

    2015-01-01

    Compassion, the emotional response of caring for another who is suffering and that results in motivation to relieve suffering, is thought to be an emotional antecedent to altruistic behavior. However, it remains unclear whether compassion enhances altruistic behavior in a uniform way or is specific to sub-types of behavior such as altruistic helping of a victim or altruistic punishment of a transgressor. We investigated the relationship between compassion and subtypes of altruistic behavior using third-party paradigms where participants 1) witnessed an unfair economic exchange between a transgressor and a victim, and 2) had the opportunity to either spend personal funds to either economically a) help the victim or b) punish the transgressor. In Study 1, we examined whether individual differences in self-reported empathic concern (the emotional component of compassion) was associated with greater altruistic helping or punishment behavior in two independent samples. For participants who witnessed an unfair transaction, trait empathic concern was associated with greater helping of a victim and had no relationship to punishment. However, in those who decided to punish the transgressor, participants who reported greater empathic concern decided to punish less. In Study 2, we directly enhanced compassion using short-term online compassion meditation training to examine whether altruistic helping and punishment were increased after two weeks of training. Compared to an active reappraisal training control group, the compassion training group gave more to help the victim and did not differ in punishment of the transgressor. Together, these two studies suggest that compassion is related to greater altruistic helping of victims and is not associated with or may mitigate altruistic punishment of transgressors. PMID:26655837

  9. COMPASS 31: A Refined and Abbreviated Composite Autonomic Symptom Score

    PubMed Central

    Sletten, David M.; Suarez, Guillermo A.; Low, Phillip A.; Mandrekar, Jay; Singer, Wolfgang

    2012-01-01

    Objective To develop a concise and statistically robust instrument to assess autonomic symptoms that provides clinically relevant scores of autonomic symptom severity based on the well-established 169-item Autonomic Symptom Profile (ASP) and its validated 84-question scoring instrument, the Composite Autonomic Symptom Score (COMPASS). Patients and Methods We assessed the internal consistency of COMPASS using Cronbach ? coefficients based on the ASP of 405 healthy control subjects recruited and seen in the Mayo Clinic Autonomic Disorders Center between March 1, 1995, and March 31, 2010. Applying a simplified scoring algorithm, we then used exploratory factor analysis with orthogonal rotation and eigenvalue calculations to extract internally consistent domains and to reduce dimensionality. This analysis was followed by expert revisions to eliminate redundant content and to retain clinically important questions and final assessment of the new instrument. Results The new simplified scoring algorithm alone resulted in higher Cronbach ? values in all domains. Factor analysis revealed 7 domains with a total of 54 questions retained. Expert revisions resulted in further reduction of questions and domains with a remaining total of 31 questions in 6 domains (COMPASS 31). Measures of internal consistency were much improved compared to those for COMPASS. Following appropriate weighting, this instrument provides an autonomic symptom score from 0 to 100. Conclusion COMPASS 31 is a refined, internally consistent, and markedly abbreviated quantitative measure of autonomic symptoms. It is based on the original ASP and COMPASS, applies a much simplified scoring algorithm, and is suitable for widespread use in autonomic research and practice. PMID:23218087

  10. Calculation of remanence and degree of texture from EBSD orientation histograms and XRD rocking curves in Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Sawatzki, Simon; Woodcock, Thomas G.; Gth, Konrad; Mller, Karl-Hartmut; Gutfleisch, Oliver

    2015-05-01

    Sintered Nd-Fe-B permanent magnets with different composition and texture have been characterized by electron backscattered diffraction (EBSD) and X-ray diffraction (XRD) techniques. Instead of EBSD mapping on a microscopic scale, smooth orientation histograms were obtained with the EBSD sampling method. In this method 45,000 single orientation measurements were taken with a step size of 10 ?m, which is here above the average grain size of the Nd2Fe14B grains. Complementary macroscopic texture information was extracted from XRD rocking curves. In order to test the statistical reliability of the EBSD and XRD measurements, the remanences along the easy and the hard directions were calculated from this data by means of a simple approach assuming magnetically decoupled grains, identical in size, and absence of domain walls. For this, the saturation magnetization has to be approximated or one can employ the degree of texture using two different common definitions of this parameter. Both definitions are independently of the saturation magnetization. The calculated degrees of texture compare well with the magnetic measurements, which demonstrate the excellent statistical reliability of the EBSD and XRD data. Furthermore, it shows that the three assumptions above reproduce well the characteristics of sintered Nd-Fe-B magnets.

  11. Electric and Magnetic Field-Assisted Orientational Transitions in the Ensembles of Domains in a Nematic Liquid Crystal on the Polymer Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  12. Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  13. A new therapeutic community: development of a compassion-focussed and contextual behavioural environment.

    PubMed

    Veale, David; Gilbert, Paul; Wheatley, Jon; Naismith, Iona

    2015-01-01

    Social relationships and communities provide the context and impetus for a range of psychological developments, from genetic expression to the development of core self-identities. This suggests a need to think about the therapeutic changes and processes that occur within a community context and how communities can enable therapeutic change. However, the 'therapeutic communities' that have developed since the Second World War have been under-researched. We suggest that the concept of community, as a change process, should be revisited within mainstream scientific research. This paper briefly reviews the historical development of therapeutic communities and critically evaluates their current theory, practice and outcomes in a systematic review. Attention is drawn to recent research on the nature of evolved emotion regulation systems, the way these are entrained by social relationships, the importance of affiliative emotions in the regulation of threat and the role of fear of affiliative emotions in psychopathology. We draw on concepts from compassion-focussed therapy, social learning theory and functional analytical psychotherapy to consider how members of a therapeutic community can be aware of each other's acts of courage and respond using compassion. Living in structured and affiliative-orientated communities that are guided by scientific models of affect and self-regulation offers potential therapeutic advantages over individual outpatient therapy for certain client groups. This conclusion should be investigated further. Copyright © 2014 John Wiley & Sons, Ltd. Key Practitioner Message Current therapeutic community practice is not sufficiently evidence based and may not be maximizing the potential therapeutic value of a community. Compassion-focussed therapy and social learning theory offer new approaches for a therapeutic environment, involving an understanding of the role, nature and complexities of compassionate and affiliative relationships from staff and members, behavioural change guided by learning theory, a clear formulation based on threat-derived safety strategies, goal setting and positive reinforcement. PMID:24733685

  14. Group cohesion and organizational commitment: protective factors for nurse residents' job satisfaction, compassion fatigue, compassion satisfaction, and burnout.

    PubMed

    Li, Angela; Early, Sean F; Mahrer, Nicole E; Klaristenfeld, Jessica L; Gold, Jeffrey I

    2014-01-01

    Stress can have detrimental effects on nurse residents' levels of job satisfaction, compassion, fatigue, and burnout. This can lead to high turnover rates and poor quality of care among novice nurses. Therefore, it is critical to identify protective factors to prevent the onset of negative nurse outcomes (compassion fatigue, burnout, and job dissatisfaction) and to promote positive nurse outcomes (job satisfaction, compassion satisfaction). This study aimed to determine whether factors such as group cohesion and organizational commitment would be protective and moderate the association between stress exposure and posttraumatic stress symptoms and other negative nurse outcomes, thus facilitating positive outcomes. Findings showed that group cohesion was effective in moderating the negative effects of current stress exposure and posttraumatic stress symptoms on negative nurse outcomes, specifically on increased compassion fatigue and burnout, and reduced compassion satisfaction. In addition, organizational commitment was determined to promote positive nurse outcomes such as job satisfaction and compassion satisfaction. The study findings are promising, as retention of quality nurses is a significant problem for hospitals. Nurse managers and hospital administrators should be aware of the benefits of group cohesion and organizational commitment and strive to make the promotion of these factors a priority. PMID:24503320

  15. Quantum coherence and entanglement in the avian compass

    NASA Astrophysics Data System (ADS)

    Pauls, James A.; Zhang, Yiteng; Berman, Gennady P.; Kais, Sabre

    2013-06-01

    The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models.

  16. Quantum coherence and entanglement in the avian compass.

    PubMed

    Pauls, James A; Zhang, Yiteng; Berman, Gennady P; Kais, Sabre

    2013-06-01

    The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models. PMID:23848712

  17. Lack of relationship between geoeffectiveness and orientations of magnetic clouds with bipolar Bz and unipolar southward Bz

    NASA Astrophysics Data System (ADS)

    Teh, W.-L.; Abdullah, M.; Hasbi, A. M.

    2015-09-01

    In this study, 38 magnetic clouds (MCs) that caused significant geomagnetic storms (the minimum SYM-H, SHmin, ?-50 nT) are examined, in which 17 MCs were unipolar Bz in south (S-type) and 21 MCs were bipolar Bz (north-to-south, NS-type, or south-to-north, SN-type). For S-type MC, inclination angle of the axis of the MC, |?|, is ?45, while |?|<45 for bipolar MC. This paper aims to address a question: is the intensity of a MC-driven storm correlated with the orientations of bipolar and S-type MCs? Our results demonstrate that there is no direct and significant relationship between geoeffectiveness and orientations of bipolar and S-type MCs. In other words, there is no MC preference (bipolar or S-type MC) to regulate the SHmin of the storm. On the whole, the SHmin is found to strongly correlate with southward field Bz (cc=0.96) and with the y component of the solar wind convective electric field (cc=-0.91) but to weakly correlate with solar wind speed (cc=-0.65). This result is consistent with previous studies by Wu and Lepping (2002), J. Geophys. Res. 107 (A10), 1314. doi:10.1029/2001JA000161. By separating MC-driven storms by size into moderate (-100 nT

  18. Introducing minimum Fisher regularisation tomography to AXUV and soft x-ray diagnostic systems of the COMPASS tokamak.

    PubMed

    Mlynar, J; Imrisek, M; Weinzettl, V; Odstrcil, M; Havlicek, J; Janky, F; Alper, B; Murari, A

    2012-10-01

    The contribution focuses on plasma tomography via the minimum Fisher regularisation (MFR) algorithm applied on data from the recently commissioned tomographic diagnostics on the COMPASS tokamak. The MFR expertise is based on previous applications at Joint European Torus (JET), as exemplified in a new case study of the plasma position analyses based on JET soft x-ray (SXR) tomographic reconstruction. Subsequent application of the MFR algorithm on COMPASS data from cameras with absolute extreme ultraviolet (AXUV) photodiodes disclosed a peaked radiating region near the limiter. Moreover, its time evolution indicates transient plasma edge cooling following a radial plasma shift. In the SXR data, MFR demonstrated that a high resolution plasma positioning independent of the magnetic diagnostics would be possible provided that a proper calibration of the cameras on an x-ray source is undertaken. PMID:23130804

  19. Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet

    NASA Astrophysics Data System (ADS)

    Lee, K. M.; Huh, M. Y.; Lee, H. J.; Park, J. T.; Kim, J. S.; Shin, E. J.; Engler, O.

    2015-12-01

    The effect of hot band grain size on the development of crystallographic texture and magnetic properties in non-oriented electrical steel sheet was studied. After cold rolling the samples with different initial grain sizes displayed different microstructures and micro-textures but nearly identical macro-textures. The homogeneous recrystallized microstructure and micro-texture in the sample having small grains caused normal continuous grain growth. The quite irregular microstructure and micro-texture in the recrystallized sample with large initial grain size provided a preferential growth of grains in <001>//ND and <113>//ND which were beneficial for developing superior magnetic properties.

  20. Compassion Fatigue: An Application of the Concept to Informal Caregivers of Family Members with Dementia

    PubMed Central

    Day, Jennifer R.; Anderson, Ruth A.

    2011-01-01

    Introduction. Compassion fatigue is a concept used with increasing frequency in the nursing literature. The objective of this paper is to identify common themes across the literature and to apply these themes, and an existing model of compassion fatigue, to informal caregivers for family members with dementia. Findings. Caregivers for family members with dementia may be at risk for developing compassion fatigue. The model of compassion fatigue provides an informative framework for understanding compassion fatigue in the informal caregiver population. Limitations of the model when applied to this population were identified as traumatic memories and the emotional relationship between parent and child, suggesting areas for future research. Conclusions. Research is needed to better understand the impact of compassion fatigue on informal caregivers through qualitative interviews, to identify informal caregivers at risk for compassion fatigue, and to provide an empirical basis for developing nursing interventions for caregivers experiencing compassion fatigue. PMID:22229086

  1. 78 FR 42153 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel COMPASS ROSE; Invitation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Maritime Administration Requested Administrative Waiver of the Coastwise Trade Laws: Vessel COMPASS ROSE... of the vessel COMPASS ROSE is: Intended Commercial Use Of Vessel: ``Sailboat charters six...

  2. Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass.

    PubMed

    Mouritsen, H; Larsen, O N

    2001-11-01

    This paper investigates how young pied flycatchers, Ficedula hypoleuca, and blackcaps, Sylvia atricapilla, interpret and use celestial cues. In order to record these data, we developed a computer-controlled version of the Emlen funnel, which enabled us to make detailed temporal analyses. First, we showed that the birds use a star compass. Then, we tested the birds under a stationary planetarium sky, which simulated the star pattern of the local sky at 02:35 h for 11 consecutive hours of the night, and compared the birds' directional choices as a function of time with the predictions from five alternative stellar orientation hypotheses. The results supported the hypothesis suggesting that birds use a time-independent star compass based on learned geometrical star configurations to pinpoint the rotational point of the starry sky (north). In contrast, neither hypotheses suggesting that birds use the stars for establishing their global position and then perform true star navigation nor those suggesting the use of a time-compensated star compass were supported. PMID:11807103

  3. COMPASS Final Report: Lunar Communications Terminal (LCT)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2010-01-01

    The Lunar Communications Terminal (LCT) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session designed a terminal to provide communications between lunar South Pole assets, communications relay to/from these assets through an orbiting Lunar Relay Satellite (LRS) and navigation support. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The Terminal consists of a pallet containing the communications and avionics equipment, surrounded by the thermal control system (radiator), an attached, deployable 10-m tower, upon which were mounted locally broadcasting and receiving modems and a deployable 1 m diameter Ka/S band dish which provides relay communications with the lunar relay satellites and, as a backup, Earth when it is in view. All power was assumed to come from the lunar outpost Habitat. Three LCT design options were explored: a stand-alone LCT servicing the manned outpost, an integrated LCT (into the Habitat or Lunar Lander), and a mini-LCT which provides a reduced level of communication for primarily robotic areas dealing as in situ resource utilization (ISRU) and remote science. Where possible all the designs assumed single fault tolerance. Significant mass savings were found when integrating the LCT into the Habitat or Lander but increases in costs occurred depending upon the level of man rating required for such designs.

  4. Hard Exclusive Meson Production at COMPASS

    NASA Astrophysics Data System (ADS)

    Ter Wolbeek, Johannes

    2016-02-01

    The concept of Generalized Parton Distributions (GPDs) combines two-dimensional spatial information given by form factors, with longitudinal momentum information from Parton Distribution Functions. GPDs provide comprehensive description of the nucleon structure involving a wealth of new information. For instance, according to Ji’s sum rule, the GPDs H and E enable access to the total angular momenta of quarks, antiquarks and gluons. While H can be approached using measurements of electroproduction cross sections, asymmetry measurements in hard exclusive meson production off transversely polarized targets can help to constrain the GPD E and chiral-odd GPDs. In 2007 and 2010 the COMPASS experiment at CERN collected data by scattering a 160GeV/c muon beam off a transversely polarized NH3 target. Exclusive vector-meson production μ + p → μ‧ + p + V with a ρ0 or ω meson in the final state is studied and five single-spin and three double-spin azimuthal asymmetries are measured.

  5. Quasicoherent modes on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Markovic, T.; Eliseev, L. G.; Admek, J.; Aftanas, M.; Bilkova, P.; Boehm, P.; Gryaznevich, M.; Imrisek, M.; Lysenko, S. E.; Medvedev, S. Y.; Panek, R.; Peterka, M.; Seidl, J.; Stefanikova, E.; Stockel, J.; Weinzettl, V.; the COMPASS Team

    2015-06-01

    Multiple quasicoherent electromagnetic modes with steady-state frequency and different nature and location were observed in the COMPASS tokamak (R = 0.56?m, = 0.2?m) at Bt = 1.14?T with Co-NBI (PNBI = 0.2-0.5?MW, Eb = 32?keV) at frequencies 5?kHz < f < 250?kHz. Modes were observed in both low and high confinement (L- and H-modes) plasmas. Lower frequency modes with f < 50?kHz were identified as low m tearing and kink MHD modes, while higher frequency modes with 50?kHz < f < 250?kHz were considered as having Alfvnic nature. Unexpectedly, such modes were only observed in the H-mode, both in neutral beam injector-assisted and Ohmic, so the mode driving force is not yet clear. Using the linear MHD code KINX, we initially identified the observed mode with a ballooning structure is as beta induced Alfvn eigenmode (BAE) with m, n < 5, while an antiballooning mode is initially identified as toroidal Alfvn eigenmode (TAE) with m, n < 9.

  6. How could the Viking Sun compass be used with sunstones before and after sunset? Twilight board as a new interpretation of the Uunartoq artefact fragment

    PubMed Central

    Bernth, Balzs; Farkas, Alexandra; Szz, Dnes; Blah, Mikls; Egri, dm; Barta, Andrs; kesson, Susanne; Horvth, Gbor

    2014-01-01

    Vikings routinely crossed the North Atlantic without a magnetic compass and left their mark on lands as far away as Greenland, Newfoundland and Baffin Island. Based on an eleventh-century dial fragment artefact, found at Uunartoq in Greenland, it is widely accepted that they sailed along chosen latitudes using primitive Sun compasses. Such instruments were tested on sea and proved to be efficient hand-held navigation tools, but the dimensions and incisions of the Uunartoq find are far from optimal in this role. On the basis of the sagas mentioning sunstones, incompatible hypotheses were formed for Viking solar navigation procedures and primitive skylight polarimetry with dichroic or birefringent crystals. We describe here a previously unconceived method of navigation based on the Uunartoq artefact functioning as a twilight board, which is a combination of a horizon board and a Sun compass optimized for use when the Sun is close to the horizon. We deduced an appropriate solar navigation procedure using a twilight board, a shadow-stick and birefringent crystals, which bring together earlier suggested methods in harmony and provide a true skylight compass function. This could have allowed Vikings to navigate around the clock, to use the artefact dial as a Sun compass during long parts of the day and to use skylight polarization patterns in the twilight period. In field tests, we found that true north could be appointed with such a medieval skylight compass with an error of about 4 when the artificially occluded Sun had elevation angles between +10 and ?8 relative to the horizon. Our interpretation allows us to assign exact dates to the gnomonic lines on the artefact and outlines the schedule of the merchant ships that sustained the Viking colony in Greenland a millennium ago. PMID:24910520

  7. How could the Viking Sun compass be used with sunstones before and after sunset? Twilight board as a new interpretation of the Uunartoq artefact fragment.

    PubMed

    Bernth, Balzs; Farkas, Alexandra; Szz, Dnes; Blah, Mikls; Egri, Adm; Barta, Andrs; Akesson, Susanne; Horvth, Gbor

    2014-06-01

    Vikings routinely crossed the North Atlantic without a magnetic compass and left their mark on lands as far away as Greenland, Newfoundland and Baffin Island. Based on an eleventh-century dial fragment artefact, found at Uunartoq in Greenland, it is widely accepted that they sailed along chosen latitudes using primitive Sun compasses. Such instruments were tested on sea and proved to be efficient hand-held navigation tools, but the dimensions and incisions of the Uunartoq find are far from optimal in this role. On the basis of the sagas mentioning sunstones, incompatible hypotheses were formed for Viking solar navigation procedures and primitive skylight polarimetry with dichroic or birefringent crystals. We describe here a previously unconceived method of navigation based on the Uunartoq artefact functioning as a 'twilight board', which is a combination of a horizon board and a Sun compass optimized for use when the Sun is close to the horizon. We deduced an appropriate solar navigation procedure using a twilight board, a shadow-stick and birefringent crystals, which bring together earlier suggested methods in harmony and provide a true skylight compass function. This could have allowed Vikings to navigate around the clock, to use the artefact dial as a Sun compass during long parts of the day and to use skylight polarization patterns in the twilight period. In field tests, we found that true north could be appointed with such a medieval skylight compass with an error of about 4 when the artificially occluded Sun had elevation angles between +10 and -8 relative to the horizon. Our interpretation allows us to assign exact dates to the gnomonic lines on the artefact and outlines the schedule of the merchant ships that sustained the Viking colony in Greenland a millennium ago. PMID:24910520

  8. Burnout, compassion fatigue, and compassion satisfaction among staff in community-based mental health services.

    PubMed

    Rossi, Alberto; Cetrano, Gaia; Pertile, Riccardo; Rabbi, Laura; Donisi, Valeria; Grigoletti, Laura; Curtolo, Cristina; Tansella, Michele; Thornicroft, Graham; Amaddeo, Francesco

    2012-12-30

    Providing care to individuals with complex mental health needs can be stressful. However, little research has focused on the emotional, cognitive, and physical consequences of providing mental health care. The aim of this study is to assess burnout (BO), compassion fatigue (CF) and compassion satisfaction (CS) among staff at the four community-based mental health services (CMHS) of Verona, Italy. All staff were asked to complete anonymously the Professional Quality of Life Scale, the General Health Questionnaire, and a socio-demographic questionnaire. In total 260 staff participated (a response rate of 84%). Psychiatrists and social workers were the professionals with the highest levels of BO and CF. Workers with psychological distress reported both higher BO and CF scores, and lower levels of CS. A significant increase in the BO and CF scores was also detected for each extra year spent working in a CMHS. A higher level of CF was associated with female and having been experienced one negative life event in the previous year. These findings are useful for health managers and team leaders to identify factors affecting the professional quality of life of mental healthcare staff, and can provide a rationale for detecting staff at risk for developing negative work-related outcomes. PMID:22951335

  9. Oxytocin improves compassion toward women among patients with PTSD.

    PubMed

    Palgi, Sharon; Klein, Ehud; Shamay-Tsoory, Simone G

    2016-02-01

    Although impairments in social skills, including empathic abilities, are common in post-traumatic stress disorder (PTSD), the ability to feel compassion-a pro-social behavior that is based on empathy and drives us to help others-has never been assessed among these patients. The first aim of this study was to examine whether patients with PTSD suffer from deficits in compassion and to examine the association between the clusters of PTSD symptoms and these deficits. Furthermore, given that intranasal oxytocin (OT) has been suggested to possibly modulate social behaviors, the second aim of this study was to investigate whether intranasal OT may enhance compassion in these patients. Using a randomized, double-blind, placebo-controlled crossover design, we administered 24 IU of OT and placebo at a one-week interval to 32 patients with PTSD and to 30 matched healthy control participants. The results indicate that patients with PTSD exhibit deficits in compassion and that the numbing cluster emerged as the key predictor of those deficits. Moreover, the results indicate that a single intranasal dose of OT enhances compassion toward women (but not towards men), both in patients with PTSD and in controls. These results offer support for recent suggestions that intranasal OT may potentially be an effective pharmacological intervention for patients with PTSD. PMID:26671007

  10. The development and evaluation of a compassion scale.

    PubMed

    Martins, David; Nicholas, Nichole A; Shaheen, Magda; Jones, Loretta; Norris, Keith

    2013-08-01

    Compassion is the capacity for being moved by suffering of others and wanting to help alleviate it. Compassion may mediate health benefits and hazards of social networks/relationships. The monitoring/management of level of compassion across social networks/relationships may be critical to health benefits' preservation and social networks/relationships' health hazards prevention. We developed and evaluated the psychometric properties of 10-item self-report measure of compassion among 310 respondents from the University and surrounding communities. The mean total score was 3.62 (SD=1.09). The item-to-total correlations ranged from 0.50-0.71. The mean inter-item correlation was 0.33. The internal consistency was 0.82. The scale correlated well with Sprecher and Fehr's Compassionate Love Scale (r=0.66; p=.000). Two factors measuring same construct explained 57% of sample variance. The scale is user-friendly, easy to score, and characterized by good psychometric properties. It can be used to foster understanding of the impact of compassion on disease and outcomes across social networks/relationships. PMID:23974394

  11. Compassion in Soranus' Gynecology and Caelius Aurelianus' On Chronic Diseases.

    PubMed

    Porter, Amber J

    2016-01-01

    Compassion is considered an important quality for a successful physician today, but did ancient physicians display and value this emotion? How did they feel when faced with the pain and suffering of their patients? How did their patients' emotions affect their own? Many ancient physicians are not well-known for expressions of compassion in their writings; however, this seems to change in the second century AD. One medical writer who exemplifies this change is Soranus of Ephesus (c. 98-138 AD). In his Gynecology, there are a number of passages where compassion is addressed or expressed (such as the chapters on the qualities of the best midwife, the symptom of pica, childbirth, and superstition). The same points can be made of Soranus' On Chronic Diseases, preserved to some extent by the Latin version and adaptation by fifth century AD medical writer Caelius Aurelianus (see, for example, the chapters on chronic headache, mania and elephantiasis). Soranus and Caelius display compassion, understanding, and flexibility of approach when dealing with patient issues; they show themselves willing to change their medical technique when they see that it is doing more harm or discomfort than good. In Soranus and Caelius, we have an image of a physician who acknowledges and is aware of their patients' emotions, beliefs and attitudes, and who exhibits compassion for them. PMID:26946682

  12. Dark state population determines magnetic sensitivity in radical pair magnetoreception model

    PubMed Central

    Xu, Bao-Ming; Zou, Jian

    2016-01-01

    What is the real role of the quantum coherence and entanglement in the radical pair (RP) compass, and what determines the singlet yield have not been fully understood. In this paper, we find that the dark states of the two-electron Zeeman energy operator (TEZE) play an important role in the RP compass. We respectively calculate the singlet yields for two initial states in this dark state basis: the coherent state and the same state just removing the dark state coherence. For the later there is neither dark state coherence nor entanglement in the whole dynamical process. Surprisingly we find that in both cases the singlet yields are the same, and based on this result, we believe that the dark state population determines the singlet yield completely, and the dark state coherence and entanglement have little contribution to it. Finally, we also find that the dark state population as well as the singlet yield anisotropy is fragile to the vertical magnetic noise. However, the orientation is robust and is even enhanced by the parallel magnetic noise because the dark states expand a decoherence-free subspace. The dark state population as well as the orientation is more robust to the hyperfine coupling noise. PMID:26926264

  13. Dark state population determines magnetic sensitivity in radical pair magnetoreception model.

    PubMed

    Xu, Bao-Ming; Zou, Jian

    2016-01-01

    What is the real role of the quantum coherence and entanglement in the radical pair (RP) compass, and what determines the singlet yield have not been fully understood. In this paper, we find that the dark states of the two-electron Zeeman energy operator (TEZE) play an important role in the RP compass. We respectively calculate the singlet yields for two initial states in this dark state basis: the coherent state and the same state just removing the dark state coherence. For the later there is neither dark state coherence nor entanglement in the whole dynamical process. Surprisingly we find that in both cases the singlet yields are the same, and based on this result, we believe that the dark state population determines the singlet yield completely, and the dark state coherence and entanglement have little contribution to it. Finally, we also find that the dark state population as well as the singlet yield anisotropy is fragile to the vertical magnetic noise. However, the orientation is robust and is even enhanced by the parallel magnetic noise because the dark states expand a decoherence-free subspace. The dark state population as well as the orientation is more robust to the hyperfine coupling noise. PMID:26926264

  14. Dark state population determines magnetic sensitivity in radical pair magnetoreception model

    NASA Astrophysics Data System (ADS)

    Xu, Bao-Ming; Zou, Jian

    2016-03-01

    What is the real role of the quantum coherence and entanglement in the radical pair (RP) compass, and what determines the singlet yield have not been fully understood. In this paper, we find that the dark states of the two-electron Zeeman energy operator (TEZE) play an important role in the RP compass. We respectively calculate the singlet yields for two initial states in this dark state basis: the coherent state and the same state just removing the dark state coherence. For the later there is neither dark state coherence nor entanglement in the whole dynamical process. Surprisingly we find that in both cases the singlet yields are the same, and based on this result, we believe that the dark state population determines the singlet yield completely, and the dark state coherence and entanglement have little contribution to it. Finally, we also find that the dark state population as well as the singlet yield anisotropy is fragile to the vertical magnetic noise. However, the orientation is robust and is even enhanced by the parallel magnetic noise because the dark states expand a decoherence-free subspace. The dark state population as well as the orientation is more robust to the hyperfine coupling noise.

  15. Landscape vision and zonal orientation in the Equatorial sandhopper Talorchestia martensii.

    PubMed

    Ugolini, Alberto; Ciofini, Alice

    2016-01-01

    We investigate the role of the landscape in the zonal recovery of the Equatorial sandhopper Talorchestia martensii Weber. It is known that this species uses the sun and the magnetic compasses to return to the belt of damp sand of the beach following the shortest route (the sea-land axis). However, the sun is not always easy to use at Equatorial latitudes because of astronomical reasons (its zenithal culmination and its hourly azimuthal speed) at least during the central time of the day (around noon) and close to the equinox. Our experiments were performed in Kenya, during the equinoctial period. We tested adult individuals, belonging to Malindi (Kenya) population, in a confined environment with and without the vision of the landscape of their home beach and with the vision of the prominent landscape of a different-orientated shore (Temple Point). Releases were carried out with either natural or zeroed magnetic field. Results clearly show the importance of the landscape as an orienting factor mainly during the central hours of the day when it seems to assume a greater importance than magnetic cues. PMID:26512016

  16. Self-Compassion as a Predictor of Psychological Entitlement in Turkish University Students

    ERIC Educational Resources Information Center

    Sahran, mit

    2015-01-01

    The purpose of this study is to examine the predictive role of self-compassion on psychological entitlement. Participants were 331 university students (205 women, 126 men, M age = 20.5 years.). In this study, the Self-compassion Scale and the Psychological Entitlement Scale were used to assess self-compassion and psychological entitlement. The

  17. Electric field control of spin re-orientation in perpendicular magnetic tunnel junctionsCoFeB and MgO thickness dependence

    SciTech Connect

    Meng, Hao; Naik, Vinayak Bharat; Liu, Ruisheng; Han, Guchang

    2014-07-28

    We report an investigation of electric-field (EF) control of spin re-orientation as functions of the thicknesses of CoFeB free layer (FL) and MgO layer in synthetic-antiferromagnetic pinned magnetic tunnel junctions with perpendicular magnetic anisotropy. It is found that the EF modulates the coercivity (Hc) of the FL almost linearly for all FL thicknesses, while the EF efficiency, i.e., the slope of the linearity, increases as the FL thickness increases. This linear variation in Hc is also observed for larger MgO thicknesses (?1.5?nm), while the EF efficiency increases only slightly from 370 to 410?Oe nm/V when MgO thickness increases from 1.5 to 1.76?nm. We have further observed the absence of quasi-DC unipolar switching. We discuss its origin and highlight the underlying challenges to implement the EF controlled switching in a practical magnetic memory.

  18. Influence of initial annealing on structure evolution and magnetic properties of 3.4% Si non-oriented steel during final annealing

    NASA Astrophysics Data System (ADS)

    Pedrosa, Josiane Simes Mendanha; Paolinelli, Sebastio da Costa; Cota, Andr Barros

    2015-11-01

    The effect of the initial annealing on structure evolution and magnetic properties during the final annealing of a 3.4% Si non-oriented grain steel was evaluated. Half of the samples were submitted to initial annealing at 1030 C before cold rolling and all samples were subjected to final annealing process at temperatures from 540 C to 1100 C. The magnetic induction and core loss in the final samples, the microstructure by optical microscopy and the crystallographic texture by X-ray diffraction and EBSD were evaluated. The results show that the samples without initial annealing presented better magnetic properties than the samples with initial annealing, due to the higher ratio between Eta fiber and Gamma fiber volume fractions (Eta/Gamma ratio) in their structure after final annealing.

  19. Compassion Is a Necessity and an Individual and Collective Responsibility

    PubMed Central

    Lown, Beth A.

    2015-01-01

    Compassion is a complex process that is innate, determined in part by individual traits, and modulated by a myriad of conscious and unconscious factors, immediate context, social structures and expectations, and organizational "culture." Compassion is an ethical foundation of healthcare and a widely shared value; it is not an optional luxury in the healing process. While the interrelations between individual motivation and social structure are complex, we can choose to act individually and collectively to remove barriers to the innate compassion that most healthcare professionals bring to their work. Doing so will reduce professional burnout, improve the well-being of the healthcare workforce, and facilitate our efforts to achieve the triple aim of improving patients’ experiences of care and health while lowering costs. PMID:26340491

  20. Orientation of vortices in a superconducting thin film: Quantitative comparison of spin-polarized neutron reflectivity and magnetization

    NASA Astrophysics Data System (ADS)

    Han, S.-W.; Farmer, J.; Kaiser, H.; Miceli, P. F.; Roshchin, I. V.; Greene, L. H.

    2000-10-01

    We present a quantitative comparison of the magnetization measured by spin-polarized neutron reflectivity (SPNR) and dc magnetometry on a 1370 -thick Nb superconducting film. As a function of magnetic field applied in the film plane, SPNR exhibits reversible behavior whereas the dc magnetization shows substantial hysteresis. The difference between these measurements is attributed to a rotation of the vortex magnetic field out of the film plane as the applied field is reduced. SPNR measures only the magnetization parallel to the film plane, whereas dc magnetization is strongly influenced by the perpendicular component of magnetization when there is a slight sample tilt; thus combining the two techniques allows one to distinguish two components of magnetization in a thin film.

  1. Self-compassion, pain, and breaking a social contract.

    PubMed

    Purdie, Fiona; Morley, Stephen

    2015-11-01

    Self-compassion is the ability to respond to one's failures, shortcomings, and difficulties with kindness and openness rather than criticism. This study, which might be regarded as a proof-of-concept study, aimed to establish whether self-compassion is associated with expected emotional responses and the likelihood of responding with problem solving, support seeking, distraction, avoidance, rumination, or catastrophizing to unpleasant self-relevant events occurring in 3 social contexts. Sixty chronic pain patients were presented with 6 vignettes describing scenes in which the principal actor transgressed a social contract with negative interpersonal consequences. Vignettes represented 2 dimensions: (1) whether pain or a nonpain factor interrupted the fulfillment of the contract and (2) variation in the social setting (work, peer, and family). The Self-Compassion Scale was the covariate in the analysis. Higher levels of self-compassion were associated with significantly lower negative affect and lower reported likelihood of avoidance, catastrophizing, and rumination. Self-compassion did not interact with pain vs nonpain factor. Work-related vignettes were rated as more emotional and more likely to be associated with avoidance, catastrophizing, and rumination and less likelihood of problem solving. The findings suggest that self-compassion warrants further investigation in the chronic pain population both regarding the extent of its influence as a trait and in terms of the potential to enhance chronic pain patients' ability to be self-compassionate, with a view to its therapeutic utility in enhancing psychological well-being and adjustment. Limitations regarding the possible criterion contamination and the generalizability of vignette studies are discussed. PMID:26164588

  2. Wiring the new COMPASS Drift Chamber

    NASA Astrophysics Data System (ADS)

    Medlock, Lacey; Compass Dc5 Team

    2014-09-01

    COMPASS, a fixed-target experiment at CERN, will examine the first ever polarized Drell-Yan events that may illuminate how the quark angular momentum contributes to the spin of the proton. A new drift chamber must be constructed to replace an older straw chamber that is currently in use. In order to construct the drift chamber 4616 gold-plated tungsten wires are used, half are 100 micron (field wires) which provide an electrical field and half are 20 micron (sense wires) which measure position. Because of the difference in wire width, two very different stringing techniques had to be developed. The 20 micron sense wire was too fragile and thin to be handled in the same manner as the 100 micron field wire, so different tools had to be used in order to ensure the stability and efficacy of the chamber. Additionally, different soldering techniques had to be used for the two different types of wires to guarantee both that the field wires did not slip out of their solder joints during the process of stringing the sense wires and that both types of wires had smooth, even solder joints that would not require repair. This poster will detail several aspects of wire stringing, including how to string different widths of wire and how to overcome difficulties arising from using two different types of wire during the stringing process. COMPASS, a fixed-target experiment at CERN, will examine the first ever polarized Drell-Yan events that may illuminate how the quark angular momentum contributes to the spin of the proton. A new drift chamber must be constructed to replace an older straw chamber that is currently in use. In order to construct the drift chamber 4616 gold-plated tungsten wires are used, half are 100 micron (field wires) which provide an electrical field and half are 20 micron (sense wires) which measure position. Because of the difference in wire width, two very different stringing techniques had to be developed. The 20 micron sense wire was too fragile and thin to be handled in the same manner as the 100 micron field wire, so different tools had to be used in order to ensure the stability and efficacy of the chamber. Additionally, different soldering techniques had to be used for the two different types of wires to guarantee both that the field wires did not slip out of their solder joints during the process of stringing the sense wires and that both types of wires had smooth, even solder joints that would not require repair. This poster will detail several aspects of wire stringing, including how to string different widths of wire and how to overcome difficulties arising from using two different types of wire during the stringing process. This research was supported in part by the DOE under Grant Number DE-FG03-94ER40860.

  3. Biomagnetism and Magnetotaxis in Bacteria: What Bacteria Know About Magnetic Materials and Permanent Magnet Design

    NASA Astrophysics Data System (ADS)

    Frankel, Richard

    2011-03-01

    Magnetotactic bacteria (mtb) migrate along geomagnetic field lines, i.e., they behave like self-propelled magnetic compass needles. Mtb make single-magnetic-domain crystals of magnetite (Fe 3 O4) and greigite (Fe 3 S4) in intracellular structures called magnetosomes. The magnetosomes are arranged in linear chains that comprise permanent magnetic dipoles with remanent moments approaching the saturation moment, causing the mtb to be oriented in the geomagnetic field as they swim. This allows them to keep their heading and efficiently migrate to, and remain in, a preferred, microaerobic, aquatic habitat. The mtb have solved the difficult problem of designing a permanent magnet that is sufficiently robust to cause the cell to be oriented in the geomagnetic field at ambient temperature, yet fit inside a micron-sized object, and be assembled in situ from potentially toxic materials scavenged from the environment. I will describe some recent advances in mtb genetics that illuminate the process by which they make and arrange their magnetosomes.

  4. Electromagnetic Induction with Neodymium Magnets

    ERIC Educational Resources Information Center

    Wood, Deborah; Sebranek, John

    2013-01-01

    In April 1820, Hans Christian rsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831

  5. Electromagnetic Induction with Neodymium Magnets

    ERIC Educational Resources Information Center

    Wood, Deborah; Sebranek, John

    2013-01-01

    In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831…

  6. Highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy

    SciTech Connect

    An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji; Xie, Qian; Zhang, Zhengjun; Wang, Jian

    2015-03-15

    To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glass substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.

  7. Magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations and tunnel magnetoresistance effect at room temperature

    SciTech Connect

    Nagahama, Taro Matsuda, Yuya; Tate, Kazuya; Kawai, Tomohiro; Takahashi, Nozomi; Hiratani, Shungo; Watanabe, Yusuke; Yanase, Takashi; Shimada, Toshihiro

    2014-09-08

    Fe{sub 3}O{sub 4} is a ferrimagnetic spinel ferrite that exhibits electric conductivity at room temperature (RT). Although the material has been predicted to be a half metal according to ab-initio calculations, magnetic tunnel junctions (MTJs) with Fe{sub 3}O{sub 4} electrodes have demonstrated a small tunnel magnetoresistance (TMR) effect. Not even the sign of the tunnel magnetoresistance ratio has been experimentally established. Here, we report on the magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations. The films exhibited apparent crystal orientation dependence on hysteresis curves. In particular, Fe{sub 3}O{sub 4}(110) films exhibited in-plane uniaxial magnetic anisotropy. With respect to the squareness of hysteresis, Fe{sub 3}O{sub 4} (111) demonstrated the largest squareness. Furthermore, we fabricated MTJs with Fe{sub 3}O{sub 4}(110) electrodes and obtained a TMR effect of −12% at RT. The negative TMR ratio corresponded to the negative spin polarization of Fe{sub 3}O{sub 4} predicted from band calculations.

  8. Switching the orientation of Jahn-Teller axes in oxime-based Mn(III) dimers and its effect upon magnetic exchange: a combined experimental and theoretical study.

    PubMed

    Comar, Priyanka; Rajeshkumar, Thayalan; Nichol, Gary S; Pitak, Mateusz B; Coles, Simon J; Rajaraman, Gopalan; Brechin, Euan K

    2015-11-18

    A family of Mn(III) dimers of general formula [Mn(R-sao)2(dpa)2](ClO4)2 () has been synthesised using derivatised phenolic oximes (R-saoH2, where R = H, Me, Et, Ph) in combination with di-(2-picolyl)-amine (dpa). Their structures reveal a double-oxime bridged [Mn(III)(NO)]2 magnetic core in which the Jahn-Teller axes lie perpendicular to the bridging plane, in contrast to two previously reported family members (, ). The switch in the orientation of the Jahn-Teller axes is enforced through the use of the chelating ligand which is present in and absent in . Dc magnetic susceptibility measurements reveal that the exchange interactions between the Mn(III) metal centres in are antiferromagnetic in contrast to that observed for and which are ferromagnetic. DFT calculations performed on complexes reproduce both the sign and strength of the J values found experimentally. Molecular orbital analysis unlocks a common mechanism of magnetic coupling based upon the orientation of the Jahn-Teller axis, with the magneto-structural correlation also dependent upon the Mn-N-O-Mn angles - with ferromagnetic interactions at smaller dihedral angles. PMID:26474037

  9. Effect of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented transverse Fe-3%Si steel

    NASA Astrophysics Data System (ADS)

    Perevertov, O.; Thielsch, J.; Schfer, R.

    2015-07-01

    The effect of an elastic applied tensile stress on the quasistatic hysteresis curve and domain structure in conventional (110) [001] Fe-3%Si steel, cut transversely to the rolling direction, is studied. The magnetic domains and magnetization processes were observed by longitudinal Kerr microscopy at different levels of stress. It is shown that above 8 MPa the bulk hysteresis loop can be described with a good accuracy by the action of an effective field, which is the product of the stress and a function of magnetization. Domain observation reveals that the reasons for the effective field are demagnetizing fields due to the disappearance of supplementary domains at low applied field and the formation of different domain systems in different grains at low and moderate fields. The latter are caused by differences in grain sensitivity to stress depending on the degree of misorientation and grain boundary orientation. A decrease of the effective field above 1 T is connected with a transformation of all grains into the same domain system - the column pattern. The hysteresis loop behavior is qualitatively the same as for strips cut in rolling direction and for non-oriented strips.

  10. NMR determination of the orientation of the magnetic susceptibility tensor in cyanometmyoglobin: A new probe of steric tilt of bound ligand

    SciTech Connect

    Emerson, S.D.; La Mar, G.N. )

    1990-02-13

    The experimentally determined paramagnetic dipolar shifts for noncoordinated amino acid side-chain protons in the heme pocket of sperm whale cyanometmyoglobin were used to determine in solution the orientation of the principal axes for the paramagnetic susceptibility tensor relative to the heme iron molecular coordinates. The determination was made by a least-squares search for the unique Euler rotation angles which convert the geometric factors in the molecular (crystal) coordinates to ones that correctly predict each of 41 known dipolar shifts by using the magnetic anisotropies computed previously. An excellent fit to experimental shifts was obtained, which also provided predictions that allowed subsequent new assignments to be made. The magnetic axes are oriented so that the z axis is tipped {approximately}15{degree} from the heme normal toward the heme {delta}-meso-H and coincides approximately with the characterized FeCO tilt axis in the isostructural MbCO complex. Since the FeCO and FeCN units are isostructural, the authors propose that the dominant protein constraint that tips the magnetic z axis from the heme normal is the tilt of the FeCN by steric interactions with the distal residues. It is shown that the proximal His ring nonlabile proton hyperfine shifts provide direct and exquisitely sensitive indicators of the degree of the z axis tilt that may serve as a valuable probe for characterizing variable steric interactions in the distal pocket of both point mutants and natural genetic variants of myoglobin.

  11. Self-Compassion, Emotion Regulation and Stress among Australian Psychologists: Testing an Emotion Regulation Model of Self-Compassion Using Structural Equation Modeling

    PubMed Central

    Finlay-Jones, Amy L.; Rees, Clare S.; Kane, Robert T.

    2015-01-01

    Psychologists tend to report high levels of occupational stress, with serious implications for themselves, their clients, and the discipline as a whole. Recent research suggests that self-compassion is a promising construct for psychologists in terms of its ability to promote psychological wellbeing and resilience to stress; however, the potential benefits of self-compassion are yet to be thoroughly explored amongst this occupational group. Additionally, while a growing body of research supports self-compassion as a key predictor of psychopathology, understanding of the processes by which self-compassion exerts effects on mental health outcomes is limited. Structural equation modelling (SEM) was used to test an emotion regulation model of self-compassion and stress among psychologists, including postgraduate trainees undertaking clinical work (n = 198). Self-compassion significantly negatively predicted emotion regulation difficulties and stress symptoms. Support was also found for our preliminary explanatory model of self-compassion, which demonstrates the mediating role of emotion regulation difficulties in the self-compassion-stress relationship. The final self-compassion model accounted for 26.2% of variance in stress symptoms. Implications of the findings and limitations of the study are discussed. PMID:26207900

  12. Magnetism and electronic structure of (001)- and (111)-oriented LaTiO{sub 3} bilayers sandwiched in LaScO{sub 3} barriers

    SciTech Connect

    Weng, Yakui; Dong, Shuai

    2015-05-07

    In this study, the magnetism and electronic structure of LaTiO{sub 3} bilayers along both the (001) and (111) orientations are calculated using the density functional theory. The band insulator LaScO{sub 3} is chosen as the barrier layer and substrate to obtain the isolating LaTiO{sub 3} bilayer. For both the (001)- and (111)-oriented cases, LaTiO{sub 3} demonstrates the G-type antiferromagnetism as the ground state, similar to the bulk material. However, the electronic structure is significantly changed. The occupied bands of Ti are much narrower in the (111) case, giving a nearly flat band. As a result, the exchange coupling between nearest-neighbor Ti ions is reformed in these superlattices, which will affect the Néel temperature significantly.

  13. Dung beetles ignore landmarks for straight-line orientation.

    PubMed

    Dacke, Marie; Byrne, Marcus; Smolka, Jochen; Warrant, Eric; Baird, Emily

    2013-01-01

    Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle's orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer. PMID:23076443

  14. Comment on ``London model for the levitation force between a horizontally oriented point magnetic dipole and superconducting sphere''

    NASA Astrophysics Data System (ADS)

    Lin, Qiong-Gui

    2007-01-01

    In a recent paper the magnetostatic boundary-value problem for a magnetic dipole with transverse direction in the presence of a superconducting sphere was solved in both cases when the London penetration depth is zero and finite. It was concluded that the levitation force on the transverse magnetic dipole is exactly half that for a magnetic dipole with radial direction. We show that this conclusion is incorrect in either case. In the former case it is due to an incorrect boundary condition. In the latter case it is caused by calculational errors. Corrected results are presented. The distribution of supercurrent and the associated magnetic moment are also calculated.

  15. An Evaluation of Urban Compass After-School Program

    ERIC Educational Resources Information Center

    Kolberg, Todd Michael

    2013-01-01

    This study uses an existing evaluation model and previously established measurement tools to evaluate the quality and success of Urban Compass, a private non-profit after-school program for elementary school children in the Watts district of Los Angeles. This evaluation had two major objectives. The first objective was to assess program quality by…

  16. Astronomical Performance of the Engineering Model rsted Advanced Steller Compass

    NASA Technical Reports Server (NTRS)

    Eisenman, Allan; Liebe, Carl Christian; Jorgensen, John Leif

    1996-01-01

    The Danish geomagnetic microsatellite, rsted, is an autonomous sciencecraft which is scheduled for a May 1997 launch into polar orbit. It is produced by a consortium of universities, industry, and government and is Denmark's first national spacecraft. NASA support includes JPL real sky evaluation of its star tracker, the Advanced Stellar Compass (ASC).

  17. COMPASS identifies T-cell subsets correlated with clinical outcomes

    PubMed Central

    Lin, Lin; Finak, Greg; Ushey, Kevin; Seshadri, Chetan; Hawn, Thomas R.; Frahm, Nicole; Scriba, Thomas J.; Mahomed, Hassan; Hanekom, Willem; Bart, Pierre-Alexandre; Pantaleo, Giuseppe; Tomaras, Georgia D.; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Michael, Nelson L.; Kim, Jerome H.; Robb, Merlin L.; O’Connell, Robert J.; Karasavvas, Nicos; Gilbert, Peter; DeRosa, Stephen; McElrath, M. Juliana

    2015-01-01

    Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells and allowed interrogation of cell population heterogeneity. Computational tools to take full advantage of these technologies are lacking. Here, we present COMPASS, a computational framework for unbiased polyfunctionality analysis of antigen-specific T-cell subsets. COMPASS uses a Bayesian hierarchical framework to model all observed functional cell subsets and select those most likely to exhibit antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, while subject-level responses are quantified by two novel summary statistics that can be correlated directly with clinical outcome, and describe the quality of an individual’s (poly)functional response. Using three clinical datasets of cytokine production we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals novel cellular correlates of protection in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software. PMID:26006008

  18. An Evaluation of Urban Compass After-School Program

    ERIC Educational Resources Information Center

    Kolberg, Todd Michael

    2013-01-01

    This study uses an existing evaluation model and previously established measurement tools to evaluate the quality and success of Urban Compass, a private non-profit after-school program for elementary school children in the Watts district of Los Angeles. This evaluation had two major objectives. The first objective was to assess program quality by

  19. Calibrating One's Moral Compass: How Principal Preparation Shapes School Leaders

    ERIC Educational Resources Information Center

    Larsen, Donald E.; Derrington, Mary Lynne

    2012-01-01

    No textbook that an aspiring principal encounters in preparing for the role of school leader discusses what steps to follow when a member--or members--of the school staff challenge standards of professional judgment and moral rectitude. Instead, the most reliable guide at the principal's disposal may be the "moral compass" upon which the

  20. COMPASS identifies T-cell subsets correlated with clinical outcomes.

    PubMed

    Lin, Lin; Finak, Greg; Ushey, Kevin; Seshadri, Chetan; Hawn, Thomas R; Frahm, Nicole; Scriba, Thomas J; Mahomed, Hassan; Hanekom, Willem; Bart, Pierre-Alexandre; Pantaleo, Giuseppe; Tomaras, Georgia D; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Michael, Nelson L; Kim, Jerome H; Robb, Merlin L; O'Connell, Robert J; Karasavvas, Nicos; Gilbert, Peter; C De Rosa, Stephen; McElrath, M Juliana; Gottardo, Raphael

    2015-06-01

    Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software. PMID:26006008