Science.gov

Sample records for magnetic compass orientation

  1. Magnetic compass orientation in the European eel.

    PubMed

    Durif, Caroline M F; Browman, Howard I; Phillips, John B; Skiftesvik, Anne Berit; Vøllestad, L Asbjørn; Stockhausen, Hans H

    2013-01-01

    European eel migrate from freshwater or coastal habitats throughout Europe to their spawning grounds in the Sargasso Sea. However, their route (~ 6000 km) and orientation mechanisms are unknown. Several attempts have been made to prove the existence of magnetoreception in Anguilla sp., but none of these studies have demonstrated magnetic compass orientation in earth-strength magnetic field intensities. We tested eels in four altered magnetic field conditions where magnetic North was set at geographic North, South, East, or West. Eels oriented in a manner that was related to the tank in which they were housed before the test. At lower temperature (under 12°C), their orientation relative to magnetic North corresponded to the direction of their displacement from the holding tank. At higher temperatures (12-17°C), eels showed bimodal orientation along an axis perpendicular to the axis of their displacement. These temperature-related shifts in orientation may be linked to the changes in behavior that occur between the warm season (during which eels are foraging) and the colder fall and winter (during which eels undertake their migrations). These observations support the conclusion that 1. eels have a magnetic compass, and 2. they use this sense to orient in a direction that they have registered moments before they are displaced. The adaptive advantage of having a magnetic compass and learning the direction in which they have been displaced becomes clear when set in the context of the eel's seaward migration. For example, if their migration is halted or blocked, as it is the case when environmental conditions become unfavorable or when they encounter a barrier, eels would be able to resume their movements along their old bearing when conditions become favorable again or when they pass by the barrier. PMID:23554997

  2. Orientation of churches by magnetic compasses?

    NASA Astrophysics Data System (ADS)

    Arneitz, Patrick; Draxler, Andrea; Rauch, Roman; Leonhardt, Roman

    2014-07-01

    In Christian religion the sunrise is of great symbolic importance. Therefore, many churches constructed in the Middle Ages point towards geographic East. Although `easting' of churches actually refers to the alignment towards the azimuth of sunrise on the individual churches' patron's day, deviation of nave alignment from the geographic East direction is often assumed to be caused by the use of magnetic compasses. Therefore, the church alignment could provide information about historical magnetic declination. We investigate 124 churches in Lower Austria and 68 in northern Germany to clarify this question as well as the `easting' hypothesis. Church orientations are determined from georeferenced satellite images. Metadata such as the construction year, possible reconstructions and the church patron are gathered to determine the date when current church direction was appointed, and to perform sunrise calculations. However, due to uncertainties of construction years and the declining importance of orientation tradition after the 15th century several churches are excluded from the study. Thus, 32 churches with reliable metadata remain for evaluation in each region. The analysis reveals a preferred alignment of naves towards geographic East in Lower Austria and northern Germany. The construction and alignment of churches was often affected by the pre-existing buildings and streets or topography and natural surroundings. Therefore, deviations from geographic East are more likely caused by town or landscape. The mean deviations from magnetic East in both regions are large compared to the mean deviations from geographic East and sunrise azimuths. Hence, the use of compasses cannot be confirmed. Despite a few churches indicating orientation according to their patron's day, a general trend cannot be observed in the data reviewed.

  3. Magnetic compass orientation in birds and its physiological basis

    NASA Astrophysics Data System (ADS)

    Wiltschko, Wolfgang; Wiltschko, Roswitha

    2002-09-01

    A current model suggests that magnetoreception of compass information starts with light-dependent primary processes. Light-dependency of magnetoreception is supported by behavioral experiments with homing pigeons and caged migratory birds. Three passerine species showed normal orientation under dim monochromatic light from the blue-green range of the spectrum, while they were disoriented under yellow and red light. A sevenfold increase in intensity and pre-exposure to specific wavelengths caused changes in behavior. The behavioral data indicate a complex relationship between the wavelength of light and magnetoreception, suggesting the involvement of more than one type of receptors. Extracellular recordings from the nucleus of the basal optic root and the tectum opticum identified units that responded to changes in magnetic North. Each unit showed a peak in a distinct spatial direction, so that the input of these units, processed collectively and integrated, would indicate compass directions.

  4. A Visual Pathway Links Brain Structures Active during Magnetic Compass Orientation in Migratory Birds

    PubMed Central

    Heyers, Dominik; Manns, Martina; Luksch, Harald; Güntürkün, Onur; Mouritsen, Henrik

    2007-01-01

    The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, “Cluster N”, show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds “see” the reference compass direction provided by the geomagnetic field. PMID:17895978

  5. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus.

    PubMed

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species-the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents. PMID:24913128

  6. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus

    NASA Astrophysics Data System (ADS)

    Oliveriusová, Ludmila; Němec, Pavel; Pavelková, Zuzana; Sedláček, František

    2014-07-01

    Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

  7. Polarized light modulates light-dependent magnetic compass orientation in birds.

    PubMed

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-02-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field. PMID:26811473

  8. Evidence of light-dependent magnetic compass orientation in urodele amphibian larvae.

    PubMed

    Diego-Rasilla, Francisco J; Luengo, Rosa M; Phillips, John B

    2015-09-01

    Experiments were conducted to investigate whether larval palmate newts undertake orientation toward or away from the home shoreline (y-axis orientation) using the geomagnetic field to steer the most direct route, and if they accomplish this task through a light-dependent magnetoreception mechanism similar to that found in anuran tadpoles and adult newts. Larval palmate newts trained and then tested under full-spectrum light showed bimodal magnetic compass orientation that coincided with the magnetic direction of the trained y-axis. In contrast, larvae trained under long-wavelength (≥500nm) light and then tested under full-spectrum light displayed bimodal orientation perpendicular to the trained y-axis direction. These results offer evidence for the use of magnetic compass cues in orienting urodele amphibian larvae, and provide additional support for the light-dependent magnetoreception mechanism since they are in complete agreement with earlier studies showing that the observed 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500nm) is due to a direct effect of light on the underlying magnetoreception mechanism. This study is the first to provide evidence of a light-dependent magnetic compass in larval urodeles. PMID:25981491

  9. Migration, Orientation and Navigation: Magnetic Compasses in Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of magnetic information for orientation and navigation is a widespread phenomenon in animals. In contrast to navigational systems in vertebrates, our understanding of the mechanisms underlying the insect magnetic perception and use of the information is at an early stage. Some insects use ma...

  10. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus

    SciTech Connect

    Deutschlander, Mark E.; Freake, Michael J.; Borland, Christopher; Phillips, John B.; Madden, R C.; Anderson, Larry E.; Wilson, B W.

    2003-04-01

    Magnetic orientation has been demonstrated in Siberian hamsters, Phodopus sungorus. The behavior, using a nest building assay, shows a directional preference in nest position and appears in this animal to be a learned behavior. Hamsters were housed prior to testing in rectangular cages aligned along perpendicular axes. When subsequently tested in a radially-symmetrical arena, the hamsters positioned their nests in a bimodal distribution that coincided with the magnetic direction of the long-axis of the holding cages. In addition, results are presented that illustrate some of the factors that can influence behavioral responses to the magnetic field. In particular for P. sungorus, holding conditions prior to testing and the presence of non-magnetic cues may influence the strength and expression of magnetic orientation. Failure to consider these and other factors may help to explain why previous attempts to demonstrate magnetic orientation in a number of rodent species have failed or, when positive results have been obtained, have been difficult to replicate in other laboratories.

  11. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird.

    PubMed

    Engels, Svenja; Schneider, Nils-Lasse; Lefeldt, Nele; Hein, Christine Maira; Zapka, Manuela; Michalik, Andreas; Elbers, Dana; Kittel, Achim; Hore, P J; Mouritsen, Henrik

    2014-05-15

    Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions. No effect has therefore been widely accepted as scientifically proven. Here we show that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise. When European robins, Erithacus rubecula, were exposed to the background electromagnetic noise present in unscreened wooden huts at the University of Oldenburg campus, they could not orient using their magnetic compass. Their magnetic orientation capabilities reappeared in electrically grounded, aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50?kHz to 5?MHz by approximately two orders of magnitude. When the grounding was removed or when broadband electromagnetic noise was deliberately generated inside the screened and grounded huts, the birds again lost their magnetic orientation capabilities. The disruptive effect of radiofrequency electromagnetic fields is not confined to a narrow frequency band and birds tested far from sources of electromagnetic noise required no screening to orient with their magnetic compass. These fully double-blinded tests document a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate. PMID:24805233

  12. Orientations Of Minoan Buildings On Crete May Indicate The First Recorded Use Of The Magnetic Compass

    NASA Astrophysics Data System (ADS)

    Downey, W. S.

    Archaeomagnetic research has enabled the determination of the secular variation record of the past geomagnetic field and has been used as a tool for absolute and relative dating. The archaeomagnetic secular variation of declination can be used in conjunction with architectural building plan orientation angles (strike directions) to establish, whether or not, a magnetic compass was possibly used to align buildings. Until now, it has been speculative as to, how or why, Minoan buildings were orientated in an approximate North-South direction or at 'askew' angles to one another. Here, it is observed, that, the orientation angles, of some significant Minoan buildings on Crete which have been compared to the archaeomagnetic (secular variation of declination) reference curve record (Bulgaria) for that period, are consistent with the possible use of a magnetic compass. Four of the six main Palaces and other significant buildings may have been oriented using this method. This may indicate the first recorded use, by the Minoans of a magnetic compass. These findings have archaeological implications (chronology) and are of significant interest architecturally. They are also relevant to Minoan religious and cult studies and may have implications for Minoan maritime navigation studies.

  13. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms.

    PubMed

    Phillips, John B; Jorge, Paulo E; Muheim, Rachel

    2010-04-01

    Magnetic compass orientation by amphibians, and some insects, is mediated by a light-dependent magnetoreception mechanism. Cryptochrome photopigments, best known for their role in circadian rhythms, are proposed to mediate such responses. In this paper, we explore light-dependent properties of magnetic sensing at three levels: (i) behavioural (wavelength-dependent effects of light on magnetic compass orientation), (ii) physiological (photoreceptors/photopigment systems with properties suggesting a role in magnetoreception), and (iii) molecular (cryptochrome-based and non-cryptochrome-based signalling pathways that are compatible with behavioural responses). Our goal is to identify photoreceptors and signalling pathways that are likely to play a specialized role in magnetoreception in order to definitively answer the question of whether the effects of light on magnetic compass orientation are mediated by a light-dependent magnetoreception mechanism, or instead are due to input from a non-light-dependent (e.g. magnetite-based) magnetoreception mechanism that secondarily interacts with other light-dependent processes. PMID:20124357

  14. A magnetic compass aids monarch butterfly migration.

    PubMed

    Guerra, Patrick A; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species. Here we use flight simulator studies to show that migrants indeed possess an inclination magnetic compass to help direct their flight equatorward in the fall. The use of this inclination compass is light-dependent utilizing ultraviolet-A/blue light between 380 and 420 nm. Notably, the significance of light <420 nm for inclination compass function was not considered in previous monarch studies. The antennae are important for the inclination compass because they appear to contain light-sensitive magnetosensors. For migratory monarchs, the inclination compass may serve as an important orientation mechanism when directional daylight cues are unavailable and may also augment time-compensated sun compass orientation for appropriate directionality throughout the migration. PMID:24960099

  15. A magnetic compass aids monarch butterfly migration

    PubMed Central

    Guerra, Patrick A; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    Convincing evidence that migrant monarch butterflies (Danaus plexippus) use a magnetic compass to aid their fall migration has been lacking from the spectacular navigational capabilities of this species. Here we use flight simulator studies to show that migrants indeed possess an inclination magnetic compass to help direct their flight equatorward in the fall. The use of this inclination compass is light-dependent utilizing ultraviolet-A/blue light between 380 and 420 nm. Notably, the significance of light <420 nm for inclination compass function was not considered in previous monarch studies. The antennae are important for the inclination compass because they appear to contain light-sensitive magnetosensors. For migratory monarchs, the inclination compass may serve as an important orientation mechanism when directional daylight cues are unavailable and may also augment time-compensated sun compass orientation for appropriate directionality throughout the migration. PMID:24960099

  16. The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates.

    PubMed

    Phillips, J B; Deutschlander, M E; Freake, M J; Borland, S C

    2001-07-01

    Theoretical models implicating specialized photoreceptors in the detection of the geomagnetic field have been the impetus for studying the effects of light on magnetic compass orientation. Magnetic orientation in flies, amphibians and birds has been found to be influenced by light, and in all these groups a shift of approximately 90 degrees in the direction of magnetic compass orientation has been observed under certain wavelengths and/or intensities of light. In the eastern red-spotted newt Notophthalmus viridescens, wavelength-dependent effects of light on magnetic compass orientation appear to result from an antagonistic interaction between short-wavelength (< or = 450 nm) and long-wavelength (> or = 500 nm) photoreception mechanisms. We have demonstrated that at least the short-wavelength input to the newt's magnetic compass is mediated by extraocular photoreceptors located in or near the pineal organ, and here we present new findings that indicate that the putative long-wavelength mechanism is also associated with pineal photoreceptors. Interestingly, the amphibian pineal organ mediates orientation to both the e-vector of plane-polarized light and the magnetic field. Although the wavelength-dependence of the polarized light orientation in amphibians has not been studied, polarization sensitivity in fishes appears to be mediated by two antagonistic photoreception mechanisms that have similar spectral characteristics to those of the newts' magnetic compass response. These parallels, along with similarities in the types of receptors that are expected to be involved in light-dependent magnetoreception and polarized light detection, suggest that similar photoreception mechanisms may mediate the light-dependent magnetic and polarized light compasses. PMID:11511670

  17. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    PubMed

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less 'fixed' north-northeast-south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the 'fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head-body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based 'map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90 degrees rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements. PMID:12432012

  18. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields

    PubMed Central

    Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P. J.; Mouritsen, Henrik

    2016-01-01

    Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth’s magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356

  19. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields.

    PubMed

    Schwarze, Susanne; Schneider, Nils-Lasse; Reichl, Thomas; Dreyer, David; Lefeldt, Nele; Engels, Svenja; Baker, Neville; Hore, P J; Mouritsen, Henrik

    2016-01-01

    Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth's magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation. PMID:27047356

  20. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  1. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this

  2. Light-Activated Magnetic Compass in Birds

    NASA Astrophysics Data System (ADS)

    Solov'yov, Ilia A.; Greiner, Walter

    Migrating birds fly thousand miles without having a map, or a GPS unit. But they may carry their own sensitive navigational tool, which allows them "see" the Earth's magnetic field. Here we review the important physical and chemical constraints on a possible compass sensor and discuss the suggestion that radical pairs in a photoreceptor cryptochrome might provide a biological realization for a magnetic compass. Finally, we review the current evidence supporting a role for radical pair reactions in the magnetic compass of birds.

  3. Newts: sun-compass orientation.

    PubMed

    Landreth, H F; Ferguson, D E

    1967-12-15

    Rough-skinned newts, captured from breeding ponds, oriented on courses that would have intersected the familiar shorelines at right angles, when released in a circular arena on land under the sun or moon. Pondward migrants oriented similarly. Reorientation failed under complete cloud cover and after 7 days of darkness in an environmental chamber, but persisted in newts whose eyes were excised and in those displaced more than 27 kilometers in darkness. Both normal and blind animals compensated for displacement in sunshine. Preliminary evidence suggests that alternative light receptors in blinded animals may be associated with the optic tectum. No evidence of olfactory guidance was observed. PMID:6058684

  4. Light-dependent magnetic compass in Iberian green frog tadpoles

    NASA Astrophysics Data System (ADS)

    Diego-Rasilla, Francisco Javier; Luengo, Rosa Milagros; Phillips, John B.

    2010-12-01

    Here, we provide evidence for a wavelength-dependent effect of light on magnetic compass orientation in Pelophylax perezi (order Anura), similar to that observed in Rana catesbeiana (order Anura) and Notophthalmus viridescens (order Urodela), and confirm for the first time in an anuran amphibian that a 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500 nm) is due to a direct effect of light on the underlying magnetoreception mechanism. Although magnetic compass orientation in other animals (e.g., birds and some insects) has been shown to be influenced by the wavelength and/or intensity of light, these two amphibian orders are the only taxa for which there is direct evidence that the magnetic compass is light-dependent. The remarkable similarities in the light-dependent magnetic compasses of anurans and urodeles, which have evolved as separate clades for at least 250 million years, suggest that the light-dependent magnetoreception mechanism is likely to have evolved in the common ancestor of the Lissamphibia (Early Permian, ~294 million years) and, possibly, much earlier. Also, we discuss a number of similarities between the functional properties of the light-dependent magnetic compass in amphibians and blue light-dependent responses to magnetic stimuli in Drosophila melanogaster, which suggest that the wavelength-dependent 90° shift in amphibians may be due to light activation of different redox forms of a cryptochrome photopigment. Finally, we relate these findings to earlier studies showing that the pineal organ of newts is the site of the light-dependent magnetic compass and recent neurophysiological evidence showing magnetic field sensitivity in the frog frontal organ (an outgrowth of the pineal).

  5. Compass Games: An Introduction to Orienteering Skills

    ERIC Educational Resources Information Center

    Sension-Hall, Debra

    2011-01-01

    Compasses are useful tools for teaching the basics of navigation. Knowing where you are, where you are going, and how to get there are important facets of outdoor recreation. Compass games are a fun way to teach introductory navigation skills, and this article describes how they can be used as innovative, nontraditional activities in physical…

  6. Compass Games: An Introduction to Orienteering Skills

    ERIC Educational Resources Information Center

    Sension-Hall, Debra

    2011-01-01

    Compasses are useful tools for teaching the basics of navigation. Knowing where you are, where you are going, and how to get there are important facets of outdoor recreation. Compass games are a fun way to teach introductory navigation skills, and this article describes how they can be used as innovative, nontraditional activities in physical

  7. Exploring Magnetic Fields with a Compass

    NASA Astrophysics Data System (ADS)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this paper, we present a series of simple activities adapted from the Matter & Interactions textbook for doing just this. Interestingly, these simple measurements are comparable to predictions made by the Bohr model of the atom. Although antiquated, Bohr's atom can lead the way to a deeper analysis of the atomic properties of magnets. Although originally developed for an introductory calculus-based course, these activities can easily be adapted for use in an algebra-based class or even at the high school level.

  8. 46 CFR 167.40-45 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Magnetic compass and gyrocompass. 167.40-45 Section 167... NAUTICAL SCHOOL SHIPS Certain Equipment Requirements § 167.40-45 Magnetic compass and gyrocompass. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b)...

  9. 46 CFR 167.40-45 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Magnetic compass and gyrocompass. 167.40-45 Section 167... NAUTICAL SCHOOL SHIPS Certain Equipment Requirements § 167.40-45 Magnetic compass and gyrocompass. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b)...

  10. 46 CFR 167.40-45 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Magnetic compass and gyrocompass. 167.40-45 Section 167... NAUTICAL SCHOOL SHIPS Certain Equipment Requirements § 167.40-45 Magnetic compass and gyrocompass. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b)...

  11. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Magnetic compass and gyrocompass. 108.715 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of...

  12. 46 CFR 167.40-45 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Magnetic compass and gyrocompass. 167.40-45 Section 167... NAUTICAL SCHOOL SHIPS Certain Equipment Requirements § 167.40-45 Magnetic compass and gyrocompass. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b)...

  13. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Magnetic compass and gyrocompass. 108.715 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of...

  14. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Magnetic compass and gyrocompass. 108.715 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of...

  15. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Magnetic compass and gyrocompass. 108.715 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of...

  16. 46 CFR 108.715 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Magnetic compass and gyrocompass. 108.715 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.715 Magnetic compass and gyrocompass. (a) Each self-propelled unit in ocean or coastwise service must have a magnetic compass. (b) Each self-propelled unit of...

  17. 46 CFR 167.40-45 - Magnetic compass and gyrocompass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Magnetic compass and gyrocompass. 167.40-45 Section 167... NAUTICAL SCHOOL SHIPS Certain Equipment Requirements § 167.40-45 Magnetic compass and gyrocompass. (a) All mechanically propelled vessels in ocean or coastwise service must be fitted with a magnetic compass. (b)...

  18. Do leaf-cutter ants Atta colombica orient their path-integrated, home vector with a magnetic compass?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-cutter ants Atta colombica forage over 250 m in structurally-complex, Neotropical rainforests that occlude sun or polarized light cues. Night foraging makes the use of celestial cues and landmarks all the more difficult. We investigated the directional cues used by leaf-cutter ants to orient h...

  19. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  20. Backup compass mechanisms in pigeon orientation with the sun in the zenith.

    PubMed

    Ranvaud, R D; Gasparotto, O C; Britto, L R

    1996-10-01

    The sun is known to guide homing pigeons as a priority cue. The literature indicates that under total overcast conditions pigeons rely on a backup mechanism akin to the magnetic inclination compass for which there is much laboratory evidence in migratory birds. Total overcast conditions are not favorable for orientation research in the State of So Paulo, Brazil. The orientation of homing pigeons raised near the tropic of Capricorn was therefore observed around the time of the December solstice, when the sun culminated directly overhead, with a consequent interruption of the sun compass for a short time every day. In these experiments, carried out between 1981 and 1993, local geomagnetic field inclination was -25 degrees to -29 degrees 30', so that a functioning magnetic inclination compass should have been available to the birds. Whereas the birds released with sun to zenith angles between 10 degrees and 30 degrees were well oriented, both in the morning (99 vanishing bearings) and in the afternoon (143 vanishing bearings), those released with the sun less than 5 degrees away from the zenith showed random orientation (105 vanishing bearings), with no evidence of an alternative magnetic compass mechanism. PMID:9181107

  1. Chinese tombs oriented by a compass: evidence from paleomagnetic declination changes versus tombs age

    NASA Astrophysics Data System (ADS)

    Charvatova, Ivanka; Klokocnik, Jaroslav; Kolmas, Josef; Kostelecky, Jan

    2010-05-01

    The use of the magnetic compass in China is documented at least since the Han dynasty (206 BC-220 AD), but may be older. Geomancy (fengshui) practicised for a long time had a profound influence on the face of China's landscape and city plans. The tombs (pyramids) near Xian (together with suburban fields and roads) have strange space orientations, sometimes in the basic south-north direction (with respect to the geographic pole), but ussually with deviations of several degrees to east or west. The use of the compass means that the needle is directed to the actual magnetic pole at the time of construction or last reconstruction of the given tomb. The magnetic pole however, relative to the 'fixed' geographic pole, wanders significantly in time. We successfully correlated (found a close trends), by using paleomagnetic data (for the central China and the time interval of interest), the starting date of pyramids building with respect to the magnetic pole position at that time. As in Mesoamerica, where according to Fuson hypothesis, the Olmecs and Maya oriented their ceremonial buildings and pyramids by compass even before the Chinese, here in central China the same technique may have been used. The agreeement of building alignments with likely magnetic pole positions at the time is fairly good. There are several written records that the knowledge of the various ancient types of compass in China is older than from the Han period but paleomagnetic declinations for China are generally so far not too precise.

  2. Value Orientation of Singapore Adolescents Towards Truthfulness, Justice and Compassion.

    ERIC Educational Resources Information Center

    Seng, SeokHoon; Siang, Low Meow; Wei, Tan Tai

    This study examined the value orientation of Singapore adolescents toward the three fundamental values of truthfulness, justice, and compassion. A random sample of 315 secondary school students from 4 schools in Singapore (135 males and 180 females) completed a questionnaire, and a select sample of 19 students completed interviews about their…

  3. Monarch butterflies (Danaus plexippus L.) use a magnetic compass for navigation

    PubMed Central

    Etheredge, Jason A.; Perez, Sandra M.; Taylor, Orley R.; Jander, Rudolf

    1999-01-01

    Fall migratory monarch butterflies, tested for their directional responses to magnetic cues under three conditions, amagnetic, normal, and reversed magnetic fields, showed three distinct patterns. In the absence of a magnetic field, monarchs lacked directionality as a group. In the normal magnetic field, monarchs oriented to the southwest with a group pattern typical for migrants. When the horizontal component of the magnetic field was reversed, the butterflies oriented to the northeast. In contrast, nonmigratory monarchs lacked directionality in the normal magnetic field. The results are a direct demonstration of magnetic compass orientation in migratory insects. PMID:10570160

  4. Re-calibration of the magnetic compass in hand-raised European robins (Erithacus rubecula)

    PubMed Central

    Alert, Bianca; Michalik, Andreas; Thiele, Nadine; Bottesch, Michael; Mouritsen, Henrik

    2015-01-01

    Migratory birds can use a variety of environmental cues for orientation. A primary calibration between the celestial and magnetic compasses seems to be fundamental prior to a bird’s first autumn migration. Releasing hand-raised or rescued young birds back into the wild might therefore be a problem because they might not have established a functional orientation system during their first calendar year. Here, we test whether hand-raised European robins that did not develop any functional compass before or during their first autumn migration could relearn to orient if they were exposed to natural celestial cues during the subsequent winter and spring. When tested in the geomagnetic field without access to celestial cues, these birds could orient in their species-specific spring migratory direction. In contrast, control birds that were deprived of any natural celestial cues throughout remained unable to orient. Our experiments suggest that European robins are still capable of establishing a functional orientation system after their first autumn. Although the external reference remains speculative, most likely, natural celestial cues enabled our birds to calibrate their magnetic compass. Our data suggest that avian compass systems are more flexible than previously believed and have implications for the release of hand-reared migratory birds. PMID:26388258

  5. Compassion.

    PubMed

    Saunders, John

    2015-04-01

    The term 'compassion' has been much used and little discussed. I argue that compassion is a virtue in the Aristotelian sense, one of a family of other-regarding properties and belongs to the affective qualities of a moral agent. Its exercise is an essential component of good medical care in many situations and requires grounding in moral principles. Although our dispositions vary, compassion is a quality that can be developed in all of us. PMID:25824061

  6. 20. View of magnetic compass; "bigeyes," used for surveying ships ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of magnetic compass; "bigeyes," used for surveying ships and shore; and signal lights (covered). - U.S. Coast Guard Cutter BRAMBLE, Waterfront at Lincoln Avenue, Port Huron, St. Clair County, MI

  7. Sun-Compass Orientation in Mediterranean Fish Larvae

    PubMed Central

    Faillettaz, Robin; Blandin, Agathe; Paris, Claire B.; Koubbi, Philippe; Irisson, Jean-Olivier

    2015-01-01

    Mortality is very high during the pelagic larval phase of fishes but the factors that determine recruitment success remain unclear and hard to predict. Because of their bipartite life history, larvae of coastal species have to head back to the shore at the end of their pelagic episode, to settle. These settlement-stage larvae are known to display strong sensory and motile abilities, but most work has been focused on tropical, insular environments and on the influence of coast-related cues on orientation. In this study we quantified the in situ orientation behavior of settlement-stage larvae in a temperate region, with a continuous coast and a dominant along-shore current, and inspected both coast-dependent and independent cues. We tested six species: one Pomacentridae, Chromis chromis, and five Sparidae, Boops boops, Diplodus annularis, Oblada melanura, Spicara smaris and Spondyliosoma cantharus. Over 85% of larvae were highly capable of keeping a bearing, which is comparable to the orientation abilities of tropical species. Sun-related cues influenced the precision of bearing-keeping at individual level. Three species, out of the four tested in sufficient numbers, oriented significantly relative to the sun position. These are the first in situ observations demonstrating the use of a sun compass for orientation by wild-caught settlement-stage larvae. This mechanism has potential for large-scale orientation of fish larvae globally. PMID:26308915

  8. Sun-Compass Orientation in Mediterranean Fish Larvae.

    PubMed

    Faillettaz, Robin; Blandin, Agathe; Paris, Claire B; Koubbi, Philippe; Irisson, Jean-Olivier

    2015-01-01

    Mortality is very high during the pelagic larval phase of fishes but the factors that determine recruitment success remain unclear and hard to predict. Because of their bipartite life history, larvae of coastal species have to head back to the shore at the end of their pelagic episode, to settle. These settlement-stage larvae are known to display strong sensory and motile abilities, but most work has been focused on tropical, insular environments and on the influence of coast-related cues on orientation. In this study we quantified the in situ orientation behavior of settlement-stage larvae in a temperate region, with a continuous coast and a dominant along-shore current, and inspected both coast-dependent and independent cues. We tested six species: one Pomacentridae, Chromis chromis, and five Sparidae, Boops boops, Diplodus annularis, Oblada melanura, Spicara smaris and Spondyliosoma cantharus. Over 85% of larvae were highly capable of keeping a bearing, which is comparable to the orientation abilities of tropical species. Sun-related cues influenced the precision of bearing-keeping at individual level. Three species, out of the four tested in sufficient numbers, oriented significantly relative to the sun position. These are the first in situ observations demonstrating the use of a sun compass for orientation by wild-caught settlement-stage larvae. This mechanism has potential for large-scale orientation of fish larvae globally. PMID:26308915

  9. Night-Migratory Songbirds Possess a Magnetic Compass in Both Eyes

    PubMed Central

    Lefeldt, Nele; Prior, Helmut; Mouritsen, Henrik

    2012-01-01

    Previous studies on European robins, Erithacus rubecula, and Australian silvereyes, Zosterops lateralis, had suggested that magnetic compass information is being processed only in the right eye and left brain hemisphere of migratory birds. However, recently it was demonstrated that both garden warblers, Sylvia borin, and European robins have a magnetic compass in both eyes. These results raise the question if the strong lateralization effect observed in earlier experiments might have arisen from artifacts or from differences in experimental conditions rather than reflecting a true all-or-none lateralization of the magnetic compass in European robins. Here we show that (1) European robins having only their left eye open can orient in their seasonally appropriate direction both during autumn and spring, i.e. there are no strong lateralization differences between the outward journey and the way home, that (2) their directional choices are based on the standard inclination compass as they are turned 180° when the inclination is reversed, and that (3) the capability to use the magnetic compass does not depend on monocular learning or intraocular transfer as it is already present in the first tests of the birds with only one eye open. PMID:22984416

  10. Resonance effects indicate radical pair mechanism for avian magnetic compass

    NASA Astrophysics Data System (ADS)

    Ritz, Thorsten

    2005-03-01

    Migratory birds possess a physiological magnetic compass that helps them to find north during their migratory flights, but the mechanism underlying this ability is not understood. In vitro experiments show that two types of mechanisms are in principle capable of detecting earth-strength magnetic fields in biological systems: the use of biological magnetic materials such as magnetite crystals, or magnetically sensitive chemical reactions. We have recently demonstrated that oscillating magnetic fields can provide a viable diagnostic test to identify the existence of a radical-pair mechanism as they will not affect the properties of magnetite-based sensors, but disrupt a radical-pair based mechanism through resonance effects. European robins, a species of migratory birds, were disoriented in a magnetic orientation test when a very weak (100 nT) oscillating field of 1.3 or 7 MHz was added to the geomagnetic field. Moreover, the effect of the oscillating field depended on the alignment of oscillating field with the geomagnetic field and showed an intensity dependence consistent with theoretical expectations from the radical pair mechanism, thereby providing evidence for the existence of a radical-pair mechanism in birds. We will discuss future avenues of research towards identifying not only the mechanism, but also the chemical nature of the receptors underlying magnetoreception, and in particular the photoreceptor chryptochrome, an emerging candidate for the long sought after magnetoreceptor.

  11. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Magnetic Compass and Gyrocompass-T/OC. 32.15-35 Section..., MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-35 Magnetic Compass and Gyrocompass—T/OC. (a) All tankships in ocean or coastwise service must be fitted with a magnetic compass. (b) All...

  12. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Magnetic Compass and Gyrocompass-T/OC. 32.15-35 Section..., MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-35 Magnetic Compass and Gyrocompass—T/OC. (a) All tankships in ocean or coastwise service must be fitted with a magnetic compass. (b) All...

  13. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Magnetic Compass and Gyrocompass-T/OC. 32.15-35 Section..., MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-35 Magnetic Compass and Gyrocompass—T/OC. (a) All tankships in ocean or coastwise service must be fitted with a magnetic compass. (b) All...

  14. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Magnetic Compass and Gyrocompass-T/OC. 32.15-35 Section..., MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-35 Magnetic Compass and Gyrocompass—T/OC. (a) All tankships in ocean or coastwise service must be fitted with a magnetic compass. (b) All...

  15. 46 CFR 32.15-35 - Magnetic Compass and Gyrocompass-T/OC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Magnetic Compass and Gyrocompass-T/OC. 32.15-35 Section..., MACHINERY, AND HULL REQUIREMENTS Navigation Equipment § 32.15-35 Magnetic Compass and Gyrocompass—T/OC. (a) All tankships in ocean or coastwise service must be fitted with a magnetic compass. (b) All...

  16. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies#

    PubMed Central

    Merlin, Christine; Gegear, Robert J.

    2009-01-01

    During their fall migration, Eastern North American monarch butterflies (Danaus plexippus) use a time-compensated sun compass to aid navigation to their overwintering grounds in central Mexico. It has been assumed that the circadian clock that provides time compensation resides in the brain, although this assumption has never been examined directly. Here we show that the antennae are necessary for proper time-compensated sun compass orientation in migratory monarch butterflies, that antennal clocks exist in monarchs, and that they likely provide the primary timing mechanism for sun compass orientation. These unexpected findings pose a novel function for the antennae and open a new line of investigation into clock-compass connections that may extend widely to other insects that use this orientation mechanism. PMID:19779201

  17. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies.

    PubMed

    Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2009-09-25

    During their fall migration, Eastern North American monarch butterflies (Danaus plexippus) use a time-compensated Sun compass to aid navigation to their overwintering grounds in central Mexico. It has been assumed that the circadian clock that provides time compensation resides in the brain, although this assumption has never been examined directly. Here, we show that the antennae are necessary for proper time-compensated Sun compass orientation in migratory monarch butterflies, that antennal clocks exist in monarchs, and that they likely provide the primary timing mechanism for Sun compass orientation. These unexpected findings pose a novel function for the antennae and open a new line of investigation into clock-compass connections that may extend widely to other insects that use this orientation mechanism. PMID:19779201

  18. Interacting Compasses

    ERIC Educational Resources Information Center

    Riveros, Hector G.; Betancourt, Julian

    2009-01-01

    The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur

  19. Interacting Compasses

    ERIC Educational Resources Information Center

    Riveros, Hector G.; Betancourt, Julian

    2009-01-01

    The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur…

  20. A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun

    PubMed Central

    Holland, Richard A.; Borissov, Ivailo; Siemers, Björn M.

    2010-01-01

    Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa. PMID:20351296

  1. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass

    NASA Astrophysics Data System (ADS)

    Mller, Andrea; Sagasser, Sven; Wiltschko, Wolfgang; Schierwater, Bernd

    2004-12-01

    The currently discussed model of magnetoreception in birds proposes that the direction of the magnetic field is perceived by radical-pair processes in specialized photoreceptors, with cryptochromes suggested as potential candidate molecules mediating magnetic compass information. Behavioral studies have shown that magnetic compass orientation takes place in the eye and requires light from the blue-green part of the spectrum. Cryptochromes are known to absorb in the same spectral range. Because of this we searched for cryptochrome (CRY) in the retina of European robins, Erithacus rubecula, passerine birds that migrate at night. Here, we report three individually expressed cryptochromes, eCRY1a, eCRY1b, and eCRY2. While eCRY1a and eCRY2 are similar to the cryptochromes found in the retina of the domestic chicken, eCRY1b has a unique carboxy (C)-terminal. In light of the radical-pair model, our findings support a potential role of cryptochromes as transducers for the perception of magnetic compass information in birds.

  2. The quantum needle of the avian magnetic compass.

    PubMed

    Hiscock, Hamish G; Worster, Susannah; Kattnig, Daniel R; Steers, Charlotte; Jin, Ye; Manolopoulos, David E; Mouritsen, Henrik; Hore, P J

    2016-04-26

    Migratory birds have a light-dependent magnetic compass, the mechanism of which is thought to involve radical pairs formed photochemically in cryptochrome proteins in the retina. Theoretical descriptions of this compass have thus far been unable to account for the high precision with which birds are able to detect the direction of the Earth's magnetic field. Here we use coherent spin dynamics simulations to explore the behavior of realistic models of cryptochrome-based radical pairs. We show that when the spin coherence persists for longer than a few microseconds, the output of the sensor contains a sharp feature, referred to as a spike. The spike arises from avoided crossings of the quantum mechanical spin energy-levels of radicals formed in cryptochromes. Such a feature could deliver a heading precision sufficient to explain the navigational behavior of migratory birds in the wild. Our results (i) afford new insights into radical pair magnetoreception, (ii) suggest ways in which the performance of the compass could have been optimized by evolution, (iii) may provide the beginnings of an explanation for the magnetic disorientation of migratory birds exposed to anthropogenic electromagnetic noise, and (iv) suggest that radical pair magnetoreception may be more of a quantum biology phenomenon than previously realized. PMID:27044102

  3. Fuzzy calibration of a magnetic compass for vehicular applications

    NASA Astrophysics Data System (ADS)

    Keighobadi, Jafar

    2011-08-01

    In a strapdown compass on a vehicle, three-axis magnetometers measure the Earth's magnetic field vector along the body axes of the vehicle to determine its heading angle. Owing to the local magnetic effects, the measurements frequently deviate from the geomagnetic field vector coordinated in the body frame. Therefore, online calibration of the compass should be considered to satisfy the requirements of the vehicle navigation system. In this paper, a new intelligent method is developed to implement online calibration of the compass system. First, a regression model is proposed to increase the convergence probability of the calibration process using the attitude angles in the measurement equations. Second, based on the knowledge of expert engineers, a Mamdani type fuzzy batch least-square (FBLS) algorithm is designed to estimate the calibration bias and scaling parameters. Generalized likelihood ratio (GLR) and the changes of estimated parameters are considered as the main information of the fuzzy system in which the length of data batch and the associated weighting factor are updated continuously. The results of simulations and experiments reveal the superiority of the proposed approach to the non-fuzzy methods.

  4. Sky Compass Orientation in Desert Locusts—Evidence from Field and Laboratory Studies

    PubMed Central

    Homberg, Uwe

    2015-01-01

    Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults are largely downwind following seasonal shifts of the tropical convergence zone taking the animals to areas of rainfall. Only a few studies provided evidence for active orientation mechanisms, including the involvement of a sun compass. This scarcity of evidence stands in contrast to recent neurobiological data showing sophisticated neuronal adaptations suited for sky compass navigation. These include a special dorsal eye region with photoreceptors suited to analyze the polarization pattern of the sky and a system of topographically arranged sky compass neurons in the central complex of the brain. Laboratory experiments, moreover, demonstrated polarotaxis in tethered flying animals. The discrepancy of these findings call for more rigorous field studies on active orientation mechanisms in locusts. It remains to be shown how locusts use their internal sky compass during mass migrations and what role it plays to guide solitarious locusts in their natural habitat. PMID:26733834

  5. Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass.

    PubMed

    Efimova, Olga; Hore, P J

    2008-03-01

    It is not yet understood how migratory birds sense the Earth's magnetic field as a source of compass information. One suggestion is that the magnetoreceptor involves a photochemical reaction whose product yields are sensitive to external magnetic fields. Specifically, a flavin-tryptophan radical pair is supposedly formed by photoinduced sequential electron transfer along a chain of three tryptophan residues in a cryptochrome flavoprotein immobilized in the retina. The electron Zeeman interaction with the Earth's magnetic field ( approximately 50 microT), modulated by anisotropic magnetic interactions within the radicals, causes the product yields to depend on the orientation of the receptor. According to well-established theory, the radicals would need to be separated by >3.5 nm in order that interradical spin-spin interactions are weak enough to permit a approximately 50 microT field to have a significant effect. Using quantum mechanical simulations, it is shown here that substantial changes in product yields can nevertheless be expected at the much smaller separation of 2.0 +/- 0.2 nm where the effects of exchange and dipolar interactions partially cancel. The terminal flavin-tryptophan radical pair in cryptochrome has a separation of approximately 1.9 nm and is thus ideally placed to act as a magnetoreceptor for the compass mechanism. PMID:17981903

  6. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation.

    PubMed

    Reppert, S M

    2007-01-01

    The circadian clock has a vital role in monarch butterfly (Danaus plexippus) migration by providing the timing component of time-compensated sun compass orientation, which contributes to navigation to the overwintering grounds. The location of circadian clock cells in monarch brain has been identified in the dorsolateral protocerebrum (pars lateralis); these cells express PERIOD, TIMELESS, and a Drosophila-like cryptochrome designated CRY1. Monarch butterflies, like all other nondrosophilid insects examined so far, express a second cry gene (designated insect CRY2) that encodes a vertebrate-like CRY that is also expressed in pars lateralis. An ancestral circadian clock mechanism has been defined in monarchs, in which CRY1 functions as a blue light photoreceptor for photic entrainment, whereas CRY2 functionswithin the clockwork as themajor transcriptional repressor of an intracellular negative transcriptional feedback loop. A CRY1-staining neural pathway has been identified that may connect the circadian (navigational) clock to polarized light input important for sun compass navigation, and a CRY2-positive neural pathway has been discovered that may communicate circadian information directly from the circadian clock to the central complex, the likely site of the sun compass. The monarch butterfly may thus use the CRY proteins as components of the circadian mechanism and also as output molecules that connect the clock to various aspects of the sun compass apparatus. PMID:18419268

  7. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  8. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  9. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.

    PubMed

    Phillips, John B; Youmans, Paul W; Muheim, Rachel; Sloan, Kelly A; Landler, Lukas; Painter, Michael S; Anderson, Christopher R

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673

  10. Sun Compass Orientation Helps Coral Reef Fish Larvae Return to Their Natal Reef.

    PubMed

    Mouritsen, Henrik; Atema, Jelle; Kingsford, Michael J; Gerlach, Gabriele

    2013-01-01

    Reef fish sustain populations on isolated reefs and show genetic diversity between nearby reefs even though larvae of many species are swept away from the natal site during pelagic dispersal. Retention or recruitment to natal reefs requires orientation capabilities that enable larvae to find their way. Although olfactory and acoustically based orientation has been implicated in homing when larvae are in the reef's vicinity, it is still unclear how they cope with greater distances. Here we show evidence for a sun compass mechanism that can bring the larvae to the vicinity of their natal reef. In a circular arena, pre-settlement larvae and early settlers (<24 hours) of the cardinal fish, Ostorhinchus doederleini, showed a strong SSE directional swimming response, which most likely has evolved to compensate for the locally prevailing large scale NNW current drift. When fish were clock-shifted 6 hours, they changed their orientation by ca. 180° as predicted by the tropical sun curve at One Tree Island, i.e. they used a time-compensated sun compass. Furthermore, the fish oriented most consistently at times of the day when the sun azimuth is easy to determine. Microsatellite markers showed that the larvae that had just arrived at One Tree Island genetically belonged to either the local reef population or to Fitzroy Reef located 12 kilometers to the SSE. The use of a sun compass adds a missing long-distance link to the hierarchy of other sensory abilities that can direct larvae to the region of origin, including their natal reef. Predominant local recruitment, in turn, can contribute to genetic isolation and potential speciation. PMID:23840396

  11. Sun Compass Orientation Helps Coral Reef Fish Larvae Return to Their Natal Reef

    PubMed Central

    Mouritsen, Henrik; Atema, Jelle; Kingsford, Michael J.; Gerlach, Gabriele

    2013-01-01

    Reef fish sustain populations on isolated reefs and show genetic diversity between nearby reefs even though larvae of many species are swept away from the natal site during pelagic dispersal. Retention or recruitment to natal reefs requires orientation capabilities that enable larvae to find their way. Although olfactory and acoustically based orientation has been implicated in homing when larvae are in the reefs vicinity, it is still unclear how they cope with greater distances. Here we show evidence for a sun compass mechanism that can bring the larvae to the vicinity of their natal reef. In a circular arena, pre-settlement larvae and early settlers (<24 hours) of the cardinal fish, Ostorhinchus doederleini, showed a strong SSE directional swimming response, which most likely has evolved to compensate for the locally prevailing large scale NNW current drift. When fish were clock-shifted 6 hours, they changed their orientation by ca. 180 as predicted by the tropical sun curve at One Tree Island, i.e. they used a time-compensated sun compass. Furthermore, the fish oriented most consistently at times of the day when the sun azimuth is easy to determine. Microsatellite markers showed that the larvae that had just arrived at One Tree Island genetically belonged to either the local reef population or to Fitzroy Reef located 12 kilometers to the SSE. The use of a sun compass adds a missing long-distance link to the hierarchy of other sensory abilities that can direct larvae to the region of origin, including their natal reef. Predominant local recruitment, in turn, can contribute to genetic isolation and potential speciation. PMID:23840396

  12. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies

    PubMed Central

    Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565

  13. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies.

    PubMed

    Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2012-01-01

    To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565

  14. Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions.

    PubMed

    Bernáth, Balázs; Blahó, Miklós; Egri, Adám; Barta, András; Kriska, György; Horváth, Gábor

    2013-09-01

    It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible. PMID:24085076

  15. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field.

    PubMed

    Kavokin, Kirill; Chernetsov, Nikita; Pakhomov, Alexander; Bojarinova, Julia; Kobylkov, Dmitry; Namozov, Barot

    2014-08-01

    We report on the experiments on orientation of a migratory songbird, the garden warbler (Sylvia borin), during the autumn migration period on the Courish Spit, Eastern Baltics. Birds in experimental cages, deprived of visual information, showed the seasonally appropriate direction of intended flight with respect to the magnetic meridian. Weak radiofrequency (RF) magnetic field (190 nT at 1.4 MHz) disrupted this orientation ability. These results may be considered as an independent replication of earlier experiments, performed by the group of R. and W. Wiltschko with European robins (Erithacus rubecula). Confirmed outstanding sensitivity of the birds' magnetic compass to RF fields in the lower megahertz range demands for a revision of one of the mainstream theories of magnetoreception, the radical-pair model of birds' magnetic compass. PMID:24942848

  16. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field

    PubMed Central

    Kavokin, Kirill; Chernetsov, Nikita; Pakhomov, Alexander; Bojarinova, Julia; Kobylkov, Dmitry; Namozov, Barot

    2014-01-01

    We report on the experiments on orientation of a migratory songbird, the garden warbler (Sylvia borin), during the autumn migration period on the Courish Spit, Eastern Baltics. Birds in experimental cages, deprived of visual information, showed the seasonally appropriate direction of intended flight with respect to the magnetic meridian. Weak radiofrequency (RF) magnetic field (190 nT at 1.4 MHz) disrupted this orientation ability. These results may be considered as an independent replication of earlier experiments, performed by the group of R. and W. Wiltschko with European robins (Erithacus rubecula). Confirmed outstanding sensitivity of the birds' magnetic compass to RF fields in the lower megahertz range demands for a revision of one of the mainstream theories of magnetoreception, the radical-pair model of birds' magnetic compass. PMID:24942848

  17. Freely oriented portable superconducting magnet

    SciTech Connect

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  18. Quantum Probe and Design for a Chemical Compass with Magnetic Nanostructures

    NASA Astrophysics Data System (ADS)

    Cai, Jianming

    2011-03-01

    Magnetic fields as weak as Earth’s may affect the outcome of certain photochemical reactions that go through a radical pair intermediate. When the reaction environment is anisotropic, this phenomenon can form the basis of a chemical compass and has been proposed as a mechanism for animal magnetoreception. Here, we demonstrate how to optimize the design of a chemical compass with a much better directional sensitivity simply by a gradient field, e.g., from a magnetic nanostructure. We propose an experimental test of these predictions, and suggest design principles for a hybrid metallic-organic chemical compass. In addition to the practical interest in designing a biomimetic weak magnetic field sensor, our result shows that gradient fields can serve as powerful tools to probe spin correlations in radical pair reactions.

  19. Celestial orientation with the sun not in view: lizards use a time-compensated sky polarization compass.

    PubMed

    Maoret, Francesco; Beltrami, Giulia; Bertolucci, Cristiano; Foà, Augusto

    2014-04-01

    The present investigation was aimed at testing whether the lizard sky polarization compass is time compensated. For this purpose, ruin lizards, Podarcis sicula, were both trained and tested for orientation inside a Morris water maze under clear skies with the sun not in view. During training, lizards showed a striking bimodal orientation along the training axis, demonstrating their capability of determining the symmetry plane of the sky polarization pattern and thus the use of polarization information in orientation. After reaching criteria, lizards were kept 7 days in a 6-h fast clock-shift treatment and then released with the sun not in view. Six-hour clock-shifted lizards showed a bimodal distribution of directional choices, which was oriented perpendicularly to the training axis, as it was expected on the basis of the clock-shift. The results show that the only celestial diurnal compass mechanism that does not need a direct vision of the sun disk (i.e., the sky polarization compass) is a time-compensated compass. PMID:24682208

  20. Magnetic compasses in biological systems: Does quantum physics play a role?

    NASA Astrophysics Data System (ADS)

    Ritz, Thorsten

    2011-03-01

    One hypothesis of the process underlying the magnetic compass of animals surmises that the magnetic field is perceived by its effect on the coherent spin evolution within a non-equilibrium photochemical radical pair reaction. If this hypothesis were proven, it would be a dramatic demonstration of a quantum process with clear biological significance. We will review the physics of the radical pair mechanism and the current state of evidence supporting it. Experimentally, we will focus on the use radio-frequency magnetic fields to affect a radical-pair based mechanism in birds and discuss the approach and its limitations. Theoretically, we will focus on the question of how one should design a radical pair to be optimally sensitive to the direction of a weak magnetic field. Regardless of whether or not a radical pair mechanism is indeed used by birds or other animals, optimal design features could be used to manufacture biologically inspired, but man-made magnetic compass systems.

  1. Orientation and Magnitude of Mars' Magnetic Field

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).

    The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).

  2. Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed ‘Plus’ Water Maze

    PubMed Central

    Phillips, John B.; Youmans, Paul W.; Muheim, Rachel; Sloan, Kelly A.; Landler, Lukas; Painter, Michael S.; Anderson, Christopher R.

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673

  3. Simultaneous poloidal measurements using new magnetically driven reciprocating probes in COMPASS

    NASA Astrophysics Data System (ADS)

    Dejarnac, R.; Gunn, J. P.; Dimitrova, M.; Hron, M.; Panek, R.; Pascal, J.-Y.; Saragosti-Chausy, C.; Tamain, P.; the COMPASS team

    2016-03-01

    Particles and heat transport in the scrape-off layer (SOL) of tokamaks is not yet fully understood. COMPASS is a small-size tokamakp where the edge plasma is well diagnosed in view of studying the competition between the parallel and the cross-field transport in the SOL. In order to better characterize SOL dynamics, in particular the poloidal asymmetry of the main parameters' radial profiles, two new in-situ magnetically driven reciprocating manipulators have been recently installed in COMPASS. These manipulators, the so-called pecker probes, are two additional poloidal measurement points to the existing two (vertical and horizontal) reciprocating manipulators. The pecker probes are located at the low field side of COMPASS at ±47.5o with respect to the outer mid-plane and are equipped with identical tunnel probe heads, providing simultaneous measurements of the ion saturation current density Jsat, the electron temperature Te and the parallel Mach number M// with high temporal resolution. In this paper, a detailed description of the pecker probe system in COMPASS is described and first measurements are presented.

  4. Freely Oriented, Portable Superconducting Magnet

    NASA Astrophysics Data System (ADS)

    Schmierer, E. N.; Charles, B.; Efferson, R.; Hill, D.; Jankowski, T.; Laughon, G.; Prenger, C.

    2008-03-01

    A high-field low-temperature superconducting solenoidal magnet was developed that is portable and can be operated in any orientation relative to gravity. The design consists of several features that make this feasible; 1) bulk liquid cryogen storage occurs in a separate Dewar rather than as part of the magnet assembly, which allows single-person transport due to each component of the system having low relative weight, 2) vapor generated pressurization that circulates cryogenic fluid to and from the magnet with flexible transfer lines allowing operation in any orientation, and 3) composite, low-conducting structural members are used to suspend the magnet and shield layers within the vacuum vessel that provide a robust low heat loss design. Cooling is provided to the magnet through fluid channels that are in thermal contact with the magnet. The overall design of this magnet system, some of the analyses performed that address unique behavior of this system (pressure rise during a magnet quench and transient cooldown), and test results are presented.

  5. Directional orientation of birds by the magnetic field under different light conditions

    PubMed Central

    Wiltschko, Roswitha; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2010-01-01

    This paper reviews the directional orientation of birds with the help of the geomagnetic field under various light conditions. Two fundamentally different types of response can be distinguished. (i) Compass orientation controlled by the inclination compass that allows birds to locate courses of different origin. This is restricted to a narrow functional window around the total intensity of the local geomagnetic field and requires light from the short-wavelength part of the spectrum. The compass is based on radical-pair processes in the right eye; magnetite-based receptors in the beak are not involved. Compass orientation is observed under ‘white’ and low-level monochromatic light from ultraviolet (UV) to about 565 nm green light. (ii) ‘Fixed direction’ responses occur under artificial light conditions such as more intense monochromatic light, when 590 nm yellow light is added to short-wavelength light, and in total darkness. The manifestation of these responses depends on the ambient light regime and is ‘fixed’ in the sense of not showing the normal change between spring and autumn; their biological significance is unclear. In contrast to compass orientation, fixed-direction responses are polar magnetic responses and occur within a wide range of magnetic intensities. They are disrupted by local anaesthesia of the upper beak, which indicates that the respective magnetic information is mediated by iron-based receptors located there. The influence of light conditions on the two types of response suggests complex interactions between magnetoreceptors in the right eye, those in the upper beak and the visual system. PMID:19864263

  6. Migration along orthodromic sun compass routes by arctic birds.

    PubMed

    Alerstam, T; Gudmundsson, G A; Green, M; Hedenstrom, A

    2001-01-12

    Flight directions of birds migrating at high geographic and magnetic latitudes can be used to test bird orientation by celestial or geomagnetic compass systems under polar conditions. Migration patterns of arctic shorebirds, revealed by tracking radar studies during an icebreaker expedition along the Northwest Passage in 1999, support predicted sun compass trajectories but cannot be reconciled with orientation along either geographic or magnetic loxodromes (rhumb lines). Sun compass routes are similar to orthodromes (great circle routes) at high latitudes, showing changing geographic courses as the birds traverse longitudes and their internal clock gets out of phase with local time. These routes bring the shorebirds from high arctic Canada to the east coast of North America, from which they make transoceanic flights to South America. The observations are also consistent with a migration link between Siberia and the Beaufort Sea region by way of sun compass routes across the Arctic Ocean. PMID:11209079

  7. How do honeybees use their magnetic compass? Can they see the North?

    PubMed

    Vlkov, T; Vcha, M

    2012-08-01

    While seeking food sources and routes back to their hive, bees make use of their advanced nervous and sensory capacities, which underlie a diverse behavioral repertoire. One of several honeybee senses that is both exceptional and intriguing is magnetoreception - the ability to perceive the omnipresent magnetic field (MF) of the Earth. The mechanism by which animals sense MFs has remained fascinating as well as elusive because of the intricacies involved, which makes it one of the grand challenges for neural and sensory biology. However, investigations in recent years have brought substantial progress to our understanding of how such magneto-receptor(s) may work. Some terrestrial animals (birds) are reported to be equipped even with a dual perception system: one based on diminutive magnetic particles - in line with the original model which has also always been hypothesized for bees - and the other one, as the more recent model describes, based on a sensitivity of some photochemical reactions to MF (radical-pair or chemical mechanism). The latter model postulates a close link to vision and supposes that the animals can see the position of the geomagnetic North as a visible pattern superimposed on the picture of the environment. In recent years, a growing body of evidence has shown that radical-pair magnetoreception might also be used by insects. It is realistic to expect that such evidence will inspire a re-examination and extension or confirmation of established views on the honeybee magnetic-compass mechanism. However, the problem of bee magnetoreception will not be solved at the moment that a receptor is discovered. On the contrary, the meaning of magnetoreception in insect life and its involvement in the orchestration of other senses is yet to be fully understood. The crucial question to be addressed in the near future is whether the compass abilities of the honeybee could suffer from radio frequency (RF) smog accompanying modern civilization and whether the fitness of this dominant pollinator might be affected by RF fields. The goal of this review is to provide an overview of the path that the behavioral research on honeybee magnetoreception has taken and to discuss it in the context of contemporary data obtained on other insects. PMID:22313997

  8. 28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. MODIFIED CHAIN SAW FOR CUTTING ROCK CORES; BRUNTON COMPASS STAND FOR DETERMINING CORE'S FIELD ORIENTATION; INSECTICIDE DISPENSER MODIFIED TO LUBRICATE CORE DRILLING PROCESS. - U.S. Geological Survey, Rock Magnetics Laboratory, 345 Middlefield Road, Menlo Park, San Mateo County, CA

  9. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.

    PubMed

    Nießner, Christine; Denzau, Susanne; Stapput, Katrin; Ahmad, Margaret; Peichl, Leo; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-11-01

    The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp/FAD radical pair formed during photoreduction is crucial for detecting magnetic directions. PMID:23966619

  10. Trough Compass with Case, 1916

    The storage case has a sliding lid. The compass is marked Troughton & Simms Ltd, London, 1916, No.9214. A trough compass is used with either a plane table or a theodolite. The needle is a long magnetized bar of steel which is pointed at both ends. Object ID: USGS-000824...

  11. Sensitivity and entanglement in the avian chemical compass

    NASA Astrophysics Data System (ADS)

    Zhang, Yiteng; Berman, Gennady P.; Kais, Sabre

    2014-10-01

    The radical pair mechanism can help to explain avian orientation and navigation. Some evidence indicates that the intensity of external magnetic fields plays an important role in avian navigation. In this paper, using a two-stage model, we demonstrate that birds could reasonably detect the directions of geomagnetic fields and gradients of these fields using a yield-based chemical compass that is sensitive enough for navigation. Also, we find that the lifetime of entanglement in this proposed compass is angle dependent and long enough to allow adequate electron transfer between molecules.

  12. Magnetic material arrangement in oriented termites: a magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Alves, O. C.; Wajnberg, E.; de Oliveira, J. F.; Esquivel, D. M. S.

    2004-06-01

    Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite's body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 10 4 erg/cm 3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.

  13. Coupled solar-magnetic orientation during leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) long-distance migration

    NASA Astrophysics Data System (ADS)

    Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.

    2010-12-01

    Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional precision of these humpback whale track segments is far better than the ±25°-40° precision of the avian magnetic compass. The positional and directional orientation data presented suggests signal transduction provides spatial information to migrating animals with better than 1° precision.

  14. A Compass and Clinometer Modified for Structural Analysis

    ERIC Educational Resources Information Center

    Amenta, Roddy V.

    1977-01-01

    Describes the modification of the SUUNTO compass and clinometer precision sighting instruments to make a compact geologic compass useful for measuring orientations of S-surfaces and rake angles of lineations. (SL)

  15. A PURPOSE ORIENTED MAGNETIC SEPARATOR: SKIMMER

    SciTech Connect

    Salih Ersayin

    2005-08-09

    A magnetic separator was designed to selectively separate fine-liberated magnetite. The conceptual design was simulated using CFD techniques. A separator tank was fabricated and a magnetic drum was used to capture magnetic particles. The initial tank design was modified to eliminate application oriented problems. The new separator was able to produce a fine product as a concentrate at relatively high feed rates. A plant simulation showed that such a device could lower circulating loads around ball mills by 16%, thereby creating room for a 5-8% increase in throughput at the same energy level. However, it was concluded that further improvements in terms of both size and mineral selectivity are needed to have a marketable product.

  16. Conceptualizing and experiencing compassion

    PubMed Central

    Condon, Paul; Barrett, Lisa Feldman

    2014-01-01

    Does compassion feel pleasant or unpleasant? People tend to categorize compassion as a pleasant or positive emotion, but laboratory compassion inductions, which present another’s suffering, may elicit unpleasant feelings. Across two studies, we examined whether prototypical conceptualizations of compassion (as pleasant) differ from experiences of compassion (as unpleasant). Following laboratory-based neutral or compassion inductions, participants made abstract judgments about compassion relative to various emotion-related adjectives, thereby providing a prototypical conceptualization of compassion. Participants also rated their own affective states, thereby indicating experiences of compassion. Conceptualizations of compassion were pleasant across neutral and compassion inductions. Following exposure to others’ suffering, however, participants felt increased levels of compassion and unpleasant affect, but not pleasant affect. Following neutral inductions, participants reported more pleasant than unpleasant affect, with moderate levels of compassion. Thus, prototypical conceptualizations of compassion are pleasant, but experiences of compassion can feel pleasant or unpleasant. The implications for emotion theory in general are discussed. PMID:23914766

  17. The orientation and navigation of juvenile alligators: evidence of magnetic sensitivity

    USGS Publications Warehouse

    Rodda, Gordon H.

    1984-01-01

    Displaced juvenile alligators, Alligator mississipiensis, were released on land in a 9 m diameter dodecagonal arena to test their ability to orient in the absence of terrestrial landmarks. Navigational ability seemed to improve with age. When displaced along a fairly direct route yearlings (age 714 months) compensated for their displacement, moving in the direction from the arena to their home sites. When displaced by a circuitous route, yearlings failed to compensate for their displacement, exhibiting instead simple compass orientation in a direction that would have returned them to water had they been released on land near the site where they were captured. The older juveniles were oriented in a homeward direction under all displacement and test conditions. The latter animals may have been using geomagnetic map information to select their homeward directions as the errors in their homeward bearings correlated with small deviations in the geomagnetic field's dip angle at the time of the test (1980r s=?0.6047,P=0.0131, all testsr s= ?0.4652,P=0.0084). This effect appeared to depend on a very short-term assessment of geomagnetic conditions, as values measured 20 min before or 30 min after the tests began did not correlate with the directions the animals moved. The older juveniles appeared to use magnetically quiet hours on the night of their capture as the baseline from which to measure the geomagnetic deviations that occurred at the time of the arena test. The magnitude of the magnetic effect in the older animals suggests that the geomagnetic information may have been used to perform a map step, as small fluctuations in dip angle correlated with much larger deviations in homeward bearings. In addition, the compass-oriented yearlings and the seemingly route-based behavior of the homeward-oriented yearlings did not appear to be influenced by geomagnetic conditions. These findings have many parallels in results obtained from bird orientation studies, providing evidence that navigation may share a common basis in different vertebrate groups.

  18. The sun compass revisited

    PubMed Central

    Guilford, Tim; Taylor, Graham K.

    2014-01-01

    Many animals, and birds in particular, are thought to use directional information from the sun in the form of a time-compensated sun compass, with predictably deviated orientation under clock shift being regarded as the litmus test of this. We suggest that this paradigm obscures a number of other ways in which solar-derived information could be important in animal orientation. We distinguish between the known use of the sun's azimuth to provide absolute geographical direction (compass mechanism) and its possible use to detect changes in heading (heading indicator mechanism). Just as in an aircraft, these two kinds of information may be provided by separate mechanisms and used for different functions, for example for navigation versus steering. We also argue that although a solar compass must be time-referenced to account for the sun's apparent diurnal movement, this need not entail full time compensation. This is because animals might also use time-dependent solar information in an associatively acquired, and hence time-limited, way. Furthermore, we show that a solar heading indicator, when used on a sufficiently short timescale, need not require time compensation at all. Finally, we suggest that solar-derived cues, such as shadows, could also be involved in navigation in ways that depend explicitly upon position, and are therefore not strictly compass-related. This could include giving directionality to landmarks, or acting as time-dependent landmarks involved in place recognition. We conclude that clock shift experiments alone are neither necessary nor sufficient to identify the occurrence of all conceivable uses of solar information in animal orientation, so that a predictable response to clock shift should not be regarded as an acid test of the use of solar information in navigation. PMID:25389374

  19. Compassion: an evolutionary analysis and empirical review.

    PubMed

    Goetz, Jennifer L; Keltner, Dacher; Simon-Thomas, Emiliana

    2010-05-01

    What is compassion? And how did it evolve? In this review, we integrate 3 evolutionary arguments that converge on the hypothesis that compassion evolved as a distinct affective experience whose primary function is to facilitate cooperation and protection of the weak and those who suffer. Our empirical review reveals compassion to have distinct appraisal processes attuned to undeserved suffering; distinct signaling behavior related to caregiving patterns of touch, posture, and vocalization; and a phenomenological experience and physiological response that orients the individual to social approach. This response profile of compassion differs from those of distress, sadness, and love, suggesting that compassion is indeed a distinct emotion. We conclude by considering how compassion shapes moral judgment and action, how it varies across different cultures, and how it may engage specific patterns of neural activation, as well as emerging directions of research. PMID:20438142

  20. Compassion: An Evolutionary Analysis and Empirical Review

    PubMed Central

    Goetz, Jennifer L.; Keltner, Dacher; Simon-Thomas, Emiliana

    2010-01-01

    What is compassion? And how did it evolve? In this review, we integrate three evolutionary arguments that converge on the hypothesis that compassion evolved as a distinct affective experience whose primary function is to facilitate cooperation and protection of the weak and those who suffer. Our empirical review reveals compassion to have distinct appraisal processes attuned to undeserved suffering, distinct signaling behavior related to caregiving patterns of touch, posture, and vocalization, and a phenomenological experience and physiological response that orients the individual to social approach. This response profile of compassion differs from those of distress, sadness, and love, suggesting that compassion is indeed a distinct emotion. We conclude by considering how compassion shapes moral judgment and action, how it varies across different cultures, and how it may engage specific patterns of neural activation, as well as emerging directions of research. PMID:20438142

  1. Remotely readable fiber optic compass

    DOEpatents

    Migliori, A.; Swift, G.W.; Garrett, S.L.

    1985-04-30

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  2. Remotely readable fiber optic compass

    DOEpatents

    Migliori, Albert; Swift, Gregory W.; Garrett, Steven L.

    1986-01-01

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  3. Self-Compassion among College Counseling Center Clients: An Examination of Clinical Norms and Group Differences

    ERIC Educational Resources Information Center

    Lockard, Allison J.; Hayes, Jeffrey A.; Neff, Kristin; Locke, Benjamin D.

    2014-01-01

    There has been growing interest in the mental health benefits of self-compassion. This study was designed to establish norms on the Self-Compassion Scale-Short Form, a popular measure of self-compassion for individuals seeking counseling, and to examine group differences in self-compassion based on gender, race/ethnicity, sexual orientation,…

  4. Computational modeling of magnetically actuated propellant orientation

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.

    1996-01-01

    Unlike terrestrial applications where gravity positions liquid at the 'bottom' of the tank, the location of liquid propellant in spacecraft tanks is uncertain unless specific actions are taken or special features are built into the tank. Some mission events require knowledge of liquid position prior to a particular action: liquid must be positioned over the tank outlet prior to starting the main engines and must be moved away from the tank vent before vapor can be released overboard to reduce pressure. It may also be desirable to positively position liquid to improve propulsion system performance: moving liquid away from the tank walls will dramatically decrease the rate of heat transfer to the propellant, suppressing the boil-off rate, thereby reducing overall mission propellant requirements. The process of moving propellant to a desired position is referred to as propellant orientation or reorientation. Several techniques have been developed to positively position propellant in spacecraft tanks and each technique imposes additional requirements on vehicle design. Propulsive reorientation relies on small auxiliary thrusters to accelerate the tank. The inertia of the liquid causes it to collect in the aft-end of the tank if the acceleration is forward. This technique requires that additional thrusters be added to the vehicle, that additional propellant be carried in the vehicle, and that an additional operational maneuver be executed. Another technique uses Liquid Acquisition Devices (LAD's) to positively position propellants. These devices rely on surface tension to hold the liquid within special geometries (i.e. vanes, wire-mesh channels, start-baskets). While avoiding some of the penalties of propulsive orientation, this technique requires the addition of complicated hardware inside the propellant tank and performance for long duration missions is uncertain. The subject of the present research is an alternate technique for positively positioning liquid within spacecraft propellant tanks: magnetic fields.

  5. 46 CFR 169.709 - Compass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compass. 169.709 Section 169.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment § 169.709 Compass. (a) Each vessel must be fitted with a magnetic...

  6. 46 CFR 169.709 - Compass.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compass. 169.709 Section 169.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment § 169.709 Compass. (a) Each vessel must be fitted with a magnetic...

  7. 46 CFR 169.709 - Compass.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compass. 169.709 Section 169.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment § 169.709 Compass. (a) Each vessel must be fitted with a magnetic...

  8. 46 CFR 169.709 - Compass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compass. 169.709 Section 169.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment § 169.709 Compass. (a) Each vessel must be fitted with a magnetic...

  9. 46 CFR 169.709 - Compass.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Compass. 169.709 Section 169.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment § 169.709 Compass. (a) Each vessel must be fitted with a magnetic...

  10. An fMRI study of caring vs self-focus during induced compassion and pride.

    PubMed

    Simon-Thomas, Emiliana R; Godzik, Jakub; Castle, Elizabeth; Antonenko, Olga; Ponz, Aurelie; Kogan, Aleksander; Keltner, Dacher J

    2012-08-01

    This study examined neural activation during the experience of compassion, an emotion that orients people toward vulnerable others and prompts caregiving, and pride, a self-focused emotion that signals individual strength and heightened status. Functional magnetic resonance images (fMRI) were acquired as participants viewed 55 s continuous sequences of slides to induce either compassion or pride, presented in alternation with sequences of neutral slides. Emotion self-report data were collected after each slide condition within the fMRI scanner. Compassion induction was associated with activation in the midbrain periaqueductal gray (PAG), a region that is activated during pain and the perception of others' pain, and that has been implicated in parental nurturance behaviors. Pride induction engaged the posterior medial cortex, a region that has been associated with self-referent processing. Self-reports of compassion experience were correlated with increased activation in a region near the PAG, and in the right inferior frontal gyrus (IFG). Self-reports of pride experience, in contrast, were correlated with reduced activation in the IFG and the anterior insula. These results provide preliminary evidence towards understanding the neural correlates of important interpersonal dimensions of compassion and pride. Caring (compassion) and self-focus (pride) may represent core appraisals that differentiate the response profiles of many emotions. PMID:21896494

  11. An fMRI study of caring vs self-focus during induced compassion and pride

    PubMed Central

    Godzik, Jakub; Castle, Elizabeth; Antonenko, Olga; Ponz, Aurelie; Kogan, Aleksander; Keltner, Dacher J.

    2012-01-01

    This study examined neural activation during the experience of compassion, an emotion that orients people toward vulnerable others and prompts caregiving, and pride, a self-focused emotion that signals individual strength and heightened status. Functional magnetic resonance images (fMRI) were acquired as participants viewed 55 s continuous sequences of slides to induce either compassion or pride, presented in alternation with sequences of neutral slides. Emotion self-report data were collected after each slide condition within the fMRI scanner. Compassion induction was associated with activation in the midbrain periaqueductal gray (PAG), a region that is activated during pain and the perception of others’ pain, and that has been implicated in parental nurturance behaviors. Pride induction engaged the posterior medial cortex, a region that has been associated with self-referent processing. Self-reports of compassion experience were correlated with increased activation in a region near the PAG, and in the right inferior frontal gyrus (IFG). Self-reports of pride experience, in contrast, were correlated with reduced activation in the IFG and the anterior insula. These results provide preliminary evidence towards understanding the neural correlates of important interpersonal dimensions of compassion and pride. Caring (compassion) and self-focus (pride) may represent core appraisals that differentiate the response profiles of many emotions. PMID:21896494

  12. Magnetic Anisotropy and the Orientation of Retinal Rods in a Homogeneous Magnetic Field

    PubMed Central

    Hong, Felix T.; Mauzerall, David; Mauro, Alexander

    1971-01-01

    The reported orientation of retinal rods in a homogeneous magnetic field can be explained by the magnetic anisotropy of oriented molecules in the disc membranes of the rods. The energy of a single rod as a function of orientation in the magnetic field, the time required for alingment of the rod in a viscous medium, and the fluctuations of orientation are calculated. Arguments that rhodopsin is the constituent responsible for the effect are given. The possibility of orientation due to inhomogeneity of the magnetic field is ruled out. The application of magnetic anisotropy as an experimental tool in biology is indicated. PMID:5288376

  13. Do leaf-cutter ants orient their path-integrated, home vector with a magnetic compass?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf-cutter ants Atta colombica forage over 250 m in structurally-complex, Neotropical rainforests that occlude sun or polarized light cues. Night foraging makes the use of celestial cues and landmarks all the more difficult. Typically leaf-cutter ants follow architecturally-modified, pheromonally-m...

  14. Environment-induced anisotropy and sensitivity of the radical pair mechanism in the avian compass

    NASA Astrophysics Data System (ADS)

    Carrillo, Alejandro; Cornelio, Marcio F.; de Oliveira, Marcos C.

    2015-07-01

    Several experiments over the years have shown that the earth's magnetic field is essential for orientation in birds' migration. The most promising explanation for this orientation is the photo-stimulated radical pair (RP) mechanism. In order to define a reference frame for the orientation task radicals must have an intrinsic anisotropy. We show that this kind of anisotropy and consequently the entanglement in the model are not necessary for the proper functioning of the compass. Classically correlated initial conditions for the RP, subjected to a fast decoherence process, are able to provide the anisotropy required. Even a dephasing environment can provide the necessary frame for the compass to work and also implies fast decay of any quantum correlation in the system without damaging the orientation ability. This fact significantly expands the range of applicability of the RP mechanism providing more elements for experimental search.

  15. Control of magnetization reversal in oriented strontium ferrite thin films

    SciTech Connect

    Roy, Debangsu Anil Kumar, P. S.

    2014-02-21

    Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

  16. From Compass to Hard Drive--Integrated Activities for Studying Magnets

    ERIC Educational Resources Information Center

    Dean, J.; Allwood, D. A.

    2014-01-01

    We describe a range of practical activities that allows students to investigate the properties and applications of magnets. The activities can be used in isolation or used together to build a rounded understanding of the subject area. The activities include simple demonstrations using common or inexpensive equipment, hands-on experiments for small…

  17. From Compass to Hard Drive--Integrated Activities for Studying Magnets

    ERIC Educational Resources Information Center

    Dean, J.; Allwood, D. A.

    2014-01-01

    We describe a range of practical activities that allows students to investigate the properties and applications of magnets. The activities can be used in isolation or used together to build a rounded understanding of the subject area. The activities include simple demonstrations using common or inexpensive equipment, hands-on experiments for small

  18. Orienting Paramecium with intense static magnetic fields

    NASA Astrophysics Data System (ADS)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  19. Can compassion be taught?

    PubMed Central

    Pence, G E

    1983-01-01

    Socrates (in the Meno) denied that virtues like courage could be taught, whereas Protagoras defended this claim. Compassion is discussed below in this context; it is distinguished from related, but different, moral qualities, and the role of imagination is emphasised. 'Sympathy's and role-modelling views of compassion's acquisition are criticised. Compassion can indeed be taught, but neither by the example of a few, isolated physicians nor by creation of Departments of Compassion. In replying to one standard objection to teaching compassion, it is emphasised that scientific competence and compassion aren't mutually exclusive. PMID:6668583

  20. The orientation of the local interstellar magnetic field.

    PubMed

    Opher, M; Stone, E C; Gombosi, T I

    2007-05-11

    The orientation of the local interstellar magnetic field introduces asymmetries in the heliosphere that affect the location of heliospheric radio emissions and the streaming direction of ions from the termination shock of the solar wind. We combined observations of radio emissions and energetic particle streaming with extensive three-dimensional magnetohydrodynamic computer simulations of magnetic field draping over the heliopause to show that the plane of the local interstellar field is approximately 60 degrees to 90 degrees from the galactic plane. This finding suggests that the field orientation in the Local Interstellar Cloud differs from that of a larger-scale interstellar magnetic field thought to parallel the galactic plane. PMID:17495167

  1. Condensation, demixing, and orientational ordering of magnetic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Cattes, Stefanie M.; Klapp, Sabine H. L.; Schoen, Martin

    2015-05-01

    In this work we study the phase behavior of magnetic particles suspended in a simple nonmagnetic solvent. Magnetic particles are modelled as spherical particles carrying a three-dimensional, classical Heisenberg spin, whereas solvent molecules are treated as spherically symmetric Lennard-Jones particles. The binary mixture of magnetic particles and solvent is studied within the framework of classical density functional theory (DFT). Within DFT pair correlations are treated at the modified mean-field level at which they are approximated by orientation dependent Mayer f functions. In the absence of an external magnetic field four generic types of phase diagrams are observed depending on the concentration of magnetic particles. In this case we observe liquid-liquid phase coexistence between an orientationally ordered (polarized) and a disordered phase characterized by slightly different concentrations of magnetic particles. Liquid-liquid phase coexistence is suppressed by an external field and vanishes completely if the strength of the field is sufficiently large.

  2. Conditioned discrimination of magnetic inclination in a spatial-orientation arena task by homing pigeons (Columba livia).

    PubMed

    Mora, Cordula V; Acerbi, Merissa L; Bingman, Verner P

    2014-12-01

    It has been well established that homing pigeons are able to use the Earth's magnetic field to obtain directional information when returning to their loft and that their magnetic compass is based, at least in part, on the perception of magnetic inclination. Magnetic inclination has also been hypothesized in pigeons and other long-distance navigators, such as sea turtles, to play a role providing positional information as part of a map. Here we developed a behavioral paradigm which allows us to condition homing pigeons to discriminate magnetic inclination cues in a spatial-orientation arena task. Six homing pigeons were required to discriminate in a circular arena between feeders located either in a zone with a close to 0 deg inclination cue or in a zone with a rapidly changing inclination cue (-3 deg to +85 deg when approaching the feeder and +85 deg to -3 deg when moving away from the feeder) to obtain a food reward. The pigeons consistently performed this task above chance level. Control experiments, during which the coils were turned off or the current was running anti-parallel through the double-wound coil system, confirmed that no alternative cues were used by the birds in the discrimination task. The results show that homing pigeons can be conditioned to discriminate differences in magnetic field inclination, enabling investigation into the peripheral and central neural processing of geomagnetic inclination under controlled laboratory conditions. PMID:25278470

  3. Sun compass error model

    NASA Technical Reports Server (NTRS)

    Blucker, T. J.; Ferry, W. W.

    1971-01-01

    An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.

  4. Are migrating raptors guided by a geomagnetic compass?

    USGS Publications Warehouse

    Thorup, Kasper; Fuller, Mark R.; Alerstam, T.; Hake, M.; Kjellen, N.; Standberg, R.

    2006-01-01

    We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.

  5. Crystallographic orientation variation of isothermal pearlite under high magnetic field

    SciTech Connect

    Meng, Lan Zhou, Xiaoling Chen, Jianhao

    2015-07-15

    Crystallographic orientation (CO) variation of magnetic-induced pearlite (MIP) during its microstructure evolution in 19.8 T was investigated by electron back-scatter diffraction (EBSD). It is closely related to the isothermal temperatures (ITs) and the applied magnetic time (MT) during the process of MIP formation. The <100> easy magnetization direction in MIP colonies is strengthened with the MT within the certain transformed fraction of MIP (f{sub MIP}) at the relatively lower IT (983 K) above the eutectoid temperature but below the magnetically shifted upward eutectoid temperature, while this special CO tends to be weakened at a relatively higher IT (995 K). For the same MT, the higher the IT, the relatively larger is the proportion in <100> orientation for MIP colonies at the early growth stage. These results have demonstrated that the change of <100> orientation of MIP is closely related to the growth rate of pearlite ferrite (PF), and strengthened mainly at early transformation stage. When f{sub MIP} reaches some value, the growth rate of MIP at other COs, such as <110>, even at the hard magnetization direction, turns to present speed-up. - Highlights: • HMF can induce pearlite with different fractions above the eutectoid temperature. • CO is closely related to isothermal temperatures and applied magnetic time. • <100> direction is related to the growth rate of PF, and strengthened at early stage. • When f{sub MIP} reaches some value, the growth rate at other COs turns to present speed-up.

  6. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion

    PubMed Central

    Yadav, Nagesh; Bleakley, Chris

    2014-01-01

    Low cost, compact attitude heading reference systems (AHRS) are now being used to track human body movements in indoor environments by estimation of the 3D orientation of body segments. In many of these systems, heading estimation is achieved by monitoring the strength of the Earth's magnetic field. However, the Earth's magnetic field can be locally distorted due to the proximity of ferrous and/or magnetic objects. Herein, we propose a novel method for accurate 3D orientation estimation using an AHRS, comprised of an accelerometer, gyroscope and magnetometer, under conditions of magnetic field distortion. The system performs online detection and compensation for magnetic disturbances, due to, for example, the presence of ferrous objects. The magnetic distortions are detected by exploiting variations in magnetic dip angle, relative to the gravity vector, and in magnetic strength. We investigate and show the advantages of using both magnetic strength and magnetic dip angle for detecting the presence of magnetic distortions. The correction method is based on a particle filter, which performs the correction using an adaptive cost function and by adapting the variance during particle resampling, so as to place more emphasis on the results of dead reckoning of the gyroscope measurements and less on the magnetometer readings. The proposed method was tested in an indoor environment in the presence of various magnetic distortions and under various accelerations (up to 3 g). In the experiments, the proposed algorithm achieves <2° static peak-to-peak error and <5° dynamic peak-to-peak error, significantly outperforming previous methods. PMID:25347584

  7. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    SciTech Connect

    Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  8. Magnetorheological effect in the magnetic field oriented along the vorticity

    SciTech Connect

    Kuzhir, P. Magnet, C.; Fezai, H.; Meunier, A.; Bossis, G.; Rodríguez-Arco, L.; López-López, M. T.; Zubarev, A.

    2014-11-01

    In this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR response in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency σ{sub Y}∝Φ{sup 2.2}, revealed in experiments. The practical interest of this study lies in the development of MR smart devices with the magnetic field nonperpendicular to the channel walls.

  9. MD Simulation of Particle Orientation in Magnetic Inks

    NASA Astrophysics Data System (ADS)

    Visscher; Günal

    1997-03-01

    We have done molecular-dynamics type simulations of particle re-orientation in a magnetic colloid, by a magnetic field during tape and disk manufacture. The model takes into account switching (in a Stoner- Wohlfarth model) as well as particle translation and rotation in response to magnetic, steric, Brownian, and hydrodynamic drag forces and torques. Magnetic interactions are fully included; hysteresis loops with and without magnetic interaction will be displayed, with corresponding Δ M curves. Images of the network structure at various points of the hysteresis loop will be shown. Further information is available at http:// www.mint.ua.edu/colloids/march.html.

  10. Distributed scheduling with COMPASS

    NASA Technical Reports Server (NTRS)

    Rufat-Latre, Jorge; Culbert, Chris

    1991-01-01

    COMPASS (COMPuter Aided Scheduling System) is a sophisticated, interactive scheduling tool used within NASA. Like most existing tools, however, COMPASS is a single-user application. There is a large class of scheduling problems which may be better solved by allowing several people at various locations to build separate schedules with shared resources. DISCORS (DIStributed COmputer Resource Scheduling) is a set of services which support a distributed version of COMPASS. This architecture naturally accommodates the integration of user-defined resource models without modifying COMPASS. DISCORS services include the ability to establish and manage communications, to code messages in efficient formats, to provide fault detection and recovery, and to configure schedulers across a network. In its present form, DISCORS effectively supports distributed COMPASS, but fails to run fast and to guarantee efficient schedules. Further enhancements may allow several users to simultaneously and interactively work together to create complex schedules while COMPASS detects and coordinates the resolution of conflicting requests.

  11. FEA Simulations of Magnets with Grain Oriented Steel

    SciTech Connect

    Witte H.

    2012-08-06

    One of the potential successors of the Large Hadron Collider is a Muon Col- lider. Muons are short-lived particles, which therefore require fast acceleration. One potential avenue is a very fast cycling cyclotron, where the bending is sup- plied by a combination of fixed-field superconducting magnets and fast ramping normal conducting iron-cored coils. Due to the high ramping rate (around 1 kHz) eddy current and hysteresis losses are a concern. One way to overcome these is by using grain-oriented soft-iron, which promises superior magnetic properties in the direction of the grains. This note summarizes efforts to include the anisotropic material properties of grain-oriented steel in finite element analysis to predict the behaviour of the dipole magnets for this accelerator. It was found that including anisotropic material properties has a detrimental effect on model convergence. During this study it was not possible to include grain oriented steel with an accuracy necessary to study the field quality of a dipole magnet.

  12. Orientation dependence of magnetization transfer parameters in human white matter.

    PubMed

    Pampel, André; Müller, Dirk K; Anwander, Alfred; Marschner, Henrik; Möller, Harald E

    2015-07-01

    Quantification of magnetization-transfer (MT) experiments is typically based on a model comprising a liquid pool "a" of free water and a semisolid pool "b" of motionally restricted macromolecules or membrane compounds. By a comprehensive fitting approach, high quality MT parameter maps of the human brain are obtained. In particular, a distinct correlation between the diffusion-tensor orientation with respect to the B0-magnetic field and the apparent transverse relaxation time, T2(b), of the semisolid pool (i.e., the width of its absorption line) is observed. This orientation dependence is quantitatively explained by a refined dipolar lineshape for pool b that explicitly considers the specific geometrical arrangement of lipid bilayers wrapped around a cylindrical axon. The model inherently reduces the myelin membrane to its lipid constituents, which is motivated by previous studies on efficient interaction sites (e.g., cholesterol or galactocerebrosides) in the myelin membrane and on the origin of ultrashort T2 signals in cerebral white matter. The agreement between MT orientation effects and corresponding forward simulations using empirical diffusion imaging results as input as well as results from fits employing the novel lineshape support previous suggestions that the fiber orientation distribution in a voxel can be modeled as a scaled Bingham distribution. PMID:25862261

  13. The Enterprise Compass

    ERIC Educational Resources Information Center

    McCardle, Ken

    2005-01-01

    As a CIO leading an IT department through change and reorganization, the author developed the Enterprise Compass--a four-point guide to reaching goals and focusing achievement. The Enterprise Compass directs staff to look forward to future accomplishment, back for performance assessments, across campus for better understanding of practical working

  14. The Enterprise Compass

    ERIC Educational Resources Information Center

    McCardle, Ken

    2005-01-01

    As a CIO leading an IT department through change and reorganization, the author developed the Enterprise Compass--a four-point guide to reaching goals and focusing achievement. The Enterprise Compass directs staff to look forward to future accomplishment, back for performance assessments, across campus for better understanding of practical working…

  15. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    PubMed

    Alert, Bianca; Michalik, Andreas; Helduser, Sascha; Mouritsen, Henrik; Güntürkün, Onur

    2015-01-01

    Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy. PMID:25807499

  16. Perceptual Strategies of Pigeons to Detect a Rotational Centre—A Hint for Star Compass Learning?

    PubMed Central

    Helduser, Sascha; Mouritsen, Henrik; Güntürkün, Onur

    2015-01-01

    Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy. PMID:25807499

  17. Magnetic anisotropy and organization of nanoparticles in heads and antennae of neotropical leaf-cutter ants, Atta colombica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oriented magnetic nanoparticles have been suggested as a good candidate for a magnetic sensor in ants. Behavioral evidence for a magnetic compass in Neotropical leafcutter ants, Atta colombica (Formicidae: Attini), motivated a study of the arrangement of magnetic particles in the ants’ four major bo...

  18. Pigeon orientation: effects of the application of magnets under overcast skies

    NASA Astrophysics Data System (ADS)

    Ioalè, P.

    To verify the existence of a magnetic compass in birds, researchers have often released homing pigeons under overcast skies that are equipped with bar magnets on various parts of their body. In particular, Keeton was successful in finding disorientation in overcast conditions in a first series of tests, but not in a second series. The experiments reported here attempt to explain this contradiction on the basis of findings obtained by releasing pigeons equipped in a way similar to that reported in Keeton's tests and pigeons equipped in a way similar to that reported by other authors.

  19. Orientation of x-lines in asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Hsin; Hesse, Michael; Kuznetsova, Masha

    2015-11-01

    At Earth's magnetopause, reconnection proceeds asymmetrically between magnetosheath plasmas, namely solar wind plasmas compressed by Earth's bow shock, and magnetospheric plasmas. In an asymmetric configuration, it is unclear if there is a simple principle to determine the orientation of the x-line. Using fully kinetic simulations, we study this issue and a spatially localized perturbation is employed to induce a single x-line, that has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the x-line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The deviation from the bisection angle in the lower mass ratio limit can be explained by the physics of tearing instability. The local physics control of the x-line orientation studied in this slab geometry could potentially interplay with global geometrical effects to determine the location of collisionless magnetic reconnection at Earth's magnetopause.

  20. Disruption of magnetic orientation in hatchling loggerhead sea turtles by pulsed magnetic fields.

    PubMed

    Irwin, William P; Lohmann, Kenneth J

    2005-05-01

    Loggerhead sea turtles (Caretta caretta) derive both directional and positional information from the Earth's magnetic field, but the mechanism underlying magnetic field detection in turtles has not been determined. One hypothesis is that crystals of biogenic, single-domain magnetite provide the physical basis of the magnetic sense. As a first step toward determining if magnetite is involved in sea turtle magnetoreception, hatchling loggerheads were exposed to pulsed magnetic fields (40 mT, 4 ms rise time) capable of altering the magnetic dipole moment of biogenic magnetite crystals. A control group of turtles was treated identically but not exposed to the pulsed fields. Both groups of turtles subsequently oriented toward a light source, implying that the pulsed fields did not disrupt the motivation to swim or the ability to maintain a consistent heading. However, when swimming in darkness under conditions in which turtles normally orient magnetically, control turtles oriented significantly toward the offshore migratory direction while those that were exposed to the magnetic pulses did not. These results are consistent with the hypothesis that at least part of the sea turtle magnetoreception system is based on magnetite. In principle, a magnetite-based magnetoreception system might be involved in detecting directional information, positional information, or both. PMID:15765235

  1. Testing avian compass calibration: comparative experiments with diurnal and nocturnal passerine migrants in South Sweden

    PubMed Central

    Åkesson, Susanne; Odin, Catharina; Hegedüs, Ramón; Ilieva, Mihaela; Sjöholm, Christoffer; Farkas, Alexandra; Horváth, Gábor

    2015-01-01

    ABSTRACT Cue-conflict experiments were performed to study the compass calibration of one predominantly diurnal migrant, the dunnock (Prunella modularis), and two species of nocturnal passerine migrants, the sedge warbler (Acrocephalus schoenobaenus), and the European robin (Erithacus rubecula) during autumn migration in South Sweden. The birds' orientation was recorded in circular cages under natural clear and simulated overcast skies in the local geomagnetic field, and thereafter the birds were exposed to a cue-conflict situation where the horizontal component of the magnetic field (mN) was shifted +90° or −90° at two occasions, one session starting shortly after sunrise and the other ca. 90 min before sunset and lasting for 60 min. The patterns of the degree and angle of skylight polarization were measured by full-sky imaging polarimetry during the cue-conflict exposures and orientation tests. All species showed orientation both under clear and overcast skies that correlated with the expected migratory orientation towards southwest to south. For the European robin the orientation under clear skies was significantly different from that recorded under overcast skies, showing a tendency that the orientation under clear skies was influenced by the position of the Sun at sunset resulting in more westerly orientation. This sun attraction was not observed for the sedge warbler and the dunnock, both orientating south. All species showed similar orientation after the cue-conflict as compared to the preferred orientation recorded before the cue-conflict, with the clearest results in the European robin and thus, the results did not support recalibration of the celestial nor the magnetic compasses as a result of the cue-conflict exposure. PMID:25505150

  2. COMPASS-II: COMPASS Future Programs

    SciTech Connect

    Doshita, Norihiro; Collaboration: COMPASS Collaboration

    2011-12-14

    The COMPASS (COmmon Muon and Proton apparatus for Structure and Spectroscopy) experiment started more than 10 years ago and has published many results concerning nucleon structure and hadron spectroscopy. We propose additional measurements for a new fascinating QCD-related studies of nucleon structure and hadron spectroscopy with small modifications of the present apparatus, that includes either an unpolarized or polarized target.

  3. Compassion Competence in Nurses.

    PubMed

    Lee, Youngjin; Seomun, GyeongAe

    2016-01-01

    The purpose of study was to identify the attributes of the concept of compassion competence for nurses. A hybrid model was used to develop the concept, which included fieldwork performed. The concept of compassion competence was found to possess 3 dimensions: (a) acquisition of a wealth of knowledge; (b) development of skills of emotional communication, sensitivity, insight, and self-regulation; and (c) development of attitudes of respect and empathy, and maintenance of occupational distance. Compassion competence could be useful for developing ways to enhance the knowledge, skills, and attitudes required for nurses to provide compassionate care in various nursing practices. PMID:27149235

  4. Compass Coordinate System

    NASA Astrophysics Data System (ADS)

    Wei, Ziqing; Liu, Guangming; Wu, Fumei

    2013-04-01

    This presentation addresses the definition and realization of the Compass Coordinate System, which is utilized by the BeiDou/Compass satellite navigation system. The definition follows the criteria described by the IERS Technical Note No.21. The reference ellipsoid used is the GRS80 ellipsoid except that the IERS recommended value of 3986004.418´108m3s-2 is adopted for the Earth's gravitational constant. The realization has been done in such a way that the system is closely aligned to the ITRF 2008. The relationship between the Compass Coordinate System and the China Geodetic Coordinate System 2000 (CGCS 2000) is also outlined in the presentation.

  5. Anisotropy study of grain oriented steels with Magnetic Barkhausen Noise

    NASA Astrophysics Data System (ADS)

    de Campos, M. F.; Campos, M. A.; Landgraf, F. J. G.; Padovese, L. R.

    2011-07-01

    Grain oriented electrical steels present strong anisotropy, due to a {110} <001> texture (Goss), with [100] direction parallel to rolling direction (RD) and [110] direction parallel to transverse direction (TD). MBN (Magnetic Barkhausen Noise) were employed to measure magnetic properties in several angles towards RD using a 15° step. For 90° to the rolling direction (i.e., TD), the MBN signal changes, decreasing the MBNrms. It is found a connection between initial permeability and MBNrms. The lower initial permeability for the TD is related to a larger contribution of irreversible rotation in the hysteresis. The MBN procedure is non-destructive and provides rapid understanding of the anisotropy of the material, without the use of laborious methods like Epstein frame or toroidal coils.

  6. Theory of fluorescence polarization in magnetically oriented photosynthetic systems.

    PubMed Central

    Knox, R S; Davidovich, M A

    1978-01-01

    Many cells and cell fragments are known to assume specific alignments with respect to an applied magnetic field. One indicator of this alignment is a difference between the intensities of fluorescence observed in polarizations parallel and perpendicular to the magnetic filed. We calculate these two intensities using a model that assumes axially symmetric membranes and that covers a wide variety of shapes from flat disk to right cylinder. The fluorescence is assumed to originate at chromophores randomly exicted but nonrandomly oriented in the membranes. The membrane alignment is assumed to be due to the net torque on a nonrandom distribution of diamagnetically anisotropic molecules. The predicted results are consistent with most magnetoorientation data from green cells, but we are able to show that Chlorella data are not consistent with the hypothesis that the membranes have, and maintain, a cuplike configuration. Images FIGURE 4 FIGURE 5 PMID:737283

  7. Relativistic filamentation instability in an arbitrarily oriented magnetic field

    NASA Astrophysics Data System (ADS)

    Prez-lvaro, E.; Bret, A.

    2013-07-01

    Although high-energy cosmic rays (HECRs) and gamma-ray bursts (GRBs) are the most energetic phenomena occurring in the universe, their origin are important enigmas in the field of astrophysics. Today, the most studied scenario that attempts to explain them is known as the Fireball Model. This theory assumes that the particles are accelerated by a shock developing in the interior of a relativistic plasma from a supernova (SN). The filamentation (sometimes called "Weibel") instability is believed to mediate collisionless shock formation from the collision of two plasma shells. It has been known for long that a flow aligned magnetic field can completely cancel this instability. In this work, we analyze the robustness of the filamentation instability which develops inside a plasma immersed in an arbitrarily oriented magnetic field.

  8. Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.

    2010-01-01

    Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.

  9. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  10. Magnetic preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  11. Self-compassion and life satisfaction in gay men.

    PubMed

    Jennings, Lisa K; Philip Tan, P

    2014-12-01

    Studies have shown that gay men are at increased risk for anxiety and depression due to social oppression; research suggests that self-compassion is positively associated with life-satisfaction and emotional resilience. In a sample of 68 gay men (M age = 39.7 yr., SD = 16.3), the influence of self-compassion on satisfaction with life was examined while controlling for age, income, and openness about sexual orientation. Analysis of the data revealed that self-compassion was a significant predictor of satisfaction with life. Implications of this finding were discussed. PMID:25539176

  12. Magnetic properties of grain oriented electrical steel in model transformer under direct current-biased magnetization

    NASA Astrophysics Data System (ADS)

    Inoue, Hirotaka; Okabe, Seiji

    2014-05-01

    Iron losses and acoustic noises of the model transformer under DC-biased magnetization were empirically investigated. To clarify the influence of magnetic properties of transformer core materials, two types of grain oriented electrical steels—high permeability grade (HGO) and conventional grade (CGO)—were used as core materials. Iron losses increased with superimposing DC-bias magnetic field (HDC) in both materials, and the iron loss increment in HGO was larger than that in CGO. Acoustic noises increased with increasing HDC in both materials; however, noises emitted from the core of HGO were smaller than those of CGO.

  13. Filamentary structure and magnetic field orientation in Musca

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.; Arzoumanian, D.; André, Ph.; Rygl, K. L. J.; Prusti, T.; Men'shchikov, A.; Royer, P.; Kóspál, Á.; Palmeirim, P.; Ribas, A.; Könyves, V.; Bernard, J.-Ph.; Schneider, N.; Bontemps, S.; Merin, B.; Vavrek, R.; Alves de Oliveira, C.; Didelon, P.; Pilbratt, G. L.; Waelkens, C.

    2016-05-01

    Herschel has shown that filamentary structures are ubiquitous in star-forming regions, in particular in nearby molecular clouds associated with Gould's Belt. High dynamic range far-infrared imaging of the Musca cloud with SPIRE and PACS reveals at least two types of filamentary structures: (1) the main ~10-pc scale high column-density linear filament; and (2) low column-density striations in close proximity to the main filament. In addition, we find features with intermediate column densities (hair-like strands) that appear physically connected to the main filament. We present an analysis of this filamentary network traced by Herschel and explore its connection with the local magnetic field. We find that both the faint dust emission striations and the plane-of-the-sky (POS) magnetic field are locally oriented close to perpendicular to the high-density main filament (position angle ~25-35°). The low-density striations and strands are oriented parallel to the POS magnetic field lines, which are derived previously from optical polarization measurements of background stars and more recently from Planck observations of dust polarized emission. The position angles are 97 ± 25°, 105 ± 7°, and 105 ± 5°. From these observations, we propose a scenario in which local interstellar material in this cloud has condensed into a gravitationally-unstable filament (with "supercritical" mass per unit length) that is accreting background matter along field lines through the striations. We also compare the filamentary structure in Musca with what is seen in similar Herschel observations of the Taurus B211/3 filament system and find that there is significantly less substructure in the Musca main filament than in the B211/3 filament. We suggest that the Musca cloud may represent an earlier evolutionary stage in which the main filament has not yet accreted sufficient mass and energy to develop a multiple system of intertwined filamentary components. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  14. Smart Compass-Clinometer: A smartphone application for easy and rapid geological site investigation

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-dong

    2013-12-01

    This study presents a smartphone application for geological site investigation. The application allows a smartphone to replace a diverse array of instrumentation and processes required for data measurement, visualization, and analysis. This application, named Smart Compass-Clinometer, consists of a digital compass-clinometer module, a data visualization module, a data analysis module, and a data management module. The compass-clinometer module measures the orientation of geological structures using data collected from built-in sensors. It converts the sensor data to orientation information using an algorithm developed specifically for this purpose. The visualization module plots the measured data on stereographic projections using three different methods, and can be used concurrently with the compass-clinometer module. The analysis module conducts instability analyses on the measured data, and can present the results in graphical and statistical forms. Users can send or receive data wirelessly with the data management module, even without a connection to a cellular network. To evaluate and validate the precision and accuracy of the compass-clinometer module, indoor and outdoor tests were conducted using Smart Compass-Clinometer and a conventional compass-clinometer. The minimum standard deviation of measured values with Smart Compass-Clinometer was 0.096° for dip and 0.122° for dip direction. The average difference between values measured using Smart Compass-Clinometer and the conventional compass-clinometer in the outdoor test was 1.70° for dip and 2.63° for dip direction. In an underground mine, the average discrepancies between Smart Compass-Clinometer and the conventional compass-clinometer were 2.57° in dip and 4.57° in dip direction. Smart Compass-Clinometer offers geoscientists a fast, reliable, and convenient tool for geological investigation.

  15. Compassion: a concept analysis.

    PubMed

    Schantz, Maria L

    2007-01-01

    Compassion is a quality deemed sine qua non for nursing and claimed to underpin the profession in its larger-than-life scope. Yet the meaning of the concept "compassion" (or "compassionate care") is neither clearly defined in nursing scholarship nor widely promoted in the context of contemporaneous everyday nursing practice. The term in its moral dimension has, at best, been downgraded as an optional practice in everyday nursing care and, at worst, dismissed as lofty ideals connected to other disciplines, such as religion and ethics. A concept analysis using Walker and Avant's strategic method as well as Rodgers's evolutionary paradigm was undertaken to clarify the meaning of the concept "compassion" and examine its relevance in the context of everyday nursing practice. PMID:17474937

  16. Resource representation in COMPASS

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.

    1991-01-01

    A set of viewgraphs on resource representation in COMPASS is given. COMPASS is an incremental, interactive, non-chronological scheduler written in Ada with an X-windows user interface. Beginning with an empty schedule, activities are added to the schedule one at a time, taking into consideration the placement of the activities already on the timeline and the resources that have been reserved for them. The order that the activities are added to the timeline and their location on the timeline are controlled by selection and placement commands invoked by the user. The order that activities are added to the timeline and their location are independent. The COMPASS code library is a cost effective platform for the development of new scheduling applications. It can be effectively used off the shelf for compatible scheduling applications or it can be used as a parts library for the development of custom scheduling systems.

  17. Monolithic integration of focused 2D GMR spin valve magnetic field sensor for high-sensitivity (compass) applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ueberschär, Olaf; Almeida, Maria J.; Matthes, Patrick; Müller, Mathias; Ecke, Ramona; Exner, Horst; Schulz, Stefan E.

    2015-09-01

    We have designed and fabricated 2D GMR spin valve sensors on the basis of IrMn/CoFe/Cu/CoFe/NiFe nanolayers in monolithic integration for high sensitivity applications. For a maximum signal-to-noise ratio, we realize a focused double full bridge layout featuring an antiparallel exchange bias pinning for neighbouring meanders and an orthogonal pinning for different bridges. This precise alignment is achieved with microscopic precision by laser heating and subsequent in-field cooling. Striving for maximum signal sensitivity and minimum hysteresis, we study in detail the impact of single meander geometry on the total magnetic structure and electronic transport properties. The investigated geometrical parameters include stripe width, stripe length, cross bar material and total meander length. In addition, the influence of the relative alignment between reference magnetization (pinned layer) and shape anisotropy (free layer) is studied. The experimentally obtained data are moreover compared to the predictions of tailored micromagnetic simulations. Using a set of optimum parameters, we demonstrate that our sensor may readily be employed to measure small magnetic fields, such as the ambient (geomagnetic) field, in terms of a 2D vector with high spatial (~200 μm) and temporal (~1 ms) resolution.

  18. Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis.

    PubMed

    Chatterjee, Biplab K; Bhattacharjee, Kaustav; Dey, Abhishek; Ghosh, Chandan K; Chattopadhyay, Kalyan K

    2014-06-01

    The magnetic properties of copper ferrite (CuFe2O4) nanoparticles prepared via sol-gel auto combustion and facile solvothermal method are studied focusing on the effect of nanoparticle arrangement. Randomly oriented CuFe2O4 nanoparticles (NP) are obtained from the sol-gel auto combustion method, while the solvothermal method allows us to prepare iso-oriented uniform spherical ensembles of CuFe2O4 nanoparticles (NS). X-ray diffractometry (XRD), atomic absorption spectroscopy (AAS), infra-red (IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), (57)Fe Mössbauer spectroscopy and vibrating sample magnetometer (VSM) are used to investigate the composition, microstructure and magnetic properties of as-prepared ferrite nanoparticles. The field-dependent magnetization measurement for the NS sample at low temperature exhibits a step-like rectangular hysteresis loop (M(R)/M(S) ~ 1), suggesting cubic anisotropy in the system, whereas for the NP sample, typical features of uniaxial anisotropy (M(R)/M(S) ~ 0.5) are observed. The coercive field (HC) for the NS sample shows anomalous temperature dependence, which is correlated with the variation of effective anisotropy (K(E)) of the system. A high-temperature enhancement of H(C) and K(E) for the NS sample coincides with a strong spin-orbit coupling in the sample as evidenced by significant modification of Cu/Fe-O bond distances. The spherical arrangement of nanocrystals at mesoscopic scale provokes a high degree of alignment of the magnetic easy axis along the applied field leading to a step-like rectangular hysteresis loop. A detailed study on the temperature dependence of magnetic anisotropy of the system is carried out, emphasizing the influence of the formation of spherical iso-oriented assemblies. PMID:24714977

  19. A molecular compass for bird navigation

    NASA Astrophysics Data System (ADS)

    Hore, Peter

    2015-03-01

    Migratory birds travel spectacular distances, navigating and orienting by a variety of means, most of which are poorly understood. Among them is a remarkable ability to perceive the intensity and direction of the Earth's magnetic field. Biologically credible mechanisms for the sensing of such weak fields (25-65 microtesla) are scarce and in recent years just two proposals have emerged as frontrunners. One involves biogenic iron-containing nanoparticles; the other relies on the magnetic sensitivity of short-lived photochemical intermediates known as radical pairs. The latter began to attract attention following the proposal 15 years ago that the necessary physics and chemistry could take place in the bird's retina in specialised photoactive proteins called cryptochromes. The coherent dynamics of the electron-nuclear spin systems of pairs of photo-induced radicals is conjectured to form the basis of the sensing mechanism even though the interaction of an electron spin with the geomagnetic field is six orders of magnitude smaller than the thermal energy. The possibility that slowing decohering, entangled electron spins could form the basis of an important sensory mechanism has qualified radical pair magnetoreception for a place under the umbrella of ``Quantum Biology.'' In this talk, I will introduce the radical pair mechanism, comment on the roles of entanglement and quantum coherence, outline some of the experimental evidence for the cryptochrome hypothesis, and summarize what still needs to be done to determine whether birds (and maybe other animals) really do use a chemical compass to find their way around. This work was supported by grants from DARPA, AFOSR, ERC and the EMF Biological Research Trust.

  20. Orientation Of Interplanetary Magnetic Clouds Associated With Filament Eruptions And Major Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ye, P.; Zhou, G.; Wang, S.; Wang, J.

    2004-12-01

    As a major source of non-recurrent geomagnetic storms, more than half of magnetic clouds in the interplanetary medium are associated with filament eruptions [Subramanian and Dere, 2001]. The strength of south component of the magnetic field inside magnetic cloud and its duration are consider the very important factors in causing geomagnetic storm. Obviously, these factors are related to the orientation of magnetic cloud in terms of flux rope model. By investigating the observations of SOHO and ACE spacecraft from 2000 to 2003, the relationship between the orientation of interplanetary magnetic clouds which were associated with filament eruptions and major geomagnetic storms are studied. Two issues are discussed: (1) the effect of magnetic cloud's orientation on the intensity of geomagnetic storm, and (2) the possible factors in influencing the cloud's orientation. The results will be worked out.

  1. Object-Oriented Fast Multipole Simulation: Magnetic Colloids

    NASA Astrophysics Data System (ADS)

    Visscher, Pieter; Günal, Yüksel

    1997-08-01

    In simulating a system of N particles, if the interaction is long-ranged all pair interactions must be calculated, requiring CPU time of order N^2. Recently-developed ``fast multipole'' methods (FMM) can reduce this time to order N, at the cost of considerable programming complexity. We have developed an object-oriented approach which uses similar ideas but is conceptually much simpler. The system is represented by a hierarchical tree whose root is the entire system and whose lowest nodes are the particles. The entire calculation of the particle interactions consists of a single call to a recursive function CalculateInteractions(A,B) with A=B=root, which uses a simple opening-angle criterion to choose between multipole expansion and calling itself (subdividing A and B.) The resulting algorithm is essentially equivalent to the FMM, but the choice of when to subdivide (which is laboriously hard-wired in FMM) is made automatically. We will discuss the implementation of periodic BCs and the application of the method to continuum systems (cylindrical magnetic particles).

  2. Conformation of sulfoquinovosyldiacylglycerol bound to a magnetically oriented membrane system.

    PubMed Central

    Howard, K P; Prestegard, J H

    1996-01-01

    The conformation of uniformly 13C-labeled sulfoquinovosyldiacylglycerol (SQDG) is studied in both membrane and solution environments using NMR spectroscopy. Analysis in a membrane-like environment is based on the measurement of dipolar interactions between 13C-13C and 1H-13C spin pairs and on the measurement of 13C chemical shift anisotropy offsets, which appear in magnetically oriented phospholipid-based membrane fragments. Potential energy maps for glycosidic torsions, phi, psi and theta 1, are calculated with a membrane interaction energy and are used in the interpretation of experimental data. The membrane-bound description for SQDG is most consistent with a set of low-energy conformations that extends the headgroup of SQDG away from the membrane surface. Analysis of the conformation of SQDG in CD3OD solution is based on measured 3JCH scalar couplings. The description of the solution conformation is modeled as a mixture of low-energy conformers predicted in the absence of a membrane interaction term and involves more extensive motional averaging than the model for SQDG embedded in the lipid matrix. Images FIGURE 1 FIGURE 6 PMID:8913595

  3. Bow Compass with Case

    Bow Compass with Case. Also known as a Drop Bow Pen or Spring Bow, serial #760 C. This instrument was made by Eugene Dietzgen & Company, Chicago and New York and used by the U.S. Geological Survey Topographic Branch after 1945-1960s. Object ID: USGS-000645...

  4. Compassion: Practical Classroom Activities

    ERIC Educational Resources Information Center

    Wong, Lily; Duffy, Roslyn Ann

    2010-01-01

    Compassion is a deep feeling of sharing the suffering of another. It is a mixture of words, thoughts, and actions that allow a child to be sympathetic to the needs of others. Young children today witness many conflicting values. Values promoted in the media and popular culture often glorify disrespect and unkindness, with beauty and possessions

  5. Compassion: Practical Classroom Activities

    ERIC Educational Resources Information Center

    Wong, Lily; Duffy, Roslyn Ann

    2010-01-01

    Compassion is a deep feeling of sharing the suffering of another. It is a mixture of words, thoughts, and actions that allow a child to be sympathetic to the needs of others. Young children today witness many conflicting values. Values promoted in the media and popular culture often glorify disrespect and unkindness, with beauty and possessions…

  6. Compassion and Curiosity - TCGA

    Cancer.gov

    William Kim, M.D., is motivated by two things: compassion and curiosity. Dr. Kim has taken these dual motivations and created a career in which he cares directly for patients and spearheads research that may lead to improved treatment options.

  7. Perception of suffering and compassion experience: brain gender disparities.

    PubMed

    Mercadillo, Roberto E; Daz, Jos Luis; Pasaye, Erick H; Barrios, Fernando A

    2011-06-01

    Compassion is considered a moral emotion related to the perception of suffering in others, and resulting in a motivation to alleviate the afflicted party. We compared brain correlates of compassion-evoking images in women and men. BOLD functional images of 24 healthy volunteers (twelve women and twelve men; age=272.5 y.o.) were acquired in a 3T magnetic resonance scanner while subjects viewed pictures of human suffering previously verified to elicit compassion and indicated their compassionate experience by finger movements. Functional analysis revealed that while women manifested activation in areas involved in basic emotional, empathic, and moral processes, such as basal regions and cingulate and frontal cortices, activation in men was restricted mainly to the occipital cortex and parahippocampal gyrus. These findings suggest that compassion and its moral elements constitute gender-relative subjective phenomena emerging from differently evolved neural mechanisms and socially learned features possibly related to nurturing skills. PMID:21492980

  8. Two-stage magnetic orientation of uric acid crystals as gout initiators

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.

    2014-01-01

    The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.

  9. Compassion fatigue: a nurse's primer.

    PubMed

    Lombardo, Barbara; Eyre, Caryl

    2011-01-01

    Most nurses enter the field of nursing with the intent to help others and provide empathetic care for patients with critical physical, mental, emotional, and spiritual needs. Empathic and caring nurses, however, can become victims of the continuing stress of meeting the often overwhelming needs of patients and their families, resulting in compassion fatigue. Compassion fatigue affects not only the nurse in terms of job satisfaction and emotional and physical health, but also the workplace environment by decreasing productivity and increasing turnover. We begin this article with a case study of a reactive nurse who did not seek help for her continuing stress. This is followed by a review of Watson's theoretical perspective related to compassion fatigue. Next we delineate symptoms of, and describe interventions for addressing compassion fatigue. We conclude by presenting a case study of a proactive nurse who avoided developing compassion fatigue and a discussion of future research needed to better prevent and ameliorate compassion fatigue. PMID:21800934

  10. The role of the sun in the celestial compass of dung beetles

    PubMed Central

    Dacke, M.; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day. PMID:24395963

  11. The COMPASS Project

    NASA Astrophysics Data System (ADS)

    Duley, A. R.; Sullivan, D.; Fladeland, M. M.; Myers, J.; Craig, M.; Enomoto, F.; Van Gilst, D. P.; Johan, S.

    2011-12-01

    The Common Operations and Management Portal for Airborne Science Systems (COMPASS) project is a multi-center collaborative effort to advance and extend the research capabilities of the National Aeronautics and Space Administration's (NASA) Airborne Science Program (ASP). At its most basic, COMPASS provides tools for visualizing the position of aircraft and instrument observations during the course of a mission, and facilitates dissemination, discussion, and analysis and of multiple disparate data sources in order to more efficiently plan and execute airborne science missions. COMPASS targets a number of key objectives. First, deliver a common operating picture for improved shared situational awareness to all participants in NASA's Airborne Science missions. These participants include scientists, engineers, managers, and the general public. Second, encourage more responsive and collaborative measurements between instruments on multiple aircraft, satellites, and on the surface in order to increase the scientific value of these measurements. Fourth, provide flexible entry points for data providers to supply model and advanced analysis products to mission team members. Fifth, provide data consumers with a mechanism to ingest, search and display data products. Finally, embrace an open and transparent platform where common data products, services, and end user components can be shared with the broader scientific community. In pursuit of these objectives, and in concert with requirements solicited by the airborne science research community, the COMPASS project team has delivered a suite of core tools intended to represent the next generation toolset for airborne research. This toolset includes a collection of loosely coupled RESTful web-services, a system to curate, register, and search, commonly used data sources, end-user tools which leverage web socket and other next generation HTML5 technologies to aid real time aircraft position and data visualization, and an extensible a framework to rapidly accommodate mission specific requirements and mission tools.

  12. Orientation by solidification in a magnetic field: A new process to texture SmCo compounds used as permanent magnets

    NASA Astrophysics Data System (ADS)

    Legrand, B. A.; Chateigner, D.; Perrier de la Bathie, R.; Tournier, R.

    1997-02-01

    The solidification of molten alloys in a static magnetic field is proposed as a new way of orienting polycrystalline materials. A high degree of orientation is obtained with samarium-cobalt compounds solidified in a static magnetic field. Whatever the cooling condition used from the liquid state, a magnetic field of several tesla induces crystallographic orientation in the solid. The easy magnetization axis of the polycrystal lies along the direction of the field applied during solidification. This texturing process is applied to the elaboration of Sm 2Co 17 permanent magnets. Anisotropic bulk magnets with a coercive field up to 2250 kA/m and energy product above 160 kJ/m 3 are obtained. This process provides an alternative to the currently used industrial technology which is based on powder metallurgy. The paramagnetic susceptibility of the substituted Sm 2Co 17 compounds is measured at high temperatures from which the susceptibility anisotropy at solidification temperature is determined. The orientation of the sample, solidified in a cold induction crucible, is analysed as a function of the applied magnetic field. Assuming a model in which particles are free to orient before complete solidification takes place, a critical size of these particles is deduced.

  13. Effect of high magnetic fields on orientation and properties of liquid crystalline thermosets

    SciTech Connect

    Smith, M.E.; Benicewicz, B.C.; Douglas, D.P.; Earls, J.D.; Priester, R.D. Jr.

    1996-02-01

    In this report we provide the first description of the orientation of liquid crystalline thermosets (LCT`s) in field strengths of up to 18 T, as well as the first report of tensile properties for both unoriented and oriented LCT`S. The LCT we have chosen for study is the diglycidyl ether of dihydroxy-a-methylstilbene cured with the diamine, sulfanilamide. Orientation in magnetic fields leads to an increase of almost three times the modulus compared to the unoriented material. These values are much greater than can be obtained with conventional thermosets. The strain at break is also significantly affected by the chain orientation. The coefficient of thermal expansion and x-ray diffraction of oriented samples show high degrees of anisotropy, indicating significant chain alignment in the magnetic field. We are working to further understand the field dependence of orientation and properties plus the mechanisms of the alignment process.

  14. Crystallographic orientation of Cr in longitudinal recording media and its relation to magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ajan, Antony; Okamoto, Iwao

    2002-08-01

    A specific growth of Cr layer grains is found to exist when grown on the mechanically textured NiP-Al substrates used for longitudinal recording. High resolution transmission electron microscopy analysis of a large number of individual Cr grains indicate a Cr110 preferential growth along the textured direction (groove or circumferential direction). This particular orientation of the Cr underlayer is found to be the cause of an in-plane magnetic anisotropy of the Co based magnetic layer. The temperature dependence of this in-plane magnetic anisotropy study indicated the importance of the specific crystallographic orientations of both the underlayer and the magnetic layer.

  15. Fabrication of Tri-axially Oriented RE-Ba-Cu-O Ceramics by Magnetic Alignment

    NASA Astrophysics Data System (ADS)

    Yamaki, M.; Furuta, M.; Doi, T.; Shimoyama, J.; Horii, S.

    Magnetic alignment is a new crystal alignment process which enables tri-axial orientation without epitaxial growth at room temperature. In order to investigate the effectiveness of this magnetic tri-axial alignment process, we attempted to fabricate tri-axially oriented ErBa2Cu4O8 (Er124) ceramics by a slip-casting technique under two different modulated rotation magnetic fields (MRFs); uni-directional rotation type and oscillation type. For improvement of the degrees of tri-axial orientation in the Er124 green compacts slip-casted under MRFs, appropriate choice of sample-rotation method, magnetic field condition, control of mean diameter of source powders, and viscosity of slurry was found to be important in the case of MRFs induced by the sample-rotation. At the current stage, the degree of inplane orientation with ?10? in Er124 was achieved.

  16. Noncontact orientation of objects in three-dimensional space using magnetic levitation

    PubMed Central

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K.; Soh, Siowling; Whitesides, George M.

    2014-01-01

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136

  17. Noncontact orientation of objects in three-dimensional space using magnetic levitation.

    PubMed

    Subramaniam, Anand Bala; Yang, Dian; Yu, Hai-Dong; Nemiroski, Alex; Tricard, Simon; Ellerbee, Audrey K; Soh, Siowling; Whitesides, George M

    2014-09-01

    This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media. PMID:25157136

  18. Understanding compassion literacy in nursing through a clinical compassion cafe.

    PubMed

    Winch, Sarah; Henderson, Amanda Jane; Kay, Margaret; Burridge, Letitia Helen; Livesay, Georgia Jane; Sinnott, Michael John

    2014-11-01

    This article presents a method of reconnecting and reaffirming with nurses the importance of compassion in health care by using a clinical compassion cafe, which describes nine steps that provide a forum to reaffirm clinicians' core values. This process has the potential to engage clinical staff in a different modality removed from the usual didactic approaches. PMID:25365185

  19. Interplanetary magnetic field orientation for transient events in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Newell, P. T.

    1995-01-01

    It is generally believed that flux transfer events (FTEs) in the outer dayside magneosphere, usually identified by transient (approximately 1 min) bipolar magneitc field perturbations in the direction normal to the nominal magnetopause, occur when the magnetosheath magetic field has a southward component. We compare the results of three methods for determining the magnetosheath magnetic field orientationat the times of previously identified UKS/IRM events: (1) the average magnetosheath magnetic field orientation in the 30-min period adjacent to the nearest magnetopause crossing, (2) the magnetosheath magnetic field orientation observed just outside the magnetopause, and (3) the lagged interplanetary magnetic field (IMF) orientation at the time of the transient events. Whereas the results of method 2 indicate that the events tend to occur for a southward magnetosheath magnetic field, the results of methods 1 and 3 show no such tnedency. The fact that the three methods yield significantly diffeent results emphasizes the need for caution in future studies.

  20. Spin orientation driven static and dynamic magnetic process in amorphous FeCoBSi thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Peiheng; Luo, Xiaojia; Zhang, Li; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-06-01

    The spin orientation dependence of magnetic hysteresis and microwave ferromagnetic resonance data are investigated in FeCoBSi amorphous thin films. Demagnetization effect allows the weak interface-rooted out-of-plane anisotropy to build up local spin orientation domains under the dominant in-plane anisotropy. As a result, two phase magnetization reversal and double-peak ferromagnetic resonance traces with varying damping behavior are observed. Due to the distribution of in-plane and out-of-plane spin orientations, the ferromagnetic resonance bandwidth has been extensively expanded with the full width at half maximum increased from 1.2 GHz to 3.5 GHz.

  1. (110) grain growth and magnetic properties of thin grain-oriented 3% silicon steel sheets

    SciTech Connect

    Nakano, Masaki; Fukunaga, Hirotoshi; Ishiyama, Kazushi; Arai, Ken Ichi

    1999-09-01

    (110) grain growth and magnetic properties in thin grain-oriented silicon sheets with ultimately low loss were investigated. A final-annealing at 1150 C for 20 min enables us to obtain the thin sheets covered with only (110) grains and consequently the magnetic induction at 800 A/m, B{sub 8} reached 1.9 T.

  2. Prediction of particle orientation in simple upsetting process of NdFeB magnets

    SciTech Connect

    Chang, Chao-Cheng; Hsiao, Po-Jen; You, Jr-Shiang; Chen, Yen-Ju; Chang, Can-Xun

    2013-12-16

    The magnetic properties of NdFeB magnets are strongly affected by crystallographic texture which is highly associated with particle orientation. This study proposed a method for predicting the particle orientation in the simple upsetting process of NdFeB magnets. The method is based on finite element simulation with flow net analysis. The magnets in a cylindrical form were compressed by two flat dies in a chamber filled with argon at 750°C. Three forming speeds were taken into account in order to obtain flow stress curves used in simulations. The micrographs of the cross sections of the deformed magnets show that the particle deformation significantly increases with the compression. The phenomenon was also predicted by the proposed method. Both simulated and experimental results show that the inhomogeneity of the texture of the NdFeB magnets can be increased by the simple upsetting process. The predicted particle orientations were in a good agreement with those examined in the deformed magnets. The proposed method for predicting particle orientations can also be used in other forming processes of NdFeB magnets.

  3. Connecting for compassion.

    PubMed

    Ménage, Diane

    2015-03-01

    On a mission to promote compassion in midwifery practice I was looking for effective methods of sharing and developing my ideas. I recognised the benefits of networking through more traditional methods but was not really utilising social media. Then another midwife encouraged me to use Twitter. Although not particularly confident with social media and unsure about how it could support me professionally, I decided to try it. Six months later I have some new skills and I am part of a dynamic and stimulating online community. This article is a personal account of that learning journey in which I reflect on some of the benefits that I have discovered so far. PMID:26349330

  4. Orientation in the wandering albatross: interfering with magnetic perception does not affect orientation performance.

    PubMed

    Bonadonna, F; Bajzak, C; Benhamou, S; Igloi, K; Jouventin, P; Lipp, H P; Dell'Omo, G

    2005-03-01

    After making foraging flights of several thousands of kilometers, wandering albatrosses (Diomedea exulans) are able to pinpoint a specific remote island where their nests are located. This impressive navigation ability is highly precise but its nature is mysterious. Here we examined whether albatrosses rely on the perception of the Earth's magnetic field to accomplish this task. We disturbed the perception of the magnetic field using mobile magnets glued to the head of nine albatrosses and compared their performances with those of 11 control birds. We then used satellite telemetry to monitor their behavior. We found that the ability of birds to home specific nest sites was unimpaired by this manipulation. In particular, experimental and control birds did not show significant differences with respect to either foraging trip duration, or length, or with respect to homing straightness index. Our data suggest that wandering albatrosses do not require magnetic cues to navigate back to their nesting birds. PMID:15799944

  5. Quantitative vertebral compression fracture evaluation using a height compass

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Burns, Joseph E.; Wiese, Tatjana; Summers, Ronald M.

    2012-03-01

    Vertebral compression fractures can be caused by even minor trauma in patients with pathological conditions such as osteoporosis, varying greatly in vertebral body location and compression geometry. The location and morphology of the compression injury can guide decision making for treatment modality (vertebroplasty versus surgical fixation), and can be important for pre-surgical planning. We propose a height compass to evaluate the axial plane spatial distribution of compression injury (anterior, posterior, lateral, and central), and distinguish it from physiologic height variations of normal vertebrae. The method includes four steps: spine segmentation and partition, endplate detection, height compass computation and compression fracture evaluation. A height compass is computed for each vertebra, where the vertebral body is partitioned in the axial plane into 17 cells oriented about concentric rings. In the compass structure, a crown-like geometry is produced by three concentric rings which are divided into 8 equal length arcs by rays which are subtended by 8 common central angles. The radius of each ring increases multiplicatively, with resultant structure of a central node and two concentric surrounding bands of cells, each divided into octants. The height value for each octant is calculated and plotted against octants in neighboring vertebrae. The height compass shows intuitive display of the height distribution and can be used to easily identify the fracture regions. Our technique was evaluated on 8 thoraco-abdominal CT scans of patients with reported compression fractures and showed statistically significant differences in height value at the sites of the fractures.

  6. Spin orientation, structure, morphology, and magnetic properties of hematite nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, S.; Habib, A. H.; Gee, S. H.; Hong, Y. K.; McHenry, M. E.

    2015-05-01

    Monodisperse hematite (α-Fe2O3) nanoparticles were synthesized by forced hydrolysis of acidic Fe3+ solution. Rietveld analysis was applied to the X-ray powder diffraction data to refine the lattice constants and atomic positions. The lattice constants for a hexagonal unit cell were determined to be a ˜ 0.50327 and c ˜ 1.37521 nm. High resolution transmission electron microscopy was employed to study the morphology of the particles. Atomic scale micrographs and diffraction patterns from several zone axes were obtained. These reveal the high degree of crystallinity of the particles. A series of observations made on the particles by tilting them through a range of ±45° revealed the particles to be micaceous with stacking of platelets with well defined crystallographic orientations. The Morin transition in these nanoparticles was found to occur at 210 K, which is lower temperature than 263 K of bulk hematite. It was ascertained from the previous Mössbauer studies that the spin orientation for nano-sized hematite particle flips from 90° to 28° with respect to the c-axis of the hexagonal structure during the Morin transition, which is in contrast to that observed in bulk hematite where spin orientation flips from 90° to 0°.

  7. Spin orientation, structure, morphology, and magnetic properties of hematite nanoparticles

    SciTech Connect

    Xu, S.; Habib, A. H.; Gee, S. H.; Hong, Y. K.; McHenry, M. E.

    2015-05-07

    Monodisperse hematite (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by forced hydrolysis of acidic Fe{sup 3+} solution. Rietveld analysis was applied to the X-ray powder diffraction data to refine the lattice constants and atomic positions. The lattice constants for a hexagonal unit cell were determined to be a ∼ 0.50327 and c ∼ 1.37521 nm. High resolution transmission electron microscopy was employed to study the morphology of the particles. Atomic scale micrographs and diffraction patterns from several zone axes were obtained. These reveal the high degree of crystallinity of the particles. A series of observations made on the particles by tilting them through a range of ±45° revealed the particles to be micaceous with stacking of platelets with well defined crystallographic orientations. The Morin transition in these nanoparticles was found to occur at 210 K, which is lower temperature than 263 K of bulk hematite. It was ascertained from the previous Mössbauer studies that the spin orientation for nano-sized hematite particle flips from 90° to 28° with respect to the c-axis of the hexagonal structure during the Morin transition, which is in contrast to that observed in bulk hematite where spin orientation flips from 90° to 0°.

  8. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    PubMed Central

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  9. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  10. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I.-Ming

    2014-10-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  11. Orientation of X lines in asymmetric magnetic reconnection—Mass ratio dependency

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.

    2015-09-01

    Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.

  12. Orientation of X Lines in Asymmetric Magnetic Reconnection-Mass Ratio Dependency

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Hesse, M.; Kuznetsova, M.

    2015-01-01

    Using fully kinetic simulations, we study the X line orientation of magnetic reconnection in an asymmetric configuration. A spatially localized perturbation is employed to induce a single X line, which has sufficient freedom to choose its orientation in three-dimensional systems. The effect of ion to electron mass ratio is investigated, and the X line appears to bisect the magnetic shear angle across the current sheet in the large mass ratio limit. The orientation can generally be deduced by scanning through the corresponding 2-D simulations to find the reconnection plane that maximizes the peak reconnection electric field. The deviation from the bisection angle in the lower mass ratio limit is consistent with the orientation shift of the most unstable linear tearing mode in an electron-scale current sheet.

  13. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing

    PubMed Central

    Sabatini, Angelo Maria

    2011-01-01

    User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation. PMID:22319365

  14. The geographical scale factor in orientation of migrating birds

    PubMed

    Alerstam

    1996-01-01

    Migration routes of birds throw light on orientation performance at different geographic scales, over distances ranging from a few kilometres to more than 104 km. Detailed knowledge about the flight routes may be used to test predictions about optimal orientation according to theoretical principles and about the use of compasses based on celestial or magnetic cues. Ringing recoveries demonstrate that the migratory journey of many species, such as the wheatear and willow warbler, is divided into successive legs with different main orientation. Autumn and spring migration routes are often different, sometimes diverging on a continental scale. Aerial radiotracking of whooping cranes in North America and satellite tracking of brent geese migrating from Iceland across the Greenland ice cap point to the significant role of large-scale topography for the shaping of migration routes. Compass and position control are also required, e.g. during long passages across featureless sea or ice, but how these elements are integrated into the birds' orientation system remains unclear. Radar studies from the Arctic Ocean illustrate the importance of map projections for interpreting flight paths and suggest that birds accomplish approximate great circle orientation. Gradual course changes shown by migrating knots monitored by radar in Scandinavia are at variance with expected changes if the birds were to use a star, sun or magnetic compass over longer distances. Accurate recording of short flight segments shows how flying birds respond to visual, audible and electromagnetic cues, and also documents orientation precision and capacity to integrate rapidly shifting courses into a consistent resulting orientation. Analyses of flight patterns are crucial for understanding how birds find and follow their migration routes over different ranges of geographical scale. PMID:9317235

  15. Local Magnetic Properties in Non-oriented Electrical Steel and Their Dependence on Magnetic Easy Axis and Misorientation Parameters

    NASA Astrophysics Data System (ADS)

    Gallaugher, Matthew; Samimi, Arash; Krause, Thomas W.; Clapham, Lynann C.; Chromik, Richard R.

    2015-03-01

    An understanding of how material parameters, especially orientation and misorientation, influence the magnetic properties of non-oriented electrical steel (NOES) is important for improving the efficiency of the material in service. In this study, the local magnetic properties were measured using magnetic Barkhausen noise (MBN) on different test locations on different strips of NOES material. Local variations in magnetic properties, texture, and misorientation were revealed. A new interpretation for misorientation, called the easy axis misorientation (EAM), was created to describe the alignment of the magnetic easy axes between neighboring grains. This new EAM, visualized as a single value parameter or graphed as a distribution, was shown to be more effective at predicting the isotropic magnetic properties than previously used texture parameters based on standard orientation/misorientation definitions. It was found that a larger EAM value, especially when associated with a lower small angle EAM intensity distribution, was associated with a larger MBN energy. A larger MBN energy has been previously associated with lower losses, and therefore a greater material efficiency.

  16. Assembling a COMPASS.

    PubMed

    Couture, Jean-Francois; Skiniotis, Georgios

    2013-04-01

    Post-translational modifications of histone proteins lie at the heart of the epigenetic landscape in the cell's nucleus and the precise regulation of gene expression. A myriad of studies have showed that several histone-modifying enzymes are controlled by modulatory protein partner subunits and other post-transcriptional modifications deposited in the vicinity of the targeted site. All together, these mechanisms create an intricate network of interactions that regulate enzymatic activities and ultimately control the site-specific deposition of covalent modifications. In this Point-of-View, we discuss our evolving understanding on the assembly and architecture of histone H3 Lys-4 (H3K4) methyltransferase COMPASS complexes and the techniques that progressively allowed us to better define the molecular basis of complex formation and function. We further briefly discuss some of the challenges lying ahead and additional approaches required to understand mechanistic details for the function of such complexes. PMID:23470558

  17. Effects of Instructional Technology Integration Strategies in Orientation Programs on Nurse Retention in Magnet and Non-Magnet Hospitals

    ERIC Educational Resources Information Center

    Hancharik, Sharon D.

    2008-01-01

    This applied dissertation study was designed to learn if the increased use of instructional technology integration strategies in nursing orientation programs resulted in an increased retention of new nurses. The study attempted to uncover the current retention rate and use of technology at the participating hospitals. The data obtained from Magnet

  18. Orientation and open-sea navigation in sea turtles

    PubMed

    Lohmann; Lohmann

    1996-01-01

    Loggerhead sea turtle hatchlings (Caretta caretta L.) emerge from underground nests, scramble to the sea and begin a transoceanic migration by swimming away from their natal beach and into the open ocean. Evidence suggests that hatchlings sequentially use three different sets of cues to maintain orientation during their initial migration offshore. While on the beach, hatchlings find the ocean by crawling towards the lower, brighter seaward horizon and away from the dark, elevated silhouettes of vegetation and dunes. Upon entering the ocean, turtles initially orient seawards by swimming into waves, which can be detected as orbital movements from under water. Laboratory experiments have demonstrated that turtles can transfer a course initiated on the basis of waves or visual cues to a course mediated by a magnetic compass. Thus, by setting a magnetic course on the basis of nearshore cues that indicate the seaward direction, hatchlings may continue on offshore headings after entering deep water beyond sight of land. Sea turtles may use the earth's magnetic field not only as a cue for compass orientation but also as a source of world-wide positional information. Recent experiments have demonstrated that loggerheads can detect subtle differences in magnetic field inclination and intensity, two geomagnetic features that vary across the surface of the earth. Because most nesting beaches and oceanic regions are marked by a unique combination of these features, these findings raise the possibility that adult sea turtles navigate using a bicoordinate magnetic map. PMID:9317364

  19. Sensitive chemical compass assisted by quantum criticality

    NASA Astrophysics Data System (ADS)

    Cai, C. Y.; Ai, Qing; Quan, H. T.; Sun, C. P.

    2012-02-01

    A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction. The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup, inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of weak magnetic fields.

  20. The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury's surface

    NASA Astrophysics Data System (ADS)

    Varela, J.; Pantellini, F.; Moncuquet, M.

    2015-12-01

    The aim of this paper is to study the plasma flows on the Mercury surface for different interplanetary magnetic field orientations on the day side of the planet. We use a single fluid MHD model in spherical coordinates to simulate the interaction of the solar wind with the Hermean magnetosphere for six solar wind realistic configurations with different magnetic field orientations: Mercury-Sun, Sun-Mercury, aligned with the magnetic axis of Mercury (Northward and Southward) and with the orbital plane perpendicular to the previous cases. In the Mercury-Sun (Sun-Mercury) simulation the Hermean magnetic field is weakened in the South-East (North-East) of the magnetosphere leading to an enhancement of the flows on the South (North) hemisphere. For a Northward (Southward) orientation there is an enhancement (weakening) of the Hermean magnetic field in the nose of the bow shock so the fluxes are reduced and drifted to the poles (enhanced and drifted to the equator). If the solar wind magnetic field is in the orbital plane the magnetosphere is tilted to the West (East) and weakened at the nose of the shock, so the flows are enhanced and drifted to the East (West) in the Northern hemisphere and to the West (East) in the Southern hemisphere.

  1. Using an electronic compass to determine telemetry azimuths

    USGS Publications Warehouse

    Cox, R.R., Jr.; Scalf, J.D.; Jamison, B.E.; Lutz, R.S.

    2002-01-01

    Researchers typically collect azimuths from known locations to estimate locations of radiomarked animals. Mobile, vehicle-mounted telemetry receiving systems frequently are used to gather azimuth data. Use of mobile systems typically involves estimating the vehicle's orientation to grid north (vehicle azimuth), recording an azimuth to the transmitter relative to the vehicle azimuth from a fixed rosette around the antenna mast (relative azimuth), and subsequently calculating an azimuth to the transmitter (animal azimuth). We incorporated electronic compasses into standard null-peak antenna systems by mounting the compass sensors atop the antenna masts and evaluated the precision of this configuration. This system increased efficiency by eliminating vehicle orientation and calculations to determine animal azimuths and produced estimates of precision (azimuth SD=2.6 deg., SE=0.16 deg.) similar to systems that required orienting the mobile system to grid north. Using an electronic compass increased efficiency without sacrificing precision and should produce more accurate estimates of locations when marked animals are moving or when vehicle orientation is problematic.

  2. Orientation of migratory birds under ultraviolet light.

    PubMed

    Wiltschko, Roswitha; Munro, Ursula; Ford, Hugh; Stapput, Katrin; Thalau, Peter; Wiltschko, Wolfgang

    2014-05-01

    In view of the finding that cryptochrome 1a, the putative receptor molecule for the avian magnetic compass, is restricted to the ultraviolet single cones in European Robins, we studied the orientation behaviour of robins and Australian Silvereyes under monochromatic ultraviolet (UV) light. At low intensity UV light of 0.3 mW/m(2), birds showed normal migratory orientation by their inclination compass, with the directional information originating in radical pair processes in the eye. At 2.8 mW/m(2), robins showed an axial preference in the east-west axis, whereas silvereyes preferred an easterly direction. At 5.7 mW/m(2), robins changed direction to a north-south axis. When UV light was combined with yellow light, robins showed easterly 'fixed direction' responses, which changed to disorientation when their upper beak was locally anaesthetised with xylocaine, indicating that they were controlled by the magnetite-based receptors in the beak. Orientation under UV light thus appears to be similar to that observed under blue, turquoise and green light, albeit the UV responses occur at lower light levels, probably because of the greater light sensitivity of the UV cones. The orientation under UV light and green light suggests that at least at the level of the retina, magnetoreception and vision are largely independent of each other. PMID:24718656

  3. Fibrinogen and fibrin structure and fibrin formation measured by using magnetic orientation.

    PubMed Central

    Freyssinet, J M; Torbet, J; Hudry-Clergeon, G; Maret, G

    1983-01-01

    Accurate birefringence measurements show that fibrinogen orients to a small degree in high magnetic fields. This effect can be explained as due to the molecule having about 30% (by weight) alpha-helix oriented relatively parallel to the long axis. Birefringence measurements on fully oriented fibrin suggest that aligned alpha-helical content is less than that estimated for fibrinogen. But because of limitations in the analysis this difference must be viewed with caution. Highly oriented fibrin results when polymerization takes place slowly in a strong magnetic field. Low-angle neutron diffraction patterns from oriented fibrin made in the presence of EDTA, made in the presence of calcium, or stabilized with factor XIIIa are very similar, showing that the packing of the molecules within the fibers is the same or very similar in these different preparations. The induced magnetic birefringence was used to follow fibrin formation under conditions in which thrombin was rate limiting. The fiber network formed by approximately the gelation point constitutes a kind of matrix or frame that is largely built upon during the remaining approximately 85% of the reaction. After gelation the reaction is pseudo-first order. PMID:6572926

  4. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  5. Orientation Dependence of the Critical Magnetic Field for Multiferroic BiFeO3

    SciTech Connect

    Fishman, Randy Scott

    2013-01-01

    Multiferroic BiFeO3 undergoes a transition from a distorted spiral phase to a G-type antiferromagnet above a critical field Hc that depends on the orientation m of the field. We show that Hc(m) has a maximum when oriented along a cubic diagonal parallel to the electric polarization P and a minimum in the equatorial plane normal to P when two magnetic domains with the highest critical fields are degenerate. The measured critical field along a cubic axis is about 19 T but Hc is predicted to vary by as much as 2.5 T above and below this value. The orientational dependence of Hc(m) is more complex than indicated by earlier work, which did not consider the competition between magnetic domains.

  6. Spin orientation driven static and dynamic magnetic process in amorphous FeCoBSi thin films

    SciTech Connect

    Zhou, Peiheng; Luo, Xiaojia; Zhang, Li; Lu, Haipeng; Xie, Jianliang; Deng, Longjiang

    2015-06-07

    The spin orientation dependence of magnetic hysteresis and microwave ferromagnetic resonance data are investigated in FeCoBSi amorphous thin films. Demagnetization effect allows the weak interface-rooted out-of-plane anisotropy to build up local spin orientation domains under the dominant in-plane anisotropy. As a result, two phase magnetization reversal and double-peak ferromagnetic resonance traces with varying damping behavior are observed. Due to the distribution of in-plane and out-of-plane spin orientations, the ferromagnetic resonance bandwidth has been extensively expanded with the full width at half maximum increased from 1.2 GHz to 3.5 GHz.

  7. 78 FR 35073 - Compass Efficient Model Portfolios, LLC and Compass EMP Funds Trust; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Compass Efficient Model Portfolios, LLC and Compass EMP Funds Trust; Notice of Application June 4.... Applicants: Compass Efficient Model Portfolios, LLC (the ``Adviser'') and Compass EMP Funds Trust...

  8. Effect of a weak transverse magnetic field on the morphology and orientation of directionally solidified Al-Ni alloys

    NASA Astrophysics Data System (ADS)

    Li, Hanxiao; Fautrelle, Yves; Hou, Long; Du, Dafan; Zhang, Yikun; Ren, Zhongming; Lu, Xionggang; Moreau, Rene; Li, Xi

    2016-02-01

    The influence of a weak transverse magnetic field on the morphology and orientation of Al3Ni dendrites in directionally solidified Al-12 wt% Ni alloys was investigated. The experimental results indicated that the magnetic field caused segregation. It was also found that the application of a magnetic field decreased the primary dendrite spacing. By means of electronic backscatter diffraction (EBSD) analysis, the orientation of the Al3Ni dendrite was studied. In the case of no magnetic field, the <010> crystal direction of the Al3Ni crystal was oriented along the solidification direction. When a transverse magnetic field was applied, the <001> crystal direction rotated to the magnetic field direction, whereas the <010> crystal direction remained oriented along the solidification direction. The above experimental results are discussed in the context of thermoelectric magnetic convection (TEMC) and crystal anisotropy.

  9. Incorporating Orienteering in School Programs.

    ERIC Educational Resources Information Center

    Bradford, Douglas

    Orienteering has been described as being "either a serious sport, or a relaxing recreation". Orienteering can be a family affair or an individual fight against the clock. In its simplest form, orienteering can be described as a cross-country run, jog, or walk on a predetermined course, using a map and a compass to find several control points on…

  10. Two-axis piezo rotator for orienting samples in magnetic fields at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Fox, Eli; Bestwick, Andrew; Sharpe, Aaron; Goldhaber-Gordon, David; Lindenberg, Tobias; Pickert, Thomas; Otto, Florian

    2015-03-01

    The ability to apply large magnetic fields in any arbitrarily-chosen direction with angular precision at the millikelvin temperature scale enables a range of condensed matter experiments. Here we report on the integration of a custom attocube 2-axis rotary stepper positioner, with the ability to rotate a sample over the full 3D sphere with milli-degree precision, into a cryogen-free, top-loading dilution refrigerator with a single-axis 14 T magnet. We discuss technical details of the rotator unit, refrigerator probe wiring and construction, and proof-of-principle measurements demonstrating precise closed loop control of magnetic field orientation.

  11. Optimal orientations of the magnetizing field and crystal lattice of a ferrite film in spin-wave devices

    NASA Astrophysics Data System (ADS)

    Shagaev, V. V.; Tun Lin, Tun

    2016-02-01

    A method of stabilization of the uniform ferromagnetic resonance frequency in a film is considered. From a condition of equality to zero of frequency derivatives with respect to magnetization and anisotropy field the angles defining crystallographic orientation of a film and its orientation in a magnetic field are calculated. The choice of such angles allows to minimize external factors influence on frequency.

  12. Transport driven plasma flows in the scrape-off layer of ADITYA Tokamak in different orientations of magnetic field

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V.

    2014-06-15

    Parallel plasma flows in the scrape-off layer of ADITYA tokamak are measured in two orientations of total magnetic field. In each orientation, experiments are carried out by reversing the direction of the toroidal magnetic field and the plasma current. The transport-driven component is determined by averaging flow Mach numbers, measured in two directions of the toroidal magnetic field and the plasma current for the same orientation. It is observed that there is a significant transport-driven component in the measured flow and the component depends on the field orientation.

  13. Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration.

    PubMed

    Antman-Passig, Merav; Shefi, Orit

    2016-04-13

    Hydrogel matrices are valuable platforms for neuronal tissue engineering. Orienting gel fibers to achieve a directed scaffold is important for effective functional neuronal regeneration. However, current methods are limited and require treatment of gels prior to implantation, ex-vivo, without taking into consideration the pathology in the injured site. We have developed a method to control gel orientation dynamically and remotely in situ. We have mixed into collagen hydrogels magnetic nanoparticles then applied an external magnetic field. During the gelation period the magnetic particles aggregated into magnetic particle strings, leading to the alignment of the collagen fibers. We have shown that neurons within the 3D magnetically induced gels exhibited normal electrical activity and viability. Importantly, neurons formed elongated cooriented morphology, relying on the particle strings and fibers as supportive cues for growth. The ability to inject the mixed gel directly into the injured site as a solution then to control scaffold orientation remotely opens future possibilities for therapeutic engineered scaffolds. PMID:26943183

  14. Preparation of non-oriented silicon steel with high magnetic induction using columnar grains

    NASA Astrophysics Data System (ADS)

    Cheng, Ling; Yang, Ping; Fang, Yupei; Mao, Weimin

    2012-11-01

    Columnar grains can lead to detrimental surface ridging and an inhomogeneous microstructure, although their {1 0 0}<0 v w> texture is considered desirable due to their good magnetic properties in non-oriented silicon steel. Based on the hereditary tendency of {1 0 0}<0 v w> texture, the effects of lubrication and heating rate on texture and on final magnetic properties were investigated using a cast slab containing 100% columnar grains. Hot rolling with lubrication, normalization at low heating rate, two-stage cold rolling, and final annealing at 1000 °C helped achieve high performance. As a result, a new non-oriented silicon steel with high magnetic induction (B50=1.82 T) and low core loss (P1.5=2.35 W/kg) was prepared. The possibility of further performance optimization was also discussed.

  15. Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays

    PubMed Central

    2010-01-01

    Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370–520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively. PMID:20676211

  16. Biophysics of Magnetic Orientation: Radical Pairs, Biogenic Magnetite, or both?

    NASA Astrophysics Data System (ADS)

    Kirschvink, Joe

    2011-03-01

    Two major biophysical mechanisms for magnetoreception in terrestrial animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, have been the subject of experiment and debate for the past 30 years. The magnetite hypothesis has stood the test of time: biogenic magnetite is synthesized biochemically in Bacteria, Protists, and numerous Animal phyla, as well as in some plants. Chains of single-domain crystals have been detected by clean-lab based SQUID magnetometry in animal tissues in all major phyla, followed by high-resolution TEM in selected model organisms, as well as by electrophysiological studies demonstrating the role of the ophthalmic branch of the trigeminal nerve in the magnetoreceptive process. Pulse-remagnetization - configured to uniquely flip the polarity of single-domain ferromagnets - has dramatic effects on the behavior of many birds, honeybees, mole rats, turtles, and bats, to cite a growing list. Magnetite-containing cells in the vicinity of these neurons in fish are now the subject of intense study by our consortium. The existence of a specialized class of magnetite-containing magnetoreceptor cells in animal tissues is no longer controversial. In contrast, less success has been achieved in gaining experimental support across a range of taxa for the radical-pair hypothesis. Although this mechanism was proposed to explain an early observation that birds would not respond to complete inversion of the magnetic vector, many organisms (even some birds) do indeed respond to the field polarity. We also note that few, if any, of these critical experiments have been done using fully double-blind methods. This is joint work with: M. M. Walker (University of Auckland, New Zealand) and M. Winklhofer (LMU Munich, Germany).

  17. Compassion, compassion fatigue, and burnout: key insights for oncology professionals.

    PubMed

    Back, Anthony L; Deignan, Paul F; Potter, Patricia A

    2014-01-01

    When cancer care clinicians become stressed, sad, isolated--and unaware of this--they are placing themselves at risk for burnout and their patients at risk for suboptimal care. Despite their best intentions, clinicians can sink from a healthy work state of compassion, empathy, and well-being into compassion fatigue and burnout. Lessons from first responders demonstrate the importance for clinicians to recognize the warning signs of compassion and fatigue and burnout, as this recognition can enable them to take action towards prevention and/or recovery. The recognition of these issues as a threat to clinician performance has outstripped the development of evidence-based interventions, but interventions tested to date are effective, feasible, and scalable. These interventions could be incorporated systematically into cancer care. PMID:24857139

  18. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms

    PubMed Central

    Mouritsen, Henrik; Frost, Barrie J.

    2002-01-01

    A newly developed flight simulator allows monarch butterflies to fly actively for up to several hours in any horizontal direction while their fall migratory flight direction can be continuously recorded. From these data, long segments of virtual flight paths of tethered, flying, migratory monarch butterflies were reconstructed, and by advancing or retarding the butterflies' circadian clocks, we have shown that they possess a time-compensated sun compass. Control monarchs on local time fly approximately southwest, those 6-h time-advanced fly southeast, and 6-h time-delayed butterflies fly in northwesterly directions. Moreover, butterflies flown in the same apparatus under simulated overcast in natural magnetic fields were randomly oriented and did not change direction when magnetic fields were rotated. Therefore, these experiments do not provide any evidence that monarch butterflies use a magnetic compass during migration. PMID:12107283

  19. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms.

    PubMed

    Mouritsen, Henrik; Frost, Barrie J

    2002-07-23

    A newly developed flight simulator allows monarch butterflies to fly actively for up to several hours in any horizontal direction while their fall migratory flight direction can be continuously recorded. From these data, long segments of virtual flight paths of tethered, flying, migratory monarch butterflies were reconstructed, and by advancing or retarding the butterflies' circadian clocks, we have shown that they possess a time-compensated sun compass. Control monarchs on local time fly approximately southwest, those 6-h time-advanced fly southeast, and 6-h time-delayed butterflies fly in northwesterly directions. Moreover, butterflies flown in the same apparatus under simulated overcast in natural magnetic fields were randomly oriented and did not change direction when magnetic fields were rotated. Therefore, these experiments do not provide any evidence that monarch butterflies use a magnetic compass during migration. PMID:12107283

  20. Orientational dynamics of a ferronematic liquid crystal in a rotating magnetic field

    SciTech Connect

    Boychuk, A. N. Zakhlevnykh, A. N.; Makarov, D. V.

    2015-09-15

    The behavior of the orientational structure of a ferronematic in a rotating uniform magnetic field is investigated using the continual theory. The time-dependent system of equations describing the dynamics of the ferronematic is derived. The dependences of the angles of rotation of the director and of the magnetization of the ferronematic on the velocity of field rotation are determined for various values of the material parameters. Two regimes (synchronous and asynchronous) of rotation of the ferronematic structure are detected. In the synchronous regime, the director rotates with the frequency of the magnetic field and a constant phase delay. The asynchronous regime is characterized by a time-dependent phase delay. The dependence of the critical angular velocity of magnetic field rotation, which determines the boundary between the synchronous and asynchronous regimes, on the magnetic field strength is derived.

  1. Orientational dynamics of a ferronematic liquid crystal in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Boychuk, A. N.; Zakhlevnykh, A. N.; Makarov, D. V.

    2015-09-01

    The behavior of the orientational structure of a ferronematic in a rotating uniform magnetic field is investigated using the continual theory. The time-dependent system of equations describing the dynamics of the ferronematic is derived. The dependences of the angles of rotation of the director and of the magnetization of the ferronematic on the velocity of field rotation are determined for various values of the material parameters. Two regimes (synchronous and asynchronous) of rotation of the ferronematic structure are detected. In the synchronous regime, the director rotates with the frequency of the magnetic field and a constant phase delay. The asynchronous regime is characterized by a time-dependent phase delay. The dependence of the critical angular velocity of magnetic field rotation, which determines the boundary between the synchronous and asynchronous regimes, on the magnetic field strength is derived.

  2. Rousseau and the Education of Compassion

    ERIC Educational Resources Information Center

    White, Richard

    2008-01-01

    In this paper I examine Rousseau's strategy for teaching compassion in "Book Four of Emile." In particular, I look at the three maxims on compassion that help to organise Rousseau's discussion, and the precise strategy that Emile's tutor uses to instil compassion while avoiding other passions, such as anger, fear and pride. The very idea of an…

  3. Rousseau and the Education of Compassion

    ERIC Educational Resources Information Center

    White, Richard

    2008-01-01

    In this paper I examine Rousseau's strategy for teaching compassion in "Book Four of Emile." In particular, I look at the three maxims on compassion that help to organise Rousseau's discussion, and the precise strategy that Emile's tutor uses to instil compassion while avoiding other passions, such as anger, fear and pride. The very idea of an

  4. Compassion: An Evolutionary Analysis and Empirical Review

    ERIC Educational Resources Information Center

    Goetz, Jennifer L.; Keltner, Dacher; Simon-Thomas, Emiliana

    2010-01-01

    What is compassion? And how did it evolve? In this review, we integrate 3 evolutionary arguments that converge on the hypothesis that compassion evolved as a distinct affective experience whose primary function is to facilitate cooperation and protection of the weak and those who suffer. Our empirical review reveals compassion to have distinct…

  5. Self-Compassion and Automatic Thoughts

    ERIC Educational Resources Information Center

    Akin, Ahmet

    2012-01-01

    The aim of this research is to examine the relationships between self-compassion and automatic thoughts. Participants were 299 university students. In this study, the Self-compassion Scale and the Automatic Thoughts Questionnaire were used. The relationships between self-compassion and automatic thoughts were examined using correlation analysis…

  6. Self-Compassion and Interpersonal Cognitive Distortions

    ERIC Educational Resources Information Center

    Akin, Ahmet

    2010-01-01

    The purpose of this study is to examine the relationships between self-compassion and interpersonal cognitive distortions. Participants were 338 university students. In this study, the Self-compassion Scale and the Interpersonal Cognitive Distortions Scale were used. The relationships between self-compassion and interpersonal cognitive distortions…

  7. In search of the sky compass in the insect brain

    NASA Astrophysics Data System (ADS)

    Homberg, Uwe

    Like many vertebrate species, insects rely on a sun compass for spatial orientation and long- range navigation. In addition to the sun, however, insects can also use the polarization pattern of the sky as a reference for estimating navigational directions. Recent analysis of polarization vision pathways in the brain of orthopteroid insects sheds some light onto brain areas that might act as internal navigation centers. Here I review the significance, peripheral mechanisms, and central processing stages for polarization vision in insects with special reference to the locust Schistocerca gregaria. As in other insect species, polarization vision in locusts relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Stages in the brain involved in polarized light signaling include specific areas in the lamina, medulla and lobula of the optic lobe and, in the midbrain, the anterior optic tubercle, the lateral accessory lobe, and the central complex. Integration of polarized-light signals with information on solar position appears to start in the optic lobe. In the central complex, polarization-opponent interneurons form a network of interconnected neurons. The organization of the central complex, its connections to thoracic motor centers, and its involvement in the spatial control of locomotion strongly suggest that it serves as a spatial organizer within the insect brain, including the functions of compass orientation and path integration. Time compensation in compass orientation is possibly achieved through a neural pathway from the internal circadian clock in the accessory medulla to the protocerebral bridge of the central complex.

  8. Anomalous Magnetic Orientations of Magnetosome Chains in a Magnetotactic Bacterium: Magnetovibrio blakemorei Strain MV-1

    PubMed Central

    Kalirai, Samanbir S.; Bazylinski, Dennis A.; Hitchcock, Adam P.

    2013-01-01

    There is a good deal of published evidence that indicates that all magnetosomes within a single cell of a magnetotactic bacterium are magnetically oriented in the same direction so that they form a single magnetic dipole believed to assist navigation of the cell to optimal environments for their growth and survival. Some cells of the cultured magnetotactic bacterium Magnetovibrio blakemorei strain MV-1 are known to have relatively wide gaps between groups of magnetosomes that do not seem to interfere with the larger, overall linear arrangement of the magnetosomes along the long axis of the cell. We determined the magnetic orientation of the magnetosomes in individual cells of this bacterium using Fe 2p X-ray magnetic circular dichroism (XMCD) spectra measured with scanning transmission X-ray microscopy (STXM). We observed a significant number of cases in which there are sub-chains in a single cell, with spatial gaps between them, in which one or more sub-chains are magnetically polarized opposite to other sub-chains in the same cell. These occur with an estimated frequency of 4.0±0.2%, based on a sample size of 150 cells. We propose possible explanations for these anomalous cases which shed insight into the mechanisms of chain formation and magnetic alignment. PMID:23308202

  9. Orientational control of block copolymer microdomains by sub-tesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Gopinadhan, Manesh; Choo, Youngwoo; Feng, Xunda; Kawabata, Kohsuke; di, Xiaojun; Osuji, Chinedum

    Magnetic fields offer a versatile approach to controlling the orientation of block copolymer (BCP) microdomains during self-assembly. To date however, such control has required the imposition of large magnetic fields (>3T), necessitating the use of complex magnet systems - either superconducting or very large conventional resistive magnets. Here we demonstrate the ability to direct BCP self-assembly using considerably smaller fields (<1T) which are accessible using simple rare-earth permanent magnets. The low field alignment is enabled by the presence of small quantities of mesogenic species that are blended into, and co-assemble with the liquid crystalline (LC) mesophase of the side-chain LC BCP under study. In situ SAXS experiments reveal a pronounced dependence of the critical alignment field strength on the stoichiometry of the blend, and the ability to generate aligned microdomains with orientational distribution coefficients exceeding 0.95 at sub-1 T fields for appropriate stoichiometries. The alignment response overall can be rationalized in terms of increased mobility and grain size due to the presence of the mesogenic additive. We use a permanent magnet to fabricate films with aligned nanopores, and the utility of this approach to generate complex BCP microdomain patterns in thin films by local field screening are highlighted. NSF DMR-1410568 and DMR-0847534.

  10. The link between magnetic fields and filamentary clouds: bimodal cloud orientations in the Gould Belt

    NASA Astrophysics Data System (ADS)

    Li, Hua-bai; Fang, Min; Henning, Thomas; Kainulainen, Jouni

    2013-12-01

    The orientations of filamentary molecular clouds in the Gould Belt and their local intercloud media (ICM) magnetic fields are studied using near-infrared dust extinction maps and optical stellar polarimetry data. These filamentary clouds are a few-to-10 pc in length, and we find that their orientations tend to be either parallel or perpendicular to the mean field directions of the local ICM. This bimodal distribution is not found in cloud simulations with super-Alfvénic turbulence, in which the cloud orientations should be random. ICM magnetic fields that are dynamically important compared to inertial range turbulence and self-gravity can readily explain both field-filament configurations. Previous studies commonly recognize that strong magnetic fields can guide gravitational contraction and result in filaments perpendicular to them, but few discuss the fact that magnetic fields can also channel sub-Alfvénic turbulence to form filaments aligned with them. This strong-field scenario of cloud formation is also consistent with the constant field strength observed from ICM to clouds and is possible to explain the `hub-filament' cloud structure and the density threshold of cloud gravitational contraction.

  11. Crystal-oriented tungsten-bronze type ceramics prepared by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Doshida, Y.; Shimizu, H.; Furushima, R.; Uematsu, K.

    2011-03-01

    Forming and sintering of c-axis-oriented Sr2NaNb5O15 (SNN) ceramics were examined. Particle-oriented SNN was fabricated by using a rotating high magnetic field and subsequent sintering without magnetic field. SNN ceramics are tungsten-bronze-type ferroelectric materials with a tetragonal crystal system. The diamagnetic susceptibilities of the c-axis are smaller than that of the a- and b-axis (χc < χa,b < 0). SNN powder was prepared by conventional solid-state reaction. The synthesized powder was mixed with distilled water and a dispersant by using ball milling to give a slurry with solid loading of 30 vol%. The slurry was poured into a plastic mold and this was placed in a 10Tesla magnetic field in a superconducting magnet. The mold was rotated at 30 rpm while the slurry dried at room temperature. The resulting powder compact with a columnar shape was heated at 5 K/min to 1473 K, held for 6 h, and then heated at 1525 K for 2 h to prevent exaggerated grain growth. XRD patterns showed that c-axis-oriented SNN polycrystalline ceramics were produced in the presence of the rotating magnetic field. In XRD patterns viewed from the top surface of the sintered specimens, peaks from the c-planes of the crystal, such as 001 and 002, were very strong. Diffraction peaks which were very strong in the ceramics, such as 320 and 410, were absent in the specimen. Oriented microstructure was developed well by sintering. Grain-growth along to c-axis was observed in the SNN ceramics heated at 1525 K.

  12. Distinctive uniaxial magnetic anisotropy and positive magnetoresistance in (110)-oriented Fe3O4 films

    NASA Astrophysics Data System (ADS)

    Dho, Joonghoe; Kim, Byeong-geon; Ki, Sanghoon

    2015-04-01

    Magnetite (Fe3O4) films were synthesized on (110)-oriented MgO, MgAl2O4, and SrTiO3 substrates for comparative studies of the substrates' effects on magnetic and magnetoresistance properties of the films. For the [-110] direction, the hysteresis loops of the Fe3O4 film on MgAl2O4 exhibited a good squareness with the largest coercivity of ˜1090 Oe, and the ratio of remanent magnetization to saturation magnetization was ˜0.995. For the [001] direction, positive magnetoresistance in weak magnetic fields was most distinct for the (110) SrTiO3 substrate with the largest lattice mismatch. Positive magnetoresistance in the (110) Fe3O4 films was presumably affected by imperfect atomic arrangements at anti-phase boundaries.

  13. Field concentration and temperature dependence of fluorescence polarization of magnetically oriented chloroplasts.

    PubMed Central

    Papp, E; Meszéna, G

    1982-01-01

    Chloroplasts in higher magnetic fields align with their equatorial plane perpendicular to the field. Because of the nonrandom orientation of the chromophores in the membrane the fluorescence radiation will be partially polarized. The chloroplast concentration, magnetic field, and temperature dependence of the fluorescence polarization has been investigated. The results are compared with a simplified model calculation. It is shown that the concentration dependence can be related to the linear dichroism of the fluorescence radiation and self-adsorption. Taking these effects into account results in the calculation of a higher fluorescence polarization (FP) ratio and higher inclination of chlorophyll dipoles to the membrane plane. Analyzing the magnetic field dependence of the FP ratio, we conclude that in a magnetic field not only will be chloroplasts be aligned, but the thylakoid stacks as well. A decrease in the FP ratio was observed around 20 degrees C. It is suggested that this decrease reflects a phase transition in the photosynthetic membrane. PMID:7104444

  14. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature.

    PubMed

    Phillips, L C; Cherifi, R O; Ivanovskaya, V; Zobelli, A; Infante, I C; Jacquet, E; Guiblin, N; Ünal, A A; Kronast, F; Dkhil, B; Barthélémy, A; Bibes, M; Valencia, S

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  15. Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model

    PubMed Central

    Wu, Fang; Moon, Seung Ki; Son, Hungsun

    2014-01-01

    This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage. On the other hand, an analytical method provides simple and fast-computing solutions but is also flawed due to its difficulties in handling realistic and complex geometries such as complicated designs and boundary conditions, etc. In this paper, the extended distributed multi-pole model (eDMP) is developed to characterize a time-varying magnetic field based on an existing DMP model analyzing static magnetic fields. The method has been further exploited to compute the mutual inductance between coils at arbitrary locations and orientations. Simulation and experimental results of various configurations of the coils are presented. Comparison with the previously published data shows not only good performance in accuracy, but also effectiveness in computation. PMID:24977389

  16. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature

    PubMed Central

    Phillips, L. C.; Cherifi, R. O.; Ivanovskaya, V.; Zobelli, A.; Infante, I. C.; Jacquet, E.; Guiblin, N.; Ünal, A. A.; Kronast, F.; Dkhil, B.; Barthélémy, A.; Bibes, M.; Valencia, S.

    2015-01-01

    Ferroic materials (ferromagnetic, ferroelectric, ferroelastic) usually divide into domains with different orientations of their order parameter. Coupling between different ferroic systems creates new functionalities, for instance the electrical control of macroscopic magnetic properties including magnetization and coercive field. Here we show that ferroelastic domains can be used to control both magnetic order and magnetization direction at the nanoscale with a voltage. We use element-specific X-ray imaging to map the magnetic domains as a function of temperature and voltage in epitaxial FeRh on ferroelastic BaTiO3. Exploiting the nanoscale phase-separation of FeRh, we locally interconvert between ferromagnetic and antiferromagnetic states with a small electric field just above room temperature. Imaging and ab initio calculations show the antiferromagnetic phase of FeRh is favoured by compressive strain on c-oriented BaTiO3 domains, and the resultant magnetoelectric coupling is larger and more reversible than previously reported from macroscopic measurements. Our results emphasize the importance of nanoscale ferroic domain structure and the promise of first-order transition materials to achieve enhanced coupling in artificial multiferroics. PMID:25969926

  17. Effects of variation in solar conditions and crustal sources' orientation on the Martian magnetic field topology

    NASA Astrophysics Data System (ADS)

    Ulusen, D.; Luhmann, J. G.; Ma, Y.; Brain, D. A.

    2013-12-01

    Strong crustal magnetic sources on the surface of Mars directly interact with the solar magnetic field and plasma, resulting a very dynamic environment near the planet. Effects of the orientation of these remnant magnetic sources with respect to the sun and variation of the solar conditions on the Martian plasma interaction have been investigated in a previous paper. In this previous study, magnetic topology maps obtained from ~7 years of Mars Global Surveyor (MGS) directional electron observations (obtained by Dave Brain) were compared with the topology maps obtained from a set of BATS-R-US MHD simulations for Mars. One conclusion from this study was that although the MHD model is consistent with the data and provides insight about the global magnetic field topology variation with changing crustal field orientation and solar parameters, detailed investigation of local effects is difficult due to MGS orbital bias. Moreover, proper comparison of the observations with the model requires more careful data selection rather than using 7 years time averages. In this paper, we readdress the study to tackle the problems of our previous work by performing more detailed data analysis and present the results of the updated model-data comparison.

  18. Magnetic and transport properties of Mn2CoAl oriented films

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.; Assaf, Badih A.; Devakul, Trithep; Heiman, Don

    2013-09-01

    The structure, magnetic, and transport properties of thin films of the Heusler ferrimagnet Mn2CoAl have been investigated for properties related to spin gapless semiconductors. Oriented films were grown by molecular beam epitaxy on GaAs substrates and the structure was found to transform from tetragonal to cubic for increasing annealing temperature. The anomalous Hall resistivity is found to be proportional to the square of the longitudinal resistivity and magnetization expected for a topological Berry curvature origin. A delicate balance of the spin-polarized carrier type when coupled with voltage gate-tuning could significantly impact advanced electronic devices.

  19. Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO.

    PubMed Central

    Sanders, C R; Prestegard, J H

    1990-01-01

    Buffered mixtures of the detergent 3-(cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate (CHAPSO) and dimyristoylphosphatidylcholine (DMPC) orient in the presence of a strong magnetic field over a wide range of water contents (at least 65-85%) and CHAPSO:DMPC molar ratios (typically 1:10-1:3). 31P NMR studies show that the phospholipid in such mixtures is oriented with its director axis perpendicular to the magnetic field. 31P and 2H NMR results also suggest that the structure and dynamics of the DMPC molecules are similar to that of pure phospholipids existing in the liquid crystalline (L alpha) bilayer phase. The ability of 1:5 CHAPSO:DMPC samples to orient is highly tolerant of large changes in temperature, pH, and ionic strength, as well as to the addition of substantial amounts of charged amphiphiles or soluble protein. However, 2H NMR studies of deuterated beta-dodecyl melibiose (DD-MB) solubilized in the system indicate the head group conformation and/or dynamics of this glycolipid analogue is dependent upon the CHAPSO concentration. Despite the latter results, the orientational versatility of the system, together with the nondenaturing properties of CHAPSO, makes this system useful in spectroscopic studies of membrane-associated phenomena. PMID:2207249

  20. Orientational dynamics of colloidal ribbons self-assembled from microscopic magnetic ellipsoids.

    PubMed

    Martinez-Pedrero, Fernando; Cebers, Andrejs; Tierno, Pietro

    2016-04-20

    We combine experiments and theory to investigate the orientational dynamics of dipolar ellipsoids, which self-assemble into elongated ribbon-like structures due to the presence of a permanent magnetic moment, perpendicular to the long axis in each particle. Monodisperse hematite ellipsoids are synthesized via the sol-gel technique and arrange into ribbons in the presence of static or time-dependent magnetic fields. We find that under an oscillating field, the ribbons reorient perpendicular to the field direction, in contrast with the behaviour observed under a static field. This observation is explained theoretically by treating a chain of interacting ellipsoids as a single particle with orientational and demagnetizing field energy. The model allows us to describe the orientational behaviour of the chain and captures well its dynamics at different strengths of the actuating field. The understanding of the complex dynamics and assembly of anisotropic magnetic colloids is a necessary step for controlling the structure formation, which has direct applications in different fluid-based microscale technologies. PMID:26936015

  1. Classroom Compass, 1995-96.

    ERIC Educational Resources Information Center

    Classroom Compass, 1995

    1995-01-01

    This document is comprised of the four 1995-1996 issues of "Classroom Compass," a newsletter of the Eisenhower Southwest Consortium for the Improvement of Mathematics and Science Teaching. Each issue contains a "Resources and Opportunities" section, a reading list, excerpts from the National Science Education Standards, and learning activities.

  2. Seedlayer and underlayer effects on the crystallographic orientation and magnetic recording performance of glass media

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Choe, Geon; Johnson, Kenneth E.

    2002-05-01

    Seedlayer and underlayer effects on crystallographic orientation and recording performance were studied for CoCrPtB media sputtered on glass substrates. For this study, the seedlayers are XAl (X=Ni, Co, Ti, and Ru) and the underlayers are CrY (Y=V, Mo, W, and Ti). It was found that not only different seedlayers, but also different combinations of seedlayer and underlayer, led to different magnetic performance. NiAl and CoAl seedlayers orient the Co c axis to (10.0) and TiAl and RuAl seedlayers produce (11.0) Co orientation. For the NiAl and CoAl seedlayer, CrV and CrW underlayers develop less out-of-plane c-axis orientation and higher coercivity and coercive squareness while CrTi and CrMo underlayers work better for TiAl and RuAl seedlayers, respectively. Media with RuAl seedlayers have better parametric performance than media with NiAl and CoAl seedlayers. The detailed relationship between seedlayer and underlayer types and crystal orientation and recording performance is discussed.

  3. (001) Oriented L10 FeCuPt for Heat-Assisted Magnetic Recording

    NASA Astrophysics Data System (ADS)

    Liu, Kai

    2015-03-01

    High magnetic anisotropy materials are critical to key technologies such as ultrahigh density magnetic recording and permanent magnets. Among them, ordered FePt alloys in the L10 phase are particularly sought after, for the emerging heat-assisted magnetic recording (HAMR) media. However, the highly desirable properties are associated with the tetragonal L10 phase. Key challenges exist in the high annealing temperature necessary to transform the as-deposited disordered cubic A1 phase into the ordered tetragonal L10 phase and the ability to maintain the magnetic easy axis perpendicular to the film. We have achieved (001) oriented L10 FeCuPt thin films, with magnetic anisotropy up to 3.6 x 107 erg/cm3, using atomic-scale multilayer sputtering and rapid thermal annealing (RTA) at 400 °C for 10 seconds, which is much more benign compared to earlier studies. The artificial ordering in the multilayer structure and a significant tensile stress exerted by the underlying Si/SiO2 during RTA facilitate the formation of (001) oriented L10 phase. The A1 to L10 phase transformation has been investigated by x-ray diffraction and the first-order reversal curve (FORC) method. The L10 ordering takes place via a nucleation-and-growth mode. Traditional x-ray diffraction is not always reliable in generating a true order parameter, due to non-ideal crystallinity of the A1 phase in some of the samples. A magnetization-based L10 phase fraction is extracted, providing a quantitative measure of the L10 phase homogeneity. This work has been done in collaboration with D. A. Gilbert, J. W. Liao, L. W. Wang, J. W. Lau, T. J Klemmer, J. U. Thiele, and C. H. Lai, supported by the NSF (DMR-1008791).

  4. Magnetically Actuated Propellant Orientation, Controlling Fluids in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Holt, James B.

    2000-01-01

    Cryogenic fluid management (CFM) is a technology area common to virtually every space transportation propulsion concept envisioned. Storage, supply, transfer and handling of sub-critical cryogenic fluids are basic capabilities that have long been needed by multiple programs and the need is expected to continue in the future. The use of magnetic fields provides another method, which could replace or augment current/traditional approaches, potentially simplifying vehicle operational constraints. The magnetically actuated propellant orientation (MAPO) program effort focused on the use of magnetic fields to control fluid motion as it relates to positioning (i.e. orientation and acquisition) of a paramagnetic substance such as LO2. Current CFM state- of-the-art systems used to control and acquire propellant in low gravity environments rely on liquid surface tension devices which employ vanes, fine screen mesh channels and baskets. These devices trap and direct propellant to areas where it's needed and have been used routinely with storable (non-cryogenic) propellants. However, almost no data exists r,egarding their operation in cryogenics and the use of such devices confronts designers with a multitude of significant technology issues. Typical problems include a sensitivity to screen dry out (due to thermal loads and pressurant gas) and momentary adverse accelerations (generated from either internal or external sources). Any of these problems can potentially cause the acquisition systems to ingest or develop vapor and fail. The use of lightweight high field strength magnets may offer a valuable means of augmenting traditional systems potentially mitigating or at least easing operational requirements. Two potential uses of magnetic fields include: 1) strategically positioning magnets to keep vent ports clear of liquid (enabling low G vented fill operations), and 2) placing magnets in the center or around the walls of the tank to create an insulating vapor pocket (between the liquid and the tank wall) which could effectively lower heat transfer to the liquid (enabling increased storage time).

  5. Is the blind cave salamander Proteus anguinus equiped for magnetic orientation ?

    NASA Astrophysics Data System (ADS)

    Bouquerel, H.; Valet, J. P.

    2003-04-01

    The Proteus anguinus is a blind cave salamander which can develop the ability of using the earth’s magnetic field for orientation and navigation. It has been shown that the strength of the geomagnetic field is not strong enough to excite the electroreceptors of these animals through induction mechanism so that the most likely hypothesis is that they would use cristals of magnetite as permanent magnets. We have been looking for evidence of remanent magnetism in several proteus collected from the underground CNRS laboratory at Moulis (France). Because the level of natural remanent magnetization, if any, was too low to be measured with confidence using a 3 axis squid 2G magnetometer (even bringing the animals as close as possible to the sensors), we stepwise remagnetized the samples between 0.2 and 1.2T. Measurements were performed in different parts of three proteus bodies. No significant magnetization was detected in the head, most of the signal being concentrated in the lower body of the animal. Saturation was attained after 0.2T while stepwise demagnetization by alternating field showed that most magnetization was removed after 40 mT (medium destructive field, MDF of about 10 mT), which is typical of magnetite. Independent measurements of clay soils taken from the surrounding immediate environment of the animals reveal a different magnetic signature for saturation, MDF and viscosity. Thus there is no apparent and direct link between food absorbed from their environment and the magnetic remamence of the animals. New experiments are currently in progress to determine whether magnetite is the unique magnetic carrier and also to provide better clue about the magnetic granulometry and its distribution.

  6. Signal Transduction Model of Magnetic Sensing in Cryptochrome Mediated Photoreception

    NASA Astrophysics Data System (ADS)

    Todd, Phillise Tiffeny

    While migratory birds have long been known to use the Earth's magnetic field for navigation, the precise biophysical mechanism behind this magnetic sense remains unconfirmed. A leading theory of magnetoreception suggests a chemical compass model with a yet undetermined molecular reaction site and unknown magnetically sensitive reactants. The cryptochrome photoreceptor has emerged as a promising candidate site. This investigation numerically models the first order kinetics of cryptochrome mediated photoreception, in order to evaluate its ability to function as a magnetic sensor and transduce orientation information along a neural pathway. A signal-to-noise ratio is defined to quantify the threshold for the functioning of a cryptochrome-based chemical compass. The model suggests that a flavin-superoxide radical pair in cryptochrome functions as the chemical reactants for magnetoreception. Such a cryptochrome-based signal transduction model reasonably predicts the general light intensity and wavelength effects that have been experimentally observed in migratory birds.

  7. The COMPASS Polarized Target in 2006 and 2007

    SciTech Connect

    Doshita, N.; Iwata, T.; Kondo, K.; Michigami, T.; Ball, J.; Magnon, A.; Marchand, C.; Baum, G.; Gautheron, F.; Goertz, St.; Hasegawa, T.; Matsuda, T.; Heckmann, J.; Hess, Ch.; Kisselev, Y.; Koivuniemi, J.; Meyer, W.; Radtke, E.; Reicherz, G.; Horikawa, N.

    2008-02-06

    The COMPASS experiment has been taking data since 2002. Its polarized target was upgraded during the 2005 CERN SPS shutdown. With the high acceptance magnet we obtained +56.0% and -53.0% deuteron polarization in {sup 6}LiD. In 2007 ammonia is used as a proton target which has a relaxation time of {approx}4000 h at 0.6 T.

  8. Structural and magnetic properties of Co films on highly textured and randomly oriented C60 layers

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ok; Choi, Jun Woo; Lee, Dong Ryeol

    2016-03-01

    The structural and magnetic properties of Co/C60/pentacene and Co/C60 thin film structures were investigated. Atomic force microscopy and x-ray reflectivity analysis show that the presence or absence of a pentacene buffer layer leads to a highly textured or randomly oriented C60 layer, respectively. A Co film deposited on a randomly oriented C60 layer penetrates into the C60 layer when it is deposited at a slow deposition rate. The Co penetration can be minimized, regardless of the Co deposition rate, by growth on a highly textured and nanostructured C60/pentacene layer. Vibrating sample magnetometry measurements show that the saturation magnetization of Co/C60/pentacene is significantly reduced compared to that of Co/C60. On the other hand, the Co penetration does not seem to have an effect on the magnetic properties, suggesting that the structural properties of the Co and C60 layer, rather than the Co penetration into the organic C60 layer, are critical to the magnetic properties of the Co/C60.

  9. Cosmic ray pressure driven magnetic field amplification: dimensional, radiative and field orientation effects

    NASA Astrophysics Data System (ADS)

    Downes, T. P.; Drury, L. O'C.

    2014-10-01

    Observations of non-thermal emission from several supernova remnants suggest that magnetic fields close to the blastwave are much stronger than would be naively expected from simple shock compression of the field permeating the interstellar medium (ISM). We investigate in some detail a simple model based on turbulence generation by cosmic ray pressure gradients. Previously, this model was investigated using 2D magnetohydrodynamic simulations. Motivated by the well-known qualitative differences between 2D and 3D turbulence, we further our investigations of this model using both 2D and 3D simulations to study the influence of the dimensionality of the simulations on the field amplification achieved. Further, since the model implies the formation of shocks which can, in principle, be efficiently cooled by collisional cooling, we include such cooling in our simulations to ascertain whether it could increase the field amplification achieved. Finally, we examine the influence of different orientations of the magnetic field with respect to the normal of the blastwave. We find that dimensionality has a slight influence on the overall amplification achieved, but a significant impact on the morphology of the amplified field. Collisional cooling has surprisingly little impact, primarily due to the short time which any element of the ISM resides in the precursor region for supernova blastwaves. Even allowing for a wide range of orientations of the magnetic field, we find that the magnetic field can be expected to be amplified by, on average, at least an order of magnitude in the precursors of supernova blastwaves.

  10. Influence of nonuniform magnetic fields on orientation of plant seedlings in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Nechitailo, G. S.; Mashinsky, A. L.; Kuznetsov, A. A.; Chikov, V. M.; Kuznetsov, O. A.

    2001-01-01

    Experiments on the spatial behavior of the flax ( Linum usitatissimum, L.) seedlings in a nonuniform magnetic field were conducted on the orbital space stations «Salutå and «Mirå. This field can displace sensory organelles (statoliths) inside receptor cells and such displacement should cause a physiological reaction of the plant - tropistic curvature. Experiments were conducted in the custom-built «Magnetogravistatå facility, where seeds were germinated and grown for 3-4 days in a magnetic field with the dynamic factor grad(H 2/2)≈ 10 7 Oe 2/cm, then fixed on orbit and returned to Earth for analysis. It was found, that 93% of the seedlings were oriented in the field consistently with curvature in response to displacement of statoliths along the field gradient by ponderomotive magnetic forces, while control seedlings grew in the direction of the initial orientation of the seed. This suggests, that gravity receptors of plants recognized magnetic forces on statoliths as gravity, and that gravity stimulus can be substituted for plants by a force of a different physical nature.

  11. Nucleation controlled magnetization reversal mechanism in oriented L10 FeCoPt ternary alloys

    NASA Astrophysics Data System (ADS)

    Goyal, Rajan; Sehdev, Neeru; Lamba, S.; Annapoorni, S.

    2016-01-01

    The angular dependence of scaled coercivity is investigated within the framework of various theoretical models to gather an insight into the magnetization reversal mechanism in hard magnetic materials. FeCoPt ternary alloy thin films with low concentration of Co were successfully fabricated on an <100> Si substrate with different working pressures in order to attain an optimum energy product. The structural and hysteresis curve analysis show an improvement in atomic ordering and orientation of easy axis with annealing temperature. The experimental data for angular dependence of coercivity along with the theoretical predications based on the nucleation model indicates that the dominant reversal mechanism is nucleation along with a slight contribution from pinning. The magnetic force microscopy (MFM) imaging also supports the above model. The evolution of morphology and microstructure characterized by atomic force microscopy (AFM) was directly linked to an increase in surface roughness.

  12. Magnetically Actuated Propellant Orientation Experiment, Controlling Fluid Motion With Magnetic Fields in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Holt, J. B.

    2000-01-01

    This report details the results of a series of fluid motion experiments to investigate the use of magnets to orient fluids in a low-gravity environment. The fluid of interest for this project was liquid oxygen (LO2) since it exhibits a paramagnetic behavior (is attracted to magnetic fields). However, due to safety and handling concerns, a water-based ferromagnetic mixture (produced by Ferrofluidics Corporation) was selected to simplify procedures. Three ferromagnetic fluid mixture strengths and a nonmagnetic water baseline were tested using three different initial fluid positions with respect to the magnet. Experiment accelerometer data were used with a modified computational fluid dynamics code termed CFX-4 (by AEA Technologies) to predict fluid motion. These predictions compared favorably with experiment video data, verifying the code's ability to predict fluid motion with and without magnetic influences. Additional predictions were generated for LO2 with the same test conditions and geometries used in the testing. Test hardware consisted of a cylindrical Plexiglas tank (6-in. bore with 10-in. length), a 6,000-G rare Earth magnet (10-in. ring), three-axis accelerometer package, and a video recorder system. All tests were conducted aboard the NASA Reduced-Gravity Workshop, a KC-135A aircraft.

  13. An object-oriented framework for magnetic-fusion modeling and analysis codes

    SciTech Connect

    Cohen, R H; Yang, T Y Brian

    1999-03-04

    The magnetic-fusion energy (MFE) program, like many other scientific and engineering activities, has a need to efficiently develop complex modeling codes which combine detailed models of components to make an integrated model of a device, as well as a rich supply of legacy code that could provide the component models. There is also growing recognition in many technical fields of the desirability of steerable software: computer programs whose functionality can be changed by the user as it is run. This project had as its goals the development of two key pieces of infrastructure that are needed to combine existing code modules, written mainly in Fortran, into flexible, steerable, object-oriented integrated modeling codes for magnetic- fusion applications. These two pieces are (1) a set of tools to facilitate the interfacing of Fortran code with a steerable object-oriented framework (which we have chosen to be based on PythonlW3, an object-oriented interpreted language), and (2) a skeleton for the integrated modeling code which defines the relationships between the modules. The first of these activities obviously has immediate applicability to a spectrum of projects; the second is more focussed on the MFE application, but may be of value as an example for other applications.

  14. Electric and Magnetic Field Detection in Elasmobranch Fishes

    NASA Astrophysics Data System (ADS)

    Kalmijn, Ad. J.

    1982-11-01

    Sharks, skates, and rays receive electrical information about the positions of their prey, the drift of ocean currents, and their magnetic compass headings. At sea, dogfish and blue sharks were observed to execute apparent feeding responses to dipole electric fields designed to mimic prey. In training experiments, stingrays showed the ability to orient relative to uniform electric fields similar to those produced by ocean currents. Voltage gradients of only 5 nanovolts per centimeter would elicit either behavior.

  15. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway.

    PubMed

    Fuxjager, Matthew J; Eastwood, Brian S; Lohmann, Kenneth J

    2011-08-01

    Young loggerhead sea turtles (Caretta caretta) from the east coast of Florida, USA, undertake a transoceanic migration around the North Atlantic Gyre, the circular current system that flows around the Sargasso Sea. Previous experiments indicated that loggerhead hatchlings, when exposed to magnetic fields replicating those that exist at five widely separated locations along the migratory pathway, responded by swimming in directions that would, in each case, help turtles remain in the gyre and advance along the migratory route. In this study, hatchlings were exposed to several additional magnetic fields that exist along or outside of the gyre's northern boundary. Hatchlings responded to fields that exist within the gyre currents by swimming in directions consistent with their migratory route at each location, whereas turtles exposed to a field that exists north of the gyre had an orientation that was statistically indistinguishable from random. These results are consistent with the hypothesis that loggerhead turtles entering the sea for the first time possess a navigational system in which a series of regional magnetic fields sequentially trigger orientation responses that help steer turtles along the migratory route. By contrast, hatchlings may fail to respond to fields that exist in locations beyond the turtles' normal geographic range. PMID:21753042

  16. Effect of metallurgical factors on the bulk magnetic properties of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Pampa; Chromik, Richard R.; Knight, Andrew M.; Wakade, Shekhar G.

    2014-04-01

    Non-oriented electrical steel (NOES) is one of the most common material used in electrical motors. Core loss and permeability are the most important properties that the motor manufacturers look for. Both these properties are structure sensitive and depend on several metallurgical factors; such as chemistry, grain size, crystallographic texture, cleanliness and stress states in non-oriented electrical steels. It has been observed in this course of the study that the grain size and Si content of NOES are the primary controlling factors to core loss, especially at higher frequencies. On the contrary, crystallographic texture plays an important role at lower frequencies. At higher frequency, core loss increases with increasing grain size and decreasing Si content of the steels. Small difference in grain size (~50 μm) at lower frequency range has little influence on the magnetic properties but has significant adverse effect as frequency reaches high enough.

  17. Organization dependent collective magnetic properties of secondary nanostructures with differential spatial ordering and magnetic easy axis orientation

    NASA Astrophysics Data System (ADS)

    Saikia, K.; Sarma, D. D.; Deb, P.

    2016-06-01

    Achieving control on the formation of different organization states of magnetic nanoparticles is crucial to harness their organization dependent physical properties in desired ways. In this study, three organization states of iron oxide nanoparticles (γ-Fe2O3), defining as (i) assembly (ii) network aggregate and (iii) cluster, have been developed by simply changing the solvent evaporation conditions. All three systems have retained the same phase and polydispersity of primary particles. Magnetic measurements show that the partial alignment of the easy axes of the particles in the network system due to the stacking aggregation morphology can result in significant enhancement of the coercivity and remanence values, while the opposite is obtained for the cluster system due to the random orientation of easy axes. Partial alignment in the aggregate system also results in noticeable non-monotonic field dependence of ZFC peak temperature (Tpeak). The lowest value of the blocking temperature (TB) for the cluster system is related to the lowering of the effective anisotropy due to the strongest demagnetizing effect. FC (Field cooled) memory effect was observed to be decreasing with the increasing strength of dipolar interaction of organization states. Therefore, the stacking aggregation and the cluster formation are two interesting ways of magnetic nanoparticles organization for modulating collective magnetic properties significantly, which can have renewed application potentials from recording devices to biomedicine.

  18. Measuring compassion in physician assistants.

    PubMed

    Skaff, Karen O; Toumey, Christopher P; Rapp, Doris; Fahringer, David

    2003-01-01

    While compassion is generally agreed to be one of the professional qualities required of physician assistants (PAs), the concept has been remarkably difficult to define and measure. The authors describe a series of studies that generated preliminary information about the compassionate qualities of PAs. In an initial survey, PAs rated their own compassionate qualities, after which their patients assessed the same qualities in them. The patients validated three elements of compassion having to do with communication between PA and patient but failed to validate seven other items. Subsequent research dealt with a halo effect related to the wording of the questions and a confounding effect associated with the intimacy of the medical setting. PMID:12635436

  19. Rydberg states of helium in electric and magnetic fields of arbitrary relative orientation

    NASA Astrophysics Data System (ADS)

    Tkáč, Ondřej; Žeško, Matija; Agner, Josef A.; Schmutz, Hansjürg; Merkt, Frédéric

    2016-05-01

    A spectroscopic study of Rydberg states of helium (n = 30 and 45) in magnetic, electric and combined magnetic and electric fields with arbitrary relative orientations of the field vectors is presented. The emphasis is on two special cases where (i) the diamagnetic term is negligible and both paramagnetic Zeeman and Stark effects are linear (n = 30, B ≤ 120 mT and F = 0–78 V cm‑1), and (ii) the diamagnetic term is dominant and the Stark effect is linear (n = 45, B = 277 mT and F = 0–8 V cm‑1). Both cases correspond to regimes where the interactions induced by the electric and magnetic fields are much weaker than the Coulomb interaction, but much stronger than the spin–orbit interaction. The experimental spectra are compared to spectra calculated by determining the eigenvalues of the Hamiltonian matrix describing helium Rydberg states in the external fields. The spectra and the calculated energy-level diagrams in external fields reveal avoided crossings between levels of different m l values and pronounced m l -mixing effects at all angles between the electric- and magnetic-field vectors other than 0. These observations are discussed in the context of the development of a method to generate dense samples of cold atoms and molecules in a magnetic trap following Rydberg–Stark deceleration.

  20. Control of proliferation rate of N27 dopaminergic neurons using Transcranial Magnetic Stimulation orientation

    NASA Astrophysics Data System (ADS)

    Meng, Yiwen; Hadimani, Ravi; Anantharam, Vellareddy; Kanthasamy, Anumantha; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) has been used to investigate possible treatments for a variety of neurological disorders. However, the effect that magnetic fields have on neurons has not been well documented in the literature. We have investigated the effect of different orientation of magnetic field generated by TMS coils with a monophasic stimulator on the proliferation rate of N27 neuronal cells cultured in flasks and multi-well plates. The proliferation rate of neurons would increase by exposed horizontally adherent N27 cells to a magnetic field pointing upward through the neuronal proliferation layer compared with the control group. On the other hand, proliferation rate would decrease in cells exposed to a magnetic field pointing downward through the neuronal growth layer compared with the control group. We confirmed results obtained from the Trypan-blue and automatic cell counting methods with those from the CyQuant and MTS cell viability assays. Our findings could have important implications for the preclinical development of TMS treatments of neurological disorders and represents a new method to control the proliferation rate of neuronal cells.

  1. Variable-State-Dimension Kalman-based Filter for orientation determination using inertial and magnetic sensors.

    PubMed

    Sabatini, Angelo Maria

    2012-01-01

    In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately. PMID:23012502

  2. Variable-State-Dimension Kalman-Based Filter for Orientation Determination Using Inertial and Magnetic Sensors

    PubMed Central

    Sabatini, Angelo Maria

    2012-01-01

    In this paper a quaternion-based Variable-State-Dimension Extended Kalman Filter (VSD-EKF) is developed for estimating the three-dimensional orientation of a rigid body using the measurements from an Inertial Measurement Unit (IMU) integrated with a triaxial magnetic sensor. Gyro bias and magnetic disturbances are modeled and compensated by including them in the filter state vector. The VSD-EKF switches between a quiescent EKF, where the magnetic disturbance is modeled as a first-order Gauss-Markov stochastic process (GM-1), and a higher-order EKF where extra state components are introduced to model the time-rate of change of the magnetic field as a GM-1 stochastic process, namely the magnetic disturbance is modeled as a second-order Gauss-Markov stochastic process (GM-2). Experimental validation tests show the effectiveness of the VSD-EKF, as compared to either the quiescent EKF or the higher-order EKF when they run separately. PMID:23012502

  3. Preferred mineral orientation of a chloritoid-bearing slate in relation to its magnetic fabric

    NASA Astrophysics Data System (ADS)

    Haerinck, Tom; Wenk, Hans-Rudolf; Debacker, Timothy N.; Sintubin, Manuel

    2015-02-01

    A regional analysis of the anisotropy of the magnetic susceptibility on low-grade metamorphic, chloritoid-bearing slates of the Paleozoic in Central Armorica (Brittany, France) revealed very high values for the degree of anisotropy (up to 1.43). Nonetheless, high-field torque magnetometry indicates that the magnetic fabric is dominantly paramagnetic. Chloritoid's intrinsic degree of anisotropy of 1.47 ± 0.06, suggests that chloritoid-bearing slates can have a high degree of anisotropy without the need of invoking a significant contribution of strongly anisotropic ferromagnetic (s.l.) minerals. To validate this assumption we performed a texture analysis on a representative sample of the chloritoid-bearing slates using hard X-ray synchrotron diffraction. The preferred orientation patterns of both muscovite and chloritoid are extremely strong (˜38.6 m.r.d. for muscovite, 20.9 m.r.d. for chloritoid) and display roughly axial symmetry about the minimum magnetic susceptibility axis, indeed suggesting that chloritoid may have a profound impact on the magnetic fabric of chloritoid-bearing rocks. However, modeling the anisotropy of magnetic susceptibility by averaging single crystal properties indicates that the CPO of chloritoid only partially explains the slate's anisotropy.

  4. Solving the Orientation Specific Constraints in Transcranial Magnetic Stimulation by Rotating Fields

    PubMed Central

    Neef, Nicole E.; Agudelo-Toro, Andres; Rakhmilevitch, David; Paulus, Walter; Moses, Elisha

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS) efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback) and will enable stimulation in brain regions where a preferred axonal orientation does not exist. PMID:24505266

  5. A functional role of the sky's polarization pattern for orientation in the greater mouse-eared bat.

    PubMed

    Greif, Stefan; Borissov, Ivailo; Yovel, Yossi; Holland, Richard A

    2014-01-01

    Animals can call on a multitude of sensory information to orient and navigate. One such cue is the pattern of polarized light in the sky, which for example can be used by birds as a geographical reference to calibrate other cues in the compass mechanism. Here we demonstrate that the female greater mouse-eared bat (Myotis myotis) uses polarization cues at sunset to calibrate a magnetic compass, which is subsequently used for orientation during a homing experiment. This renders bats the only mammal known so far to make use of the polarization pattern in the sky. Although there is currently no clear understanding of how this cue is perceived in this taxon, our observation has general implications for the sensory biology of mammalian vision. PMID:25050897

  6. Integration of polarization and chromatic cues in the insect sky compass.

    PubMed

    el Jundi, Basil; Pfeiffer, Keram; Heinze, Stanley; Homberg, Uwe

    2014-06-01

    Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way. PMID:24589854

  7. EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION

    SciTech Connect

    Heitsch, Fabian; Hartmann, Lee W.; Stone, James M.

    2009-04-10

    We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formation of massive clouds but permit the buildup of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a 'selection effect' for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.

  8. Comparison of lattice preferred orientation and magnetic fabric of a chloritoid-bearing slate

    NASA Astrophysics Data System (ADS)

    Haerinck, Tom; Wenk, Hans-Rudolf; Debacker, Timothy N.; Sintubin, Manuel

    2014-05-01

    A regional analysis of the anisotropy of the magnetic susceptibility (AMS) on chloritoid-bearing slates of the Paleozoic Plougastel Formation in the low-grade metamorphic conditions (epizonal) of the Monts d'Arrée slate belt in Central Armorica (Brittany, France) reveals very high values for the degree of anisotropy (PJ), up to 1.43 (Haerinck et al. 2013a). In contrast, stratigraphically equivalent slates free of chloritoid, in the very low-grade metamorphic conditions (anchizonal) of the Crozon fold-and-thrust belt, show a lower degree of anisotropy, with PJ values up to 1.27. Classically, very strong magnetic fabrics (i.e. those with PJ above 1.35) are attributed to a contribution of ferromagnetic (s.l.) minerals. Nonetheless, high-field torque magnetometry indicates that the magnetic fabric of the chloritoid-bearing slates is dominantly paramagnetic. The ferromagnetic (sensu lato) contribution to the AMS is less than 10%. Based on these observations, it would seem that chloritoid has an intrinsic magnetic anisotropy that is significantly higher than that of most paramagnetic silicates and the frequently used upper limit for the paramagnetic contribution to the AMS. Using two independent approaches, i.e. (a) directional magnetic hysteresis measurements, and (b) torque magnetometry, on a collection of single chloritoid crystals, collected from different tectonometamorphic settings worldwide, the magnetocrystalline anisotropy of monoclinic chloritoid has been determined (Haerinck et al. 2013b). The determined paramagnetic high-field AMS ellipsoids have a highly oblate shape with the minimum susceptibility direction subparallel to the crystallographic c-axis of chloritoid and the degree of anisotropy of chloritoid is found to be 1.47 ± 0.06. The obtained very high magnetocrystalline degree of anisotropy suggests that chloritoid-bearing slates with a pronounced mineral alignment can have a high degree of anisotropy (PJ) without the need of invoking a significant contribution of strongly anisotropic ferromagnetic (s.l.)minerals. To validate this assumption a texture analysis has been performed on a representative sample of the chloritoid-bearing slates (PJ = 1.40), using hard X-ray synchrotron diffraction (e.g. Wenk et al. 2010). For estimation of the mineralogical composition and the preferred orientation a Rietveld refinement of the synchrotron X-ray diffraction images has been performed. The Rietveld refinement confirms that the slate contains a significant fraction of chloritoid (21 vol%). The resulting orientation distribution of both muscovite and chloritoid display an approximate axial symmetric (001) pole figure pattern with respect to the minimum magnetic susceptibility axis K3, that has an extremely strong preferred orientation (~36 m.r.d. for muscovite and ~19 m.r.d. for chloritoid). It is therefore fair to conclude that the strong preferred orientation of the chloritoid basal planes parallel to the magnetic fabric, in combination with the pronounced magnetocrystalline anisotropy of chloritoid, explains the very high values for the degree of magnetic anisotropy (PJ) observed in the chloritoid-bearing slates. References Haerinck et al. 2013a. Journal of the Geological Society, London 170, 263-280, doi:10.1144/jgs2012-062. Haerinck et al. 2013b. Journal of Geophysical Research: Solid Earth 118(8), 3886-3898, doi:10.1002/jgrb.50276. Wenk et al. 2010. Journal of Structural Geology 32(4), 478-489, doi:10.1016/j.jsg.2010.02.003.

  9. Multilevel magnetization switching by electric field in c-axis oriented polycrystalline Z-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Haruki, K.; Ishikura, T.; Hirose, S.; Kimura, T.

    2013-07-01

    Direct and converse magnetoelectric (ME) effects, namely, magnetic-field (B) induced electric polarization (P) and electric-field (E) induced magnetization (M), respectively, were investigated at room temperature for c-axis oriented polycrystalline specimens of a Z-type hexaferrite, Sr3Co2Fe24O41. The B profile of the linear ME coefficient obtained from the converse effect well coincides with that obtained from the direct effect. Furthermore, M-E curves show a substantial hysteretic behavior, which allows reversal and multilevel switching of M by applying pulsed E. The present results demonstrate the feasibility of nonvolatile memory elements by using the ME Z-type hexaferrite at room temperature.

  10. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    PubMed

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. PMID:25313485

  11. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  12. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    PubMed

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  13. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    NASA Astrophysics Data System (ADS)

    Fujimura, Hiroshi; Nitomi, Hirokatsu; Yashiki, Hiroyoshi

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner.

  14. Magnetic-field-induced orientational order in the isotropic phase of hard colloidal platelets

    SciTech Connect

    Beek, D. van der; Petukhov, A.V.; Vroege, G.J.; Lekkerkerker, H.N.W.; Davidson, P.; Ferre, J.; Jamet, J.P.; Wensink, H.H.; Bras, W.

    2006-04-15

    The magnetic-field-induced orientational order in the isotropic phase of colloidal gibbsite [Al(OH){sub 3}] platelets is studied by means of optical birefringence and small-angle x-ray scattering (SAXS) techniques. The suspensions display field-induced ordering at moderate field strengths (a few Tesla), which increases with increasing particle concentration. The gibbsite particles align their normals perpendicular to the magnetic field and hence possess a negative anisotropy of their diamagnetic susceptibility {delta}{chi}. The results can be described following a simple, Onsager-like approach. A simplified model is derived that allows one to obtain the orientational distribution function directly from the scattering data. However, it leads to an underestimate of the diamagnetic susceptibility anisotropy {delta}{chi}. This accounts for the difference between the {delta}{chi} values provided by the two experimental techniques (SAXS and magneto-optics). The order of magnitude {delta}{chi}{approx}10{sup -22} J/T{sup 2} lies in between that of goethite suspensions and that of suspensions of organic particles.

  15. 46 CFR 130.340 - Compass.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Compass. 130.340 Section 130.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.340 Compass. Each vessel must be fitted with a...

  16. 46 CFR 130.340 - Compass.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Compass. 130.340 Section 130.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Navigational Equipment § 130.340 Compass. Each vessel must be fitted with a...

  17. Self-compassion: a concept analysis.

    PubMed

    Reyes, Darcel

    2012-06-01

    This concept analysis uses a modification of the evolutionary method (Rodgers, 1989) to identify the antecedent, attributes, and consequences of self-compassion. The antecedent to self-compassion is suffering, experienced in six possible realms: an event, a situation, an emotional response, a psychological state, spiritual alienation, or a physical response to illness or pain. Suffering has three dimensions: intrapersonal, interpersonal, and contextual. Suffering manifests as a pattern of decreased self-care, decreased ability to relate to others, and diminished autonomy. The attributes of self-compassion are self-kindness, mindfulness, commonality, and wisdom. The consequences of self-compassion are the opposite of the antecedent: self-compassion manifests as a pattern of increased self-care capacity, compassion for others, and increased relatedness, autonomy, and sense of self. Ideal, borderline and contrary cases of self-compassion provide examples of the concept. The article concludes with a discussion of implications of the concept of self-compassion for nursing practice and research. PMID:22024954

  18. Self-Compassion and Internet Addiction

    ERIC Educational Resources Information Center

    Iskender, Murat; Akin, Ahmet

    2011-01-01

    The purpose of this research is to examine the relationship of self-compassion and internet addiction. Participants were 261 university students who completed a questionnaire package that included the Self-compassion Scale and the Online Cognition Scale. The hypothesis model was tested through structural equation modeling. In correlation analysis,…

  19. Impact of a High Magnetic Field on the Orientation of Gravitactic Unicellular Organisms—A Critical Consideration about the Application of Magnetic Fields to Mimic Functional Weightlessness

    PubMed Central

    Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C.M.; Albers, Peter W.; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-01-01

    Abstract The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. Key Words: Levitation—Microgravity—Gravitaxis—Gravikinesis—Gravity. Astrobiology 14, 205–215. PMID:24621307

  20. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    PubMed

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. PMID:24621307

  1. Quick recovery of orientation after 100 Hz magnetic seizure therapy (MST) for major depressive disorder

    PubMed Central

    Kirov, George; Ebmeier, Klaus P.; Scott, Allan I F; Atkins, Maria; Khalid, Najeeb; Carrick, Lucy; Stanfield, Andrew; O'Carroll, Ronan E.; Husain, Mustafa M.; Lisanby, Sarah H.

    2008-01-01

    Introduction Magnetic seizure therapy (MST), in which seizures are elicited with a high-frequency magnetic field, is under development as a new treatment for major depressive disorder. Its use may be justified if it produces the antidepressant effects of ECT, coupled with limited cognitive side effects. This pilot study reports shortened recovery times after MST compared with ECT as a preliminary step to evaluate the usefulness of a new 100Hz MST device. Methods We induced seizures with 100Hz magnetic transcranial stimulation in eleven patients with major depressive disorder during one session of a regular course of ECT. Recovery times after these MST and ECT induced seizures were compared. Results Seizures could be elicited in ten of the eleven patients. Stimulation over the vertex produced tonic-clonic activity on nine out of eleven occasions. Stimulation over the prefrontal midpoint elicited seizures on three out of seven occasions. The mean duration of magnetically induced seizures was 31.3 sec, ranging from 10-86 sec. All patients had an exceptionally quick recovery of orientation: mean of 7 min 12 sec (SD = 2 min 7 sec, range 4 min 20 sec – 9 min 41 sec). The recovery times were on average 15 min 35 sec shorter with MST than with ECT in the same patients (paired-samples t-test: p = 0.00009). Patients reported feeling less confused after MST. Side effects were confined to myoclonic movements, associated with the use of etomidate. Conclusions The new 100 Hz magnetic stimulator elicits seizures in the majority of patients when administered over the vertex. MST was associated with shorter recovery times and less confusion following treatment. Subsequent work will be required to assess the safety and effectiveness of MST in the treatment of depression. PMID:18670002

  2. Highlights from the COMPASS Experiment

    SciTech Connect

    Bradamante, F.

    2008-10-13

    An update is given of the ongoing experimental investigation of the spin structure of the nucleon carried on by the COMPASS Collaboration at CERN. Both longitudinal and transverse spin phenomena are covered. In the first case, the hot topic is the direct measurement of the gluon polarisation. Evidence is presented for {delta}G/G being small around x{sub g}{approx_equal}0.1, and its first moment should not be larger than 0.2-0.3 in absolute value. About transverse spin effects, evidence is given for new phenomena, associated with transverse momentum dependent distribution and fragmentation functions.

  3. Magnetic properties of Mn3O4 film with a coexistence of two preferential orientations

    NASA Astrophysics Data System (ADS)

    Ren, Lizhu; Zhou, Wenqi; Wang, Yunjia; Meng, Meng; Wu, Shuxiang; Li, Shuwei

    2014-07-01

    A Mn3O4 film with a coexistence of two preferential orientations has been grown on a Pt(111)//Si(100) substrate by plasma-assisted molecular beam epitaxy. The structural characteristics and chemical compositions of the film are investigated by using X-ray diffraction, Raman, and X-ray photoelectron spectra in detail. Together with the magnetic tests, the film is demonstrated to be a polycrystalline hausmannite Mn3O4 with no other impurities. Moreover, the hysteresis loops of the film are found to display a step or a characteristic shrinking at low fields. On the other hand, similar magnetic characteristics have also been discovered on the film with two phases grown on a MgAl2O4(001) substrate. In our opinion, considering the large magnetocrystalline anisotropy and shape anisotropy of the single crystal Mn3O4 film reported in previous works, the special structures and phases of the two films result in both of them as soft+hard magnetic composites, in agreement with some other reports.

  4. Dayside Magnetopause Transients Correlated with Changes of the Magnetosheath Magnetic Field Orientation

    NASA Technical Reports Server (NTRS)

    Tkachenko, O.; Safrankova, J.; Nemecek, Z.; Sibeck, D. G.

    2011-01-01

    The paper analyses one long-term pass (26 August 2007) of the THEMIS spacecraft across the dayside low-latitude magnetopause. THEMIS B, serving partly as a magnetosheath monitor, observed several changes of the magnetic field that were accompanied by dynamic changes of the magnetopause location and/or the structure of magnetopause layers observed by THEMIS C, D, and E, whereas THEMIS A scanned the inner magnetosphere. We discuss the plasma and the magnetic field data with motivation to identify sources of observed quasiperiodic plasma transients. Such events at the magnetopause are usually attributed to pressure pulses coming from the solar wind, foreshock fluctuations, flux transfer events or surface waves. The presented transient events differ in nature (the magnetopause surface deformation, the low-latitude boundary layer thickening, the crossing of the reconnection site), but we found that all of them are associated with changes of the magnetosheath magnetic field orientation and with enhancements or depressions of the plasma density. Since these features are not observed in the data of upstream monitors, the study emphasizes the role of magnetosheath fluctuations in the solar wind-magnetosphere coupling.

  5. (110) Orientation growth of magnetic metal nanowires with face-centered cubic structure using template synthesis technique

    SciTech Connect

    Wang Xuewei; Yuan Zhihao; Li Jushan

    2011-06-15

    A template-assisted assembly technique has been used to synthesize magnetic metal nanowire arrays. Fe, Co, Ni nanowires are fabricated using direct-current electrodeposition in the pores of anodic alumina membranes. The morphology and the crystal structure of the samples are characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometer. The results indicate that Fe, Co, and Ni nanowires all have face-centered cubic (FCC) structure and a preferred orientation along the [110] direction. The ability to prepare well-defined orientation growth of magnetic metal nanowires with FCC structure opens up new opportunities for both fundamental studies and nanodevice applications. - Research Highlights: {yields} Fe, Co, and Ni nanowires are fabricated in the AAM templates by electrodeposition. {yields} Well-defined orientation growth of the nanowires with FCC structure were investigated. {yields} The electrodeposition parameters affect the crystal structure and growth orientation.

  6. Bats respond to polarity of a magnetic field

    PubMed Central

    Wang, Yinan; Pan, Yongxin; Parsons, Stuart; Walker, Michael; Zhang, Shuyi

    2007-01-01

    Bats have been shown to use information from the Earth's magnetic field during orientation. However, the mechanism underlying this ability remains unknown. In this study we investigated whether bats possess a polarity- or inclination-based compass that could be used in orientation. We monitored the hanging position of adult Nyctalus plancyi in the laboratory in the presence of an induced magnetic field of twice Earth-strength. When under the influence of a normally aligned induced field the bats showed a significant preference for hanging at the northern end of their roosting basket. When the vertical component of the field was reversed, the bats remained at the northern end of the basket. However, when the horizontal component of the field was reversed, the bats changed their positions and hung at the southern end of the basket. Based on these results, we conclude that N. plancyi, unlike all other non-mammalian vertebrates tested to date, uses a polarity-based compass during orientation in the roost, and that the same compass is also likely to underlie bats' long-distance navigation abilities. PMID:17848365

  7. Orientation control of a synthetic columnar perfluorinated supramolecular dendrimer: Surface anchoring and magnetic-field induced alignments

    NASA Astrophysics Data System (ADS)

    Ki Yoon, Dong; Rim Lee, Su; Ho Kim, Yun; Seong, Baek-Seok; Soo Han, Young; Jung, Hee-Tae

    2006-11-01

    Orientation ordering of a synthetic perfluorinated supramolecule containing a hydrophilic core group and perfluorinated tails is strongly affected by the functionality, molecular shape, surface anchoring and magnetic field. Small-angle neutron scattering (SANS), synchrotron X-ray diffraction, polarized light microscopy (PLM) and transmission electron microscopy (TEM) results show that the molecule exhibits hexagonal columnar mesophase upon cooling from isotropic phase. The orientation of the columns was controlled by surface anchoring; the columnar axes were perpendicular to the hydrophobic carbon substrates, while planar alignment is favored on hydrophilic surfaces. Furthermore, the columnar domains align with the magnetic field lines, which is due to diamagnetism of these fan-shaped molecules containing aromatic rings. We show that the magnetic-induced alignment is much effective for the large-scale control of the orientation of the perfluorinated columnar mesophase.

  8. A new stator-flux orientation strategy for flux-switching permanent magnet motor based on current-hysteresis control

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Cheng, Ming; Lu, Wei; Jia, Hongyun

    2009-04-01

    A stator-flux orientation strategy based on current hysteresis for the flux-switching permanent magnet (FSPM) motor is proposed, in which the stator-PM FSPM motor is considered as a conventional rotor-PM surface-mounted motor and an equivalent rotor-orientated dq-axes synchronous reference frame is built although there are actually no rotary magnetic motive force produced by the stator magnets in the FSPM motor. Based on the proposed model, a vector-control strategy with current hysteresis for the FSPM motor drive is investigated and implemented on a dSPACE-based platform, and both the simulated and experimental results validate the effectiveness. It should be emphasized that the proposed stator-flux orientation strategy can be applied to other stator-PM machines (including doubly salient and flux-reversal PM machines) and other control methods (including space-vector pulsed-width-modification and direct torque control).

  9. Orientation of lamellar phases of lyotropic multicomponent mixtures, based on cetyltrimethylammonium bromide cationic detergent, in magnetic field

    NASA Astrophysics Data System (ADS)

    Kiirend, E. O.; Chumakova, S. P.; Pekhk, T. I.; Ivanov, N. R.

    2013-11-01

    The orientation of the lamellar phases in lyotropic systems based on cetyltrimethylammonium bromide (CTAB) detergent has been studied by polarization optical microscopy and 2H-NMR methods. The lamellar lyotropics studied are shown to align under a strong magnetic field of 11.7 T. According to 2H-NMR data, structural transformations of the lamellar phases may occur during orientation when the sample temperature increases.

  10. Preparation and characterization of Grain-Oriented Barium Titanate Ceramics Using Electrophoresis Deposition Method under A High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kita, T.; Kondo, S.; Takei, T.; Kumada, N.; Nakashima, K.; Fujii, I.; Wada, S.; Suzuki, T. S.; Uchikoshi, T.; Sakka, Y.; Miwa, Y.; Kawada, S.; Kimura, M.

    2011-10-01

    Barium titanate (BaTiO3) grain-oriented ceramics were prepared using electrophoresis deposition (EPD) method under high magnetic field of 12 T. First, BaTiO3 nanoparticles with high c/a ratio of 1.008 and size of 84 nm were prepared by two-step thermal decomposition method with barium titanyl oxalate nanoparticles. Using the BaTiO3 slurry, BaTiO3 nanoparticle accumulations were prepared by EPD method under high magnetic field. After binder burnout, the accumulations were sintered and BaTiO3 grain-oriented ceramics were prepared. Moreover, dielectric properties of their ceramics were investigated

  11. Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.

    2012-08-01

    The angular motion of an axisymmetrical satellite equipped with the active magnetic attitude control system is examined. Attitude control system has to ensure necessary orientation of the axis of symmetry in the inertial space. It implements the following strategy: coarse reorientation of the axis of symmetry with nutation damping or "-Bdot" without initial detumbling; spinning-up about the axis of symmetry to achieve the property of a gyro; fine reorientation of the axis in the inertial space. Dynamics of the satellite is analytically studied using averaging technique on the complete control loop consisting of five algorithms. Solutions of the equations of motion are obtained in terms of quadratures for most cases or even in closed-form. The latter allowed to study the dependence of motion parameters including time-response with respect to the orbit inclination and other parameters for all algorithms.

  12. Pediatric novice nurses: examining compassion fatigue as a mediator between stress exposure and compassion satisfaction, burnout, and job satisfaction.

    PubMed

    Meyer, Rika M L; Li, Angela; Klaristenfeld, Jessica; Gold, Jeffrey I

    2015-01-01

    We investigated whether compassion fatigue mediated associations between nurse stress exposure and job satisfaction, compassion satisfaction, and burnout, controlling for pre-existing stress. The Life Events Checklist was administered to 251 novice pediatric nurses at the start of the nurse residency program (baseline) and 3 months after to assess pre-existing and current stress exposure. Compassion satisfaction, compassion fatigue, and burnout were assessed 3 months after baseline and job satisfaction 6 months after. Stress exposure significantly predicted lower compassion satisfaction and more burnout. Compassion fatigue partially mediated these associations. Results demonstrate a need for hospitals to prevent compassion fatigue in healthcare providers. PMID:24444742

  13. Effect of copper precipitates on the stability of microstructures and magnetic properties of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Zeng, Yanping

    2015-10-01

    Non-oriented electrical steels with different amounts of copper were prepared and the microstructure and magnetic properties of each kind of steel were studied. The results show that there exist a large number of Cu-rich metastable precipitates in the hot-rolled bands of the steels containing copper. They not only can decrease the sensitivity of the microstructures and magnetic properties of the steels to the change of process parameters but also can significantly reduce the core loss of the steels by improving the recrystallization textures without obviously decreasing the magnetic induction. Therefore, it is possible to control the microstructures and then magnetic properties of non-oriented electrical steels by the copper precipitates.

  14. Raman spectra and magnetization of all-ferromagnetic superlattices grown on (110) oriented SrTiO3

    NASA Astrophysics Data System (ADS)

    Behera, B. C.; Ravindra, A. V.; Padhan, P.; Prellier, W.

    2014-03-01

    Superlattices consist of two ferromagnets La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO) were grown in (110)-orientation on SrTiO3 (STO) substrates. The x-ray diffraction and Raman spectra of these superlattices show the presence of in-plane compressive strain and orthorhombic structure of less than 4 u.c. thick LSMO spacer, respectively. Magnetic measurements reveal several features including reduced magnetization, enhanced coercivity, antiferromagnetic coupling, and switching from antiferromagnetic to ferromagnetic coupling with magnetic field orientations. These magnetic properties are explained by the observed orthorhombic structure of spacer LSMO in Raman scattering which occurs due to the modification in the stereochemistry of Mn at the interfaces of SRO and LSMO.

  15. Raman spectra and magnetization of all-ferromagnetic superlattices grown on (110) oriented SrTiO{sub 3}

    SciTech Connect

    Behera, B. C.; Ravindra, A. V.; Padhan, P.; Prellier, W.

    2014-03-03

    Superlattices consist of two ferromagnets La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and SrRuO{sub 3} (SRO) were grown in (110)-orientation on SrTiO{sub 3} (STO) substrates. The x-ray diffraction and Raman spectra of these superlattices show the presence of in-plane compressive strain and orthorhombic structure of less than 4 u.c. thick LSMO spacer, respectively. Magnetic measurements reveal several features including reduced magnetization, enhanced coercivity, antiferromagnetic coupling, and switching from antiferromagnetic to ferromagnetic coupling with magnetic field orientations. These magnetic properties are explained by the observed orthorhombic structure of spacer LSMO in Raman scattering which occurs due to the modification in the stereochemistry of Mn at the interfaces of SRO and LSMO.

  16. The spin physics results from COMPASS

    SciTech Connect

    Kouznetsov, O.

    2015-04-10

    COMPASS (COmmon Muon and Proton Apparatus for Structure and Spectroscopy) is a fixed target experiment at CERN dedicated to studies of the spin structure of the nucleon and of the spectroscopy of hadrons. During the years 2002-2004, 2006-2007 and 2010-2011 the COMPASS collaboration has collected a large amount of data by scattering polarized 160(200) GeV/c muons on polarized {sup 6}LiD and NH{sub 3} targets. The COMPASS results on quark and gluon helicities are discussed, as well as results on transverse spin and transverse momentum effects in semi-inclusive deeply inelastic scattering.

  17. Robustness of the filamentation instability in arbitrarily oriented magnetic field: Full three dimensional calculation

    SciTech Connect

    Bret, A.

    2014-02-15

    The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceled for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.

  18. Exploring compassion: a meta-analysis of the association between self-compassion and psychopathology.

    PubMed

    MacBeth, Angus; Gumley, Andrew

    2012-08-01

    Compassion has emerged as an important construct in studies of mental health and psychological therapy. Although an increasing number of studies have explored relationships between compassion and different facets of psychopathology there has as yet been no systematic review or synthesis of the empirical literature. We conducted a systematic search of the literature on compassion and mental health. We identified 20 samples from 14 eligible studies. All studies used the Neff Self Compassion Scale (Neff, 2003b). We employed meta-analysis to explore associations between self-compassion and psychopathology using random effects analyses of Fisher's Z correcting for attenuation arising from scale reliability. We found a large effect size for the relationship between compassion and psychopathology of r=-0.54 (95% CI=-0.57 to -0.51; Z=-34.02; p<.0001). Heterogeneity was significant in the analysis. There was no evidence of significant publication bias. Compassion is an important explanatory variable in understanding mental health and resilience. Future work is needed to develop the evidence base for compassion in psychopathology, and explore correlates of compassion and psychopathology. PMID:22796446

  19. Temperature Dependence of Magnetic Moment Orientation in Co2Z-Type Hexaferrite Estimated by High-Temperature Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Takada, Yukio; Nakagawa, Takashi; Fukuta, Yasunari; Tokunaga, Masatoshi; Yamamoto, Takao A.; Tachibana, Takeshi; Kawano, Shinji; Igawa, Naoki; Ishii, Yoshinobu

    2005-05-01

    We investigated the correlation between the thermomagnetic curve of Co2Z-type hexagonal barium ferrite and its magnetic moment direction. We measured the thermomagnetic curve of Ba3Co1.8Fe24.2O41, prepared using the conventional solid-state reaction method, in the temperature range from 294 to 773 K with a vibrating sample magnetometer under 70 Oe. The curve shows two significant magnetization slumps at 540 K and 680 K. High-temperature XRD patterns show that no crystal transformation occurs in the temperature region from 294 to 773 K. High-temperature neutron diffraction experiments were performed to investigate the magnetic moment orientation at elevated temperatures. The Rietveld analyses of the neutron diffraction patterns indicate that the temperature rise from 523 to 573 K makes the magnetic moments turn to the c-axis from a direction parallel to the c-plane most significantly. The slump in magnetization at 540 K may be attributed to the change in easy magnetization direction from the c-plane to the c-axis. The change in average orientation of the magnetic moments must be induced by the disappearance of the contribution of cobalt to magnetism in this temperature range.

  20. Two-axis Magnetic Field Orientation Dependence of Critical Current in Full-Width REBCO Coated Conductors

    NASA Astrophysics Data System (ADS)

    Hopkins, S. C.; Woźniak, M.; Glowacki, B. A.; Chen, Y.; Kesgin, I.; Selvamanickam, V.

    Considerable progress has been made with the development of YBa2Cu3O7-δ and related rare-earth (REBCO) coated conductors in recent years. The introduction of BaZrO3 (BZO) nanoparticles has resulted in enhanced critical current density (Jc) for magnetic field orientations away from the intrinsic ab peak, with the absolute Jc and the degree of anisotropy depending on the geometry and orientation distribution of the nanoparticles; and REBCO coated conductors with a variety of substitutions and additions (Gd, Sm, Ba, Zr, Sn) are becoming commercially available in kilometre lengths. It is therefore increasingly important to characterise the magnetic field orientation dependence of critical current (Ic) in full-width coated conductors without destructive sample preparation, both for fundamental pinning studies and the design of large-scale applications. A two-axis goniometer has been developed, allowing the critical current to be measured as a function of both the magnitude and orientation of the applied magnetic field, Ic(B,θ,ϕ), on full-width samples. Measurements of Ic(B,θ,ϕ) at 77 K are reported for four REBCO tapes made by metal organic chemical vapour deposition (MOCVD) with different rare earth content and the results interpreted in relation to rare earth substitution and pinning centre populations. The implications of the field orientation dependence for low and intermediate field applications are discussed.

  1. Status of the COMPASS Experiment

    NASA Astrophysics Data System (ADS)

    Tessarotto, F.

    2003-07-01

    The COMPASS Experiment at CERN has a broad physics program aimed at the study of nucleon spin structure and hadron spectroscopy. It has an outstanding fixed-target apparatus, mostly commissioned in 2001, presently consisting of a solid 6LiD polarised target and a two stage spectrometer with high resolution tracking, particle identification and calorimetry, capable of standing high event rates. This paper describes the apparatus and its performances during the run of 2002, when 260 TB of polarised muon nucleon scattering data have been collected. First physics signals from the analysis and projections for the expected accuracy of the measurement of the gluon polarisation ΔG/G from photon gluon fusion are presented too.

  2. Exploring the compassion deficit debate.

    PubMed

    Stenhouse, Rosie; Ion, Robin; Roxburgh, Michelle; Devitt, Patric Ffrench; Smith, Stephen D M

    2016-04-01

    Several recent high profile failures in the UK health care system have promoted strong debate on compassion and care in nursing. A number of papers articulating a range of positions within this debate have been published in this journal over the past two and a half years. These articulate a diverse range of theoretical perspectives and have been drawn together here in an attempt to bring some coherence to the debate and provide an overview of the key arguments and positions taken by those involved. In doing this we invite the reader to consider their own position in relation to the issues raised and to consider the impact of this for their own practice. Finally the paper offers some sense of how individual practitioners might use their understanding of the debates to ensure delivery of good nursing care. PMID:27006028

  3. Recent results from COMPASS on exclusive muoproduction

    NASA Astrophysics Data System (ADS)

    Sandacz, Andrzej

    2016-02-01

    The 160 GeV polarised muon beam available at CERN, with positive or negative charge, makes COMPASS a unique place for GPD studies. The first GPD related COMPASS results come from exclusive vector meson production on transversely polarised protons and deuterons. The data were taken in 2003-2010 with large solid-state polarised targets, although without detection of recoil particles. Results on various transverse target spin dependent azimuthal asymmetries are presented and their relations to GPDs are discussed. The dedicated COMPASS GPD program started in 2012 with commissioning of a new long liquid hydrogen target and new detectors such as the large recoil proton detector and the large-angle electromagnetic calorimeter. It was followed by a short pilot 'DVCS run'. The performance of the setup and first results on DVCS and exclusive π0 channels have been demonstrated. The full data taking for the GPD program approved within COMPASS-II proposal is planned for 2016 and 2017.

  4. Self-Compassion, Stress, and Coping

    PubMed Central

    Allen, Ashley Batts; Leary, Mark R.

    2010-01-01

    People who are high in self-compassion treat themselves with kindness and concern when they experience negative events. The present article examines the construct of self-compassion from the standpoint of research on coping in an effort to understand the ways in which people who are high in self-compassion cope with stressful events. Self-compassionate people tend to rely heavily on positive cognitive restructuring but do not appear to differ from less self-compassionate people in the degree to which they cope through problem-solving and distraction. Existing evidence does not show clear differences in the degree to which people who are low vs. high in self-compassion seek support as a coping strategy, but more research is needed. PMID:20686629

  5. Self-compassion in clinical practice.

    PubMed

    Germer, Christopher K; Neff, Kristin D

    2013-08-01

    Self-compassion is conceptualized as containing 3 core components: self-kindness versus self-judgment, common humanity versus isolation, and mindfulness versus overidentification, when relating to painful experiences. Research evidence demonstrates that self-compassion is related to psychological flourishing and reduced psychopathology. Mindful Self-Compassion (MSC) is an 8-week training program, meeting 2.5 hours each week, designed to help participants cultivate self-compassion. MSC contains a variety of meditations (e.g., loving-kindness, affectionate breathing) as well as informal practices for use in daily life (e.g., soothing touch, self-compassionate letter writing). A detailed clinical case illustrates the journey of a client through the 8 weeks of MSC training, describing the key features of each session and the client's response. PMID:23775511

  6. Compassion fatigue within nursing practice: a concept analysis.

    PubMed

    Coetzee, Siedine Knobloch; Klopper, Hester C

    2010-06-01

    "Compassion fatigue" was first introduced in relation to the study of burnout among nurses, but it was never defined within this context; it has since been adopted as a synonym for secondary traumatic stress disorder, which is far removed from the original meaning of the term. The aim of the study was to define compassion fatigue within nursing practice. The method that was used in this article was concept analysis. The findings revealed several categories of compassion fatigue: risk factors, causes, process, and manifestations. The characteristics of each of these categories are specified and a connotative (theoretical) definition, model case, additional cases, empirical indicators, and a denotative (operational) definition are provided. Compassion fatigue progresses from a state of compassion discomfort to compassion stress and, finally, to compassion fatigue, which if not effaced in its early stages of compassion discomfort or compassion stress, can permanently alter the compassionate ability of the nurse. Recommendations for nursing practice, education, and research are discussed. PMID:20602697

  7. The Effect of Spark Ablation on High Permeability Grain-Oriented 3% Silicon Iron under Two-Dimensional Magnetization

    NASA Astrophysics Data System (ADS)

    Mahadi, W. N. L.

    2007-05-01

    Spark ablation method is one of the techniques used to improve performance in rolling direction of grain oriented 3% silicon iron sheets. In some parts of electrical devices such as the cores of electrical motors, and the transformers, notably joints, the magnetization vector has a two-dimensional as well as a one-dimensional (rolling direction), components. The former caused an increase in total core losses. In this paper, a study on magnetic properties of the spark ablated material under two-dimensional magnetization is presented.

  8. Access to generalized parton distributions at COMPASS

    SciTech Connect

    Nowak, Wolf-Dieter

    2015-04-10

    A brief experimentalist's introduction to Generalized Parton Distributions (GPDs) is given. Recent COMPASS results are shown on transverse target-spin asymmetries in hard exclusive ρ{sup 0} production and their interpretation in terms of a phenomenological model as indication for chiral-odd, transverse GPDs is discussed. For deeply virtual Compton scattering, it is briefly outlined how to access GPDs and projections are shown for future COMPASS measurements.

  9. COMPASS Hadron Multiplicity Measurements and Fragmentation Functions

    NASA Astrophysics Data System (ADS)

    Stolarski, M.

    2016-03-01

    COMPASS preliminary results on hadron, pion and kaon multiplicities are presented. The hadron and pion data show a good agreement with (N)LO QCD expectations and some of these preliminary data have been already successfully incorporated in the global NLO QCD fits to world data. However, the results for kaon multiplicities, are different from the expectations of the DSS fit. There is also a tension between COMPASS and HERMES results, the only other experiment which measured kaon multiplicities in SIDIS.

  10. Repeatability of functional anisotropy in navigated transcranial magnetic stimulation--coil-orientation versus response.

    PubMed

    Kallioniemi, Elisa; Könönen, Mervi; Julkunen, Petro

    2015-06-17

    Transcranial magnetic stimulation (TMS) can be used for evaluating the function of motor pathways. According to the principles of electromagnetism and electrophysiology, TMS activates those neurons that are suitably oriented with respect to the TMS-induced electric field. We hypothesized that TMS could potentially be able to evaluate the neuronal structure, although until now, this putative application has not been exploited. We have developed a TMS-based method to evaluate the function and structure of the motor cortex concurrently in a quantitative manner. This method produced a measure, the anisotropy index (AI), which is based on the motor-evoked potentials induced at different coil orientations. The AI was demonstrated to exhibit an association with both motor cortex excitability and neuronal structure. In the present study, we evaluated the repeatability (intrasession and intersession) of AI in three consecutive measurements. In addition, we studied the repeatability of the optimal coil angle in inducing motor-evoked potentials. Two of the measurements were conducted on the same stimulation target and the third on a remapped target. The coefficient of repeatability of the AI was 0.022 for intrasession and 0.040 for intersession assessments. For the optimal stimulation angle, the coefficients of repeatability were 3.7° and 5.1°, respectively. Both the AI and the optimal stimulation angle demonstrated good repeatability (Cronbach's α>0.760). In conclusion, the results indicate that the AI can provide a reliable estimation of local functional anisotropy changes under conditions affecting the cortex, such as during stroke or focal dysplasia. PMID:26011386

  11. Magnetic domain structure, crystal orientation, and magnetostriction of Tb0.27Dy0.73Fe1.95 solidified in various high magnetic fields

    NASA Astrophysics Data System (ADS)

    Gao, Pengfei; Liu, Tie; Dong, Meng; Yuan, Yi; Wang, Qiang

    2016-03-01

    In this paper, we studied how applying a high magnetic field during solidification of Tb0.27Dy0.73Fe1.95 alloys affected their magnetic domain structure, crystal orientation, and magnetostriction. We observed the morphology of the magnetic domain during solidification, finding it change with the applied field: from fiber like (0 T) to dot like and closure mixed (4.4 T) to fiber like (8.8 T) to fishbone like (11.5 T). The alloy solidified at 4.4 T showed the best contrast of light and dark in its domain image, widest magnetic domain, fastest magnetization, and highest magnetostriction; this alloy is followed in descending order by the alloys solidified at 11.5 T, 8.8 T, and 0 T. The orientation of the (Tb, Dy)Fe2 phase changed with magnetic field from random (0 T) to <111> (4.4 T) to <113> (8.8 T) to <110> (11.5 T). The improvement in magnetostriction was likely caused by modification of both the magnetization process and the alloy microstructure.

  12. Compassion Fatigue, Compassion Satisfaction, and Burnout: Factors Impacting a Professional's Quality of Life

    ERIC Educational Resources Information Center

    Sprang, Ginny; Whitt-Woosley, Adrienne; Clark, James J.

    2007-01-01

    This study examined the relationship between three variables, compassion fatigue (CF), compassion satisfaction (CS), and burnout, and provider and setting characteristics in a sample of 1,121 mental health providers in a rural southern state. Respondents completed the Professional Quality of Life Scale as part of a larger survey of provider…

  13. Compassion Fatigue and Compassion Satisfaction among Residential Child Care Workers: The Role of Personality Resources

    ERIC Educational Resources Information Center

    Zerach, Gadi

    2013-01-01

    This study assessed compassion fatigue (CF) and compassion satisfaction (CS) among Israeli residential child-care workers (RCWs) working in residential treatment facilities for children and youth at risk (N = 147) as compared to educational boarding schools workers (BSWs; N = 74). Furthermore, we assessed the relationship of potential…

  14. Honeybee navigation: critically examining the role of the polarization compass.

    PubMed

    Evangelista, C; Kraft, P; Dacke, M; Labhart, T; Srinivasan, M V

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the 'waggle dance'. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it. PMID:24395964

  15. Honeybee navigation: critically examining the role of the polarization compass

    PubMed Central

    Evangelista, C.; Kraft, P.; Dacke, M.; Labhart, T.; Srinivasan, M. V.

    2014-01-01

    Although it is widely accepted that honeybees use the polarized-light pattern of the sky as a compass for navigation, there is little direct evidence that this information is actually sensed during flight. Here, we ask whether flying bees can obtain compass cues derived purely from polarized light, and communicate this information to their nest-mates through the ‘waggle dance’. Bees, from an observation hive with vertically oriented honeycombs, were trained to fly to a food source at the end of a tunnel, which provided overhead illumination that was polarized either parallel to the axis of the tunnel, or perpendicular to it. When the illumination was transversely polarized, bees danced in a predominantly vertical direction with waggles occurring equally frequently in the upward or the downward direction. They were thus using the polarized-light information to signal the two possible directions in which they could have flown in natural outdoor flight: either directly towards the sun, or directly away from it. When the illumination was axially polarized, the bees danced in a predominantly horizontal direction with waggles directed either to the left or the right, indicating that they could have flown in an azimuthal direction that was 90° to the right or to the left of the sun, respectively. When the first half of the tunnel provided axial illumination and the second half transverse illumination, bees danced along all of the four principal diagonal directions, which represent four equally likely locations of the food source based on the polarized-light information that they had acquired during their journey. We conclude that flying bees are capable of obtaining and signalling compass information that is derived purely from polarized light. Furthermore, they deal with the directional ambiguity that is inherent in polarized light by signalling all of the possible locations of the food source in their dances, thus maximizing the chances of recruitment to it. PMID:24395964

  16. Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti.

    PubMed

    Wystrach, Antoine; Schwarz, Sebastian; Schultheiss, Patrick; Baniel, Alice; Cheng, Ken

    2014-06-01

    The Central Australian desert ant Melophorus bagoti is known to use celestial cues for compass orientation. We manipulated the available celestial cues for compass orientation for ants that had arrived at a feeder, were captured and then released at a distant test site that had no useful terrestrial panoramic cues. When tested in an enclosed transparent box that blocked some or most of the ultraviolet light, the ants were still well oriented homewards. The ants were again significantly oriented homewards when most of the ultraviolet light as well as the sun was blocked, or when the box was covered with tracing paper that eliminated the pattern of polarised light, although in the latter case, their headings were more scattered than in control (full-cue) conditions. When the position of the sun was reflected 180° by a mirror, the ants headed off in an intermediate direction between the dictates of the sun and the dictates of unrotated cues. We conclude that M. bagoti uses all available celestial compass cues, including the pattern of polarised light, the position of the sun, and spectral and intensity gradients. They average multiple cues in a weighted fashion when these cues conflict. PMID:24643623

  17. Synthesis of c-axis-oriented Sm123 superconductors and their performance as superconducting permanent magnets

    NASA Astrophysics Data System (ADS)

    Mizutani, U.; Mase, A.; Tazoe, K.; Ikuta, H.; Oka, T.; Itoh, Y.; Yanagi, Y.; Yoshikawa, M.

    2000-06-01

    The addition of Ag 2O up to 20 wt.% could reinforce its mechanical strength and led us to grow the c-axis-oriented single-domain Sm123 superconductors up to a diameter of 36 mm. The trapped field at 77 K reached 2.1 T and increased to 9 T at 25 K. The maximum trapped field is found to be limited by fracture due to the magnetic stress, which causes the crack to initiate from the region under the seed crystal near the center of the sample with its subsequent propagation through voids. The amount of voids can be substantially reduced when the oxygen partial pressure is increased at the early stage of the melt-processing. The Ba/Sm substitution effect degrades the superconducting performance and lowers the superconducting transition temperature to 80 K only near the central region. The trapped field after drilling a hole through the center of the sample was measured. Its potential use is suggested in practical application.

  18. Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies.

    PubMed

    Baniukevic, Julija; Hakki Boyaci, Ismail; Goktug Bozkurt, Akif; Tamer, Ugur; Ramanavicius, Arunas; Ramanaviciene, Almira

    2013-05-15

    The aim of the study was to develop an indirect, robust and simple in application method for the detection of bovine leukemia virus antigen gp51. Surface-enhanced Raman scattering (SERS) was applied as detection method. Magnetic gold nanoparticles (MNP-Au) modified by antibodies in oriented or random manner were used for the binding of gp51. The high performance liquid chromatography analysis indicated that the best antibody immobilization and antigen capturing efficiency was achieved using fragmented antibodies obtained after reduction of intact antibodies with dithiothreitol. In order to increase efficiency and sensitivity of immunoassay Raman labels consisting of gold nanorods coated by 5-thio-nitrobenzoic acid layer with covalently bounded antibodies have been constructed. The LOD and LOQ of the proposed immunoassay for antigen gp51 detection were found to be 0.95μgmL(-1) and 3.14μgmL(-1), respectively. This immunoassay was successfully applied for the detection of gp51 in milk samples in a rapid, reliable and selective manner. We believe that the proposed SERS-based immunoassay format can be applied for the detection of other proteins. PMID:23334004

  19. Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.

  20. Loving-kindness and compassion meditation: potential for psychological interventions.

    PubMed

    Hofmann, Stefan G; Grossman, Paul; Hinton, Devon E

    2011-11-01

    Mindfulness-based meditation interventions have become increasingly popular in contemporary psychology. Other closely related meditation practices include loving-kindness meditation (LKM) and compassion meditation (CM), exercises oriented toward enhancing unconditional, positive emotional states of kindness and compassion. This article provides a review of the background, the techniques, and the empirical contemporary literature of LKM and CM. The literature suggests that LKM and CM are associated with an increase in positive affect and a decrease in negative affect. Preliminary findings from neuroendocrine studies indicate that CM may reduce stress-induced subjective distress and immune response. Neuroimaging studies suggest that LKM and CM may enhance activation of brain areas that are involved in emotional processing and empathy. Finally, preliminary intervention studies support application of these strategies in clinical populations. It is concluded that, when combined with empirically supported treatments, such as cognitive-behavioral therapy, LKM and CM may provide potentially useful strategies for targeting a variety of different psychological problems that involve interpersonal processes, such as depression, social anxiety, marital conflict, anger, and coping with the strains of long-term caregiving. PMID:21840289

  1. Loving-Kindness and Compassion Meditation: Potential for Psychological Interventions

    PubMed Central

    Hofmann, Stefan G.; Grossman, Paul; Hinton, Devon E.

    2011-01-01

    Mindfulness-based meditation interventions have become increasingly popular in contemporary psychology. Other closely related meditation practices include loving-kindness meditation (LKM) and compassion meditation (CM), exercises oriented toward enhancing unconditional, positive emotional states of kindness and compassion. This article provides a review of the background, the techniques, and the empirical contemporary literature of LKM and CM. The literature suggests that LKM and CM are associated with an increase in positive affect and a decrease in negative affect. Preliminary findings from neuroendocrine studies indicate that CM may reduce stress-induced subjective distress and immune response. Neuroimaging studies suggest that LKM and CM may enhance activation of brain areas that are involved in emotional processing and empathy. Finally, preliminary intervention studies support application of these strategies in clinical populations. It is concluded that, when combined with empirically supported treatments, such as cognitive behavioral therapy, LKM and CM may provide potentially useful strategies for targeting a variety of different psychological problems that involve interpersonal processes, such as social anxiety, marital conflict, anger, and coping with the strains of long-term caregiving. PMID:21840289

  2. Connecting the navigational clock to sun compass input in monarch butterfly brain.

    PubMed

    Sauman, Ivo; Briscoe, Adriana D; Zhu, Haisun; Shi, Dingding; Froy, Oren; Stalleicken, Julia; Yuan, Quan; Casselman, Amy; Reppert, Steven M

    2005-05-01

    Migratory monarch butterflies (Danaus plexippus) use a time-compensated sun compass to navigate to their overwintering grounds in Mexico. Although polarized light is one of the celestial cues used for orientation, the spectral content (color) of that light has not been fully explored. We cloned the cDNAs of three visual pigment-encoding opsins (ultraviolet [UV], blue, and long wavelength) and found that all three are expressed uniformly in main retina. The photoreceptors of the polarization-specialized dorsal rim area, on the other hand, are monochromatic for the UV opsin. Behavioral studies support the importance of polarized UV light for flight orientation. Next, we used clock protein expression patterns to identify the location of a circadian clock in the dorsolateral protocerebrum of butterfly brain. To provide a link between the clock and the sun compass, we identified a CRYPTOCHROME-staining neural pathway that likely connects the circadian clock to polarized light input entering brain. PMID:15882645

  3. Distinctive uniaxial magnetic anisotropy and positive magnetoresistance in (110)-oriented Fe{sub 3}O{sub 4} films

    SciTech Connect

    Dho, Joonghoe Kim, Byeong-geon; Ki, Sanghoon

    2015-04-28

    Magnetite (Fe{sub 3}O{sub 4}) films were synthesized on (110)-oriented MgO, MgAl{sub 2}O{sub 4}, and SrTiO{sub 3} substrates for comparative studies of the substrates' effects on magnetic and magnetoresistance properties of the films. For the [-110] direction, the hysteresis loops of the Fe{sub 3}O{sub 4} film on MgAl{sub 2}O{sub 4} exhibited a good squareness with the largest coercivity of ∼1090 Oe, and the ratio of remanent magnetization to saturation magnetization was ∼0.995. For the [001] direction, positive magnetoresistance in weak magnetic fields was most distinct for the (110) SrTiO{sub 3} substrate with the largest lattice mismatch. Positive magnetoresistance in the (110) Fe{sub 3}O{sub 4} films was presumably affected by imperfect atomic arrangements at anti-phase boundaries.

  4. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Fujisaki, Jun; Furuya, Atsushi; Uehara, Yuji; Shimizu, Koichi; Ataka, Tadashi; Tanaka, Tomohiro; Oshima, Hirotaka; Ohkubo, Tadakatsu; Hirosawa, Satoshi; Hono, Kazuhiro

    2016-05-01

    This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  5. Orientation within a high magnetic field determines swimming direction and laterality of c-Fos induction in mice

    PubMed Central

    Kwon, Bumsup; Houpt, Charles E.; Neth, Bryan; Smith, James C.

    2013-01-01

    High-strength static magnetic fields (>7 tesla) perturb the vestibular system causing dizziness, nystagmus, and nausea in humans; and head motion, locomotor circling, conditioned taste aversion, and c-Fos induction in brain stem vestibular nuclei in rodents. To determine the role of head orientation, mice were exposed for 15 min within a 14.1-tesla magnet at six different angles (mice oriented parallel to the field with the head toward B+ at 0°; or pitched rostrally down at 45°, 90°, 90° sideways, 135°, and 180°), followed by a 2-min swimming test. Additional mice were exposed at 0°, 90°, and 180° and processed for c-Fos immunohistochemistry. Magnetic field exposure induced circular swimming that was maximal at 0° and 180° but attenuated at 45° and 135°. Mice exposed at 0° and 45° swam counterclockwise, whereas mice exposed at 135° and 180° swam clockwise. Mice exposed at 90° (with their rostral-caudal axis perpendicular to the magnetic field) did not swim differently than controls. In parallel, exposure at 0° and 180° induced c-Fos in vestibular nuclei with left-right asymmetries that were reversed at 0° vs. 180°. No significant c-Fos was induced after 90° exposure. Thus, the optimal orientation for magnetic field effects is the rostral-caudal axis parallel to the field, such that the horizontal canal and utricle are also parallel to the field. These results have mechanistic implications for modeling magnetic field interactions with the vestibular apparatus of the inner ear (e.g., the model of Roberts et al. of an induced Lorenz force causing horizontal canal cupula deflection). PMID:23720133

  6. Exact solution for a quantum compass ladder

    NASA Astrophysics Data System (ADS)

    Brzezicki, Wojciech; Oleś, Andrzej M.

    2009-07-01

    We present a spin ladder with antiferromagnetic Ising ZZ interactions along the legs and interactions on the rungs which interpolate between the Ising ladder and the quantum compass ladder. We show that the entire energy spectrum of the ladder may be determined exactly for finite number of spins 2N by mapping to the quantum Ising chain and using Jordan-Wigner transformation in invariant subspaces. We also demonstrate that subspaces with spin defects lead to excited states using finite-size scaling, and the ground state corresponds to the quantum Ising model without defects. At the quantum phase transition to maximally frustrated interactions of the compass ladder, the ZZ spin-correlation function on the rungs collapses to zero and the ground-state degeneracy increases by two. We formulate a systematic method to calculate the partition function for a mesoscopic system and employ it to demonstrate that fragmentation of the compass ladder by kink defects increases with increasing temperature. The obtained heat capacity of a large compass ladder consisting of 2N=104 spins reveals two relevant energy scales and has a broad maximum due to dense energy spectrum. The present exact results elucidate the nature of the quantum phase transition from ordered to disordered ground state found in the compass model in two dimensions.

  7. Hadron Spectroscopy with COMPASS - Newest Results

    NASA Astrophysics Data System (ADS)

    Nerling, Frank

    2012-12-01

    The COMPASS experiment at the CERN SPS investigates the structure and spectrum of hadrons by scattering high energetic hadrons and polarised muons off various fixed targets. During the years 2002-2007, COMPASS focused on nucleon spin physics using 160 GeV/c polarised µ+ beams on polarised deuteron and proton targets, including measurements of the gluon contribution to the nucleon spin using longitudinal target polarisation as well as studies of transverse spin effects in the nucleon on a transversely polarised target. One major goal of the physics programme using hadron beams is the search for new states, in particular the search for JPC exotic states and glue-balls. COMPASS measures not only charged but also neutral final-state particles, allowing for investigation of new objects in different reactions and decay channels. In addition COMPASS can measure low-energy QCD constants like, e.g. the electromagnetic polarisability of the pion. Apart from a few days pilot run data taken in 2004 with a 190 GeV/c π- beam on a Pb target, showing a significant spin-exotic JPC = 1-+ resonance at around 1660 MeV/c2, COMPASS collected high statistics with negative and positive 190 GeV/c hadron beams on a proton (H2) and nuclear (Ni, Pb) targets in 2008 and 2009. We give a selected overview of the newest results and discuss the status of various ongoing analyses.

  8. Microwave complex permeability of Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation

    NASA Astrophysics Data System (ADS)

    Liu, Xianguo; Wing Or, Siu; Ming Leung, Chung; Ho, S. L.

    2013-05-01

    Magnetite (Fe3O4) nanoflakes with widths of 100-200 nm and thicknesses of 10-80 nm were prepared by a hydrothermal synthesis method. Fe3O4 nanoflake composites with and without magnetic field-induced rotational orientation of flake planes of Fe3O4 nanoflakes in paraffin binder were fabricated using 35 wt. % Fe3O4 nanoflakes. The rotationally oriented composite showed higher permeability and resonance frequency than the nonoriented one, and its value of (?0-1)fr reached 214.8 GHz and exceeded the Snoek's limit. Considering a uniform and a random distribution of flake planes of Fe3O4 nanoflakes in the oriented and nonoriented composites, respectively, the complex permeability of both composites was calculated using the Landau-Lifshitz-Gilbert equation and the Bruggeman's effective medium theory in the 2-18 GHz microwave frequency range.

  9. The polarization trajectory of terahertz magnetic dipole radiation in (110)-oriented PrFeO{sub 3} single crystal

    SciTech Connect

    Song, Gaibei; Jin, Zuanming; Lin, Xian; Jiang, Junjie; Wang, Xinyan; Wu, Hailong; Ma, Guohong E-mail: sxcao@shu.edu.cn; Cao, Shixun E-mail: sxcao@shu.edu.cn

    2014-04-28

    By using the polarized terahertz (THz) time-domain spectroscopy, the macro-magnetization motion in (110)-oriented PrFeO{sub 3} single crystal was constructed. We emphasize that the trajectory of the emitted THz waveforms relies on not only the motion of macroscopic magnetization vector, but also the spin configuration in the ground state and the propagation of THz pulse. The azimuthal angle (the incident THz pulse polarization with respect to the crystal axes) enables us to control the polarization trajectories of the quasiferromagnetic and quasiantiferromagnetic mode radiations that can lead to further applications on multiple information storing and quantum processing.

  10. The compassion-hostility paradox: the interplay of vigilant, prevention-focused self-regulation, compassion, and hostility.

    PubMed

    Keller, Johannes; Pfattheicher, Stefan

    2013-11-01

    The present research examined the notion that the prosocial attitude of compassion is positively related to the antisocial attitude of hostility given that compassion and hostility entail elements reflecting vigilant, prevention-focused self-regulation. In fact, it was found in four samples (N = 4,903) that individuals with a strong vigilant prevention focus reported higher levels on measures of hostility as well as higher levels on compassion than individuals characterized by a weak prevention focus. In addition, compassion and hostility are indeed positively correlated reflecting the Compassion-Hostility Paradox. The positive association between compassion and hostility is substantially reduced when the chronic level of prevention-focused self-regulation is controlled for. A complementary experimental study in which compassion was manipulated revealed an effect of compassion on hostility in chronically prevention-focused individuals. PMID:23969620

  11. Compassion satisfaction, compassion fatigue, and burnout in a national sample of trauma treatment therapists.

    PubMed

    Craig, C D; Sprang, G

    2010-05-01

    For behavioral health professionals working with traumatized clients, continuous and prolonged exposure to the stress of working with the myriad of trauma-related stressors experienced by their clients can lead to various responses including burnout, compassion fatigue, and compassion satisfaction. The present study investigates the impact of using evidence-based practices on compassion fatigue, burnout, and compassion satisfaction in a random, national sample of self-identified trauma specialists (N=532). The 30-item Professional Quality of Life Scale (Stamm, 2005) and the 19-item Trauma Practices Questionnaire (Craig & Sprang, 2009) were included in a survey to licensed social workers and psychologists from professional membership rosters. Age and years of experience proved to be powerful predictors of only two of the three criterion variables, with younger professionals reporting higher levels of burnout and more experienced providers endorsing higher levels of compassion satisfaction. The utilization of evidence-based practices predicted statistically significant decreases in compassion fatigue and burnout, and increases in compassion satisfaction. The utility of these findings in understanding the process of trauma transmission between therapist and client as well as directions for future research are discussed. PMID:19590994

  12. Nursing on empty: compassion fatigue signs, symptoms, and system interventions.

    PubMed

    Harris, Chelsia; Griffin, Mary T Quinn

    2015-01-01

    Few healthcare organizations acknowledge, discuss, or provide interventions for assisting with compassion fatigue. Yet, it is an important concept due to its individual, professional, and financial costs. This article defines compassion fatigue, differentiates it from burnout, and offers system interventions for supporting nurses and reducing compassion fatigue. PMID:25898441

  13. Compassion Fatigue among Social Work Students in Field Placements

    ERIC Educational Resources Information Center

    Harr, Cynthia; Moore, Brenda

    2011-01-01

    This pilot study, conducted with BSW and MSW field students at a public university in Southwestern United States, explored the psychological effect of compassion fatigue and compassion satisfaction on social work students in field placements. Results from the Professional Quality of Life Scale's compassion satisfaction and fatigue subscales

  14. Compassion Fatigue among Social Work Students in Field Placements

    ERIC Educational Resources Information Center

    Harr, Cynthia; Moore, Brenda

    2011-01-01

    This pilot study, conducted with BSW and MSW field students at a public university in Southwestern United States, explored the psychological effect of compassion fatigue and compassion satisfaction on social work students in field placements. Results from the Professional Quality of Life Scale's compassion satisfaction and fatigue subscales…

  15. Self-Compassion and the Dynamics of Investigating Sexual Harassment

    ERIC Educational Resources Information Center

    Serri, Conchita Franco

    2006-01-01

    What role does compassion play in one's work? In the author's organization, the word "compassion" has been mostly linked to their values, mission, and programs. She has generally understood the concept of compassion as a deep feeling of empathy that flows from oneself towards others during certain situations and conditions. In her mind, "having…

  16. Beyond Assessment: Compassion as a Challenge to Catholic Teachers.

    ERIC Educational Resources Information Center

    Calfapietra, Elizabeth

    2002-01-01

    Argues that compassion trumps assessment and competition in the Catholic educator's classroom. Stresses that no strings can be attached to what the author refers to as teacherly love. Equates this compassion with the teachings of the Gospels. Describes teaching as a call to be an instrument of God's compassion. (Contains three references.) (NB)

  17. Understanding the Transformation of Compassion in Nurses Who Become Patients

    ERIC Educational Resources Information Center

    Pucino, Carrie L.

    2013-01-01

    The purpose of this study was to examine how nurses who become patients learn compassion toward patients in their professional practice, and examine the role of empathy in the process of learning compassion. The process of learning compassion represents a significant change in the way nurses perceive this aspect of practice. Therefore,…

  18. Domain wall assisted magnetization switching in (111) oriented L1{sub 0} FePt grown on a soft magnetic metallic glass

    SciTech Connect

    Kaushik, Neelam; Sharma, Parmanand; Yubuta, Kunio; Makino, Akihiro; Inoue, Akihisa

    2010-08-16

    We report on growth and magnetic properties of exchange-coupled (111)-L1{sub 0} FePt hard/CoFeTaB soft magnetic metallic glass bilayered structure processed at lower temperature ({approx}400 deg. C). Single phaselike hysteresis loops with tailorable coercivity (<8.2 kOe) in out of plane direction are obtained. The magnetization switching mechanism is identified as domain wall assisted. In views of excellent nanofabrication abilities of metallic glass thin film and the ability to grow preferred oriented L1{sub 0} FePt, the present bilayered structure is very promising for the fabrication of high density bit--patterned magnetic recording media and other spintronic devices.

  19. Investigating Factors that Generate and Maintain Variation in Migratory Orientation: A Primer for Recent and Future Work

    PubMed Central

    Delmore, Kira E.; Liedvogel, Miriam

    2016-01-01

    The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation. PMID:26834592

  20. Quantum dynamics of the avian compass

    NASA Astrophysics Data System (ADS)

    Walters, Zachary B.

    2014-10-01

    The ability of migratory birds to orient relative to the Earth's magnetic field is believed to involve a coherent superposition of two spin states of a radical electron pair. However, the mechanism by which this coherence can be maintained in the face of strong interactions with the cellular environment has remained unclear. This paper addresses the problem of decoherence between two electron spins due to hyperfine interaction with a bath of spin-1/2 nuclei. Dynamics of the radical pair density matrix are derived and shown to yield a simple mechanism for sensing magnetic field orientation. Rates of dephasing and decoherence are calculated ab initio and found to yield millisecond coherence times, consistent with behavioral experiments.

  1. The improvement of high-frequency magnetic properties in oriented hcp-Co78Ir22 soft magnetic films fabricated at high substrate temperature

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Sha; Xu, Fei; Ma, Xiaoming; Zhang, Junli; Li, Fashen

    2016-05-01

    The c-axis oriented hcp-Co78Ir22 soft magnetic thin films with in-plane uniaxial anisotropy and negative magnetocrystalline anisotropy were fabricated with substrate temperature at 30 °C and 500 °C, respectively. Our results further reveal that sputtering under 500 °C can obtain a film with better grain structure and higher degree of orientation, which in turn improves the Ms and the magnetocrystalline anisotropy field. As the Ms and the total out-of-plane anisotropy field including the demagnetization field and the magnetocrystalline anisotropy field were enhanced, the high-frequency magnetic parameter (μi - 1) fr is approximately two times larger than that of the sample fabricated at 30 °C. In addition, the damping constant decreases quite a lot with increasing temperature. This work indicates that the high frequency properties can be well adjusted by changing substrate temperature.

  2. Polarized Drell-Yan studies at COMPASS

    NASA Astrophysics Data System (ADS)

    Quintans, Catarina

    2014-03-01

    The COMPASS experiment at CERN will soon start a new series of measurements using a pion beam and a transversely polarized target. The study of the polarized Drell-Yan process will provide an insight of the transverse momentum dependent parton distribution functions (TMDs), which is complementary to their extraction from semi-inclusive deep inelastic scattering (SIDIS), previously measured in COMPASS. The sign change of Sivers and Boer-Mulders TMDs, when accessed from SIDIS or Drell-Yan, is predicted by theory. Its experimental observation is considered an essential test of the TMD approach. The experimental aspects of the Drell-Yan measurement in COMPASS are discussed. The set-up optimization, driven by the results of several beam tests are presented, as well as the expected event rates and statistical errors of the azimuthal asymmetries.

  3. The neurobiological link between compassion and love

    PubMed Central

    Esch, Tobias; Stefano, George B.

    2011-01-01

    Summary Love and compassion exert pleasant feelings and rewarding effects. Besides their emotional role and capacity to govern behavior, appetitive motivation, and a general ‘positive state’, even ‘spiritual’ at times, the behaviors shown in love and compassion clearly rely on neurobiological mechanisms and underlying molecular principles. These processes and pathways involve the brain’s limbic motivation and reward circuits, that is, a finely tuned and profound autoregulation. This capacity to self-regulate emotions, approach behaviors and even pair bonding, as well as social contact in general, i.e., love, attachment and compassion, can be highly effective in stress reduction, survival and overall health. Yet, molecular biology is the basis of interpersonal neurobiology, however, there is no answer to the question of what comes first or is more important: It is a cybernetic capacity and complex circuit of autoregulation that is clearly ‘amazing’. PMID:21358615

  4. Study of the Influence of the Orientation of a 50-Hz Magnetic Field on Fetal Exposure Using Polynomial Chaos Decomposition

    PubMed Central

    Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo

    2015-01-01

    Human exposure modelling is a complex topic, because in a realistic exposure scenario, several parameters (e.g., the source, the orientation of incident fields, the morphology of subjects) vary and influence the dose. Deterministic dosimetry, so far used to analyze human exposure to electromagnetic fields (EMF), is highly time consuming if the previously-mentioned variations are considered. Stochastic dosimetry is an alternative method to build analytical approximations of exposure at a lower computational cost. In this study, it was used to assess the influence of magnetic flux density (B) orientation on fetal exposure at 50 Hz by polynomial chaos (PC). A PC expansion of induced electric field (E) in each fetal tissue at different gestational ages (GA) was built as a function of B orientation. Maximum E in each fetal tissue and at each GA was estimated for different exposure configurations and compared with the limits of the International Commission of Non-Ionising Radiation Protection (ICNIRP) Guidelines 2010. PC theory resulted in an efficient tool to build accurate approximations of E in each fetal tissue. B orientation strongly influenced E, with a variability across tissues from 10% to 43% with respect to the mean value. However, varying B orientation, maximum E in each fetal tissue was below the limits of ICNIRP 2010 at all GAs. PMID:26024363

  5. Study of the influence of the orientation of a 50-Hz magnetic field on fetal exposure using polynomial chaos decomposition.

    PubMed

    Liorni, Ilaria; Parazzini, Marta; Fiocchi, Serena; Ravazzani, Paolo

    2015-06-01

    Human exposure modelling is a complex topic, because in a realistic exposure scenario, several parameters (e.g., the source, the orientation of incident fields, the morphology of subjects) vary and influence the dose. Deterministic dosimetry, so far used to analyze human exposure to electromagnetic fields (EMF), is highly time consuming if the previously-mentioned variations are considered. Stochastic dosimetry is an alternative method to build analytical approximations of exposure at a lower computational cost. In this study, it was used to assess the influence of magnetic flux density (B) orientation on fetal exposure at 50 Hz by polynomial chaos (PC). A PC expansion of induced electric field (E) in each fetal tissue at different gestational ages (GA) was built as a function of B orientation. Maximum E in each fetal tissue and at each GA was estimated for different exposure configurations and compared with the limits of the International Commission of Non-Ionising Radiation Protection (ICNIRP) Guidelines 2010. PC theory resulted in an efficient tool to build accurate approximations of E in each fetal tissue. B orientation strongly influenced E, with a variability across tissues from 10% to 43% with respect to the mean value. However, varying B orientation, maximum E in each fetal tissue was below the limits of ICNIRP 2010 at all GAs. PMID:26024363

  6. Conditions database system of the COMPASS experiment

    NASA Astrophysics Data System (ADS)

    Toeda, T.; Lamanna, M.; Duic, V.; Manara, A.

    2003-05-01

    The CERN SPS experiment COMPASS has integrated a Conditions Database System in its off-line software. The system is used to manage time-dependent information, detector condition, calibration, and geometrical alignment information, by using a package provided by the CERN IT/DB. This integrated system consists of administration tools, a data handling library, and data transfer software from the detector control system to the Conditions Database. In this paper, the status of the Conditions Database project is described, and the results of the performance test on the COMPASS computing farm are given.

  7. Compassion fatigue in military healthcare teams.

    PubMed

    Owen, Regina Peterson; Wanzer, Linda

    2014-02-01

    Since the onset of the Iraq war and Afghanistan conflicts, military healthcare teams have had increasing exposure to the traumatic effects of caring for wounded warriors, leading to a phenomenon termed compassion fatigue. The purpose of this integrative review was to develop a proposed definition for compassion fatigue in support of these teams. There is no current standardized formal definition, and this lack of clarity can inhibit intervention. Seven main themes evolved from the literature review and were integrated with the core elements of the Bandura Social Cognitive Theory Model as the first step in developing a uniformed definition. PMID:24506980

  8. Choreographing Compassion: A Clinical Adventure of Rhythms.

    PubMed

    Yopst, Charles George

    2015-06-01

    Compassion is a primary catalyst motivating positive human relationships, especially of those less fortunate. Our rhythms Expand-Contract of our own non-verbal body joints movements and of the law of counter-balance, enable us to identify which of nine innate affects-emotions is directing the body's movements. With this reading, a trained person can synchronize choreography of these into fully authentic compassion between two or more persons. Primary references for this are the late Silvan S. Tomkins's four volumes "Affect Imagery Consciousness," and choreographers the late Rudolf Laban, Warren Lamb, Irmgard Bartenieff, and Marian Chace. Professionals, clinicians, and laity counselors can all use these. PMID:26227934

  9. Mining-machine orientation control based on inertial, gravitational, and magnetic sensors. Report of Investigations/1990

    SciTech Connect

    Sammarco, J.J.

    1990-01-01

    The U.S. Bureau of Mines seeks to increase safety and efficiency in U.S. coal mines. One approach is to develop technology for automation of a continuous mining machine. Realization of an autonomous mining machine requires development of subsystems for machine intelligence, navigation-positioning, and computer control. The report focuses on investigation of one subsystem, an onboard heading system, which would be responsible for determining and controlling machine heading. The onboard heading system investigated is a multisensor system to determine machine heading, pitch, and roll. A directional gyroscope provides heading (yaw), fluxgate sensors provide a compass heading, and gravity-referenced clinometers give machine pitch and roll. The system utilizes a dedicated microcontroller networked to an external system of computers. Tram commands, supplied to the network from external computers, are executed by the onboard system. Sensor feedback is employed for closed-loop control of machine heading by controlling pivots and turns. The report discusses operating limitations and error sources of system sensors and presents test results of closed-loop control of machine heading.

  10. Influence of lattice-preferred orientation with respect to magnetizing field on intensity of remanent magnetization in polycrystalline hemo-ilmenite

    NASA Astrophysics Data System (ADS)

    Robinson, P.; Fabian, K.; McEnroe, S. A.; Heidelbach, F.

    2013-02-01

    New experimental and computational approaches to interpret orientation and intensity of natural remanent magnetization (NRM) carried by lamellar magnetism are applied to historic magnetic measurements on a collection of 82 massive hemo-ilmenite samples from the Allard Lake District in the Grenville Province, Quebec. The anisotropy of magnetic susceptibility (AMS), together with declination and inclination of NRM, indicate a systematic deflection ? of the NRM vector away from the unit vector v that represents the Mesoproterozoic magnetizing field direction. The deflection ? is caused by a statistical lattice-preferred orientation (LPO) of the individual (0001) basal planes, to which the NRM is confined in hemo-ilmenite crystals. Here, we study a second deflection ? that is the angle the NRM makes with the statistical (0001) basal plane of the crystal assemblage, in relation to the angle ? between the statistical (0001) basal plane and v. The relation between these two angles depends on the scatter of the distribution of crystal platelets, which also influences the AMS of the assemblage. For a Fisher distribution of basal planes, the distribution parameter K can be determined from ? and ?. It is then further possible to infer the single-crystal anisotropy of individual platelets. Typical crystals of hemo-ilmenite turn out to have a relatively weak AMS so that samples with a narrow Fisher distribution of platelets nevertheless can have a weak AMS. This has been confirmed in two samples by measurement of the (0001) basal plane distribution of crystals using electron backscatter diffraction, and in one of these two samples by measuring AMS and NRM of a single hemo-ilmenite crystal. Based on our estimated K values for selected samples, we calculate values of ?, NRM intensity and ? for any value of ?. These data provide striking examples of the influence of the orientation of the crystal LPO on the intensity of lamellar magnetism, and explain the large variation of observed NRM intensities by varying orientation with respect to the magnetizing field, without requiring large variations of the paleomagnetic field intensity. This relation between NRM and LPO is also important for anomaly interpretation in areas with strong foliation.

  11. Electronic and magnetic properties of (1 1 1)-oriented CoCr2O4 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoran; Kareev, M.; Cao, Yanwei; Liu, Jian; Middey, S.; Meyers, D.; Freeland, J. W.; Chakhalian, J.

    2014-07-01

    We report on the fabrication of high quality (1 1 1)-oriented ferrimagnetic normal spinel CoCr2O4 epitaxial thin films on single crystal Al2O3 substrates. The structural, electronic, and magnetic properties were characterized by in-situ reflection high energy electron diffraction, atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, dc magnetization measurement, and element resolved resonant X-ray magnetic scattering. The comprehensive characterization reveals that no disorder in the cation distribution or multivalency issue is present in the samples. As a result, Kagomé and triangular layers are naturally formed via this specific growth approach. These findings offer a pathway to fabricate two dimensional Kagomé heterostructures with exotic quantum many-body phenomena by means of geometrical design.

  12. Suffering and compassion: The links among adverse life experiences, empathy, compassion, and prosocial behavior.

    PubMed

    Lim, Daniel; DeSteno, David

    2016-03-01

    Experiencing past adversity traditionally has been linked to negative life outcomes. However, emerging evidence suggests that heterogeneity exists with respect to links between adversity and resilience, with adversity often enhancing cooperation in the face of joint suffering. Here, the authors present 2 studies designed to examine if the severity of past adversity is associated with an enduring propensity for empathy-mediated compassion, and, if so, whether the resulting compassion directly is, in turn, linked to behavior meant to relieve the suffering of others. Using both MTurk and laboratory-based paradigms, the authors find that increasing severity of past adversity predicts increased empathy, which in turn, is linked to a stable tendency to feel compassion for others in need. In addition, they demonstrate that the resulting individual differences in compassion appear to engender behavioral responses meant to assist others (i.e., charitable giving, helping a stranger). (PsycINFO Database Record PMID:26751630

  13. Magnetic monitoring of earth and space

    USGS Publications Warehouse

    Love, J.J.

    2008-01-01

    For centuries, navigators of the world's oceans have been familiar with an effect of Earth's magnetic field: It imparts a directional preference to the needle of a compass. Although in some settings magnetic orientation remains important, the modern science of geomagnetism has emerged from its romantic nautical origins and developed into a subject of great depth and diversity. The geomagnetic field is used to explore the dynamics of Earth's interior and its surrounding space environment, and geomagnetic data are used for geophysical mapping, mineral exploration, risk mitigation, and other practical applications. A global distribution of ground-based magnetic observatories supports those pursuits by providing accurate records of the magnetic-field direction and intensity at fixed locations and over long periods of time. ?? 2008 American Institute of Physics.

  14. Magnetic monitoring of earth and space

    USGS Publications Warehouse

    Love, J.J.

    2008-01-01

    For centuries, navigators of the world's oceans have been familiar with an effect of Earth's magnetic field: It imparts a directional preference to the needle of a compass. Although in some settings magnetic orientation remains important, the modern science of geomagnetism has emerged from its romantic nautical origins and developed into a subject of great depth and diversity. The geomagnetic field is used to explore the dynamics of Earth's interior and its surrounding space environment, and geomagnetic data are used for geophysical mapping, mineral exploration, risk mitigation, and other practical applications. A global distribution of ground-based magnetic observatories supports those pursuits by providing accurate records of the magnetic-field direction and intensity at fixed locations and over long periods of time.

  15. Compassion training alters altruism and neural responses to suffering.

    PubMed

    Weng, Helen Y; Fox, Andrew S; Shackman, Alexander J; Stodola, Diane E; Caldwell, Jessica Z K; Olson, Matthew C; Rogers, Gregory M; Davidson, Richard J

    2013-07-01

    Compassion is a key motivator of altruistic behavior, but little is known about individuals' capacity to cultivate compassion through training. We examined whether compassion may be systematically trained by testing whether (a) short-term compassion training increases altruistic behavior and (b) individual differences in altruism are associated with training-induced changes in neural responses to suffering. In healthy adults, we found that compassion training increased altruistic redistribution of funds to a victim encountered outside of the training context. Furthermore, increased altruistic behavior after compassion training was associated with altered activation in brain regions implicated in social cognition and emotion regulation, including the inferior parietal cortex and dorsolateral prefrontal cortex (DLPFC), and in DLPFC connectivity with the nucleus accumbens. These results suggest that compassion can be cultivated with training and that greater altruistic behavior may emerge from increased engagement of neural systems implicated in understanding the suffering of other people, executive and emotional control, and reward processing. PMID:23696200

  16. Compassion training alters altruism and neural responses to suffering

    PubMed Central

    Weng, Helen Y.; Fox, Andrew S.; Shackman, Alexander J.; Stodola, Diane E.; Caldwell, Jessica Z. K.; Olson, Matthew C.; Rogers, Gregory M.; Davidson, Richard J.

    2013-01-01

    Compassion is a key motivator of altruistic behavior, but little is known about individuals’ capacity to cultivate compassion through training. We examined whether compassion may be systematically trained by testing whether (i) short-term compassion training increases altruistic behavior, and (ii) individual differences in altruism are associated with training-induced changes in neural responses to suffering. In healthy young adults, we found that compassion training increased altruistic redistribution of funds to a victim encountered outside of the training context. Furthermore, greater altruistic behavior after compassion training was associated with altered activation in regions implicated in social cognition and emotion regulation, including the inferior parietal cortex, dorsolateral prefrontal cortex (DLPFC), and DLPFC connectivity with the nucleus accumbens. These results suggest that compassion can be cultivated with training, where greater altruistic behavior may emerge from increased engagement in neural systems implicated in understanding the suffering of others, executive and emotional control, and reward processing. PMID:23696200

  17. Artifacts in the Wake: Leadership via an Oriented Compass Model

    ERIC Educational Resources Information Center

    Fallon, Paul D.

    2013-01-01

    Although inextricable, the act of leading, the leader, and outcome of leadership are unique entities. Lack of such differentiation may ensnare novice leaders in broad suppositions. This conceptual article introduces a tool for analyzing leadership. Leaders can leverage the model to evaluate the act of leading, in route, via a measurable trajectory

  18. Artifacts in the Wake: Leadership via an Oriented Compass Model

    ERIC Educational Resources Information Center

    Fallon, Paul D.

    2013-01-01

    Although inextricable, the act of leading, the leader, and outcome of leadership are unique entities. Lack of such differentiation may ensnare novice leaders in broad suppositions. This conceptual article introduces a tool for analyzing leadership. Leaders can leverage the model to evaluate the act of leading, in route, via a measurable trajectory…

  19. Utilization of gyroscopic compass with borehole television camera in Devonian shale wells, Appalachian basin

    SciTech Connect

    Walbe, K.

    1988-08-01

    The color Borehole Television Camera has, in the three short years since its introduction in the Appalachian basin, become an extremely valuable tool in evaluating wells in Devonian shale. This has been due to the camera's ability to detect fracturing and small hydrocarbon entries that are below the resolution threshold of conventional geophysical logging. This potential of the camera has been greatly enhanced by the addition of a gyroscopic compass to the basic tool. This compass gives the added value of orientation to observed phenomena in both open and cased holes. In the open hole, the camera can be used to determine the orientation of fracturing. This feature is extremely important because fracture orientation can vary with depth, which may be the reason that some previously observed fractures make gas, whereas others within the same well bore do not. The productive fracture orientation can also be tied back to regional lineation studies. Within the open hole, the gyroscope can also be used to orient sidewall coring operations so that cores can, in addition to regular analyses, be evaluated for directional properties, such as permeability and direction of the source beds. Induced fractures, created by open-hole stress testing, can also be observed and their orientation determined.

  20. Influence of abrasive waterjet cutting on the magnetic properties of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Schoppa, A.; Louis, H.; Pude, F.; von Rad, Ch.

    2003-01-01

    The laminations for magnetic cores used in electric motors, generators, ballasts are manufactured by punching, mechanical cutting or cutting by laser of coils of electrical steels. The magnetic material close to the cutting edge is essentially influenced by these processes. Compared with these methods the deterioration of the magnetic properties after the waterjet cutting of electrical steels is very low.

  1. Performance of an electro-optical solar compass in partially obscured Sun conditions.

    PubMed

    Bollanti, S; De Meis, D; Di Lazzaro, P; Flora, F; Gallerano, G P; Mezi, L; Murra, D; Vicca, D

    2016-04-20

    Solar compasses are designed to accurately find true North on sunny days. However, no data on their performance are available when sunlight is partially blocked, e.g., by a cloud. We have measured, for the first time to the best of our knowledge, the performance of one of the most accurate electro-optical solar compasses (accuracy better than 0.01  deg) as a function of the solar disk obscuration during the Sun's eclipse on 20 March 2015. The measurements show that the accuracy level is mainly dependent on the asymmetry of the obscuration with respect to the main axis of the optical detection system and, to a lesser extent, on the percentage of the solar disk covered. In particular, azimuth measurement suffered a maximum deviation of 0.08 deg when 35% of the solar disk was asymmetrically obscured. The deviation was smaller when 46% of the solar disk was more symmetrically obscured. This experiment demonstrates that, even in the case of a partially obscured Sun, the electro-optical solar compass maintains an accuracy better than magnetic and electronic compasses. PMID:27140077

  2. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input

    PubMed Central

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock. PMID:26630286

  3. Transfer of directional information between the polarization compass and the sun compass in desert ants.

    PubMed

    Lebhardt, Fleur; Ronacher, Bernhard

    2015-06-01

    Desert ants, Cataglyphis fortis, perform large foraging excursions during which they continuously compute a home vector that allows them to return to the nest on the shortest way. This type of navigation, termed path integration, needs a compass system and an odometer. Ants use several cues to determine their walking direction, two of the most important ones being the sun position and the polarization pattern of the sky. We tested whether an information transfer is possible from one compass system to the other, which depend on different anatomical substrates. Since the sky's polarization pattern is detected by UV-photoreceptors located in the dorsal rim area (DRA), we used an orange Perspex filter that eliminated the UV part of the spectrum to prevent the use of the polarization compass. The use of the sun compass could be excluded by appropriate screens. In the critical tests the ants had learned a nest-feeder direction with e.g. the sun compass only, and were later tested with the polarization compass, or vice versa. The results show that a transfer is possible in both directions. PMID:25062650

  4. Practical compassions: repertoires of practice and compassion talk in acute mental healthcare.

    PubMed

    Brown, Brian; Crawford, Paul; Gilbert, Paul; Gilbert, Jean; Gale, Corinne

    2014-03-01

    This article reports an exploratory study of the concept of compassion in the work of 20 mental health practitioners in a UK Midlands facility. Using notions of practice derived from phenomenology and Bourdieusian sociology and notions of emotional labour we identify two contrasting interpretive repertoires in discussions of compassion. The first, the practical compassion repertoire, evokes the practical, physical and bodily aspects of compassion. It involves organising being with patients, playing games, anticipating disruption and taking them outside for cigarettes. Practitioners described being aware that these practical, bodily activities could lead to patients 'opening up', disclosing their interior concerns and enabling practical, compassionate mental health work to take place. In contrast, the second, organisational repertoire, concerns organisational constraints on compassionate practice. The shortage of staff, the record-keeping and internal processes of quality control were seen as time-greedy and apt to detract from contact with patients. The findings are discussed in relation to Bourdieu and Merleau-Ponty's phenomenological accounts of practice and habit and set in context in the growing interest in placing compassion centrally in healthcare. We also explore how the exercise of compassion in the way our participants describe it can afford the more effective exercise of medical power. PMID:24117523

  5. Magnetic domain structure and rotational hysteresis energy in Alnico magnets with different crystallographic orientation of the sample surface

    NASA Astrophysics Data System (ADS)

    Wysłlocki, J. J.; Wysłlocki, B.

    1990-01-01

    It was found that changes in the magnetization of the Alnico magnet occur by the curling mechanism for the samples with easy axis direction parallel to the surface sample, while for the samples with easy axis direction perpendicular to the sample surface coherent rotations take place.

  6. Walking alongside Children as They Form Compassion

    ERIC Educational Resources Information Center

    Sanders, Wendy Hinrichs

    2010-01-01

    The affluence in the United States in the recent past has made it tempting to indulge children in individual achievement within a culture of abundance. Parents and teachers worry over how to teach compassion in a culture of abundance and competition for personal success, where children's time is over-scheduled and they are geographically dispersed…

  7. Compassion: How Do You Teach It?

    ERIC Educational Resources Information Center

    Kohler-Evans, Patty; Barnes, Candice Dowd

    2015-01-01

    Evidence suggests that there is a correlation between the violent images and stories we view through media and the effects those stories have on children and young adults, namely the suppression of compassion. With so much emphasis on academic standards, sometimes social emotional skills are grossly neglected. Students are being taught how to…

  8. Micropattern gaseous detectors in the COMPASS tracker

    NASA Astrophysics Data System (ADS)

    Ketzer, B.

    2002-11-01

    The tracking of particles in the region close to the high-intensity beam of the COMPASS experiment at CERN is based on two novel types of micropattern gaseous detectors, the Micromegas and the GEM. Chosen for their high localization accuracy and rate capability, intrinsic to this technology of highly granular gaseous devices, their large active area of up to 40×40 cm2 and small material budget offer additional advantages for tracking of particles in a high-luminosity experiment. The basic principles of these detectors as well as the design adopted for the COMPASS experiment, aiming at optimization of operation according to their positions in the spectrometer, are presented. Means to minimize the probability of gas discharges, and to reduce their impact on detector operation, as implemented for both detector types, are discussed. For the 2001 run of COMPASS, over 50% of the total number of detectors required for the full setup was installed and successfully operated. First results concerning the operational characteristics in the COMPASS muon beam are presented.

  9. Topographic Map and Compass Use. Student Manual.

    ERIC Educational Resources Information Center

    Taylor, Michael

    This student manual is designed to introduce students to topographic maps and compass use. The first of five units included in the manual is an introduction to topographic maps. Among the topics discussed in this unit are uses, sources, and care and maintenance of topographic maps. Unit 2 discusses topographic map symbols and colors and provides a…

  10. Neural correlates of admiration and compassion.

    PubMed

    Immordino-Yang, Mary Helen; McColl, Andrea; Damasio, Hanna; Damasio, Antonio

    2009-05-12

    In an fMRI experiment, participants were exposed to narratives based on true stories designed to evoke admiration and compassion in 4 distinct categories: admiration for virtue (AV), admiration for skill (AS), compassion for social/psychological pain (CSP), and compassion for physical pain (CPP). The goal was to test hypotheses about recruitment of homeostatic, somatosensory, and consciousness-related neural systems during the processing of pain-related (compassion) and non-pain-related (admiration) social emotions along 2 dimensions: emotions about other peoples' social/psychological conditions (AV, CSP) and emotions about others' physical conditions (AS, CPP). Consistent with theoretical accounts, the experience of all 4 emotions engaged brain regions involved in interoceptive representation and homeostatic regulation, including anterior insula, anterior cingulate, hypothalamus, and mesencephalon. However, the study also revealed a previously undescribed pattern within the posteromedial cortices (the ensemble of precuneus, posterior cingulate cortex, and retrosplenial region), an intriguing territory currently known for its involvement in the default mode of brain operation and in self-related/consciousness processes: emotions pertaining to social/psychological and physical situations engaged different networks aligned, respectively, with interoceptive and exteroceptive neural systems. Finally, within the anterior insula, activity correlated with AV and CSP peaked later and was more sustained than that associated with CPP. Our findings contribute insights on the functions of the posteromedial cortices and on the recruitment of the anterior insula in social emotions concerned with physical versus psychological pain. PMID:19414310

  11. Helping nurses reconnect with their compassion.

    PubMed

    Hall, Ian; Nelligan, Maria

    Recent national reports on NHS care failings highlight the need to support, develop and provide evidence of compassion in practice. This article describes a nurse training and leadership programme that teaches nurses to become champions of compassionate care, delivering cultural change across their teams and areas of practice. PMID:26647480

  12. A Moral Compass. For Parents Particularly.

    ERIC Educational Resources Information Center

    Klein, Helen Altman

    2002-01-01

    Discusses parents' responsibility to provide their children with a moral compass that comprises respect for others, kindness and caring, honesty and honor, and reverence for life. Recognizes that children experience difficulty in achieving goodness and that good behavior sometimes encounters painful consequences. Suggests that parents model…

  13. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    DOE PAGESBeta

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less

  14. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    SciTech Connect

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. The range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.

  15. Effects of Instructional Technology Integration Strategies in Orientation Programs on Nurse Retention in Magnet and Non-Magnet Hospitals

    ERIC Educational Resources Information Center

    Hancharik, Sharon D.

    2008-01-01

    This applied dissertation study was designed to learn if the increased use of instructional technology integration strategies in nursing orientation programs resulted in an increased retention of new nurses. The study attempted to uncover the current retention rate and use of technology at the participating hospitals. The data obtained from Magnet…

  16. Texture and magnetic properties of non-oriented electrical steels processed by an unconventional cold rolling scheme

    NASA Astrophysics Data System (ADS)

    He, Youliang; Hilinski, Erik J.

    2016-05-01

    Two non-oriented electrical steels containing 0.9 wt% and 2.8 wt% of silicon were processed using an unconventional cold rolling scheme, i.e. the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) so that the initial texture before cold rolling and the rotation paths of crystals during cold deformation were both altered as compared to conventional cold rolling along the original HRD. The cold-rolled steel strips were then annealed, skin-pass rolled and final annealed. The texture and microstructure of the materials were characterized by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and optical microscopy, and considerable differences in average grain size and texture were observed at different inclination angles. The magnetic properties of the steel strips were measured at 400 Hz and 1.0 T/1.5 T using a specially designed Epstein frame, and apparent differences were also noticed at various angles. The magnetic quality of texture was evaluated using different texture factors/parameters and compared to the measured magnetic properties. Although apparent improvement on the magnetic quality of texture can be noted by inclining the CRD to HRD, the trend does not match the measured magnetic properties at 400 Hz, which may have been affected by other parameters in addition to crystallographic texture.

  17. Investigation on magnetic properties of parallel and perpendicular oriented Nd2Fe14B/Fe65Co35/Nd2Fe14B films by the micro-magnetism finite element method

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Yue, M.; Wu, Q.; Wang, T.; Cheng, C. X.; Chen, H. X.

    2015-11-01

    In present study, the hysteresis loops and the magnetic reversal process of both the parallel and the perpendicular oriented Nd2Fe14B/Fe65Co35/Nd2Fe14B trilayers with different soft phase thicknesses were studied by the micro-magnetism finite element method. Analysis of magnetization vectors' evolution in demagnetization process indicates that the parallel and the perpendicular oriented trilayers exhibit different magnetic reversal behaviors. All the demagnetization curves of the perpendicular oriented trilayers exhibits "single phase" behavior, while noticeable kinks presents in the demagnetization curves of the parallel oriented trilayers with the soft phase thickness equal to or larger than 12 nm. Moreover, as the thickness of the soft phase increases, the remanence (Br) of the parallel and the perpendicular oriented trilayers increases first, peaks respectively at 1.90 and 1.93 T, respectively, and then decreases again. On the other hand, the coercivity (?0Hc) of the parallel and the perpendicular oriented trilayers drops monotonically with the increase of soft layers thickness. As a result, the optimal maximum energy product [(BH)max] of the parallel and the perpendicular oriented trilayers are 630 kJ/m3 and 592 kJ/m3, respectively. Deviation degree of orientation was simulated for the perpendicular oriented trilayers with Ls=10 nm.

  18. Sustained Quantum Coherence and Entanglement in the Avian Compass

    NASA Astrophysics Data System (ADS)

    Gauger, Erik M.; Rieper, Elisabeth; Morton, John J. L.; Benjamin, Simon C.; Vedral, Vlatko

    2011-01-01

    In artificial systems, quantum superposition and entanglement typically decay rapidly unless cryogenic temperatures are used. Could life have evolved to exploit such delicate phenomena? Certain migratory birds have the ability to sense very subtle variations in Earth’s magnetic field. Here we apply quantum information theory and the widely accepted “radical pair” model to analyze recent experimental observations of the avian compass. We find that superposition and entanglement are sustained in this living system for at least tens of microseconds, exceeding the durations achieved in the best comparable man-made molecular systems. This conclusion is starkly at variance with the view that life is too “warm and wet” for such quantum phenomena to endure.

  19. Attachment, caregiving, and altruism: boosting attachment security increases compassion and helping.

    PubMed

    Mikulincer, Mario; Shaver, Phillip R; Gillath, Omri; Nitzberg, Rachel A

    2005-11-01

    Recent studies based on J. Bowlby's (1969/1982) attachment theory reveal that both dispositional and experimentally enhanced attachment security facilitate cognitive openness and empathy, strengthen self-transcendent values, and foster tolerance of out-group members. Moreover, dispositional attachment security is associated with volunteering to help others in everyday life and to unselfish motives for volunteering. The present article reports 5 experiments, replicated in 2 countries (Israel and the United States), testing the hypothesis that increases in security (accomplished through both implicit and explicit priming techniques) foster compassion and altruistic behavior. The hypothesized effects were consistently obtained, and various alternative explanations were explored and ruled out. Dispositional attachment-related anxiety and avoidance adversely influenced compassion, personal distress, and altruistic behavior in theoretically predictable ways. As expected, attachment security provides a foundation for care-oriented feelings and caregiving behaviors, whereas various forms of insecurity suppress or interfere with compassionate caregiving. PMID:16351370

  20. Anchor Node Localization for Wireless Sensor Networks Using Video and Compass Information Fusion

    PubMed Central

    Pescaru, Dan; Curiac, Daniel-Ioan

    2014-01-01

    Distributed sensing, computing and communication capabilities of wireless sensor networks require, in most situations, an efficient node localization procedure. In the case of random deployments in harsh or hostile environments, a general localization process within global coordinates is based on a set of anchor nodes able to determine their own position using GPS receivers. In this paper we propose another anchor node localization technique that can be used when GPS devices cannot accomplish their mission or are considered to be too expensive. This novel technique is based on the fusion of video and compass data acquired by the anchor nodes and is especially suitable for video- or multimedia-based wireless sensor networks. For these types of wireless networks the presence of video cameras is intrinsic, while the presence of digital compasses is also required for identifying the cameras' orientations. PMID:24594614

  1. Time-varying magnetic fields: effects of orientation on chondrocyte proliferation

    SciTech Connect

    Elliott, J.P.; Smith, R.L.; Block, C.A.

    1988-01-01

    The purpose of this study was to determine the effect of orientation of pulsed electromagnetic fields (PEMFs) on cellular proliferation and extracellular matrix synthesis. Bovine articular chondrocytes were cultured in PEMFs (repetitive pulse at 72 Hz) generated using Helmholtz coils oriented either parallel (horizontal) or perpendicular (vertical) to the plane of cell adhesion. Dissipation of signal energy in the form of heat increased the temperature of the PEMF coils by 2 degrees C and the tissue culture medium by 1 degree C. Therefore, control coils, which emitted no PEMFs, were heated to the temperature of PEMF coils by circulating water. Chondrocytes were cultured in 16-mm-well culture plates, and the data for individual wells were pooled as triplicates. Although not observed by microscopic examination of individual wells, positionally dependent electric field effects may be minimized by this approach. PEMFs generated by coils oriented vertically significantly decreased chondrocyte proliferation. The effect was dependent on the concentration of serum in the culture media. At 3% serum concentration, the total cell number attained after 10 days of culture was reduced by 50% in stimulated cultures when compared with controls. At 5% serum concentration, there was no effect. PEMFs applied by coils oriented horizontally did not alter proliferation of articular chondrocytes. PEMFs had no effect on synthesis of extracellular matrix by chondrocytes plated at high density, irrespective of orientation.

  2. How dim is dim? Precision of the celestial compass in moonlight and sunlight

    PubMed Central

    Dacke, M.; Byrne, M. J.; Baird, E.; Scholtz, C. H.; Warrant, E. J.

    2011-01-01

    Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim—and the polarization pattern too weak—to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision. PMID:21282173

  3. How dim is dim? Precision of the celestial compass in moonlight and sunlight.

    PubMed

    Dacke, M; Byrne, M J; Baird, E; Scholtz, C H; Warrant, E J

    2011-03-12

    Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim--and the polarization pattern too weak--to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision. PMID:21282173

  4. Is it possible to receive information about the historical geomagnetic declination from church orientations?

    NASA Astrophysics Data System (ADS)

    Draxler, Andrea; Rauch, Roman; Gruber, Karin; Leohardt, Roman

    2013-04-01

    It is widely known that the main structure of many churches was planned and built in an east-ward direction. This procedure, called "easting", was used for centuries especially in catholic structures. "Easting" usually refers to the direction of sunrise at the church patron's day. Assuming however that this direction is estimated by compasses there could be a significant correlation between the geographic orientation of the churches and the value of magnetic declination at the date of building. In Europe compasses are known since the 11th century. For this study altogether 124 churches located in lower Austria and built between 1100 to 1900 were analysed. Of primary interest is the geographic orientation of the churches, which was extracted out of georeferenced satellite images in Google Earth and the NO Atlas. The measured orientation of the church's nave is then compared to the geographic east direction as well as to the magnetic east direction, according to the magnetic field in the church's construction year which is determined by published geomagnetic field models. The resulting deviations for the geographic east direction split our data into two groups: churches that were built before 1500 and churches that were constructed after 1500. The boundary between these two data sets is marked by the Ottoman wars in the 16th century, where a lot of churches were destroyed. After 1500 the differences between the church's orientation and the geographic east direction are significantly bigger than before the Ottoman wars, so we shifted our focus for the following calculations on the time span from 1100 to 1500, where we found quite small deviations for both the geographic and the magnetic east direction. The principle idea of church orientation, usually referred to as "Easting" is to direct the church to the point of sunrise on the patron saint's day. Therefore we also calculated the solar azimuth on the patron saint's day and compared it to the orientation of the church. The differences we found were bigger than the deviations we got from the comparisons to the geographic and magnetic east directions, so this indicates that practically the solar azimuth was not used for the church's direction. Furthermore, our investigations indicate that the orientation of the investigated churches is more likely to be related to the geographic east direction than to magnetic east.

  5. Polarized skylight does not calibrate the compass system of a migratory bat.

    PubMed

    Lindecke, Oliver; Voigt, Christian C; Pētersons, Gunārs; Holland, Richard A

    2015-09-01

    In a recent study, Greif et al. (Greif et al. Nat Commun 5, 4488. (doi:10.1038/ncomms5488)) demonstrated a functional role of polarized light for a bat species confronted with a homing task. These non-migratory bats appeared to calibrate their magnetic compass by using polarized skylight at dusk, yet it is unknown if migratory bats also use these cues for calibration. During autumn migration, we equipped Nathusius' bats, Pipistrellus nathusii, with radio transmitters and tested if experimental animals exposed during dusk to a 90° rotated band of polarized light would head in a different direction compared with control animals. After release, bats of both groups continued their journey in the same direction. This observation argues against the use of a polarization-calibrated magnetic compass by this migratory bat and questions that the ability of using polarized light for navigation is a consistent feature in bats. This finding matches with observations in some passerine birds that used polarized light for calibration of their magnetic compass before but not during migration. PMID:26382077

  6. Processing and enhanced piezoelectric properties of highly oriented compositionally modified Pb(Zr,Ti)O3 ceramics fabricated by magnetic alignment

    NASA Astrophysics Data System (ADS)

    Miwa, Yasunari; Kawada, Shinichiro; Kimura, Masahiko; Omiya, Suetake; Kubodera, Noriyuki; Ando, Akira; Suzuki, Tohru S.; Uchikoshi, Tetsuo; Sakka, Yoshio

    2015-04-01

    Highly oriented compositionally modified Pb(Zr,Ti)O3 (PZT) ceramics were successfully obtained by slip casting in a high magnetic field. PZT is a well-known superior ceramic with the highest piezoelectric properties, and these properties have been expected to be further improved through crystalline orientation. However, highly oriented PZT ceramics fabricated by slip casting in a high magnetic field have never been reported. We obtained oriented ceramics using compositionally modified PZT with Pb(Ni,Nb)O3, and their Lotgering factor was 0.77. The electromechanical coupling coefficient (k31) increased by 30%, and an extremely high value of 0.44 was achieved for the oriented ceramics.

  7. Electroless Co-P-Carbon Nanotube composite coating to enhance magnetic properties of grain-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Goel, Vishu; Anderson, Philip; Hall, Jeremy; Robinson, Fiona; Bohm, Siva

    2016-06-01

    The effect of Co-P-CNT coating on the magnetic properties of grain oriented electrical steel was investigated. To analyse the coating, Raman spectroscopy, Superconducting QUantum Interference Device (SQUID), single strip testing, Scanning Electron Microscopy (SEM) and talysurf surface profilometry were performed. Raman spectra showed the D and G band which corroborates the presence of Multi-Walled Carbon Nanotubes (MWCNT) in the coating. The magnetic nature of the coating was confirmed by SQUID results. Power loss results show an improvement ranging 13-15% after coating with Co-P-CNT. The resistivity of the coating was measured to be 104 μΩ cm. Loss separation graphs were plotted before and after coating to study the improvement in power loss. It was found that the coating helps in reducing the hysteresis loss. The thickness of the coating was found to be 414±40 nm. The surface profilometry results showed that the surface roughness improved after coating the sample.

  8. Vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    With the use of a power integral formulation, a study is made of the vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma. Expressions for the ray patterns are initially developed that apply for arbitrary values of driving frequency, static magnetic-field strength, plasma density, and composition. These expressions are subsequently specialized to vlf/elf radiation in a plasma modeled on the magnetosphere. A series of representative pattern plots are presented for frequencies between the proton and electron gyrofrequencies. These patterns illustrate the fact that focusing effects that arise from the geometrical properties of the refractive index surface tend to dominate the radiation distribution over the entire range from the electron gyrofrequency to 4.6 times the proton gyrofrequency. It is concluded that focusing effects should be of significant importance in the design of a vlf/elf satellite transmitting system in the magnetosphere.

  9. Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World

    PubMed Central

    Bockhorst, Tobias; Homberg, Uwe

    2015-01-01

    The central complex of the insect brain comprises a group of neuropils involved in spatial orientation and memory. In fruit flies it mediates place learning based on visual landmarks and houses neurons that encode the orientation for goal-directed locomotion, based on landmarks and self-motion cues for angular path-integration. In desert locusts, the central complex holds a compass-like representation of head directions, based on the polarization pattern of skylight. Through intracellular recordings from immobilized locusts, we investigated whether sky compass neurons of the central complex also represent the position or any salient feature of possible landmarks, in analogy to the observations in flies. Neurons showed strongest responses to the novel appearance of a small moving square, but we found no evidence for a topographic representation of object positions. Responses to an individual square were independent of direction of motion and trajectory, but showed rapid adaptation to successive stimulation, unaffected by changing the direction of motion. Responses reappeared, however, if the moving object changed its trajectory or if it suddenly reversed moving direction against the movement of similar objects that make up a coherent background-flow as induced by ego-motion. Response amplitudes co-varied with the precedent state of dynamic background activity, a phenomenon that has been related to attention-dependent saliency coding in neurons of the mammalian primary visual cortex. The data show that neurons of the central complex of the locust brain are visually bimodal, signaling sky compass direction and the novelty character of moving objects. These response properties might serve to attune compass-aided locomotor control to unexpected events in the environment. The difference to data obtained in fruit flies might relate to differences in the lifestyle of landmark learners (fly) and compass navigators (locust), point to the existence of parallel networks for the two orientation strategies, or reflect differences in experimental conditions. PMID:26636334

  10. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design

    PubMed Central

    Kirschvink, Joseph L.; Winklhofer, Michael; Walker, Michael M.

    2010-01-01

    The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli. PMID:20071390

  11. On the Magnetic Field Orientation and Plasma Flows in Solar Filament Barbs

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.

    2000-10-01

    Speeds of vertical flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a magnetostatic solution describing a balance between the Lorentz force, gravity, and gas pressure in a barb. This approach explains why some of the flows are neither aligned with the magnetic field nor controlled by gravity. Both the observed upflows and the magnetic field dips in barbs are likely to be caused by photospheric magnetic reconnection.

  12. Magnetic field and field orientation dependence of the critical current density in Bi-2212 round wires and other HTS conductors

    SciTech Connect

    Willis, J.O.; Holesinger, T.G.; Coulter, J.Y.; Maley, M.P.

    1996-10-01

    The authors have performed measurements of the magnetic field dependence of the critical current density J{sub c} of Bi-2212/Ag round wire produced by isothermal melt processing. In contrast to the case for flat tape, there is very little dependence of J{sub c} on the direction of the magnetic field as it is rotated normal to the wire axis, which is the direction of the nominal current flow. However, when the angle of the magnetic field direction is rotated from normal to the wire axis to parallel to that axis, J{sub c} at 64 K and 0.2 T increases by more than a factor of four. Again, this is in contrast to the results observed for Bi-2212/Ag and Bi-2223/Ag flat tapes, which show no anisotropy under similar experimental conditions. They can explain these differences in angular anisotropy by referring to the microstructure of these two conductor types, which have distinctly different types of grain alignment. They discuss the general behavior of the dependence of J{sub c} on the orientation of a magnetic field for high temperature superconductors.

  13. Compassion fatigue and burnout: what managers should know.

    PubMed

    Slatten, Lise Anne; David Carson, Kerry; Carson, Paula Phillips

    2011-01-01

    Most health care employees experience and are bolstered by compassion satisfaction as they deal with patients in need. However, the more empathetic a health care provider is, the more likely he or she will experience compassion fatigue. Compassion fatigue is a negative syndrome that occurs when dealing with the traumatic experiences of patients, and examples of symptoms include intrusive thoughts, sleeping problems, and depression. Compassion fatigue is different from burnout. Compassion fatigue is a rapidly occurring disorder for primary health care workers who work with suffering patients, whereas burnout, a larger construct, is a slowly progressing disorder for employees who typically are working in burdensome organizational environments. Managers can mitigate problems associated with compassion fatigue with a number of interventions including patient reassignments, formal mentoring programs, employee training, and a compassionate organizational culture. With burnout, health care managers will want to focus primarily on chronic organizational problems. PMID:22042140

  14. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    SciTech Connect

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Yuan, Lixin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)

  15. Mean Magnetic Susceptibility Regularized Susceptibility Tensor Imaging (MMSR-STI) for Estimating Orientations of White Matter Fibers in Human Brain

    PubMed Central

    Li, Xu; van Zijl, Peter C. M.

    2014-01-01

    Purpose There is an increasing number of studies showing that magnetic susceptibility in white matter fibers is anisotropic and may be described by a tensor. However, the limited head rotation possible for in vivo human studies leads to an ill-conditioned inverse problem in susceptibility tensor imaging (STI). Here we suggest combined use of limiting the susceptibility anisotropy to white matter and imposing morphology constraints on the mean magnetic susceptibility (MMS) for regularizing the STI inverse problem. Methods The proposed MMS regularized STI (MMSR-STI) method was tested using computer simulations and in vivo human data collected at 3T. The fiber orientation estimated from both the STI and MMSR-STI method was compared to that from diffusion tensor imaging (DTI). Results Computer simulations show that MMSR-STI method provides a more accurate estimation of the susceptibility tensor than the conventional STI approach. Similarly, in vivo data show that use of MMSR-STI method leads to a smaller difference between the fiber orientation estimated from STI and DTI for most selected white matter fibers. Conclusion The proposed regularization strategy for STI can improve estimation of the susceptibility tensor in white matter. PMID:24974830

  16. Transverse Spin Effects in SIDIS at COMPASS

    SciTech Connect

    Joosten, Rainer

    2009-12-17

    The measurement of single spin asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) on a transversely polarized target is an important part of the COMPASS physics program. It allows us to investigate the transversity distribution functions as well as transverse momentum dependent distribution functions by measuring azimuthal asymmetries in the hadron production. After COMPASS took data in the years 2002-2004 by scattering a 160 GeV/c muon beam off a transversely polarized deuteron ({sup 6}LiD) target, in 2007 additional data was collected on a transversely polarized proton (NH{sub 3}) target. In this contribution, the latest results on the Collins and Sivers asymmetries in single hadron production as well as two-hadron asymmetries from the analysis of the proton data are presented and compared with existing model predictions.

  17. Monitoring tools of COMPASS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Bodlak, M.; Frolov, V.; Huber, S.; Jary, V.; Konorov, I.; Levit, D.; Novy, J.; Salac, R.; Tomsa, J.; Virius, M.

    2015-12-01

    This paper briefly introduces the data acquisition system of the COMPASS experiment and is mainly focused on the part that is responsible for the monitoring of the nodes in the whole newly developed data acquisition system of this experiment. The COMPASS is a high energy particle experiment with a fixed target located at the SPS of the CERN laboratory in Geneva, Switzerland. The hardware of the data acquisition system has been upgraded to use FPGA cards that are responsible for data multiplexing and event building. The software counterpart of the system includes several processes deployed in heterogenous network environment. There are two processes, namely Message Logger and Message Browser, taking care of monitoring. These tools handle messages generated by nodes in the system. While Message Logger collects and saves messages to the database, the Message Browser serves as a graphical interface over the database containing these messages. For better performance, certain database optimizations have been used. Lastly, results of performance tests are presented.

  18. Examining compassion and resilience through various lenses.

    PubMed

    Nolan, Mary; Oliver, Fiona; McIntosh, Laura; Lee, Jodie

    2014-09-01

    In the aftermath of the Mid-Staffs Enquiry, as part of our midwifery students' enquiry-based learning curriculum, a session was devised with the aim of enabling the students to harness the energy for change of the Francis report (Francis 2013) to explore their understanding and experience of compassion. In this article, Mary Nolan describes the structure of the sessions, and three of the students give an account of the work they undertook in small groups to explore strategies for remaining resilient in the face of the inevitable challenges they will meet once qualified. While they were already keenly aware of threats to compassion in midwifery, they were optimistic that their passion for their chosen profession, and their increased understanding of factors promoting resilience, would be protective. PMID:25326961

  19. Recent results from COMPASS muon scattering measurements

    SciTech Connect

    Capozza, Luigi [Irfu Collaboration: COMPASS Collaboration

    2012-10-23

    A sample of recent results in muon scattering measurements from the COMPASS experiment at CERN will be reviewed. These include high energy processes with longitudinally polarised proton and deuteron targets. High energy polarised measurements provide important constraints for studying the nucleon spin structure and thus permit to test the applicability of the theoretical framework of factorisation theorems and perturbative QCD. Specifically, latest results on longitudinal quark polarisation, quark helicity densities and gluon polarisation will be reviewed.

  20. Valuing compassion through definition and measurement.

    PubMed

    Dewar, Belinda; Pullin, Simon; Tocheris, Ria

    2011-02-01

    The Leadership in Compassionate Care programme aims to embed compassionate care in practice and education. This article describes a project within the programme that explores with staff, patients and families the meaning of compassion and how this can be measured. The project has involved developing practice statements from noticing the aspects of compassionate care that work well. Staff were provided with support to consider, develop and implement actions that would help ensure consistency in developing compassionate care. PMID:21473217

  1. Transverse Momentum Dependent Hadron Multiplicities at COMPASS

    NASA Astrophysics Data System (ADS)

    Makke, Nour

    2016-02-01

    Unpolarised semi-inclusive deep inelastic scattering is receiving a growing interest as a powerful tool to access poorly known transverse momentum dependent parton distributions and fragmentation functions that play a key role in many processes, in particular in the study of the spin structure of the nucleon. These functions can be investigated through experimental observables. New results on these observables by the COMPASS experiment at CERN will be shown and discussed.

  2. Self-Compassion and Well-being among Older Adults

    PubMed Central

    Allen, Ashley Batts; Goldwasser, Eleanor R.; Leary, Mark R.

    2012-01-01

    Two studies assessed the role of self-compassion as a moderator of the relationship between physical health and subjective well-being in the elderly. In Study 1, 132 participants, ranging in age from 67–90 years, completed a questionnaire that assessed their perceptions of their physical health, self-compassion, and subjective well-being. Participants who were in good physical health had high subjective well-being regardless of their level of self-compassion. However, for participants with poorer physical health, self-compassion was associated with greater subjective well-being. In Study 2, 71 participants between the ages of 63 and 97 completed a questionnaire assessing self-compassion, well-being, and their willingness to use assistance for walking, hearing, and memory. Self-compassionate participants reported being less bothered by the use of assistance than those low in self-compassion, although the relationship between self-compassion and willingness to use assistive devices was mixed. These findings suggest that self-compassion is associated with well-being in later life and that interventions to promote self-compassion may improve quality of life among older adults. PMID:23525647

  3. The installation and correction of compasses in airplanes

    NASA Technical Reports Server (NTRS)

    Schoeffel, M F

    1927-01-01

    The saving of time that results from flying across country on compass headings is beginning to be widely recognized. At the same time the general use of steel tube fuselages has made a knowledge of compass correction much more necessary than was the case when wooden fuselages were the rule. This paper has been prepared primarily for the benefit of the pilot who has never studied navigation and who does not desire to go into the subject more deeply than to be able to fly compass courses with confidence. It also contains material for the designer who wishes to install his compasses with the expectation that they may be accurately corrected.

  4. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  5. Magnetic field-dependent polarization of (111)-oriented PZT-Co ferrite nanobilayer: Effect of Co ferrite composition

    NASA Astrophysics Data System (ADS)

    Khodaei, M.; Seyyed Ebrahimi, S. A.; Jun Park, Yong; Son, Junwoo; Baik, Sunggi

    2015-05-01

    The perfect (111)-oriented PZT/CFO (CFO=CoFe2O4, Co0.8Fe2.2O4 and Co0.6Mn0.2Fe2.2O4) bilayer multiferroic thin films were grown on Pt(111)/Si substrate at 600 °C using pulsed laser deposition technique. The precision X-ray diffraction analysis (avoiding the shift of peak due to the sample misalignment) revealed that the CFO films on Pt(111)/Si substrate were under an out-of-plane contraction and deposition of PZT top layer led to more increase in the out-of-plane contraction, i.e. increase in the residual stresses. The PZT and CFO layers have significant effects on magnetic and ferroelectric properties of PZT/CFO bilayer films, respectively, leading to an enhanced in-plane magnetic anisotropy as well as increased and asymmetric polarization. The effect of composition of CFO layer on magnetic field-dependent polarization of PZT/CFO bilayer films was investigated by applying the magnetic field during P-E measurement. The polarization of PZT films were increased by applying the magnetic field as a result of strain transferred from magnetostrictive CFO underlayer. This increase in polarization for PZT/Co0.6Mn0.2Fe2.2O4 was higher than that for PZT/Co0.8Fe2.2O4 and both of them were significantly higher than that for PZT/CoFe2O4 bilayer film, which was discussed based on their magnetostriction properties.

  6. Magnetic field-induced ferroelectric domain structure evolution and magnetoelectric coupling for [110]-oriented PMN-PT/Terfenol-D multiferroic composites

    NASA Astrophysics Data System (ADS)

    Fang, F.; Jing, W. Q.

    2016-01-01

    Magnetic field-induced polarization rotation and magnetoelectric coupling effects are studied for [110]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3/Tb0.3Dy0.7Fe2(PMN-xPT/Terfenol-D) multiferroic composites. Two compositions of the [110]-oriented relaxor ferroelectric single crystals, PMN-28PT and PMN-33PT, are used. In [110]-oriented PMN-28PT, domains of rhombohedral (R) and monoclinic (MB) phases coexist prior to the magnetic loadings. Upon the applied magnetic loadings, phase transition from monoclinic MB to R phase occurs. In [110]-oriented PMN-33PT, domains are initially of mixed orthorhombic (O) and MB phases, and the phase transition from O to MB phase takes place upon the external magnetic loading. Compared to PMN-28PT, the PMN-33PT single crystal exhibits much finer domain boundary structure prior to the magnetic loadings. Upon the magnetic loadings, more domain variants are induced via the phase transition in PMN-33PT than that in PMN-28PT single crystal. The finer domain band structure and more domain variants contribute to stronger piezoelectric activity. As a result, the composite of PMN-33PT/Terfenol-D manifests a stronger ME coupling than PMN-28PT/Terfenol-D composite.

  7. The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel

    NASA Astrophysics Data System (ADS)

    Cao, Hongzhi; Hao, Linpo; Yi, Jingwen; Zhang, Xianglin; Luo, Zhonghan; Chen, Shenglin; Li, Rongfeng

    2016-05-01

    The main purpose of this paper is to investigate the influence of punching process on residual stress and magnetic domain structure. The residual stress in non-oriented silicon steel after punching process was measured by nanoindentation. The maximum depth was kept constant as 300 nm during nanoindentation. The material around indentation region exhibited no significant pile-up deformation. The calculation of residual stress was based on the Suresh theoretical model. Our experimental results show that residual compressive stress was generated around the sheared edge after punching. The width of residual stress affected zone by punching was around 0.4-0.5 mm. After annealing treatment, the residual stress was significantly decreased. Magnetic domain structure was observed according to the Bitter method. The un-annealed sample exhibited complicated domain patterns, and the widths of the magnetic domains varied between 3 μm and 8 μm. Most of the domain patterns of the annealed sample were 180°-domains and 90°-domains, and the widths of the domains decreased to 1-3 μm.

  8. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    SciTech Connect

    Sai, Ranajit; Endo, Yasushi; Shimada, Yutaka; Yamaguchi, Masahiro; Shivashankar, S. A.

    2015-05-07

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f{sub FMR}) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f{sub FMR} has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.

  9. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    NASA Astrophysics Data System (ADS)

    Sai, Ranajit; Endo, Yasushi; Shimada, Yutaka; Yamaguchi, Masahiro; Shivashankar, S. A.

    2015-05-01

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (fFMR) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of fFMR has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.

  10. Magnetic localization and orientation of the capsule endoscope based on a random complex algorithm

    PubMed Central

    He, Xiaoqi; Zheng, Zizhao; Hu, Chao

    2015-01-01

    The development of the capsule endoscope has made possible the examination of the whole gastrointestinal tract without much pain. However, there are still some important problems to be solved, among which, one important problem is the localization of the capsule. Currently, magnetic positioning technology is a suitable method for capsule localization, and this depends on a reliable system and algorithm. In this paper, based on the magnetic dipole model as well as magnetic sensor array, we propose nonlinear optimization algorithms using a random complex algorithm, applied to the optimization calculation for the nonlinear function of the dipole, to determine the three-dimensional position parameters and two-dimensional direction parameters. The stability and the antinoise ability of the algorithm is compared with the Levenberg–Marquart algorithm. The simulation and experiment results show that in terms of the error level of the initial guess of magnet location, the random complex algorithm is more accurate, more stable, and has a higher “denoise” capacity, with a larger range for initial guess values. PMID:25914561

  11. Smartstones: a small e-compass, accelerometer and gyroscope embedded in stones

    NASA Astrophysics Data System (ADS)

    Gronz, Oliver; Hiller, Priska H.; Wirtz, Stefan; Becker, Kerstin; Iserloh, Thomas; Aberle, Jochen; Casper, Markus C.

    2015-04-01

    Pebbles or rock fragments influence soil erosion processes in various ways: they can protect the soil but also enhance the erosion as soon as they are moved by water and impact onto soil. So far, stone-embedded devices to measure the movements have been quite big, up to several decimetres, which does not allow for the analysis of pebbles from medium and coarse gravel classes. In this study, we used a novel device called Smartstones, which is significantly smaller. The Smartstone device's dimensions are 55 mm in length, 8 mm in diameter and an approximately 70 mm long flexible antenna (device developer: SMART-RFID solutions Rheinberg, Germany). It is powered by two button cells, contains an own data storage and is able to wait inactive for longer times until it is activated by movement. It communicates via active RFID (radio frequency identification) technology to a Linux gateway, which stores the sensor data in a database after transmission and is able to handle several devices simultaneously. The device contains a Bosch sensor that measures magnetic flux density, acceleration and rotation, in each case for / around three axes. In our study, the device has been used in a laboratory flume (270 cm in length, 5° to 10° slope, approx. 2 cm water level, mean flow velocities between 0.66 and 1 ms-1) in combination with a high speed camera to capture the movement of the pebbles. The simultaneous usage of two capture devices allows for a comparison of the results: movement patterns derived from image analysis and sensor data analysis. In the device's first software version, all three sensors - acceleration, compass, and gyroscope - were active. The acquisition of all values resulted in a sampling rate of 10 Hz. After the experiments using this setup, the data analysis of the high speed images and the device's data showed that the pebble reached rotation velocities beyond 5 rotations per second, even on the relatively short flume and low water levels. Thus, the device produced only sub-Nyquist sampling values and the rotation velocity of the pebble could not be derived correctly using solely the device's data. Consequently, the device's software was adapted by the developers: the second (and current) version of the device only acquires acceleration and compass, as the acquisition of the gyroscope's value does not allow for higher sampling rates. The second version samples every 12 ms. All aforementioned experiments have been repeated using the adapted device. For data analysis, the high-speed camera images were merged with the device data using a MATLAB script. Furthermore, the derived relative pebble orientation - yaw, pitch and roll - is illustrated using a rotated CAD model of the pebble. The pebble's orientation is derived from compass and accelerometer data using sensor fusion and algorithms for tilt compensated compasses. The results show that the device is perfectly able to capture the movement of the pebble such as rotation (including the rotation axis), sliding or saltation. The interacting forces between the pebble and the underground can be calculated from the acceleration data. However, the accelerometer data also showed that the range of the sensor is not sufficiently large: clipping of values occurred. According to present instrument specifications, the sensor is able to capture up to 4 g for each axis but the resulting vectors for acceleration along all three axes showed values greater than 4 g, even up to the theoretical maximum of approximately 6.9 g. Thus, an impact of this strength that only stresses one axis cannot be measured. As a result of this clipping, the derivation of the pebble's absolute position using double integration of acceleration values is associated with flaws. Besides this clipping, the derived position will deviate from the true position for larger distances or longer experiment durations as the noise of the data will be integrated, too. Several requirements for the next device version were formulated: The range of the accelerometer will be set to the sensor's maximum of 16 g. The device will be water proof. Data analysis will include further methods like Hidden Markov Models or Kalman Filtering as the tilt-compensation is actually not intended for irregular moving devices. These techniques are well-established for other devices and purposes like navigation using GPS. In near future, the Smartstone device will be used outside the laboratory in natural rills and rill experiments. In these experiments, the water is turbid and the pebble will not be visible at all, which does not allow for the usage of the high speed camera. However, the present results showed that the movement of the pebble in addition to the applied forces to the underground and the rill's sidewalls can be captured solely by the Smartstone.

  12. Prediction of magnetic orientation in driver gas associated -Bz events. [in interplanetary medium observed at earth when solar source is identified

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.; Zhao, Xuepu

    1992-01-01

    The source regions of five strong -Bz events detected at 1 AU for which solar sources were identified by Tang et al. (1989) and Tsurutani et al. (1992) are investigated in order to determine whether the magnetic orientation of driver gas in the interplanetary medium observed at the earth can be predicted when its solar source is identified. Three -Bz events were traced to flare-associated coronal mass ejections (CMEs), one to an eruptive prominence associated CME, and one to three possible solar sources. The computed magnetic orientations at the candidate 'release height' (the height where the front of a CME ceases to accelerate) above the flare sites associated with CMEs show the existence of the expected southward field component. It is concluded that the magnetic orientation in flare-associated CME generated driver gas may be predictable.

  13. The preferred orientation of Mn3 spins in magnetic multiferroic CaMn7O12

    NASA Astrophysics Data System (ADS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2015-12-01

    The remarkable ferroelectricity in CaMn7O12 originates from the helicoidal spin spiral, in which the Mn3 (3b Wyckoff position) spin direction remains controversial. In this paper, the total energy, phase transition path, and spontaneous polarization of CaMn7O12 are investigated by using first-principle methods. We show that, in order to account for the giant electric polarization and the correct phase transition sequence, the relative orientation between the spins of Mn3 and Mn2 (9d Wyckoff position) sites with the same coordinate along the hexagonal c-axis can not be antiparallel, i.e. their relative orientation angle should be ϕ≈0.84π instead of ϕ=π. The most likely reason for the observation of ϕ=π can be attributed to the withdrawal of spin-orbital coupling between the Mn2 and Mn3 spins, which is caused by doping Cu2+ in the samples for neutron powder diffraction measurements.

  14. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Chen, S.; Butler, J.; Melzer, S.

    2014-11-01

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions.

  15. Stage-III recovery in α-iron studied by means of nuclear magnetic resonance on oriented 131I nuclei

    NASA Astrophysics Data System (ADS)

    Metz, A.; Niesen, L.

    1989-02-01

    Nuclear magnetic resonance measurements were performed on oriented 131I nuclei implanted into decarburized single crystals of α-Fe. Satellite resonances, centered around 633 MHz, that are well described by an additional quadrupole interaction with a <111> symmetry appeared both after room-temperature implantation and after low-temperature Frenkel pair production followed by annealing at a temperature corresponding with recovery stage III. The results from a defect-antidefect reaction with mobile stage-I defects strongly indicate that these satellite resonances are caused by trapping of mobile vacancies. Implantation at 20 K and a comparatively low dose resulted in a high-field fraction of 0.9, which is much higher than usually obtained after room-temperature implantation. Two newly discovered satellite patterns, centered around 647 and 660 MHz, are attributed to additional trapping of oxygen and hydrogen impurities, respectively.

  16. Different responses of two strains of chickens to different training procedures for magnetic directions.

    PubMed

    Denzau, Susanne; Niessner, Christine; Wiltschko, Roswitha; Wiltschko, Wolfgang

    2013-05-01

    In previous conditioning experiments training domestic chickens to magnetic directions, a brown strain solved the task, whereas a white strain seemed unable to do so (Freire et al. Anim Cogn 11:547-552, 2008). To test whether this was possibly caused by loss of magnetic compass orientation in the white chickens, we analyzed the distribution of cryptochrome 1a, the candidate receptor molecule mediating magnetic compass information, in the retinae of Lohmann Browns and White Leghorns and found no difference between the two strains. Yet, subsequent training experiments replicated the former findings: Lohmann Browns used the magnetic field to find an imprinting stimulus hidden behind the screen in a specific magnetic direction, whereas White Leghorns did not solve the task. However, when we altered the training method by training also in a magnetic field with North shifted to geographic East and including a punishment for incorrect choices, the performance of White Leghorns improved to a significant preference for the expected directions. The Lohmann Browns, on the other hand, seemed frightened and chose randomly. Our results thus demonstrate the crucial role of the training method for conditioning to magnetic stimuli, with differences found even between strains of the same species. PMID:23179110

  17. Effectiveness of CompassLearning's Odyssey Reading for Middle School

    ERIC Educational Resources Information Center

    Empirical Education Inc., 2010

    2010-01-01

    Odyssey Reading, published by CompassLearning, is a comprehensive reading/language arts program using adaptive software for core instruction. This is the first study of CompassLearning's Odyssey Reading (CLO) in PUSD and was based on data from the school years 2006-2008. For this study, Odyssey Reading was implemented in reading classes in grades…

  18. Perception of Suffering and Compassion Experience: Brain Gender Disparities

    ERIC Educational Resources Information Center

    Mercadillo, Roberto E.; Diaz, Jose Luis; Pasaye, Erick H.; Barrios, Fernando A.

    2011-01-01

    Compassion is considered a moral emotion related to the perception of suffering in others, and resulting in a motivation to alleviate the afflicted party. We compared brain correlates of compassion-evoking images in women and men. BOLD functional images of 24 healthy volunteers (twelve women and twelve men; age=27 [plus or minus] 2.5 y.o.) were…

  19. Perception of Suffering and Compassion Experience: Brain Gender Disparities

    ERIC Educational Resources Information Center

    Mercadillo, Roberto E.; Diaz, Jose Luis; Pasaye, Erick H.; Barrios, Fernando A.

    2011-01-01

    Compassion is considered a moral emotion related to the perception of suffering in others, and resulting in a motivation to alleviate the afflicted party. We compared brain correlates of compassion-evoking images in women and men. BOLD functional images of 24 healthy volunteers (twelve women and twelve men; age=27 [plus or minus] 2.5 y.o.) were

  20. Map and Compass. Outdoor Living Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Ludwig, Gail S.

    Designed for instructors with little or no map and compass experience, the self-contained manual contains background information, lesson plans, student handouts, and references for teaching the basic skills of map and compass use to junior high and senior high school students and youth groups. An introductory section briefly discusses the…

  1. Intranasal administration of oxytocin increases compassion toward women.

    PubMed

    Palgi, Sharon; Klein, Ehud; Shamay-Tsoory, Simone G

    2015-03-01

    It has been suggested that the degree of compassion-the feeling of warmth, understanding and kindness that motivates the desire to help others, is modulated by observers' views regarding the target's vulnerability and suffering. This study tested the hypothesis that as compassion developed to protect vulnerable kinships, hormones such as oxytocin, which have been suggested as playing a key role in 'tend-and-befriend' behaviors among women, will enhance compassion toward women but not toward men. Thirty subjects participated in a double-blind, placebo-controlled, within-subject study. Following administration of oxytocin/placebo, participants listened to recordings of different female/male protagonists describing distressful emotional conflicts and were then asked to provide compassionate advice to the protagonist. The participants' responses were coded according to various components of compassion by two clinical psychologists who were blind to the treatment. The results showed that in women and men participants oxytocin enhanced compassion toward women, but did not affect compassion toward men. These findings indicate that the oxytocinergic system differentially mediates compassion toward women and toward men, emphasizing an evolutionary perspective that views compassion as a caregiving behavior designed to help vulnerable individuals. PMID:24711542

  2. Enhancement of in-plane magnetic anisotropy in (111)-oriented Co0.8Fe2.2O4 thin film by deposition of PZT top layer

    NASA Astrophysics Data System (ADS)

    Khodaei, M.; Seyyed Ebrahimi, S. A.; Park, Yong Jun; Ok, Jong Mok; Kim, Jun Sung; Son, Junwoo; Baik, Sunggi

    2014-05-01

    The CoFe2O4 and Co0.8Fe2.2O4 single layer (CFO) as well as PZT/CoFe2O4 and PZT/Co0.8Fe2.2O4 bilayer thin films were grown using the pulsed laser deposition technique on Pt(111)/Si substrates at 600 °C. All films had a perfect (111)-orientation and the degree of orientation of CFO films was improved by the deposition of a PZT top layer. Precision X-ray diffraction analysis (avoiding the shift of peaks due to sample misalignment) revealed that the CFO films on Pt(111)/Si substrate were under an out-of-plane contraction and the deposition of a PZT top layer led to the increase in the out-of-plane contraction. The (111)-oriented CFO single layer films had a strong in-plane magnetic anisotropy as a result of orientation as well as the stress-induced magnetic anisotropy. The magnetic properties of CFO film were altered by the deposition of a PZT top layer leading to the enhancement of in-plane magnetic anisotropy. The enhanced in-plane magnetic anisotropy was more detectable in PZT/Co0.8Fe2.2O4 rather than PZT/CoFe2O4 bilayer film, which could be expected from its higher magnetocrystalline as well as magnetostriction constants.

  3. Orbit and clock analysis of Compass GEO and IGSO satellites

    NASA Astrophysics Data System (ADS)

    Steigenberger, P.; Hugentobler, U.; Hauschild, A.; Montenbruck, O.

    2013-06-01

    China is currently focussing on the establishment of its own global navigation satellite system called Compass or BeiDou. At present, the Compass constellation provides four usable satellites in geostationary Earth orbit (GEO) and five satellites in inclined geosynchronous orbit (IGSO). Based on a network of six Compass-capable receivers, orbit and clock parameters of these satellites were determined. The orbit consistency is on the 1-2 dm level for the IGSO satellites and on the several decimeter level for the GEO satellites. These values could be confirmed by an independent validation with satellite laser ranging. All Compass clocks show a similar performance but have a slightly lower stability compared to Galileo and the latest generation of GPS satellites. A Compass-only precise point positioning based on the products derived from the six-receiver network provides an accuracy of several centimeters compared to the GPS-only results.

  4. [Compassion fatigue and coping strategies for hospital nurses].

    PubMed

    Yang, Lin-Chi; Lin, Tsai-Rung; Yu, Yueh-Li; Yang, Li-Chien; Tsai, Su-Hua; Hung, Chich-Hsiu

    2012-06-01

    Over-involvement in patient trauma and loss in clinical settings negatively affects nurses and may cause compassion fatigue. Compassion fatigue is associated with prolonged exposure to trauma cases, over-involvement in patient situations and over-extending caring energies. Nurses unable to adapt and cope may suffer physically and psychologically, reduce their quality of care, cause medical care costs to increase, and ultimately become frustrated and decide to leave the nursing profession. While current approaches to addressing compassion fatigue focus on evaluating individual nurse situations, adjusting attitudes, holding education programs, and bolstering support systems, little research attention has been directed toward the consequences of such on patient care or the origins of compassion fatigue in Taiwan nurses. This paper defines compassion fatigue, examines its importance and consequences, and delineates common nursing coping strategies in Taiwan. Findings expand domestic research on this phenomenon and suggest relevant theories and effective interventions to achieve remediation. PMID:22661037

  5. Compassion fatigue resiliency training: the experience of facilitators.

    PubMed

    Potter, Patricia; Pion, Sarah; Gentry, J Eric

    2015-02-01

    This qualitative evaluation examined compassion fatigue facilitators' perceptions of the effects of a compassion fatigue resiliency training program in an urban medical center in the midwestern United States. Nine months after completing a compassion fatigue resiliency facilitator training program, 15 participants wrote short narratives describing how the program affected them. Participants described how the training program benefited them both personally and professionally. Two main themes were identified from the narrative analysis: self-improvement and application of resiliency. All of the participants described one or more self-improvements as a result of the program, particularly in regard to emotional health. All of the participants also described how they regularly applied one or more of the resiliency skills taught in the class to improve their ability to manage stress and prevent compassion fatigue. This program shows promise in ameliorating compassion fatigue and burnout in health care providers. PMID:25522376

  6. Compassion as the foundation of patient-centered care: the importance of compassion in action.

    PubMed

    Frampton, Susan B; Guastello, Sara; Lepore, Michael

    2013-09-01

    The Institute of Medicine defines patient-centered care as "providing care that is respectful of, and responsive to, individual patient preferences, needs and values, and ensuring that patient values guide all clinical decisions." What is missing in this definition is an explicit emphasis on compassion. This perspective article draws on the experience of Planetree (CT, USA), a not-for-profit organization that partners with healthcare establishments to drive adoption of patient-centered care principles and practices by connecting healthcare professionals with the voices and perspectives of the patients and family members who utilize their services. Across hundreds of focus groups facilitated by Planetree, patients and their loved ones emphasize that paramount among their needs, preferences and values are compassionate human interactions. For care to be truly patient-centered, a foundation of compassion is essential. Reports from patients and the media, and research from healthcare systems around the world demonstrate the fallacy of assuming that compassion is a current or prevalent feature of the care experience. Concurrently, a growing evidence base highlights the supreme importance of compassion in driving high-quality, high-value care. However, good intentions are not sufficient for delivering compassionate care. Drawing on the experiences of exemplary patient-centered hospitals (recognized as such following a rigorous culture audit to determine fulfillment of the criteria for formal recognition as a Designated® Patient-Centered Hospital [Planetree]), this paper explores practical approaches for embedding compassion in healthcare delivery and organizational culture to meet patients' expressed desires for empathic and respectful human interactions. PMID:24236742

  7. Robustness of the filamentation instability for asymmetric plasma shells collision in arbitrarily oriented magnetic field

    SciTech Connect

    Bret, A.

    2013-10-15

    The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.

  8. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks

    PubMed Central

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  9. Effects of processing conditions on the final microstructure and magnetic properties in non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Salinas-Beltrán, J.; Salinas-Rodríguez, A.; Gutiérrez-Castañeda, E.; Deaquino Lara, R.

    2016-05-01

    This paper reports the effects of tensile deformation and annealing conditions on the microstructure and magnetic properties of non-oriented electrical steel. The samples were subjected to tensile strains between 8% and 25% and subsequently annealed in air at temperatures from 700 to 900 °C. The experimental results show that the crystallographic texture of annealed samples depends strongly on the annealing temperature. Fibers textures of type <011>//RD, <001>//ND and <111>//ND, are obtained at temperatures below the Ae1. In contrast, annealing at temperatures within the two-phase field region (Ae1magnetic behavior of annealed samples.

  10. Electronic and magnetic properties of (1 1 1)-oriented CoCr2O4 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoran; Kareev, Michael; Cao, Yanwei; Liu, Jian; Middey, Srimanta; Meyers, Derek; Freeland, John; Chakhalian, Jak; Department of Physics, University of California, Berkeley Collaboration; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley Collaboration; Advanced Photon Source, Argonne National Laboratory Collaboration

    2015-03-01

    We report on the fabrication of high quality (1 1 1)-oriented ferrimagnetic normal spinel CoCr2O4 epitaxial thin films on single crystal Al2O3 substrates. The structural, electronic and magnetic properties were characterized by in - situ reflection high energy electron diffraction, atomic force microscopy, X-ray diffraction, X-ray photoemission spectroscopy, SQUID magnetometry and element resolved resonant X-ray magnetic scattering. The comprehensive characterization reveals that no disorder in the cation distribution or multivalency issue is present in the samples. As a result, Kagomé and triangular layers are naturally formed via this specific growth approach. These findings offer a pathway to fabricate two dimensional Kagomé heterostructures with novel quantum many-body phenomena by means of geometrical design. J.C. was supported by the DOD-ARO under Grant No. 0402-17291. Work at the Advanced Photon Source, Argonne is supported by the U.S. DOE under Grant No. DEAC02Â06CH11357.

  11. Changes of inclusion, texture and magnetic property of non-oriented Si steel treated by Ca alloy

    NASA Astrophysics Data System (ADS)

    Lv, X.; Zhang, F.; Chen, X.

    2015-04-01

    Based on the industrial production of non-oriented Si steel, Ca treatment by Ca alloy adding during the RH refining process was studied. The changes of inclusion, crystal texture and microstructure, and its effect on magnetic properties of final steel sheets were analyzed. The results showed that, in present work, Ca treatment can improve the texture proportion of {110} and {111} significantly, and the formation of MnS and AlN inclusions were restrained. Meanwhile, the recrystallization effects of hot rolled strip get bad and the fiber structure enhanced obviously. The grain size of finished steel sheets increased as the increase of Ca alloy adding amount quickly, and then decreased. Compared with the non-Ca treatment charge, the numbers of inclusions whose size below 1.0μm will decrease by 68.06%, 87.50% and 94.94%, the texture proportion of {110} and {111} was 30.3%, 39.1%, 17.6% and 2.8%, 5.5%, 20.6%, while the correspondent Ca alloy adding amount is 0.67 kg/t steel, 1.00 kg/t steel and 1.67 kg/t steel, respectively. In addition, the core loss gradually decreases to a stable level as the increasing of Ca added, and the magnetic induction decreases quickly after slow increasing, respectively. The optimal Ca treatment mode depends on the chemical compositions of steel grades.

  12. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks.

    PubMed

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  13. Improving magnetic properties by optimization of textures in non-oriented electrical steel with initial columnar grains

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Yang, P.; Mao, W. M.

    2015-04-01

    This study investigates the processing route to optimize magnetic properties along both rolling and transverse directions, and the evolution of texture during the process is revealed by EBSD technique. The results show that, thinner hot-rolled bands accompanied with coarser structures after normalization are beneficial for promoting the magnetic properties of final sheets. Compared with the 35W300 high-grade NGO steel with a similar composition exhibiting B50 = 1.71T (along RD)/1.67 T (along TD), the B50 values of samples obtained by hot rolling to 1.5mm and subsequent processes are equal to or higher than 1.75T (along RD)/1.69T (along TD). Moreover, a greater quantity of {hk0}<001> oriented nuclei result in stronger {hk0}<001> recrystallization texture in recrystallized warm rolled samples heated at 300°C in advance, and stronger {100}<0vw> texture is achieved in the samples prepared by two-stage annealing method. In addition, the distinct deformation and recrystallization behaviors of {100}<001> and {100}<110> columnar grains are discussed.

  14. Evolution of Recrystallization by Changes in Magnetic Hysteresis Loop in a Non-Oriented Electric Steel Cold Rolled

    NASA Astrophysics Data System (ADS)

    da Silva, F. E.; Freitas, F. N. C.; Abreu, H. F. G.; Gonçalves, L. L.; Moura, E. P.; Silva, M. R.

    2011-06-01

    Non-oriented steels, with low carbon, are widely used in the fabrication of electrical motor nucleus. The performance of these motors is affected by the level of recrystallization. These steels can come from the steel plant in two different conditions: totally processed or semi-processed. The semi-processed steels have a partially deformed structure and are submitted to the final annealing process after reaching the end shape. An adequate annealing heat treatment is important to get an appropriate magnetic property. In the present study, samples of an electric steel, with the composition (0.05 wt% C, 1.28wt% Si, 0.29wt% Mn), cold rolled 50% in thickness, were withdrawn during the industrial heat treatment at temperatures of 575, 580, 600, 620 and 730 °C with the objective of evaluating the evolution of recrystalization with temperature. Magnetic properties were measured at room temperature in a vibrating sample magnetometer. Although the changes in magnetic hysteresis loop with temperature are difficult to observe, they have been identified by using pattern classification techniques, such as principal-component analysis and Karhunen-Loève expansion. These tools have been applied to vectors which are built from each hysteresis loop, properly renormalized, whose components correspond to amplitude of the loop at given equally spaced values of the renormalized field. The samples have been classified in four sets, namely, set A corresponding to temperatures 575/580, set B corresponding to temperatures 600/620, set C corresponding to the samples without annealing heat treatment, and set D corresponding to recrystallized samples. The results for the classification of the different microstructures have been obtained by using both techniques, and in particular a 100% success rate has been reached by using Karhunen-Loève expansion.

  15. Texture and magnetic property evolution of non-oriented Fe-Si steel due to mechanical cutting

    NASA Astrophysics Data System (ADS)

    Xiong, Xuesong; Hu, Shubing; Hu, Ke; Zeng, Siqi

    2016-03-01

    Microstructures and textures as well as magnetic properties of a non-oriented Fe-Si steel with thickness of 0.5 mm and medium silicon content after mechanical cutting were investigated. The results from electron backscatter diffraction (EBSD) analysis indicated that in the cut edge zone, mechanical cutting resulted in a significant increase in low-angle boundaries (LAGBs, 2°≤θ≤15°) and dislocation densities from both the upper surface (in the shear zone) and the lower surface (in the fracture zone). Mechanical cutting also led to a visible change in textures, such as, intensity decrease of λ fiber (<001>∥normal direction [ND]) and γ fiber (<111>∥ND) components from the upper surface as well as Goss texture ({110}<001>texture) from the lower surface. Microstructure and texture changes from the upper surface seem to be more obvious than these from the lower surface. The results from single sheet testing showed mechanical cutting induced an evident deterioration in magnetic properties and a clear change in hysteresis loop of the steel, and these variations became more obvious with increasing cutting length per mass from 0.86 m/kg to 2.57 m/kg. The largest increment of iron loss reached to 18.45% and 21.76% when the flux density was at 1.0 T and 1.5 T, respectively. The possible main reasons for the changes in magnetic properties and hysteresis loops were discussed in terms of the texture factor TF or residual stress.

  16. Science and compassion: vacillation in nursing ideas 1940s-1960.

    PubMed

    Aita, V A

    2000-01-01

    The author's thesis is that during the mid-20th century, an intellectual shift toward scientific notions of care challenged the nursing profession's oldest practice values grounded in religious ideas of suffering and compassion. The author uncovers the vacillation between the expression of dominant scientific and rival compassionate ideas in the published and unpublished nursing literature of the 1950s. The evidence is first placed in a historical context of 20th century nursing history, explaining why the profession emphasized scientific approaches to care following World War II. The evidence is then placed into two larger contexts: (a) that of the greater body of scientific and humanistic writing during the period showing concern about the applications of science and technology and its moral implications, and (b) the context of early to mid-20th century notions of "positivism," highlighting the relationship between empirical knowledge and moral ideas that orient human actions. The article concludes with an analysis of implications for nursing practice. PMID:10983487

  17. Developing a systemic program for compassion fatigue.

    PubMed

    Potter, Patricia; Deshields, Teresa; Rodriguez, Sean

    2013-01-01

    The effort in hospitals to improve the patient experience has yielded a new impetus to address compassion fatigue (CF), a combination of secondary traumatic stress and burnout. Over the last 3 years, Barnes-Jewish Hospital has developed a systemic program for CF resiliency. An initial evaluation of the extent to which CF was affecting the hospital's oncology staff led to the formal implementation of a resiliency program for oncology registered nurses. The success of that program ultimately led to the implementation of a hospital-wide resiliency program, designed to help professional caregivers understand CF, recognize the physical, mental, and emotional effects of stress, and adopt resiliency strategies. The voluntary program has been very well received by participants, and a formal evaluation shows promising results with a decline in secondary traumatic stress and burnout among participants. Developing an institutional culture of recognition and support for CF is critical for health care organizations. Establishing such a culture may help managers proactively create work environments that provide opportunities for connection and support among staff. Compassion fatigue training allows professional caregivers to reconnect to their personal mission and then truly begin to connect with an organization's values and mission. PMID:24022286

  18. Results on longitudinal spin physics at COMPASS

    NASA Astrophysics Data System (ADS)

    Wilfert, Malte

    2016-03-01

    The COMPASS experiment at the CERN SPS has taken data on deep inelastic scattering of polarised muons on a polarised NH3 target in 2007 and 2011 and on a polarised LiD target in 2002-2004 and 2006. The new results on the longitudinal double spin asymmetry A1p and the spin-dependent structure function g1p obtained from the 2011 data set are presented. These results are used in a NLO QCD fit to the world data to obtain the polarised parton distributions. Also an update of the results on the Bjorken sum rule, connecting the integral of the non-singlet spin-dependent structure function with the ratio of the weak coupling constants, will be given. Direct access to the gluon polarisation is possible via the photon gluon fusion process in semi-inclusive deep inelastic scattering. This process is studied using the pT dependence of charged hadron asymmetries. The latest results indicate a positive gluon polarisation in the kinematic region of COMPASS

  19. COMPASS Final Report: Lunar Relay Satellite (LRS)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2012-01-01

    The Lunar Relay Satellite (LRS) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session was tasked to design a satellite to orbit in an elliptical lunar polar orbit to provide relay communications between lunar South Pole assets and the Earth. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The LRS is a half-TDRSS sized box spacecraft, which provides communications and navigation relay between lunar outposts (via Lunar Communications Terminals (LCT)) or Sortie parties (with user radios) and large ground antennas on Earth. The LRS consists of a spacecraft containing all the communications and avionics equipment designed by NASA Jet Propulsion Laboratory s (JPL) Team X to perform the relay between lunar-based assets and the Earth. The satellite design is a standard box truss spacecraft design with a thermal control system, 1.7 m solar arrays for 1 kWe power, a 1 m diameter Ka/S band dish which provides relay communications with the LCT, and a Q-band dish for communications to/from the Earth based assets. While JPL's Team X and Goddard Space Flight Center s (GSFC) I M Design Center (IMDC) have completed two other LRS designs, this NASA Glenn Research Center (GRC) COMPASS LRS design sits between them in terms of physical size and capabilities.

  20. Collinear ferromagnetism and spin orientation in the molecule-based magnets M[N(CN){sub 2}]{sub 2} (M=Co,Ni)

    SciTech Connect

    Kmety, C.R.; Manson, J.L.; Huang, Q.; Lynn, J.W.; Erwin, R.W.; Miller, J.S.; Epstein, A.J.

    1999-07-01

    Zero-field unpolarized neutron powder diffraction has been used to study the low-T magnetic structure and {ital T}-dependent crystal structure of M[N(CN){sub 2}]{sub 2} (M=Co,Ni). Both compounds show collinear ferromagnetism with spin orientation along the {ital c} axis. The results provide the determination of a complete magnetic structure in the ordered state for a molecule-based magnet. The {ital c} lattice parameter exhibits negative thermal expansion, explained by a wine-rack-like deformation. {copyright} {ital 1999} {ital The American Physical Society}

  1. COMPASS time synchronization and dissemination—Toward centimetre positioning accuracy

    NASA Astrophysics Data System (ADS)

    Wang, ZhengBo; Zhao, Lu; Wang, ShiGuang; Zhang, JianWei; Wang, Bo; Wang, LiJun

    2014-09-01

    In this paper we investigate methods to achieve highly accurate time synchronization among the satellites of the COMPASS global navigation satellite system (GNSS). Owing to the special design of COMPASS which implements several geo-stationary satellites (GEO), time synchronization can be highly accurate via microwave links between ground stations to the GEO satellites. Serving as space-borne relay stations, the GEO satellites can further disseminate time and frequency signals to other satellites such as the inclined geo-synchronous (IGSO) and mid-earth orbit (MEO) satellites within the system. It is shown that, because of the accuracy in clock synchronization, the theoretical accuracy of COMPASS positioning and navigation will surpass that of the GPS. In addition, the COMPASS system can function with its entire positioning, navigation, and time-dissemination services even without the ground link, thus making it much more robust and secure. We further show that time dissemination using the COMPASS-GEO satellites to earth-fixed stations can achieve very high accuracy, to reach 100 ps in time dissemination and 3 cm in positioning accuracy, respectively. In this paper, we also analyze two feasible synchronization plans. All special and general relativistic effects related to COMPASS clocks frequency and time shifts are given. We conclude that COMPASS can reach centimeter-level positioning accuracy and discuss potential applications.

  2. Intranasal administration of oxytocin increases compassion toward women

    PubMed Central

    Palgi, Sharon; Klein, Ehud

    2015-01-01

    It has been suggested that the degree of compassion—the feeling of warmth, understanding and kindness that motivates the desire to help others, is modulated by observers’ views regarding the target’s vulnerability and suffering. This study tested the hypothesis that as compassion developed to protect vulnerable kinships, hormones such as oxytocin, which have been suggested as playing a key role in ‘tend-and-befriend’ behaviors among women, will enhance compassion toward women but not toward men. Thirty subjects participated in a double-blind, placebo-controlled, within-subject study. Following administration of oxytocin/placebo, participants listened to recordings of different female/male protagonists describing distressful emotional conflicts and were then asked to provide compassionate advice to the protagonist. The participants’ responses were coded according to various components of compassion by two clinical psychologists who were blind to the treatment. The results showed that in women and men participants oxytocin enhanced compassion toward women, but did not affect compassion toward men. These findings indicate that the oxytocinergic system differentially mediates compassion toward women and toward men, emphasizing an evolutionary perspective that views compassion as a caregiving behavior designed to help vulnerable individuals. PMID:24711542

  3. Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs

    PubMed Central

    Hernández, Moisés; Guerrero, Ginés D.; Cecilia, José M.; García, José M.; Inuggi, Alberto; Jbabdi, Saad; Behrens, Timothy E. J.; Sotiropoulos, Stamatios N.

    2013-01-01

    With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation. PMID:23658616

  4. Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Naumoski, H.; Riedmüller, B.; Minkow, A.; Herr, U.

    2015-10-01

    The process of manufacturing iron cores for electric machines out of electrical steel sheets can strongly affect the magnetic properties of the material. In order to better understand the influence of cutting on the iron losses, a characterization of the magnetization behavior near the cutting edge is needed. The local magnetic properties of the material are modified by the cutting process which leads to an increase in the iron losses measured for 5 mm wide ring core samples by nearly 160% at low inductions. We present investigations on the effect of cutting by observation of the magnetic domain structure of 0.35 mm thick non-oriented electrical steel. By using the magneto-optical Kerr-effect on a ring samples the local magnetic properties of the material after processing are characterized in the form of domain wall displacements under an applied external ac-field. The influence of various cutting techniques on the magnetic properties was studied before and after stress relief annealing. This method allows a quantitative analysis of the influence of different cutting techniques on the micro-magnetic properties of non-oriented electrical steel for rotating machines.

  5. Fiber orientation measurements by diffusion tensor imaging improve hydrogen-1 magnetic resonance spectroscopy of intramyocellular lipids in human leg muscles

    PubMed Central

    Valaparla, Sunil K.; Gao, Feng; Daniele, Giuseppe; Abdul-Ghani, Muhammad; Clarke, Geoffrey D.

    2015-01-01

    Abstract. Twelve healthy subjects underwent hydrogen-1 magnetic resonance spectroscopy (H1-MRS) acquisition (15×15×15  mm3), diffusion tensor imaging (DTI) with a b-value of 600  s mm−2, and fat-water magnetic resonance imaging (MRI) using the Dixon method. Subject-specific muscle fiber orientation, derived from DTI, was used to estimate the lipid proton spectral chemical shift. Pennation angles were measured as 23.78 deg in vastus lateralis (VL), 17.06 deg in soleus (SO), and 8.49 deg in tibialis anterior (TA) resulting in a chemical shift between extramyocellular lipids (EMCL) and intramyocellular lipids (IMCL) of 0.15, 0.17, and 0.19 ppm, respectively. IMCL concentrations were 8.66±1.24  mmol kg−1, 6.12±0.77  mmol kg−1, and 2.33±0.19  mmol kg−1 in SO, VL, and TA, respectively. Significant differences were observed in IMCL and EMCL pairwise comparisons in SO, VL, and TA (p<0.05). Strong correlations were observed between total fat fractions from H1-MRS and Dixon MRI for VL (r=0.794), SO (r=0.655), and TA (r=0.897). Bland-Altman analysis between fat fractions (FFMRS and FFMRI) showed good agreement with small limits of agreement (LoA): bias=−0.21% (LoA: −1.12% to 0.69%) in VL, bias=0.025% (LoA: −1.28% to 1.33%) in SO, and bias=−0.13% (LoA: −0.74% to 0.47%) in TA. The results of this study demonstrate the variation in muscle fiber orientation and lipid concentrations in these three skeletal muscle types. PMID:26158115

  6. Anisotropy of magnetic susceptibility versus lattice- and shape-preferred orientation in the Lac Tio hemo-ilmenite ore body (Grenville province, Quebec)

    NASA Astrophysics Data System (ADS)

    Bolle, Olivier; Charlier, Bernard; Bascou, Jérôme; Diot, Hervé; McEnroe, Suzanne A.

    2014-08-01

    The Lac Tio hemo-ilmenite ore body crops out in the outer portion of the 1.06 Ga Lac Allard anorthosite, a member of the Havre-Saint-Pierre anorthosite suite from the Grenville province of North America. It is made up of ilmenitite (commonly with more than 95% hemo-ilmenite) associated with noritic lithologies and anorthosite. The present study compares the magnetic fabric of the ore body, as deduced from anisotropy of magnetic susceptibility (AMS) measurements, with the crystallographic and shape fabrics, obtained from lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) measurements made using electron backscattered diffraction (EBSD) and 3D image analysis, respectively. Room-temperature hysteresis measurements, thermomagnetic curves and values of the bulk magnetic susceptibility reveal a magnetic mineralogy dominated by a mixed contribution of hemo-ilmenite and magnetite. The hemo-ilmenite grains display a LPO characterized by a strong preferred orientation of the basal (0001) plane of ilmenite along which hematite was exsolved. This LPO and the magnetic fabric fit well (angle between the crystallographic c-axis and the axis of minimum susceptibility ≤ ca. 15° for most samples), and the latter is thus strongly influenced by the hemo-ilmenite magneto-crystalline anisotropy. A magnetite SPO, concordant with the hemo-ilmenite LPO, may also influence and even dominate the magnetic fabric. The rock shape fabric is coaxial with the magnetic fabric that can thus be used to perform detailed structural mapping. Interpretation of the magnetic fabric and field structural data suggests that the Lac Tio ore body would be a sag point at the margin of the Lac Allard anorthosite, deformed by ballooning during the final stage of diapiric emplacement of the anorthosite body.

  7. Healthcare and Compassion: Towards an Awareness of Intersubjective Vulnerability

    PubMed Central

    Kenny, Kate

    2015-01-01

    How to instill compassion in a healthcare organization? In this article, I respond to Marianna Fotaki’s proposals in her piece,‘Why and how is compassion necessary to provide good quality healthcare?’ by drawing on insights from organization studies. Following Fotaki, I argue that to instill targets and formal measures for assessing compassion would be problematic. I conclude by drawing on psychoanalytic and feminist theories to introduce alternatives, specifically proposing an approach that is grounded in a shared sense of a common, embodied precarity, which necessitates our commitment to preserving the conditions in which life might flouris PMID:26340496

  8. Tuning magnetic anisotropy in (001) oriented L1{sub 0} (Fe{sub 1-x}Cu{sub x}){sub 55}Pt{sub 45} films

    SciTech Connect

    Gilbert, Dustin A.; Liu, Kai; Wang, Liang-Wei; Lai, Chih-Huang; Klemmer, Timothy J.; Thiele, Jan-Ulrich

    2013-04-01

    We have achieved (001) oriented L1{sub 0} (Fe{sub 1-x}Cu{sub x}){sub 55}Pt{sub 45} thin films, with magnetic anisotropy up to 3.6 Multiplication-Sign 10{sup 7} erg/cm{sup 3}, using atomic-scale multilayer sputtering and post annealing at 400 Degree-Sign C for 10 s. By fixing the Pt concentration, structure and magnetic properties are systematically tuned by the Cu addition. Increasing Cu content results in an increase in the tetragonal distortion of the L1{sub 0} phase, significant changes to the film microstructure, and lowering of the saturation magnetization and anisotropy. The relatively convenient synthesis conditions, along with the tunable magnetic properties, make such materials highly desirable for future magnetic recording technologies.

  9. (abstract) Realization of a Faster, Cheaper, Better Mission and Its New Paradigm Star Tracker, the Advanced Stellar Compass

    NASA Technical Reports Server (NTRS)

    Eisenman, Allan Read; Liebe, Carl Christian; Joergensen, John Lief; Jensen, Gunnar Bent

    1997-01-01

    The first Danish satellite, rsted, will be launched in August of 1997. The scientific objective of sted is to perform a precision mapping of the Earth's magnetic field. Attitude data for the payload and the satellite are provided by the Advanced Stellar Compass (ASC) star tracker. The ASC consists of a CCD star camera and a capable microprocessor which operates by comparing the star image frames taken by the camera to its internal star catalogs.

  10. Characterization of topological phases in the compass ladder model.

    PubMed

    Haghshenas, R; Langari, A; Rezakhani, A T

    2016-05-01

    The phase diagram of the quantum compass ladder model is investigated through numerical density matrix renormalization group based on infinite matrix product state algorithm and analytic effective perturbation theory. For this model we obtain two symmetry-protected topological phases, protected by a [Formula: see text] symmetry, and a topologically-trivial Z 2-symmetry-breaking phase. The symmetry-protected topological phases-labeled by symmetry fractionalization-belong to different topological classes, where the complex-conjugate symmetry uniquely distinguishes them. An important result of this classification is that, as revealed by the nature of the Z 2-symmetry-breaking phase, the associated quantum phase transitions are accompanied by an explicit symmetry breaking, and thus a local-order parameter conclusively identifies the phase diagram of the underlying model. This is in stark contrast to previous studies which require a non-local string order parameter to distinguish the corresponding quantum phase transitions. We numerically examine our results and show that the local-order parameter is related to the magnetization exponent [Formula: see text]. PMID:27023290

  11. Characterization of topological phases in the compass ladder model

    NASA Astrophysics Data System (ADS)

    Haghshenas, R.; Langari, A.; Rezakhani, A. T.

    2016-05-01

    The phase diagram of the quantum compass ladder model is investigated through numerical density matrix renormalization group based on infinite matrix product state algorithm and analytic effective perturbation theory. For this model we obtain two symmetry-protected topological phases, protected by a {{Z}2}× {{Z}2} symmetry, and a topologically-trivial Z 2-symmetry-breaking phase. The symmetry-protected topological phases—labeled by symmetry fractionalization—belong to different topological classes, where the complex-conjugate symmetry uniquely distinguishes them. An important result of this classification is that, as revealed by the nature of the Z 2-symmetry-breaking phase, the associated quantum phase transitions are accompanied by an explicit symmetry breaking, and thus a local-order parameter conclusively identifies the phase diagram of the underlying model. This is in stark contrast to previous studies which require a non-local string order parameter to distinguish the corresponding quantum phase transitions. We numerically examine our results and show that the local-order parameter is related to the magnetization exponent 0.12+/- 0.01 .

  12. Do monarch butterflies use polarized skylight for migratory orientation?

    PubMed

    Stalleicken, Julia; Mukhida, Maya; Labhart, Thomas; Wehner, Rüdiger; Frost, Barrie; Mouritsen, Henrik

    2005-06-01

    To test if migratory monarch butterflies use polarized light patterns as part of their time-compensated sun compass, we recorded their virtual flight paths in a flight simulator while the butterflies were exposed to patches of naturally polarized blue sky, artificial polarizers or a sunny sky. In addition, we tested butterflies with and without the polarized light detectors of their compound eye being occluded. The monarchs' orientation responses suggested that the butterflies did not use the polarized light patterns as a compass cue, nor did they exhibit a specific alignment response towards the axis of polarized light. When given direct view of the sun, migratory monarchs with their polarized light detectors painted out were still able to use their time-compensated compass: non-clockshifted butterflies, with their dorsal rim area occluded, oriented in their typical south-southwesterly migratory direction. Furthermore, they shifted their flight course clockwise by the predicted approximately 90 degrees after being advance clockshifted 6 h. We conclude that in migratory monarch butterflies, polarized light cues are not necessary for a time-compensated celestial compass to work and that the azimuthal position of the sun disc and/or the associated light-intensity and spectral gradients seem to be the migrants' major compass cue. PMID:15939779

  13. Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  14. Electric and Magnetic Field-Assisted Orientational Transitions in the Ensembles of Domains in a Nematic Liquid Crystal on the Polymer Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  15. Recent COMPASS Results on Transverse Physics

    SciTech Connect

    Iwata, Takahiro; Collaboration: COMPASS Collaboration

    2011-12-14

    The investigation of transverse spin and transverse momentum dependent effects in deep inelastic scattering of muons off nucleons is one of the key physics programs of the COMPASS collaboration at CERN. We have investigated the effects from the data obtained with a polarized proton target. In order to access the transversity distribution function, following channels have been analyzed: The azimuthal distribution of single hadrons, the azimuthal dependence of the plane containing hadron pairs, and the measurement of the transverse polarization of lambda hyperons in the final state. The Sivers distribution function which is one of the transverse momentum dependent functions has been investigated also from the azimuthal distribution of single hadrons. Azimuthal asymmetries in unpolarized deep inelastic scattering give important information on the inner structure of the nucleon to access the so-far unmeasured Boer-Mulders function. We have measured these asymmetries using spin-averaged {sup 6}L{sub i}D.

  16. Synchrony and the social tuning of compassion.

    PubMed

    Valdesolo, Piercarlo; Desteno, David

    2011-04-01

    Although evidence has suggested that synchronized movement can foster cooperation, the ability of synchrony to increase costly altruism and to operate as a function of emotional mechanisms remains unexplored. We predicted that synchrony, due to an ability to elicit low-level appraisals of similarity, would enhance a basic compassionate response toward victims of moral transgressions and thereby increase subsequent costly helping behavior on their behalf. Using a manipulation of rhythmic synchrony, we show that synchronous others are not only perceived to be more similar to oneself but also evoke more compassion and altruistic behavior than asynchronous others experiencing the same plight. These findings both support the view that a primary function of synchrony is to mark others as similar to the self and provide the first empirical demonstration that synchrony-induced affiliation modulates emotional responding and altruism. PMID:21500895

  17. Physics Projects of COMPASS with hadron beams

    NASA Astrophysics Data System (ADS)

    Faessler, M. A.

    1999-02-01

    COMPASS, a new state-of-the-art spectrometer to be installed at the CERN Superprotonsynchrotron for experiments with muon and hadron beams, will be exposed to hadron beams with intensities up to 108/sec and energies up to 280 GeV. The physics goals are to study the rare production of charmed hadrons, including doubly charmed baryons, in inelastic interactions, with particular interest in their semileptonic decays; to search for glueballs and hybrids in central and diffractive production. Predictions of chiral perturbation theory will be tested in Primakoff reactions. The spectrometer shall be equipped with excellent particle identification and tracking, with calorimetry, dedicated triggers and fast read-out. A significant improvement of light hadron spectroscopy - compared to previous measurements -can be achieved already in the initial phase of the experiment.

  18. The compass rose pattern in electricity prices

    NASA Astrophysics Data System (ADS)

    Batten, Jonathan A.; Hamada, Mahmoud

    2009-12-01

    The "compass rose pattern" is known to appear in the phase portraits, or scatter diagrams, of the high-frequency returns of financial series. We first show that this pattern is also present in the returns of spot electricity prices. Early researchers investigating these phenomena hoped that these patterns signaled the presence of rich dynamics, possibly chaotic or fractal in nature. Although there is a definite autoregressive and conditional heteroscedasticity structure in electricity returns, we find that after simple filtering no pattern remains. While the series is non-normal in terms of their distribution and statistical tests fail to identify significant chaos, there is evidence of fractal structures in periodic price returns when measured over the trading day. The phase diagram of the filtered returns provides a useful visual check on independence, a property necessary for pricing and trading derivatives and portfolio construction, as well as providing useful insights into the market dynamics.

  19. Phenomenology of COMPASS data: Multiplicities and phenomenology - part II

    DOE PAGESBeta

    Anselmino, M.; Boglione, M.; Gonzalez H., J. O.; Melis, S.; Prokudin, A.

    2015-01-23

    In this study, we present some of the main features of the multidimensional COMPASS multiplicities, via our analysis using the simple Gaussian model. We briefly discuss these results in connection with azimuthal asymmetries.

  20. 52. Patent steering gear, hatch and steering compass binnacle, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Patent steering gear, hatch and steering compass binnacle, view from starboard looking aft. Photograph by Jet Lowe, April 1988. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA

  1. State transitions and decoherence in the avian compass

    NASA Astrophysics Data System (ADS)

    Poonia, Vishvendra Singh; Saha, Dipankar; Ganguly, Swaroop

    2015-05-01

    The radical pair model has been successful in explaining behavioral characteristics of the geomagnetic compass believed to underlie the navigation capability of certain avian species. In this study, the spin dynamics of the radical pair model and decoherence therein are interpreted from a microscopic state transition point of view. This helps to elucidate the interplay between the hyperfine and Zeeman interactions that enables the avian compass and clarify the distinctive effects of nuclear and environmental decoherence on it. Three regimes have been identified for the strength of the hyperfine interaction with respect to that of the geomagnetic Zeeman. It is found that the compass is likely to function in the large hyperfine interaction regime. Using a quantum information theoretic quantifier of coherence, we find that nuclear decoherence induces new structure in the spin dynamics for intermediate hyperfine interaction strength. On the other hand, environmental decoherence—modeled by two different noise models—seems to disrupt the compass action.

  2. Sun compass integration of skylight cues in migratory monarch butterflies.

    PubMed

    Heinze, Stanley; Reppert, Steven M

    2011-01-27

    Migrating monarch butterflies (Danaus plexippus) use a time-compensated sun compass to navigate from eastern North America to their overwintering grounds in central Mexico. Here we describe the neuronal layout of those aspects of the butterfly's central complex likely to establish part of the internal sun compass and find them highly homologous to those of the desert locust. Intracellular recordings from neurons in the monarch sun compass network reveal responses tuned to specific E-vector angles of polarized light, as well as azimuth-dependent responses to unpolarized light, independent of spectral composition. The neural responses to these two stimuli in individual neurons are mediated through different regions of the compound eye. Moreover, these dual responses are integrated to create a consistent representation of skylight cues in the sun compass throughout the day. The results advance our understanding of how ambiguous sensory signals are processed by the brain to elicit a robust behavioral response. PMID:21262471

  3. 31. PILOT HOUSE, LOOKING TOWARDS STARBOARD, DETAIL OF COMPASS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. PILOT HOUSE, LOOKING TOWARDS STARBOARD, DETAIL OF COMPASS AND ITS WOODEN HOUSING (DATED 1941) AND HELM. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA

  4. 30. PILOT HOUSE, LOOKING TOWARDS STARBOARD, WOODEN COMPASS CASE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. PILOT HOUSE, LOOKING TOWARDS STARBOARD, WOODEN COMPASS CASE AND HELM. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  5. Trauma Care Workers At Risk for 'Compassion Fatigue'

    MedlinePlus

    ... put them at risk for "compassion fatigue" and burnout, a small new study says. Previous research has ... fatigue. One-third had a combination of high burnout and low levels of positive experiences helping patients, ...

  6. Mindfulness, self-compassion, and empathy among health care professionals: a review of the literature.

    PubMed

    Raab, Kelley

    2014-01-01

    The relationship between mindfulness and self-compassion is explored in the health care literature, with a corollary emphasis on reducing stress in health care workers and providing compassionate patient care. Health care professionals are particularly vulnerable to stress overload and compassion fatigue due to an emotionally exhausting environment. Compassion fatigue among caregivers in turn has been associated with less effective delivery of care. Having compassion for others entails self-compassion. In Kristin Neff's research, self-compassion includes self-kindness, a sense of common humanity, and mindfulness. Both mindfulness and self-compassion involve promoting an attitude of curiosity and nonjudgment towards one's experiences. Research suggests that mindfulness interventions, particularly those with an added lovingkindness component, have the potential to increase self-compassion among health care workers. Enhancing focus on developing self-compassion using MBSR and other mindfulness interventions for health care workers holds promise for reducing perceived stress and increasing effectiveness of clinical care. PMID:24926896

  7. Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes

    USGS Publications Warehouse

    Pittman, Shannon E.; Hart, Kristen M.; Cherkiss, Michael S.; Snow, Ray W.; Fujisaki, Ikuko; Mazzotti, Frank J.; Dorcas, Michael E.

    2014-01-01

    Navigational ability is a critical component of an animal's spatial ecology and may influence the invasive potential of species. Burmese pythons (Python molurus bivittatus) are apex predators invasive to South Florida. We tracked the movements of 12 adult Burmese pythons in Everglades National Park, six of which were translocated 21–36 km from their capture locations. Translocated snakes oriented movement homeward relative to the capture location, and five of six snakes returned to within 5 km of the original capture location. Translocated snakes moved straighter and faster than control snakes and displayed movement path structure indicative of oriented movement. This study provides evidence that Burmese pythons have navigational map and compass senses and has implications for predictions of spatial spread and impacts as well as our understanding of reptile cognitive abilities.

  8. Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes

    PubMed Central

    Pittman, Shannon E.; Hart, Kristen M.; Cherkiss, Michael S.; Snow, Ray W.; Fujisaki, Ikuko; Smith, Brian J.; Mazzotti, Frank J.; Dorcas, Michael E.

    2014-01-01

    Navigational ability is a critical component of an animal's spatial ecology and may influence the invasive potential of species. Burmese pythons (Python molurus bivittatus) are apex predators invasive to South Florida. We tracked the movements of 12 adult Burmese pythons in Everglades National Park, six of which were translocated 21–36 km from their capture locations. Translocated snakes oriented movement homeward relative to the capture location, and five of six snakes returned to within 5 km of the original capture location. Translocated snakes moved straighter and faster than control snakes and displayed movement path structure indicative of oriented movement. This study provides evidence that Burmese pythons have navigational map and compass senses and has implications for predictions of spatial spread and impacts as well as our understanding of reptile cognitive abilities. PMID:24647727

  9. Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes.

    PubMed

    Pittman, Shannon E; Hart, Kristen M; Cherkiss, Michael S; Snow, Ray W; Fujisaki, Ikuko; Smith, Brian J; Mazzotti, Frank J; Dorcas, Michael E

    2014-03-01

    Navigational ability is a critical component of an animal's spatial ecology and may influence the invasive potential of species. Burmese pythons (Python molurus bivittatus) are apex predators invasive to South Florida. We tracked the movements of 12 adult Burmese pythons in Everglades National Park, six of which were translocated 21-36 km from their capture locations. Translocated snakes oriented movement homeward relative to the capture location, and five of six snakes returned to within 5 km of the original capture location. Translocated snakes moved straighter and faster than control snakes and displayed movement path structure indicative of oriented movement. This study provides evidence that Burmese pythons have navigational map and compass senses and has implications for predictions of spatial spread and impacts as well as our understanding of reptile cognitive abilities. PMID:24647727

  10. The Role of Compassion in Altruistic Helping and Punishment Behavior

    PubMed Central

    Weng, Helen Y.; Fox, Andrew S.; Hessenthaler, Heather C.; Stodola, Diane E.; Davidson, Richard J.

    2015-01-01

    Compassion, the emotional response of caring for another who is suffering and that results in motivation to relieve suffering, is thought to be an emotional antecedent to altruistic behavior. However, it remains unclear whether compassion enhances altruistic behavior in a uniform way or is specific to sub-types of behavior such as altruistic helping of a victim or altruistic punishment of a transgressor. We investigated the relationship between compassion and subtypes of altruistic behavior using third-party paradigms where participants 1) witnessed an unfair economic exchange between a transgressor and a victim, and 2) had the opportunity to either spend personal funds to either economically a) help the victim or b) punish the transgressor. In Study 1, we examined whether individual differences in self-reported empathic concern (the emotional component of compassion) was associated with greater altruistic helping or punishment behavior in two independent samples. For participants who witnessed an unfair transaction, trait empathic concern was associated with greater helping of a victim and had no relationship to punishment. However, in those who decided to punish the transgressor, participants who reported greater empathic concern decided to punish less. In Study 2, we directly enhanced compassion using short-term online compassion meditation training to examine whether altruistic helping and punishment were increased after two weeks of training. Compared to an active reappraisal training control group, the compassion training group gave more to help the victim and did not differ in punishment of the transgressor. Together, these two studies suggest that compassion is related to greater altruistic helping of victims and is not associated with or may mitigate altruistic punishment of transgressors. PMID:26655837

  11. The Role of Compassion in Altruistic Helping and Punishment Behavior.

    PubMed

    Weng, Helen Y; Fox, Andrew S; Hessenthaler, Heather C; Stodola, Diane E; Davidson, Richard J

    2015-01-01

    Compassion, the emotional response of caring for another who is suffering and that results in motivation to relieve suffering, is thought to be an emotional antecedent to altruistic behavior. However, it remains unclear whether compassion enhances altruistic behavior in a uniform way or is specific to sub-types of behavior such as altruistic helping of a victim or altruistic punishment of a transgressor. We investigated the relationship between compassion and subtypes of altruistic behavior using third-party paradigms where participants (1) witnessed an unfair economic exchange between a transgressor and a victim, and (2) had the opportunity to either spend personal funds to either economically (a) help the victim or (b) punish the transgressor. In Study 1, we examined whether individual differences in self-reported empathic concern (the emotional component of compassion) was associated with greater altruistic helping or punishment behavior in two independent samples. For participants who witnessed an unfair transaction, trait empathic concern was associated with greater helping of a victim and had no relationship to punishment. However, in those who decided to punish the transgressor, participants who reported greater empathic concern decided to punish less. In Study 2, we directly enhanced compassion using short-term online compassion meditation training to examine whether altruistic helping and punishment were increased after two weeks of training. Compared to an active reappraisal training control group, the compassion training group gave more to help the victim and did not differ in punishment of the transgressor. Together, these two studies suggest that compassion is related to greater altruistic helping of victims and is not associated with or may mitigate altruistic punishment of transgressors. PMID:26655837

  12. Compassion Fatigue and Burnout Amongst Clinicians: A Medical Exploratory Study

    PubMed Central

    Bhutani, Jaikrit; Bhutani, Sukriti; Balhara, Yatan Pal Singh; Kalra, Sanjay

    2012-01-01

    Background: Compassion fatigue is a broad term comprising of two components – burnout and secondary traumatic stress. The current study is aimed at identifying ‘burnout’ and ‘compassion fatigue’ among clinicians involved in care of individuals suffering from medical illness. Materials and Methods: A total of 60 clinicians were included in the study. A semi-structured questionnaire was administered to gather information related to personal, professional, anthropometric, and metabolic profile of the study participants. Professional Quality of Life Scale (ProQoL Version V) was used to assess burnout, compassion satisfaction and secondary traumatic stress. Analysis was carried out using the SPSS version 19.0. Results: The mean age of clinicians was 46.68±11.06 (range 26-67 years). Burnout score was significantly higher in those involved in diabetology practice. Similarly, compassion satisfaction score was greater among those with greater years of practice as well as among those in private practice. Clinicians who reported a poor working condition, as opposed to good, had more burnout and less compassion satisfaction. Conclusion: The current study suggests that it is important to find out ways of decreasing burnout and compassion fatigue among clinicians. PMID:23723540

  13. COMPASS 31: A Refined and Abbreviated Composite Autonomic Symptom Score

    PubMed Central

    Sletten, David M.; Suarez, Guillermo A.; Low, Phillip A.; Mandrekar, Jay; Singer, Wolfgang

    2012-01-01

    Objective To develop a concise and statistically robust instrument to assess autonomic symptoms that provides clinically relevant scores of autonomic symptom severity based on the well-established 169-item Autonomic Symptom Profile (ASP) and its validated 84-question scoring instrument, the Composite Autonomic Symptom Score (COMPASS). Patients and Methods We assessed the internal consistency of COMPASS using Cronbach ? coefficients based on the ASP of 405 healthy control subjects recruited and seen in the Mayo Clinic Autonomic Disorders Center between March 1, 1995, and March 31, 2010. Applying a simplified scoring algorithm, we then used exploratory factor analysis with orthogonal rotation and eigenvalue calculations to extract internally consistent domains and to reduce dimensionality. This analysis was followed by expert revisions to eliminate redundant content and to retain clinically important questions and final assessment of the new instrument. Results The new simplified scoring algorithm alone resulted in higher Cronbach ? values in all domains. Factor analysis revealed 7 domains with a total of 54 questions retained. Expert revisions resulted in further reduction of questions and domains with a remaining total of 31 questions in 6 domains (COMPASS 31). Measures of internal consistency were much improved compared to those for COMPASS. Following appropriate weighting, this instrument provides an autonomic symptom score from 0 to 100. Conclusion COMPASS 31 is a refined, internally consistent, and markedly abbreviated quantitative measure of autonomic symptoms. It is based on the original ASP and COMPASS, applies a much simplified scoring algorithm, and is suitable for widespread use in autonomic research and practice. PMID:23218087

  14. Transverse Spin Azimuthal Asymmetries in SIDIS at COMPASS: Multidimensional Analysis

    NASA Astrophysics Data System (ADS)

    Parsamyan, Bakur

    2016-02-01

    COMPASS is a high-energy physics experiment operating at the SPS at CERN. Wide physics program of the experiment comprises study of hadron structure and spectroscopy with high energy muon and hadrons beams. As for the muon-program, one of the important objectives of the COMPASS experiment is the exploration of the transverse spin structure of the nucleon via spin (in)dependent azimuthal asymmetries in single-hadron production in deep inelastic scattering of polarized leptons off transversely polarized target. For this purpose a series of measurements were made in COMPASS, using 160 GeV/c longitudinally polarized muon beam and transversely polarized 6LiD (in 2002, 2003 and 2004) and NH3 (in 2007 and 2010) targets. The experimental results obtained by COMPASS for unpolarized target azimuthal asymmetries, Sivers and Collins effects and other azimuthal observables play an important role in the general understanding of the three-dimensional nature of the nucleon. Giving access to the entire twsit-2 set of transverse momentum dependent parton distribution functions and fragmentation functions COMPASS data triggers constant theoretical interest and is being widely used in phenomenological analyses and global data fits. In this review main focus is given to the very recent results obtained by the COMPASS collaboration from first ever multi-dimensional extraction of transverse spin asymmetries.

  15. Lack of relationship between geoeffectiveness and orientations of magnetic clouds with bipolar Bz and unipolar southward Bz

    NASA Astrophysics Data System (ADS)

    Teh, W.-L.; Abdullah, M.; Hasbi, A. M.

    2015-09-01

    In this study, 38 magnetic clouds (MCs) that caused significant geomagnetic storms (the minimum SYM-H, SHmin, ≤-50 nT) are examined, in which 17 MCs were unipolar Bz in south (S-type) and 21 MCs were bipolar Bz (north-to-south, NS-type, or south-to-north, SN-type). For S-type MC, inclination angle of the axis of the MC, |θ|, is ≥45°, while |θ|<45° for bipolar MC. This paper aims to address a question: is the intensity of a MC-driven storm correlated with the orientations of bipolar and S-type MCs? Our results demonstrate that there is no direct and significant relationship between geoeffectiveness and orientations of bipolar and S-type MCs. In other words, there is no MC preference (bipolar or S-type MC) to regulate the SHmin of the storm. On the whole, the SHmin is found to strongly correlate with southward field Bz (cc=0.96) and with the y component of the solar wind convective electric field (cc=-0.91) but to weakly correlate with solar wind speed (cc=-0.65). This result is consistent with previous studies by Wu and Lepping (2002), J. Geophys. Res. 107 (A10), 1314. doi:10.1029/2001JA000161. By separating MC-driven storms by size into moderate (-100 nT

  16. Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet

    NASA Astrophysics Data System (ADS)

    Lee, K. M.; Huh, M. Y.; Lee, H. J.; Park, J. T.; Kim, J. S.; Shin, E. J.; Engler, O.

    2015-12-01

    The effect of hot band grain size on the development of crystallographic texture and magnetic properties in non-oriented electrical steel sheet was studied. After cold rolling the samples with different initial grain sizes displayed different microstructures and micro-textures but nearly identical macro-textures. The homogeneous recrystallized microstructure and micro-texture in the sample having small grains caused normal continuous grain growth. The quite irregular microstructure and micro-texture in the recrystallized sample with large initial grain size provided a preferential growth of grains in <001>//ND and <113>//ND which were beneficial for developing superior magnetic properties.

  17. A new therapeutic community: development of a compassion-focussed and contextual behavioural environment.

    PubMed

    Veale, David; Gilbert, Paul; Wheatley, Jon; Naismith, Iona

    2015-01-01

    Social relationships and communities provide the context and impetus for a range of psychological developments, from genetic expression to the development of core self-identities. This suggests a need to think about the therapeutic changes and processes that occur within a community context and how communities can enable therapeutic change. However, the 'therapeutic communities' that have developed since the Second World War have been under-researched. We suggest that the concept of community, as a change process, should be revisited within mainstream scientific research. This paper briefly reviews the historical development of therapeutic communities and critically evaluates their current theory, practice and outcomes in a systematic review. Attention is drawn to recent research on the nature of evolved emotion regulation systems, the way these are entrained by social relationships, the importance of affiliative emotions in the regulation of threat and the role of fear of affiliative emotions in psychopathology. We draw on concepts from compassion-focussed therapy, social learning theory and functional analytical psychotherapy to consider how members of a therapeutic community can be aware of each other's acts of courage and respond using compassion. Living in structured and affiliative-orientated communities that are guided by scientific models of affect and self-regulation offers potential therapeutic advantages over individual outpatient therapy for certain client groups. This conclusion should be investigated further. Key Practitioner Message Current therapeutic community practice is not sufficiently evidence based and may not be maximizing the potential therapeutic value of a community. Compassion-focussed therapy and social learning theory offer new approaches for a therapeutic environment, involving an understanding of the role, nature and complexities of compassionate and affiliative relationships from staff and members, behavioural change guided by learning theory, a clear formulation based on threat-derived safety strategies, goal setting and positive reinforcement. PMID:24733685

  18. Group cohesion and organizational commitment: protective factors for nurse residents' job satisfaction, compassion fatigue, compassion satisfaction, and burnout.

    PubMed

    Li, Angela; Early, Sean F; Mahrer, Nicole E; Klaristenfeld, Jessica L; Gold, Jeffrey I

    2014-01-01

    Stress can have detrimental effects on nurse residents' levels of job satisfaction, compassion, fatigue, and burnout. This can lead to high turnover rates and poor quality of care among novice nurses. Therefore, it is critical to identify protective factors to prevent the onset of negative nurse outcomes (compassion fatigue, burnout, and job dissatisfaction) and to promote positive nurse outcomes (job satisfaction, compassion satisfaction). This study aimed to determine whether factors such as group cohesion and organizational commitment would be protective and moderate the association between stress exposure and posttraumatic stress symptoms and other negative nurse outcomes, thus facilitating positive outcomes. Findings showed that group cohesion was effective in moderating the negative effects of current stress exposure and posttraumatic stress symptoms on negative nurse outcomes, specifically on increased compassion fatigue and burnout, and reduced compassion satisfaction. In addition, organizational commitment was determined to promote positive nurse outcomes such as job satisfaction and compassion satisfaction. The study findings are promising, as retention of quality nurses is a significant problem for hospitals. Nurse managers and hospital administrators should be aware of the benefits of group cohesion and organizational commitment and strive to make the promotion of these factors a priority. PMID:24503320

  19. 78 FR 42153 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel COMPASS ROSE; Invitation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Maritime Administration Requested Administrative Waiver of the Coastwise Trade Laws: Vessel COMPASS ROSE... of the vessel COMPASS ROSE is: Intended Commercial Use Of Vessel: ``Sailboat charters six...

  20. A magnetosome chain viewed as a bio-elastic magnet.

    PubMed

    Meyra, Ariel G; Zarragoicoechea, Guillermo J; Kuz, Victor A

    2016-05-14

    In light of the coarse-grained Monte Carlo numerical simulation method, the magnetosome chain stability of magnetotactic bacteria is analysed and discussed. This discrete chain of magnetic nanoparticles, encapsulated in a lipid membrane and flanked by filaments, orients bacteria in the geomagnetic field as a compass needle. Each magnetosome is a magnetite or greigite nanocrystal encapsulated in a soft lipid shell. This structure is modelled by a hard core with a magnetic dipole embedded and a cloud of electric dipoles which are able to move and rotate over the magnetic spherical core. In the present paper, some of the many possibilities of the model by varying the control parameters of the system are explored. Magnetic particles arrange in long linear clusters when the coating is removed. However, linear but twisted chains of magnetic particles emerge when there are electric dipoles in the coating shell. A unique linear and straight chain is not observed in any 3D numerical simulation; this result is in agreement with a real living system of bacteria in a geomagnetic field when proteins that form the filament are absent. Finally, the stability and magnetization of a magnetosome chain of 30 beads in one dimension set up are discussed resembling a real chain. The results suggest that a magnetosome chain not only orients bacteria but also should be considered as a potential storage of elastic energy. PMID:27101014

  1. Dark state population determines magnetic sensitivity in radical pair magnetoreception model

    PubMed Central

    Xu, Bao-Ming; Zou, Jian

    2016-01-01

    What is the real role of the quantum coherence and entanglement in the radical pair (RP) compass, and what determines the singlet yield have not been fully understood. In this paper, we find that the dark states of the two-electron Zeeman energy operator (TEZE) play an important role in the RP compass. We respectively calculate the singlet yields for two initial states in this dark state basis: the coherent state and the same state just removing the dark state coherence. For the later there is neither dark state coherence nor entanglement in the whole dynamical process. Surprisingly we find that in both cases the singlet yields are the same, and based on this result, we believe that the dark state population determines the singlet yield completely, and the dark state coherence and entanglement have little contribution to it. Finally, we also find that the dark state population as well as the singlet yield anisotropy is fragile to the vertical magnetic noise. However, the orientation is robust and is even enhanced by the parallel magnetic noise because the dark states expand a decoherence-free subspace. The dark state population as well as the orientation is more robust to the hyperfine coupling noise. PMID:26926264

  2. Dark state population determines magnetic sensitivity in radical pair magnetoreception model.

    PubMed

    Xu, Bao-Ming; Zou, Jian

    2016-01-01

    What is the real role of the quantum coherence and entanglement in the radical pair (RP) compass, and what determines the singlet yield have not been fully understood. In this paper, we find that the dark states of the two-electron Zeeman energy operator (TEZE) play an important role in the RP compass. We respectively calculate the singlet yields for two initial states in this dark state basis: the coherent state and the same state just removing the dark state coherence. For the later there is neither dark state coherence nor entanglement in the whole dynamical process. Surprisingly we find that in both cases the singlet yields are the same, and based on this result, we believe that the dark state population determines the singlet yield completely, and the dark state coherence and entanglement have little contribution to it. Finally, we also find that the dark state population as well as the singlet yield anisotropy is fragile to the vertical magnetic noise. However, the orientation is robust and is even enhanced by the parallel magnetic noise because the dark states expand a decoherence-free subspace. The dark state population as well as the orientation is more robust to the hyperfine coupling noise. PMID:26926264

  3. Dark state population determines magnetic sensitivity in radical pair magnetoreception model

    NASA Astrophysics Data System (ADS)

    Xu, Bao-Ming; Zou, Jian

    2016-03-01

    What is the real role of the quantum coherence and entanglement in the radical pair (RP) compass, and what determines the singlet yield have not been fully understood. In this paper, we find that the dark states of the two-electron Zeeman energy operator (TEZE) play an important role in the RP compass. We respectively calculate the singlet yields for two initial states in this dark state basis: the coherent state and the same state just removing the dark state coherence. For the later there is neither dark state coherence nor entanglement in the whole dynamical process. Surprisingly we find that in both cases the singlet yields are the same, and based on this result, we believe that the dark state population determines the singlet yield completely, and the dark state coherence and entanglement have little contribution to it. Finally, we also find that the dark state population as well as the singlet yield anisotropy is fragile to the vertical magnetic noise. However, the orientation is robust and is even enhanced by the parallel magnetic noise because the dark states expand a decoherence-free subspace. The dark state population as well as the orientation is more robust to the hyperfine coupling noise.

  4. Landscape vision and zonal orientation in the Equatorial sandhopper Talorchestia martensii.

    PubMed

    Ugolini, Alberto; Ciofini, Alice

    2016-01-01

    We investigate the role of the landscape in the zonal recovery of the Equatorial sandhopper Talorchestia martensii Weber. It is known that this species uses the sun and the magnetic compasses to return to the belt of damp sand of the beach following the shortest route (the sea-land axis). However, the sun is not always easy to use at Equatorial latitudes because of astronomical reasons (its zenithal culmination and its hourly azimuthal speed) at least during the central time of the day (around noon) and close to the equinox. Our experiments were performed in Kenya, during the equinoctial period. We tested adult individuals, belonging to Malindi (Kenya) population, in a confined environment with and without the vision of the landscape of their home beach and with the vision of the prominent landscape of a different-orientated shore (Temple Point). Releases were carried out with either natural or zeroed magnetic field. Results clearly show the importance of the landscape as an orienting factor mainly during the central hours of the day when it seems to assume a greater importance than magnetic cues. PMID:26512016

  5. How could the Viking Sun compass be used with sunstones before and after sunset? Twilight board as a new interpretation of the Uunartoq artefact fragment

    PubMed Central

    Bernáth, Balázs; Farkas, Alexandra; Száz, Dénes; Blahó, Miklós; Egri, Ádám; Barta, András; Åkesson, Susanne; Horváth, Gábor

    2014-01-01

    Vikings routinely crossed the North Atlantic without a magnetic compass and left their mark on lands as far away as Greenland, Newfoundland and Baffin Island. Based on an eleventh-century dial fragment artefact, found at Uunartoq in Greenland, it is widely accepted that they sailed along chosen latitudes using primitive Sun compasses. Such instruments were tested on sea and proved to be efficient hand-held navigation tools, but the dimensions and incisions of the Uunartoq find are far from optimal in this role. On the basis of the sagas mentioning sunstones, incompatible hypotheses were formed for Viking solar navigation procedures and primitive skylight polarimetry with dichroic or birefringent crystals. We describe here a previously unconceived method of navigation based on the Uunartoq artefact functioning as a ‘twilight board’, which is a combination of a horizon board and a Sun compass optimized for use when the Sun is close to the horizon. We deduced an appropriate solar navigation procedure using a twilight board, a shadow-stick and birefringent crystals, which bring together earlier suggested methods in harmony and provide a true skylight compass function. This could have allowed Vikings to navigate around the clock, to use the artefact dial as a Sun compass during long parts of the day and to use skylight polarization patterns in the twilight period. In field tests, we found that true north could be appointed with such a medieval skylight compass with an error of about ±4° when the artificially occluded Sun had elevation angles between +10° and −8° relative to the horizon. Our interpretation allows us to assign exact dates to the gnomonic lines on the artefact and outlines the schedule of the merchant ships that sustained the Viking colony in Greenland a millennium ago. PMID:24910520

  6. How could the Viking Sun compass be used with sunstones before and after sunset? Twilight board as a new interpretation of the Uunartoq artefact fragment.

    PubMed

    Bernáth, Balázs; Farkas, Alexandra; Száz, Dénes; Blahó, Miklós; Egri, Adám; Barta, András; Akesson, Susanne; Horváth, Gábor

    2014-06-01

    Vikings routinely crossed the North Atlantic without a magnetic compass and left their mark on lands as far away as Greenland, Newfoundland and Baffin Island. Based on an eleventh-century dial fragment artefact, found at Uunartoq in Greenland, it is widely accepted that they sailed along chosen latitudes using primitive Sun compasses. Such instruments were tested on sea and proved to be efficient hand-held navigation tools, but the dimensions and incisions of the Uunartoq find are far from optimal in this role. On the basis of the sagas mentioning sunstones, incompatible hypotheses were formed for Viking solar navigation procedures and primitive skylight polarimetry with dichroic or birefringent crystals. We describe here a previously unconceived method of navigation based on the Uunartoq artefact functioning as a 'twilight board', which is a combination of a horizon board and a Sun compass optimized for use when the Sun is close to the horizon. We deduced an appropriate solar navigation procedure using a twilight board, a shadow-stick and birefringent crystals, which bring together earlier suggested methods in harmony and provide a true skylight compass function. This could have allowed Vikings to navigate around the clock, to use the artefact dial as a Sun compass during long parts of the day and to use skylight polarization patterns in the twilight period. In field tests, we found that true north could be appointed with such a medieval skylight compass with an error of about ±4° when the artificially occluded Sun had elevation angles between +10° and -8° relative to the horizon. Our interpretation allows us to assign exact dates to the gnomonic lines on the artefact and outlines the schedule of the merchant ships that sustained the Viking colony in Greenland a millennium ago. PMID:24910520

  7. The direction of celestial rotation influences the development of stellar orientation in young garden warblers (Sylvia borin)

    PubMed

    Weindler; Baumetz; Wiltschko

    1997-01-01

    The study presented here was conducted in order to analyze the role of the direction of celestial rotation in the development of stellar orientation in young migratory birds. The test birds were garden warblers, Sylvla borin, which leave their breeding ground on a southwesterly compass course. The birds were hand-raised and, during the premigratory period, exposed to an artificial 'sky' in the local geomagnetic field. For the control group C, the star pattern was rotating in the natural direction, with the centre of rotation and magnetic North coinciding. For the three experimental groups, the star pattern was rotating in the opposite direction; for group E1, the centre of rotation coincided with magnetic North, for group E2 the centre of rotation was at magnetic West and for group E3 it was at magnetic East. During autumn migration, the birds were tested without magnetic information under the same, now stationary, sky. All four groups were able to use stellar information for orientation, but only the control group preferred the normal southwesterly course. The three experimental groups, in contrast, all oriented towards a significantly different direction, preferring due south. The results for group E1 showed less scatter than those for the other two experimental groups. These results indicate that the direction of celestial rotation is crucial for the development of the normal migratory course with respect to the stars in young garden warblers. Establishing the species-specific southwesterly migratory course requires an interaction between celestial rotation and magnetic cues; this interaction appears to depend on the natural direction of celestial rotation. Rotation in the reverse direction allowed the birds to respond only in a manner that oriented them away from the centre of rotation. PMID:9320019

  8. Hadron physics at the COMPASS experiment

    NASA Astrophysics Data System (ADS)

    Krinner, Fabian

    2015-05-01

    Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420), is observed with a mass and width in the ranges m = 1412 - 1422MeV/c2 and Γ = 130 - 150MeV/c2.

  9. COMPASS Final Report: Lunar Communications Terminal (LCT)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2010-01-01

    The Lunar Communications Terminal (LCT) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session designed a terminal to provide communications between lunar South Pole assets, communications relay to/from these assets through an orbiting Lunar Relay Satellite (LRS) and navigation support. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The Terminal consists of a pallet containing the communications and avionics equipment, surrounded by the thermal control system (radiator), an attached, deployable 10-m tower, upon which were mounted locally broadcasting and receiving modems and a deployable 1 m diameter Ka/S band dish which provides relay communications with the lunar relay satellites and, as a backup, Earth when it is in view. All power was assumed to come from the lunar outpost Habitat. Three LCT design options were explored: a stand-alone LCT servicing the manned outpost, an integrated LCT (into the Habitat or Lunar Lander), and a mini-LCT which provides a reduced level of communication for primarily robotic areas dealing as in situ resource utilization (ISRU) and remote science. Where possible all the designs assumed single fault tolerance. Significant mass savings were found when integrating the LCT into the Habitat or Lander but increases in costs occurred depending upon the level of man rating required for such designs.

  10. Hard Exclusive Meson Production at COMPASS

    NASA Astrophysics Data System (ADS)

    Ter Wolbeek, Johannes

    2016-02-01

    The concept of Generalized Parton Distributions (GPDs) combines two-dimensional spatial information given by form factors, with longitudinal momentum information from Parton Distribution Functions. GPDs provide comprehensive description of the nucleon structure involving a wealth of new information. For instance, according to Ji’s sum rule, the GPDs H and E enable access to the total angular momenta of quarks, antiquarks and gluons. While H can be approached using measurements of electroproduction cross sections, asymmetry measurements in hard exclusive meson production off transversely polarized targets can help to constrain the GPD E and chiral-odd GPDs. In 2007 and 2010 the COMPASS experiment at CERN collected data by scattering a 160GeV/c muon beam off a transversely polarized NH3 target. Exclusive vector-meson production μ + p → μ‧ + p + V with a ρ0 or ω meson in the final state is studied and five single-spin and three double-spin azimuthal asymmetries are measured.

  11. The desired moral attitude of the physician: (II) compassion.

    PubMed

    Gelhaus, Petra

    2012-11-01

    Professional medical ethics demands of health care professionals in addition to specific duties and rules of conduct that they embody a responsible and trustworthy personality. In the public discussion, different concepts are suggested to describe the desired implied attitude of physicians. In a sequel of three articles, a set of three of these concepts is presented in an interpretation that is meant to characterise the morally emotional part of this attitude: "empathy", "compassion" and "care". In the first article of the series, "empathy" has been developed as a mainly cognitive and morally neutral capacity of understanding. In this article, the emotional and virtuous core of the desired professional attitude-compassion-is elaborated. Compassion is distinguished from sympathy, empathy and pity. Several problems of compassion as a spontaneous, warm emotion for being a professional virtue are discussed: especially questions of over-demand, of justice and of concerns because of a possible threat to the patient's dignity and autonomy. An interpretation of compassion as processed and learned professional attitude, that founds dignity on the general idea of man as a sentient being and on solidarity, not on his independence and capacities, is developed. It is meant to rule out the possible side effects and to make compassion as a professional attitude and as professional virtue attractive, teachable and acquirable. In order to reach the adequate warmth and closeness for the particular physician-patient-relation, professional compassion has to be combined with the capacity of empathy. If appropriate, the combination of both empathy and compassion as "empathic compassion" can demand a much warmer attitude towards the patient than each of the elements alone, or the simple addition of them can provide. The concept of "care" that will be discussed in a forthcoming article of this sequel is a missing necessary part to describe the active potential of the desired moral attitude of the physician more completely. The reconstruction of the desired professional attitude in terms of "empathic compassionate care" is certainly not the only possible description, but it is a detailed proposal in order to give an impulse for the discussion about the inner tacit values and the meaning of medicine and clinical healthcare professions. PMID:22160990

  12. GARFIELD Computer Program Simulation of the COMPASS Drift Chamber 5

    NASA Astrophysics Data System (ADS)

    Oh, Seung Joon

    2014-09-01

    COMPASS is a nuclear physics experiment at the Super Proton Synchrotron (SPS) at CERN. The purpose of COMPASS is the study of hadron structure and hadron spectroscopy with high intensity muon and hadron beams. To further study the Drell-Yan process in scattering pion beams off polarized proton targets, COMPASS requires sophisticated tracking devices to determine the trajectory of scattered charged muon pairs. The University of Illinois at Urbana-Champaign is currently constructing the Drift Chamber 5 (DC5) to replace old straw-tube tracking detectors in the COMPASS spectrometer. DC5 is composed of 8 layers of anode and 13 layers of cathode frames made out of G10, a fiberglass-epoxy composite. The high rates for the Drell-Yan measurement require a small drift cell and precise mechanical tolerances have to meet in order to achieve good position resolution. GARFIELD simulations were carried out to study the impact of mechanical tolerances on the drift chamber performance in particular the position resolution that can be reached. The details of the DC5 GARFIELD simulation and results for signal development and position resolution will be presented. COMPASS is a nuclear physics experiment at the Super Proton Synchrotron (SPS) at CERN. The purpose of COMPASS is the study of hadron structure and hadron spectroscopy with high intensity muon and hadron beams. To further study the Drell-Yan process in scattering pion beams off polarized proton targets, COMPASS requires sophisticated tracking devices to determine the trajectory of scattered charged muon pairs. The University of Illinois at Urbana-Champaign is currently constructing the Drift Chamber 5 (DC5) to replace old straw-tube tracking detectors in the COMPASS spectrometer. DC5 is composed of 8 layers of anode and 13 layers of cathode frames made out of G10, a fiberglass-epoxy composite. The high rates for the Drell-Yan measurement require a small drift cell and precise mechanical tolerances have to meet in order to achieve good position resolution. GARFIELD simulations were carried out to study the impact of mechanical tolerances on the drift chamber performance in particular the position resolution that can be reached. The details of the DC5 GARFIELD simulation and results for signal development and position resolution will be presented. UIUC COMPASS group.

  13. Influence of initial annealing on structure evolution and magnetic properties of 3.4% Si non-oriented steel during final annealing

    NASA Astrophysics Data System (ADS)

    Pedrosa, Josiane Simões Mendanha; Paolinelli, Sebastião da Costa; Cota, André Barros

    2015-11-01

    The effect of the initial annealing on structure evolution and magnetic properties during the final annealing of a 3.4% Si non-oriented grain steel was evaluated. Half of the samples were submitted to initial annealing at 1030 °C before cold rolling and all samples were subjected to final annealing process at temperatures from 540 °C to 1100 °C. The magnetic induction and core loss in the final samples, the microstructure by optical microscopy and the crystallographic texture by X-ray diffraction and EBSD were evaluated. The results show that the samples without initial annealing presented better magnetic properties than the samples with initial annealing, due to the higher ratio between Eta fiber and Gamma fiber volume fractions (Eta/Gamma ratio) in their structure after final annealing.

  14. Compassion in Soranus' Gynecology and Caelius Aurelianus' On Chronic Diseases.

    PubMed

    Porter, Amber J

    2016-01-01

    Compassion is considered an important quality for a successful physician today, but did ancient physicians display and value this emotion? How did they feel when faced with the pain and suffering of their patients? How did their patients' emotions affect their own? Many ancient physicians are not well-known for expressions of compassion in their writings; however, this seems to change in the second century AD. One medical writer who exemplifies this change is Soranus of Ephesus (c. 98-138 AD). In his Gynecology, there are a number of passages where compassion is addressed or expressed (such as the chapters on the qualities of the best midwife, the symptom of pica, childbirth, and superstition). The same points can be made of Soranus' On Chronic Diseases, preserved to some extent by the Latin version and adaptation by fifth century AD medical writer Caelius Aurelianus (see, for example, the chapters on chronic headache, mania and elephantiasis). Soranus and Caelius display compassion, understanding, and flexibility of approach when dealing with patient issues; they show themselves willing to change their medical technique when they see that it is doing more harm or discomfort than good. In Soranus and Caelius, we have an image of a physician who acknowledges and is aware of their patients' emotions, beliefs and attitudes, and who exhibits compassion for them. PMID:26946682

  15. The development and evaluation of a compassion scale.

    PubMed

    Martins, David; Nicholas, Nichole A; Shaheen, Magda; Jones, Loretta; Norris, Keith

    2013-08-01

    Compassion is the capacity for being moved by suffering of others and wanting to help alleviate it. Compassion may mediate health benefits and hazards of social networks/relationships. The monitoring/management of level of compassion across social networks/relationships may be critical to health benefits' preservation and social networks/relationships' health hazards prevention. We developed and evaluated the psychometric properties of 10-item self-report measure of compassion among 310 respondents from the University and surrounding communities. The mean total score was 3.62 (SD=1.09). The item-to-total correlations ranged from 0.50-0.71. The mean inter-item correlation was 0.33. The internal consistency was 0.82. The scale correlated well with Sprecher and Fehr's Compassionate Love Scale (r=0.66; p=.000). Two factors measuring same construct explained 57% of sample variance. The scale is user-friendly, easy to score, and characterized by good psychometric properties. It can be used to foster understanding of the impact of compassion on disease and outcomes across social networks/relationships. PMID:23974394

  16. Different Relative Orientation of Static and Alternative Magnetic Fields and Cress Roots Direction of Growth Changes Their Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadiia; Bogatina, Nina

    The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.

  17. The role of the crystal orientation (c-axis) on switching field distribution and the magnetic domain configuration in electrodeposited hcp Co–Pt nanowires

    NASA Astrophysics Data System (ADS)

    Shahid Arshad, Muhammad; Proenca, Mariana P.; Trafela, Spela; Neu, Volker; Wolff, Ulrike; Stienen, Sven; Vazquez, Manuel; Kobe, Spomenka; Žužek Rožman, Kristina

    2016-05-01

    In this report, Co–Pt nanowires (NWs) were produced via potentiostatic electrodeposition into commonly used commercial ordered-alumina and disordered-polycarbonate membranes with similar pore diameters (≈200 nm). The pore diameter of the membranes and the deposition conditions were chosen such that the Co–Pt NWs fabricated into both membranes had a hexagonal close packed (hcp) crystal structure with a crystallographic texturing of the c-axis in the direction perpendicular to the NWs’ long axis; this effect was more pronounced in the alumina membranes. Due to the local fluctuation in electrodeposition conditions (pore diameter, pore shape), we have found a small variation in the c-axis orientations in the plane perpendicular to the NWs’ long axis. Magnetic characterizations suggested that there is uniaxial anisotropy perpendicular to the Co–Pt NWs’ long axis and the small variation in the orientation of the hcp c-axis plays an important role in the switching-field distribution and the magnetic domain structure of the Co–Pt NWs. First order reversal curves (FORCs) revealed week magnetostatic interactions between Co–Pt NWs, thus suggesting that the different pore alignments are not influencing much the magnetic properties in both membranes. The micromagnetic simulation revealed that the transverse-stripe (TS) and longitudinal stripe (LS) domains are energetically most favorable structures in such NWs. This study accentuates the influence of the crystal orientation (c-axis) of the high-anisotropy materials on their functional magnetic properties and thus is of great importance for the fabrication of nanodevices based on such NWs.

  18. Compassion Fatigue Risk and Self-Care Practices among Residential Treatment Center Childcare Workers

    ERIC Educational Resources Information Center

    Eastwood, Callum D.; Ecklund, Kathryn

    2008-01-01

    Exploration of the presence of risk for compassion fatigue among residential childcare workers (RCW) at residential treatment facilities and the relationship between self-care practices and compassion fatigue were explored. Using the Professional Quality of Life Survey (ProQOL-R III) to assess compassion fatigue, burnout, and compassion…

  19. Self-Compassion as a Predictor of Psychological Entitlement in Turkish University Students

    ERIC Educational Resources Information Center

    Sahranç, Ümit

    2015-01-01

    The purpose of this study is to examine the predictive role of self-compassion on psychological entitlement. Participants were 331 university students (205 women, 126 men, M age = 20.5 years.). In this study, the Self-compassion Scale and the Psychological Entitlement Scale were used to assess self-compassion and psychological entitlement. The…

  20. Highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy

    SciTech Connect

    An, Hongyu; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji; Xie, Qian; Zhang, Zhengjun; Wang, Jian

    2015-03-15

    To obtain strong perpendicular magnetic anisotropy (PMA) based on L1{sub 0} structure for magnetic storage devices, costly single crystalline substrates are generally required to achieve (001) texture. Recently, various studies also have focused on depositing different kinds of seed layers on glass or other amorphous substrates to promote (001) preferred orientation of L1{sub 0} CoPt and FePt. TiN is a very promising seed layer material because of its cubic crystalline structure (similar to MgO) and excellent diffusion barring property even at high temperatures. In the present work, highly (001) oriented L1{sub 0}-CoPt/TiN multilayer films have been successfully deposited on glass substrates. After annealing at 700 °C, the film exhibits PMA, and a strong (001) peak is detected from the x-ray diffraction profiles, indicating the ordering transformation of CoPt layers from fcc (A1) to L1{sub 0} structure. It also is found that alternate deposition of cubic TiN and CoPt effectively improves the crystallinity and (001) preferred orientation of CoPt layers. This effect is verified by the substantial enhancement of (001) reflection and PMA with increasing the period number of the multilayer films.