Science.gov

Sample records for magnetic diffraction experiments

  1. dxtbx: the diffraction experiment toolbox.

    PubMed

    Parkhurst, James M; Brewster, Aaron S; Fuentes-Montero, Luis; Waterman, David G; Hattne, Johan; Ashton, Alun W; Echols, Nathaniel; Evans, Gwyndaf; Sauter, Nicholas K; Winter, Graeme

    2014-08-01

    Data formats for recording X-ray diffraction data continue to evolve rapidly to accommodate new detector technologies developed in response to more intense light sources. Processing the data from single-crystal X-ray diffraction experiments therefore requires the ability to read, and correctly interpret, image data and metadata from a variety of instruments employing different experimental representations. Tools that have previously been developed to address this problem have been limited either by a lack of extensibility or by inconsistent treatment of image metadata. The dxtbx software package provides a consistent interface to both image data and experimental models, while supporting a completely generic user-extensible approach to reading the data files. The library is written in a mixture of C++ and Python and is distributed as part of the cctbx under an open-source licence at http://cctbx.sourceforge.net. PMID:25242914

  2. Contributions of the electronic spin and orbital current to the CoCl{sub 4}{sup 2-} magnetic field probed in polarised neutron diffraction experiments

    SciTech Connect

    Cassam-Chenaie, Patrick; Jayatilaka, Dylan

    2012-08-14

    Polarised neutron diffraction experiments conducted at 4.2 K on Cs{sub 3}CoCl{sub 5} crystals have been analysed by using a four-dimensional model Hilbert space made of ab initio n-electron wave functions of the CoCl{sub 4}{sup 2-} molecular ion. Two spin-orbit mixing coefficients and several configuration interaction coefficients have been optimized by fitting calculated magnetic structure factors to experimental ones, to obtain the best ensemble density operator that is representable in the model space. A goodness of fit, {chi}{sup 2}, less then 1 has been obtained for the first time for the two experimental data sets available. In the present article, the optimized density operators are used to calculate the magnetic field densities that are the genuine observables probed in neutron diffraction experiments. Density maps of such observables are presented for the first time and numerical details are provided. The respective contributions of spin density and orbital current to the magnetic field density are analyzed.

  3. Recovering magnetization distributions from their noisy diffraction data

    SciTech Connect

    Loh, Ne-Te Duane; Eisebitt, Stefan; Flewett, Samuel; Elser, Veit

    2010-12-15

    We study, using simulated experiments inspired by thin-film magnetic domain patterns, the feasibility of phase retrieval in x-ray diffractive imaging in the presence of intrinsic charge scattering given only photon-shot-noise limited diffraction data. We detail a reconstruction algorithm to recover the sample's magnetization distribution under such conditions and compare its performance with that of Fourier transform holography. Concerning the design of future experiments, we also chart out the reconstruction limits of diffractive imaging when photon-shot-noise and the intensity of charge scattering noise are independently varied. This work is directly relevant to the time-resolved imaging of magnetic dynamics using coherent and ultrafast radiation from x-ray free-electron lasers and also to broader classes of diffractive imaging experiments which suffer noisy data, missing data, or both.

  4. Undergraduate Experiment with Fractal Diffraction Gratings

    ERIC Educational Resources Information Center

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  5. Anomalous Diffraction in Cold Magnetized Plasma.

    PubMed

    Abelson, Z; Gad, R; Bar-Ad, S; Fisher, A

    2015-10-01

    Cold magnetized plasma possesses an anisotropic permittivity tensor with a unique dispersion relation that for adequate electron density and magnetic field results in anomalous diffraction of a right-hand circularly polarized beam. In this work, we demonstrate experimentally anomalous diffraction of a microwave beam in plasma. Additionally, decreasing the electron density enables observation of the transition of the material from a hyperbolic to a standard material. Manipulation of the control parameters will enable plasma to serve as a reconfigurable metamaterial-like medium. PMID:26551813

  6. Anomalous Diffraction in Cold Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Abelson, Z.; Gad, R.; Bar-Ad, S.; Fisher, A.

    2015-10-01

    Cold magnetized plasma possesses an anisotropic permittivity tensor with a unique dispersion relation that for adequate electron density and magnetic field results in anomalous diffraction of a right-hand circularly polarized beam. In this work, we demonstrate experimentally anomalous diffraction of a microwave beam in plasma. Additionally, decreasing the electron density enables observation of the transition of the material from a hyperbolic to a standard material. Manipulation of the control parameters will enable plasma to serve as a reconfigurable metamaterial-like medium.

  7. Diffraction experiments with infrared remote controls

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-02-01

    In this paper we describe an experiment in which radiation emitted by an infrared remote control is passed through a diffraction grating. An image of the diffraction pattern is captured using a cell phone camera and then used to determine the wavelength of the radiation.

  8. A Simple Experiment on Fresnel Diffraction

    ERIC Educational Resources Information Center

    Haskell, Richard E.

    1970-01-01

    Describes an experiment in which the Fresnel diffraction pattern of a single slit can be displayed directly on an oscilloscope. The experiment requires a minimum amount of equipment and space. Results of the experiment are presented and compared with theoretical calculations carried out by a digital computer. (LC)

  9. The design of macromolecular crystallography diffraction experiments

    SciTech Connect

    Evans, Gwyndaf Axford, Danny; Owen, Robin L.

    2011-04-01

    Thoughts about the decisions made in designing macromolecular X-ray crystallography experiments at synchrotron beamlines are presented. The measurement of X-ray diffraction data from macromolecular crystals for the purpose of structure determination is the convergence of two processes: the preparation of diffraction-quality crystal samples on the one hand and the construction and optimization of an X-ray beamline and end station on the other. Like sample preparation, a macromolecular crystallography beamline is geared to obtaining the best possible diffraction measurements from crystals provided by the synchrotron user. This paper describes the thoughts behind an experiment that fully exploits both the sample and the beamline and how these map into everyday decisions that users can and should make when visiting a beamline with their most precious crystals.

  10. Exploring the magnetic phase diagram of dysprosium with neutron diffraction

    NASA Astrophysics Data System (ADS)

    Yu, J.; LeClair, P. R.; Mankey, G. J.; Robertson, J. L.; Crow, M. L.; Tian, W.

    2015-01-01

    With one of the highest intrinsic magnetic moments (10.6 μB/atom ) among the heavy rare-earth elements, dysprosium exhibits a rich magnetic phase diagram, including several modulated magnetic phases. Aided by the Ruderman-Kittel-Kasuya-Yosida interaction, the magnetic modulations propagate coherently over a long range. Neutron diffraction experiments were performed to determine the microscopic magnetic origin of the field induced phases in bulk Dy as a function of temperature, covering regions of the well-known ferromagnetic, helical antiferromagnetic, fan phases, and several possible new phases suggested by previous studies. A short-range ordered fan phase was identified as the intermediate state between ferromagnetism and long-range ordered fan. In a field of 1 T applied along the a axis, the temperature range of a coexisting helix/fan phase was determined. The magnetic phase diagram of Dy was thus refined to include the detailed magnetic origin and the associated phase boundaries. Based on the period of the magnetic modulation and the average magnetization, the evolution of the spin arrangement upon heating was derived quantitatively for the modulated magnetic phases.

  11. The design of macromolecular crystallography diffraction experiments

    PubMed Central

    Evans, Gwyndaf; Axford, Danny; Owen, Robin L.

    2011-01-01

    The measurement of X-ray diffraction data from macro­molecular crystals for the purpose of structure determination is the convergence of two processes: the preparation of diffraction-quality crystal samples on the one hand and the construction and optimization of an X-ray beamline and end station on the other. Like sample preparation, a macromolecular crystallography beamline is geared to obtaining the best possible diffraction measurements from crystals provided by the synchrotron user. This paper describes the thoughts behind an experiment that fully exploits both the sample and the beamline and how these map into everyday decisions that users can and should make when visiting a beamline with their most precious crystals. PMID:21460444

  12. Data Exploration Toolkit for serial diffraction experiments

    PubMed Central

    Zeldin, Oliver B.; Brewster, Aaron S.; Hattne, Johan; Uervirojnangkoorn, Monarin; Lyubimov, Artem Y.; Zhou, Qiangjun; Zhao, Minglei; Weis, William I.; Sauter, Nicholas K.; Brunger, Axel T.

    2015-01-01

    Ultrafast diffraction at X-ray free-electron lasers (XFELs) has the potential to yield new insights into important biological systems that produce radiation-sensitive crystals. An unavoidable feature of the ‘diffraction before destruction’ nature of these experiments is that images are obtained from many distinct crystals and/or different regions of the same crystal. Combined with other sources of XFEL shot-to-shot variation, this introduces significant heterogeneity into the diffraction data, complicating processing and interpretation. To enable researchers to get the most from their collected data, a toolkit is presented that provides insights into the quality of, and the variation present in, serial crystallography data sets. These tools operate on the unmerged, partial intensity integration results from many individual crystals, and can be used on two levels: firstly to guide the experimental strategy during data collection, and secondly to help users make informed choices during data processing. PMID:25664746

  13. Data Exploration Toolkit for serial diffraction experiments

    DOE PAGESBeta

    Zeldin, Oliver B.; Brewster, Aaron S.; Hattne, Johan; Uervirojnangkoorn, Monarin; Lyubimov, Artem Y.; Zhou, Qiangjun; Zhao, Minglei; Weis, William I.; Sauter, Nicholas K.; Brunger, Axel T.

    2015-01-23

    Ultrafast diffraction at X-ray free-electron lasers (XFELs) has the potential to yield new insights into important biological systems that produce radiation-sensitive crystals. An unavoidable feature of the 'diffraction before destruction' nature of these experiments is that images are obtained from many distinct crystals and/or different regions of the same crystal. Combined with other sources of XFEL shot-to-shot variation, this introduces significant heterogeneity into the diffraction data, complicating processing and interpretation. To enable researchers to get the most from their collected data, a toolkit is presented that provides insights into the quality of, and the variation present in, serial crystallography datamore » sets. These tools operate on the unmerged, partial intensity integration results from many individual crystals, and can be used on two levels: firstly to guide the experimental strategy during data collection, and secondly to help users make informed choices during data processing.« less

  14. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  15. Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films

    SciTech Connect

    Nakamura, Yuichi Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-09-14

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.

  16. Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-09-01

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.

  17. Data Exploration Toolkit for serial diffraction experiments

    SciTech Connect

    Zeldin, Oliver B.; Brewster, Aaron S.; Hattne, Johan; Uervirojnangkoorn, Monarin; Lyubimov, Artem Y.; Zhou, Qiangjun; Zhao, Minglei; Weis, William I.; Sauter, Nicholas K.; Brunger, Axel T.

    2015-02-01

    This paper describes a set of tools allowing experimentalists insight into the variation present within large serial data sets. Ultrafast diffraction at X-ray free-electron lasers (XFELs) has the potential to yield new insights into important biological systems that produce radiation-sensitive crystals. An unavoidable feature of the ‘diffraction before destruction’ nature of these experiments is that images are obtained from many distinct crystals and/or different regions of the same crystal. Combined with other sources of XFEL shot-to-shot variation, this introduces significant heterogeneity into the diffraction data, complicating processing and interpretation. To enable researchers to get the most from their collected data, a toolkit is presented that provides insights into the quality of, and the variation present in, serial crystallography data sets. These tools operate on the unmerged, partial intensity integration results from many individual crystals, and can be used on two levels: firstly to guide the experimental strategy during data collection, and secondly to help users make informed choices during data processing.

  18. Diffraction patterns in ferrofluids: Effect of magnetic field and gravity

    NASA Astrophysics Data System (ADS)

    Radha, S.; Mohan, Shalini; Pai, Chintamani

    2014-09-01

    In this paper, we report the experimental observation of diffraction patterns in a ferrofluid comprising of Fe3O4 nanoparticles in hexane by a 10 mW He-Ne laser beam. An external dc magnetic field (0-2 kG) was applied perpendicular to the beam. The diffraction pattern showed a variation at different depths of the sample in both zero and applied magnetic field. The patterns also exhibit a change in shape and size as the external field is varied. This effect arises due to thermally induced self-diffraction under the influence of gravity and external magnetic field.

  19. Experiments on Magnetic Deflagration

    NASA Astrophysics Data System (ADS)

    Tejada, Javier

    2011-03-01

    Magnetic deflagration was first observed in molecular magnets [1,2] and then in glassy magnetic materials like manganites [3,4] and intermetallic systems like Gd 5 Ge 4. The role of the chemical energy is played by the magnetic energy of the material. In the case of a molecular magnet, this is Zeeman energy, while in manganites and Gd 5 Ge 4 the free energy is a combination of the Zeeman energy and the energy of the metastable magnetic phase. In molecular magnets both the ignition process and the speed of the flame are assisted by quantum spin reversal. There also exists some evidence of the transition from deflagration to detonation. Various experimental techniques have been used to detect the speed of the magnetic flame. They include SQUID magnetometry, Hall bars and coils. Magnetic deflagration has been ignited by local heating, application of external fields, by surface acoustic waves and microwaves. High frequency EPR measurements of the population of spin levels permitted observation of magnetic deflagration in real time. The talk will review these experiments and their interpretation.

  20. The Heisenberg Uncertainty Principle Demonstrated with An Electron Diffraction Experiment

    ERIC Educational Resources Information Center

    Matteucci, Giorgio; Ferrari, Loris; Migliori, Andrea

    2010-01-01

    An experiment analogous to the classical diffraction of light from a circular aperture has been realized with electrons. The results are used to introduce undergraduate students to the wave behaviour of electrons. The diffraction fringes produced by the circular aperture are compared to those predicted by quantum mechanics and are exploited to…

  1. Measuring Slit Width and Separation in a Diffraction Experiment

    ERIC Educational Resources Information Center

    Gan, K. K.; Law, A. T.

    2009-01-01

    We present a procedure for measuring slit width and separation in single- and double-slit diffraction experiments. Intensity spectra of diffracted laser light are measured with an optical sensor (PIN diode). Slit widths and separations are extracted by fitting to the measured spectra. We present a simple fitting procedure to account for the…

  2. Magnetic structures of actinide materials by pulsed neutron diffraction

    SciTech Connect

    Lawson, A.C.; Goldstone, J.A.; Huber, J.G.; Giorgi, A.L.; Conant, J.W.; Severing, A.; Cort, B.; Robinson, R.A.

    1990-01-01

    We describe some attempts to observe magnetic structure in various actinide (5f-electron) materials. Our experimental technique is neutron powder diffraction as practiced at a spallation (pulsed) neutron source. We will discuss our investigations of {alpha}-Pu, {delta}-Pu, {alpha}-UD{sub 3} and {beta}-UD{sub 3}. {beta}-UD{sub 3} is a simple ferromagnet: surprisingly, the moments on the two non-equivalent uranium atoms are the same within experimental error. {alpha}-UD{sub 3}, {alpha}-Pu and {delta}-Pu are non-magnetic, within the limits of our observations. Our work with pulsed neutron diffraction shows that it is a useful technique for research on magnetic materials.

  3. Magnetic Resonance Imaging by Synergistic Diffusion-Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Shemesh, Noam; Westin, Carl-Fredrik; Cohen, Yoram

    2012-02-01

    Inferring on the geometry of an object from its frequency spectrum is highly appealing since the object could then be imaged noninvasively or from a distance (as famously put by Kac, “can one hear the shape of a drum?”). In nuclear magnetic resonance of porous systems, the shape of the drum is represented by the pore density function that bears all the information on the collective pore microstructure. So far, conventional magnetic resonance imaging (MRI) could only detect the pore autocorrelation function, which inherently obscures fine details on the pore structure. Here, for the first time, we report on a unique imaging mechanism arising from synergistic diffusion-diffractions that directly yields the pore density function. This mechanism offers substantially higher spatial resolution compared to conventional MRI while retaining all fine details on the collective pore morphology. Thus, using these unique synergistic diffusion-diffractions, the “shape of the drum” can be inferred.

  4. Optical Tweezers for Sample Fixing in Micro-Diffraction Experiments

    SciTech Connect

    Amenitsch, H.; Rappolt, M.; Sartori, B.; Laggner, P.; Cojoc, D.; Ferrari, E.; Garbin, V.; Di Fabrizio, E.; Burghammer, M.; Riekel, Ch.

    2007-01-19

    In order to manipulate, characterize and measure the micro-diffraction of individual structural elements down to single phospholipid liposomes we have been using optical tweezers (OT) combined with an imaging microscope. We were able to install the OT system at the microfocus beamline ID13 at the ESRF and trap clusters of about 50 multi-lamellar liposomes (< 10 {mu}m large cluster). Further we have performed a scanning diffraction experiment with a 1 micrometer beam to demonstrate the fixing capabilities and to confirm the size of the liposome cluster by X-ray diffraction.

  5. Feasibility studies for high pressure neutron powder diffraction experiments

    SciTech Connect

    Von Dreele, R.B. ); Parise, J. )

    1990-01-01

    We recently performed two neutron powder diffraction experiments on very small samples on the High Intensity Powder Diffractometer (HIPD). These were done to determine the feasibility of performing in situ high pressure/high temperature neutron diffraction experiments on HIPD at pressures which would exceed the previous limit of {approximately}50 kbar achievable in a neutron diffraction experiment. The first experiment consisted of examining the product from a high pressure preparation done at Stony Brook. The sample, which had been prepared at 65 kbar and 1000{degree}C, consisted of a small platinum capsule filled with CaGeO{sub 3} perovskite. The weights of the capsule included 225 mg of platinum and 49 mg of the germanate. A diffraction experiment taking {approximately}8.6 hrs at a LANSCE proton beam current of {approximately}53 {mu}A gave peaks of good intensity from both Pt and CaGeO{sub 3}; we could begin to see them after only 20 min of beam time. The second experiment was to test the possibility of diffraction from a high pressure apparatus. We placed in the HIPD sample position the central assembly from a 100 kbar octahedral press. Four tungsten carbide anvils and a copper block previously pressed to 65 kbar were held in an aluminum frame. The sample consisted of a small bit of nickel foil (175 mg) placed in a 3 mm hole in the copper block. The active sample volume is defined by the gap between the anvils and the length of the sample. A small portion of the copper block is also seen in this arrangement. This is viewed at 90{degree} 2{Theta} through a similar gap between the anvils by 4 1/2 in. {times} 12 in. {sup 3}He counter tubes. This arrangement simulates the operating conditions of a high pressure run at 100 kbar and takes advantage of the fixed instrument geometry possible in time-of-flight neutron diffraction experiments.

  6. Magnetic-Field Induced Diffraction Patterns from Ferrofluids

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Vaishnava, Prem; Lawes, Gavin; Naik, Ratna

    2011-04-01

    Ferrofluids are stable colloidal suspensions of superparamagnetic nanoparticles in a carrier liquid. We report studies of magneto-optic properties of two ferrofluid systems consisting of tetramethyl-ammonium-hydroxide (TMAH)-coated and of dextran-coated Fe3O4 nanoparticles of nominal sizes of 6 nm and 12 nm respectively suspended in water. Both samples showed superparamagnetic behavior. The static and time-dependent DC-magnetic-field-induced light scattering patterns produced by two orthogonal He-Ne laser beams passing through the ferrofluid samples revealed significant different optical signatures for the two surfactants. Notably, in contrast to the linear diffraction pattern produced by TMAH-coated nanoparticles, a circular diffraction pattern is reported -- for the first time -- in the dextran-coated ferrofluid.

  7. Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments

    NASA Technical Reports Server (NTRS)

    Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.

  8. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  9. Experiments on Magnetic Materials

    ERIC Educational Resources Information Center

    Schneider, C. S.; Ertel, John P.

    1978-01-01

    Describes the construction and use of a simple apparatus to measure the magnetization density and magnetic susceptibility of ferromagnetic, paramagnetic, and the diamagnetic solids and liquids. (Author/GA)

  10. Photoelectron diffraction of magnetic ultrathin films: Fe/Cu(001)

    SciTech Connect

    Tobin, J.G. ); Wagner, M.K. . Dept. of Chemistry); Guo, X.Q.; Tong, S.Y. . Dept. of Physics)

    1991-01-03

    The preliminary results of an ongoing investigation of Fe/Cu(001) are presented here. Energy dependent photoelectron diffraction, including the spin-dependent variant using the multiplet split Fe3s state, is being used to investigate the nanoscale structures formed by near-monolayer deposits of Fe onto Cu(001). Core-level photoemission from the Fe3p and Fe3s states has been generated using synchrotron radiation as the tunable excitation source. Tentatively, a comparison of the experimental Fe3p cross section measurements with multiple scattering calculations indicates that the Fe is in a fourfold hollow site with a spacing of 3.6{Angstrom} between it and the atom directly beneath it, in the third layer. This is consistent with an FCC structure. The possibility of utilizing spin-dependent photoelectron diffraction to investigate magnetic ultrathin films will be demonstrated, using our preliminary spectra of the multiplet-split Fe3s os near-monolayer Fe/Cu(001). 18 refs., 10 figs.

  11. Magnetic ordering and transitions of EuSe studied by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Díaz, B.; Granado, E.; Abramof, E.; Torres, L.; Lechner, R. T.; Springholz, G.; Bauer, G.

    2010-05-01

    The magnetic phase diagram and thermal expansion of EuSe is revisited using a high-quality 3200-Å -thick epitaxial film grown over a (111)BaF2 substrate. Resonant magnetic x-ray diffraction experiments reveal a highly hysteretic magnetic phase diagram between 1.8 and TN˜4.7K , in which two antiferromagnetic phases with propagation vectors k⃗I=[(1)/(4),(1)/(4),-(1)/(4)] (represented by ↑↑↓↓ ) and k⃗II=[(1)/(2),(1)/(2),-(1)/(2)](↑↓↑↓) are observed. In addition, a defective phase with k⃗III=[h,h,-h]((1)/(4)diffraction experiments show unit-cell hysteretic distortions that correlate with the transitions to the different magnetic phases existing below TN .

  12. Coherent magnetic diffraction from the uranium M4 edge in the multi-k magnet, USb

    NASA Astrophysics Data System (ADS)

    Lim, J. A.; Blackburn, E.; Beutier, G.; Livet, F.; Magnani, N.; Bombardi, A.; Caciuffo, R.; Lander, G. H.

    2014-05-01

    The slow magnetic dynamics, from seconds to kiloseconds, of the canonical 3-k antiferromagnet USb have been probed, using X-ray photon correlation spectroscopy (XPCS). In this work, XPCS is combined with resonant X-ray diffraction to focus on scattering at an antiferromagnetic Bragg peak. High quality coherent magnetic diffraction patterns were recorded (speckle contrast of ~ 88%) and magnetic domains were observed; the number of domains increases on warming to T* ~ 160 K, where the spin waves soften to zero frequency, and again on warming to TN = 218 K. The intensity auto-correlation, g2(t), is primarily static over 1000 s, with a small dynamical process (change of ~ 0.4%) that increases in rate close to the transitions.

  13. Magnetic Repulsion: An Introductory Experiment

    ERIC Educational Resources Information Center

    Romer, Alfred

    1973-01-01

    Discusses the use of a balance assembled from standard laboratory components to conduct an experiment on the repulsion between two bar magnets. Includes an analysis of data on the two-pole and four-pole models. (CC)

  14. Pixel Detectors For Diffraction Experiments At The Swiss Light Source

    SciTech Connect

    Huelsen, G.; Eikenberry, E.F.; Schmitt, B.; Schulze-Briese, C.; Tomizaki, T.; Stampanoni, M.; Willmott, P.; Patterson, B.; Broennimann, Ch.; Horisberger, R.; Toyokawa, H.; Borchert, G. L.

    2004-05-12

    The PILATUS detector (Pixel Apparatus for the SLS) is a large, quantum-limited area X-ray detector for protein crystallography which is currently under construction. Its basic units are modules with 16 CMOS chips bump-bonded to a large, continuously sensitive silicon sensor with 157x366 pixels of 217x217 {mu}m2, leading to an active area of 34x80 mm2. With a counting circuit in each pixel, X-rays are detected in single photon counting mode, leading to excellent, noise-free data. The main properties of the detector are an energy range of 6 to 30 keV, no back-ground due to leakage current or readout-noise, fast read-out time of 6.7 ms, a rate/pixel >104/s and a PSF of one pixel. PILATUS detectors are installed at the SLS X06SA protein crystallography beamline, and at both the surface diffraction (SD) station and the radiography and tomography (XTM) station of beamline X04SA. The detectors are operated at room temperature and thus are very easy to use. Experiments benefit from the ability to detect very weak diffraction spots with high precision. At the SD station and at the XTM station, which is equipped with a Bragg magnifier, diffraction, radiography and tomography experiments showed promising results. At beamline X06SA, a three-module array (1120x157 pixels) with a readout time of 6.7 ms was tested. This system was used to collect fine phi-sliced protein crystal data in continuous sample rotation mode in which the crystal was continuously rotated with a slow angular velocity of 0.04 deg./s without any shutter operation. Exposure time per frame ranged from 100 ms to a few seconds, depending on the crystal. These initial experiments show the potential of this method.

  15. Polar Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1999-01-01

    This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.

  16. Upgrade of X-ray Magnetic Diffraction Experimental System and Its Application to Ferromagnetic Material

    SciTech Connect

    Suzuki, Kosuke; Tsuji, Naruki; Akiyama, Hiromitu; Ito, Masahisa; Kitani, Kensuke; Adachi, Hiromichi; Kawata, Hiroshi

    2007-01-19

    We have performed X-ray magnetic diffraction (XMD) experiment of ferromagnets at the Photon Factory (PF) of the High Energy Accelerator Research Organization (KEK) in Tsukuba. In this study, we have upgraded the XMD experimental system in order to apply this method to as many samples as possible. Upgrade was made for (1) the X-ray counting system and related measurement program, (2) the electromagnet, and (3) the refrigerator. The performance of the system was enhanced so that (1) the counting rate capability was improved from 104cps to 105cps, (2) the maximum magnetic field was increased from 0.85T to 2.15T, and (3) the lowest sample temperature was reduced from 15K to 5K. The new system was applied to an orbital ordering compound of YTiO3, and we obtained spin magnetic form factor for the reflection plane (010) perpendicular to the b axis. The magnetic field of 2T was needed to saturate the magnetization of YTiO3 along the b axis. These are the first data with the magnetization of YTiO3 saturated along the b axis by the XMD.

  17. Induced magnetic anisotropy in Si-free nanocrystalline soft magnetic materials: A transmission x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Yanai, T.; Kishimoto, H.; Kato, A.; Ohnuma, M.; Suzuki, K.

    2015-05-01

    In order to better understand the origin of field-induced anisotropy (Ku) in Si-free nanocrystalline soft magnetic alloys, the lattice spacing of the bcc-Fe phase in nanocrystalline Fe94-xNb6Bx (x = 10, 12, 14) alloys annealed under an applied magnetic field has been investigated by X-ray diffraction in transmission geometry (t-XRD) with the diffraction vector parallel and perpendicular to the field direction. The saturation magnetostriction (λs) of nanocrystalline Fe94-xNb6Bx was found to increase linearly with the volume fraction of the residual amorphous phase and is well described by taking into account the volume-weighted average of two local λs values for the bcc-Fe nanocrystallites (-5 ± 2 ppm) and the residual amorphous matrix (+8 ± 2 ppm). The lattice distortion required to produce the measured Ku values (˜100 J/m3) was estimated via the inverse magnetostrictive effect using the measured λs values and was compared to the lattice spacing estimations made by t-XRD. The lattice strain required to produce Ku under the magnetoelastic model was not observed by the t-XRD experiments and so the findings of this study suggest that the origin of magnetic field induced Ku cannot be explained through the magnetoelastic effect.

  18. Uranium Hydridoborates: Synthesis, Magnetism, and X-ray/Neutron Diffraction Structures.

    PubMed

    Braunschweig, H; Gackstatter, A; Kupfer, T; Radacki, K; Franke, S; Meyer, K; Fucke, K; Lemée-Cailleau, M-H

    2015-08-17

    While uranium hydridoborate complexes containing the [BH4](-) moiety have been well-known in the literature for many years, species with functionalized borate centers remained considerably rare. We were now able to prepare several uranium hydridoborates (1-4) with amino-substituted borate moieties with high selectivity by smooth reaction of [Cp*2UMe2] (Cp* = C5Me5) and [Cp'2UMe2] (Cp' = 1,2,4-tBu3C5H2) with the aminoborane H2BN(SiMe3)2. A combination of nuclear magnetic resonance spectroscopy, deuteration experiments, magnetic SQUID measurements, and X-ray/neutron diffraction studies was used to verify the anticipated molecular structures and oxidation states of 1-4 and helped to establish a linear tridentate coordination mode of the borate anions. PMID:26247295

  19. Magnetic Barkhausen Noise and Neutron Diffraction Techniques for the Study of Intergranular Residual Strains in Mild Steel

    SciTech Connect

    Hutanu, Roxana; Clapham, Lynann; Rogge, Ronald

    2004-02-26

    Intergranular residual stresses (IS) are microscopic residual stresses which have been found to accumulate along the <100> direction in steels. The <100> direction is also the magnetic easy axis direction in steel. This work involved Magnetic Barkhausen Noise (MBN) studies on steel samples, deformed uniaxially to increasing levels of strain. The MBN results indicated that a bulk magnetic easy axis was produced by the deformation process, and neutron diffraction experiments showed that this easy axis was correlated with the tensile strain in grains oriented in the <100> direction.

  20. Correlating Sampling and Intensity Statistics in Nanoparticle Diffraction Experiments

    SciTech Connect

    Ozturk, Hande; Yan, Hanfei; Hill, John P.; Noyan, I. Cevdet

    2015-08-01

    In this article, [Öztürk, Yan, Hill & Noyan (2014). J. Appl. Cryst. 47, 1016-1025] it was shown that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye-Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys. (1948), 19, 742-753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (i) the one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. Three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos [theta], to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos [theta]B/cos [theta], corrects this problem.

  1. Correlating sampling and intensity statistics in nanoparticle diffraction experiments

    DOE PAGESBeta

    Öztürk, Hande; Yan, Hanfei; Hill, John P.; Noyan, I. Cevdet

    2015-07-28

    It is shown in a previous article [Öztürk, Yan, Hill & Noyan (2014).J. Appl. Cryst.47, 1016–1025] that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye–Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (i) themore » one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. For example, three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos θ, to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos θB/cos θ, corrects this problem.« less

  2. Correlating sampling and intensity statistics in nanoparticle diffraction experiments

    SciTech Connect

    Öztürk, Hande; Yan, Hanfei; Hill, John P.; Noyan, I. Cevdet

    2015-07-28

    It is shown in a previous article [Öztürk, Yan, Hill & Noyan (2014).J. Appl. Cryst.47, 1016–1025] that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye–Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (i) the one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. For example, three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos θ, to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos θB/cos θ, corrects this problem.

  3. Induced magnetic anisotropy in Si-free nanocrystalline soft magnetic materials: A transmission x-ray diffraction study

    SciTech Connect

    Parsons, R. Suzuki, K.; Yanai, T.; Kishimoto, H.; Kato, A.; Ohnuma, M.

    2015-05-07

    In order to better understand the origin of field-induced anisotropy (K{sub u}) in Si-free nanocrystalline soft magnetic alloys, the lattice spacing of the bcc-Fe phase in nanocrystalline Fe{sub 94−x}Nb{sub 6}B{sub x} (x = 10, 12, 14) alloys annealed under an applied magnetic field has been investigated by X-ray diffraction in transmission geometry (t-XRD) with the diffraction vector parallel and perpendicular to the field direction. The saturation magnetostriction (λ{sub s}) of nanocrystalline Fe{sub 94−x}Nb{sub 6}B{sub x} was found to increase linearly with the volume fraction of the residual amorphous phase and is well described by taking into account the volume-weighted average of two local λ{sub s} values for the bcc-Fe nanocrystallites (−5 ± 2 ppm) and the residual amorphous matrix (+8 ± 2 ppm). The lattice distortion required to produce the measured K{sub u} values (∼100 J/m{sup 3}) was estimated via the inverse magnetostrictive effect using the measured λ{sub s} values and was compared to the lattice spacing estimations made by t-XRD. The lattice strain required to produce K{sub u} under the magnetoelastic model was not observed by the t-XRD experiments and so the findings of this study suggest that the origin of magnetic field induced K{sub u} cannot be explained through the magnetoelastic effect.

  4. Magnet operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  5. Magnetic symmetries in neutron and resonant x-ray Bragg diffraction patterns of four iridium oxides

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Khalyavin, D. D.; Manuel, P.; Chapon, L. C.; Cao, G.; Qi, T. F.

    2012-12-01

    The magnetic properties of Sr2IrO4, Na2IrO3, Sr3Ir2O7 and CaIrO3 are discussed, principally in the light of experimental data in recent literature for Bragg intensities measured in x-ray diffraction with enhancement at iridium L-absorption edges. The electronic structure factors we report, which incorporate parity-even and acentric entities, serve the immediate purpose of making full use of crystal and magnetic symmetry to refine our knowledge of the magnetic properties of the four iridates from resonant x-ray diffraction data. They also offer a platform on which to interpret future investigations, using dichroic signals, resonant x-ray diffraction and neutron diffraction, for example, as well as ab initio calculations of electronic structure. Unit-cell structure factors, suitable for x-ray Bragg diffraction enhanced by an electric dipole-electric dipole (E1-E1) event, reveal exactly which iridium multipoles are visible, e.g., a magnetic dipole parallel to the crystal c-axis (z-axis) and an electric quadrupole with yz-like symmetry in the specific case of CaIrO3. Magnetic space-groups are assigned to Sr2IrO4, Sr3Ir2O7 and CaIrO3, namely, PIcca, PAban and Cm‧cm‧, respectively, in the Belov-Neronova-Smirnova notation. The assignment for Sr2IrO4 is possible because of our new high-resolution neutron diffraction data, gathered on a powder sample. In addition, the new data are used to show that the ordered magnetic moment of an Ir4+ ion in Sr2IrO4 does not exceed 0.29(4) μB. Na2IrO3 has two candidate magnetic space-groups that are not resolved with currently available resonant x-ray data.

  6. Teaching Diffraction of Light and Electrons: Classroom Analogies to Classic Experiments

    ERIC Educational Resources Information Center

    Velentzas, Athanasios

    2014-01-01

    Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such…

  7. Single-Slit Electron Diffraction with Aharonov-Bohm Phase: Feynman's Thought Experiment with Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-01

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  8. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.

    PubMed

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-10

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics. PMID:24483873

  9. The Magnetic Properties Experiments on Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Knudsen, J. M.; Gunnlaugsson, H. P.; Hviid, S. F.; Madsen, M. B.

    1996-09-01

    A remarkable result from the Viking missions was the discovery that the Martian soil is highly magnetic, in the sense that the soil is attracted by permanent magnets. Both the strong and weak magnets on the Viking landers were saturated with dust throughout the mission. Appropriate limits for the spontaneous magnetization sigma_S were advanced: 1 Am(2) (kg soil)(-1) < sigma_S < 7 Am(2) (kg soil)(-1) . The essential difference between the Magnet Arrays for Mars Pathfinder and the Viking Magnetic Properties Experiment is that Magnet Arrays on Pathfinder will include magnets of lower strengths that the weakest Viking magnet. The five magnets consist of small ring magnets concentric with oppositely polarized cylindrical magnets. The outer diameter of the ring magnets is 18 mm. Discrete (single phase) particles of strongly magnetic minerals (gamma -Fe2O3 or Fe3O4) will stick to all five magnets, while composite (multiphase) particles will stick preferentially to the strongest magnets. Two Magnet Arrays are placed on the Pathfinder lander, with a distance of 1180 and 1450 mm, respectively, from the Imager for Mars Pathfinder (IMP). The magnets will attract airborne dust, and the dust on the magnets will be periodically viewed by the IMP. The images transmitted to Earth are the data on which conclusions on the magnetic properties of the dust will be based. Besides the Magnet Arrays the Pathfinder lander carries two other types of magnets. The Tip Plate Magnet is placed at a distance of 10 cm from the IMP, and thus allows a rather high resolution imaging of the dust clinging to the magnet. The Ramp Magnets are placed near the end of the ramps by which the micro-rover will descend to the surface. The dust on the Ramp Magnets will be studied by the APX-spectrometer of the micro-rover.

  10. Complex magnetic ordering in CeFe1.76 studied by neutron diffraction

    SciTech Connect

    Jayasekara, Wageesha T; Tian, W; Hodovanets, Halyna; Canfield, Paul C; Bud'ko, Serguei L; Kreyssig, Andreas; Goldman, Alan I

    2014-10-01

    Neutron diffraction measurements on a single crystal of CeGe1.76 reveal a complex series of magnetic transitions at low temperature. At TN≈7 K, there is a transition from a paramagnetic state at higher temperature to an incommensurate magnetic structure characterized by a magnetic propagation vector (0 0 τ) with τ≈1/4 and the magnetic moment along the a axis of the orthorhombic unit cell. Below TLI≈5 K, the magnetic structure locks in to a commensurate structure with τ=1/4 and the magnetic moment remains along the a axis. Below T≈4 K, we find additional half-integer and integer indexed magnetic Bragg peaks consistent with a second commensurately ordered antiferromagnetic state.

  11. The magnetic structure of Co(NCNH)₂ as determined by (spin-polarized) neutron diffraction

    SciTech Connect

    Jacobs, Philipp; Houben, Andreas; Senyshyn, Anatoliy; Müller, Paul; Dronskowski, Richard

    2013-06-01

    The magnetic structure of Co(NCNH)₂ has been studied by neutron diffraction data below 10 K using the SPODI and DNS instruments at FRM II, Munich. There is an intensity change in the (1 1 0) and (0 2 0) reflections around 4 K, to be attributed to the onset of a magnetic ordering of the Co²⁺ spins. Four different spin orientations have been evaluated on the basis of Rietveld refinements, comprising antiferromagnetic as well as ferromagnetic ordering along all three crystallographic axes. Both residual values and supplementary susceptibility measurements evidence that only a ferromagnetic ordering with all Co²⁺ spins parallel to the c axis is a suitable description of the low-temperature magnetic ground state of Co(NCNH)₂. The deviation of the magnetic moment derived by the Rietveld refinement from the expectancy value may be explained either by an incomplete saturation of the moment at temperatures slightly below the Curie temperature or by a small Jahn–Teller distortion. - Graphical abstract: The magnetic ground state of Co(NCNH)₂ has been clarified by (spin-polarized) neutron diffraction data at low temperatures. Intensity changes below 4 K arise due to the onset of ferromagnetic ordering of the Co²⁺ spins parallel to the c axis, corroborated by various (magnetic) Rietveld refinements. Highlights: • Powderous Co(NCNH)₂ has been subjected to (spin-polarized) neutron diffraction. • Magnetic susceptibility data of Co(NCNH)₂ have been collected. • Below 4 K, the magnetic moments align ferromagnetically with all Co²⁺ spins parallel to the c axis. • The magnetic susceptibility data yield an effective magnetic moment of 4.68 and a Weiss constant of -13(2) K. • The ferromagnetic Rietveld refinement leads to a magnetic moment of 2.6 which is close to the expectancy value of 3.

  12. Magnetic levitation experiments in Sendai

    NASA Astrophysics Data System (ADS)

    Mogi, I.; Takahashi, K.; Awaji, S.; Watanabe, K.; Motokawa, M.

    2006-11-01

    A levitating apple in a hybrid magnet implies the presence of microgravity conditions under gradient magnetic fields. However, several unique behaviors were found, the orientation of levitating rice grains, the alignment of levitating bismuth particles, and the thermal convection in water under the levitation conditions. These are unlikely under the microgravity conditions in the space and are characteristic of the magnetic levitation. On the basis of the understanding of such behaviors, the magnetic levitation was applied to containerless materials processing, and such an attempt resulted in the development of a magnetic levitation furnace.

  13. Instrumentation For Diffraction Enhanced Imaging Experiments At HASYLAB

    SciTech Connect

    Lohmann, M.; Dix, W.-R.; Metge, J.; Reime, B.

    2004-05-12

    The new X-ray radiography imaging technique, named diffraction enhanced imaging (DEI), enables almost scatter free absorption imaging, the production of the so-called refraction images of a sample. The images show improved contrast compared to standard imaging applications. At the HASYLAB wiggler beamline W2 at the 2nd-generation storage ring DORIS a 5cm wide beam with an adjustable energy between 10 and 70keV is available. A Si [111] pre-monochromator is used followed by the main monochromator using the (111) or the (333)-reflection. Visualization of fossils, detecting internal pearl structures, monitoring of bone and cartilage and documentation of implant healing in bone are application examples at HASYLAB.

  14. Instrumentation For Diffraction Enhanced Imaging Experiments At HASYLAB

    NASA Astrophysics Data System (ADS)

    Lohmann, M.; Dix, W.-R.; Metge, J.; Reime, B.

    2004-05-01

    The new X-ray radiography imaging technique, named diffraction enhanced imaging (DEI), enables almost scatter free absorption imaging, the production of the so-called refraction images of a sample. The images show improved contrast compared to standard imaging applications. At the HASYLAB wiggler beamline W2 at the 2nd-generation storage ring DORIS a 5cm wide beam with an adjustable energy between 10 and 70keV is available. A Si [111] pre-monochromator is used followed by the main monochromator using the (111) or the (333)-reflection. Visualization of fossils, detecting internal pearl structures, monitoring of bone and cartilage and documentation of implant healing in bone are application examples at HASYLAB.

  15. Magnetic Structure of Goethite α-FeOOH: A Neutron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Zepeda-Alarcon, E.; Nakotte, H.; Vogel, S. C.; Wenk, H.

    2013-12-01

    Goethite (α-FeOOH) is found in diverse natural ecosystems, it is by far the most common oxyhydroxide in terrestrial soils, sediments and clays and an important mineral in the biogeochemical cycle of iron at the Earth's surface. Neutron diffraction studies have found that the iron magnetic moments are collinear in a two sublattice antiferromagnetic structure, aligned parallel to the c axis in space group Pbnm (Forsyth et. al. 1968). However, goethite shows superparamagnetic behavior and also a weak ferromagnetic component that has been attributed to the presence of lattice distortions. It is thought that these changes in magnetic ordering could be due to a 13° canting of the magnetic moment with respect to the c-axis, which enables the flipping of the spins due to small perturbations in the lattice (Coey et. al. 1995). In this study we used neutron diffraction at HIPPO and NPDF beamlines at LANSCE of Los Alamos National Laboratory on a powder of natural goethite provided by A. Gualtieri. The nuclear and magnetic structures were determined by means of a Rietveld refinement with GSAS and it was found that the spins of the iron atoms are aligned parallel to the c-axis, with no evidence of spin canting. The net magnetic moment is lower than what has previously been found. These results provide further insight into the magnetic ordering of this mineral and can be important in understanding the physical processes responsible for goethite's intriguing magnetic behavior.

  16. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  17. (X-ray diffraction experiments with condenser matter)

    SciTech Connect

    Coppens, P.

    1990-01-01

    This report discusses research on the following topics: high-{Tc} superconductors; The response of crystal to an applied electric field; quasicrystals; surface structure and kinetics of surface layer formation; EXAFS studies of superconductors and heterostructures; effect of iron on the crystal structure of perovskite; x-ray detector development; and SAXS experiments. (LSP)

  18. Experiments With Magnetic Vector Potential

    ERIC Educational Resources Information Center

    Skinner, J. W.

    1975-01-01

    Describes the experimental apparatus and method for the study of magnetic vector potential (MVP). Includes a discussion of inherent errors in the calculations involved, precision of the results, and further applications of MVP. (GS)

  19. Magnetic Levitation Experiments with the Electrodynamic Wheel

    NASA Astrophysics Data System (ADS)

    Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian

    Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  20. In situ X-ray powder diffraction, synthesis, and magnetic properties of InVO{sub 3}

    SciTech Connect

    Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario . E-mail: Mario_Bieringer@umanitoba.ca

    2006-12-15

    We report the first synthesis and high-temperature in situ X-ray diffraction study of InVO{sub 3}. Polycrystalline InVO{sub 3} has been prepared via reduction of InVO{sub 4} using a carbon monoxide/carbon dioxide buffer gas. InVO{sub 3} crystallizes in the bixbyite structure in space group Ia-3 (206) with a=9.80636(31) A with In{sup 3+}/V{sup 3+} disorder on the (8b) and (24d) cation sites. In situ powder X-ray diffraction experiments and thermal gravimetric analysis in a CO/CO{sub 2} buffer gas revealed the existence of the metastable phase InVO{sub 3}. Bulk samples with 98.5(2)% purity were prepared using low-temperature reduction methods. The preparative methods limited the crystallinity of this new phase to approximately 225(50) A. Magnetic susceptibility and neutron diffraction experiments suggest a spin-glass ground state for InVO{sub 3}. - Graphical abstract: In situ powder X-ray diffractograms for the reduction of InVO{sub 4} in CO/CO{sub 2}. The three temperature regions show the conversion of InVO{sub 4} to InVO{sub 3} and final decomposition into In{sub 2}O{sub 3} and V{sub 2}O{sub 3}.

  1. Development of an x-ray diffraction camera used in magnetic fields up to 10 T

    SciTech Connect

    Mitsui, Yoshifuru; Takahashi, Kohki; Watanabe, Kazuo; Koyama, Keiichi

    2011-12-15

    A high-field x-ray diffraction (HF-XRD) camera was developed to observe structural changes of magnetic materials in magnetic fields up to 10 T. The instrument mainly consists of a Debye-Scherrer-type camera with a diameter of 80.1 mm, a 10-T cryocooled superconducting magnet with a 100-mm room-temperature bore, an x-ray source, a power supply, and a chiller for the x-ray source. An x-ray detector (image plate) in the HF-XRD camera can be taken out and inserted into the magnet without changing the sample position. The performance of the instrument was tested by measuring the HF-XRD for silicon and ferromagnetic MnBi powders. A change of x-ray diffraction pattern was observed due to the magnetic orientation of MnBi, showing that the instrument is useful for studying field-induced orientation processes and structural properties of field-controlled materials.

  2. Development of an x-ray diffraction camera used in magnetic fields up to 10 T.

    PubMed

    Mitsui, Yoshifuru; Koyama, Keiichi; Takahashi, Kohki; Watanabe, Kazuo

    2011-12-01

    A high-field x-ray diffraction (HF-XRD) camera was developed to observe structural changes of magnetic materials in magnetic fields up to 10 T. The instrument mainly consists of a Debye-Scherrer-type camera with a diameter of 80.1 mm, a 10-T cryocooled superconducting magnet with a 100-mm room-temperature bore, an x-ray source, a power supply, and a chiller for the x-ray source. An x-ray detector (image plate) in the HF-XRD camera can be taken out and inserted into the magnet without changing the sample position. The performance of the instrument was tested by measuring the HF-XRD for silicon and ferromagnetic MnBi powders. A change of x-ray diffraction pattern was observed due to the magnetic orientation of MnBi, showing that the instrument is useful for studying field-induced orientation processes and structural properties of field-controlled materials. PMID:22225246

  3. Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation

    DOE PAGESBeta

    Keller, L.; White, J. S.; Babkevich, P.; Susner, Michael A.; Sims, Zachary C; Safa-Sefat, Athena; Ronnow, H. M.; Ruegg, Ch.

    2015-01-29

    The suppression of magnetic order with pressure concomitant with the appearance of pressure-induced superconductivity was recently discovered in CrAs. Here we present a neutron diffraction study of the pressure evolution of the helimagnetic ground-state towards and in the vicinity of the superconducting phase. Neutron diffraction on polycrystalline CrAs was employed from zero pressure to 0.65 GPa and at various temperatures. The helimagnetic long-range order is sustained under pressure and the magnetic propagation vector does not show any considerable change. The average ordered magnetic moment is reduced from 1.73(2) μB at ambient pressure to 0.4(1) μB close to the critical pressuremore » Pc ≈ 0.7 GPa, at which magnetic order is completely suppressed. The width of the magnetic Bragg peaks strongly depends on temperature and pressure, showing a maximum in the region of the onset of superconductivity. In conclusion, we interpret this as associated with competing ground-states in the vicinity of the superconducting phase.« less

  4. Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation

    SciTech Connect

    Keller, L.; White, J. S.; Babkevich, P.; Susner, Michael A.; Sims, Zachary C; Safa-Sefat, Athena; Ronnow, H. M.; Ruegg, Ch.

    2015-01-29

    The suppression of magnetic order with pressure concomitant with the appearance of pressure-induced superconductivity was recently discovered in CrAs. Here we present a neutron diffraction study of the pressure evolution of the helimagnetic ground-state towards and in the vicinity of the superconducting phase. Neutron diffraction on polycrystalline CrAs was employed from zero pressure to 0.65 GPa and at various temperatures. The helimagnetic long-range order is sustained under pressure and the magnetic propagation vector does not show any considerable change. The average ordered magnetic moment is reduced from 1.73(2) μB at ambient pressure to 0.4(1) μB close to the critical pressure Pc ≈ 0.7 GPa, at which magnetic order is completely suppressed. The width of the magnetic Bragg peaks strongly depends on temperature and pressure, showing a maximum in the region of the onset of superconductivity. In conclusion, we interpret this as associated with competing ground-states in the vicinity of the superconducting phase.

  5. Polarized Neutron Diffraction as a Tool for Mapping Molecular Magnetic Anisotropy: Local Susceptibility Tensors in Co(II) Complexes.

    PubMed

    Ridier, Karl; Gillon, Béatrice; Gukasov, Arsen; Chaboussant, Grégory; Cousson, Alain; Luneau, Dominique; Borta, Ana; Jacquot, Jean-François; Checa, Ruben; Chiba, Yukako; Sakiyama, Hiroshi; Mikuriya, Masahiro

    2016-01-11

    Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron. In exchange-coupled dimer 2, the determination of the individual Co(II) magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both Co(II) sites deviate from the single-ion behavior because of antiferromagnetic exchange coupling. PMID:26728231

  6. Viking magnetic properties experiment - Extended mission results

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.; Collinson, D. W.; Arvidson, R. E.; Cates, P. M.

    1979-01-01

    The backhoe magnets on Viking Lander (VL) 2 were successfully cleaned, followed by a test involving successive insertions of the cleaned backhoe into the surface. Rapid saturation of the magnets confirmed evidence from primary mission results that the magnetic mineral in the Martian surface is widely distributed, most probably in the form of composite particles of magnetic and nonmagnetic minerals. An image of the VL 2 backhoe taken via the X4 magnifying mirror demonstrates the fine-grained nature of the attracted magnetic material. The presence of maghemite and its occurrence as a pigment in, or a thin coating on, all mineral particles or as discrete, finely divided and widely distributed crystallites, are consistent with data from the inorganic analysis experiments and with laboratory simulations of results of the biology experiments on Mars.

  7. Spillover and diffraction sidelobe contamination in a double-shielded experiment for mapping Galactic synchrotron emission

    NASA Astrophysics Data System (ADS)

    Tello, C.; Villela, T.; Smoot, G. F.; Bersanelli, M.; Figueiredo, N.; De Amici, G.; Bensadoun, M.; Wuensche, C. A.; Torres, S.

    2000-09-01

    We have analyzed observations from a radioastronomical experiment to survey the sky at decimetric wavelengths along with feed pattern measurements in order to account for the level of ground contamination entering the sidelobes. A major asset of the experiment is the use of a wire mesh fence around the rim-halo shielded antenna with the purpose of levelling out and reducing this source of stray radiation for zenith-centered 1-rpm circular scans. We investigate the shielding performance of the experiment by means of a geometric diffraction model in order to predict the level of the spillover and diffraction sidelobes in the direction of the ground. Using 408 MHz and 1465 MHz feed measurements, the model shows how a weakly-diffracting and unshielded antenna configuration becomes strongly-diffracting and double-shielded as far-field diffraction effects give way to near-field ones. Due to the asymmetric response of the feeds, the orientation of their radiation fields with respect to the secondary must be known a priori before comparing model predictions with observational data. By adjusting the attenuation coefficient of the wire mesh the model is able to reproduce the amount of differential ground pick-up observed during test measurements at 1465 MHz.

  8. How Rosalind Franklin Discovered the Helical Structure of DNA: Experiments in diffraction

    NASA Astrophysics Data System (ADS)

    Schmitzer, Heidrun; Tierney, Dennis; Braun, Gregory

    2010-03-01

    Rosalind Franklin, a chemical physicist (1920-1958), used X-Ray diffraction to determine the structure of DNA. In 1953 she described the DNA has a helical structure with a period of 34 A and a radius of 10 A. We suggest experiments of varying equipment and difficulty which enable students to follow in the footsteps of Rosalind Franklin's discovery. To do this we increase the scale; instead of a tiny DNA molecule we examine the diffraction pattern of a helical spring from a ballpoint pen, and instead of X-Rays we use light rays. Students can then apply their experiences with diffraction on a helical spring to R. Franklin's X-Ray diffraction photo, which should be made available to them in original size. They can determine the angle, pitch, and radius of the DNA molecule, just like Rosalind Franklin. Our experiments can be used as demonstration experiments in interdisciplinary history and science lectures, or as lab experiments for undergraduate non science and science majors.

  9. Magnetic Nozzle and Plasma Detachment Experiment

    NASA Technical Reports Server (NTRS)

    Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher

    2006-01-01

    High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.

  10. A Focusing Laue Monochromator Optimised for Diamond Anvil Cell Diffraction Experiments

    SciTech Connect

    Laundy, David; Lennie, Alistair; Golshan, Mina; Taylor, David; Roberts, Mark; Bushnell-Wye, Graham; Flaherty, John; Burrows, Ian; Cernik, Bob

    2004-05-12

    We have developed a sagittally bent Laue monochromator that is optimised for diffraction experiments on samples in diamond anvil cells. Test measurements have shown that the bandwidth of the monochromatic beam can be broadened with simultaneous focusing of the X-rays. A gain in X-ray flux of over 100 is achieved.

  11. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J. Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  12. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J.; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K, respectively.

  13. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    NASA Astrophysics Data System (ADS)

    Cui, J.; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D.; Marinescu, M.; Huang, Q. Z.; Wu, H.; Vuong, N. V.; Liu, J. P.

    2014-05-01

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K, respectively.

  14. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    SciTech Connect

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  15. Development of MnBi permanent magnet: neutron diffraction of MnBi powder

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Li, Guosheng; Polikarpov, Evgueni; Darsell, Jens T.; Kramer, Matthew J.; Zarkevich, Nikolai; Wang, L. L.; Johnson, D. D.; Marinescu, Melania; Huang, Qingzhen; Wu, Hui; Vuong, Nguyen V.; Liu, J.Ping

    2014-03-05

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained power. The result shows that the purity of the obtained powder is about 91wt.% at 300K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μB at 50 K and 300 K respectively.

  16. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto.

    PubMed

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-12-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3 Å, β=95.2°. Diffraction images were processed to a resolution of 1.74 Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221

  17. Data Exploration Toolkit for serial diffraction experiments

    SciTech Connect

    Zeldin, Oliver B.; Brewster, Aaron S.; Hattne, Johan; Uervirojnangkoorn, Monarin; Lyubimov, Artem Y.; Zhou, Qiangjun; Zhao, Minglei; Weis, William I.; Sauter, Nicholas K.; Brunger, Axel T.

    2015-01-23

    Ultrafast diffraction at X-ray free-electron lasers (XFELs) has the potential to yield new insights into important biological systems that produce radiation-sensitive crystals. An unavoidable feature of the 'diffraction before destruction' nature of these experiments is that images are obtained from many distinct crystals and/or different regions of the same crystal. Combined with other sources of XFEL shot-to-shot variation, this introduces significant heterogeneity into the diffraction data, complicating processing and interpretation. To enable researchers to get the most from their collected data, a toolkit is presented that provides insights into the quality of, and the variation present in, serial crystallography data sets. These tools operate on the unmerged, partial intensity integration results from many individual crystals, and can be used on two levels: firstly to guide the experimental strategy during data collection, and secondly to help users make informed choices during data processing.

  18. Development of low temperature and high magnetic field X-ray diffraction facility

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P.; Chaddah, P.

    2015-06-01

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to -8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr0.5Sr0.5MnO3 sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  19. Development of low temperature and high magnetic field X-ray diffraction facility

    SciTech Connect

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P. Chaddah, P.

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  20. The magnetic and crystal structures of Sr2IrO4: A neutron diffraction study

    SciTech Connect

    Ye, Feng; Chi, Songxue; Chakoumakos, Bryan C; Fernandez-Baca, Jaime A; Qi, Tongfei; Cao, Gang

    2013-01-01

    We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambigu- ously determines the magnetic and crystal structures, and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) B/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) B/site for the a-axis and the b-axis, respectively. It is intriguing that forbidden nuclear reflections of space group I41/acd are also observed in a wide temperature range from 4 K to 600 K, which suggests a reduced crystal structure symmetry. This neutron scattering work provides a direct, well-refined experimen- tal characterization of the magnetic and crystal structures that are crucial to the understanding of the unconventional magnetism existent in this unusual magnetic insulator.

  1. A Powder Neutron Diffraction Study of Structure and Magnetism in NiCr 2S 4

    NASA Astrophysics Data System (ADS)

    Powell, Anthony V.; Colgan, Douglas C.; Ritter, Clemens

    1997-11-01

    Powder neutron diffraction data for NiCr 2S 4have been collected over the temperature range 1.8≤ T≤286 K. The Cr 3S 4structure (space group I2/ m) is adopted at all temperatures. Refinement of 286 K data ( a=5.8954(14) Å, b=3.4066(8) Å, c=11.0589(22) Å, β=91.362(4)°) demonstrates that the distribution of nickel and chromium cations between sites in a fully occupied metal layer and sites in an ordered vacancy layer is close to that expected for the normal structure type. Data collected at 1.8 K ( a=5.8621(5) Å, b=3.4051(2) Å, c=11.0297(9) Å, β=91.607(6)°) reveal the presence of long-range magnetic order, involving a doubling of the unit cell in both the aand cdirections. Cations in the fully occupied metal layer possess an ordered magnetic moment of 1.57(6) μBwhich is directed parallel to the cation layers. Cations in the vacancy layer have a moment of 1.36(8) μBwhich is directed toward the anion layers. The magnetic ordering temperature was determined as 180(5) K. These results are correlated with magnetic susceptibility and electrical conductivity data.

  2. Neutron diffraction study of the magnetic structure of Na2 RuO 4

    NASA Astrophysics Data System (ADS)

    Mogare, K. M.; Sheptyakov, D. V.; Bircher, R.; Güdel, H.-U.; Jansen, M.

    2006-08-01

    Nuclear and magnetic structures of sodium ruthenate (VI) have been studied by neutron powder diffraction in the temperature range 1.5 200 K. Na2RuO4 crystallizes in the monoclinic structure, with space group P 21/c. The structure consists of apical corner sharing RuO5 trigonal bipyramids forming infinite chains running along the b axis. These infinite [ RuO3O2/2] chains form a pseudo hexagonal close packing of rods with Ru Ru distances of 3.51 Å within the chains and 5.30 5.47 Å between the chains. At TN=37.2 K a magnetic transition leads to an antiferromagnetic state. The Ru6+ magnetic moments are ordered antiferromagnetically along the chains (b-axis), while the inter-chain interaction is ferromagnetic. A classical infinite chain model was fitted to the magnetic susceptibility data in order to estimate the strength of the nearest-neighbor exchange interactions along and between the chains, resulting in an intrachain coupling parameter of 2J=-86 K, and an interchain parameter J⊥ with \\vert 2J⊥ \\vert = 3 K.

  3. Thermal neutron diffraction determination of the magnetic structure of EuCu{sub 2}Ge{sub 2}

    SciTech Connect

    Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Lemoine, P.; Cadogan, J. M.

    2014-05-07

    The magnetic structure of EuCu{sub 2}Ge{sub 2} has been determined by flat-plate neutron powder diffraction. Two magnetic phases are present in the neutron diffraction pattern at 3.5 K. They have the same moment, within error, and a common transition temperature. Both {sup 151}Eu and {sup 153}Eu Mössbauer spectroscopy show that the two magnetic phases belong to the same crystallographic phase. Both phases can be modelled by planar helimagnetic structures: one with a propagation vector of [0.654(1), 0, 0], the other with a propagation vector of [0.410(1), 0.225(1), 0].

  4. A magnet system for HEP experiments

    NASA Astrophysics Data System (ADS)

    Gaddi, A.

    2012-02-01

    This chapter describes the sequence of steps that lead to the design of a magnet system for modern HEP detectors. We start looking to the main types of magnets used in HEP experiments, along with some basic formulae to set the main parameters, such as ampere-turns, impedance and stored energy. A section is dedicated to the description of the iron yoke, with emphasis on magnet-detector integration and assembly, steel characteristics, stray field issues and alternative design. In the second part of the chapter we start looking at a brief history of superconducting magnets and a comparison between warm and superconducting ones. Following that, we describe the commonly used superconducting cables, the conductor design and technology and the winding techniques. A section of the chapter is dedicated to the cryogenic design, vacuum insulation and other ancillary systems. We also describe the power circuit, with the power supply unit, the current leads, the current measurement devices and other instruments and safety systems. A section is dedicated to the measurement of the B field in HEP experiments and a final one briefly describes a few applications of these kind of magnets outside their application in high energy physics detectors.

  5. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  6. Spin and diffractive physics with a fixed-target experiment at the LHC (AFTER-LHC)

    SciTech Connect

    Lorce, C.; Chambert, V.; Didelez, J. P.; Genolini, B.; Hadjidakis, C.; Lansberg, J. P.; Rosier, P.; Brodsky, S. J.; Ferreiro, E. G.; Fleuret, F.

    2013-04-15

    We report on the spin and diffractive physics at a future multi-purpose f xed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic f xed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The f xed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.

  7. Electron back scattered diffraction characterization of Sm(CoFeCuZr){sub z} magnets

    SciTech Connect

    Yonamine, T.; Fukuhara, M.; Archanjo, B. S.; Missell, F. P.

    2011-04-01

    In permanent magnets based on the Sm{sub 2}Co{sub 17} phase, the high coercivity depends on the presence of a complex microstructure, consisting of a Sm{sub 2}(Co,Fe){sub 17} cell phase, a cell boundary phase Sm(Co,Cu){sub 5}, and a Zr-rich platelet or lamellae phase. The aim of this work is to use electron back scatter diffraction (EBSD) in order to identify the different phases present in the isotropic magnets produced from cast alloys with the composition of Sm(Co{sub bal}Fe{sub 0.2}Cu{sub 0.1}Zr{sub x}){sub 8}, where x = 0, 0.02, or 0.06, and correlate them with the different phases observed in scanning electron microscopy (SEM) images. Due to the combination of careful surface preparation and high resolution microscopy, it was possible to observe the cellular structure characteristic of the 2:17 magnets in the SEM images. Until now, only transmission electron microscopy (TEM) had been used. Composition maps, energy dispersive spectroscopy (EDS), and EBSD measurements were used for doing the phase identification.

  8. A 31 T split-pair pulsed magnet for single crystal x-ray diffraction at low temperature

    SciTech Connect

    Duc, F.; Frings, P.; Nardone, M.; Billette, J.; Zitouni, A.; Delescluse, P.; Béard, J.; Nicolin, J. P.; Rikken, G. L. J. A.; Fabrèges, X.; Roth, T.; Detlefs, C.; Lesourd, M.; Zhang, L.

    2014-05-15

    We have developed a pulsed magnet system with panoramic access for synchrotron x-ray diffraction in magnetic fields up to 31 T and at low temperature down to 1.5 K. The apparatus consists of a split-pair magnet, a liquid nitrogen bath to cool the pulsed coil, and a helium cryostat allowing sample temperatures from 1.5 up to 250 K. Using a 1.15 MJ mobile generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 16.5 ms and a repetition rate of 2 pulses/h at 31 T. The setup was validated for single crystal diffraction on the ESRF beamline ID06.

  9. A 31 T split-pair pulsed magnet for single crystal x-ray diffraction at low temperature.

    PubMed

    Duc, F; Fabrèges, X; Roth, T; Detlefs, C; Frings, P; Nardone, M; Billette, J; Lesourd, M; Zhang, L; Zitouni, A; Delescluse, P; Béard, J; Nicolin, J P; Rikken, G L J A

    2014-05-01

    We have developed a pulsed magnet system with panoramic access for synchrotron x-ray diffraction in magnetic fields up to 31 T and at low temperature down to 1.5 K. The apparatus consists of a split-pair magnet, a liquid nitrogen bath to cool the pulsed coil, and a helium cryostat allowing sample temperatures from 1.5 up to 250 K. Using a 1.15 MJ mobile generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 16.5 ms and a repetition rate of 2 pulses/h at 31 T. The setup was validated for single crystal diffraction on the ESRF beamline ID06. PMID:24880385

  10. Neutron Powder Diffraction study of the Magnetic Ionic Liquid Emim[FeCL4] and its deuterated phase

    NASA Astrophysics Data System (ADS)

    García-Saiz, A.; de Pedro, I.; Fernández Barquín, L.; Fernández-Díaz, M. T.; Blanco, J. A.; Rodríguez Fernández, J.

    2015-11-01

    A magnetic ionic liquid comprising 1-ethyl-3 methylimidazolium (Emim) cations and tetraclhoroferrate(III) (FeCl4) anions and its deuterated phase were synthetized and characterized magnetically. In both materials, the low temperature dependence of the magnetic susceptibility presents a maximum (around 4 K) related to an antiferromagnetic ordering, but the ordering temperatures are slightly shifted and the curves display different shapes. In addition, the magnetization of the deuterated phase tends to saturate at higher values than that corresponding to the non-deuterated analogue. A comparison of the neutron diffraction patterns above and below the magnetic transition clearly shows that the crystal and magnetic structures of these materials are different. Therefore, the present findings clearly prove that the magnetic exchange interactions that induce three-dimensional magnetic ordering are modified after the deuteration process.

  11. Magnetic Flux Compression Experiments Using Plasma Armatures

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2003-01-01

    Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.

  12. The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source

    PubMed Central

    Bergamaschi, Anna; Cervellino, Antonio; Dinapoli, Roberto; Gozzo, Fabia; Henrich, Beat; Johnson, Ian; Kraft, Philipp; Mozzanica, Aldo; Schmitt, Bernd; Shi, Xintian

    2010-01-01

    The MYTHEN single-photon-counting silicon microstrip detector has been developed at the Swiss Light Source for time-resolved powder diffraction experiments. An upgraded version of the detector has been installed at the SLS powder diffraction station allowing the acquisition of diffraction patterns over 120° in 2θ in fractions of seconds. Thanks to the outstanding performance of the detector and to the calibration procedures developed, the quality of the data obtained is now comparable with that of traditional high-resolution point detectors in terms of FWHM resolution and peak profile shape, with the additional advantage of fast and simultaneous acquisition of the full diffraction pattern. MYTHEN is therefore optimal for time-resolved or dose-critical measurements. The characteristics of the MYTHEN detector together with the calibration procedures implemented for the optimization of the data are described in detail. The refinements of two known standard powders are discussed together with a remarkable application of MYTHEN to organic compounds in relation to the problem of radiation damage. PMID:20724787

  13. VINETA II: a linear magnetic reconnection experiment.

    PubMed

    Bohlin, H; Von Stechow, A; Rahbarnia, K; Grulke, O; Klinger, T

    2014-02-01

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors. PMID:24593355

  14. VINETA II: A linear magnetic reconnection experiment

    SciTech Connect

    Bohlin, H. Von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.

    2014-02-15

    A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

  15. Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Seedhouse, Steven J.; Hoffmann, Markus M.

    2008-01-01

    A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…

  16. Neutron diffraction study of MnNiGa{sub 2}—Structural and magnetic behaviour

    SciTech Connect

    Wang, J. L.; Ma, L.; Wu, G. H.; Hofmann, M.; Avdeev, M.; Kennedy, S. J.; Campbell, S. J.; Md Din, M. F.; Dou, S. X.; Hoelzel, M.

    2014-05-07

    MnNiGa{sub 2} crystallizes in the L21 (Heusler) structure and has a ferromagnetic ordering temperature T{sub C} ∼ 192 K. Rietveld refinement of the neutron diffraction patterns indicates that the Ga atoms occupy the equivalent 8c position, while Mn and Ni share the 4a (0, 0, 0) and 4b (0.5, 0.5, 0.5) sites with a mixed occupancy of Mn and Ni atoms. It is found that that ∼83% of Mn and ∼17% Ni are located at the 4a site while ∼83% of Ni and ∼17% Mn occupy the 4b site. There is no evidence of a magneto-volume effect around T{sub C}. In agreement with this finding, our detailed critical exponent analyses of isothermal magnetization curves and the related Arrott plots confirm that the magnetic phase transition at T{sub C} is second order.

  17. Observation of long-range magnetic ordering in pyrohafnate Nd2Hf2O7 : A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Bera, A. K.; Xu, J.; Herrmannsdörfer, T.; Ritter, C.; Lake, B.

    2015-11-01

    We have investigated the physical properties of a pyrochlore hafnate Nd2Hf2O7 using ac magnetic susceptibility χac(T ) , dc magnetic susceptibility χ (T ) , isothermal magnetization M (H ) , and heat capacity Cp(T ) measurements, and determined the magnetic ground state by neutron powder diffraction. An upturn is observed below 6 K in Cp(T ) /T , however both Cp(T ) and χ (T ) do not show any clear anomaly down to 2 K. The χac(T ) shows a well-pronounced anomaly indicating an antiferromagnetic transition at TN=0.55 K. The long-range antiferromagnetic ordering is confirmed by neutron diffraction. The refinement of the neutron diffraction pattern reveals an all-in/all-out antiferromagnetic structure, where for successive tetrahedra the four Nd3 + magnetic moments point alternatively all-into or all-out-of the tetrahedron, with an ordering wave vector k = (0, 0, 0) and an ordered state magnetic moment of m =0.62 (1 ) μB /Nd at 0.1 K. The ordered moment is strongly reduced, reflecting strong quantum fluctuations in ordered state.

  18. The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments

    SciTech Connect

    Brockhauser, Sandor; Ravelli, Raimond B. G.; McCarthy, Andrew A.

    2013-07-01

    Hardware and software solutions for MX data-collection strategies using the EMBL/ESRF miniaturized multi-axis goniometer head are presented. Most macromolecular crystallography (MX) diffraction experiments at synchrotrons use a single-axis goniometer. This markedly contrasts with small-molecule crystallography, in which the majority of the diffraction data are collected using multi-axis goniometers. A novel miniaturized κ-goniometer head, the MK3, has been developed to allow macromolecular crystals to be aligned. It is available on the majority of the structural biology beamlines at the ESRF, as well as elsewhere. In addition, the Strategy for the Alignment of Crystals (STAC) software package has been developed to facilitate the use of the MK3 and other similar devices. Use of the MK3 and STAC is streamlined by their incorporation into online analysis tools such as EDNA. The current use of STAC and MK3 on the MX beamlines at the ESRF is discussed. It is shown that the alignment of macromolecular crystals can result in improved diffraction data quality compared with data obtained from randomly aligned crystals.

  19. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto

    PubMed Central

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-01-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27 724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a = 74.3, b = 49.9, c = 56.3 Å, β = 95.2°. Diffraction images were processed to a resolution of 1.74 Å with an R merge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221

  20. Crossed Flux Tubes Magnetic Reconnection Experiment

    NASA Astrophysics Data System (ADS)

    Tobin, Zachary; Bellan, Paul

    2012-10-01

    The dynamics of arched, plasma-filled flux tubes have been studied in experiments at Caltech. These flux tubes expand, undergo kink instabilities, magnetically reconnect, and are subject to magnetohydrodynamic forces. An upgraded experiment will arrange for two of these flux tubes to cross over each other. It is expected then that the flux tubes will undergo magnetic reconnection at the crossover point, forming one long flux tube and one short flux tube. This reconnection should also result in a half-twist in the flux tubes at the crossover point, which will propagate along each tube as Alfv'en waves. The control circuitry requires two independent floating high energy capacitor power supplies to power the plasma loops, which will be put in series when the plasma loops reconnect. Coordinating these two power supplies requires the building of new systems for controlling plasma generation. Unlike with previous designs, all timing functions are contained on a single printed circuit board, allowing the design to be easily replicated for use with each independent capacitor involved. The control circuit sequencing has been tested successfully in generating a single flux tube. The plasma gun is currently under construction, with its installation pending completion of prior experiments.

  1. Magnetized laboratory plasma jets: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  2. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics. PMID:25679726

  3. The AMPTE CCE Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Potemra, T. A.; Zanetti, L. J.; Acuna, M. H.

    1985-01-01

    The Magnetic Field Experiment on the Active Magnetosheric Particle Tracer Explorer (AMPTE) Charge Composition Explorer (CCE) spacecraft consists of a triaxial fluxgate-magnetometer system containing sensors mounted on a 2.3-m two-link collapsible boom. It is pointed out that this instrument is similar to those flown on Voyager 1 and 2, and those scheduled to flight on the Giotto and Viking spacecraft. A description is provided of the sensor system and the analog electronics, and some preliminary data are presented.

  4. A facility for X-ray diffraction in magnetic fields up to 25 T and temperatures between 15 and 295 K

    NASA Astrophysics Data System (ADS)

    Wang, S.; Kovalev, A. E.; Suslov, A. V.; Siegrist, T.

    2015-12-01

    A facility for X-ray diffraction has been developed at the National High Magnetic Field Laboratory. It brings diffraction capability to the 25 T Florida split coil magnet and implements temperature control in a range of 15-295 K using a cold finger helium cryostat. This instrument represents an alternative to pulsed magnetic field systems, and it exceeds the static magnetic fields currently available at synchrotron facilities. Magnetic field compatibility of an X-ray source and detectors with the sizable magnetic fringe fields emanating from the magnet constrained the design of the diffractometer.

  5. A facility for X-ray diffraction in magnetic fields up to 25 T and temperatures between 15 and 295 K

    SciTech Connect

    Wang, S.; Kovalev, A. E. Suslov, A. V.; Siegrist, T.

    2015-12-15

    A facility for X-ray diffraction has been developed at the National High Magnetic Field Laboratory. It brings diffraction capability to the 25 T Florida split coil magnet and implements temperature control in a range of 15–295 K using a cold finger helium cryostat. This instrument represents an alternative to pulsed magnetic field systems, and it exceeds the static magnetic fields currently available at synchrotron facilities. Magnetic field compatibility of an X-ray source and detectors with the sizable magnetic fringe fields emanating from the magnet constrained the design of the diffractometer.

  6. Magnetic Field Experiment Data Analysis System

    NASA Technical Reports Server (NTRS)

    Holland, D. B.; Zanetti, L. J.; Suther, L. L.; Potemra, T. A.; Anderson, B. J.

    1995-01-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) Magnetic Field Experiment Data Analysis System (MFEDAS) has been developed to process and analyze satellite magnetic field experiment data from the TRIAD, MAGSAT, AMPTE/CCE, Viking, Polar BEAR, DMSP, HILAT, UARS, and Freja satellites. The MFEDAS provides extensive data management and analysis capabilities. The system is based on standard data structures and a standard user interface. The MFEDAS has two major elements: (1) a set of satellite unique telemetry processing programs for uniform and rapid conversion of the raw data to a standard format and (2) the program Magplot which has file handling, data analysis, and data display sections. This system is an example of software reuse, allowing new data sets and software extensions to be added in a cost effective and timely manner. Future additions to the system will include the addition of standard format file import routines, modification of the display routines to use a commercial graphics package based on X-Window protocols, and a generic utility for telemetry data access and conversion.

  7. Magnetic diagnostics for the lithium tokamak experiment.

    PubMed

    Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L

    2008-10-01

    The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions. PMID:19044600

  8. Magnetized plasma jets in experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  9. New Developments at the XMaS Beamline For Magnetic and High Resolution Diffraction

    SciTech Connect

    Thompson, P.B.J.; Bouchenoire, L.; Brown, S.D.; Mannix, D.; Paul, D.F.; Lucas, C.; Kervin, J.; Cooper, M.J.; Arakawa, P.; Laughon, G.

    2004-05-12

    We report here on a number of developments that include enhancements of the sample environment on the XMaS beamline and the flux available at low energy. A 4 Tesla superconducting magnet has been designed to fit within the Euler cradle of a six circle Huber diffractometer, allowing scattering in both horizontal and vertical planes. The geometry of the magnet allows the application of longitudinal, transverse horizontal, and vertical fields. A further conventional magnet ({approx} 0.1 T) to minimize air absorption at low energies ({approx} 3KeV) has been designed for two circle applications, such as reflectivity. A novel in-vacuum slit screen has been developed, also minimizing absorption at low energies. New equipment for performing in-situ studies of surfaces in the electrochemical environment has been developed to allow control of the solution and sample temperature over the region of -5C to 80C. Preliminary experiments on the surface reconstructions of Au(111) in an electrolyte have been performed, whilst commissioning at the same time a MAR CCD detector for the beamline.

  10. Magnetic structures and magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied by neutron powder diffraction

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Chatterji, Tapan; Kumar, C. M. N.; Hansen, Thomas; Nhalil, Hariharan; Elizabeth, Suja; Strydom, André M.

    2016-02-01

    The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at TN Fe / Mn ≈ 295 K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, TS R Fe / Mn ≈ 26 K where a spin-reorientation transition occurs in the Fe/Mn sublattice and TN R ≈ 2 K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe 0.5 Mn 0.5 O3 belongs to the irreducible representation Γ 4 ( G x A y F z or P b ' n ' m ). A mixed-domain structure of ( Γ 1 + Γ 4 ) is found at 250 K which remains stable down to the spin re-orientation transition at TS R Fe / Mn ≈ 26 K. Below 26 K and above 250 K, the majority phase ( > 80 % ) is that of Γ 4 . Below 10 K the high-temperature phase Γ 4 remains stable till 2 K. At 2 K, Tb develops a magnetic moment value of 0.6(2) μ B / f.u. and orders long-range in Fz compatible with the Γ 4 representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe 0.5 Mn 0.5 O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < TS R Fe / Mn . These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe 0.5 Mn 0.5 O3.

  11. Long-range magnetic ordering in Ba{sub 2}CoS{sub 3}: A neutron diffraction study

    SciTech Connect

    Headspith, D.A.; Battle, P.D.; Francesconi, M.G.

    2007-10-15

    Neutron powder diffraction has been used to determine the magnetic structure of the quasi-one-dimensional compound Ba{sub 2}CoS{sub 3}, which contains linear [001] chains of vertex-sharing CoS{sub 4} tetrahedra, spaced apart by Ba{sup 2+} cations. At 1.5 K the Co{sup 2+} cations in the chains are antiferromagnetically ordered with an ordered magnetic moment of 1.97(4) {mu}{sub B} per cation aligned along [100]. Each Co{sup 2+} cation is ferromagnetically aligned with four cation in neighbouring chains and antiferromagnetically aligned with two others. - Graphical abstract: Neutron powder diffraction has been used to prove that Ba{sub 2}CoS{sub 3} shows long-range antiferromagnetic order at low temperatures, despite the quasi-one-dimensional arrangement of the CoS{sub 4} tetrahedra in the crystal structure.

  12. Neutron diffraction study of the magnetic-field-induced transition in Mn{sub 3}GaC

    SciTech Connect

    Çakir, Ö.; Acet, M.; Farle, M.; Senyshyn, A.

    2014-01-28

    The antiperovskite Mn{sub 3}GaC undergoes an isostructural cubic–cubic first order transition from a low-temperature, large-cell-volume antiferromagnetic state to a high-temperature, small-cell-volume ferromagnetic state at around 160 K. The transition can also be induced by applying a magnetic field. We study here the isothermal magnetic-field-evolution of the transition as ferromagnetism is stabilized at the expense of antiferromagnetism. We make use of the presence of the two distinct cell volumes of the two magnetic states as a probe to observe by neutron diffraction the evolution of the transition, as the external magnetic field carries the system from the antiferromagnetic to the ferromagnetic state. We show that the large-volume antiferromagnetic and the small-volume ferromagnetic states coexist in the temperature range of the transition. The ferromagnetic state is progressively stabilized as the field increases.

  13. Single crystal neutron diffraction study of the magnetic structure of TmNi{sub 2}B{sub 2}C

    SciTech Connect

    Sternlieb, B.; Shapiro, S.; Stassis, C.; Goldman, A.I.; Canfield, P.

    1997-02-01

    Neutron diffraction techniques have been used to study the magnetic structure of single crystals of the magnetic superconductor (T{sub c} {congruent} 11K) TmNi{sub 2}B{sub 2}C. We find that below approximately 1.5K the magnetic moments order in an incommensurate spin wave with propagation vector q{sub m} = q{sub m} (a* +b*) (or q{sub m} = q{sub m} (a* + b*)) with q{sub m} = 0.094 {+-} 0.001. The spin wave is transverse with the moments aligned along the c-axis, and the observation of relatively intense higher order harmonics shows that the modulation is not purely sinusoidal but considerably squared. This incommensurate magnetic structure, which coexists with superconductivity below T{sub N} {congruent} 1.5K, is quite different from those observed in the magnetic superconductors HoNi{sub 2}B{sub 2}C and ErNi{sub 2}B{sub 2}C. The origin of diffraction peaks observed in scans parallel to a* is briefly discussed.

  14. Density Limits in Toroidal Magnetic Confinement Experiments

    NASA Astrophysics Data System (ADS)

    Greenwald, Martin

    2001-10-01

    The density limit represents one of the fundamental operating boundaries for magnetic confinement devices - one with practical importance to the goal of fusion power. With fusion reactivity maximized at a plasma temperature on the order of 10 keV and a reaction rate scaling as n^2, an optimum density can be calculated which is not guaranteed to be achievable in any given device. Unlike operational limits for plasma current or pressure, the density limit cannot be explained by magneto-hydrodynamics alone. There is general agreement that the proximate cause for the disruptive limit in the tokamak is cooling of the plasma edge and subsequent current profile shrinkage. The edge cooling may be dominated by atomic physics processes or as suggested in recent experiments, by anomalous transport. A similar picture is emerging for the reversed field pinch (RFP), while the limit in stellarators is apparently due to loss of thermal equilibrium from radiation. Empirical scaling laws in which the maximum plasma density is proportional to the average current density have been fairly successful in predicting the limit for subsequent experiments. Surprisingly, the density limits found in tokamaks and RFPs are virtually identical. Currentless stellarators reach similar density limits, though the expression needs to be recast in terms of the rotational transform. While scaling laws have done a reasonable job in describing data from many recent experiments, they can only give hints at the underlying physics. Understanding the mechanism for the density limit is crucial for extrapolating machine performance into untested regimes and so far, a completely satisfactory theory has not emerged. It seems likely that robust, reliable predictions will only come from the development of a first-principles theory backed up by detailed experimental observations. The extensive work already accomplished and reviewed here should provide a solid basis for such development.

  15. Magnetic field experiment on the Freja Satellite

    NASA Astrophysics Data System (ADS)

    Freja Magnetic Field Experiment Team

    1994-11-01

    Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600×1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth, language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth's magnetic field taken at 128 vector samples s-1 and digitized to 16 bit, resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis ‘AC’ channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (˜40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (˜160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users

  16. Measurement of the total cross-section and soft diffraction by the ATLAS and TOTEM experiments at the LHC

    NASA Astrophysics Data System (ADS)

    Grafstrom, Per

    2015-02-01

    This paper reviews measurements of the total proton-proton cross-section at 7 TeV and 8 TeV by the ATLAS and TOTEM collaboration at the LHC. Similarities and differences between the two experiments are discussed. Some results on soft diffraction are also reviewed. The paper ends with a discussion of prospects and future plans of both experiments.

  17. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  18. A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo2V2O8

    NASA Astrophysics Data System (ADS)

    Juan-Juan, Liu; Jin-Chen, Wang; Wei, Luo; Jie-Ming, Sheng; Zhang-Zhen, He; A. Danilkin, S.; Wei, Bao

    2016-03-01

    The magnetic structure of the spin-chain antiferromagnet SrCo2V2O8 is determined by single-crystal neutron diffraction experiment. The system undergoes magnetic long range order below T_N = 4.96 K. The moment of 2.16{\\mu}_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c-axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the 4-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo2V2O8 warrants SrCo2V2O8 another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism.

  19. Magnetic order of multiferroic ErMn2O5 studied by resonant soft x-ray Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Staub, U.; Bodenthin, Y.; García-Fernández, M.; de Souza, R. A.; Garganourakis, M.; Golovenchits, E. I.; Sanina, V. A.; Lushnikov, S. G.

    2010-04-01

    Resonant magnetic soft x-ray diffraction is used to study the magnetic order of the Mn sublattices in multiferroic ErMn2O5 . Data were collected at the MnL2,3 edges as a function of temperature, incident polarization, including the analysis of scattered polarizations for selected azimuths. The energy dependence of the magnetic reflections depends on the azimuthal angle in the commensurate magnetic (CM) ferroelectric (FE) phase, indicating different contributions to the scattering. In the incommensurate magnetic [two-dimensional (2D)-ICM] phase, the two observed reflections ( 1/2±δx 0 1/4+δz ) have distinct energy dependences too. Different origins of these differences in spectral shape are discussed. The azimuthal angle dependence at the L3 edge can only be qualitatively described by a generalized magnetic model. The observed discrepancies may indicate the importance of magnetoelectric multipole scattering to these reflections. Reciprocal mesh scans show diffuse scattering along q and perpendicular to q as well as along the ( h 0 0) direction in the CM phase. Diffuse scattering is also observed along ( h 0 0) in the one-dimensional-ICM phase. At higher temperatures, in the 2D-ICM phase, the diffuse magnetic scattering is almost isotropic.

  20. Design and experiments of combined diffractive optical element for virtual displays and indicators

    NASA Astrophysics Data System (ADS)

    Odinokov, Sergey B.; Ruchkina, Maria A.; Sagatelyan, Gaik R.; Solomashenko, Artem B.; Zherdev, Alexander Y.

    2015-05-01

    Combined diffractive optical elements, which perform the functions of deflection, focusing or transformation of wave fronts and together with the spectral-angular selection of the incident polychromatic radiation, obtained on a single substrate, the method of their design and fabrication are described. The combination of four-level diffraction grating with plasmon meander diffraction grating as a spectral filter that have a bandwidth that varies with the angle of incidence are investigated for use in virtual displays and indicators.

  1. Structural and magnetic behavior of the cubic oxyfluoride SrFeO{sub 2}F studied by neutron diffraction

    SciTech Connect

    Thompson, Corey M.; Blakely, Colin K.; Flacau, Roxana; Greedan, John E.; Poltavets, Viktor V.

    2014-11-15

    The oxyfluoride SrFeO{sub 2}F has been prepared via a low temperature route involving the infinite-layer SrFeO{sub 2} and XeF{sub 2}. SrFeO{sub 2}F crystallizes in the cubic space group Pm-3m with disordered oxygen and fluorine atoms on the anion site. Recent reports demonstrated that SrFeO{sub 2}F is antiferromagnetic at room temperature and the zero field cooled and field cooled curves diverge at ∼150 K and ∼60 K, suggesting that the material has a spin glassy magnetic state at low temperatures. In this article, variable-temperature neutron diffraction (4–723 K) was performed to clarify the magnetic behavior observed in this material. Neutron powder diffraction measurements confirmed the antiferromagnetic (AFM) ordering of the system at room temperature. Below 710(1) K, the magnetic structure is a G-type AFM structure characterized by a propagation vector k=(1/2 , 1/2 , 1/2 ). The ordered moments on Fe{sup 3+} are 4.35(6)µ{sub B} at 4 K and 4.04(5)µ{sub B} at 290 K. Our results indicate that the cubic structure is retained all the way to base temperature (4 K) in contrast to PbFeO{sub 2}F. These results are compared with those of Pb and Ba analogs which exhibit very similar magnetic behavior. Furthermore, the observation of magnetic reflections at 4 K in the diffraction pattern shows the absence of the previously proposed spin glassy behavior at low temperatures. Previous proposals to explain the ZFC/FC divergences are examined. - Graphical abstract: Variable temperature powder neutron diffraction was employed to follow the evolution of the long range antiferromagnetic state in SrFeO{sub 2}F. - Highlights: • SrFeO{sub 2}F prepared via low temperature route involving SrFeO{sub 2} and XeF{sub 2}. • The cubic structure, Pm-3m, is retained at low temperatures, 4 K. • The magnetic structure is G-type AFM with T{sub N}=710 K and Fe{sup 3+} moment of 4.35µ{sub B}. • A small volume, bulk decoupled, spin glassy domain/cluster mechanism is proposed.

  2. Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.

    PubMed

    Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue

    2016-03-14

    We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3 ]⋅H2 O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. PMID:26890339

  3. Remote Teaching Experiments on Magnetic Domains in Thin Films

    ERIC Educational Resources Information Center

    Dobrogowski, W.; Maziewski, A.; Zablotskii, V.

    2007-01-01

    We describe our experience in building a remote laboratory for teaching magnetic domains. Fulfilling the proposed on-line experiments, students can observe and study magnetization processes that are often difficult to explain with written material. It is proposed that networks of remotely accessible laboratories could be integrated in the Global…

  4. Plants and Magnetism: Experiments with Biomagnetism

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1972-01-01

    Phenomenon of effect of magnetic field on plant growth provides wide opportunities for research in classrooms. Using moderately powerful magnets, seed growth patterns can be observed in pre-germination treatment, germination period exposure and under many other conditions. Such research may enable understanding magnetotropism more clearly. (PS)

  5. Elucidating High Field Phases of the Multiferroic MnWO4 with a Pulsed Magnetic Field and Time of Flight Neutron Laue Diffraction

    SciTech Connect

    Nojiri, H; Yoshii, Shunsuke; Yasui, Motoyoshi; Okada, Kyoko; Matsuda, M.; Santodonato, Louis J; Granroth, Garrett E; Ross, Kathyrn; Carlo, Jeremy P; Gaulin, Bruce D.

    2011-01-01

    We have combined time-of-flight neutron Laue diffraction and pulsed high magnetic fields at the Spallation Neutron Source to study the phase diagram of the multiferroic material MnWO4. The control of the field-pulse timing enabled an exploration of magnetic Bragg scattering through the time dependence of both the neutron wavelength and the pulsed magnetic field. This allowed us to observe several magnetic Bragg peaks in different field-induced phases of MnWO4 with a single instrument configuration. These phases were not previously amenable to neutron diffraction studies due to the large fields involved.

  6. Neutron diffraction and electrical transport studies on the incommensurate magnetic phase transition in holmium at high pressures

    SciTech Connect

    Thomas, Sarah; Uhoya, Walter; Tsoi, Georgiy; Wenger, Lowell E; Vohra, Yogesh; Chesnut, Gary Neal; Weir, S. T.; Tulk, Christopher A; Moreira Dos Santos, Antonio F

    2012-01-01

    Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Neel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.

  7. Magnetization, magnetoresistance, and x-ray diffraction measurements of discontinuous [Ni80Fe20/Ag] multilayers (abstract)

    NASA Astrophysics Data System (ADS)

    Lorenz, T.; Moske, M.; Käufler, A.; Geisler, H.; Samwer, K.

    1996-04-01

    Thin films for magnetic sensor application require a high sensitivity at low magnetic fields, for example, realized by Permalloy films. Promising candidates for a further improvement are discontinuous multilayers, first reported by Hylton et al. In our study, we report on [2.5 nm Ni80Fe20/y nm Ag] multilayers with the spacer layer thickness y ranging from 1.2 nm to 6.0 nm. The multilayers were electron beam deposited in UHV at different temperatures. The substrates used are thermally oxidized silicon wafers. The magnetization is obtained using a vibrating sample magnetometer (VSM), the magnetoresistance is measured at room temperature with the Montgomery method. Low and high angle x-ray diffraction measurements are performed in a Siemens D-5000 diffractometer. The samples are annealed ex situ between room temperature and 340 °C. The magnetoresistance is maximal after annealing the samples at a specific temperature, which decreases with increasing Ag-spacer thickness y. Moreover, the GMR decreases if the multilayers are deposited at elevated temperatures (100-200 °C). We also report on the dependence of the GMR on the interface roughness (σ≊0.5 nm rms) which we deduce from the small angle x-ray diffraction measurements. For a characterization of the reliability, we also investigated the dependence of the GMR on aging at 100 °C for several hours.

  8. The magnetic properties experiments on Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Madsen, M. B.; Hviid, S. F.; Gunnlaugsson, H. P.; Knudsen, J. M.; Goetz, W.; Pedersen, C. T.; Dinesen, A. R.; Mogensen, C. T.; Olsen, M.; Hargraves, R. B.

    1999-04-01

    The Mars Pathfinder lander carried two magnet arrays, each containing five small permanent magnets of varying strength. The magnet arrays were passively exposed to the wind borne dust on Mars. By the end of the Mars Pathfinder mission a bull's-eye pattern was visible on the four strongest magnets of the arrays showing the presence of magnetic dust particles. From the images we conclude that the dust suspended in the atmosphere is not solely single phase particles of hematite (α-Fe2O3) and that single phase particles of the ferrimagnetic minerals maghemite (γ-Fe2O3) or magnetite (Fe3O4) are not present as free particles in any appreciable amount. The material on the strongest magnets seems to be indistinguishable from the bright surface material around the lander. From X-ray fluorescence it is known that the soil consists mainly of silicates. The element iron constitutes about 13% of the soil. The particles in the airborne dust seem to be composite, containing a few percent of a strongly magnetic component. We conclude that the magnetic phase present in the airborne dust particles is most likely maghemite. The particles thus appear to consist of silicate aggregates stained or cemented by ferric oxides, some of the stain and cement being maghemite. These results imply that Fe2+ ions were leached from the bedrock, and after passing through a state as free Fe2+ ions in liquid water, the Fe2+ was oxidized to Fe3+ and then precipitated. It cannot, however, be ruled out that the magnetic particles are titanomagnetite (or titanomaghemite) occurring in palagonite, having been inherited directly from the bedrock.

  9. Turbulence reduces magnetic diffusivity in DTS liquid sodium experiment

    NASA Astrophysics Data System (ADS)

    Cabanes, S.; Schaeffer, N.; Nataf, H. C.

    2014-12-01

    Earth, Sun and many other astrophysical bodies produce their own magnetic field by dynamo action, where induction of magnetic field by fluid motion overcomes the Joule dissipation when the magnetic Reynolds number Rm = UL/η is large enough (U and L are characteristic velocity and length-scale and η the magnetic diffusivity). Large scale motion of a conducting medium shearing pre-existing magnetic field lines is a well known process to produce large scale magnetic field by omega-effect. However, such a process cannot sustain a self-excited dynamo and small-scale turbulent motions are usually invoked as the appropriate mechanism to dynamo action. The contribution of turbulent fluctuations to the induction of mean magnetic field is investigated in our liquid sodium spherical Couette experiment, with an imposed magnetic field. Many measurements are used through an inversion technique to obtain a radial profile of alpha and beta effects together with the mean flow at magnetic Reynolds number Rm = 100. It appears that the small scale turbulent fluctuations can be modeled as a strong contribution to the magnetic diffusivity which is negative in the interior region and positive close to the outer shell.Direct numerical simulations of our experiment support these results. The lowering of the effective magnetic diffusivity by small scale fluctuations implies that turbulence can actually help to achieve self-generation of large scale magnetic fields.

  10. Turbulence Reduces Magnetic Diffusivity in DTS Liquid Sodium Experiment

    NASA Astrophysics Data System (ADS)

    Cabanes, Simon; Nataf, Henri-Claude; Schaeffer, Nathanael

    2015-04-01

    Earth, Sun and many other astrophysical bodies produce their own magnetic field by dynamo action, where induction of magnetic field by fluid motion overcomes the Joule dissipation when the magnetic Reynolds number Rm = UL/η is large enough (U and L are characteristic velocity and length-scale and η the magnetic diffusivity). Large scale motion of a conducting medium shearing pre-existing magnetic field lines is a well known process to produce large scale magnetic field by omega-effect. However, such a process cannot sustain a self-excited dynamo and small-scale turbulent motions are usually invoked as the appropriate mechanism to dynamo action. The contribution of turbulent fluctuations to the induction of mean magnetic field is investigated in our liquid sodium spherical Couette experiment, with an imposed magnetic field. Many measurements are used through an inversion technique to obtain a radial profile of α and β effects together with the mean flow at magnetic Reynolds number Rm = 100. It appears that the small scale turbulent fluctuations can be modeled as a strong contribution to the magnetic diffusivity which is negative in the interior region and positive close to the outer shell.Direct numerical simulations of our experiment support these results. The lowering of the effective magnetic diffusivity by small scale fluctuations implies that turbulence can actually help to achieve self-generation of large scale magnetic fields.

  11. Structural phase transition and magnetism in hexagonal SrMnO{sub 3} by magnetization measurements and by electron, x-ray, and neutron diffraction studies

    SciTech Connect

    Daoud-Aladine, A.; Chapon, L. C.; Knight, K. S.; Martin, C.; Hervieu, M.; Brunelli, M.; Radaelli, P. G.

    2007-03-01

    The structural and magnetic properties of the hexagonal four-layer form of SrMnO{sub 3} have been investigated by combining magnetization measurements, electron diffraction, and high-resolution synchrotron x-ray and neutron powder diffraction. Below 350 K, there is subtle structural phase transition from hexagonal symmetry (space group P6{sub 3}/mmc) to orthorhombic symmetry (space group C222{sub 1}) where the hexagonal metric is preserved. The second-order phase transition involves a slight tilting of the corner-sharing Mn{sub 2}O{sub 9} units composed of two face-sharing MnO{sub 6} octahedra and the associated displacement of Sr{sup 2+} cations. The phase transition is described in terms of symmetry-adapted displacement modes of the high symmetry phase. Upon further cooling, long range magnetic order with propagation vector k=(0,0,0) sets in below 300 K. The antiferromagnetic structure, analyzed using representation theory, shows a considerably reduced magnetic moment indicating the crucial role played by direct exchange between Mn centers of the Mn{sub 2}O{sub 9} units.

  12. Experience with the SLC permanent magnet multipoles

    SciTech Connect

    Gross, G.; Spencer, J.

    1994-06-01

    Permanent magnets have been used in the SLC Damping Rings and their injection and extraction lines since 1985. Recent upgrades of the DR vacuum chambers provided an opportunity to check DR magnets prior to higher beam current operation. Several PM sextupoles downstream of the injection kickers in the electron ring had exceeded their thermal stabilization values of 80{degrees}C and some showed serious mechanical deformations and radiation >1 R at contact. We discuss our observations, measurements and a few inexpensive modifications that should improve these magnets under such conditions. A new, block matching algorithm allowed us to use magnet blocks that had been considered unusable because of very different remament field strengths and easy axis errors.

  13. Neutron-Diffraction Evidence for the Ferrimagnetic Ground State of a Molecule-Based Magnet with Weakly Coupled Sublattices

    SciTech Connect

    Fishman, Randy Scott; Campo, Javier; Vos, Thomas E.; Miller, Joel S.

    2012-01-01

    The diruthenium compound [Ru2(O2CMe)4]3[Cr(CN)6] contains two weakly coupled, ferrimag- netically ordered sublattices occupying the same volume. The magnetic field Hc 800 Oe required to align the two sublattice moments is proportional to the antiferromagnetic dipolar interaction Kc B Hc 5 10 3 meV between sublattices. Powder neutron-diffraction measurements on a deuterated sample reveal that the sublattice moments are restricted by the anisotropy of the diruthenium paddle-wheel complexes to the cubic diagonals. Those measurements also suggest that the quantum corrections to the ground state are significant.

  14. Prospective of ultradispersic magnetic particles in biological experiments in microgravity

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Malashin, S.

    All organisms on Earth use gravity for their lifecycles. Microgravity disturbs the lifecycles significantly: orientation ability is damaged, thermo and mass exchange processes are changed, adaptation mechanisms are destroyed. A recovering the normal life cycle of organism in future long-term mission requires an artificial gravity which is complicate and not realistic with present technologies. We propose to use a magnetic properties of the biological objects for recovering of the gravity-dependent biological processes in organism during space flight. Based on result of magnetic properties investigation in gravity-sensitive plant cells, we have prepared and carried out the experiments on space station MIR. For the experiments, Magnitogravistat device was designed and installed on the station. The aim of the experiment was to replace a gravity factor of plant with a magnetic factor. The magnetic effect is based on the fact, that a magnetic particle of V volume is under the force F=ΔæVHgradH in the magnetic gradient gradH, where Δæ is the difference between the magnetic susceptibility of particle and media. When the particles are placed into the cell, the cell can be managed by the magnetic field. In laboratory experiment the iron-carbon particles of 1-2 um with nanostructurised surface and high adsorption properties have been used. The particles can be suspended in water and adsorbed chemicals including cell metabolites. In strong magnetic field, the particles can be agglomerated and the liquid substrate can be replaced. The local magnetic field near the particles can influence on cell processes. The magnetic field causes a cell differentiation and can influence on cell proliferation. A new space experiment with magnetic particles is planned to get a knowledge on cell influence and to improve a cell metabolism.

  15. EM induction experiment to determine the moment of a magnet

    NASA Astrophysics Data System (ADS)

    Najiya Maryam, K. M.

    2014-05-01

    If we drop a magnet through a coil, an emf is induced in the coil according to Faraday’s law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets. Mathematical expressions are derived for both. Knowing this equation, experiments to calculate the moment of a magnet can be devised. If we use a long conducting tube instead of a simple coil in this experiment, it can even help in measuring the eddy current damping coefficient k.

  16. Characterization of thin-film multilayers using magnetization curves and modeling of low-angle X-ray diffraction data

    SciTech Connect

    Lane, M.; Chaiken, A.; Michel, R.P.

    1994-12-01

    We have characterized thin-film multilayers grown by ion-beam sputtering using magnetization curves and modeling of low-angle x-ray diffraction data. In our films, we use ferromagnetic layer = Co, Fe, and NiFe and spacer layer = Si, Ge, FeSi{sub 2}, and CoSi{sub 2}. We have studied the effects of (1) deposition conditions; (2) thickness of layers; (3) different layer materials; and (4) annealing. We find higher magnetization in films grown at 1000V rather than 500V and in films with spacer layers of 50{angstrom} rather than 100{angstrom}. We find higher coercivity in films with cobalt grown on germanium rather than silicon, metal grown on gold underlayers rather than on glass substrates, and when using thinner spacer layers. Finally, modeling reveals that films grown with disilicide layers are more thermally stable than films grown with silicon spacer layers.

  17. Status of Magnetic Nozzle and Plasma Detachment Experiment

    SciTech Connect

    Chavers, D. Gregory; Dobson, Chris; Jones, Jonathan; Lee, Michael; Martin, Adam; Gregory, Judith; Cecil, Jim; Bengtson, Roger D.; Breizman, Boris; Arefiev, Alexey; Chang-Diaz, Franklin; Squire, Jared; Glover, Tim; McCaskill, Greg; Cassibry, Jason; Li Zhongmin

    2006-01-20

    High power plasma propulsion can move large payloads for orbit transfer, lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue if the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment is being performed to test the theory regarding the MHD detachment scenario. The status of that experiment will be discussed in this paper.

  18. Electronically- and crystal-structure-driven magnetic structures and physical properties of RScSb (R = rare earth) compounds. A neutron diffraction, magnetization and heat capacity study

    SciTech Connect

    Ritter, C; Dhar, S K; Kulkarni, R; Provino, A; Paudyal, Durga; Manfrinetti, Pietro; Gschneidner, Karl A

    2014-08-14

    The synthesis of the new equiatomic RScSb ( R = La-Nd, Sm, Gd-Tm, Lu, Y) compounds has been recently reported. These rare earth compounds crystallize in two different crystal structures, adopting the CeScSi-type ( I 4/ mmm) for the lighter R (La-Nd, Sm) and the CeFeSi-type (P4 /nmm) structure for the heavier R ( R = Gd-Tm, Lu, Y). Here we report the results of neutron diffraction, magnetization and heat capacity measurements on some of these compounds ( R = Ce, Pr, Nd, Gd and Tb). Band structure calculations have also been performed on CeScSb and GdScGe (CeScSi-type), and on GdScSb and TbScSb (CeFeSi-type) to compare and understand the exchange interactions in CeScSi and CeFeSi structure types. The neutron diffraction investigation shows that all five compounds order magnetically, with the highest transition temperature of 66 K in TbScSb and the lowest of about 9 K in CeScSb. The magnetic ground state is simple ferromagnetic (τ = [0 0 0]) in CeScSb, as well in NdScSb for 32 >T > 22 K. Below 22 K a second magnetic transition, with propagation vector τ = [¼ ¼ 0], appears in NdScSb. PrScSb has a magnetic structure within, determined by mostly ferromagnetic interactions and antiferromagnetic alignment of the Pr-sites connected through the I-centering ( τ = [1 0 0]). A cycloidal spiral structure with a temperature dependent propagation vector τ = [δ δ ½] is found in TbScSb. The results of magnetization and heat capacity lend support to the main conclusions derived from neutron diffraction. As inferred from a sharp peak in magnetization, GdScSb orders antiferromagnetically at 56 K. First principles calculations show lateral shift of spin split bands towards lower energy from the Fermi level as the CeScSi-type structure changes to the CeFeSi-type structure. This rigid shift may force the system to transform from exchange split ferromagnetic state to the antiferromagnetic state in RScSb compounds (as seen for example in GdScSb and TbScSb) and is proposed to

  19. The Influence Of Magnetic Field On The Diffraction Efficiency Of Holograms In Resonant Media

    NASA Astrophysics Data System (ADS)

    Rubanov, A. S.; Onoshko, R. N.; Kholodok, M. R.

    1990-04-01

    The influence of magnetic field on the wave-front conjugation at degenerate four-wave mixing in resonant-absorbing atomic iodine va-pors has been studied theoretically. It is shown that depending on the magnitude and direction of the magnetic field, interacting waves pola-rization, as well as on the interaction length and intensity of pump waves, the conjugation efficiency can both increase and decrease. The greatest increase in the wave-front conjugation efficiency of radia-tion with a frequency corresponding to the line centre F =4- r =3 is attained in a transverse magnetic field with the interacting waves polarization orthogonal to the field.

  20. Simple Experiments on Magnetism and Electricity...from Edison.

    ERIC Educational Resources Information Center

    Schultz, Robert F.

    Background information, lists of materials needed and procedures used are provided for 16 simple experiments on electricity and magnetism. These experiments are organized into sections dealing with: (1) Edison's carbon experiments (building a galvanometer, investigating the variable conductivity of carbon, and examining the carbon transmitter…

  1. Planning and Developing Magnet Schools: Experiences and Observations.

    ERIC Educational Resources Information Center

    Blank, Rolf K., Ed.; Messier, Paul R., Ed.

    This document consists of nine papers which discuss the planning and design, implementation and maintenance, and evaluation of magnet schools. They are based on practical experience with magnet schools, which first appeared in the early 1970s. By 1982, the movement had grown to include more than 1,200 schools in 140 urban school districts, and the…

  2. Experiments with a Magnetically Controlled Pendulum

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    A magnetically controlled pendulum is used for observing free and forced oscillations, including nonlinear oscillations and chaotic motion. A data-acquisition system stores the data and displays time series of the oscillations and related phase plane plots, Poincare maps, Fourier spectra and histograms. The decay constant of the pendulum can be…

  3. Experiences with making diffraction image data available: what metadata do we need to archive?

    SciTech Connect

    Kroon-Batenburg, Loes M. J.; Helliwell, John R.

    2014-10-01

    A local raw ‘diffraction data images’ archive was made available and some data sets were retrieved and reprocessed, which led to analysis of the anomalous difference densities of two partially occupied Cl atoms in cisplatin as well as a re-evaluation of the resolution cutoff in these diffraction data. General questions on storing raw data are discussed. It is also demonstrated that often one needs unambiguous prior knowledge to read the (binary) detector format and the setup of goniometer geometries. Recently, the IUCr (International Union of Crystallography) initiated the formation of a Diffraction Data Deposition Working Group with the aim of developing standards for the representation of raw diffraction data associated with the publication of structural papers. Archiving of raw data serves several goals: to improve the record of science, to verify the reproducibility and to allow detailed checks of scientific data, safeguarding against fraud and to allow reanalysis with future improved techniques. A means of studying this issue is to submit exemplar publications with associated raw data and metadata. In a recent study of the binding of cisplatin and carboplatin to histidine in lysozyme crystals under several conditions, the possible effects of the equipment and X-ray diffraction data-processing software on the occupancies and B factors of the bound Pt compounds were compared. Initially, 35.3 GB of data were transferred from Manchester to Utrecht to be processed with EVAL. A detailed description and discussion of the availability of metadata was published in a paper that was linked to a local raw data archive at Utrecht University and also mirrored at the TARDIS raw diffraction data archive in Australia. By making these raw diffraction data sets available with the article, it is possible for the diffraction community to make their own evaluation. This led to one of the authors of XDS (K. Diederichs) to re-integrate the data from crystals that supposedly

  4. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Brown, J.; Adroja, D. T.; Manuel, P.; Kouzmenko, G.; Bewley, R. I.; Wotherspoon, R.

    2012-12-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  5. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load. PMID:27577782

  6. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  7. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments.

    PubMed

    Sano-Furukawa, A; Hattori, T; Arima, H; Yamada, A; Tabata, S; Kondo, M; Nakamura, A; Kagi, H; Yagi, T

    2014-11-01

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm(3). Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures. PMID:25430122

  8. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    SciTech Connect

    Sano-Furukawa, A. Hattori, T.; Arima, H.; Yamada, A.; Tabata, S.; Kondo, M.; Nakamura, A.; Kagi, H.; Yagi, T.

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  9. Formation of porous gas hydrates: Diffraction experiments and multi-stage model

    NASA Astrophysics Data System (ADS)

    Staykova, D. K.; Genov, G.; Goreshnik, E.; Salamatin, A. N.; Kuhs, W. F.

    2003-04-01

    Laboratory-grown gas hydrates were examined by cryo scanning electron microscopy and found to have a sub-micron porous structure. This microstructure is undistinguishable from the one observed in natural gas hydrates suggesting similar formation processes. In-situ observations of the formation of synthetic porous methane and carbon dioxide hydrates starting from ice Ih powders with known surfaces areas were made using time-resolved neutron diffraction on the high-flux diffractometer D20 (ILL, Grenoble) at different pressures and temperatures. Some runs were also made going through the ice melting point into liquid water. At similar reduced fugacities, the reaction of carbon dioxide was distinctly faster than that of methane. The transient formation of carbon dioxide hydrate crystal structure II was observed in coexistence with the usual type-I hydrate reaching a maximum of 5% after 5 h of the reaction at 272 K. At lower temperatures a temporary inhibition of formation was observed in the case of carbon dioxide. The rate of methane hydrate growth showed little pressure sensitivity in our experiments at low temperatures ~230 K in contrast to the situation at higher temperatures. A phenomenological model for the kinetics of the gas hydrate formation from ice powders is developed with special account of sample consolidation effects. It describes the initial stage (I) of hydrate film spreading over the ice surface and the two subsequent stages which are limited (II) by the clathration reaction at the ice-hydrate interface and (III) by the gas and water transport (diffusion) through the hydrate shells surrounding the shrinking ice cores. Comparable activation energies of the CH4-hydrate formation are found in deuterated and hydrogenated systems for the reaction-limited process (stage II) to be 8.1 and 9.5 kcal/mol, respectively. In the case of a diffusion-limited clathration (stage III) the activation energy can be estimated as 14.3 kcal/mol. The relevance of our

  10. The PVLAS experiment: detecting vacuum magnetic birefringence

    NASA Astrophysics Data System (ADS)

    Zavattini, G.; Della Valle, F.; Gastaldi, U.; Messineo, G.; Milotti, E.; Pengo, R.; Piemontese, L.; Ruoso, G.

    2013-06-01

    The PVLAS collaboration is presently assembling a new apparatus to detect vacuum magnetic birefringence. This property is related to the structure of the QED vacuum and is predicted by the Euler-Heisenberg-Weisskopf effective Lagrangian. It can be detected by measuring the ellipticity acquired by a linearly polarised light beam propagating through a strong magnetic field. Here we report results of a scaled-down test setup and briefly describe the new PVLAS apparatus. This latter one is in construction and is based on a high-sensitivity ellipsometer with a high-finesse Fabry-Perot cavity (> 4×105) and two 0.8 m long 2.5 T rotating permanent dipole magnets. Measurements with the test setup have improved by a factor 2 the previous upper bound on the parameter Ae, which determines the strength of the nonlinear terms in the QED Lagrangian: Ae(PVLAS) < 3.3 × 10-21 T-2 95% c.l.

  11. Crystallization of porcine pancreatic elastase and a preliminary neutron diffraction experiment

    SciTech Connect

    Kinoshita, Takayoshi; Tamada, Taro; Imai, Keisuke; Kurihara, Kazuo; Ohhara, Takashi; Tada, Toshiji; Kuroki, Ryota

    2007-04-01

    To investigate the structural characteristics of a covalent inhibitor bound to porcine pancreatic elastase (PPE), including H atoms and hydration by water, a crystal of porcine pancreatic elastase with its inhibitor was grown to a size of 1.6 mm{sup 3} for neutron diffraction study. The crystal diffracted to 2.3 Å resolution with sufficient quality for further structure determination owing to the similar atomic scattering properties of deuterium and carbon. Porcine pancreatic elastase (PPE) resembles the attractive drug target leukocyte elastase, which has been implicated in a number of inflammatory disorders. In order to investigate the structural characteristics of a covalent inhibitor bound to PPE, including H atoms and the hydration by water, a single crystal of PPE for neutron diffraction study was grown in D{sub 2}O containing 0.2 M sodium sulfate (pD 5.0) using the sitting-drop vapour-diffusion method. The crystal was grown to a size of 1.6 mm{sup 3} by repeated macroseeding. Neutron diffraction data were collected at room temperature using a BIX-3 diffractometer at the JRR-3 research reactor of the Japan Atomic Energy Agency (JAEA). The data set was integrated and scaled to 2.3 Å resolution in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 51.2, b = 57.8, c = 75.6 Å.

  12. How Rosalind Franklin Discovered the Helical Structure of DNA: Experiments in Diffraction

    ERIC Educational Resources Information Center

    Braun, Gregory; Tierney, Dennis; Schmitzer, Heidrun

    2011-01-01

    Rosalind Franklin, a chemical physicist (1920-1958), used x-ray diffraction to determine the structure of DNA. What exactly could she read out from her x-ray pattern, shown in Fig. 1? In lecture notes dated November 1951, R. Franklin wrote the following: "The results suggest a helical structure (which must be very closely packed) containing 2, 3…

  13. Experiences with making diffraction image data available: what metadata do we need to archive?

    PubMed

    Kroon-Batenburg, Loes M J; Helliwell, John R

    2014-10-01

    Recently, the IUCr (International Union of Crystallography) initiated the formation of a Diffraction Data Deposition Working Group with the aim of developing standards for the representation of raw diffraction data associated with the publication of structural papers. Archiving of raw data serves several goals: to improve the record of science, to verify the reproducibility and to allow detailed checks of scientific data, safeguarding against fraud and to allow reanalysis with future improved techniques. A means of studying this issue is to submit exemplar publications with associated raw data and metadata. In a recent study of the binding of cisplatin and carboplatin to histidine in lysozyme crystals under several conditions, the possible effects of the equipment and X-ray diffraction data-processing software on the occupancies and B factors of the bound Pt compounds were compared. Initially, 35.3 GB of data were transferred from Manchester to Utrecht to be processed with EVAL. A detailed description and discussion of the availability of metadata was published in a paper that was linked to a local raw data archive at Utrecht University and also mirrored at the TARDIS raw diffraction data archive in Australia. By making these raw diffraction data sets available with the article, it is possible for the diffraction community to make their own evaluation. This led to one of the authors of XDS (K. Diederichs) to re-integrate the data from crystals that supposedly solely contained bound carboplatin, resulting in the analysis of partially occupied chlorine anomalous electron densities near the Pt-binding sites and the use of several criteria to more carefully assess the diffraction resolution limit. General arguments for archiving raw data, the possibilities of doing so and the requirement of resources are discussed. The problems associated with a partially unknown experimental setup, which preferably should be available as metadata, is discussed. Current thoughts on

  14. Experiences with making diffraction image data available: what metadata do we need to archive?

    PubMed Central

    Kroon-Batenburg, Loes M. J.; Helliwell, John R.

    2014-01-01

    Recently, the IUCr (International Union of Crystallography) initiated the formation of a Diffraction Data Deposition Working Group with the aim of developing standards for the representation of raw diffraction data associated with the publication of structural papers. Archiving of raw data serves several goals: to improve the record of science, to verify the reproducibility and to allow detailed checks of scientific data, safeguarding against fraud and to allow reanalysis with future improved techniques. A means of studying this issue is to submit exemplar publications with associated raw data and metadata. In a recent study of the binding of cisplatin and carboplatin to histidine in lysozyme crystals under several conditions, the possible effects of the equipment and X-ray diffraction data-processing software on the occupancies and B factors of the bound Pt compounds were compared. Initially, 35.3 GB of data were transferred from Manchester to Utrecht to be processed with EVAL. A detailed description and discussion of the availability of metadata was published in a paper that was linked to a local raw data archive at Utrecht University and also mirrored at the TARDIS raw diffraction data archive in Australia. By making these raw diffraction data sets available with the article, it is possible for the diffraction community to make their own evaluation. This led to one of the authors of XDS (K. Diederichs) to re-integrate the data from crystals that supposedly solely contained bound carboplatin, resulting in the analysis of partially occupied chlorine anomalous electron densities near the Pt-binding sites and the use of several criteria to more carefully assess the diffraction resolution limit. General arguments for archiving raw data, the possibilities of doing so and the requirement of resources are discussed. The problems associated with a partially unknown experimental setup, which preferably should be available as metadata, is discussed. Current thoughts on

  15. Modeling HEDLA magnetic field generation experiments on laser facilities

    NASA Astrophysics Data System (ADS)

    Fatenejad, M.; Bell, A. R.; Benuzzi-Mounaix, A.; Crowston, R.; Drake, R. P.; Flocke, N.; Gregori, G.; Koenig, M.; Krauland, C.; Lamb, D.; Lee, D.; Marques, J. R.; Meinecke, J.; Miniati, F.; Murphy, C. D.; Park, H.-S.; Pelka, A.; Ravasio, A.; Remington, B.; Reville, B.; Scopatz, A.; Tzeferacos, P.; Weide, K.; Woolsey, N.; Young, R.; Yurchak, R.

    2013-03-01

    The Flash Center is engaged in a collaboration to simulate laser driven experiments aimed at understanding the generation and amplification of cosmological magnetic fields using the FLASH code. In these experiments a laser illuminates a solid plastic or graphite target launching an asymmetric blast wave into a chamber which contains either Helium or Argon at millibar pressures. Induction coils placed several centimeters away from the target detect large scale magnetic fields on the order of tens to hundreds of Gauss. The time dependence of the magnetic field is consistent with generation via the Biermann battery mechanism near the blast wave. Attempts to perform simulations of these experiments using the FLASH code have uncovered previously unreported numerical difficulties in modeling the Biermann battery mechanism near shock waves which can lead to the production of large non-physical magnetic fields. We report on these difficulties and offer a potential solution.

  16. Single-crystal X-ray diffraction and resonant X-ray magnetic scattering at helium-3 temperatures in high magnetic fields at beamline P09 at PETRA III.

    PubMed

    Francoual, S; Strempfer, J; Warren, J; Liu, Y; Skaugen, A; Poli, S; Blume, J; Wolff-Fabris, F; Canfield, P C; Lograsso, T

    2015-09-01

    The resonant scattering and diffraction beamline P09 at PETRA III at DESY is equipped with a 14 T vertical field split-pair magnet. A helium-3 refrigerator is available that can be fitted inside the magnet's variable-temperature insert. Here the results of a series of experiments aimed at determining the beam conditions permitting operations with the He-3 insert are presented. By measuring the tetragonal-to-orthorhombic phase transition occurring at 2.1 K in the Jahn-Teller compound TmVO4, it is found that the photon flux at P09 must be attenuated down to 1.5 × 10(9) photons s(-1) for the sample to remain at temperatures below 800 mK. Despite such a reduction of the incident flux and the subsequent use of a Cu(111) analyzer, the resonant X-ray magnetic scattering signal at the Tm LIII absorption edge associated with the spin-density wave in TmNi2B2C below 1.5 K is intense enough to permit a complete study in magnetic field and at sub-Kelvin temperatures to be carried out. PMID:26289272

  17. Operational experience with superconducting synchrotron magnets

    SciTech Connect

    Martin, P.S.

    1987-03-01

    The operational experience with the Fermilab Tevatron is presented, with emphasis on reliability and failure modes. Comprisons are made between the operating efficiencies for the superconducting machine and for he conventional Main Ring.

  18. An ultrahigh-vacuum apparatus for resonant diffraction experiments using soft x rays (hnu=300-2000 eV).

    PubMed

    Takeuchi, T; Chainani, A; Takata, Y; Tanaka, Y; Oura, M; Tsubota, M; Senba, Y; Ohashi, H; Mochiku, T; Hirata, K; Shin, S

    2009-02-01

    We have developed an ultrahigh-vacuum instrument for resonant diffraction experiments using polarized soft x rays in the energy range of hnu=300-2000 eV at beamline BL17SU of SPring-8. The diffractometer consists of modified differentially pumped rotary feedthroughs for theta-2theta stages, a sample manipulator with motor-controlled x-y-z-, tilt (chi)-, and azimuth (phi)-axes, and a liquid helium flow-type cryostat for temperature dependent measurements between 30 and 300 K. Test results indicate that the diffractometer exhibits high reproducibility (better than 0.001 degrees ) for a Bragg reflection of alpha-quartz 100 at a photon energy of hnu=1950 eV. Typical off- and on-resonance Bragg reflections in the energy range of 530-1950 eV could be measured using the apparatus. The results show that x-ray diffraction experiments with energy-, azimuth-, and incident photon polarization-dependence can be reliably measured using soft x rays in the energy range of approximately 300-2000 eV. The facility can be used for resonant diffraction experiments across the L-edge of transition metals, M-edge of lanthanides, and up to the Si K-edge of materials. PMID:19256660

  19. Structure of liquid equiatomic potassium--lead alloy: A neutron diffraction experiment

    SciTech Connect

    Saboungi, M.; Blomquist, R.; Volin, K.J.; Price, D.L.

    1987-08-15

    Neutron diffraction measurements have been performed on liquid equiatomic potassium--lead alloy at T = 870, 900, and 930 K to determine the influence of temperature on the structure. A well-defined first sharp diffraction peak (FSDP) at Q = 0.96 A/sup -1/, similar to that found in glassy materials, was obtained in the total structure factors S(Q) at the three temperatures. While the position of the peak remained unaffected by temperature changes, its magnitude decreased with increasing temperature. The other features of S(Q) were almost unaltered by temperature, as expected. The FSDP can be related to the presence of chemical bonds or clusters whose stability decreases with increasing temperature. A molecular model based on the random packing of K/sub 4/Pb/sub 4/ structural units is shown to give a remarkable correspondence with the measured structure factors.

  20. The photoelectric effect and study of the diffraction of light: Two new experiments in UNILabs virtual and remote laboratories network

    NASA Astrophysics Data System (ADS)

    Pedro Sánchez, Juan; Sáenz, Jacobo; de la Torre, Luis; Carreras, Carmen; Yuste, Manuel; Heradio, Rubén; Dormido, Sebastián

    2016-05-01

    This work describes two experiments: "study of the diffraction of light: Fraunhofer approximation" and "the photoelectric effect". Both of them count with a virtual, simulated, version of the experiment as well as with a real one which can be operated remotely. The two previous virtual and remote labs (built using Easy Java(script) Simulations) are integrated in UNILabs, a network of online interactive laboratories based on the free Learning Management System Moodle. In this web environment, students can find not only the virtual and remote labs but also manuals with related theory, the user interface description for each application, and so on.

  1. Magnetically accelerated foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, Stephan; Ford, Jessica; Martinez, David; Plechaty, Christopher; Wright, Sandra; Presura, Radu

    2008-04-01

    The interaction of shock waves with inhomogeneous media is important in many astrophysical problems, e.g. the role of shock compression in star formation. Using scaled experiments with inhomogeneous foam targets makes it possible to study relevant physics in the laboratory, to better understand the mechanisms of shock compression and to benchmark astrophysical simulation codes. Experiments with flyer-generated shock waves have been performed on the Z machine in Sandia. The Zebra accelerator at the Nevada Terawatt Facility (NTF) allows for complementary experiments with high repetition rate. First experiments on Zebra demonstrated flyer acceleration to sufficiently high velocities (around 2 km/s) and that laser shadowgraphy can image sound fronts in transparent targets. Based on this, we designed an optimized setup to improve the flyer parameters (higher speed and mass) to create shock waves in transparent media. Once x-ray backlighting with the Leopard laser at NTF is operational, we will switch to foam targets with parameters relevant for laboratory astrophysics.

  2. Order/disorder phenomena in Zn1-xMnxGa2Se4 ordered vacancy compounds: high temperature neutron powder diffraction experiments

    NASA Astrophysics Data System (ADS)

    Alonso-Gutiérrez, P.; Morón, M. C.; Hull, S.; Sanjuán, M. L.

    2013-12-01

    We present a study of order-disorder phenomena in the series of tetrahedral ordered vacancy compounds Zn1-xMnxGa2Se4 by means of time-of-flight neutron diffraction at high temperature together with dc magnetic susceptibility, Raman spectroscopy, differential thermal analysis and optical absorption experiments. Samples of nominal composition x = 0, 0.24, 0.5, 0.77 and 1 have been studied. An order-disorder phase transition has been detected, with Tc ranging from 472 to 610 ° C, which involves a structural change from a defect chalcopyrite phase, with I\\bar {4} space group (s.g.) and three different cation sites, to a partially disordered defect stannite, in which Zn, Mn and half of the Ga ions share the 4d site in I\\bar {4}2 m s.g. Neither the vacancies nor the Ga ions occupying site 2a are involved in the phase transition. An additional ordering process is observed on approaching the phase transition from below, which is attributed to several factors: the activation of cation diffusion at ˜300 ° C, the partially disordered cation distribution exhibited by the as-grown single crystals and the preference of Mn atoms for the 2d crystallographic site in the I\\bar {4} structure. The reversibility of the phase transition is analysed with the aid of magnetic, optical and Raman experiments.

  3. Magnetic lattice for the HIF neutralized transport experiment (NTX)

    SciTech Connect

    Shuman, D.; Eylon, S.; Henestroza, E.; Roy, P.K.; Waldron, W.; Yu, S.S.; Houck, T.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A pulsed magnetic four-quadrupole transport system for a 400 keV, 80 mA space charge dominated heavy ion beam has been designed, fabricated, tested, measured, and commissioned successfully for the Neutralized Transport Experiment (NTX). We present some generalized multipole decompositions of 3-D finite element calculations, and 2-D transient finite element simulations of eddy currents in the beam tube. Beam envelope calculations along the transport line were performed using superposition of individually 3-D calculated magnetic field maps. Revised quadrupole design parameters and features, plus fabrication and testing highlights are also presented. Magnetic field measurements were made using both Hall probes (low field DC) and inductive loop coil (high field pulsed). Magnet testing consisted of repetitive full current pulsing to determine reliability.

  4. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  5. Magnetically accelerated foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, S.; Ford, J.; Wright, S.; Martinez, D.; Plechaty, C.; Presura, R.

    2009-08-01

    Many astrophysical phenomena involve the interaction of a shock wave with an inhomogeneous background medium. Using scaled experiments with inhomogeneous foam targets makes it possible to study relevant physics in the laboratory to better understand the mechanisms of shock compression and to benchmark astrophysical simulation codes. First experiments on Zebra at the Nevada Terawatt Facility (NTF) have demonstrated flyer acceleration to sufficiently high velocities (up to 5 km/s) and that laser shadowgraphy can image sound fronts in transparent targets. Based on this, we designed an optimized setup to improve the flyer parameters (higher speed and mass) to create shock waves in transparent media. Once x-ray backlighting with the Leopard laser at NTF is operational, we will switch to foam targets with parameters relevant for laboratory astrophysics.

  6. EM Induction Experiment to Determine the Moment of a Magnet

    ERIC Educational Resources Information Center

    Najiya Maryam, K. M.

    2014-01-01

    If we drop a magnet through a coil, an emf is induced in the coil according to Faraday's law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets.…

  7. Dichroic Coherent Diffractive Imaging

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashish

    Understanding electronic structure at nanometer resolution is crucial to understanding physics such as phase separation and emergent behavior in correlated electron materials. Nondestructive probes which have the ability to see beyond surfaces on nanometer length and sub-picosecond time scales can greatly enhance our understanding of these systems and will impact development of future technologies, such as magnetic storage. Polarized x-rays are an appealing choice of probe due to their penetrating power, elemental and magnetic specificity, and high spatial resolution. The resolution of traditional x-ray microscopy is limited by the nanometer precision required to fabricate x-ray optics. In this thesis, a novel approach to lensless imaging of an extended magnetic nanostructure is presented. We demonstrate this approach by imaging ferrimagnetic "maze" domains in a Gd/Fe multilayer with perpendicular anisotropy. A series of dichroic coherent diffraction patterns, ptychographically recorded, are numerically inverted using non-convex and non-linear optimization theory, and we follow the magnetic domain configuration evolution through part of its magnetization hysteresis loop by applying an external magnetic field. Unlike holographic methods, it does not require a reference wave or precision optics, and so is a far simpler experiment. In addition, it enables the imaging of samples with arbitrarily large spatial dimensions, at a spatial resolution limited solely by the coherent x-ray flux and wavelength. It can readily be extended to other non-magnetic systems that exhibit circular or linear dichroism. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of the new generation of phenomenally brilliant x-ray sources.

  8. Crystal structure and magnetism of YbFeMnO 5: A neutron diffraction and Mössbauer spectroscopy study

    NASA Astrophysics Data System (ADS)

    Martínez-Lope, M. J.; Retuerto, M.; Alonso, J. A.; García-Hernández, M.; Krezhov, K.; Spirov, I.; Ruskov, T.; Fernández-Díaz, M. T.

    2009-04-01

    We have studied the crystal structure and magnetic properties of Y bFeMnO 5 obtained by substituting Fe 3+ for Mn 3+ in the parent Y bMn 2O 5 compound, through x-ray (XRD) and neutron (NPD) powder diffraction, magnetometry and Mössbauer spectroscopy. The samples were prepared in polycrystalline form by a soft chemistry route, followed by thermal treatments under high-oxygen pressure. The Rietveld analysis of diffraction data shows that Y bFeMnO 5 is isostructural with the oxides of stoichiometry RMn 2O 5 (R=rare earth, Y or Bi); the crystal structure is orthorhombic, Pbam space group, formed by chains of edge-sharing Mn 4+O 6 octahedra linked together by dimer groups of square pyramids Fe 3+O 5 and Y b 3+O 8 scalenohedra. A low level of disorder was established between the two transition metal positions 4 f and 4 h, occupied ideally by Mn 4+ and by Fe 3+: about 6% of Mn cations is replaced by Fe and 16% of Fe by Mn. Mössbauer spectroscopy data confirm the existence of two distinct crystallographic sites for Fe 3+. One of them corresponds to almost regular octahedra (at 4 f positions), characterized by nearly equal Mn/Fe-O distances of 1.890 Å at RT (from NPD data), giving a quadrupole doublet in the Mössbauer spectra at RT, broadened by the Fe/Mn disorder over this site. The second environment for Fe 3+ contributes to a less broadened, but more intensive doublet in the Mössbauer spectra, which corresponds to a distorted square pyramid Fe 3+O 5 (at 4h sites), for which NPD data demonstrates an axial distortion with three sets of Fe-O distances at 2.010(2) Å, 1.859(5) Å and 1.925(3) Å. Magnetic studies and the thermal evolution of the NPD patterns show that below a transition temperature Tc˜178 K a long-range magnetic order is developed, resolved from NPD data as a ferrimagnetic structure with propagation vector k=0. The spin arrangements for the Mn 4+ ions ( 4f site) and Fe 3+ ions ( 4h site) are given by the basis vectors ( 0,0,Fz) and ( 0,0,Fz

  9. Influence of Cr doping on the magnetic structure of the FeAs-strips compound CaFe4As3: A single-crystal neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Manuel, P.; Chapon, L. C.; Trimarchi, G.; Todorov, I. S.; Chung, D. Y.; Ouladdiaf, B.; Gutmann, M. J.; Freeman, A. J.; Kanatzidis, M. G.

    2013-09-01

    We have studied the magnetic structure of a Cr-doped iron-arsenide compound CaFe4As3 by means of single crystal neutron diffraction. The neutron data reveal that below 90 K, an antiferromagnetic structure with propagation vector k=0 is adopted. Refinement of the magnetic structure using one of the modes allowed by symmetry analysis indicates that two of the four Fe sites, including the one where the selective substitution Fe/Cr happens, bear reduced magnetic moments. Density functional theory calculations confirm the stability of such a magnetic arrangement.

  10. Change in the magnetic structure of (Bi,Sm)FeO{sub 3} thin films at the morphotropic phase boundary probed by neutron diffraction

    SciTech Connect

    Maruyama, Shingo; Anbusathaiah, Varatharajan; Takeuchi, Ichiro; Fennell, Amy; Enderle, Mechthild; Ratcliff, William D.

    2014-11-01

    We report on the evolution of the magnetic structure of BiFeO{sub 3} thin films grown on SrTiO{sub 3} substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices.

  11. Numerical Investigation of Plasma Detachment in Magnetic Nozzle Experiments

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2008-01-01

    At present there exists no generally accepted theoretical model that provides a consistent physical explanation of plasma detachment from an externally-imposed magnetic nozzle. To make progress towards that end, simulation of plasma flow in the magnetic nozzle of an arcjet experiment is performed using a multidimensional numerical simulation tool that includes theoretical models of the various dispersive and dissipative processes present in the plasma. This is an extension of the simulation tool employed in previous work by Sankaran et al. The aim is to compare the computational results with various proposed magnetic nozzle detachment theories to develop an understanding of the physical mechanisms that cause detachment. An applied magnetic field topology is obtained using a magnetostatic field solver (see Fig. I), and this field is superimposed on the time-dependent magnetic field induced in the plasma to provide a self-consistent field description. The applied magnetic field and model geometry match those found in experiments by Kuriki and Okada. This geometry is modeled because there is a substantial amount of experimental data that can be compared to the computational results, allowing for validation of the model. In addition, comparison of the simulation results with the experimentally obtained plasma parameters will provide insight into the mechanisms that lead to plasma detachment, revealing how they scale with different input parameters. Further studies will focus on modeling literature experiments both for the purpose of additional code validation and to extract physical insight regarding the mechanisms driving detachment.

  12. Estimation of random duty-cycle error in periodically poled lithium niobate by simple diffraction experiment

    NASA Astrophysics Data System (ADS)

    Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik

    2014-02-01

    Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched background noise. Although such noise contribution can be evaluated by measuring second-harmonic generation (SHG) spectrum with tunable narrow-band lasers, the limited tuning ranges usually results in inaccurate measurement of pure noise. Instead of SHG, we took a diffraction pattern which is mathematically equivalent to the SHG spectrum, but can be obtained with greater simplicity. With our proposed method applied to periodically poled lithium niobate, RDE could be evaluated more accurately from the pure background noise measurement.

  13. Review of recent experiments on magnetic reconnection in laboratory plasmas

    SciTech Connect

    Yamada, M.

    1995-02-01

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10{sup 7}. These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed.

  14. The Marshall Magnetic Mirror Beam-Plasma Experiment

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Carruth, M. R., Jr.; Vaughn, Jason A.; Edwards, David L.; Munafo, Paul (Technical Monitor)

    2001-01-01

    Plasma propulsion is an advanced propulsion concept with the potential to realize very high specific impulse. Present designs for plasma propulsion devices share a common feature, the incorporation of a magnetic mirror. A magnetic mirror is a plasma confinement scheme whereby charged particles are trapped (or reflected) between two regions of high magnetic field strength. A cylindrical geometry is most often employed to create a magnetic mirror, which is a natural geometry for propulsion devices. To utilize the magnetic mirror configuration in a plasma propulsion device, however, will require efficient coupling of power into the system. With the development of compact and efficient electron sources, such as hollow cathode sources, coupling power into a magnetic mirror using electron beams may be an attractive approach. A system, the Marshall Magnetic Mirror (M3), has been constructed to study the coupling of an electron beam into a magnetic mirror. A description of the M3 device will be provided as well as data from initial beam-plasma coupling experiments.

  15. Detrital magnetizations from redeposition experiments of different natural sediments

    NASA Astrophysics Data System (ADS)

    Spassov, Simo; Valet, Jean-Pierre

    2012-10-01

    We carried out several experiments with carbonate-rich and clay-rich sediments that were redeposited in plastic cubes or in 1-meter-long cylindrical tubes with the aim of investigating the sensitivity of the depositional remanent magnetization (DRM) to various environmental and physical parameters. In contrast to previous studies, we did not observe any difference in the DRM acquired with or without saline water for either kind of sediment. Taking advantage of a gelatin that fixes the position of particles in suspension, we were able to measure the magnetization of suspended sediments within water-filled columns and thus to test the degree of alignment of magnetic grains. The magnetization of clay-rich sediments was not far from saturation but the magnetization was considerably reduced after deflocculation because the large flocs that favored alignment of magnetic grains were destroyed by the deflocculant. Similarly, the large flocs found at the bottom of the deposition tubes also reveal an efficient magnetic alignment. In contrast, the weak magnetization of the carbonate-rich sediments with small flocs yielded accurate and well-grouped magnetization directions that were not sensitive to deflocculation. Only a fraction of magnetic grains was mechanically oriented by the field in this case because of the weak net magnetic moments of the grains embedded within small flocs. The DRM was constrained by redeposition in plastic cubes performed without gelatin and with different field intensities. The DRM intensity of the carbonate-rich sediments is linearly related to field strength, which attests to their suitability for studies of relative paleointensity. Tests performed with mud from several stratigraphic levels in different marine sediment cores failed to reveal a significant influence of carbonate content on DRM, which suggests a relatively minor role of lithological changes on records of relative paleointensity.

  16. Crystallization and preliminary neutron diffraction experiment of human farnesyl pyrophosphate synthase complexed with risedronate

    PubMed Central

    Yokoyama, Takeshi; Ostermann, Andreas; Mizuguchi, Mineyuki; Niimura, Nobuo; Schrader, Tobias E.; Tanaka, Ichiro

    2014-01-01

    Nitrogen-containing bisphosphonates (N-BPs), such as risedronate and zoledronate, are currently used as a clinical drug for bone-resorption diseases and are potent inhibitors of farnesyl pyrophosphate synthase (FPPS). X-ray crystallographic analyses of FPPS with N-BPs have revealed that N-BPs bind to FPPS with three magnesium ions and several water molecules. To understand the structural characteristics of N-BPs bound to FPPS, including H atoms and hydration by water, neutron diffraction studies were initiated using BIODIFF at the Heinz Maier-Leibnitz Zentrum (MLZ). FPPS–risedronate complex crystals of approximate dimensions 2.8 × 2.5 × 1.5 mm (∼3.5 mm3) were obtained by repeated macro-seeding. Monochromatic neutron diffraction data were collected to 2.4 Å resolution with 98.4% overall completeness. Here, the first successful neutron data collection from FPPS in complex with N-BPs is reported. PMID:24699741

  17. Using mobile camera for a better exploitation and understanding of interference and diffraction experiments

    NASA Astrophysics Data System (ADS)

    Ben Lakhdar, Z.; Dhaouadi, Z.; Ghalila, H.; Lahmar, S.; Majdi, Y.

    2009-06-01

    To deduce the wave nature of light, explain its behavior when it interacts with material obstacles (diffraction) or its behavior when light from two coherent sources interfere with each other (interference), we need to explain what are waves and what are their properties (wavelength, frequency, mathematical relationship between wavelength and frequency, superposition principle, …). Two principal approaches are generally used to introduce waves: 1/ An experimental approach (the example commonly used approach): to observe the water waves pattern obtained when drops of water (with an eye dropper, two eye droppers, or equivalent) fall -at a steady rate- on a calm pool of water surface. 2/ A theoretical approach: Wave coming from one source is represented by a sinusoidal function; Superposition of waves coming from two coherent sources is done by a sum of two sinusoidal functions with constant phase difference. In Tunisia, different workshops on "wave nature of light based on interference and diffraction" using Active Learning process have been organized for about 150 secondary school teachers in 2009. These workshops are based on UNESCO Active Learning in Optics and Photonics (ALOP) project. This paper will show how taking water wave's pattern using some participant's mobile camera helps to make some misconceptions resolved and includes at the same time other more complex phenomena.

  18. An Electromagnetic Drift Instability in the Magnetic Reconnection Experiment (MRX) and its Importance for Magnetic Reconnection

    SciTech Connect

    Russell Kulsrud; Hantao Ji; Will Fox; Masaaki Yamada

    2005-06-07

    The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasi-linear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process.

  19. An electromagnetic drift instability in the magnetic reconnection experiment and its importance for magnetic reconnection

    SciTech Connect

    Kulsrud, Russell; Ji Hantao; Fox, William; Yamada, Masaaki

    2005-08-15

    The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma-field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (magnetic reconnection experiment) [M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, N. Bertz, F. Jobes, Y. Ono, and F. Perkins, Phys. Plasmas 4, 1936 (1997)] that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating lower hybrid drift instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasilinear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX, the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process.

  20. The LBT experience of adaptive secondary mirror operations for routine seeing- and diffraction-limited science operations

    NASA Astrophysics Data System (ADS)

    Guerra, J. C.; Brusa, G.; Christou, J.; Miller, D.; Ricardi, A.; Xompero, M.; Briguglio, R.; Wagner, M.; Lefebvre, M.; Sosa, R.

    2013-09-01

    The Large Binocular Telescope (LBT) is unique in that it is currently the only large telescope (2 x 8.4m primary mirrors) with permanently mounted adaptive secondary mirrors (ASMs). These ASMs have been used for regular observing since early 2010 on the right side and since late 2011 on the left side. They are currently regularly used for seeing-limited observing as well as for selective diffraction-limited observing and are required to be fully operational every observing night. By comparison the other telescopes using ASMs, the Multi Mirrot Telescope (MMT) and more recently Magellan, use fixed secondaries of seeing-limited observing and switch in the ASMs for diffraction-limited observing. We will discuss the night-to-night operational requirements for ASMs specifically for seeing-limited but also for diffraction-limited observations based on the LBT experience. These will include preparation procedures for observing (mirror flattening and resting as examples); hardware failure statistics and how to deal with them such as for the actuators; observing protocols for; and current limitations of use due to the ASM technology such as the minimum elevation limit (25 degrees) and the hysteresis of the gravity-vector induced astigmatism. We will also discuss the impact of ASM maintenance and preparation

  1. How Rosalind Franklin Discovered the Helical Structure of DNA: Experiments in Diffraction

    NASA Astrophysics Data System (ADS)

    Braun, Gregory; Tierney, Dennis; Schmitzer, Heidrun

    2011-03-01

    Rosalind Franklin, a chemical physicist (1920-1958), used x-ray diffraction to determine the structure of DNA. What exactly could she read out from her x-ray pattern, shown in Fig. 1? In lecture notes dated November 1951, R. Franklin wrote the following: "The results suggest a helical structure (which must be very closely packed) containing 2, 3 or 4 co-axial nucleic acid chains per helical unit, and having the phosphate groups near the outside."2 This was 16 months before J. D. Watson and F. Crick published their description of DNA, which was based on R. Franklin's x-ray photos. How they gained access to her x-ray photos is a fascinating tale of clashing personalities and male chauvinism.2,3

  2. Initial Experiments of a New Permanent Magnet Helicon Thruster

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, Benjamin

    2013-09-01

    A new design for a permanent magnet helicon thruster is presented. Its small plasma volume (~10 cm-3) and low power requirements (<100 W) make it ideal for propelling nanosatellites (<10 kg). The magnetic field reached a maximum of 500 G in the throat of a converging-diverging nozzle and decreased to 0.5 G, the strength of earth's magnetic field, within 50 cm allowing the entire exhaust plume to develop in the vacuum chamber without being affected by the chamber walls. Low gas flow rates (~4 sccm) and high pumping speeds (~10,000 l/s) were used to more closely approximate the conditions of space. A parametric study of the thruster operational parameters was performed to determine its capabilities as both a thruster and as a plasma source for magnetic nozzle experiments. The plasma density, electron temperature, and plasma potential were measured in the plume to characterize the ion acceleration mechanism.

  3. Diagnosing the Magnetic Structure of the Sustained Spheromak Experiment

    NASA Astrophysics Data System (ADS)

    Cummings, Hillary; Romero Talamas, Carlos

    2005-10-01

    Unlike in traditional fusion devices, SSPX plasmas are confined by a magnetic field that is predominately generated by the plasma itself. The process by which plasma creates and changes the magnetic field is complicated and therefore makes it difficult to know its exact structure everywhere in the plasma at any point in time. This poster describes three different methods of studying the magnetic structure of the experiment; using edge probes in conjunction with Corsica- an equilibrium fitting code, imaging the plasma with a high-speed intensified CCD camera, and inserting an array of magnetic probes internal to the plasma. The research was performed under appointment to the Fusion Energy Sciences Fellowship Program and supported by US DOE. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  4. Magnetic field uniformity for the nEDM experiment

    NASA Astrophysics Data System (ADS)

    Slutsky, Simon; nEDM Collaboration

    2013-10-01

    The nEDM experiment at the Spallation Neutron Source (SNS) will search for a neutron electric dipole moment (EDM) with a sensitivity of < 5 .10-28 e-cm. Neutrons will precess in a constant magnetic field and variable electric field, and non-zero neutron EDM will appear as a variation in the precession frequency. Gradients in the magnetic field lead to spurious EDM signals through a geometric phase effect. The volume averaged magnetic gradient must be below 0.1 μG/cm to reach the desired sensitivity. In this talk, we describe an effort to produce such a uniform magnetic field in a laboratory using a cos (θ) coil operated at cryogenic temperatures inside a superconducting lead shield.

  5. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  6. Exploring the complex magnetic phase diagram of Ce2PdGe3 : A neutron powder diffraction and μ SR study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Ritter, C.; Adroja, D. T.; Coomer, F. C.; Strydom, A. M.

    2016-07-01

    The magnetic state of the tetragonal compound Ce2PdGe3 , which crystallizes in the space group P 42/m m c , a derivative of the α -ThSi2 structure, has been investigated by magnetic susceptibility, heat capacity, muon spin relaxation (μ SR ), and neutron diffraction measurements. Heat capacity data indicate two separate magnetic phase transitions at TN1=10.7 K and TN 2=2.3 K. The presence of bulk long-range magnetic order is confirmed by our μ SR study below 11 K, where a drop of nearly 2/3 in the muon initial asymmetry and a sharp increase in the muon depolarization rate were observed. Neutron powder diffraction reveals that only one out of two Ce sites becomes magnetically ordered with magnetic propagation vector κ =(0 ) at TN1,adopting an antiferromagnetic arrangement of magnetic moments μCe3+=1.78 (1 ) μB along the c axis. At TN 2 the second Ce site orders similarly, following the same magnetic propagation vector κ =(0 ) , showing, however, at the same time a significant ferromagnetic component within the tetragonal basal plane. A second propagation vector, κ =(1/2 ,0 ,1/2 ) , appears concomitantly at TN 2.

  7. Magnetoelastics of a spin liquid : x-ray diffraction studies of Tb{sub 2}Ti{sub 2}O{sub 7} in pulsed magnetic fields.

    SciTech Connect

    Ruff, J. P. C.; Islam, Z.; Clancy, J. P.; Ross, K. A.; Nojiri, H.; Matsuda, Y. H.; Dabkowska, H. A.; Dabkowski, A. D.; Gaulin, B. D.; X-Ray Science Division; McMaster Univ.; Tohoku Univ.; Univ. of Tokyo; Canadian Inst. for Advanced Research; Brockhouse Inst. for Materials Research

    2010-08-13

    We report high resolution single crystal x-ray diffraction measurements of the frustrated pyrochlore magnet Tb{sub 2}Ti{sub 2}O{sub 7}, collected using a novel low temperature pulsed magnet system. This instrument allows characterization of structural degrees of freedom to temperatures as low as 4.4 K, and in applied magnetic fields as large as 30 T. We show that Tb{sub 2}Ti{sub 2}O{sub 7} manifests intriguing structural effects under the application of magnetic fields, including strongly anisotropic giant magnetostriction, a restoration of perfect pyrochlore symmetry in low magnetic fields, and ultimately a structural phase transition in high magnetic fields. It is suggested that the magnetoelastic coupling thus revealed plays a significant role in the spin liquid physics of Tb{sub 2}Ti{sub 2}O{sub 7} at low temperatures.

  8. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples.

    PubMed

    Sun, Tao; Fezzaa, Kamel

    2016-07-01

    A high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD, researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information. PMID:27359155

  9. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    DOE PAGESBeta

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; et al

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as highmore » as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less

  10. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  11. Binding of biological effectors on magnetic nanoparticles measured by a magnetically induced transient birefringence experiment

    NASA Astrophysics Data System (ADS)

    Wilhelm, C.; Gazeau, F.; Roger, J.; Pons, J. N.; Salis, M. F.; Perzynski, R.; Bacri, J. C.

    2002-03-01

    We have investigated the relaxation of the magnetically induced birefringence in a suspension of magnetic nanoparticles in order to detect the binding reaction of polyclonal antibodies on the particle surface. The birefringence relaxation is driven by the rotational diffusion of the complex formed by the magnetic nanoparticles bound to the antibody and thus is directly related to the hydrodynamic size of this complex. Birefringence relaxations are well described by stretched exponential laws revealing a polydisperse distribution of hydrodynamic diameters. Comparing the size distribution of samples with different initial ratios of immunoglobuline added per magnetic nanoparticles, we evidence the graft of an antibody on particle and eventually the onset of particles agregation. Measurements on samples separated in size by gel filtration demonstrate the robustness of our experiment for the determination of size distribution and its modification due to the adsorption of a macromolecule. The immunoglobuline binding assay is performed comparatively for ionic magnetic nanoparticles with different coatings.

  12. Intermittent magnetic field excitations in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Spence, E. J.; Jacobson, C. M.; Parada, C. A.; Kendrick, R. D.; Forest, C. B.

    2006-10-01

    Determining the onset conditions for magnetic field growth in magnetohydrodynamics is fundamental to understanding how astrophysical dynamos such as the Earth, the Sun, and the galaxy self-generate magnetic fields. The role of turbulence in modifying these onset conditions is studied in the Madison Dynamo Experiment. A turbulent flow of liquid sodium, composed primarily of two counter-rotating helical vortices, is generated by impellers. Laser Doppler velocimetry measurements of the flow in an identical-scale water experiment demonstrate that the turbulence is isotropic, though not homogeneous, with particularly long-lived eddies in the shear layer between the two flow cells. The magnetic field induced when an axial field is applied shows intermittent periods of growth and has a spatial structure consistent with the fastest growing magnetic eigenmode predicted by a laminar kinematic dynamo model of the mean flow. Turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive, thus generating the magnetic bursts. It is found from ensemble averaging that the bursts gain strength and frequency with increased impeller rotation rate, though they become shorter so that each burst remains a rare, random event. Nornberg et al., Phys. Rev. Lett., in press (2006), physics/0606239.

  13. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2012-12-01

    We report the results of benchmark FLASH magnetohydrodynamic (MHD) simulations of experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. We first outline the implementation of 2D cylindrical geometry in the unsplit MHD solver in FLASH and present results of verification tests. We then describe the results of benchmark 2D cylindrical MHD simulations of the LULI experiments using FLASH that explore the impact of external fields along with the possibility of magnetic field amplification by turbulence that is associated with the shock waves and that is induced by a grid placed in the gas-filled chamber.

  14. Development of a multipurpose vacuum chamber for serial optical and diffraction experiments with free electron laser radiation

    SciTech Connect

    Rajkovic, I.; Hallmann, J.; Gruebel, S.; More, R.; Quevedo, W.; Petri, M.; Techert, S.

    2010-04-15

    In this paper we present a development of a multipurpose vacuum chamber which primal function is to be used in pump/probe experiments with free electron laser (FEL) radiation. The chamber is constructed for serial diffraction and serial spectroscopy allowing a fast exchange of samples during the measurement process. For the fast exchange of samples, liquid jet systems are used. Both applications, utilizing soft x-ray FEL pulses as pump and optical laser pulses as probe and vice versa are documented. Experiments with solid samples as well as the liquid jet samples are presented. When working with liquid jets, a system of automatically refilled liquid traps for capturing liquids has been developed in order to ensure stable vacuum conditions. Differential pumping stages are placed in between the FEL beamline and the experimental chamber so that working pressure in the chamber can be up to four orders of magnitude higher than the pressure in the FEL beamline.

  15. Development of a multipurpose vacuum chamber for serial optical and diffraction experiments with free electron laser radiation.

    PubMed

    Rajkovic, I; Hallmann, J; Grübel, S; More, R; Quevedo, W; Petri, M; Techert, S

    2010-04-01

    In this paper we present a development of a multipurpose vacuum chamber which primal function is to be used in pump/probe experiments with free electron laser (FEL) radiation. The chamber is constructed for serial diffraction and serial spectroscopy allowing a fast exchange of samples during the measurement process. For the fast exchange of samples, liquid jet systems are used. Both applications, utilizing soft x-ray FEL pulses as pump and optical laser pulses as probe and vice versa are documented. Experiments with solid samples as well as the liquid jet samples are presented. When working with liquid jets, a system of automatically refilled liquid traps for capturing liquids has been developed in order to ensure stable vacuum conditions. Differential pumping stages are placed in between the FEL beamline and the experimental chamber so that working pressure in the chamber can be up to four orders of magnitude higher than the pressure in the FEL beamline. PMID:20441366

  16. The Extreme Conditions Beamline at PETRA III, DESY: Possibilities to conduct time resolved monochromatic diffraction experiments in dynamic and laser heated DAC

    NASA Astrophysics Data System (ADS)

    Liermann, H.-P.; Morgenroth, W.; Ehnes, A.; Berghäuser, A.; Winkler, B.; Franz, H.; Weckert, E.

    2010-03-01

    We present plans for the new Extreme Conditions Beamline at PETRA III, DESY, Germany. The beamline is being designed and built with the specific goal to explore time resolved high-pressure and -temperature x-ray diffraction experiments in the dynamic and laser heated diamond anvil cell. Within we discuss the conceptual design of the optical components and experimental setup to conduct monochromatic high-pressure powder diffraction experiments in the sub-second time regime.

  17. Magnetic Equilibrium Studies on the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Sontag, A.; Fonck, R.; Ono, M.; Thorson, T.; Tritz, K.

    1999-11-01

    Magnetic equilibrium analysis on the PEGASUS Toroidal Experiment is the basic tool used to study global plasma equilibrium and stability properties. Initial work is focusing on determination of macroscopic plasma parameters. To date, plasmas on the order of 0.1 MA with aspect ratios from 1.1 to 1.4 and elongations from 1 to >3 are under study. The magnetic reconstruction is accomplished using TokaMac, a plasma equilbrium reconstruction code, which incorporates measurements from a Rogowski loop, magnetic pickup coils, and flux loops. Time-evolving currents in the vacuum vessel wall are modeled as a set of mutually coupled axisymmetric current filaments. This model has been validated by comparison to magnetic probe measurements. To date, plasma-wall coupling is included using a single current filament model on the magnetic axis for the plasma current, and a distributed filament current model for the plasma current is under development. The wall current model code has been integrated with coil current measurements to specify the total externally applied field as input to the TokaMac magnetic equilibrium code.

  18. Solenoid Magnet System for the Fermilab Mu2e Experiment

    DOE PAGESBeta

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; Brandt, J.; Coleman, R.; Evbota, D.; Kashikhin, V. V.; Lopes, M.; Miller, J.; Nicol, T.; et al

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore » at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less

  19. Solenoid Magnet System for the Fermilab Mu2e Experiment

    SciTech Connect

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; Brandt, J.; Coleman, R.; Evbota, D.; Kashikhin, V. V.; Lopes, M.; Miller, J.; Nicol, T.; Ostojic, R.; Page, T.; Peterson, T.; Popp, J.; Pronskikh, V.; Tang, Z.; Tartaglia, M.; Wake, M.; Wands, R.; Yamada, R.

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.

  20. Local magnetic moments in a dinuclear Co{sup 2+} complex as seen by polarized neutron diffraction:Beyond the effective spin-(1/2) model

    SciTech Connect

    Borta, Ana; Luneau, Dominique; Jeanneau, Erwann; Gillon, Beatrice; Gukasov, Arsen; Cousson, Alain; Ciumacov, Iurii; Sakiyama, Hiroshi; Tone, Katsuya; Mikuriya, Masahiro

    2011-05-01

    Polarized neutron diffraction investigations of a paramagnetic molecular dinuclear Co{sup 2+} complex, using the local site susceptibility method, show that the Co{sup 2+} ions carry opposite magnetic moments of 3.1(1) and 3.2(1) {mu}{sub B}, making an angle of 37(1) deg. which is in agreement with the value (39 deg.) provided by the theoretical analysis of the magnetic susceptibility using the model of effective spin 1/2. Polarized neutron diffraction (PND) shows that this dinuclear Co{sup 2+} complex behaves more like a system of two antiferromagnetically coupled ions with spin 3/2, the directions of which are imposed by the distortion axis of the octahedra around each Co{sup 2+} ion due to ligand field. This first application of the local susceptibility tensor method to a molecular compound demonstrates the efficiency of the PND method as a tool for exploring magnetic anisotropy in molecular paramagnets.

  1. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  2. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE PAGESBeta

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; et al

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  3. Diagnosing magnetized liner inertial fusion experiments on Za)

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, D. G.; Tomlinson, K.

    2015-05-01

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (˜1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (˜10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ˜3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

  4. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  5. Magnetic field experiment for Voyagers 1 and 2

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Acuna, M. H.; Burlaga, L. F.; Lepping, R. P.; Ness, N. F.; Neubauer, F. M.

    1977-01-01

    The magnetic field experiments of the Voyager program involve studies of the planetary fields of Jupiter, Saturn, possibly Uranus, and several satellites; the solar wind and satellite interactions with the planetary fields, as well as large- and micro-scale features of the interplanetary magnetic field will also be investigated. Dual low field and high field magnetometer systems with dynamic ranges of + or - 0.5 G and + or - 20 G respectively provide high reliability for the missions and permit the separation of the spacecraft and ambient fields. Quantization uncertainty, rms noise levels and data compaction schemes of the magnetometer systems are also mentioned.

  6. Magnetic Interactions in the Double Perovskites R2NiMnO6 (R = Tb, Ho, Er, Tm) Investigated by Neutron Diffraction.

    PubMed

    Retuerto, María; Muñoz, Ángel; Martínez-Lope, María Jesús; Alonso, José Antonio; Mompeán, Federico J; Fernández-Díaz, María Teresa; Sánchez-Benítez, Javier

    2015-11-16

    R2NiMnO6 (R = Tb, Ho, Er, Tm) perovskites have been prepared by soft-chemistry techniques followed by high oxygen-pressure treatments; they have been investigated by X-ray diffraction, neutron powder diffraction (NPD), and magnetic measurements. In all cases the crystal structure is defined in the monoclinic P21/n space group, with an almost complete order between Ni(2+) and Mn(4+) cations in the octahedral perovskite sublattice. The low temperature NPD data and the macroscopic magnetic measurements indicate that all the compounds are ferrimagnetic, with a net magnetic moment different from zero and a distinct alignment of Ni and Mn spins depending on the nature of the rare-earth cation. The magnetic structures are different from the one previously reported for La2NiMnO6, with a ferromagnetic structure involving Mn(4+) and Ni(2+) moments. This spin alignment can be rationalized taking into account the Goodenough-Kanamori rules. The magnetic ordering temperature (TCM) decreases abruptly as the size of the rare earth decreases, since TCM is mainly influenced by the superexchange interaction between Ni(2+) and Mn(4+) (Ni(2+)-O-Mn(4+) angle) and this angle decreases with the rare-earth size. The rare-earth magnetic moments participate in the magnetic structures immediately below TCM. PMID:26513539

  7. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  8. A magnetic gradient induced force in NMR restricted diffusion experiments.

    PubMed

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested. PMID:24697421

  9. A magnetic gradient induced force in NMR restricted diffusion experiments

    NASA Astrophysics Data System (ADS)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-01

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  10. Magnetic diagnostics on the Lockheed Martin T4 Experiment

    NASA Astrophysics Data System (ADS)

    Rhoads, John

    2015-11-01

    The Lockheed Martin T4 Experiment is a magnetically encapsulated linear ring cusp confinement device designed to study the physics relevant to the Compact Fusion Reactor program. As part of the diagnostics suite, an invasive three-axis magnetic probe and several flux loops have been constructed and installed. The probe was designed to reduce electrostatic pick-up by differentially amplifying two counter-wound coils for each axis. The flux loops are designed to detect plasma diamagnetism after accounting for the flux due to the background magnetic field. This mandates that the temporal evolution of the background field must be properly taken into account in order to discern the plasma response. To this end, both hardware and software techniques have been employed. Diagnostic designs and preliminary measurements will be presented.

  11. Magnetic field uniformity for the nEDM experiment

    NASA Astrophysics Data System (ADS)

    Slutsky, Simon; nEDM Collaboration

    2014-09-01

    The nEDM experiment at the Spallation Neutron Source (SNS) will search for a neutron electric dipole moment (EDM) with a sensitivity of <5*10-28 e-cm. Neutrons will precess in a constant magnetic field and variable electric field, and non-zero neutron EDM will appear as a variation in the precession frequency correlated with the changing electric field. Geometric phase and neutron polarization lifetime effects constrain the allowed magnetic field gradient to below 0.1 uG/cm. Gradients nearly satisfying this requirement have been achieved using a cos(θ) coil inside an open-ended superconducting lead shield operated at cryogenic temperatures and using the design electric fields. I will describe efforts to further improve the magnet design using a superconducting endcap.

  12. Magnetic Field Stabilization for 129Xe EDM Search Experiment

    NASA Astrophysics Data System (ADS)

    Furukawa, Takeshi; Inoue, Takeshi; Nanao, Tsubasa; Yoshimi, Akihiro; Tsuchiya, Masato; Hayashi, Hironori; Uchida, Makoto; Asahi, Koichiro

    2011-09-01

    Magnetic field stabilization is a crucial condition parameter for many kinds of ultra-high precision measurements such as a search for an electric dipole moment (EDM). The instability of magnetic field strength often arises from the drift of current flow in a solenoid coil to generate the magnetic field. For our EDM search experiment with maser oscillating diamagnetic 129Xe atoms, we have developed a new stabilized current source based on a feedback system which is devised to correct the amount of current flow measured precisely with high-precision digital multimeter and standard resistor. Using this new current source, we have successfully reduced the drifts of coil current by at least a factor of 100 compared to commercially available current sources.

  13. A magnetic gradient induced force in NMR restricted diffusion experiments

    SciTech Connect

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  14. Preliminary experiments on SAW based magnetization switching of nanomagnets

    NASA Astrophysics Data System (ADS)

    Sampath, Vimal; D'Souza, Noel; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2015-03-01

    Magnetization rotation in micron-sized ferromagnetic elements, using Surface Acoustic Waves (SAW), has been demonstrated experimentally while the use of SAW to lower the energy dissipation in switching of nanomagnets with spin transfer torque has been studied theoretically. Furthermore, SAW can be used to ``Bennett clock'' an array of nanomagnets in nanomagnetic logic without requiring lithographic contacts to individual nanomagnets. We report preliminary experiments on use of SAW to switch magnetostrictive Co nanomagnets grown on bulk 128 Y-cut lithium niobate. Switching is studied by imaging the nanomagnets' magnetic states with Magnetic Force Microscopy (MFM) before and after the SAW waves interact with them. Switching of single, isolated nanomagnets of various sizes, and dipole coupled nanomagnets implementing a Boolean NOT gate, is studied. This work is supported by the US National Science Foundation under the SHF-Small Grant CCF-1216614, CAREER Grant CCF-1253370, NEB 2020 Grant ECCS-1124714 and SRC under NRI Task 2203.001.

  15. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  16. Design and Assembly of the Magnetized Dusty Plasma Experiment (MDPX)

    NASA Astrophysics Data System (ADS)

    Fisher, Ross; Artis, Darrick; Lynch, Brian; Wood, Keith; Shaw, Joseph; Gilmore, Kevin; Robinson, Daniel; Polka, Christian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2013-10-01

    Over the last two years, the Magnetized Dusty Plasma Experiment (MDPX) has been under construction at Auburn University. This new research device, whose assembly will be completed in late Summer, 2013, uses a four-coil, superconducting, high magnetic field system (|B | >= 4 Tesla) to investigate the confinement, charging, transport, and instabilities in a dusty plasma. A new feature of the MDPX device is the ability to operate the magnetic coils independently to allow a variety of magnetic configurations from highly uniform to quadrapole-like. Envisioned as a multi-user facility, the MDPX device features a cylindrical vacuum vessel whose primary experimental region is an octagonal chamber that has a 35.5 cm inner diameter and is 19 cm tall. There is substantial diagnostics and optical access through eight, 10.2 cm × 12.7 cm side ports. The chamber can also be equipped with two 15.2 cm diameter, 76 cm long extensions to allow long plasma column experiments, particularly long wavelength dust wave studies. This presentation will discuss the final design, assembly, and installation of the MDPX device and will describe its supporting laboratory facility. This work is supported by a National Science Foundation - Major Research Instrumentation (NSF-MRI) award, PHY-1126067.

  17. Experiments of cylindrical isentropic compression by ultrahigh magnetic field

    NASA Astrophysics Data System (ADS)

    Gu, Zhuowei; Zhou, Zhongyu; Zhang, Chunbo; Tang, Xiaosong; Tong, Yanjin; Zhao, Jianheng; Sun, Chengwei

    2015-09-01

    The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG) is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5-6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  18. Aperture-ratio dependence of the efficiency of magneto-optical first-order diffraction in GdFe stripe arrays with alternating perpendicular magnetization

    NASA Astrophysics Data System (ADS)

    Wada, Kakeru; Antos, Roman; Aoshima, Ken-ichi; Machida, Kenji; Kuga, Kiyoshi; Ono, Hiroshi; Kikuchi, Hiroshi; Shimidzu, Naoki; Ishibashi, Takayuki

    2016-07-01

    The efficiency of magneto-optical (MO) diffraction in GdFe stripe arrays with alternating directions of perpendicular magnetization is investigated. The diffraction efficiency depends on the aperture ratio, as theoretically analyzed for an array composed of magnetic and nonmagnetic materials, with the magnetization directions parallel or antiparallel. The stripe patterns are composed of two ferromagnetic alloys of different compositions, Gd19.7Fe80.3 and Gd23.4Fe76.6 (denoted GF1 and GF2), having different coercivities in the parallel and antiparallel configurations. The stripe patterns are separated by nonmagnetic SiO2 stripes of different widths to obtain aperture ratios of 100, 75, 50 and 25%. The magnetization distributions in the samples is confirmed by MO microscopy. The diffraction efficiencies at a wavelength of 532 nm are measured to be 1.27×10-6, 1.04×10-6, 6.2×10-7 and 2.0×10-7 for aperture ratios of 100, 75, 50, and 25%, respectively. Those values are in accord with calculations using the measured MO and optical parameters of the GF1 layer, including the Kerr rotation angle of 0.12°, the Kerr ellipticity of -0.1° and the reflectance of 0.37.

  19. Recent experiments in inverse kinematics with the magnetic spectrometer PRISMA

    NASA Astrophysics Data System (ADS)

    Fioretto, E.; Corradi, L.; Montanari, D.; Szilner, S.; Pollarolo, G.; Galtarossa, F.; Ackermann, D.; Montagnoli, G.; Scarlassara, F.; Stefanini, A. M.; Courtin, S.; Goasduff, A.; Haas, F.; Jelavić-Malenica, D.; Michelagnoli, C.; Mijatović, T.; Soić, N.; Ur, C.; Valiente-Dobon, J. J.

    2016-05-01

    In the last period, two classes of experiments have been carried out with the large acceptance magnetic spectrometer PRISMA. In particular, the one- and two-neutron transfer processes at energies ranging from the Coulomb barrier to deep below it and the population of exotic neutron rich nuclei in the A~130 and A~200 mass regions have been studied. Both kinds of experiments have been performed in inverse kinematics identifying in A, Z and velocity the light target-like recoils with PRISMA placed at very forward angles in order to have, at the same time, high efficiency and good energy and mass resolutions.

  20. Recent experiments with liquid gallium cooling of crystal diffraction optics (abstract)

    SciTech Connect

    Smither, R.K.; Lee, W.; Macrander, A.; Mills, D.; Rogers, S. )

    1992-01-01

    The x-ray beams for the next generation of synchrotrons will contain much more power (1--10 kW) than is available at present day facilities. Cooling the first optical components in these beam lines will require the best cooling technology that one can bring to bear. Argonne continues to pioneer the use of liquid metals as the cooling fluid and has adopted liquid gallium as the liquid metal of choice. Its low melting point, 29.7 {degree}C and its very low vapor pressure make it an easy fluid to handle and its high thermal conductivity and heat capacity make it an excellent cooling fluid. A series of experiments were performed during April 1991 with the wiggler beam at the F2 station of the CHESS facility at Cornell to investigate the cooling of large areas of high power. Two types of cooling crystal geometries were tested, one where the cooling channels were core-drilled just below the surface of the crystal and a second where slots were cut into the crystal just below the surface with a diamond saw. Both crystals performed well with beam powers up to 1050 W and power densities of up to 14.5 W/mm{sup 2} at normal incidence.

  1. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    SciTech Connect

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H.; and others

    2015-05-15

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10{sup 12} have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm{sup 3}. In these experiments, up to 5 × 10{sup 10} secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm{sup 2}, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10{sup 10}. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  2. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    SciTech Connect

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark C.; Mark Harry Hess; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, Gregory A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger Alan

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  3. Gravitropic mechanisms derived from space experiments and magnetic gradients.

    NASA Astrophysics Data System (ADS)

    Hasenstein, Karl H.; Park, Myoung Ryoul

    2016-07-01

    Gravitropism is the result of a complex sequence of events that begins with the movement of dense particles, typically starch-filled amyloplasts in response to reorientation. Although these organelles change positions, it is not clear whether the critical signal is derived from sedimentation or dynamic interactions of amyloplasts with relevant membranes. Substituting gravity by high-gradient magnetic fields (HGMF) provides a localized stimulus for diamagnetic starch that is specific for amyloplasts and comparable to gravity without affecting other organelles. Experiments with Brassica rapa showed induction of root curvature by HGMF when roots moved sufficiently close to the magnetic gradient-inducing foci. The focused and short-range effectiveness of HGMFs provided a gravity-like stimulus and affected related gene expression. Root curvature was sensitive to the mutual alignment between roots and HGMF direction. Unrelated to any HGMF effects, the size of amyloplasts in space-grown roots increased by 30% compared to ground controls and suggests enhanced sensitivity in a gravity-reduced environment. Accompanying gene transcription studies showed greater differences between HGMF-exposed and space controls than between space and ground controls. This observation may lead to the identification of gravitropism-relevant genes. However, space grown roots showed stronger transcription of common reference genes such as actin and ubiquitin in magnetic fields than in non-magnetic conditions. In contrast, α-amylase, glucokinase and PIN encoding genes were transcribed stronger under non-magnetic conditions than under HGMF. The large number of comparisons between space, ground, and HGMF prompted the assessment of transcription differences between root segments, root-shoot junction, and seeds. Because presumed transcription of reference genes varied more than genes of interest, changes in gene expression cannot be based on reference genes. The data provide an example of complex

  4. History and Solution of the Phase Problem in the Theory of Structure Determination of Crystals from X-ray Diffraction Experiments

    SciTech Connect

    Wolf, Emil

    2010-06-02

    Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.

  5. History and Solution of the Phase Problem in theTheory of Structure Determination of Crystals from X-ray Diffraction Experiments

    ScienceCinema

    Wolf, Emil [University of Rochester, Rochester, New York, United States

    2010-09-01

    Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.

  6. Laboratory Magnetic Reconnection Experiments with Colliding, Magnetized Laser-Produced Plasma Plumes

    NASA Astrophysics Data System (ADS)

    Fox, W. R., II; Bhattacharjee, A.; Deng, W.; Moissard, C.; Germaschewski, K.; Fiksel, G.; Barnak, D.; Chang, P. Y.; Hu, S.; Nilson, P.

    2014-12-01

    We present results from experiments and simulations of magnetic reconnection between colliding plumes of laser-produced plasma. In the experiments, which open up a new experimental regime for reconnection study, bubbles of high-temperature, high-density plasma are created by focusing lasers down to sub-millimeter-scale spots on a plastic or metal foil, ionizing the foil into hemispherical bubbles that expand supersonically off the surface of the foil. If multiple bubbles are created at small separation, the bubbles expand into one another, and the embedded magnetic fields (either self-generated or externally imposed) are squeezed together and reconnect. We will review recent experiments, which have observed magnetic field annihilation, outflow jets, particle energization, and the formation of elongated current sheets. We compare the results against experiments with unmagnetized plumes, which observe the Weibel instability as the two plumes collide and interact. Particle-in-cell simulations of the strongly driven reconnection in these experiments show fast reconnection due to two-fluid effects, flux pile-up, and plasmoid formation, and show particle energization by reconnection.

  7. Design of a Magnetic Reconnection Experiment in the Collisionless Regime

    NASA Astrophysics Data System (ADS)

    Egedal, J.; Le, A.; Daughton, W. S.

    2012-12-01

    A new model for effective heating of electrons during reconnection is now gaining support from spacecraft observations, theoretical considerations and kinetic simulations [1]. The key ingredient in the model is the physics of trapped electrons whose dynamics causes the electron pressure tensor to be strongly anisotropic [2]. The heating mechanism becomes highly efficient for geometries with low upstream electron pressure, conditions relevant to the magnetotail. We propose a new experiment that will be optimized for the study of kinetic reconnection including the dynamics of trapped electrons and associated pressure anisotropy. This requires an experiment that accesses plasmas with much lower collisionality and lower plasma beta than are available in present reconnection experiments. The new experiment will be designed such that a large variety of magnetic configurations can be established and tailored for continuation of our ongoing study of spontaneous 3D reconnection [3]. The flexible design will also allow for configurations suitable for the study of merging magnetic islands, which may be a source of super thermal electrons in naturally occurring plasmas. [1] Egedal J et al., Nature Physics, 8, 321 (2012). [2] Le A et al., Phys. Rev. Lett. 102, 085001 (2009). [3] Katz N et al., Phys. Rev. Lett. 104, 255004 (2010).;

  8. Magnetic Systems in Megagauss Magnetic Fields:. Results of Dirac and Kapitsa Experiments

    NASA Astrophysics Data System (ADS)

    Tatsenko, O. M.; Selemir, V. D.

    2004-11-01

    The paper discusses the experimental series of Dirac-II and Kapitsa to explore material properties in ultra-high magnetic fields. A set of Dirac experiments was performed in June 1996 at Los Alamos National Laboratory. Scientists from six countries and eight Universities tested more than 60 samples in five explosive experiments using magnetocumulative generators of ultra-high magnetic fields. Test measurements were made using a 50 Tesla magnet of the NHMFL user facility ot LANL. The first scientific and practical workshop, Kapitsa, was performed in 1997 at the Russian Nuclear Federal Center (Sarov). More than 15 samples were tested during three shots. The Kapitsa series is planned to be performed annually. In the Kapitsa and Dirac experiments we explored magnetization of high-spin clusters Mn12Ac, Mn6, Fe8, fulleren C60, metamagnetic transitions in ScCo2, valence transitions in EuNi2(Si1-xGex)2 and the transition semiconductor-metal in FeSi.

  9. Magnetic shielding of a laboratory Hall thruster. II. Experiments

    SciTech Connect

    Hofer, Richard R. Goebel, Dan M.; Mikellides, Ioannis G.; Katz, Ira

    2014-01-28

    The physics of magnetic shielding in Hall thrusters were validated through laboratory experiments demonstrating essentially erosionless, high-performance operation. The magnetic field near the walls of a laboratory Hall thruster was modified to effectively eliminate wall erosion while maintaining the magnetic field topology away from the walls necessary to retain efficient operation. Plasma measurements at the walls validate our understanding of magnetic shielding as derived from the theory. The plasma potential was maintained very near the anode potential, the electron temperature was reduced by a factor of two to three, and the ion current density was reduced by at least a factor of two. Measurements of the carbon backsputter rate, wall geometry, and direct measurement of plasma properties at the wall indicate that the wall erosion rate was reduced by a factor of 1000 relative to the unshielded thruster. These changes effectively eliminate wall erosion as a life limitation in Hall thrusters, enabling a new class of deep-space missions that could not previously be attempted.

  10. Diagnostic Progress and Results on the Magnetized Shock Experiment

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Weber, T. E.

    2015-11-01

    The Magnetized Shock Experiment (MSX) at LANL is reliably producing Field Reversed Configuration (FRC) plasmas spanning peak densities of ~ 1021-23 m-3, combined Te +Ti of 10s-500eV and velocities of 100-300km/s as a means to producing a laboratory supercritical collision-less shock. Visible light images showing discontinuities indicative of shocks and jetting have been obtained on various targets: co-solenoid B field, a metal wall and counter-solenoidal B fields (FRC capture and reconnection). Two chord interferometry, external and internal magnetic probing are routinely employed and x-ray diagnostic capability has recently been added. The pulsed polarimetry technique is being deployed which can measure the local magnetic field using Lidar Thomson scattering. In addition, a fiber optic version of pulsed polarimetry using a new specialty fiber that enhances fiber backscatter with Fiber Bragg Gratings is being developed. Magnetic fields of order ~ 1T have been measured, however a new modified shock chamber geometry and recent machine modifications enabling operation at increased θ-coil voltage are expected to improve translation speed and hence stagnation pressures. Progress on these diagnostics and results will be presented. DOE support Grant No DE-SC00010559.

  11. IDATEN and G-SITENNO: GUI-assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA.

    PubMed

    Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi

    2014-11-01

    Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time. PMID:25343809

  12. Magnetic Diagnostics and Field Structure in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Rasmus, A. M.; Clark, M.; Kaplan, E. J.; Kendrick, R. D.; Nornberg, M. D.; Rahbarnia, K.; Taylor, N. Z.; Forest, C. B.

    2010-11-01

    The Madison Dynamo Experiment(MDE) is expected to spontaneously self-generate a magnetic field in a two vortex flow geometry driven by counter rotating impellers in a 1 m diameter sphere filled with liquid sodium. This poster will focus on the spatial structure of the magnetic field associated with the dynamo eigenmodes and the turbulent fluctuations. A new internal array of Hall probes will increase the number of probe locations from 60 to 100 (in addition to 74 existing surface probes), including 40 spanning the center of the experiment. Three orthogonal measurements of the magnetic field are taken at each internal location, whereas previous internal probes took one directional data (2 directional after probe rotation on a different run). This will allow resolution of harmonic modes up to a poloidal order of l=7 and a toroidal order of m=5. Cross correlation analysis between the surface probes and internal probes will be used to determine the internal structure associated with each l and m. This work is supported by the NSF/DOE partnership in plasma physics.

  13. Magnetic field experiment for Voyagers 1 and 2

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Aluna, M. H.; Burlaga, L. F.; Lepping, R. P.; Ness, N. F.; Neubauer, F. M.

    1977-01-01

    The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of plus or minus 0.5G for the LFM's and plus or minus 20G for the HFM's, low quantization uncertainty of plus or minus 0.002 gamma in the most sensitive (plus or minus 8 gamma) LFM range, low sensor RMS noise level of 0.006 gamma, and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic field are studied. The interstellar field may also be measured.

  14. Toward functional magnetic stimulation (FMS) theory and experiment.

    PubMed

    Davey, K; Luo, L; Ross, D A

    1994-11-01

    This paper examines the use of magnetic fields to functionally stimulate peripheral nerves. All electric fields are induced via a changing magnetic field whose flux is entirely confined within a closed magnetic circuit. Induced electric fields are simulated using a nonlinear boundary element solver. The induced fields are solved using duality theory. The accuracy of these predictions is verified by saline bath experiments. Next, the theory is applied to the stimulation of nerves using small, partially occluded ferrite and laminated vanadium permendur cores. Experiments demonstrate the successful stimulation of peripheral nerves in the African bullfrog with 11 mA, 153 mV excitations. These results offer a new vista of possibilities in the area of functional nerve stimulation. Unlike functional electric stimulation (FES), FMS does not involve any half cell reactions, and thus would not have the commensurate FES restrictions regarding balanced biphasic stimulation, strength duration balances, and oxidation issues, always exercising care that the electrodes remain in the reversible operating regime. PMID:8001991

  15. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    PubMed Central

    Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed

    2014-01-01

    Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed. PMID:25075338

  16. High power heating of magnetic reconnection in merging tokamak experiments

    SciTech Connect

    Ono, Y.; Tanabe, H.; Gi, K.; Watanabe, T.; Ii, T.; Yamada, T.; Gryaznevich, M.; Scannell, R.; Conway, N.; Crowley, B.; Michael, C.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magnetic reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating facility.

  17. Partial Spin Ordering and Complex Magnetic Structure in BaYFeO4: A Neutron Diffraction and High Temperature Susceptibility Study

    SciTech Connect

    Thompson, Corey; Greedan, John; Garlea, Vasile O; Flacau, Roxana; Tan, Malinda; Derakhshan, Shahab

    2014-01-01

    The novel iron-based compound, BaYFeO4, crystallizes in the Pnma space group with two distinct Fe3+ sites, that are alternately corner-shared [FeO5]7 square pyramids and [FeO6]9 octahedra, forming into [Fe4O18]24 rings, which propagate as columns along the b-axis. A recent report shows two discernible antiferromagnetic (AFM) transitions at 36 and 48 K in the susceptibility, yet heat capacity measurements reveal no magnetic phase transitions at these temperatures. An upturn in the magnetic susceptibility measurements up to 400 K suggests the presence of shortrange magnetic behavior at higher temperatures. In this Article, variable-temperature neutron powder diffraction and hightemperature magnetic susceptibility measurements were performed to clarify the magnetic behavior. Neutron powder diffraction confirmed that the two magnetic transitions observed at 36 and 48 K are due to long-range magnetic order. Below 48 K, the magnetic structure was determined as a spin-density wave (SDW) with a propagation vector, k = (0, 0, 1/3), and the moments along the b-axis, whereas the structure becomes an incommensurate cycloid [k = (0, 0, 0.35)] below 36 K with the moments within the bc-plane. However, for both cases the ordered moments on Fe3+ are only of the order 3.0 B, smaller than the expected values near 4.5 B, indicating that significant components of the Fe moments remain paramagnetic to the lowest temperature studied, 6 K. Moreover, new high-temperature magnetic susceptibility measurements revealed a peak maximum at 550 K indicative of short-range spin correlations. It is postulated that most of the magnetic entropy is thus removed at high temperatures which could explain the absence of heat capacity anomalies at the long-range ordering temperatures. Published spin dimer calculations, which appear to suggest a k = (0, 0, 0) magnetic structure, and allow for neither low dimensionality nor geometric frustration, are inadequate to explain the observed complex magnetic

  18. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments

    NASA Astrophysics Data System (ADS)

    Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.

    2016-07-01

    Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.

  19. "Smart" Magnetic Fluids Experiment Operated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Lekan, Jack F.

    2004-01-01

    InSPACE is a microgravity fluid physics experiment that was operated on the International Space Station (ISS) in the Microgravity Science Glovebox from late March 2003 through early July 2003. (InSPACE is an acronym for Investigating the Structure of Paramagnetic Aggregates From Colloidal Emulsions.) The purpose of the experiment is to obtain fundamental data of the complex properties of an exciting class of smart materials termed magnetorheological (MR) fluids. MR fluids are suspensions, or colloids, comprised of small (micrometer-sized) superparamagnetic particles in a nonmagnetic medium. Colloids are suspensions of very small particles suspended in a liquid. (Examples of other colloids are blood, milk, and paint.) These controllable fluids can quickly transition into a nearly solid state when exposed to a magnetic field and return to their original liquid state when the magnetic field is removed. Controlling the strength of the magnetic field can control the relative stiffness of these fluids. MR fluids can be used to improve or develop new seat suspensions, robotics, clutches, airplane landing gear, and vibration damping systems. The principal investigator for InSPACE is Professor Alice P. Gast of the Massachusetts Institute of Technology (MIT). The InSPACE hardware was developed at the NASA Glenn Research Center. The InSPACE samples were delivered to the ISS in November 2002, on the Space Shuttle Endeavour, on Space Station Utilization Flight UF-2/STS113. Operations began on March 31, 2003, with the processing of three different particle size samples at multiple test parameters. This investigation focused on determining the structural organization of MR colloidal aggregates when exposed to a pulsing magnetic field. On Earth, the aggregates take the shape of footballs with spiky tips. This characteristic shape may be influenced by the pull of gravity, which causes most particles initially suspended in the fluid to sediment, (i.e., settle and collect at the

  20. Computing strategy of Alpha-Magnetic Spectrometer experiment

    NASA Astrophysics Data System (ADS)

    Choutko, V.; Klimentov, A.

    2003-04-01

    Alpha-Magnetic Spectrometer (AMS) is an experiment to search in the space for dark matter, missing matter, and antimatter scheduled for being flown on the International Space Station in the fall of year 2005 for at least 3 consecutive years. This paper gives an overview of the AMS software with emphasis on the distributed production system based on client/server approach. We also describe our choice of hardware components to build a processing farm with TByte RAID arrays of IDE disks and highlight the strategies that make our system different from many other experimental systems.

  1. Microstructures in CoPtC magnetic thin films studied by superpositioning of micro-electron diffraction

    PubMed

    Tomita; Sugiyama; Sato; Delaunay; Hayashi

    2000-01-01

    Cross-sectional transmission electron microscopy observation of CoPtC thin films showed that 10 nm sized ultrafine particles of CoPt typically were elongated along the substrate normal. Analysis of the superposition of 40 micro-electron diffraction patterns showed that there was no preferred crystal orientation of CoPt particles. This superpositioning technique can be applied to thin films, whose X-ray diffraction analysis is difficult due to the small size of the crystals. PMID:10791426

  2. Magnetic Field Structure in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Rasmus, A. M.; Clark, M.; Kaplan, E. J.; Nornberg, M. D.; Rahbarnia, K.; Taylor, N. Z.; Forest, C. B.

    2011-10-01

    The Madison Dynamo Experiment(MDE) is expected to spontaneously self-generate a magnetic field in a two vortex flow geometry driven by counter rotating impellers in a 1 m diameter sphere filled with liquid sodium. Prevoiusly an equatorial baffle was installed and has been demonstrated to reduce the largest scale turbulent-eddies. An additonal set of six rotatable baffles have been installed to optimize the helicity of the flow, lowering the critical magnetic Reynolds number. This poster will focus on the spatial structure of the magnetic field associated with the dynamo eigenmodes and the turbulent fluctuations. Singular value decomposition (SVD) and cross correlation analysis between the surface harmonics and internal probes will be used to determine the internal structure associated with each spherical harmonic. Spherical harmonic decomposition is of limited utility when analysing the equatorial array of internal probes as there is a limited angular spread (only one theta value and two phi values), whereas cross correlation and SVD allow the use of time domain data to infer internal modes excited via three-wave couplings. This work is supported by the NSF/DOE partnership in plasma physics.

  3. The magnetized steel and scintillator calorimeters of the MINOS experiment

    SciTech Connect

    Michael, : D.G.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the 'atmospheric neutrino' sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  4. Results of railgun experiments powered by magnetic flux compression generators

    SciTech Connect

    Hawke, R.S.; Brooks, A.L.; Deadrick, F.J.; Scudder, J.K.; Fowler, C.M.; Caird, R.S.; Peterson, D.R.

    1980-10-24

    Researchers from LLNL and LANSL initiated a joint railgun research and development program to explore the potential of electromagnetic railguns to accelerate projectiles to hypervelocities. The effort was intended to determine experimentally the limits of railgun operation, to verify calculations of railgun performance, and to establish a data base at megampere currents. The program has led to the selection of a particular magnetic flux compression generator (MFCG) design for a set of initial experiments and to the design of small- and large-square bore railguns to match the expected MFCG power profile. The bore sizes are 12.7 and 50 mm, respectively. The design of the railguns and the diagnostic and data reduction techniques, followed by the results of eight experiments with the two railgun types are presented.

  5. Results of railgun experiments powered by magnetic flux compression generators

    SciTech Connect

    Hawke, R.S.; Brooks, A.L.; Deadrick, J.; Scudder, J.K.; Fowler, C.M.; Caird, R.S.; Peterson, D.R.

    1981-03-16

    Researchers from the Lawrence Livermore National Laboratory and the Los Alamos National Laboratory initiated a joint railgun research and development program to explore the potential of electromagnetic railguns to accelerate projectiles to hypervelocities. The effort was intended to (1) determine experimentally the limits of railgun operation; (2) verify calculations of railgun performance; and (3) establish a data base at megampere currents. The program has led to the selection of a particular magnetic flux compression generator (MFCG) design for a set of initial experiments and the design of small- and large-square-bore railguns to match the expected MFCG power profile. The bore sizes are 12.7 and 50 mm, respectively. In this paper, the design of the railguns and the diagnostic and data reduction techniques, followed by the results of eight experiments with the two railgun types, are presented.

  6. A Fiber Interferometer for the Magnetized Shock Experiment

    SciTech Connect

    Yoo, Christian

    2012-08-30

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  7. The magnetized steel and scintillator calorimeters of the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Minos Collaboration; Michael, D. G.; Adamson, P.; Alexopoulos, T.; Allison, W. W. M.; Alner, G. J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Arroyo, C.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barker, M. A.; Barnes, P. D.; Barr, G.; Barrett, W. L.; Beall, E.; Bechtol, K.; Becker, B. R.; Belias, A.; Bergfeld, T.; Bernstein, R. H.; Bhattacharya, D.; Bishai, M.; Blake, A.; Bocean, V.; Bock, B.; Bock, G. J.; Boehm, J.; Boehnlein, D. J.; Bogert, D.; Border, P. M.; Bower, C.; Boyd, S.; Buckley-Geer, E.; Byon-Wagner, A.; Cabrera, A.; Chapman, J. D.; Chase, T. R.; Chernichenko, S. K.; Childress, S.; Choudhary, B. C.; Cobb, J. H.; Coleman, S. J.; Cossairt, J. D.; Courant, H.; Crane, D. A.; Culling, A. J.; Damiani, D.; Dawson, J. W.; de Jong, J. K.; Demuth, D. M.; de Santo, A.; Dierckxsens, M.; Diwan, M. V.; Dorman, M.; Drake, G.; Ducar, R.; Durkin, T.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Fackler, O. D.; Falk Harris, E.; Feldman, G. J.; Felt, N.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Gebhard, M.; Godley, A.; Gogos, J.; Goodman, M. C.; Gornushkin, Yu.; Gouffon, P.; Grashorn, E. W.; Grossman, N.; Grudzinski, J. J.; Grzelak, K.; Guarino, V.; Habig, A.; Halsall, R.; Hanson, J.; Harris, D.; Harris, P. G.; Hartnell, J.; Hartouni, E. P.; Hatcher, R.; Heller, K.; Hill, N.; Ho, Y.; Howcroft, C.; Hylen, J.; Ignatenko, M.; Indurthy, D.; Irwin, G. M.; James, C.; Jenner, L.; Jensen, D.; Joffe-Minor, T.; Kafka, T.; Kang, H. J.; Kasahara, S. M. S.; Kilmer, J.; Kim, H.; Kim, M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Koskinen, D. J.; Kostin, M.; Kotelnikov, S. K.; Krakauer, D. A.; Kumaratunga, S.; Ladran, A. S.; Lang, K.; Laughton, C.; Lebedev, A.; Lee, R.; Lee, W. Y.; Libkind, M. A.; Liu, J.; Litchfield, P. J.; Litchfield, R. P.; Longley, N. P.; Lucas, P.; Luebke, W.; Madani, S.; Maher, E.; Makeev, V.; Mann, W. A.; Marchionni, A.; Marino, A. D.; Marshak, M. L.; Marshall, J. S.; McDonald, J.; McGowan, A. M.; Meier, J. R.; Merzon, G. I.; Messier, M. D.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Miyagawa, P. S.; Moore, C. D.; Morfín, J.; Morse, R.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M. J.; Musser, J.; Naples, D.; Nelson, C.; Nelson, J. K.; Newman, H. B.; Nezrick, F.; Nichol, R. J.; Nicholls, T. C.; Ochoa-Ricoux, J. P.; Oliver, J.; Oliver, W. P.; Onuchin, V. A.; Osiecki, T.; Ospanov, R.; Paley, J.; Paolone, V.; Para, A.; Patzak, T.; Pavlović, Ž.; Pearce, G. F.; Pearson, N.; Peck, C. W.; Perry, C.; Peterson, E. A.; Petyt, D. A.; Ping, H.; Piteira, R.; Pla-Dalmau, A.; Plunkett, R. K.; Price, L. E.; Proga, M.; Pushka, D. R.; Rahman, D.; Rameika, R. A.; Raufer, T. M.; Read, A. L.; Rebel, B.; Reyna, D. E.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Ryabov, V. A.; Saakyan, R.; Sanchez, M. C.; Saoulidou, N.; Schneps, J.; Schoessow, P. V.; Schreiner, P.; Schwienhorst, R.; Semenov, V. K.; Seun, S.-M.; Shanahan, P.; Shield, P. D.; Shivane, R.; Smart, W.; Smirnitsky, V.; Smith, C.; Smith, P. N.; Sousa, A.; Speakman, B.; Stamoulis, P.; Stefanik, A.; Sullivan, P.; Swan, J. M.; Symes, P. A.; Tagg, N.; Talaga, R. L.; Terekhov, A.; Tetteh-Lartey, E.; Thomas, J.; Thompson, J.; Thomson, M. A.; Thron, J. L.; Trendler, R.; Trevor, J.; Trostin, I.; Tsarev, V. A.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vakili, M.; Vaziri, K.; Velissaris, C.; Verebryusov, V.; Viren, B.; Wai, L.; Ward, C. P.; Ward, D. R.; Watabe, M.; Weber, A.; Webb, R. C.; Wehmann, A.; West, N.; White, C.; White, R. F.; Wojcicki, S. G.; Wright, D. M.; Wu, Q. K.; Yan, W. G.; Yang, T.; Yumiceva, F. X.; Yun, J. C.; Zheng, H.; Zois, M.; Zwaska, R.; MINOS Collaboration

    2008-11-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  8. Competing magnetic ground states in nonsuperconducting Ba(Fe1-xCrx)2As2 as seen via neutron diffraction

    SciTech Connect

    Marty, Karol J; Christianson, Andrew D; Wang, C H; Matsuda, Masaaki; Cao, Huibo; VanBebber, L. H.; Zarestky, Jerel L; Singh, David J; Sefat, A. S.; Lumsden, Mark D

    2011-01-01

    We present neutron diffraction measurements on single-crystal samples of nonsuperconducting Ba(Fe{sub 1-x}Cr{sub x}){sub 2}As{sub 2} as a function of Cr doping for 0 {le} x {le} 0.47. The average spin-density-wave moment is independent of concentration for x {le} 0.2 and decreases rapidly for x {ge} 0.3. For concentrations in excess of 30% chromium, we find a new competing magnetic phase consistent with G-type antiferromagnetism which rapidly becomes the dominant magnetic ground state. Strong magnetism is observed for all concentrations measured, naturally explaining the absence of superconductivity in the Cr-doped materials.

  9. Disorder-induced magnetic memory: experiments and theories

    SciTech Connect

    Pierce, M.S.; Buechler, C.R.; Sorensen, L.B.; Kevan, S.D.; Jagla,E.A.; Deutsch, J.M.; Mai, T.; Narayan, O.; Davies, J.E.; Liu, K.; Zimanyi, G.T.; Katzgraber, H.G.; Hellwig, O.; Fullerton, E.E.; Fischer,P.; Kortright, J.B.

    2007-01-04

    Beautiful theories of magnetic hysteresis based on randommicroscopic disorder have been developed over the past ten years. Ourgoal was to directly compare these theories with precise experiments. Todo so, we first developed and then applied coherent x-ray specklemetrology to a series of thin multilayer perpendicular magneticmaterials. To directly observe the effects of disorder, we deliberatelyintroduced increasing degrees of disorder into our films. We usedcoherent x rays, produced at the Advanced Light Source at LawrenceBerkeley National Laboratory, to generate highly speckled magneticscattering patterns. The apparently "random" arrangement of the specklesis due to the exact configuration of the magnetic domains in the sample.In effect, each speckle pattern acts as a unique fingerprint for themagnetic domain configuration. Small changes in the domain structurechange the speckles, and comparison of the different speckle patternsprovides a quantitative determination of how much the domain structurehas changed. Our experiments quickly answered one longstanding question:How is the magnetic domain configuration at one point on the majorhysteresis loop related to the configurations at the same point on theloop during subsequent cycles? This is called microscopic return-pointmemory "RPM". We found that the RPM is partial and imperfect in thedisordered samples, and completely absent when the disorder is below athreshold level. We also introduced and answered a second importantquestion: How are the magnetic domains at one point on the major looprelated to the domains at the complementary point, the inversionsymmetric point on the loop, during the same and during subsequentcycles? This is called microscopic complementary-point memory "CPM". Wefound that the CPM is also partial and imperfect in the disorderedsamples and completely absent when the disorder is not present. Inaddition, we found that the RPM is always a little larger than the CPM.We also studied the

  10. Enhanced Nuclear Magnetism: Some Novel Features and Prospective Experiments

    NASA Astrophysics Data System (ADS)

    Abragam, A.; Bleaney, B.

    1983-06-01

    This review of enhanced nuclear magnetism discusses a number of features not previously considered, with special reference to new experiments that use dynamic methods to produce high nuclear polarization, followed by adiabatic demagnetization in the rotating frame (a.d.r.f.) to produce nuclear ordered states that may be investigated by the scattering of beams of neutrons. Section 2. The 'enhancement' of the nuclear moment arises from the electronic magnetization M_I induced through the hyperfine interaction. It is shown that the spatial distribution of M_I is the same as that of M_H, the Van Vleck magnetization induced by an external field, provided that J is a good quantum number. The spatial distributions are not in general the same in Russell-Saunders coupling, e.g. in the 3d group. Section 3. The Bloch equations are extended to include anisotropic nuclear moments. Section 4. The 'truncated' spin Hamiltonian is derived for spin-spin interaction between enhanced moments. Section 5. A general cancellation theorem for second-order processes in spin-lattice relaxation is derived, showing that the intrinsic direct process must be of third order. The relaxation rate obeys an equation similar to that for Kramers electronic ions, but reduced as the fifth power of the resonance frequencies. The relaxation rates observed experimentally (except in very high fields) are ascribed to paramagnetic impurities, so that these can be used to produce dynamic nuclear polarization (d.n.p.). Section 6. The interactions of neutrons with the true nuclear moment μ_I, the Van Vleck moment M_H, the 'pseudonuclear' moment M_I and the 'pseudomagnetic' nuclear moment μ *_I are discussed. It is shown that the four contributions can be observed separately by measurement of the form factor for neutron scattering as a function of temperature and direction of the applied magnetic field. Precession of the neutron spin in the 'pseudomagnetic' field H* is discussed with reference to the case of Ho