Science.gov

Sample records for magnetic dipole electric

  1. Electric dipoles on magnetic monopoles in spin ice.

    PubMed

    Khomskii, D I

    2012-01-01

    The close connection of electricity and magnetism is one of the cornerstones of modern physics. This connection has a crucial role from a fundamental point of view and in practical applications, including spintronics and multiferroic materials. A breakthrough was a recent proposal that in magnetic materials called spin ice the elementary excitations have a magnetic charge and behave as magnetic monopoles. I show that, besides magnetic charge, there should be an electric dipole attached to each magnetic monopole. This opens new possibilities to study and control such monopoles using an electric field. Thus, the electric-magnetic analogy goes even further than usually assumed: whereas electrons have electric charge and magnetic dipole (spin), magnetic monopoles in spin ice, while having magnetic charge, also have an electric dipole. PMID:22713746

  2. Electric and magnetic dipole couplings in split ring resonator metamaterials

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Sun, Guang-Yong; Zhu, Wei-Ren

    2011-11-01

    In this paper, the electric and the magnetic dipole couplings between the outer and the inner rings of a single split ring resonator (SRR) are investigated. We numerically demonstrate that the magnetic resonance frequency can be substantially modified by changing the couplings of the electric and magnetic dipoles, and give a theoretical expression of the magnetic resonance frequency. The results in this work are expected to be conducive to a deeper understanding of the SRR and other similar metamaterials, and provide new guidance for complex metamaterials design with a tailored electromagnetic response.

  3. Magnetic and electric dipoles for physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Heo, Jae Ho

    The magnetic and electric dipole moments of particles have been significant topics to explore physics beyond the standard model. The anomalous magnetic dipole moment of the muon has shown a sizable deviation from the standard model prediction. Many people consider that the deviation comes from new physics beyond the standard model, so it provides a significance for new physics beyond the standard model. We discuss its significance by building a model in the standard model extension. The search for the electric dipole will uncover the violation of one of the fundamental discrete symmetries, CP violation. The charged leptons do not have CP violating interactions in the standard model. A lepton electric dipole moment is induced by the CKM phase in the quark sector via a diagram with a closed quark loop, so any positive detection of an electric dipole moment will imply the presence of a non-CKM CP violating source and lead to the scale of new physics. We consider new CP violating sources, and predictions of the sizable electric dipole moments are discussed. Finally, Dirac fermionic dark matter near the electroweak scale with nonzero dipoles is introduced and its implications are discussed. In addition, QCD radiative corrections to pair annihilation of spin-1 bosonic dark matter is presented and we show that the radiative correction can play a significant role to analyze dark matter phenomenology for the certain models.

  4. Atomic electric dipole moment induced by the nuclear electric dipole moment: The magnetic moment effect

    SciTech Connect

    Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.

    2011-04-15

    We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.

  5. Thermodynamics of a continuous medium with electric and magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Brechet, Sylvain D.; Ansermet, Jean-Philippe

    2013-07-01

    The thermodynamics of an electrically charged, multicomponent fluid with spontaneous electric and magnetic dipoles is analysed in the presence of electromagnetic fields. Taking into account the chemical composition of the current densities and stress tensors leads to three types of irreversible terms: scalars, vectors and pseudo-vectors. The scalar terms account for chemical reactivities, the vectorial terms account for transport and the pseudo-vectorial terms account for relaxation. The linear phenomenological relations, derived from the irreversible evolution, describe notably the Lehmann and electric Lehmann effects, the Debye relaxation of polar molecules and the Landau-Lifshitz relaxation of the magnetisation. This formalism accounts for the thermal and electric magnetisation accumulations and magnetisation waves. It also predicts that a temperature gradient affects the dynamics of magnetic vortices and drives magnetisation waves.

  6. Magnetic Shielding Studies for Electric Dipole Moment Experiments

    NASA Astrophysics Data System (ADS)

    Gould, Harvey; Feinberg, B.

    2014-09-01

    Electric dipole moment experiments are necessarily sensitive to magnetic fields and hence require effective magnetic shielding. In testing the shielding factor of single-layer Permalloy (Carpenter HyMu ``80'' ®) cylinders, we find time-dependent effects lasting tens of minutes to thousands of minutes when a static magnetic field is applied to a Permalloy cylinder that has been demagnetized in a region of near-zero field. A decrease in the magnetic field, measured at the center of the cylinder, of about 20 percent is observed for applied fields ranging from 0.5 A/m to 16 A/m. The latter applied field is comparable to the Earth's magnetic field. Effects that resemble these have been seen in other ferromagnetic materials.

  7. Dynamically fluctuating electric dipole moments in fullerene-based magnets.

    PubMed

    Kambe, Takashi; Oshima, Kokichi

    2014-01-01

    We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed. PMID:25236361

  8. Electron scattering in graphene by impurities with electric and magnetic dipole moments

    NASA Astrophysics Data System (ADS)

    Mal'nev, V. N.; Senbeta, Teshome; Achenefe, Yohannes

    2014-06-01

    The elastic electron scattering by impurities with electric and magnetic dipoles in graphene is studied with the help of Born approximation. Both types of scatterers give the nonzero cross section of backscattering. The scattering by the impurities with electric dipoles is more efficient even comparing to the scattering by the nanomagnets with anomalous magnetic moments. A comparison of the electron scattering transport cross sections by charged impurities and impurities with electric dipole moments shows that they can be comparable. The scattering by the impurities electric dipoles can be important in limiting the electron mobility in graphene along with the Coulomb scattering.

  9. Electric charge is a magnetic dipole when placed in a background magnetic field

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

    2014-02-01

    It is demonstrated, owing to the nonlinearity of QED, that a static charge placed in a strong magnetic field B is a magnetic dipole (besides remaining an electric monopole, as well). Its magnetic moment grows linearly with B as long as the latter remains smaller than the characteristic value of 1.2×1013 G but tends to a constant as B exceeds that value. The force acting on a densely charged object by the dipole magnetic field of a neutron star is estimated.

  10. Modeling and analysis of optical properties of a gold nanoring based on electric and magnetic dipoles.

    PubMed

    Safaee, S M R; Janipour, M; Karami, M A

    2015-10-01

    The optical behavior of a plane-wave excited gold nanoring (NR), originated from localized surface plasmon resonance is modeled by two coupled electric- and magnetic-point dipoles. Considering the extinction cross-section spectrum, it is found that the electric-dipole effect is dominant in comparison with the magnetic-dipole effect although the magnetic-dipole signature is observable in the near-field response of the NR. In addition, the far-field electromagnetic radiation pattern of the NR verifies the corresponding radiation pattern of the point dipoles. The numerical simulation near-field results are in agreement with the proposed electric- and magnetic-dipole theory. PMID:26479602

  11. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.

    PubMed

    van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert

    2016-02-01

    We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle. PMID:26906780

  12. A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment

    NASA Astrophysics Data System (ADS)

    Nouri, N.; Biswas, A.; Brown, M. A.; Carr, R.; Filippone, B.; Osthelder, C.; Plaster, B.; Slutsky, S.; Swank, C.

    2015-12-01

    We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.

  13. Electric dipole moments, cluster metallicity, and the magnetism of rare earth clusters

    NASA Astrophysics Data System (ADS)

    Bowlan, John

    One of the fundamental properties of bulk metals is the cancellation of electric fields. The free charges inside of a metal will move until they find an arrangement where the internal electric field is zero. This implies that the electric dipole moment of a metal particle should be exactly zero, because an electric dipole moment requires a net separation of charge and thus a nonzero internal electric field. This thesis is an experimental study to see if this property continues to hold for tiny subnanometer metal particles called clusters (2--200 atom, R < 1 nm). We have measured the electric dipole moments of metal clusters made from 15 pure elements using a molecular beam electric deflection technique. We find that the observed dipole moments vary a great deal across the periodic table. Alkali metals have zero dipole moments, while transition metals and lanthanides all have dipole moments which are highly size dependent. In most cases, the measured dipole moments are independent of temperature (T = 20--50 K), and when there is a strong temperature dependence this suggests that there is a new state of matter present. Our interpretation of these results are that those clusters which have a nonzero dipole moment are non-metallic, in the sense that their electrons must be localized and prevented from moving to screen the internal field associated with a permanent dipole moment. This interpretation gives insight to several related phenomena and applications. We briefly discuss an example cluster system RhN where the measured electric dipole moments appear to be correlated with a the N2O reactivity. Finally, we discuss a series of magnetic deflection experiments on lanthanide clusters (Pr, Ho, Tb, and Tm). The magnetic response of these clusters is very complex and highly sensitive to size and temperature. We find that PrN (which is non-magnetic in the bulk) becomes magnetic in clusters and Tm N clusters have magnetic moments lower than the atomic value as well as the bulk saturation value implying that the magnetic order in the cluster involves non-collinear or antiferromagnetic order. HoN and TbN show very similar size dependent trends suggesting that these clusters have similar structures.

  14. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems

    NASA Astrophysics Data System (ADS)

    Noginova, N.; Hussain, R.; Noginov, M. A.; Vella, J.; Urbas, A.

    Spontaneous emission of a dipole can be significantly modified in metamaterials, providing opportunities to engineer emission rates, yields, spectra, and angular patterns. To better understand specifics of such modifications for electric and magnetic emitters, we study luminescence of Eu3+ ions placed in a close vicinity of arrays of gold nanostrips. The luminescence is strongly polarized, with the preferable polarization parallel to the direction of strips. Polarization patterns and angular distributions of radiation depend on wavelength, and are different for electric and magnetic dipole transitions. The results are discussed in terms of different coupling of emitters with radiative and high-loss modes.

  15. Magnetic and electric dipole moments of the H 3?1 state in ThO

    NASA Astrophysics Data System (ADS)

    Vutha, A. C.; Spaun, B.; Gurevich, Y. V.; Hutzler, N. R.; Kirilov, E.; Doyle, J. M.; Gabrielse, G.; Demille, D.

    2011-09-01

    The metastable H3?1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.78.010502 78, 010502 (2008)]. The magnetic dipole moment ?H and the molecule-fixed electric dipole moment DH of this state are measured in preparation for a search for the eEDM. The small magnetic moment ?H=8.5(5)10-3?B displays the predicted cancellation of spin and orbital contributions in a 3?1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.

  16. Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays

    NASA Astrophysics Data System (ADS)

    Sersic, Ivana; Frimmer, Martin; Verhagen, Ewold; Koenderink, A. Femius

    2009-11-01

    We present experimental observations of strong electric and magnetic interactions between split ring resonators (SRRs) in metamaterials. We fabricated near-infrared planar metamaterials with different inter-SRR spacings along different directions. Our transmission measurements show blueshifts and redshifts of the magnetic resonance, depending on SRR orientation relative to the lattice. The shifts agree well with simultaneous magnetic and electric near-field dipole coupling. We also find large broadening of the resonance, accompanied by a decrease in effective cross section per SRR with increasing density due to superradiant scattering. Our data shed new light on Lorentz-Lorenz approaches to metamaterials.

  17. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays.

    PubMed

    Sersic, Ivana; Frimmer, Martin; Verhagen, Ewold; Koenderink, A Femius

    2009-11-20

    We present experimental observations of strong electric and magnetic interactions between split ring resonators (SRRs) in metamaterials. We fabricated near-infrared planar metamaterials with different inter-SRR spacings along different directions. Our transmission measurements show blueshifts and redshifts of the magnetic resonance, depending on SRR orientation relative to the lattice. The shifts agree well with simultaneous magnetic and electric near-field dipole coupling. We also find large broadening of the resonance, accompanied by a decrease in effective cross section per SRR with increasing density due to superradiant scattering. Our data shed new light on Lorentz-Lorenz approaches to metamaterials. PMID:20366039

  18. Stark Interference of Electric and Magnetic Dipole Transitions in the A -X Band of OH

    NASA Astrophysics Data System (ADS)

    Schewe, H. Christian; Zhang, Dongdong; Meijer, Gerard; Field, Robert W.; Sartakov, Boris G.; Groenenboom, Gerrit C.; van der Avoird, Ad; Vanhaecke, Nicolas

    2016-04-01

    An experimental method is demonstrated that allows determination of the ratio between the electric (E 1 ) and magnetic (M 1 ) transition dipole moments in the A -X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M 1 -to-E 1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory.

  19. Modelling the magnetic dipole

    NASA Astrophysics Data System (ADS)

    Seleznyova, Kira; Strugatsky, Mark; Kliava, Janis

    2016-03-01

    Three different models of a magnetic dipole, viz., a uniformly magnetised sphere, a circular current loop and a pair of fictitious magnetic charges, have been systematically analysed within the formalism based on the vector potential of the magnetic field. The expressions of the potentials and magnetic fields produced by each dipole model have been obtained. A computer code has been put forward in order to visualise magnetic field lines for different dipole models. It has been shown that the magnetic field outside the uniformly magnetised sphere coincides with that of a point dipole. The other two models give considerably different results at distances small or intermediate in comparison with the dipole size.

  20. Lepton electric and magnetic dipole moments via lepton flavor-violating spin-1 unparticle interactions

    SciTech Connect

    Moyotl, A.; Rosado, A.; Tavares-Velasco, G.

    2011-10-01

    The magnetic dipole moment and the electric dipole moment of leptons are calculated under the assumption of lepton flavor violation (LFV) induced by spin-1 unparticles with both vector and axial-vector couplings to leptons, including a CP-violating phase. The experimental limits on the muon magnetic dipole moment and LFV process, such as the decay l{sub i}{sup -}{yields}l{sub j}{sup -}l{sub k}{sup -}l{sub k}{sup +}, are then used to constrain the LFV couplings for particular values of the unparticle operator dimension d{sub U} and the unparticle scale {Lambda}{sub U}, assuming that LFV transitions between the tau and muon leptons are dominant. It is found that the current experimental constraints favor a scenario with dominance of the vector couplings over the axial-vector couplings. We also obtain estimates for the electric dipole moments of the electron and the muon, which are well below the experimental values.

  1. Electric and magnetic dipoles in the Lorentz and Einstein-Laub formulations of classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2015-01-01

    The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant differences. For example, in the Lorentz approach, the Poynting vector is 𝑺𝑺𝐿𝐿 = 𝜇𝜇0 -1𝑬𝑬 × 𝑩𝑩, and the linear and angular momentum densities of the EM field are 𝓹𝓹𝐿𝐿 = 𝜀𝜀0𝑬𝑬 × 𝑩𝑩 and 𝓛𝓛𝐿𝐿 = 𝒓𝒓 × 𝓹𝓹𝐿𝐿, whereas in the Einstein-Laub formulation the corresponding entities are 𝑺𝑺𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯, 𝓹𝓹𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯⁄𝑐𝑐2, and 𝓛𝓛𝐸𝐸𝐸𝐸= 𝒓𝒓 × 𝓹𝓹𝐸𝐸𝐸𝐸. (Here 𝜇𝜇0 and 𝜀𝜀0 are the permeability and permittivity of free space, 𝑐𝑐 is the speed of light in vacuum, 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, and 𝒓𝒓 is the position vector.) Such differences can be reconciled by recognizing the need for the so-called hidden energy and hidden momentum associated with Amperian current loops of the Lorentz formalism. (Hidden entities of the sort do not arise in the Einstein-Laub treatment of magnetic dipoles.) Other differences arise from over-simplistic assumptions concerning the equivalence between free charges and currents on the one hand, and their bound counterparts on the other. A more nuanced treatment of EM force and torque densities exerted on polarization and magnetization in the Lorentz approach would help bridge the gap that superficially separates the two formulations. Atoms and molecules may collide with each other and, in general, material constituents can exchange energy, momentum, and angular momentum via direct mechanical interactions. In the case of continuous media, elastic and hydrodynamic stresses, phenomenological forces such as those related to exchange coupling in ferromagnets, etc., subject small volumes of materials to external forces and torques. Such matter-matter interactions, although fundamentally EM in nature, are distinct from field-matter interactions in classical physics. Beyond the classical regime, however, the dichotomy that distinguishes the EM field from EM sources gets blurred. An electron's wavefunction may overlap that of an atomic nucleus, thereby initiating a contact interaction between the magnetic dipole moments of the two particles. Or a neutron passing through a ferromagnetic material may give rise to scattering events involving overlaps between the wave-functions of the neutron and magnetic electrons. Such matter-matter interactions exert equal and opposite forces and/or torques on the colliding particles, and their observable effects often shed light on the nature of the particles involved. It is through such observations that the Amperian model of a magnetic dipole has come to gain prominence over the Gilbertian model. In situations involving overlapping particle wave-functions, it is imperative to take account of the particle-particle interaction energy when computing the scattering amplitudes. As far as total force and total torque on a given volume of material are concerned, such particle-particle interactions do not affect the outcome of calculations, since the mutual actions of the two (overlapping) particles cancel each other out. Both Lorentz and Einstein-Laub formalisms thus yield the same total force and total torque on a given volume—provided that hidden entities are properly removed. The Lorentz formalism, with its roots in the Amperian current-loop model, correctly predicts the interaction energy between two overlapping magnetic dipoles 𝒎𝒎1 and 𝒎𝒎2 as being proportional to -𝒎𝒎1 • 𝒎𝒎2. In contrast, the Einstein-Laub formalism, which is ignorant of such particle-particle interactions, needs to account for them separately.

  2. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  3. Magnetic g_e-FACTORS and Electric Dipole Moments of Lanthanide Monoxides: PrO

    NASA Astrophysics Data System (ADS)

    Wang, Hailing; Steimle, Timothy C.; Linton, Colan

    2009-06-01

    The very complex optical spectra of the lanthanide monoxides are caused by the insensitivity of the electronic energies to the numerous possible arrangements of the Ln^{2+} electrons in the 4f and 6s orbitals. Disentangling the complex optical spectra may be aided by using simple Ligand Field Theory(LFT) to establish the global electronic structure for the low-lying electronic states. A comparison of experimentally determined permanent electric dipole moments, μ_{el}, and magnetic dipole moments, μ_{m}, is an effective means of sorting this myriad of states and assessing the quality of LFT and other electronic structure methodologies. Here we report on the determination of the permanent electric dipole moments, μ_{el}, and magnetic g{_e}-factors for the X_{2}(Ω = 4.5) and [18.1] (Ω = 5.5) states of PrO from the analysis of the optical Stark and Zeeman spectra. The g_{e}-factors are compared with those computed using wavefunctions predicted from ligand field theory. The μ_{el} value for the X_{2}(Ω = 4.5) state is compared to ab initio, and density functional predictions and with the experimental values of other lanthanide monoxides. A phenomenological fit of μ_{el} for the entire series of LnO is used to predict μ_{el} for the isovalent actinide monoxide series. Carette, P.,; Hocquet,A. J. Mol. Spectrosc. 131 301, 1988. Dolg, M.; Stoll, H. Theor. Chim. Acta. 75,369, 1989. Wu, Z.; Guan, W. Meng, J. Su, Z. J. Cluster Science 18 444, 2007.

  4. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2015-09-01

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the "best" values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  5. Magnetic and electric dipole moments of the H {sup 3}{Delta}{sub 1} state in ThO

    SciTech Connect

    Vutha, A. C.; Kirilov, E.; DeMille, D.; Spaun, B.; Gurevich, Y. V.; Hutzler, N. R.; Doyle, J. M.; Gabrielse, G.

    2011-09-15

    The metastable H {sup 3}{Delta}{sub 1} state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment {mu}{sub H} and the molecule-fixed electric dipole moment D{sub H} of this state are measured in preparation for a search for the eEDM. The small magnetic moment {mu}{sub H}=8.5(5)x10{sup -3} {mu}{sub B} displays the predicted cancellation of spin and orbital contributions in a {sup 3}{Delta}{sub 1} paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.

  6. Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Afach, S.; Baker, C. A.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Geltenbort, P.; Green, K.; van der Grinten, M. G. D.; Grujic, Z.; Harris, P. G.; Heil, W.; Hélaine, V.; Henneck, R.; Horras, M.; Iaydjiev, P.; Ivanov, S. N.; Kasprzak, M.; Kermaïdic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Naviliat-Cuncic, O.; Pendlebury, J. M.; Piegsa, F. M.; Pignol, G.; Prashant, P. N.; Quéméner, G.; Rebreyend, D.; Ries, D.; Roccia, S.; Schmidt-Wellenburg, P.; Severijns, N.; Weis, A.; Wursten, E.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.

    2015-10-01

    We report on the measurement of a Larmor frequency shift proportional to the electric-field strength for 199Hg atoms contained in a volume permeated with aligned magnetic and electric fields. This shift arises from the interplay between the inevitable magnetic field gradients and the motional magnetic field. The proportionality to electric-field strength makes it apparently similar to an electric dipole moment (EDM) signal, although unlike an EDM this effect is P- and T-conserving. We have used a neutron magnetic resonance EDM spectrometer, featuring a mercury co-magnetometer and an array of external cesium magnetometers, to measure the shift as a function of the applied magnetic field gradient. Our results are in good agreement with theoretical expectations.

  7. Magnetic dipole transitions in crystals

    NASA Astrophysics Data System (ADS)

    Wybourne, Brian G.; Smentek, Lidia; Kȩdziorski, Andrzej

    2004-01-01

    The magnetic dipole transitions in rare earth ions in crystals are described in terms of a model based on the fourth order perturbation theory. An analysis of the perturbing influence of crystal field potential and spin-orbit interaction is made. In addition to intra-shell interactions, inter-shell interactions that include the influence of the excited configurations are analysed. The transition amplitude is defined in terms of effective operators expressed by double unit tensor operators. The radial integrals of all effective operators are defined within the perturbed function approach, therefore the complete radial basis sets of one-electron states of given symmetry are taken into account. Conclusions mainly focus on the possible importance of magnetic dipole transitions in the description of electric dipole 0 ↔ 0 transition due to the so-called borrowing mechanism.

  8. Lithium electric dipole polarizability

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2011-11-15

    The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and quantum electrodynamics corrections. The obtained result {alpha}{sub E}=164.0740(5) a.u. is in good agreement with the less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 3 parts per 10{sup 6} comes from the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered as a benchmark for more general atomic structure methods and may serve as a reference value for the relative measurement of polarizabilities of the other alkali-metal atoms.

  9. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…

  10. How to Introduce the Magnetic Dipole Moment

    ERIC Educational Resources Information Center

    Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the

  11. Magnetic dipole transitions in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2011-03-15

    In homonuclear molecules, such as H{sub 2}, the electric dipole transitions are strongly forbidden, and the transitions between rovibrational states are of the electric quadrupole type. We show, however, that magnetic dipole transitions also take place, although they are significantly weaker. We evaluate the probabilities of such transitions between several of the lowest rotational states and compare them with those of the corresponding electric quadrupole transitions.

  12. Axion induced oscillating electric dipole moments

    SciTech Connect

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  13. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    NASA Astrophysics Data System (ADS)

    Afach, S.; Bison, G.; Bodek, K.; Burri, F.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Grujic, Z.; Hélaine, V.; Henneck, R.; Kasprzak, M.; Kirch, K.; Koch, H.-C.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Meier, M.; Naviliat-Cuncic, O.; Piegsa, F. M.; Pignol, G.; Plonka-Spehr, C.; Prashanth, P. N.; Quéméner, G.; Rebreyend, D.; Roccia, S.; Schmidt-Wellenburg, P.; Schnabel, A.; Severijns, N.; Voigt, J.; Weis, A.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.

    2014-08-01

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5-50 at a bandwidth from 10 - 3 Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  14. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    SciTech Connect

    Afach, S.; Fertl, M.; Franke, B. E-mail: bernhard.lauss@psi.ch; Kirch, K.; Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B. E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G.; Bodek, K.; Zejma, J.; Grujic, Z.; Kasprzak, M.; Weis, A.; Hélaine, V.; Koch, H.-C.; and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  15. Role of electric and magnetic dipole strength functions in the 114Cd(? ,?' ) and 113Cd(n ,? ) reactions

    NASA Astrophysics Data System (ADS)

    Massarczyk, R.; Schramm, G.; Belgya, T.; Schwengner, R.; Beyer, R.; Bemmerer, D.; Elekes, Z.; Grosse, E.; Hannaske, R.; Junghans, A. R.; Kis, Z.; Kgler, T.; Lorenz, C.; Schmidt, K.; Szentmiklsi, L.; Wagner, A.; Weil, J. L.

    2016-01-01

    The distribution of the electromagnetic dipole strength below the neutron separation energy and its influence on the photon distribution after neutron capture were investigated in two experiments for the compound nucleus 114Cd. By measuring the photoabsorption cross section at the bremsstrahlung facility ? ELBE at Helmholtz-Zentrum Dresden-Rossendorf it was possible to deduce the distribution of dipole strength below the neutron separation energy. The de-excitation spectrum after cold-neutron capture in 113Cd was measured at the Budapest Neutron Center. In a combined analysis, the experimentally deduced spectra after photon scattering on 114Cd and the neutron capture in 113Cd were analyzed in terms of electric and magnetic strength functions and nuclear level density with the help of the statistical code ? dex.

  16. Far-zone fields of electric and magnetic dipoles in a stratified laterally isotropic earth and mitigating the airwave in marine CSEM

    NASA Astrophysics Data System (ADS)

    Singer, B. Sh.

    2015-06-01

    Asymptotic expressions are derived for electromagnetic fields induced by arbitrarily oriented electric and magnetic dipoles in a laterally isotropic stratified medium. Considering that the leading terms, which describe the airwave, decay in accordance with the same geometric law whether the source is a horizontal electric or magnetic dipole, it is suggested to use a transmitter, which combines these sources. It is shown that the airwave greatly diminishes if the amplitudes and phases of the horizontal current and magnetic moments of this transmitter are chosen to minimize the far-zone vertical magnetic field. A properly tuned combined transmitter will induce the electromagnetic field with a relatively small transverse electric mode. Raw electromagnetic data acquired with the combined transmitter will be more sensitive to parameters of the resistive reservoir than data acquired using the traditional horizontal electric dipole type of the transmitter.

  17. Magnetization-induced local electric dipoles and multiferroic properties of Ba2CoGe2O7

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.

    2015-06-01

    Ba2CoGe2O7 , crystallizing in the noncentrosymmetric but nonpolar P 4 ¯21m structure, belongs to a special class of multiferroic materials, whose properties are featured by the presence of rotoinversion symmetry. Unlike inversion, the rotoinversion symmetry can be easily destroyed by magnetization. Moreover, due to the specific structural pattern, in which magnetic Co2 + ions are separated by nonmagnetic GeO4 tetrahedra, the magnetic structure of Ba2CoGe2O7 is relatively soft. Altogether, this leads to a rich variety of multiferroic properties, where the magnetic structure of Ba2CoGe2O7 can be easily deformed by the magnetic field, inducing the net electric polarization in the direction depending on the magnetic symmetry of the system, which itself depends on the direction of the magnetic field. In this paper, we show that all these properties can be successfully explained on the basis of a realistic low-energy model, derived from first-principles electronic structure calculations for the magnetically active Co 3 d bands, and the Berry-phase theory of electronic polarization. Particularly, we argue that the magnetization-induced electric polarization in Ba2CoGe2O7 is essentially local and can be expressed via the expectation values

    =Tr [p ̂D ̂] of some dipole matrices p ̂ and the site-diagonal density matrices D ̂ of the magnetic Co atoms. Thus, the basic aspects of multiferroic properties of Ba2CoGe2O7 can be understood already in the atomic limit, where both magnetic anisotropy and magnetoelectric coupling are specified by D ̂. Then, the observable polarization is the macroscopic average over the microscopic electric dipoles

    . We discuss the behavior of interatomic magnetic interactions, the main contributions to the magnetocrystalline anisotropy, and the spin canting in the x y plane, as well as the similarities and differences between the proposed picture and the phenomenological model of spin-dependent p -d hybridization.

  18. electric dipole superconductor in bilayer exciton system

    NASA Astrophysics Data System (ADS)

    Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.

    Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.

  19. CrRb: A molecule with large magnetic and electric dipole moments

    SciTech Connect

    Pavlovic, Z.; Sadeghpour, H. R.; Cote, R.; Roos, B. O.

    2010-05-15

    We report calculations of Born-Oppenheimer potential energy curves of the chromium-rubidium heteronuclear molecule ({sup 52}Cr{sup 87}Rb), and the long-range dispersion coefficient for the interaction between ground state Cr and Rb atoms. Our calculated van der Waals coefficient (C{sub 6}=1770 a.u.) has an expected error of 3%. The ground state {sup 6{Sigma}+} molecule at its equilibrium separation has a permanent electric dipole moment of d{sub e}(R{sub e}=3.34Angstrom)=2.90 D. We investigate the hyperfine and dipolar collisions between trapped Cr and Rb atoms, finding elastic to inelastic cross section ratio of 10{sup 2}-10{sup 3}.

  20. Vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    With the use of a power integral formulation, a study is made of the vlf/elf radiation patterns of arbitrarily oriented electric and magnetic dipoles in a cold lossless multicomponent magnetoplasma. Expressions for the ray patterns are initially developed that apply for arbitrary values of driving frequency, static magnetic-field strength, plasma density, and composition. These expressions are subsequently specialized to vlf/elf radiation in a plasma modeled on the magnetosphere. A series of representative pattern plots are presented for frequencies between the proton and electron gyrofrequencies. These patterns illustrate the fact that focusing effects that arise from the geometrical properties of the refractive index surface tend to dominate the radiation distribution over the entire range from the electron gyrofrequency to 4.6 times the proton gyrofrequency. It is concluded that focusing effects should be of significant importance in the design of a vlf/elf satellite transmitting system in the magnetosphere.

  1. About a peculiar extra U(1): Z{sup '} discovery limit, muon anomalous magnetic moment, and electron electric dipole moment

    SciTech Connect

    Heo, Jae Ho

    2009-08-01

    The model (Lagrangian) with a peculiar extra U(1)[S. M. Barr and I. Dorsner, Phys. Rev. D 72, 015011 (2005); S. M. Barr and A. Khan, Phys. Rev. D 74, 085023 (2006)] is clearly presented. The assigned extra U(1) gauge charges give a strong constraint to build Lagrangians. The Z{sup '} discovery limits are estimated and predicted at the Tevatron and the LHC. The new contributions of the muon anomalous magnetic moment are investigated at one and two loops, and we predict that the deviation from the standard model may be explained. The electron electric dipole moment could also be generated because of the explicit CP-violation effect in the Higgs sector, and a sizable contribution is expected for a moderately sized CP phase [argument of the CP-odd Higgs], 0.1{<=}sin{delta}{<=}1[6 deg. {<=}arg(A){<=}90 deg.].

  2. Excitation of magnetic dipole transitions at optical frequencies.

    PubMed

    Kasperczyk, Mark; Person, Steven; Ananias, Duarte; Carlos, Luis D; Novotny, Lukas

    2015-04-24

    We use the magnetic field distribution of an azimuthally polarized focused laser beam to excite a magnetic dipole transition in Eu^{3+} ions embedded in a Y2O3 nanoparticle. The absence of the electric field at the focus of an azimuthally polarized beam allows us to unambiguously demonstrate that the nanoparticle is excited by the magnetic dipole transition near 527.5 nm. When the laser wavelength is resonant with the magnetic dipole transition, the nanoparticle maps the local magnetic field distribution, whereas when the laser wavelength is resonant with an electric dipole transition, the nanoparticle is sensitive to the local electric field. Hence, by tuning the excitation wavelength, we can selectively excite magnetic or electric dipole transitions through optical fields. PMID:25955052

  3. Dipole relaxation in an electric field

    NASA Astrophysics Data System (ADS)

    Neumann, Richard M.

    1980-07-01

    From Boltzmann's equation, S=k lnΩ, an expression for the orientational entropy, S of a rigid rod (electric dipole) is derived. The free energy of the dipole in an electric field is then calculated as a function of both the dipole's average orientation and the field strength. Application of the equilibrium criterion to the free energy yields the field dependence of the entropy of the dipole. Irreversible thermodynamics is used to derive the general form of the equation of motion of the dipole's average orientation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium.

  4. Classical states of an electric dipole in an external magnetic field: Complete solution for the center of mass and trapped states

    SciTech Connect

    Atenas, Boris; Pino, Luis A. del; Curilef, Sergio

    2014-11-15

    We study the classical behavior of an electric dipole in the presence of a uniform magnetic field. Using the Lagrangian formulation, we obtain the equations of motion, whose solutions are represented in terms of Jacobi functions. We also identify two constants of motion, namely, the energy E and a pseudomomentumC{sup →}. We obtain a relation between the constants that allows us to suggest the existence of a type of bound states without turning points, which are called trapped states. These results are consistent with and complementary to previous results. - Highlights: • Bound states without turning points. • Lagrangian Formulation for an electric dipole in a magnetic field. • Motion of the center of mass and trapped states. • Constants of motion: pseudomomentum and energy.

  5. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  6. Magnetic field modification of optical magnetic dipoles.

    PubMed

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

  7. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…

  8. Magnetic Field of a Dipole and the Dipole-Dipole Interaction

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field

  9. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  10. The electric dipole moment of trimethylene sulphone

    NASA Astrophysics Data System (ADS)

    López, Juan C.; Lister, David G.; Alonso, José L.

    1991-02-01

    Stark effect measurements in trimethylene sulphone have been analysed to give a value of 0.23 D for the μ b electric dipole transition moment connecting the v=O and v=1 states of the ring-puckering vibration. The μ a component of the electric dipole moment has been determined in the v=0 to v=3 states of this vibration.

  11. Electric dipoles on the Bloch sphere

    NASA Astrophysics Data System (ADS)

    Vutha, Amar C.

    2015-03-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics.

  12. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-01

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing. Electronic supplementary information (ESI) available: Near-field distributions in the magnetic field of the splitting rectangle ring and the coupled electric and magnetic dipoles methods. See DOI: 10.1039/c5nr08527f

  13. Magnetic dipole discharges. III. Instabilities

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.

    2013-08-15

    Instabilities in a cross-field discharge around a permanent magnet have been investigated. The permanent magnet serves as a cold cathode and the chamber wall as an anode. The magnet is biased strongly negative and emits secondary electrons due to impact of energetic ions. The electrons outside the sheath are confined by the strong dipolar magnetic field and by the ion-rich sheath surrounding the magnet. The electron energy peaks in the equatorial plane where most ionization occurs and the ions are trapped in a negative potential well. The discharge mechanism is the same as that of cylindrical and planar magnetrons, but here extended to a 3-D cathode geometry using a single dipole magnet. While the basic properties of the discharge are presented in a companion paper, the present focus is on various observed instabilities. The first is an ion sheath instability which oscillates the plasma potential outside the sheath below the ion plasma frequency. It arises in ion-rich sheaths with low electron supply, which is the case for low secondary emission yields. Sheath oscillations modulate the discharge current creating oscillating magnetic fields. The second instability is current-driven ion sound turbulence due to counter-streaming electrons and ions. The fluctuations have a broad spectrum and short correlation lengths in all directions. The third type of fluctuations is spiky potential and current oscillations in high density discharges. These appear to be due to unstable emission properties of the magnetron cathode.

  14. Magnetic dipole oscillations and radiation damping

    NASA Astrophysics Data System (ADS)

    Stump, Daniel R.; Pollack, Gerald L.

    1997-01-01

    We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.

  15. Magnetic dipole interactions in crystals

    DOE PAGESBeta

    Johnston, David

    2016-01-13

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ → i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices,more » 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic transition temperature T m and the ordered moment, magnetic heat capacity, and anisotropic magnetic susceptibility χ versus temperature T . The anisotropic Weiss temperature θ p in the Curie-Weiss law for T>T m is calculated. A quantitative study of the competition between FM and AFM ordering on cubic Bravais lattices versus the demagnetization factor in the absence of FM domain effects is presented. The contributions of Heisenberg exchange interactions and of the MDIs to T m and to θ p are found to be additive, which simplifies analysis of experimental data. Some properties in the magnetically-ordered state versus T are presented, including the ordered moment and magnetic heat capacity and, for AFMs, the dipolar anisotropy of the free energy and the perpendicular critical field. The anisotropic χ for dipolar AFMs is calculated both above and below the Néel temperature T N and the results are illustrated for a simple tetragonal lattice with c/a>1, c/a=1 (cubic), and c/a<1 , where a change in sign of the χ anisotropy is found at c/a=1 . Finally, following the early work of Keffer [Phys. Rev. 87, 608 (1952)], the dipolar anisotropy of χ above T N =69 K of the prototype collinear Heisenberg-exchange-coupled tetragonal compound MnF 2 is calculated and found to be in excellent agreement with experimental single-crystal literature data above 130 K, where the smoothly increasing deviation of the experimental data from the theory on cooling from 130 K to T N is deduced to arise from dynamic short-range collinear c -axis AFM ordering in this temperature range driven by the exchange interactions.« less

  16. Magnetic dipole interactions in crystals

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2016-01-01

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ⃗i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ̂ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c /a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120∘ AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic transition temperature Tm and the ordered moment, magnetic heat capacity, and anisotropic magnetic susceptibility χ versus temperature T . The anisotropic Weiss temperature θp in the Curie-Weiss law for T >Tm is calculated. A quantitative study of the competition between FM and AFM ordering on cubic Bravais lattices versus the demagnetization factor in the absence of FM domain effects is presented. The contributions of Heisenberg exchange interactions and of the MDIs to Tm and to θp are found to be additive, which simplifies analysis of experimental data. Some properties in the magnetically-ordered state versus T are presented, including the ordered moment and magnetic heat capacity and, for AFMs, the dipolar anisotropy of the free energy and the perpendicular critical field. The anisotropic χ for dipolar AFMs is calculated both above and below the Néel temperature TN and the results are illustrated for a simple tetragonal lattice with c /a >1 , c /a =1 (cubic), and c /a <1 , where a change in sign of the χ anisotropy is found at c /a =1 . Finally, following the early work of Keffer [Phys. Rev. 87, 608 (1952), 10.1103/PhysRev.87.608], the dipolar anisotropy of χ above TN=69 K of the prototype collinear Heisenberg-exchange-coupled tetragonal compound MnF2 is calculated and found to be in excellent agreement with experimental single-crystal literature data above 130 K, where the smoothly increasing deviation of the experimental data from the theory on cooling from 130 K to TN is deduced to arise from dynamic short-range collinear c -axis AFM ordering in this temperature range driven by the exchange interactions.

  17. Propagation of magnetic dipole radiation through a medium.

    PubMed

    Arnoldus, Henk F; Xu, Zhangjin

    2016-05-01

    An oscillating magnetic dipole moment emits radiation. We assume that the dipole is embedded in a medium with relative permittivity ϵr and relative permeability μr, and we have studied the effects of the surrounding material on the flow lines of the emitted energy. For a linear dipole moment in free space the flow lines of energy are straight lines, coming out of the dipole. When located in a medium, these field lines curve toward the dipole axis, due to the imaginary part of μr. Some field lines end on the dipole axis, giving a nonradiating contribution to the energy flow. For a rotating dipole moment in free space, each field line of energy flow lies on a cone around the axis perpendicular to the plane of rotation of the dipole moment. The field line pattern is an optical vortex. When embedded in a material, the cone shape of the vortex becomes a funnel shape, and the windings are much less dense than for the pattern in free space. This is again due to the imaginary part of μr. When the real part of μr is negative, the field lines of the vortex swirl around the dipole axis opposite to the rotation direction of the dipole moment. For a near-single-negative medium, the spatial extent of the vortex becomes huge. We compare the results for the magnetic dipole to the case of an embedded electric dipole. PMID:27140885

  18. A Spacecraft Magnetic Dipole Moment Determination Method

    NASA Astrophysics Data System (ADS)

    Strobino, Marco A.

    2002-01-01

    To learn about the magnitude of the magnetic dipole moment of a spacecraft that will orbit under the influence of the Earth magnetic field, is fundamental in terms of predicting the disturbances that will eventually arise from this interaction with the Earth magnetic field due to magnetic forces. Keeping the total residual magnetic dipole moment at tolerable value is of paramount importance to minimize the control subsystem activity regarding the spacecraft attitude correction, as far as this influence is concerned. This paper presents a method for determining the magnetic dipole moment of a spacecraft or a subsystem of it. The magnetic flux density near field measurements are taken in the presence of the Earth magnetic field, in an environment where the induced magnetic field is a significant component of the total measured magnetic field. Once the dipole moment is determined, the result makes it possible to perform the magnetic balance of the satellite. The compensation is implemented by fixing permanent magnets on the spacecraft, with known magnetic moment magnitudes and in opposite directions, with respect to the determined ones, in any of the 3 axis. The method consists in mapping the 3 axis magnetic flux density field around the vertical axis of the spacecraft by monitoring the magnetic field through several fixed probes located in the horizontal equatorial plane. The magnetic field induced on the satellite by the geomagnetic field at the x and y axis are extracted by comparing the flux density at opposite positions of the device under test. The residual magnetic field mapping is promptly obtained at these 2 axis. Regarding the z-axis, one can determine the composition of the residual and magnetic moment induced by the Earth. One can estimate the residual component by considering the homogeneous morphology of the material used to build the spacecraft. The total induced magnetic field would however be in the same orientation as the Earth magnetic field in the test site. Taking this fact into account, allows us to extract with reasonable precision the z-axis induced magnetic field and the residual magnetic dipole component. In order to achieve the goal of performing the magnetic dipole moment determination and compensation, we had to specify a suitable magnetic measuring system composed of 3-axis fluxgate magnetometers with proper resolution and data acquisition to meet our needs. A numerical procedure based on spherical harmonics analysis was implemented in a specific software developed to process the data and evaluate the magnetic dipole moment. This methodology was applied on CBERS satellite, a 2 meters cube structured three-axis stabilized spacecraft, demonstrating its applicability.

  19. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.

    PubMed

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-14

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing. PMID:26814829

  20. Microstrip dipoles on electrically thick substrates

    NASA Astrophysics Data System (ADS)

    Jackson, D. R.; Alexopoulos, N. G.

    1986-01-01

    Certain basic radiation properties of microstrip dipoles on electrically thick substrates are investigated, and a comparison is made with the case of dipoles printed on a dielectric half-space. It is concluded that the microstrip dipole radiation properties become sensitive to substrate loss as the substrate thickness increases, with the half-space properties obtained for an adequate amount of loss. Asymptotic formulas for radiated power and efficiency are given for both the thick substrate and half-space problems, showing the behavior with increasing dielectric constant. The method of moments is used to extend the analysis to center-fed strip dipoles, and a method of improving both the efficiency and gain of a printed antenna by using a superstrate layer is discussed.

  1. Magnetic dipole moments for composite dark matter

    NASA Astrophysics Data System (ADS)

    Aranda, Alfredo; Barajas, Luis; Cembranos, Jose A. R.

    2016-03-01

    We study neutral dark matter candidates with a nonzero magnetic dipole moment. We assume that they are composite states of new fermions related to the strong phase of a new gauge interaction. In particular, invoking a dark flavor symmetry, we analyze the composition structure of viable candidates depending on the assignations of hypercharge and the multiplets associated to the fundamental constituents of the extended sector. We determine the magnetic dipole moments for the neutral composite states in terms of their constituents masses.

  2. Electric dipole moment oscillations in Aharonov-Bohm quantum rings

    NASA Astrophysics Data System (ADS)

    Alexeev, A. M.; Portnoi, M. E.

    2012-06-01

    Magneto-oscillations of the electric dipole moment are predicted and analyzed for a single-electron nanoscale ring pierced by a magnetic flux (an Aharonov-Bohm ring) and subjected to an electric field in the ring's plane. These oscillations are accompanied by periodic changes in the selection rules for interlevel optical transitions in the ring allowing control of polarization properties of the associated terahertz radiation.

  3. Interaction between two magnetic dipoles in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.

    2016-02-01

    A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  4. Quantum electric-dipole liquid on a triangular lattice

    PubMed Central

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F.; Sun, Young

    2016-01-01

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics. PMID:26843363

  5. Quantum electric-dipole liquid on a triangular lattice.

    PubMed

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young

    2016-01-01

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics. PMID:26843363

  6. Microstrip dipole antennas on electrically thick substrates

    NASA Astrophysics Data System (ADS)

    Jackson, D. R.; Alexopoulos, N. G.

    1985-10-01

    Printed circuit antennas are attractive radiation sources both at microwave and millimeter wave frequencies. However, for millimeter wave applications where the substrate is likely to be electrically thick, it is important to understand the basic effects of a thick substrate on radiation characteristics. In particular, it is concluded here that dipole radiation properties become sensitive to loss as the substrate becomes thick. Furthermore, the efficiency of dipoles on thick substrates tends to be low, especially as the dielectric constant of the substrate increases. A method of improving both the efficiency and gain can be used for thick substrates, however, which uses a superstrate layer on top of the antenna.

  7. Neutron electric dipole moment and CP

    SciTech Connect

    Chang, Darwin; Chang, We-Fu; Frank, Mariana; Keung, Wai-Yee

    2000-11-01

    We analyze the neutron electric dipole moment (EDM) in the minimal supersymmetric standard model with explicit R-parity violating terms. The leading contribution to the EDM occurs at the two-loop level and is dominated by the chromoelectric dipole moments of quarks, assuming there is no tree-level mixings between sleptons and Higgs bosons or between leptons and gauginos. Based on the experimental constraint on the neutron EDM, we set limits on the imaginary parts of complex couplings {lambda}{sub ijk}{prime} and {lambda}{sub ijk} due to the virtual b loop or {tau} loop.

  8. Electric dipole moment of light nuclei

    SciTech Connect

    Afnan, Iraj R.; Gibson, Benjamin F.

    2010-07-27

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

  9. Electric dipole moment of light nuclei

    SciTech Connect

    Gibson, Benjamin; Afnan, I R

    2010-01-01

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

  10. Search for the electron electric dipole moment

    SciTech Connect

    De Mille, D.; Bickman, S.; Hamilton, P.; Jiang, Y.; Prasad, V.; Kawall, D.; Paolino, R.

    2006-07-11

    Extensions to the Standard Model (SM) typically include new heavy particles and new mechanisms for CP violation. These underlying phenomena can give rise to electric dipole moments of the electron and other particles. Tabletop-scale experiments used to search for these effects are described. Present experiments are already sensitive to new physics at the TeV scale, and new methods could extend this range dramatically. Such experiments could be among the first to show evidence for physics beyond the SM.

  11. Recent developments in neutron electric dipole moment and related CP violating quantities

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL )

    1990-12-20

    We summarize recent theoretical developments in CP violation related to the neutron electric dipole moment, chromo-electric dipole moments for quarks, chromo-electric dipole moment for gluon, and electric dipole moments for electron and W boson. 31 refs.

  12. Conductor Development for High Field Dipole Magnets

    SciTech Connect

    Scanlan, R.M.; Dietderich, D.R.; Higley, H.C.

    2000-03-01

    Historically, improvements in dipole magnet performance have been paced by improvements in the superconductor available for use in these magnets. The critical conductor performance parameters for dipole magnets include current density, piece length, effective filament size, and cost. Each of these parameters is important for efficient, cost effective dipoles, with critical current density being perhaps the most important. Several promising magnet designs for the next hadron collider or a muon collider require fields of 12 T or higber, i.e. beyond the reach of NbTi. The conductor options include Nb{sub 3}Sn, Nb{sub 3}Al, or the high temperature superconductors. Although these conductors have the potential to provide the combination of performance and cost required, none of them have been developed sufficiently at this point to satisfy all the requirements. This paper will review the status of each class of advanced conductor and discuss the remaining problems that require solutions before these new conductors can be considered as practical. In particular, the plans for a new program to develop Nb{sub 3}Sn and Nb{sub 3}Al conductors for high energy physics applications will be presented. Also, the development of a multikiloamp Bi-2212 cable for dipole magnet applications will be reported.

  13. Magnetic dipole moment of vector mesons

    SciTech Connect

    Castro, G. Lopez; Sanchez, G. Toledo

    1999-10-25

    We analyze the sensitivity to the vector-meson magnetic dipole moment of radiative processes involving the production and decay of vector mesons. These studies assume that vector mesons are stable particles. We then discuss how to incorporate the finite-width effects in the calculations without spoiling the electromagnetic gauge invariance of the scattering amplitudes.

  14. The Case of the Disappearing Magnetic Dipole

    ERIC Educational Resources Information Center

    Gough, W.

    2008-01-01

    The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…

  15. The Case of the Disappearing Magnetic Dipole

    ERIC Educational Resources Information Center

    Gough, W.

    2008-01-01

    The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could

  16. Circular current loops, magnetic dipoles and spherical harmonic analysis.

    USGS Publications Warehouse

    Alldredge, L.R.

    1980-01-01

    Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author

  17. THE SNS RING DIPOLE MAGNETIC FIELD QUALITY.

    SciTech Connect

    WANDERER,P.; JACKSON,J.; JAIN,A.; LEE,Y.Y.; MENG,W.; PAPAPHILIPPOU,I.; SPATARO,C.; TEPIKIAN,S.; TSOUPAS,N.; WEI,J.

    2002-06-03

    The large acceptance and compact size of the Spallation Neutron Source (SNS) ring implies the use of short, large aperture dipole magnets, with significant end field errors. The SNS will contain 32 such dipoles. We report magnetic field measurements of the first 16 magnets. The end field errors have been successfully compensated by the use of iron bumps. For 1.0 GeV protons, the magnets have been shimmed to meet the 0.01% specification for rms variation of the integral field. At 1.3 GeV, the rms variation is 0.036%. The load on the corrector system at 1.3 GeV will be reduced by the use of sorting.

  18. Electric Dipole Theory of Chemical Synaptic Transmission

    PubMed Central

    Wei, Ling Y.

    1968-01-01

    In this paper we propose that chemicals such as acetylcholine are electric dipoles which when oriented and arranged in a large array could produce an electric field strong enough to drive positive ions over the junction barrier of the post-synaptic membrane and thus initiate excitation or produce depolarization. This theory is able to explain a great number of facts such as cleft size, synaptic delay, nonregeneration, subthreshold integration, facilitation with repetition, and the calcium and magnesium effects. It also shows why and how acetylcholine could act as excitatory or inhibitory transmitters under different circumstances. Our conclusion is that the nature of synaptic transmission is essentially electrical, be it mediated by electrical or chemical transmitters. PMID:4296121

  19. Progress towards an electron electric dipole moment measurement with laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal

    This dissertation recounts the progress made towards a measurement of the electron electric dipole moment. The existence of a permanent electric dipole moment of any fundamental particle would imply that both time reversal and parity invariance are violated. If an electric dipole moment were measured within current experimental limits it would be the first direct evidence for physics beyond the standard model. For our measurement we use laser-cooled alkali atoms trapped in a pair of 1D optical lattices. The lattices run through three electric field plates so that the two groups of atoms see opposing electric fields. The measurement chamber is surrounded by a four layer mu-metal magnetic shield. Under electric field quantization, the atoms are prepared in a superposition of magnetic sublevels that is sensitive to the electron electric dipole moment in Ramsey-like spectroscopy. The experiment requires very large electric fields and very small magnetic fields. Engineering a system compatible with both of these goals simultaneously is not trivial. Searches for electric dipole moments using neutral atoms in optical lattices have much longer possible interaction times and potentially give more precise information about the inherent symmetry breaking than other methods. This comes at the cost of a higher sensitivity to magnetic fields and possible sources of error associated with the trapping light. If noise and systematic errors can be controlled to our design specifications our experiment will significantly improve the current experimental limit of the electron electric dipole moment.

  20. Relativistic unitary coupled-cluster study of the electric quadrupole moment and magnetic dipole hyperfine constants of {sup 199}Hg{sup +}

    SciTech Connect

    Sur, Chiranjib; Chaudhuri, Rajat K.

    2007-09-15

    Searching for an accurate optical clock which can serve as a better time standard than the present-day atomic clock is highly demanding from several areas of science and technology. Several attempts have been made to build more accurate clocks with different ion species. In this paper, we discuss the electric quadrupole and hyperfine shifts in the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2}(F=0,m{sub F}=0){r_reversible}5d{sup 10}6s {sup 2}S{sub 1/2}(F=2,m{sub F}=0) clock transition in {sup 199}Hg{sup +}, one of the most promising candidates for next-generation optical clocks. We have applied Fock-space unitary coupled-cluster theory to study the electric quadrupole moment of the 5d{sup 9}6s{sup 2} {sup 2}D{sub 5/2} state and magnetic dipole hyperfine constants of 5d{sup 9}6s{sup 2} {sup 2}D{sub 3/2,5/2} and 5d{sup 10}6s{sup 1} {sup 2}S{sub 1/2} states, respectively, of {sup 199}Hg{sup +}. We have also compared our results with available data. To the best of our knowledge, this is the first time a variant of coupled-cluster theories has been applied to study these kinds of properties of Hg{sup +} and is the most accurate estimate of these quantities to date.

  1. Electric dipole moments (EDM) of ionic atoms

    NASA Astrophysics Data System (ADS)

    Oshima, Sachiko

    2010-03-01

    Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.

  2. Electric dipole moments (EDM) of ionic atoms

    SciTech Connect

    Oshima, Sachiko

    2010-03-15

    Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.

  3. Large muon electric dipole moment from flavor?

    SciTech Connect

    Hiller, Gudrun; Huitu, Katri; Rueppell, Timo; Laamanen, Jari

    2010-11-01

    We study the prospects and opportunities of a large muon electric dipole moment (EDM) of the order (10{sup -24}-10{sup -22}) ecm. We investigate how natural such a value is within the general minimal supersymmetric extension of the standard model with CP violation from lepton flavor violation in view of the experimental constraints. In models with hybrid gauge-gravity-mediated supersymmetry breaking, a large muon EDM is indicative for the structure of flavor breaking at the Planck scale, and points towards a high messenger scale.

  4. THE SUBMILLIMETER AND MILLIMETER EXCESS OF THE SMALL MAGELLANIC CLOUD: MAGNETIC DIPOLE EMISSION FROM MAGNETIC NANOPARTICLES?

    SciTech Connect

    Draine, B. T.; Hensley, Brandon

    2012-09-20

    The Small Magellanic Cloud (SMC) has surprisingly strong submillimeter- and millimeter-wavelength emission that is inconsistent with standard dust models, including those with emission from spinning dust. Here, we show that the emission from the SMC may be understood if the interstellar dust mixture includes magnetic nanoparticles, emitting magnetic dipole radiation resulting from thermal fluctuations in the magnetization. The magnetic grains can be metallic iron, magnetite Fe{sub 3}O{sub 4}, or maghemite {gamma}-Fe{sub 2}O{sub 3}. The required mass of iron is consistent with elemental abundance constraints. The magnetic dipole emission is predicted to be polarized orthogonally to the normal electric dipole radiation if the nanoparticles are inclusions in larger grains. We speculate that other low-metallicity galaxies may also have a large fraction of the interstellar Fe in magnetic materials.

  5. Neutron electric dipole moment and dressed spin

    NASA Astrophysics Data System (ADS)

    Chu, Ping-Han

    The neutron electric dipole moment (EDM) experiment has played a unique role in examining the violation of fundamental symmetries and understanding the nature of electroweak and strong interaction. A non-zero neutron EDM is one of direct evidence for CP and T violation and has the potential to reveal the origin of CP violation and to explore physics beyond the Standard Model. A new neutron EDM experiment will be built to improve a factor of 100 by using a novel technique of ultra-cold neutrons(UCN) in superfluid 4He at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). In the experiment, 3He in the measurement cell will be used as a neutron spin analyzer and a comagnetometer. The absorption between UCN and 3He atoms will emit scintillation light in the superfluid 4He depending on the angle between nuclear spins of two particles. Consequently, the neutron precession frequency can be derived by the scintillation light amplitude. Furthermore, the 3He precession frequency can be measured by the superconducting quantum interference device (SQUID). A dressed-spin technique will also be applied to measure the small precession frequency change due to a non-zero neutron EDM. The dressed-spin technique is used to modify the effective precession frequencies of neutrons and 3He atoms to make them equal by applying an oscillatory field (dressing field) that is perpendicular to the static magnetic field. The phenomenon of the dressed spin for 3He in a cell should be demonstrated before the proposed neutron EDM experiment. A successful measurement over a broad range of the amplitude and frequency of the dressing field was done at the University of Illinois. The observed effects can be explained by using quantum optics formalism. The formalism is diagonalized to solve the solution and confirms the data. In addition, the application of the dressed-spin technique was investigated. The modulation and the feedback loop technique should be considered with the dressed-spin technique for the measurement of the small EDM effect. The modulation of the dressing field arbitrarily changes the relative precession frequency between UCN and 3He. Through the feedback loop, the effective neutron precession frequency can be measured. The corresponding sensitivity of neutron EDM will be estimated. A future neutron EDM experiment could be improved if the dressed-spin technique can be carefully considered and applied.

  6. Revised cross section for RHIC dipole magnets

    SciTech Connect

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    Using the experience gained in designing and building Relativistic Heavy Ion Collider (RHIC) dipole prototype magnets an improved cross section has been developed. Significant features of this design include the use of only three wedges for field shaping and wedge cross sections which are sectors of an annulus. To aid in the understanding of the actual magnets, one has been sectioned, and detailed mechanical and photographic measurements made of the wire positions. The comparison of these measurements with the magnetic field measurements will is presented. 2 refs, 3 figs., 2 tabs.

  7. MUON G-2 AND ELECTRIC DIPOLE MOMENTS IN STORAGE RINGS: POWERFUL PROBES OF PHYSICS BEYOND THE STANDARD MODEL.

    SciTech Connect

    SEMERTZIDIS, Y.K.

    2005-05-23

    We have shown that the study of dipole moments, both magnetic and electric, in storage rings offer unique opportunities in probing physics beyond the Standard Model (SM). Both methods use similar techniques (particle and spin precession in magnetic storage rings). We are currently investigating the systematic errors associated with the resonance electric dipole moment (EDM) method. So far it looks very promising.

  8. Generation of squeezing: magnetic dipoles on cantilevers

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre

    2011-05-01

    We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.

  9. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  10. Electron electric-dipole-moment experiment using electric-field quantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger, Charles T. Jr.; Gould, Harvey

    2007-06-15

    A proof-of-principle electron electric-dipole-moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric-field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal |m{sub F}| and, along with the low ({approx_equal}3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small residual magnetic field have made it possible to induce transitions between states and to perform state preparation, analysis, and detection in regions free of applied static magnetic and electric fields. This experiment demonstrates techniques that may be used to improve the e-EDM limit by two orders of magnitude, but it is not in itself a sensitive e-EDM search, mostly due to limitations of the laser system.

  11. Measurement of electric dipole moments at storage rings

    NASA Astrophysics Data System (ADS)

    Jörg Pretz JEDI Collaboration

    2015-11-01

    The electric dipole moment (EDM) is a fundamental property of a particle, like mass, charge and magnetic moment. What makes this property in particular interesting is the fact that a fundamental particle can only acquire an EDM via {P} and {T} violating processes. EDM measurements contribute to the understanding of the matter over anti-matter dominance in the universe, a question closely related to the violation of fundamental symmetries. Up to now measurements of EDMs have concentrated on neutral particles. Charged particle EDMs can be measured at storage ring. Plans at Forschungszentrum Jülich and results of first test measurements at the COoler SYnchrotron COSY will be presented.

  12. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap (PC), we derive the accelerating electric field above the PC in space-charge-limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the PC and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-P-dot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons.

  13. Electric dipole moments: A global analysis

    NASA Astrophysics Data System (ADS)

    Chupp, Timothy; Ramsey-Musolf, Michael

    2015-03-01

    We perform a global analysis of searches for the permanent electric dipole moments (EDMs) of the neutron, neutral atoms, and molecules in terms of six leptonic, semileptonic, and nonleptonic interactions involving photons, electrons, pions, and nucleons. By translating the results into fundamental charge-conjugation-parity symmetry (CP) violating effective interactions through dimension six involving standard model particles, we obtain rough lower bounds on the scale of beyond the standard model CP-violating interactions ranging from 1.5 TeV for the electron EDM to 1300 TeV for the nuclear spin-independent electron-quark interaction. We show that planned future measurements involving systems or combinations of systems with complementary sensitivities to the low-energy parameters may extend the mass reach by an order of magnitude or more.

  14. Nuclear electric dipole moment of 3He

    SciTech Connect

    Stetcu, Ionel; Friar, J L; Hayes, A C; Liu, C P; Navratil, P

    2008-01-01

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  15. Search for the Neutron Electric Dipole Moment

    SciTech Connect

    Plaster, Brad

    2010-08-04

    Searches for the neutron electric dipole moment (EDM) are motivated by their highly suppressed Standard Model value. The observation of a non-zero signal in the next generation of experiments would point unambiguously to the existence of new physics beyond the Standard Model. Several ongoing efforts worldwide hold the potential for an up to two-orders-of-magnitude improvement beyond the current upper limit on the neutron EDM of 2.9x10{sup -6} e-cm. In this talk, I review the basic measurement principles of neutron EDM searches, then discuss a new experiment to be carried out in the United States at the Spallation Neutron Source with ultracold neutrons and an in-situ '3He''co-magnetometer'.

  16. A search for the electric dipole of the electron

    SciTech Connect

    Abdullah, K.F.

    1989-08-01

    We report a new upper limit on the electric dipole moment (EDM) of the electron of d{sub e} = 0.1 {plus minus} 3.2 {times} 10{sup {minus}26} e-cm. This precision is one hundred times better than any previously published limit and a factor of two better than that of unofficial reports. Recently there has been a great deal of theoretical interest in the possibility of a non-zero electron EDM. Models such as the left-right-symmetric Standard Model and an off-standard'' model with new heavy neutrinos are constrained by the new limit on d{sub e}. A non-zero electron EDM would violate the time reversal and parity space-time symmetries. T-violation was observed in neutral kaon decay and is still not fully explained by the Standard Model. Our experimental technique involves searching for an energy shift, linear in applied electric field, between the m{sub F} = 1 and m{sub F} = {minus}1 magnetic sublevels of the F=1 hyperfine level of the 6{sup 2}P{sub 1/2} ground state of atomic thallium. If the electron has a non-zero EDM, this thallium state will exhibit an atomic electric dipole moment that is roughly 600 times larger. The energy shift is detected with the technique of magnetic resonance spectroscopy, employing separated oscillating fields, applied to an atomic beam of thallium. In the approach, any relative phase-shift between the m{sub F} = {plus minus}1 components of the F=1 wavefunction acquired by the atom as it travels through an electric field is detected through interference with two separate oscillating magnetic fields located on either side of the electric field. The new level of precision is achieved through several improvements on previous experiments including employment of a vertical apparatus, two opposing atomic beams, and optical pumping for atomic state selection and analysis.

  17. Electric dipole moment of the electron and of the neutron

    NASA Technical Reports Server (NTRS)

    Barr, S. M.; Zee, A.

    1990-01-01

    It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.

  18. Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey.

    2007-04-05

    A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.

  19. Magnetic dipole discharges. I. Basic properties

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Teodorescu-Soare, C. T.; Ionita, C.; Schrittwieser, R.

    2013-08-01

    A simple discharge is described which uses a permanent magnet as a cold cathode and the metallic chamber wall as an anode. The magnet's equator is biased strongly negative, which produces secondary electrons due to the impact of energetic ions. The emitted electrons are highly confined by the strong dipolar magnetic field and the negative potential in the equatorial plane of the magnet. The emitted electrons ionize near the sheath and produce further electrons, which drift across field lines to the anode while the nearly unmagnetized ions are accelerated back to the magnet. A steady state discharge is maintained at neutral pressures above 10-3 mbar. This is the principle of magnetron discharges, which commonly use cylindrical and planar cathodes rather than magnetic dipoles as cathodes. The discharge properties have been investigated in steady state and pulsed mode. Different magnets and geometries have been employed. The role of a background plasma has been investigated. Various types of instabilities have been observed such as sheath oscillations, current-driven turbulence, relaxation instabilities due to ionization, and high frequency oscillations created by sputtering impulses, which are described in more detail in companion papers. The discharge has also been operated in reactive gases and shown to be useful for sputtering applications.

  20. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    SciTech Connect

    Buckingham, A. David

    2014-01-07

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection.

  1. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics.

    PubMed

    Thomas, Martin; Kirchner, Barbara

    2016-02-01

    We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method. PMID:26771403

  2. Concentric Titled Double-Helix Dipole Magnets

    SciTech Connect

    Rainer Meinke, Ph.D; Carl Goodzeit; Millicent Ball, Ph.D

    2003-09-05

    The high magnetic fields required for future accelerator magnets can only be achieved with Nb3Sn, other A15 or HTS type conductors, which are brittle and sensitive to mechanical strain. The traditional ''cosine-theta'' dipole configuration has intrinsic drawbacks that make it difficult and expensive to employ such conductors in these designs. Some of these problems involve (1) difficulty in applying enough pre-stress to counteract Lorentz forces without compromising conductor performance; (2) small minimum bend radii of the conductor necessitating the intricate wind-and-react coil fabrication; (3) complex spacers in particular for coil ends and expensive tooling for coil fabrication; (4) typically only 2/3 of the coil aperture can be used with achievable field uniformity.

  3. Development of a Francium Electron Electric Dipole Moment Experiment

    NASA Astrophysics Data System (ADS)

    Munger, Charles T., Jr.; Feinberg, B.; Gould, Harvey; Kalnins, Juris; Nishimura, Hiroshi; Jentschura, Ulrich; Behr, John; Pearson, Matt

    2014-09-01

    An experiment to discover or rule out a permanent electric dipole moment (EDM) of the electron, at a sensitivity well beyond the present experimental limit, is being developed. The experiment will use 211Fr, obtainable online at TRIUMF at rates of 109/s, in a laser-cooled fountain. The experiment is done in free space and free fall, with an electric field, but no applied magnetic field, between optical state preparation and analysis. The relation between an electron EDM and an EDM of a francium atom has recently been recalculated using field theory alone (Blundell, Griffith & Sapirstein, Phys. Rev. D 86, 025023 [2012]), confirming previous atomic physics calculations and removing any ambiguity in the experimental interpretation.

  4. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-07-15

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs.

  5. Pair Cascades and Deathlines in Offset Magnetic Dipole Fields

    NASA Technical Reports Server (NTRS)

    Harding, Alice; Muslimov, Alex

    2010-01-01

    We investigate electron-positron pair cascades in a dipole magnetic field whose axis is offset from the neutron star center. In such a field geometry, the polar cap is displaced from the neutron star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the polar cap of an offset dipole, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset parameter. We find that the pair multiplicity can change dramatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity.

  6. Quantitative analysis on electric dipole energy in Rashba band splitting

    NASA Astrophysics Data System (ADS)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  7. Controlling magnetic dipole transition with magnetic plasmonic structures.

    PubMed

    Feng, Tianhua; Zhou, Ying; Liu, Dahe; Li, Jensen

    2011-06-15

    A plasmonic structure with double gold patches is proposed for enhancing the spontaneous emission of a magnetic dipole transition through a magnetic hot area. A Purcell factor of nearly 2000 can be obtained at optical frequencies together with a low sensitivity in spatial and spectral mismatches between the light emitter and the resonance mode. The associated resonance can be tuned from the visible to the IR frequencies, enabling efficient control of forbidden transitions using plasmonic structures. PMID:21686023

  8. Nuclear Electric Dipole Moment of ^{3}_He

    SciTech Connect

    Stetcu, I.; Liu, C.-P.; Friar, J. L.; Hayes, A. C.; Navratil, P.

    2008-01-01

    A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of ^{3}_He and the expected sensitivity of such a measurement to the underlyng CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {\\pi}-, {\\rho}-, and {\\omega}-exchanges, we find that the pion-exchange contribution dominates. Our results suggest that a measurement of the ^{3}_He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

  9. The search for permanent electric dipole moments

    SciTech Connect

    Kirch, Klaus

    2013-02-13

    Permanent electric dipole moments (EDMs) of fundamental systems with spin - particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new sources of CP violation and often predict sizeable EDMs. EDM searches in different systems are complementary and various efforts worldwide are underway and no finite value has been established yet. The prototype of an EDM search is the pursuit of the EDM of the neutron. It has the longest history and at the same time is at the forefront of present research. The talk aims at giving an overview of the field with emphasis on our efforts within an international collaboration at PSI, nedm.web.psi.ch.

  10. Nuclear Electric Dipole Moment of 3He

    SciTech Connect

    Stetcu, I; P.Liu, C; Friar, J L; Hayes, A C; Navratil, P

    2008-04-08

    A permanent electric dipole moment (EDM) of a physical system would require time-reversal (T) violation, which is equivalent to charge-conjugation-parity (CP) violation by CPT invariance. Experimental programs are currently pushing the limits on EDMs in atoms, nuclei, and the neutron to regimes of fundamental theoretical interest. Nuclear EDMs can be studied at ion storage rings with sensitivities that may be competitive with atomic and neutron measurements. Here we calculate the magnitude of the CP-violating EDM of {sup 3}He and the expected sensitivity of such a measurement to the underlying CP-violating interactions. Assuming that the coupling constants are of comparable magnitude for {pi}-, {rho}-, and {omega}-exchanges, we find that the pion-exchange contribution dominates. Finally, our results suggest that a measurement of the {sup 3}He EDM is complementary to the planned neutron and deuteron experiments, and could provide a powerful constraint for the theoretical models of the pion-nucleon P,T-violating interaction.

  11. Electric dipole polarizability and the neutral skin

    SciTech Connect

    Piechaczek, A.; Nazarewicz, Witold; Reinhard, P.-G.; Agrawal, Bijay K; Colo, Gianluca; Paar, Nils; Roca-Maza, X; Vretenar, Dario

    2012-01-01

    The recent high-resolution measurement of the electric dipole (E1) polarizability {alpha}{sub D} in {sup 208}Pb [A. Tamii et al. Phys. Rev. Lett. 107 062502 (2011)] provides a unique constraint on the neutron-skin thickness of this nucleus. The neutron-skin thickness r{sub skin} of {sup 208}Pb is a quantity of critical importance for our understanding of a variety of nuclear and astrophysical phenomena. To assess the model dependence of the correlation between {alpha}{sub D} and r{sub skin}, we carry out systematic calculations for {sup 208}Pb, {sup 132}Sn, and {sup 48}Ca based on the nuclear density functional theory using both nonrelativistic and relativistic energy density functionals. Our analysis indicates that whereas individual models exhibit a linear dependence between {alpha}{sub D} and r{sub skin}, this correlation is not universal when one combines predictions from a host of different models. By averaging over these model predictions, we provide estimates with associated systematic errors for r{sub skin} and {alpha}{sub D} for the nuclei under consideration. We conclude that precise measurements of r{sub skin} in both {sup 48}Ca and {sup 208}Pb - combined with the recent measurement of {alpha}{sub D} - should significantly constrain the isovector sector of the nuclear energy density functional.

  12. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    NASA Astrophysics Data System (ADS)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  13. Axion Induced Oscillating Electric Dipole Moment of the Electron

    DOE PAGESBeta

    Hill, Christopher T.

    2016-01-12

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10-32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ mα → 0. The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocalmore » contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less

  14. The electric dipole moment of cobalt monoxide, CoO

    SciTech Connect

    Zhuang, Xiujuan; Steimle, Timothy C.

    2014-03-28

    A number of low-rotational lines of the E{sup 4}Δ{sub 7/2} ← X{sup 4}Δ{sub 7/2} (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h{sub 7/2}, and the electron quadrupole parameter, eQq{sub 0}, for the E{sup 4}Δ{sub 7/2}(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ{sup -vector}{sub el}, for the X{sup 4}Δ{sub 7/2} (υ = 0) and E{sup 4}Δ{sub 7/2} (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F′ = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F′ = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  15. Axion induced oscillating electric dipole moment of the electron

    NASA Astrophysics Data System (ADS)

    Hill, Christopher T.

    2016-01-01

    A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ˜(few )×10-32 e -cm , two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta (t )∝ma→0 . The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocal contribution, analogous to the "transverse current" in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schrödinger nonrelativistic formalism, and in Georgi's heavy quark formalism adapted to the "heavy electron" (me≫ma ). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.

  16. Search for a Permanent Electric Dipole Moment of 225Ra

    NASA Astrophysics Data System (ADS)

    Kalita, Mukut Ranjan

    The observation of a permanent electric dipole moment (EDM) in a non-degenerate system would indicate the violation of discrete symmetries of Time reversal (T) or combined application of Charge (C) and Parity (P) symmetry violation through the CPT theorem. The diamagnetic 225Ra atom with nuclear spin I=1/2 is a favorable candidate for an EDM search. Experimental sensitivity to its EDM is enhanced due to its high atomic mass and the increased Schiff moment of its octupole deformed nucleus. An experimental setup is developed where laser cooled neutral radium atoms are collected in a magneto-optical trap (MOT). The collected atoms are transported 1 meter with a far off-resonant optical dipole trap (ODT) and then the atoms are transferred to a second standing-wave ODT in an experimental chamber. The atoms are then optically polarized and allowed to Larmor precess in parallel and antiparallel electric and magnetic fields. The difference between the Larmor precession frequency for parallel and antiparallel fields is experimentally determined to measure the EDM. This thesis is about the first measurement of the EDM of the 225Ra atom where an upper limit of |d(225Ra)| < 5.0 x 10-22 e·cm (95% confidence) is reached. Keywords: Permanent EDM, CP violation, laser cooling and trapping, rare isotopes, radium.

  17. Axion Induced Oscillating Electric Dipole Moment of the Electron

    SciTech Connect

    Hill, Christopher T.

    2015-07-24

    The axion electromagnetic anomaly induces an oscillating electric dipole for the electron of frequency ma and strength ~ 10-32 e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, δta(t) ∝ ma → 0. The general form of the action involves a local contact interaction and a nonlocal contribution that enforces the decoupling limit. We derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (heavy compared to ma). We compute the electric dipole radiation emitted by stationary electrons, and we discuss a number of experimental configurations that may yield detectable signals. Phased array radiators with N2 unit cell magnetic elements may have advantages over resonant cavities that exploit large Q, since we can design toward N2 >> Q.

  18. Distribution of orbital magnetic dipole strength in 156Gd

    NASA Astrophysics Data System (ADS)

    Bohle, D.; Richter, A.; Berg, U. E. P.; Drexler, J.; Heil, R. D.; Kneissl, U.; Metzger, H.; Stock, R.; Fischer, B.; Hollick, H.; Kollewe, D.

    1986-10-01

    Results from high resolution inelastic electron scattering and nuclear resonance fluorescence experiments on 156Gd are combined to yield information on the distribution of orbital magnetic dipole strength. The magnetic dipole strength connected with the new M1 mode is closely centered in five Jπ = 1 + states around 3 MeV excitation energy.

  19. Helical dipole magnets for polarized protons in RHIC

    SciTech Connect

    Syphers, M.; Courant, E.; Fischer, W.

    1997-07-01

    Superconducting helical dipole magnets will be used in the Brookhaven Relativistic Heavy Ion Collider (RHIC) to maintain polarization of proton beams and to perform localized spin rotations at the two major experimental detector regions. Requirements for the helical dipole system are discussed, and magnet prototype work is reported.

  20. Steerable reflect-array antenna formed by loaded electric dipoles

    NASA Astrophysics Data System (ADS)

    Mainwaring, A.; Umnov, A. L.; Shuralev, M. O.; Eltsov, A. U.

    2011-02-01

    A reflect-array antenna with simple design, low cost, and electronically controlled directivity pattern for centimeter wavelength range is proposed. The antenna is based on a mirror formed by loaded electric dipoles.

  1. Summary of dipole field angle measurements on 50mm-aperture SSC Collider Dipole Magnet Protoypes

    SciTech Connect

    Marks, J.; DiMarco, J.; Kuzminski, J.; Ogitsu, T.; Zheng, H.; Bleadon, M.; Kuchnir, M.; Schmidt, E.E.; Yu, Y. |

    1993-05-01

    At several stages in the production of the SSC collider dipole magnets and their final installation the magnetic field angle needs to be known. A simple device using a permanent magnet which aligns itself with the magnetic field had been developed at FNAL to survey the direction of the magnetic dipole field with respect to the vertical (as determined by gravity) along the magnet axis. The determination of the dipole field angle was part of the field quality characterization of a series of thirteen full-length 50mm-aperture SSC Collider Dipole Magnet Prototypes which were built for R&D purposes at FNAL. Measurements with the first developed FAP system were performed on a regular basis through several stages of the magnet production process with the intention of fabrication quality control. Part of these included measurements performed before and after cryogenic testing: these data are summarized here. The performance of a second system with an improved probe and data acquisition system was tested on part of the DCA series as well. This paper includes a presentation of time stability, noise and angular resolution data of this second probe. Another alternative instrument to determine the dipole field angle is the ``mole`` rotating coil system developed at BNL used mainly to measure the multipole components of the magnetic field. In the case of magnet DCA320, a comparison is made between the field angle as determined by the mole and those determined by both of the FAPS.

  2. Limit on the Electron Electric Dipole Moment in Gadolinium-Iron Garnet

    SciTech Connect

    Heidenreich, B.J.; Elliott, O.T.; Charney, N.D.; Virgien, K.A.; Bridges, A.W.; McKeon, M.A.; Peck, S.K.; Krause, D. Jr.; Gordon, J.E.; Hunter, L.R.; Lamoreaux, S.K.

    2005-12-16

    A new method for the detection of the electron electric dipole moment (EDM) using a solid is described. The method involves the measurement of a voltage induced across the solid by the alignment of the sample's magnetic dipoles in an applied magnetic field, H. A first application of the method to GdIG has resulted in a limit on the electron EDM of 5x10{sup -24}e cm, which is a factor of 40 below the limit obtained from the only previous solid-state EDM experiment. The result is limited by the imperfect discrimination of an unexpectedly large voltage that is even upon the reversal of the sample magnetization.

  3. Theoretical Electric Dipole Moments of SiH, GeH and SnH

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Accurate theoretical dipole moments (mu(sub c) have been computed for the X(exp 2)Pi ground states of Si(-)H(+)(0.118 D), Ge(+)H(-)(0.085 D) and Sn(+)H(-)(0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 +/- 0.1 D for GeH recently derived by Brown, Evenson and Sears from the relative intensities of electric and magnetic dipole transitions in the 10 microns spectrum of the X(exp 2)Pi state is seriously questioned.

  4. Theoretical electric dipole moments of SiH, GeH and SnH

    NASA Technical Reports Server (NTRS)

    Pettersson, L. G. M.; Langhoff, S. R.

    1986-01-01

    Accurate theoretical dipole moments have been computed for the X2Pi ground states of Si(-)H(+) (0.118 D), Ge(+)H(-) (0.085 D), and Sn(+)H(-) (0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 + or - 0.1 D for GeH recently derived by Brown, Evenson and Sears (1985) from the relative intensities of electric and magnetic dipole transitions in the 10-micron spectrum of the X2Pi state is seriously questioned.

  5. QED vacuum fluctuations and induced electric dipole moment of the neutron

    SciTech Connect

    Dominguez, C. A.; Falomir, H.; Ipinza, M.; Loewe, M.; Kohler, S.; Rojas, J. C.

    2009-08-01

    Quantum fluctuations in the QED vacuum generate nonlinear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of nonlinearity in QED.

  6. Effects of dipole magnet inhomogeneities on the beam ellipsoid

    SciTech Connect

    Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.

    1986-01-01

    The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields.

  7. Measuring the Electron Electric Dipole Moment Using Ytterbium Fluoride Molecules

    NASA Astrophysics Data System (ADS)

    Smallman, I. J.; Devlin, J. A.; Kara, D. M.; Hudson, J. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.

    2013-06-01

    It is well known that the existence of an electron electric dipole moment (eEDM) would violate time reversal symmetry. The Standard Model predicts an eEDM less than 10^{-38}e.cm, however many popular extensions predict values in the range 10^{-29}-10^{-24}e.cm. Our experiment currently has the potential to measure eEDMs down to approximately 10^{-29}e.cm, making it a precise probe for T-violation and physics beyond the Standard Model. We measure the eEDM by performing a type of separated oscillating field interferometry on a pulsed beam of YbF. The molecules are prepared such that the molecular spin is oriented perpendicular to an applied strong (10kV/cm) electric field. The spin is then allowed to precess about the electric field axis over a 0.5ms interaction period. We measure this angle of rotation, which is directly proportional to the eEDM. In order to measure the eEDM precisely and without error we use a complex switching technique wherein certain parameters, including the applied electric and magnetic fields, are reversed between individual molecular pulses. I will present our current technique and our most recent world leading result.

  8. Reply to "Comment on `Axion Induced Oscillating Electric Dipole Moments' "

    SciTech Connect

    Hill, Christopher T.

    2015-10-19

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, in an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.

  9. Many particle magnetic dipole-dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Cregg, P. J.; Murphy, Kieran; Mardinoglu, Adil; Prina-Mello, Adriele

    2010-08-01

    The implant assisted magnetic targeted drug delivery system of Avilés, Ebner and Ritter is considered both experimentally ( in vitro) and theoretically. The results of a 2D mathematical model are compared with 3D experimental results for a magnetizable wire stent. In this experiment a ferromagnetic, coiled wire stent is implanted to aid collection of particles which consist of single domain magnetic nanoparticles (radius ≈10 nm). In order to model the agglomeration of particles known to occur in this system, the magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included. Simulations based on this mathematical model were performed using open source C++ code. Different initial positions are considered and the system performance is assessed in terms of collection efficiency. The results of this model show closer agreement with the measured in vitro experimental results and with the literature. The implications in nanotechnology and nanomedicine are based on the prediction of the particle efficiency, in conjunction with the magnetizable stent, for targeted drug delivery.

  10. New measurements of the neutron electric dipole moment with the Petersburg Nuclear Physics Institute double-chamber electric dipole moment spectrometer

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.

    2015-03-01

    This article presents results of measuring the neutron electric dipole moment (EDM) made by the Institut Laue-Langevin (ILL) reactor using the Petersburg Nuclear Physics Institute (PNPI) experimental installation. A double-chamber magnetic resonance spectrometer with prolonged holding of ultracold neutrons has been employed. The results determine the upper limit for EDM neutron quantity equal to | d n | < 5.5 × 10-26 e cm at a 90% confidence level.

  11. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  12. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, W.F.

    1983-08-31

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  13. Dual aperture dipole magnet with second harmonic component

    DOEpatents

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  14. Regular and chaotic orbits near a massive magnetic dipole

    NASA Astrophysics Data System (ADS)

    Kovář, Jiří; Kopáček, Ondřej; Karas, Vladimír; Kojima, Yasufumi

    2013-01-01

    Within the framework of Bonnor's exact solution describing a massive magnetic dipole, we study the motion of neutral and electrically charged test particles. In dependence on the Bonnor spacetime parameters, we determine regions enabling the existence of stable circular orbits confined to the equatorial plane and of those levitating above the equatorial plane. Constructing Poincaré surfaces of section and recurrence plots, we also investigate the dynamics of particles moving along general off-equatorial trajectories bound in effective potential wells forming around the stable circular orbits. We demonstrate that the motion in the Bonnor spacetime is not integrable. This extends previous investigations of generalized Störmer's problem into the realm of exact solutions of Einstein-Maxwell equations, where the gravitational and electromagnetic effects play a comparable role on the particle motion.

  15. Electric dipole moments from flavored CP violation in supersymmetry

    SciTech Connect

    Calibbi, L.; Perez, J. Jones; Vives, O.

    2008-10-01

    The so-called supersymmetric flavor and CP problems are deeply related to the origin of flavor and hence to the origin of the standard model Yukawa couplings themselves. We show that realistic SU(3) flavor symmetries with spontaneous CP violation reproducing correctly the standard model Yukawa matrices can simultaneously solve both problems without ad hoc modifications of the supersymmetric model. We analyze the leptonic electric dipole moments and lepton flavor violation processes in these models. We show that the electron electric dipole moment and the decay {mu}{yields}e{gamma} are naturally within reach of the proposed experiments if the sfermion masses are measurable at the LHC.

  16. Antenna impedance measurements in a magnetized plasma. II. Dipole antenna

    SciTech Connect

    Blackwell, David D.; Walker, David N.; Messer, Sarah J.; Amatucci, William E.

    2007-09-15

    This paper presents experimental impedance measurements of a dipole antenna immersed in a magnetized plasma. The impedance was derived from the magnitude and phase of the reflected power using a network analyzer over a frequency range of 1 MHz-1 GHz. The plasma density was varied between 10{sup 7} and 10{sup 10} cm{sup -3} in weakly ({omega}{sub ce}<{omega}{sub pe}) and strongly ({omega}{sub ce}>{omega}{sub pe}) magnetized plasmas in the Space Physics Simulation Chamber at the Naval Research Laboratory. Over this range of plasma conditions the wavelength in the plasma varies from the short dipole limit ({lambda}>>L) to the long dipole limit ({lambda}{approx}L). As with previous impedance measurements, there are two resonant frequencies observed as frequencies where the impedance of the antenna is real. Measurements have indicated that in the short dipole limit the majority of the power deposition takes place at the lower resonance frequency which lies between the cyclotron frequency and the upper hybrid frequency. These measured curves agree very well with the analytic theory for a short dipole in a magnetoplasma. In the long dipole regime, in addition to the short dipole effects still being present, there is resonant energy deposition which peaks at much higher frequencies and correlates to 1/2 and 3/2 wavelength dipole resonances. The wavelengths in the plasma predicted by these resonances are consistent with the antenna radiating R and L-waves.

  17. Gyre-driven decay of the Earth's magnetic dipole.

    PubMed

    Finlay, Christopher C; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades. PMID:26814368

  18. Gyre-driven decay of the Earth's magnetic dipole

    PubMed Central

    Finlay, Christopher C.; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades. PMID:26814368

  19. Gyre-driven decay of the Earth's magnetic dipole

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher C.; Aubert, Julien; Gillet, Nicolas

    2016-01-01

    Direct observations indicate that the magnitude of the Earth's magnetic axial dipole has decreased over the past 175 years; it is now 9% weaker than it was in 1840. Here we show how the rate of dipole decay may be controlled by a planetary-scale gyre in the liquid metal outer core. The gyre's meridional limbs on average transport normal polarity magnetic flux equatorward and reverse polarity flux poleward. Asymmetry in the geomagnetic field, due to the South Atlantic Anomaly, is essential to the proposed mechanism. We find that meridional flux advection accounts for the majority of the dipole decay since 1840, especially during times of rapid decline, with magnetic diffusion making an almost steady contribution generally of smaller magnitude. Based on the morphology of the present field, and the persistent nature of the gyre, the current episode of dipole decay looks set to continue, at least for the next few decades.

  20. Mercury monohalides: suitability for electron electric dipole moment searches.

    PubMed

    Prasannaa, V S; Vutha, A C; Abe, M; Das, B P

    2015-05-01

    Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr, and HgI). We study the influence of the halide anions on E_{eff}, and identify HgBr and HgI as attractive candidates for future electric dipole moment search experiments. PMID:26000997

  1. Properties of the superconductor in accelerator dipole magnets

    NASA Astrophysics Data System (ADS)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  2. Electric dipole moments of charged leptons with sterile fermions

    NASA Astrophysics Data System (ADS)

    Abada, Asmaa; Toma, Takashi

    2016-02-01

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  3. Screening of nucleon electric dipole moments in nuclei

    NASA Astrophysics Data System (ADS)

    Inoue, Satoru; Gudkov, Vladimir; Schindler, Matthias R.; Song, Young-Ho

    2016-05-01

    A partial screening of nucleon electric dipole moments (EDMs) in nuclear systems, which is related to the Schiff mechanism known for neutral atomic systems, is discussed. It is shown that the direct contribution from the neutron EDM to the deuteron EDM is partially screened by about 1% in a zero-range approximation calculation.

  4. Review of Electric Dipole Moments of Fundamental Particles

    SciTech Connect

    Semertzidis, Yannis K.

    2009-08-04

    Electric dipole moments (EDM) experiments are in the research frontier of CP-violation beyond the standard model (SM). EDM experiments set the current limits on CP-violation beyond the SM and are most likely to be the first ones to discover if nature has indeed chosen that path.

  5. Enhancement of the electron electric dipole moment in gadolinium garnets

    SciTech Connect

    Mukhamedjanov, T.N.; Dzuba, V.A.; Sushkov, O.P.

    2003-10-01

    Effects caused by the electron electric dipole moment (EDM) in gadolinium garnets are considered. Experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. Our calculation accounts for both direct and exchange diagrams.

  6. Electric dipole moments of the nucleon and light nuclei

    NASA Astrophysics Data System (ADS)

    Wirzba, Andreas

    2014-08-01

    The electric dipole moments of the nucleon and light ions are discussed and strategies for disentangling the underlying sources of CP violation beyond the Kobayashi-Maskawa quark-mixing mechanism of the Standard Model are indicated. Contribution to “45 years of nuclear theory at Stony Brook: a tribute to Gerald E. Brown”.

  7. Transitional liquid metal duct flow near a magnetic dipole

    NASA Astrophysics Data System (ADS)

    Tympel, Saskia; Boeck, Thomas; Schumacher, Joerg

    2013-11-01

    The flow transformation and the generation of vortex structures by a strong magnetic dipole field in a liquid metal duct flow is studied by means of three-dimensional direct numerical simulations. The dipole is considered as the paradigm for a magnetic obstacle which will deviate the streamlines due to Lorentz forces which act on the fluid elements. The duct is of square cross-section. The dipole is located above the top wall and is centered in spanwise direction. Our model uses the quasi-static approximation which is applicable in the limit of small magnetic Reynolds numbers. The analysis covers the stationary flow regime at small hydrodynamic Reynolds numbers Re as well as the transitional time-dependent regime at higher values which may generate a turbulent flow in the wake of the magnetic obstacle. We present a systematic study of these two basic flow regimes on Re and on the Hartmann number Ha, a measure of the strength of the magnetic dipole field. Furthermore, several orientations and positions of the dipole are compared. The most efficient generation of turbulence at a fixed distance above the duct follows for the spanwise orientation which is caused by a certain configuration of Hartmann layers and reversed flow at the top plate.

  8. Do bacteria have an electric permanent dipole moment?

    PubMed

    Stoylov, S P; Gyurova, A; Georgieva, R; Danova, S

    2008-07-15

    In the scientific literature in the last 40 years, some data for the permanent dipole moment and the electric polarizability of Escherichia coli can be found [S.P. Stoylov, Colloid Electro-Optics - Theory, Techniques and Application, Academic Press, London, 1991]. In this paper the data based mainly on electro-optic investigation is considered as much as some dipolophoretic (most often called dielectrophoretic) studies. Serious grounds are found to doubt the conclusions made for the electric dipole moments of bacteria by one of the authors of this paper (SPS) and by some other researchers. This concerns both the permanent dipole moment and the electric charge dependent polarizabilities of E. coli. Here, along with the discussion of the old experimental data, new experimental data are shown for a strain of E. coli HB101. The conclusions from the analysis of the old and the new experimental data is that they do not provide correct evidence for the presence of a permanent dipole moment. It seems that all statements for the existence of electric permanent dipole moment in bacteria [S.P. Stoylov, Colloid Electro-Optics - Theory, Techniques and Application, Academic Press, London, 1991; S.P. Stoylov, S. Sokerov, I. Petkanchin, N. Ibroshev, Dokl. AN URSS 180 (1968) 1165; N.A. Tolstoy, A.A. Spartakov, A.A. Trusov, S.A. Schelkunova, Biofizika 11 (1966) 453; V. Morris, B. Jennings, J. Chem. Soc. Faraday Trans. II 71 (1975) 1948; V. Morris, B. Jennings, J. Colloid Interface Sci. 55 (1978) 313; S.P. Stoylov, V.N. Shilov, S.S. Dukhin, S. Sokerov, I. Petkanchin, in: S.S. Dukhin (Ed.), Electro-optics of Colloids, Naukova Dumka, Kiev, 1977 (in Russian).] based on electro-optic studies are result of incorrect interpretation. Therefore, they should be further ignored. PMID:18378431

  9. New Experiment to Measure the Electron Electric Dipole Moment

    NASA Technical Reports Server (NTRS)

    Kittle, Melanie

    2003-01-01

    An electron can possess an electric dipole moment (edm) only if time reversal symmetry (T) is violated. No edm of any particle has yet been discovered. CP-violation, equivalent to T-violation by the CPT theorem, does occur in Kaon decays and can be accounted for by the standard model. However, this mechanism leads to an electron edm d(sub e) of the order of 10(exp -38) e cm, whereas the current experimental bound on d(sub e) is about 10(exp -27) e cm. However, well-motivated extensions of the standard model such as supersymmetric theories do predict that de could be as large as the current bound. In addition, CP violation in the early universe is required to explain the preponderance of matter over anti-matter, but the exact mechanism of this CP violation is unclear. For these reasons, we are undertaking a new experimental program to determine de to an improved accuracy of 10(exp -29) e cm. Our experiment will use laser-cooled, trapped Cesium atoms to measure the atomic edm d(sub Cs) that occurs if d(sub e) is not zero. In order to do this, we will measure the energy splitting between the atoms spin states in parallel electric and magnetic fields. The signature of an edm would be a linear dependence of the splitting on the electric field E due to the interaction - d(sub Cs) dot E. Our measurement will be much more sensitive than previous measurements because atoms can be stored in the trap for tens of seconds, allowing for much narrower Zeeman resonance linewidths. Also, our method eliminates the most important systematic errors, proportional to atomic velocity, which have limited previous experiments. In this presentation, we will describe the design of our new apparatus, which is presently under construction. An important feature of our experimental apparatus is that magnetic field noise will be suppressed to a very low value of the order of 1 fT/(Hz)1/2. This requires careful attention to the Johnson noise currents in the chamber, which have not been important in previous experiments. In addition we will present estimates of the limits of the various errors that we expect for our experiment.

  10. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2015-12-01

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM |dn| < 5.5 × 10-26 e cm at the 90% confidence level.

  11. PNPI differential EDM spectrometer and latest results of measurements of the neutron electric dipole moment

    SciTech Connect

    Serebrov, A. P. Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2015-12-15

    In this work, the double chamber magnetic resonance spectrometer of the Petersburg Nuclear Physics Institute (PNPI) designed to measure the neutron electric dipole moment (EDM) is briefly described. A method for long storage of polarized ultracold neutrons in a resonance space with a superposed electric field collinear to the leading magnetic field is used. The results of the measurements carried out on the ILL reactor (Grenoble, France) are interpreted as the upper limit of the value of neutron EDM vertical bar d{sub n} vertical bar < 5.5 × 10{sup –26}e cm at the 90% confidence level.

  12. Electromagnetic braking revisited with a magnetic point dipole model

    NASA Astrophysics Data System (ADS)

    Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.

    2016-04-01

    A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.

  13. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    NASA Astrophysics Data System (ADS)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong

    2015-12-01

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  14. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation.

    PubMed

    Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities. PMID:26696042

  15. The field of the vertical electric dipole immersed in the heterogeneous half-space

    NASA Astrophysics Data System (ADS)

    Barsukov, P. O.; Fainberg, E. B.

    2014-07-01

    The field of the vertical electric dipole (VED) immersed in the heterogeneous conductive halfspace (sea) is analyzed in time domain. In the near field of the source, the amplitudes of the electric and magnetic components of the field are proportional to power 3/2 and power 5/2 of the conductivity of the medium, respectively. After termination of the transmitter pulse, all the VED components decay with time as ˜1/ t 5/2. The possibility of applying the VED field for estimating the electrical properties of the offshore geological sections is demonstrated.

  16. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Aleksandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2016-01-01

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  17. Bistability between equatorial and axial dipoles during magnetic field reversals.

    PubMed

    Gissinger, Christophe; Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel

    2012-06-01

    Numerical simulations of the geodynamo in the presence of heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m=0 axial dipolar field is replaced by a hemispherical magnetic field, dominated by an oscillating m=1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of Earth's dynamo. PMID:23003961

  18. Electric dipole moment in the split supersymmetry models

    SciTech Connect

    Chang, Darwin; Chang, W.-F.; Keung, W.-Y.

    2005-04-01

    We study an important contribution to the electric dipole moment (EDM) of the electron (or quarks) at the two-loop level due to the W-EDM in the recently proposed scenario of split supersymmetry. This contribution is independent of the Higgs mass, and it can enhance the previous estimation of the electron (neutron) EDM by 20-50% (40-90%). Our formula is new in its analytical form.

  19. Current distribution of a VLF electric dipole antenna in the plasmasphere

    NASA Astrophysics Data System (ADS)

    Bell, T. F.; Inan, U. S.; Chevalier, T.

    2006-04-01

    In a recent paper (Inan et al., 2003) a method of remediating enhanced energetic electron fluxes in the radiation belt was proposed in which injection of VLF whistler mode waves from spacecraft within the radiation belts would dramatically increase the pitch angle scattering of the relativistic electrons and cause these particles to be rapidly lost from the belts, thereby mitigating the flux enhancement. The VLF wave transmitting system discussed by Inan et al. (2003) involves electric dipole antennas. One of the most important characteristics of such an antenna is the current distribution along the length of the dipole, since it is this current which ultimately determines the amount of VLF power which can be radiated from the antenna into the plasma. In past work it has been assumed without proof that the dipole current has a triangular distribution. In the present work we determine the dipole antenna current distribution from first principles, constructing an integral equation of the Halln type relating the current distribution to the wave vector potential. In this development it is assumed that the length of the thin cylindrical dipole antenna is small compared to the wavelength of whistler mode waves which propagate parallel to the Earth's magnetic field Bo. In the case of the dipole antenna oriented parallel to Bo, it is found that the assumption of a triangular current distribution is reasonable for antenna lengths up to hundreds of meters. For the case of the antenna perpendicular to Bo, it is found that the current decays exponentially along the antenna from the feed points to the antenna ends. In this case we find the conditions under which a triangular current distribution is still a reasonable approximation. We also give the conditions under which the quasi-static model of Balmain (1964) reasonably describes the electric fields associated with the dipole antenna.

  20. Quantum electrodynamical corrections to a magnetic dipole in general relativity

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2016-03-01

    Magnetized neutron stars are privileged places where strong electromagnetic fields as high as BQ = 4.4 × 109 T exist, giving rise to non-linear corrections to Maxwell equations described by quantum electrodynamics (QED). These corrections need to be included to the general relativistic (GR) description of a magnetic dipole supposed to be anchored in the neutron star. In this paper, these QED and GR perturbations to the standard flat space-time dipole are calculated to the lowest order in the fine structure constant αsf and to any order in the ratio Rs/R where R is the neutron star radius and Rs its Schwarzschild radius. Following our new 3+1 formalism developed in a previous work, we compute the multipolar non-linear corrections to this dipole and demonstrate the presence of a small dipolar ℓ = 1 and hexapolar ℓ = 3 component.

  1. Rheometry Experiment of Electric Dipole Antennas Onboard GEOTAIL

    NASA Astrophysics Data System (ADS)

    Imachi, T.; Yagitani, S.; Nagano, I.; Higashi, R.; Tsutsui, M.; Matsumoto, H.

    2001-12-01

    Two components of ac electric field are measured by two pairs of long dipole antennas onboard GEOTAIL spacecraft; the wire antenna (WANT) and the probe antenna (PANT). The frequency range is from dc to 800 kHz. To obtain accurate values of electric field components, we should evaluate an exact antenna effective length and an accurate antenna impedance of each dipole. The antenna impedance has been measured in situ, and the effective lengths have been so far assumed simply as 50 m, half of their tip-to-tip length of 100 m. However it is not easy to estimate actual effective length especially in the low frequency such as several hundreds Hz or lower. In this study, we conduct an experiment of rheometry. A 1/100 scale model of GEOTAIL and its wire antennas are immersed in a water tank with an applied uniform ac electric field. By actually receiving the ac field with the wire antenna attached to the GEOTAIL model, we evaluate various characteristics of the antenna, such as effective lengths, directivity patterns, and frequency responses. We will report the results of the experiment, and discuss the characteristics of the dipole antennas onboard GEOTAIL.

  2. Reexamination of the standard model nucleon electric dipole moment

    NASA Astrophysics Data System (ADS)

    Seng, Chien-Yeah

    2015-02-01

    The Cabibbo-Kobayashi-Maskawa matrix in the standard model is currently the only experimentally confirmed source of CP violation. The intrinsic electric dipole moment of the nucleon induced by this CP phase via hadronic loop and pole diagrams was studied more than two decades ago, but is subject to various theoretical issues such as the breakdown of chiral power counting and uncertainties in the determination of low energy constants. I carry out an up-to-date re-analysis on both one-loop and pole diagram contributions to the nucleon electric dipole moment based on heavy baryon chiral perturbation theory in a way that preserves power counting, and I redo the determination of the low-energy constants following the results of more recent articles. Combined with an estimation of higher-order contributions, I expect the long-distance contribution to the standard model nucleon electric dipole moment to be approximately (1 ×10-32-6 ×10-32)e cm .

  3. A dipole probe for electric field measurements in the LVPD

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Awasthi, L. M.; Ravi, G.; Kumar, Sunil; Mattoo, S. K.

    2016-01-01

    This paper describes the design, construction, and calibration of an electric dipole probe and demonstrates its capability by presenting results on the measurement of electric field excited by a ring electrode in the Large Volume Plasma Device (LVPD). It measures the electric field in vacuum and plasma conditions in a frequency range lying between 1-10 \\text{MHz} . The results show that it measures electric field ≥slant 2 mV cm-1 for frequency ≤slant 10 \\text{MHz} . The developed dipole probe works on the principle of amplitude modulation. The probe signal is transmitted through a carrier of 418 MHz, a much higher frequency than the available sources of noise present in the surrounding environment. The amplitude modulation concept of signal transmission is used to make the measurement; it is qualitatively better and less corrupted as it is not affected by the errors introduced by ac pickups. The probe is capable of measuring a variety of electric fields, namely (1) space charge field, (2) time varying field, (3) inductive field and (4) a mixed field containing both space charge and inductive fields. This makes it a useful tool for measuring electric fields in laboratory plasma devices.

  4. Self-generated magnetic dipoles in weakly magnetized beam-plasma system.

    PubMed

    Jia, Qing; Mima, Kunioki; Cai, Hong-bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X T

    2015-02-01

    A self-generation mechanism of magnetic dipoles and the anomalous energy dissipation of fast electrons in a magnetized beam-plasma system are presented. Based on two-dimensional particle-in-cell simulations, it is found that the magnetic dipoles are self-organized and play important roles in the beam electron energy dissipation. These dipoles drift slowly in the direction of the return flow with a quasisteady velocity, which depends upon the magnetic amplitude of the dipole and the imposed external magnetic field. This dipole formation provides a mechanism for the anomalous energy dissipation of a relativistic electron beam, which would play an important role in collisionless shock and ion shock acceleration. PMID:25768618

  5. Self-generated magnetic dipoles in weakly magnetized beam-plasma system

    NASA Astrophysics Data System (ADS)

    Jia, Qing; Mima, Kunioki; Cai, Hong-bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X. T.

    2015-02-01

    A self-generation mechanism of magnetic dipoles and the anomalous energy dissipation of fast electrons in a magnetized beam-plasma system are presented. Based on two-dimensional particle-in-cell simulations, it is found that the magnetic dipoles are self-organized and play important roles in the beam electron energy dissipation. These dipoles drift slowly in the direction of the return flow with a quasisteady velocity, which depends upon the magnetic amplitude of the dipole and the imposed external magnetic field. This dipole formation provides a mechanism for the anomalous energy dissipation of a relativistic electron beam, which would play an important role in collisionless shock and ion shock acceleration.

  6. Electric field meter with a dipole antenna in an elliptically polarized electric field

    SciTech Connect

    Tokatly, V.I.

    1994-07-01

    A model of an electric field meter with a dipole antenna is analyzed. The model takes into account the fact that the meter incorporates other elements with a conducting surface in addition to the dipole antenna, viz.: a matching device, a signal cable, and a voltmeter. Alternative forms of the measurement equation are obtained, which differ in the error associated with the currents induced by the measured electric field on the braid of the signal cable and on the casing of the voltmeter. It is shown that this error can be eliminated partially or completely by performing additional measurements with the dipole antenna in different positions.

  7. Analytical Field Calculation of Helical Dipole Magnets for RHIC Snake

    NASA Astrophysics Data System (ADS)

    Tominaka, T.; Okamura, M.; Katayama, T.

    1997-05-01

    The purpose of this paper is to give the analytical expression for the magnetic field of helical dipole magnets, deriving the multipole coefficients. The helical multipole coefficients are defined so that the non-twist helical multipole coefficients is equal to the conventional 2-dimensional multipole coefficients, and the twist dependence of helical multipole coefficients is studied. The expression of the multipoles for the helical coil will be useful for the helical field analysis. The comparison between the analytical and numerical calculations is presented for the simple helical dipole coils. First of all, it is confirmed that the helical multipole coefficients derived from the numerically calculated field are consistent with those calculated analytically, for a infinitely long helical dipole. Secondly, the comparison between the analytical and numerical calculations for a helical dipole with the finite length is made, and the length dependence of helical dipole field is analyzed. In addition, it is also confirmed that the numerical calculation with OPERA-3d/TOSCA is consistent with this analytical calculation.

  8. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  9. Detection, localization and classification of multiple dipole-like magnetic sources using magnetic gradient tensor data

    NASA Astrophysics Data System (ADS)

    Gang, Yin; Yingtang, Zhang; Hongbo, Fan; Zhining, Li; Guoquan, Ren

    2016-05-01

    We have developed a method for automatic detection, localization and classification (DLC) of multiple dipole sources using magnetic gradient tensor data. First, we define modified tilt angles to estimate the approximate horizontal locations of the multiple dipole-like magnetic sources simultaneously and detect the number of magnetic sources using a fixed threshold. Secondly, based on the isotropy of the normalized source strength (NSS) response of a dipole, we obtain accurate horizontal locations of the dipoles. Then the vertical locations are calculated using magnitude magnetic transforms of magnetic gradient tensor data. Finally, we invert for the magnetic moments of the sources using the measured magnetic gradient tensor data and forward model. Synthetic and field data sets demonstrate effectiveness and practicality of the proposed method.

  10. Nucleon electric dipole moments in high-scale supersymmetric models

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi

    2015-11-01

    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP -violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.

  11. Magnetic dipole-dipole sensing at atomic scale using electron spin resonance STM

    NASA Astrophysics Data System (ADS)

    Choi, T.; Paul, W.; Rolf-Pissarczyk, S.; MacDonald, A.; Yang, K.; Natterer, F. D.; Lutz, C. P.; Heinrich, A. J.

    Magnetometry having both high magnetic field sensitivity and atomic resolution has been an important goal for applications in diverse fields covering physics, material science, and biomedical science. Recent development of electron spin resonance STM (ESR-STM) promises coherent manipulation of spins and studies on magnetic interaction of artificially built nanostructures, leading toward quantum computation, simulation, and sensors In ESR-STM experiments, we find that the ESR signal from an Fe atom underneath a STM tip splits into two different frequencies when we position an additional Fe atom nearby. We measure an ESR energy splitting that decays as 1/r3 (r is the separation of the two Fe atoms), indicating that the atoms are coupled through magnetic dipole-dipole interaction. This energy and distance relation enables us to determine magnetic moments of atoms and molecules on a surface with high precision in energy. Unique and advantageous aspects of ESR-STM are the atom manipulation capabilities, which allow us to build atomically precise nanostructures and examine their interactions. For instance, we construct a dice cinque arrangement of five Fe atoms, and probe their interaction and energy degeneracy. We demonstrate the ESR-STM technique can be utilized for quantum magnetic sensors.

  12. Magnetic field properties of Fermilab Energy-Saver dipoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Cooper, W.E.; Gross, D.A.; Michelotti, L.; Schmidt, E.E.; Turkot, F.

    1983-03-01

    At Fermilab we have operated a production line for the fabrication of 901 21 foot long superconducting dipoles for use in the Energy Saver/Doubler. At any one time 772 of these dipoles are installed in the accelerator and 62 in beamlines; the remainder are spares. Magnetic field data are now available for most of these dipoles; in this paper we present some of these data which show that we have been able to maintain the necessary consistency in field quality throughout the production process. Specifically we report harmonic field coefficients, showing that the mechanical design permits substantial reduction of the magnitudes of the normal and skew quadrupole harmonic coefficients; field shape profiles; integral field data; and field angle data.

  13. Decomposing the electromagnetic response of magnetic dipoles to determine the geometric parameters of a dipole conductor

    NASA Astrophysics Data System (ADS)

    Desmarais, Jacques K.; Smith, Richard S.

    2016-03-01

    A novel automatic data interpretation algorithm is presented for modelling airborne electromagnetic (AEM) data acquired over resistive environments, using a single-component (vertical) transmitter, where the position and orientation of a dipole conductor is allowed to vary in three dimensions. The algorithm assumes that the magnetic fields produced from compact vortex currents are expressed as a linear combinations of the fields arising from dipoles in the subsurface oriented parallel to the [1, 0, 0], [0, 1, 0], and [0, 0, 1], unit vectors. In this manner, AEM responses can be represented as 12 terms. The relative size of each term in the decomposition can be used to determine geometrical information about the orientation of the subsurface conductivity structure. The geometrical parameters of the dipole (location, depth, dip, strike) are estimated using a combination of a look-up table and a matrix inverted in a least-squares sense. Tests on 703 synthetic models show that the algorithm is capable of extracting most of the correct geometrical parameters of a dipole conductor when three-component receiver data is included in the interpretation procedure. The algorithm is unstable when the target is perfectly horizontal, as the strike is undefined. Ambiguities may occur in predicting the orientation of the dipole conductor if y-component data is excluded from the analysis. Application of our approach to an anomaly on line 15 of the Reid Mahaffy test site yields geometrical parameters in reasonable agreement with previous authors. However, our algorithm provides additional information on the strike and offset from the traverse line of the conductor. Disparities in the values of predicted dip and depth are within the range of numerical precision. The index of fit was better when strike and offset were included in the interpretation procedure. Tests on the data from line 15701 of the Chibougamau MEGATEM survey shows that the algorithm is applicable to situations where three-component AEM data is available.

  14. Local spin torque induced by electron electric dipole moment in the YbF molecule

    SciTech Connect

    Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo

    2014-10-06

    In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.

  15. Study By Spin Tracking of A Storage Ring For Deuteron Electric Dipole Moment

    SciTech Connect

    Lin, F.; Malitsky, N. D.; Luccio, A. U.; Morse, W. M.; Semertzidis, Y. K.; Onderwater, C. J. G.; Orlov, Y. F.

    2009-08-04

    Spin tracking of polarized deuterons for a proposed experiment to measure a possible Electric Dipole Moment (EDM) of the deuteron was done by using the codes UAL and SPINK. In the experiment the direction of spin polarization will be frozen using crossed electric and magnetic fields. Systematics, in particular the effects of non-linearities of the lattice on a beam with finite emittance and energy spread, have been extensively simulated and the effect of sextuple corrections to increase the spin coherence time has been studied.

  16. A radiation hard dipole magnet coils using aluminum clad copper conductors

    SciTech Connect

    Leonhardt, W.J.

    1989-01-01

    A C-type septum dipole magnet is located 600 mm downstream of the primary target in an external beam line of the AGS. Conventional use of fiber glass/epoxy electrical insulation for the magnet coils results in their failure after a relatively short running period, therefore a radiation hard insulation system is required. This is accomplished by replacing the existing copper conductor with a copper conductor having a thin aluminum skin which is anodized to provide the electrical insulation. Since the copper supports a current density of 59 A/mm/sup 2/, no reduction in cross sectional area can be tolerated. Design considerations, manufacturing techniques, and operating experience of a prototype dipole is presented. 3 refs., 4 figs.

  17. Modeling Barkhausen Noise in magnetic glasses with dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Dubey, Awadhesh K.; Hentschel, H. George E.; Jaiswal, Prabhat K.; Mondal, Chandana; Procaccia, Itamar; Gupta, Bhaskar Sen

    2015-10-01

    Long-ranged dipole-dipole interactions in magnetic glasses give rise to magnetic domains having labyrinthine patterns on the scale of about 1 micron. Barkhausen Noise then results from the movement of domain boundaries which is modeled by the motion of elastic membranes with random pinning. Here we propose that on the nanoscale new sources of Barkhausen Noise can arise. We propose an atomistic model of magnetic glasses in which we measure the Barkhausen Noise which results from the creation of new domains and the movement of domain boundaries on the nanoscale. The statistics of the Barkhausen Noise found in our simulations is in striking disagreement with the expectations in the literature. In fact we find exponential statistics without any power law, stressing the fact that Barkhausen Noise can belong to very different universality classes. In the present model the essence of the phenomenon is the fact that the spin response Green's function is decaying too rapidly for having sufficiently large magnetic jumps. A theory is offered in excellent agreement with the measured data without any free parameter.

  18. Performance of dipole magnets in helium II

    SciTech Connect

    Althaus, R.; Caspi, S.; Gilbert, W.S.; Hassenzahl, W.; Meuser, R.; Rechen, J.; Taylor, C.; Warren, R.

    1981-03-01

    Data from tests in He II of four 1-meter-long magnets are presented. The maximum quench current is increased up to 30 percent, compared with tests in He I. Data from calorimetric measurements of heat generated during cyclic operation are presented. Quenches were induced by heaters placed near the conductor, and the energy required to induce quenches in He II and in He I are compared.

  19. Full length SSC R and D dipole magnet test results

    SciTech Connect

    Strait, J.; Bleadon, M.; Brown, B.C.; Hanft, R.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peoples, J.

    1989-03-01

    Four full scale SSC development dipole magnets have been tested for mechanical and quench behavior. Two are of a design similar to previous magnets but contain a number of improvements, including more uniform coil size, higher pre-stress and a redesigned inner-outer coil splice. One exceeds the SSC operating current on the second quench but the other appears to be limited by damaged superconductor to a lower current. The other two magnets are of alternate designs. One trains erratically and fails to reach a plateau and the other reaches plateau after four quenches. 12 refs., 4 figs.

  20. Construction techniques for short iron-free dipole magnets

    SciTech Connect

    Harvey, A.R.

    1983-11-08

    A method was developed for economically fabricating short, wire-wound, steering magnets with maximum length, cosine-distributed, axial elements. This method utilizes multifunctional tooling to precisely flat-wind two-layer dipole halves that are subsequently reformed and encapsulated into semicylindrical form with confinement of the end turns into thin, half discs normal to the magnet axis. This paper addresses the magnet fabrication in detail, highlighting the inherent quality control features of the tooling, overall construction costs, and contemplated manufacturing enhancements.

  1. Electric dipole induced by gravity in fat branes

    NASA Astrophysics Data System (ADS)

    Dahia, F.; de Albuquerque Silva, Alex; Romero, C.

    2014-05-01

    In the fat brane model, also known as the split fermion model, it is assumed that leptons and baryons live in different hypersurfaces of a thick brane in order to explain the proton stability without invoking any symmetry. It turns out that, in the presence of a gravity source M, particles will see different four-dimensional (4D) geometries and hence, from the point of view of 4D-observers, the equivalence principle will be violated. As a consequence, we show that a hydrogen atom in the gravitational field of M will acquire a radial electric dipole. This effect is regulated by the Hamiltonian Hd=-μAṡδr, which is the gravitational analog of the Stark Hamiltonian, where the electric field is replaced by the tidal acceleration A due to the split of fermions in the brane and the atomic reduced mass μ substitutes the electric charge.

  2. Candidate molecular ions for an electron electric dipole moment experiment

    SciTech Connect

    Meyer, Edmund R.; Bohn, John L.; Deskevich, Michael P.

    2006-06-15

    This paper is a theoretical work in support of a newly proposed experiment [R. Stutz and E. Cornell, Bull. Am. Soc. Phys. 89, 76 (2004)] that promises greater sensitivity to measurements of the electron's electric dipole moment (EDM) based on the trapping of molecular ions. Such an experiment requires the choice of a suitable molecule that is both experimentally feasible and possesses an expectation of a reasonable EDM signal. We find that the molecular ions PtH{sup +} and HfH{sup +} are both suitable candidates in their low-lying {sup 3}{delta} states. In particular, we anticipate that the effective electric fields generated inside these molecules are approximately 73 and -17 GV/cm, respectively. As a byproduct of this discussion, we also explain how to make estimates of the size of the effective electric field acting in a molecule, using commercially available nonrelativistic molecular structure software.

  3. A simple experiment showing the determination of the magnetic dipole moment of a permanent disc magnet

    NASA Astrophysics Data System (ADS)

    Amrani, D.

    2015-03-01

    We propose a simple experiment to estimate the magnetic dipole moment of a neodymium disc magnet. The experiment employs a precision digital balance and a 1 m ruler to measure the force between two magnets. The magnetic dipole moment is determined from the slope of the magnetic force as a function of the inverse fourth power of the distance. The presented activity can be performed by teachers and students at college or university level to enhance their knowledge of the physics of magnetism.

  4. Parity-violating electric-dipole transitions in helium

    NASA Technical Reports Server (NTRS)

    Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.

    1980-01-01

    The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question

  5. Reappraisal of the Electric Dipole Moment Enhancement Factor for Thallium

    SciTech Connect

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2011-05-20

    The electric dipole moment (EDM) enhancement factor of atomic Tl is of considerable interest as it has been used in determining the most accurate limit on the electron EDM to date. However, its value varies from -179 to -1041 in different approximations. In view of the large uncertainties associated with many of these calculations, we perform an accurate calculation employing the relativistic coupled-cluster theory and obtain -466, which in combination with the most accurate measurement of Tl EDM [Phys. Rev. Lett. 88, 071805 (2002)] yields a new limit for the electron EDM: |d{sub e}|<2.0x10{sup -27}e cm.

  6. Status and Prospects of Electric Dipole Moment Measurements

    NASA Astrophysics Data System (ADS)

    Cianciolo, Vince

    2015-10-01

    Precision electric dipole moment (EDM) measurements are extremely sensitive to non-Standard Model sources of charge/parity violation required for generation of the observed matter/anti-matter asymmetry in the universe. Many experiments in many systems are underway. In a half-hour talk it is difficult to do more than scratch the surface, but I will attempt to give a high-level overview on the various ongoing efforts. Research sponsored by the Office of Nuclear Physics, US Department of Energy.

  7. T violation in radiative β decay and electric dipole moments

    NASA Astrophysics Data System (ADS)

    Dekens, W.; Vos, K. K.

    2015-12-01

    In radiative β decay, T violation can be studied through a spin-independent T-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM) sources of T-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs). As a consequence, the manifestations of the T-odd BSM physics in radiative β decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent T-odd correlation in radiative β decay.

  8. The permanent electric dipole moment of chromium monoxide

    NASA Technical Reports Server (NTRS)

    Steimle, Timothy C.; Nachman, David F.; Shirley, Jeffrey E.; Bauschlicher, Charles W.; Langhoff, Stephen R.

    1989-01-01

    The permanent electric dipole moments for the X 5Pi and B 5pi states of gas-phase CrO have been experimentally determined using the sub-Doppler optical technique of intermodulated fluorescence spectroscopy in conjunction with the Stark effect. The measured values are 3.88 + or - 0.13 and 4.1 + or - 1.8 D for the X and B states, respectively. The theoretical values determined for the X state using multireference CI iterative-natural-orbital and finite-field calculations are in excellent agreement with the experimental value.

  9. Equilibrium values and dynamics of the net magnetic moment of a system of magnetic dipoles

    SciTech Connect

    Shutyi, A. M.

    2010-02-15

    Equilibrium states of different systems formed by coupled spherical bodies with dipole magnetic moments have been investigated using a numerical analysis. The bistable states and the corresponding values of the net magnetic moment are determined for a number of planar and three-dimensional systems of dipoles, and the conditions providing the existence of orientational configurations of coupled dipoles involved in the bistability are analyzed. The disturbances of the magnetic moment due to the quasi-static passage of an additional dipole and the dynamic modes excited by a homogeneous alternating magnetic field and represented by periodic, quasi-periodic, and chaotic oscillations of the magnetic moment of the system are considered for several types of systems. The bifurcation diagrams of the dynamic modes are constructed, and the specific features typical of the systems under consideration are revealed.

  10. Point dipole as a magnetic obstacle in liquid metal duct flow

    NASA Astrophysics Data System (ADS)

    Tympel, Saskia; Boeck, Thomas; Krasnov, Dmitry; Schumacher, Jörg

    2011-11-01

    Lorentz force velocimetry is a new contactless technique to measure the velocities of hot and agressive conductiong liquids. The measurement of the Lorentz force on the magnet is highly sensitive to the velocity profile that is influenced by the magnetic field. Thus the knowlegde of the flow transformation and the influence of an inhomogeneous local magnetic field on liquid metal flow is essential for obtaining velocity information from the measured forces. We consider liquid metal flow in a square duct with electrically insulating walls under the influence of a magnetic point dipole using three-dimensional direct numerical simulations with a finite-difference method. The dipole acts as a magnetic obstacle. A wide range of parameters affects the created wake. In this canonical setting, we study the modification of the flow for different Hartmann and Reynolds numbers. We observe a strong dependence of the magnetic obstacle effect and the corresponding Lorentz force on the orientation of the dipole as well as on its position. The authors acknowledge the support of the Deutsche Forschungsgemeinschaft.

  11. New experimental limit on the electric dipole moment of the electron in a paramagnetic insulator

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Liu, C.-Y.; Lamoreaux, S. K.; Visser, G.; Kunkler, B.; Matlashov, A. N.; Long, J. C.; Reddy, T. G.

    2015-05-01

    We report results of an experimental search for the intrinsic electric dipole moment of the electron (eEDM) using a solid-state technique. The experiment employs a paramagnetic, insulating gadolinium gallium garnet (GGG) that has a large magnetic response at low temperatures. The presence of the eEDM would lead to a small but nonzero magnetization as the GGG sample is subjected to a strong electric field. We search for the resulting Stark-induced magnetization with a sensitive magnetometer. Recent progress on the suppression of several sources of background allows the experiment to run free of spurious signals at the level of the statistical uncertainties. We report our first limit on the eEDM of (-5.57 ±7.98 ±0.12 )×10-25 e cm with 5 days of data averaging.

  12. Dipole-dipole interaction and its concentration dependence of magnetic fluid evaluated by alternating current hysteresis measurement

    NASA Astrophysics Data System (ADS)

    Ota, Satoshi; Yamada, Tsutomu; Takemura, Yasushi

    2015-05-01

    Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic tools, such as for treating hyperthermia and in magnetic particle imaging, respectively. Magnetic relaxation is one of the heating mechanisms of MNPs. Brownian and Néel relaxation times are calculated conventional theories; however, the influence of dipole-dipole interactions has not been considered in conventional models. In this study, water-dispersed MNPs of different concentrations and MNPs fixed with an epoxy bond were prepared. dc and ac hysteresis loops for each sample were measured. With respect to both dc and ac hysteresis loops, magnetization decreased with the increase in MNP concentration because of inhibition of magnetic moment rotation due to dipole-dipole interactions. Moreover, intrinsic loss power (ILP) was estimated from the areas of the ac hysteresis loops. The dependence of ILP on the frequency of the magnetic field was evaluated for each MNP concentration. The peak frequency of ILP increased with the decrease in MNP concentration. These peaks were due to Brownian relaxation, as they were not seen with the fixed sample. This indicates that the Brownian relaxation time became shorter with lower MNP concentration, because the weaker dipole-dipole interactions with lower concentrations suggested that the magnetic moments could rotate more freely.

  13. Probing magnetic and electric optical responses of silicon nanoparticles

    SciTech Connect

    Permyakov, Dmitry; Sinev, Ivan; Markovich, Dmitry; Samusev, Anton; Belov, Pavel; Ginzburg, Pavel; Valuckas, Vytautas; Kuznetsov, Arseniy I.; Luk'yanchuk, Boris S.; Miroshnichenko, Andrey E.; Neshev, Dragomir N.; Kivshar, Yuri S.

    2015-04-27

    We study experimentally both magnetic and electric optically induced resonances of silicon nanoparticles by combining polarization-resolved dark-field spectroscopy and near-field scanning optical microscopy measurements. We reveal that the scattering spectra exhibit strong sensitivity of electric dipole response to the probing beam polarization and attribute the characteristic asymmetry of measured near-field patterns to the excitation of a magnetic dipole mode. The proposed experimental approach can serve as a powerful tool for the study of photonic nanostructures possessing both electric and magnetic optical responses.

  14. Magnetic dipole sequences in {sup 83}Rb

    SciTech Connect

    Schwengner, R.; Schnare, H.; Wagner, A.; Doenau, F.; Rainovski, G.; Frauendorf, S.; Jungclaus, A.; Hausmann, M.; Lieb, K. P.; Yordanov, O.; Napoli, D. R.; De Angelis, G.; Axiotis, M.; Marginean, N.; Brandolini, F.; Alvarez, C. Rossi

    2009-10-15

    High-spin states in {sup 83}Rb were populated in the reaction {sup 11}B+{sup 76}Ge at beam energies of 45 and 50 MeV. {gamma} rays were detected with the spectrometer GASP. The level scheme of {sup 83}Rb was extended up to 13.9 MeV. Mean lifetimes of 23 levels were determined using the Doppler-shift-attenuation method. Among the bands newly established is a sequence comprising intense M1 transitions and crossover E2 transitions. This sequence turns out to be irregular and thus shows that magnetic rotation as observed in the neighboring odd-odd isotopes is not realized in this odd-even nuclide. Excited states in {sup 83}Rb were interpreted in terms of the shell model using the model space {pi}(0f{sub 5/2},1p{sub 3/2},1p{sub 1/2},0g{sub 9/2}) {nu}(1p{sub 1/2},0g{sub 9/2}). The configurations predicted for the negative-parity M1 sequence reproduce the M1 transition strengths fairly well.

  15. Electric dipole polarizabilities of hydrogen and helium isotopes

    SciTech Connect

    Stetcu, I; Friar, J; Hayes, A C; Quaglioni, S

    2009-01-01

    The electric dipole polarizabilities of {sup 3}H, {sup 3}He, and {sup 4}He are calculated directly using the Schroedinger equation with the latest generation of two- and three-nucleon interactions. These quantities are necessary in order to obtain accurate nuclear-polarization corrections for transitions involving S-waves in one-and two-electron atoms. Our results are compared to previous results, and it is shown that direct calculations of the electric polarizability of {sup 4}He using modern nuclear potentials are smaller than published values calculated using experimental photoabsorption data. The status of this topic is assessed in the context of precise measurements of transitions in one- and two-electron atoms.

  16. Influence of magnetization on field quality in cosine-theta and block design dipole magnets wound with coated conductors

    NASA Astrophysics Data System (ADS)

    Sogabe, Yusuke; Sakashita, Masaki; Nakamura, Taketsune; Ogitsu, Toru; Amemiya, Naoyuki

    2016-04-01

    We carried out electromagnetic field analyses on the cross sections of two dipole magnets wound with coated conductors. One was a cosine-theta magnet, and the other was a block design magnet. The electric field-current density characteristics of the coated conductors were formulated using a percolation depinning model based on the measured voltage-current characteristics. We calculated the temporal evolutions of the current-density distributions in all the turns of each magnet and used these evolutions to calculate the multipole components of the magnetic field. We compared the two magnets, which differed in coated-conductor orientations, regarding the influence of coated-conductor magnetization on the field qualities.

  17. Electric dipole moment searches: Effect of linear electric field frequency shifts induced in confined gases

    SciTech Connect

    Barabanov, A. L.; Golub, R.; Lamoreaux, S. K.

    2006-11-15

    The search for particle electric dipole moments (EDM's) represents a most promising way to search for physics beyond the standard model. A number of groups are planning a new generation of experiments using stored gases of various kinds. In order to achieve the target sensitivities it will be necessary to deal with the systematic error resulting from the interaction of the well-known v-vectorxE-vector field with magnetic field gradients which is often referred to as the geometric phase effect [E. D. Commins, Am. J. Phys. 59, 1077 (1991); J. M. Pendlebury et al., Phys. Rev. A 70, 032102 (2004)]. This interaction produces a frequency shift linear in the electric field, mimicking an EDM. In this work we introduce an analytic form for the velocity autocorrelation function which determines the velocity-position correlation function which in turn determines the behavior of the frequency shift [S. K. Lamoreaux and R. Golub, Phys. Rev A 71, 032104 (2005)] and show how it depends on the operating conditions of the experiment. We also discuss some additional issues.

  18. Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…

  19. Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly

  20. Strong dependence of ultracold chemical rates on electric dipole moments

    SciTech Connect

    Quemener, Goulven; Bohn, John L.

    2010-02-15

    We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d{sup 4(L+(1/2))} where L>0 is the orbital angular-momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d{sup 6}. We also apply this model to pure two-dimensional collisions and find that chemical rates vanish as d{sup -4} for ultracold indistinguishable fermions. This model provides a quick and intuitive way to estimate chemical rate coefficients of reactions occuring with high probability.

  1. Electric dipole radiation at VLF in a uniform warm magneto-plasma.

    NASA Technical Reports Server (NTRS)

    Wang, T. N. C.; Bell, T. F.

    1972-01-01

    Use of a linear full electromagnetic wave theory to calculate the input impedance of an electric antenna embedded in a uniform, lossless, unbounded warm magnetoplasma, which is assumed to consist of warm electrons and cold ions. In calculating the dipole radiation resistance for the thermal modes and the thermally modified whistler mode the analysis includes the finite temperature only for the electrons. In deriving the formal solution of the warm plasma dipole input impedance a full-wave analysis is used and two antenna orientations are considered, parallel and perpendicular to the static magnetic field. A general dispersion equation governing the modes of propagation is derived and a detailed analysis is made of the propagation characteristics of these modes.

  2. Magnetic dipole super-resonances and their impact on mechanical forces at optical frequencies.

    PubMed

    Liberal, Iigo; Ederra, Iigo; Gonzalo, Ramn; Ziolkowski, Richard W

    2014-04-01

    Artificial magnetism enables various transformative optical phenomena, including negative refraction, Fano resonances, and unconventional nanoantennas, beamshapers, polarization transformers and perfect absorbers, and enriches the collection of electromagnetic field control mechanisms at optical frequencies. We demonstrate that it is possible to excite a magnetic dipole super-resonance at optical frequencies by coating a silicon nanoparticle with a shell impregnated with active material. The resulting response is several orders of magnitude stronger than that generated by bare silicon nanoparticles and is comparable to electric dipole super-resonances excited in spaser-based nanolasers. Furthermore, this configuration enables an exceptional control over the optical forces exerted on the nanoparticle. It expedites huge pushing or pulling actions, as well as a total suppression of the force in both far-field and near-field scenarios. These effects empower advanced paradigms in electromagnetic manipulation and microscopy. PMID:24718235

  3. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-04-12

    A conceptual design is discussed for a fusion rocket propulsion system based on the magnetic dipole configuration. The dipole is found to have features well suited to space applications. Example parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power toward 10 kW/kg are discussed, as in an approach to implementing the concept through proof-testing on the moon. 21 refs., 14 figs., 2 tabs.

  4. Enhancement of magnetic dipole emission at yellow light in optical metamaterials

    NASA Astrophysics Data System (ADS)

    Hu, Wenliang; Yi, Ningbo; Sun, Shang; Cui, Lin; Song, Qinghai; Xiao, Shumin

    2015-09-01

    Here we demonstrate the control of magnetic dipole spontaneous emission at yellow light by magnetic metamaterials. By embedding magnetic dipole into a magnetic metamaterial consisting of arrays of paired silver strips, the radiative emission enhancement and the Purcell factor around 590 nm has been dramatically increased to 110 and 180 respectively. Moreover, the enhancements are found to be robust to variation of dipole's positions and structure geometries, showing nice fabrication tolerance for practical applications.

  5. Electrically controlled nonreciprocity inversion of microwave transmission in a metastructure based on ferrite and a varactor-loaded dipole

    NASA Astrophysics Data System (ADS)

    Kraftmakher, G. A.; Butylkin, V. S.; Kazantsev, Yu. N.

    2015-08-01

    A possibility of electrical control of nonreciprocity inversion of microwave propagation when using a metastructure with a ferrite plate and varactor-loaded dipole is demonstrated. In contrast to conven-tional methods, the inversion occurs without ferrite remagnetization. It is reached by varying the constant bias voltage on varactor that enables the tuning of the resonance frequency of dipole to the frequency of ferromagnetic resonance. This effect occurs due to the fact that a magnetic field with elliptical polarization is formed near a dipole as a result of superposition of incident and scattered waves, rotating in one direction below the resonance frequency of dipole and in the opposite direction above the frequency of this resonance.

  6. Improved Experimental Limit on the Electric Dipole Moment of the Neutron

    SciTech Connect

    Baker, C. A.; Iaydjiev, P.; Ivanov, S. N.; Doyle, D. D.; Harris, P. G.; May, D. J. R.; Pendlebury, J. M.; Richardson, J. D.; Shiers, D.; Smith, K. F.; Geltenbort, P.; Green, K.; Grinten, M. G. D. van der

    2006-09-29

    An experimental search for an electric dipole moment (EDM) of the neutron has been carried out at the Institut Laue-Langevin, Grenoble. Spurious signals from magnetic-field fluctuations were reduced to insignificance by the use of a cohabiting atomic-mercury magnetometer. Systematic uncertainties, including geometric-phase-induced false EDMs, have been carefully studied. The results may be interpreted as an upper limit on the neutron EDM of vertical bar d{sub n} vertical bar <2.9x10{sup -26}e cm (90% C.L.)

  7. Electric Field-Driven Water Dipoles: Nanoscale Architecture of Electroporation

    PubMed Central

    Tokman, Mayya; Lee, Jane HyoJin; Levine, Zachary A.; Ho, Ming-Chak; Colvin, Michael E.; Vernier, P. Thomas

    2013-01-01

    Electroporation is the formation of permeabilizing structures in the cell membrane under the influence of an externally imposed electric field. The resulting increased permeability of the membrane enables a wide range of biological applications, including the delivery of normally excluded substances into cells. While electroporation is used extensively in biology, biotechnology, and medicine, its molecular mechanism is not well understood. This lack of knowledge limits the ability to control and fine-tune the process. In this article we propose a novel molecular mechanism for the electroporation of a lipid bilayer based on energetics analysis. Using molecular dynamics simulations we demonstrate that pore formation is driven by the reorganization of the interfacial water molecules. Our energetics analysis and comparisons of simulations with and without the lipid bilayer show that the process of poration is driven by field-induced reorganization of water dipoles at the water-lipid or water-vacuum interfaces into more energetically favorable configurations, with their molecular dipoles oriented in the external field. Although the contributing role of water in electroporation has been noted previously, here we propose that interfacial water molecules are the main players in the process, its initiators and drivers. The role of the lipid layer, to a first-order approximation, is then reduced to a relatively passive barrier. This new view of electroporation simplifies the study of the problem, and opens up new opportunities in both theoretical modeling of the process and experimental research to better control or to use it in new, innovative ways. PMID:23593404

  8. Hadronic electric dipole moments in R-parity violating supersymmetry

    SciTech Connect

    Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Kovalenko, Sergey

    2006-06-01

    We calculate the electric dipole moments (EDM) of the neutral {sup 199}Hg atom, neutron and deuteron within a generic R-parity violating SUSY model (Re{sub p} SUSY) on the basis of a one-pion-exchange model with CP-odd pion-nucleon interactions. We consider two types of the Re{sub p} SUSY contributions to the above hadronic EDMs: via the quark chromoelectric dipole moments (CEDM) and CP-violating 4-quark interactions. We demonstrate that the former contributes to all the three studied EDMs while the latter appears only in the nuclear EDMs via the CP-odd nuclear forces. We find that the Re{sub p} SUSY induced 4-quark interactions arise at tree level through the sneutrino exchange and involve only s and b quarks. Therefore, their effect in hadronic EDMs is determined by the strange and bottom-quark sea of the nucleon. From the null experimental results on the hadronic EDMs we derive the limits on the imaginary parts of certain products Im({lambda}{sup '}{lambda}{sup '}*) of the trilinear Re{sub p}-couplings and show that the currently best limits come from the {sup 199}Hg EDM experiments. We demonstrate that some of these limits are better than those existing in the literature. We argue that future storage ring experiments on the deuteron EDM are able to improve these limits by several orders of magnitude.

  9. Electric field-driven water dipoles: nanoscale architecture of electroporation.

    PubMed

    Tokman, Mayya; Lee, Jane HyoJin; Levine, Zachary A; Ho, Ming-Chak; Colvin, Michael E; Vernier, P Thomas

    2013-01-01

    Electroporation is the formation of permeabilizing structures in the cell membrane under the influence of an externally imposed electric field. The resulting increased permeability of the membrane enables a wide range of biological applications, including the delivery of normally excluded substances into cells. While electroporation is used extensively in biology, biotechnology, and medicine, its molecular mechanism is not well understood. This lack of knowledge limits the ability to control and fine-tune the process. In this article we propose a novel molecular mechanism for the electroporation of a lipid bilayer based on energetics analysis. Using molecular dynamics simulations we demonstrate that pore formation is driven by the reorganization of the interfacial water molecules. Our energetics analysis and comparisons of simulations with and without the lipid bilayer show that the process of poration is driven by field-induced reorganization of water dipoles at the water-lipid or water-vacuum interfaces into more energetically favorable configurations, with their molecular dipoles oriented in the external field. Although the contributing role of water in electroporation has been noted previously, here we propose that interfacial water molecules are the main players in the process, its initiators and drivers. The role of the lipid layer, to a first-order approximation, is then reduced to a relatively passive barrier. This new view of electroporation simplifies the study of the problem, and opens up new opportunities in both theoretical modeling of the process and experimental research to better control or to use it in new, innovative ways. PMID:23593404

  10. Efficient injection of an intense positron beam into a dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Stanja, J.; Stenson, E. V.; Hergenhahn, U.; Niemann, H.; Pedersen, T. Sunn; Stoneking, M. R.; Piochacz, C.; Hugenschmidt, C.

    2015-10-01

    We have demonstrated efficient injection and trapping of a cold positron beam in a dipole magnetic field configuration. The intense 5 eV positron beam was provided by the NEutron induced POsitron source MUniCh facility at the Heinz Maier-Leibnitz Zentrum, and transported into the confinement region of the dipole field trap generated by a supported, permanent magnet with 0.6 T strength at the pole faces. We achieved transport into the region of field lines that do not intersect the outer wall using the {E}× {B} drift of the positron beam between a pair of tailored plates that created the electric field. We present evidence that up to 38% of the beam particles are able to reach the intended confinement region and make at least a 180° rotation around the magnet where they annihilate on an insertable target. When the target is removed and the {E}× {B} plate voltages are switched off, confinement of a small population persists for on the order of 1 ms. These results lend optimism to our larger aims to apply a magnetic dipole field configuration for trapping of both positrons and electrons in order to test predictions of the unique properties of a pair plasma.

  11. Lepton Dipole Moments

    NASA Astrophysics Data System (ADS)

    Roberts, B. Lee

    2004-02-01

    From the famous experiments of Stern and Gerlach to the present, measurements of magnetic dipole moments, and searches for electric dipole moments of "elementary" particles have played a major role in our understanding of sub-atomic physics. In this talk I discuss the progress on measurements and theory of the magnetic dipole moments of the electron and muon. I also discuss a new proposal to search for a permanent electric dipole moment (EDM) of the muon and put it into the more general context of other EDM searches.

  12. Electric-dipole sum rule in nuclear matter

    NASA Astrophysics Data System (ADS)

    Fabrocini, A.; Fantoni, S.

    1985-03-01

    The enhancement factor K in the electric-dipole sum rule for some realistic models of symmetrical nuclear matter is calculated using variational theory. The nuclear-matter wave function used contains central, spin, isospin, tensor and spin-orbit pair correlations. The non-central correlations, particularly the tensor one, give the major contribution to K. At experimental equilibrium density K. turns out to be ≈ 1.8, of which 65% comes from OPEP and 30% from the short-range part of the interaction. The two-pion-exchange three-nucleon interaction contributes ≈ 0.2% and is cancelled, to a large extent, by the contribution due to the intermediate-range two-body potential. The relationship of the summed oscillator strength with the effective mass is also discussed.

  13. Thermal annealing-induced electric dipole relaxation in natural alexandrite

    NASA Astrophysics Data System (ADS)

    Scalvi, Rosa M. Fernandes; Li, Maximo Siu; Scalvi, Luis V. A.

    2005-02-01

    Electrical properties of natural alexandrite (BeAl2O4:Cr3+) are investigated by the thermally stimulated depolarization current (TSDC) technique. Samples are submitted to consecutive annealing processes and TSDC is carried out after each annealing, yielding bands with different parameters. These bands are fitted by a continuous distribution of relaxation parameters: activation energy and pre-exponential factor of the Arrhenius equation. It has been observed that annealing influences the dipole relaxation behavior, since it promotes a modification of Fe3+ and Cr3+ impurity distributions on sites of distinct symmetry: Al1 and Al2. In order to have a reference for comparison, TSDC is also carried out on a synthetic alexandrite sample, where the only impurity present is Cr3+ ion.

  14. Electric dipole moment constraints on minimal electroweak baryogenesis

    SciTech Connect

    Huber, Stephan J.; Pospelov, Maxim; Ritz, Adam

    2007-02-01

    We study the simplest generic extension of the standard model which allows for conventional electroweak baryogenesis, through the addition of dimension-six operators in the Higgs sector. At least one such operator is required to be CP-odd, and we study the constraints on such a minimal setup, and related scenarios with minimal flavor violation, from the null results of searches for electric dipole moments (EDMs), utilizing the full set of two-loop contributions to the EDMs. The results indicate that the current bounds are stringent, particularly that of the recently updated neutron EDM, but fall short of ruling out these scenarios. The next generation of EDM experiments should be sufficiently sensitive to provide a conclusive test.

  15. Improved limit on the muon electric dipole moment

    SciTech Connect

    Bennett, G. W.; Brown, H. N.; Bunce, G.; Danby, G. T.; Larsen, R.; Lee, Y. Y.; Meng, W.; Mi, J.; Morse, W. M.; Nikas, D.; Prigl, R.; Semertzidis, Y. K.; Warburton, D.; Bousquet, B.; Cushman, P.; Duong, L.; Giron, S.; Kindem, J.; Kronkvist, I.; Qian, T.

    2009-09-01

    Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus and the three analyses are presented. Since the individual results on the positive and negative muons, as well as the combined result, d{sub {mu}}=(0.0{+-}0.9)x10{sup -19}e cm, are all consistent with zero, we set a new muon EDM limit, |d{sub {mu}}|<1.8x10{sup -19}e cm (95% C.L.). This represents a factor of 5 improvement over the previous best limit on the muon EDM.

  16. Nuclear electric dipole moment of {sup 3}He

    SciTech Connect

    Stetcu, I.; Friar, J. L.; Hayes, A. C.; Liu, C.-P.; Navratil, P.

    2009-01-28

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  17. The permanent electric dipole moment of CaOH

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Steimle, Timothy; Shirley, Jeffrey E.

    1990-01-01

    The X 2 Sigma(+), A 2Pi, and B 2Sigma(+) states of CaOH are characterized theoretically and experimentally, with a focus on the value of the permanent electric dipole moment (mu). Calculations based on SCF and SDCI studies of CaOH (Bauschlicher et al., 1984 and 1986) give mu values of 0.98, 0.49, and 0.11 D for the X, A, and B states, respectively, in good agreement with experiments in which the pure rotational spectra of these states were not detected. Modified Rittner (1951) and ligand-field models of these states are explored in detail, and the applicability of these results to observational searches for CaOH in circumstellar envelopes is indicated.

  18. Toward verification of electroweak baryogenesis by electric dipole moments

    NASA Astrophysics Data System (ADS)

    Fuyuto, Kaori; Hisano, Junji; Senaha, Eibun

    2016-04-01

    We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.

  19. New Upper Limit on the Electron's Electric Dipole Moment

    NASA Astrophysics Data System (ADS)

    Doyle, John

    2015-04-01

    The ACME collaboration has measured the electron's electric dipole moment (eEDM) to be de =(- 2 . 1 +/- 3 .7stat +/- 2 .5syst) ×10-29 e .cm. This corresponds to an upper limit of | de | < 8 . 7 × 10-29 e .cm with 90 percent confidence, which represents an order of magnitude improvement on the previous best limit. We describe our method of measuring the eEDM using a buffer gas cooled beam of thorium monoxide (ThO) and discuss our approach to finding and quantifying systematic effects. This results constrains T-violating physics at the TeV energy scale. This project is supported by NSF.

  20. Correction of magnetization sextupole and decapole in a 5 centimeter bore SSC dipole using passive superconductor

    SciTech Connect

    Green, M.A.

    1991-05-01

    Higher multipoles due to magnetization of the superconductor in four and five centimeter bore Superconducting Super Collider (SSC) superconducting dipole magnets have been observed. The use of passive superconductor to correct out the magnetization sextupole has been demonstrated on two dipoles built by the Lawrence Berkeley Laboratory (LBL). This reports shows how passive correction can be applied to the five centimeter SSC dipoles to remove sextupole and decapole caused by magnetization of the dipole superconductor. Two passive superconductor corrector options will be presented. The change in magnetization sextupole and decapole due to flux creep decay of the superconductor during injection can be partially compensated for using the passive superconductor. 9 refs; 5 figs.

  1. Different viewpoints of electric dipole electric dipole interaction in the calculation of the energy transfer rate of rare earth ions in insulators

    NASA Astrophysics Data System (ADS)

    Xia, S.; Chua, M.; Tanner, P. A.

    2001-09-01

    The physical mechanism of the electric dipole-electric dipole (ED-ED) interaction may be looked at from several viewpoints in the calculation of the ED-ED energy transfer rate of rare earth ions in insulators. In this article, we demonstrate the equivalence of the results calculated from taking the ED-ED interaction as an energy transfer operation, or as a correction operator to the zero-order wavefunction of the donor-acceptor system.

  2. Analysis of Exploding Plasma Behavior in a Dipole Magnetic Field

    NASA Astrophysics Data System (ADS)

    Muranaka, Takanobu; Uchimura, Hideyuki; Nakashima, Hideki; Zakharov, Yuri P.; Nikitin, Sergey A.; Ponomarenko, Arnold G.

    2001-02-01

    Numerical analyses on plasma behaviors in a dipole magnetic field are performed using a three-dimensional (3D) hybrid code. Results are compared with the experimental data and magnetohydrodynamics (MHD) analysis. Dependence of plasma expansion on initial plasma energy and location are discussed by temporal evolutions of plasma position and magnetic field strength. An overall good agreement in the expansion behavior of plasmas among these results is found. The asymmetrical shape of the expanding plasma in the cross-field direction is also noticed, and the reason for this is discussed. For future engineering applications, these results will be useful in designing an optimal configuration of the magnetic thrust chamber for laser fusion rockets, and for studying the effective explosive methods for protecting the earth from collisions by asteroids or comets.

  3. The electric dipole moment of magnesium deuteride, MgD

    SciTech Connect

    Steimle, Timothy C. Zhang, Ruohan; Wang, Hailing

    2014-06-14

    The (0,0) A{sup 2}Π–X {sup 2}Σ{sup +} band of a cold molecular beam sample of magnesium monodeuteride, MgD, has been recorded field-free and in the presence of a static electric field of up to 11 kV/cm. The lines associated with the lowest rotational levels are detected for the first time. The field-free spectrum was analyzed to produce an improved set of fine structure parameters for the A{sup 2}Π (v = 0) state. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ{sup -vector}{sub el} of 2.567(10)D and 1.31(8)D for A{sup 2}Π (v = 0) and X{sup 2}Σ{sup +}(v = 0) states, respectively. The recommended value for μ{sup -vector}{sub el}(X{sup 2}Σ{sup +} (v = 0)) for MgH, based upon the measured value for MgD, is 1.32(8)D.

  4. Systematics in a measurement of the electron's electric dipole moment using trapped molecular ions

    NASA Astrophysics Data System (ADS)

    Grau, Matt; Cossel, Kevin; Cairncross, William; Gresh, Dan; Zhou, Yan; Ye, Jun; Cornell, Eric

    2015-05-01

    A precision measurement of the electron's electric dipole moment (EDM) has important implications for physics beyond the Standard Model. Trapped molecular ions offer high sensitivity in such an experiment because of the large effective electric fields and long coherence times that are possible. Our experiment uses Ramsey spectroscopy of HfF+ ions in a linear RF trap with rotating bias fields, achieving coherence times beyond 1 second for 1000 trapped ions. Compared to other electron EDM experiments that use molecular beams, we will be sensitive to a different class of systematic errors. In this work we investigate systematic errors arising from all fields involved in the experiment, including the trapping and polarizing electric fields, magnetic field gradients, and motional effects such as geometric phases. This work was supported by NIST and NSF.

  5. Local electric dipole moments for periodic systems via density functional theory embedding

    SciTech Connect

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  6. Fabrication and test results of a high field, Nb3Sn superconducting racetrack dipole magnet

    SciTech Connect

    Benjegerdes, R.; Bish, P.; Byford, D.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.; Hannaford, R.; Higley, H.; Jackson, A.; Lietzke, A.; Liggins, N.; McInturff, A.D.; O'Neill, J.; Palmerston, E.; Sabbi, G.; Scanlan, R.M.; Swanson, J.

    2001-06-15

    The LBNL Superconducting Magnet Program is extending accelerator magnet technology to the highest possible fields. A 1 meter long, racetrack dipole magnet, utilizing state-of-the-art Nb{sub 3}Sn superconductor, has been built and tested. A record dipole filed of 14.7 Tesla has been achieved. Relevant features of the final assembly and tested results are discussed.

  7. Measurement of the Electron's Electric Dipole Moment in Thorium Monoxide

    NASA Astrophysics Data System (ADS)

    Baron, J.; Demille, D.; Doyle, J.; Gabrielse, G.; Hess, P.; Hutzler, N.; Oleary, B.; Panda, C.; Petrik, E.; Spaun, B.

    2013-06-01

    Some polar diatomic molecules have large effective internal electric fields ({E}_{eff}10^{11} V/cm that can be used to make measurements of the electron's electric dipole moment (eEDM) with unprecedented sensitivity. By performing precision spectroscopy on the metastable H ^{3}?_{1} state of ThO in a cryogenic buffer gas beam, we have demonstrated a statistical sensitivity to the eEDM of ? d_{e}?110^{-28} e\\cdot cm/?{T/{days}}, which is competitive with the current experimental limit, |d_{e}|<1.0510^{-27}e\\cdot cm. The existence of a non-zero eEDM on this level would be evidence for the existence of interactions that violate parity and time-reversal symmetries that are not included in the Standard Model. Many extensions to the Standard Model (in particular supersymmetric theories) predict the eEDM to be very close to the current experimental limit. We present an overview and discuss the characterization of systematic errors in this experiment. E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008) J. Hudson, D. Kara, J. Smallman, B. Sauer, M. Tarbutt, E. Hinds, Nature 473 493 (2011) This work is supported by the NSF.

  8. Local spin dynamics with the electron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Soga, Kota; Senami, Masato; Tachibana, Akitomo

    2016-01-01

    The local spin dynamics of the electron is studied from the viewpoint of the electric dipole moment (EDM) of the electron in the framework of the quantum field theory. The improvements of the computational accuracy of the effective electric field (Eeff) for the EDM and the understanding of spin precession are important for the experimental determination of the upper bound of the EDM. Calculations of Eeff in YbF (2Σ1 /2 ), BaF (2Σ1 /2 ), ThO (3Δ1 ), and HF+ (2Π1 /2 ) are performed on the basis of the restricted active space configuration interaction approach by using the four-component relativistic electronic structure calculation. The spin precession is also discussed from the viewpoint of local spin torque dynamics. We show that a contribution to the torque density for the spin is brought into by the EDM. Distributions of the local spin angular momentum density and torque densities induced by external fields in the above molecules are calculated and a property related with large Eeff is discussed.

  9. Coil end design for the LHC dipole magnet

    SciTech Connect

    Brandt, J.S.

    1996-05-21

    This paper describes the design of the coil ends for the Large Hadron Collider dipole magnets of the CERN European Laboratory for Particle Physics in Switzerland. This alternative to existing European designs was provided by Fermi National Accelerator Laboratory by agreement between CERN and the United States. The superconducting cable paths are determined from both magnetic and mechanical considerations. The coil end parts used to shape and constrain the conductors in the coil ends are designed using the developable surface, grouped end approach. This method allows the analysis of strain energy within the conductor groups, and the optimization of mechanical factors during the design. Design intent and implementation are discussed. Inner and outer coil design challenges and end analysis are detailed.

  10. Spectrometer sensitivity calibration in the extreme uv by means of branching ratios of magnetic dipole lines

    SciTech Connect

    Denne, B.; Hinnov, E.

    1984-04-01

    Relative intensity measurements of various line pairs resulting from magnetic dipole transitions within the configurations s/sup 2/p/sup 2/ and s/sup 2/p/sup 4/, in conjunction with calculated transition probabilities, have been used to determine the wavelength dependence of the sensitivity of a grazing incidence spectrometer, in the range 400 to 1000 A. Emissions from Cr XIX, Fe XXI, Ni XXI and XXIII, Cu XXIV, and Zr XXVII ions in PLT tokamak discharges were used for this purpose. Absolute sensitivity of the spectrometer at selected wavelengths had been determined by the traditional hydrogen, helium, carbon, and oxygen electric-dipole line pairs from the same discharges. Similar attempts to use transitions in the s/sup 2/p/sup 3/ configurations in Cr XVIII, Zr XXVI, and Mo XXVIII ions resulted in significant discrepancies that are ascribed to uncertainties in the corresponding calculated transition probabilities.

  11. Communication: Theoretical study of ThO for the electron electric dipole moment search

    SciTech Connect

    Skripnikov, L. V. Petrov, A. N.; Titov, A. V.; Department of Physics, Saint Petersburg State University, Saint Petersburg, Petrodvoretz 198904

    2013-12-14

    An experiment to search for the electron electric dipole moment (eEDM) on the metastable H{sup 3}?{sub 1} state of ThO molecule was proposed and now prepared by the ACME Collaboration [ http://www.electronedm.org ]. To interpret the experiment in terms of eEDM and dimensionless constant k{sub T,} {sub P} characterizing the strength of the T,P-odd pseudoscalarscalar electronnucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, E{sub eff}, and a parameter of the T,P-odd pseudoscalarscalar interaction, W{sub T,} {sub P}, in ThO is required. We report our results for E{sub eff} (84 GV/cm) and W{sub T,} {sub P} (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H{sup 3}?{sub 1} ? X{sup 1}?{sup +} transition energy, which can serve as a measure of reliability of the obtained E{sub eff} and W{sub T,} {sub P} values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the ?-doublets of H{sup 3}?{sub 1}.

  12. Magnetic properties of iron yoke laminations for SSC dipole magnets

    SciTech Connect

    Kahn, S.A.; Morgan, G.H.

    1991-01-01

    We examine the magnetic properties for the iron used in the SSC yoke laminations so that the accelerator tolerances can be met. The accelerator requirements for field quality specify a tolerance on the variation in the central field. At machine injection the variation in field is attributed to coercivity, H{sub c}. Requirements on the magnitude and the variation of H{sub c} are presented. At the 6.65 tesla operating field the variation in the saturation magnetization dominates the magnetic tolerance for the iron. 4 refs., 3 figs., 2 tabs.

  13. Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field

    NASA Technical Reports Server (NTRS)

    Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira

    1990-01-01

    This paper investigates the dynamic behavior of the magnetic moment of a particle confined in a magnetic dipole field in the presence of a low-frequency electrostatic wave. It is shown that there exist two kinds of resonances (the bounce-E x B drift resonance and the wave-drift resonance) by which the adiabaticity of the magnetic moment is broken. The unstable conditions obtained by theoretical considerations showed good agreement with the numerical results.

  14. First Atomic Electric Dipole Moment Limit Derived from an Octupole-Deformed Nucleus

    NASA Astrophysics Data System (ADS)

    Parker, Richard; Bishof, Michael; Kalita, Mukut; Lemke, Nathan; Dietrich, Matt; Bailey, Kevin; Greene, John; Holt, Roy; Korsch, Wolfgang; Lu, Zheng-Tian; Mueller, Peter; O'Connor, T. P.; Singh, Jaideep

    2015-05-01

    Ra-225 (half-life = 15 d, nuclear spin = 1/2) is a promising isotope for a measurement of the EDM of a diamagnetic atom. Due to its large nuclear octupole deformation and high atomic mass, the EDM sensitivity of Ra-225 is expected to be 2-3 orders of magnitude larger than that of Hg-199. We demonstrate an efficient multiple-stage apparatus in which radium atoms are first loaded into a MOT, then transferred into a movable optical-dipole trap (ODT) that carries the atoms over 1 m to a magnetically-shielded science chamber, loaded into a standing-wave ODT, polarized, and then allowed to precess in magnetic and electric fields. We will discuss our first measurement of the EDM of Ra-225, as well as plans for future improvements. This work is supported by DOE, Office of Nuclear Physics (DE-AC02-06CH11357).

  15. Search for Electric dipole moment (EDM) in laser cooled and trapped 225Ra atoms

    NASA Astrophysics Data System (ADS)

    Kalita, Mukut; Bailey, Kevin; Dietrich, Matthew; Green, John; Holt, Roy; Korsch, Wolfgang; Lu, Zheng-Tian; Lemke, Nathan; Mueller, Peter; O'Connor, Tom; Parker, Richard; Singh, Jaideep; Trimble, Will; Argonne National Laboratory Collaboration; University Of Chicago Collabration; University Of Kentucky Collaboration

    2014-05-01

    We are searching for an EDM of the diamagnetic 225Ra atom. 225Ra has nuclear spin I =1/2. Experimental sensitivity to its EDM is enhanced due to its heavy mass and the increased Schiff moment of its octupole deformed nucleus. Our experiment involves collecting laser cooled Ra atoms in a magneto-optical trap (MOT), transporting them 1 meter with a far off-resonant optical dipole trap (ODT) and then transferring the atoms to a second standing-wave ODT in our experimental chamber. We will report our recent experiences in polarizing and observing Larmor precession of 225Ra atoms in parallel electric and magnetic fields in a magnetically shielded region and progress towards a first measurement of the EDM of 225Ra. This work is supported by DOE, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and contract No. DE-FG02-99ER41101.

  16. Temporal behaviour of multipole components of the magnetic field in a small dipole magnet wound with coated conductors

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Otake, Hiroaki; Sano, Takuya; Nakamura, Taketsune; Ogitsu, Toru; Koyanagi, Kei; Kurusu, Tsutomu

    2015-03-01

    To study the influence of coated-conductor magnetization on the field quality of accelerator magnets, we made a small dipole magnet consisting of four racetrack coils wound with GdBCO coated conductors and measured its magnetic field in liquid nitrogen by using rotating pick-up coils. We focused on the dipole and sextupole components (coefficients) of the magnetic field, which vary with time owing to the decay of the magnetization of the coated conductors. About 50 min (3055 s) after the current was ramped up to 50 A, the dipole coefficient normalized by the design value of the dipole component, i.e., the value calculated with the designed coil shape and the uniform current distribution in the coated conductors, increased by 7.4 10-4, and the sextupole coefficient normalized by the design value of the dipole component increased by 1.8 10-4. The magnitudes of the dipole and sextupole components depended on the excitation history of the magnet. Electromagnetic field analyses were carried out to calculate the current distributions in coated conductors, considering their superconducting properties; the dipole and sextupole coefficients were then determined from the calculated current distributions. Although the analyses were based on the two-dimensional approximation of the cross-section of the magnet, the temporal behaviours as well as the hysteretic characteristics of the calculated dipole and sextupole coefficients agree qualitatively with those of the dipole and sextupole coefficients measured in the magnet.

  17. Frequency shifts of an electric-dipole resonance near a conducting surface

    NASA Technical Reports Server (NTRS)

    Holland, W. R.; Hall, D. G.

    1984-01-01

    The resonance frequency of an electric dipole placed near a conducting surface is shifted by the dipole-surface interaction. The observation and measurement of these shifts at optical frequencies is reported for an experimental system that consists of a metal-island film spaced a distance d from a continuous Ag film. The dependence of the shift in the frequency of the island resonance on d shows good agreement with that predicted by a classical theory of the dipole-surface interaction.

  18. Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD.

    PubMed

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram

    2015-11-20

    We present lattice QCD results on the neutron tensor charges including, for the first time, a simultaneous extrapolation in the lattice spacing, volume, and light quark masses to the physical point in the continuum limit. We find that the "disconnected" contribution is smaller than the statistical error in the "connected" contribution. Our estimates in the modified minimal subtraction scheme at 2 GeV, including all systematics, are g_{T}^{d-u}=1.020(76), g_{T}^{d}=0.774(66), g_{T}^{u}=-0.233(28), and g_{T}^{s}=0.008(9). The flavor diagonal charges determine the size of the neutron electric dipole moment (EDM) induced by quark EDMs that are generated in many new scenarios of CP violation beyond the standard model. We use our results to derive model-independent bounds on the EDMs of light quarks and update the EDM phenomenology in split supersymmetry with gaugino mass unification, finding a stringent upper bound of d_{n}<4×10^{-28} e cm for the neutron EDM in this scenario. PMID:26636847

  19. CP-odd phase correlations and electric dipole moments

    SciTech Connect

    Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi

    2005-10-01

    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model, the CP-odd invariant related to the soft trilinear A-phase at the grand unified theory (GUT) scale, {theta}{sub A}, induces nontrivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tan{beta}, and can provide the dominant contribution to the electron EDM induced by {theta}{sub A}. We perform a detailed analysis of the EDM constraints within the constrained minimal supersymmetric standard model, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also illustrate how this reach will expand with results from the next generation of experiments which are currently in development.

  20. Atomic electric dipole moments: The Schiff theorem and its corrections

    SciTech Connect

    Liu, C.-P.; Ramsey-Musolf, M. J.; Haxton, W. C.; Timmermans, R. G. E.; Dieperink, A. E. L.

    2007-09-15

    Searches for the permanent electric dipole moments (EDMs) of diamagnetic atoms provide powerful probes of CP-violating hadronic and semileptonic interactions. The theoretical interpretation of such experiments, however, requires careful implementation of a well-known theorem by Schiff that implies a vanishing net EDM for an atom built entirely from pointlike, nonrelativistic constituents that interact only electrostatically. Any experimental observation of a nonzero atomic EDM would result from corrections to the pointlike, nonrelativistic, electrostatic assumption. We reformulate Schiff's theorem at the operator level and delineate the electronic and nuclear operators whose atomic matrix elements generate corrections to 'Schiff screening'. We obtain a form for the operator responsible for the leading correction associated with finite nuclear size - the so-called Schiff moment operator - and observe that it differs from the corresponding operator used in previous Schiff moment computations. We show that the more general Schiff moment operator reduces to the previously employed operator only under certain approximations that are not generally justified. We also identify other corrections to Schiff screening that may not be included properly in previous theoretical treatments. We discuss practical considerations for obtaining a complete computation of corrections to Schiff screening in atomic EDM calculations.

  1. Model dependence of the {sup 2}H electric dipole moment

    SciTech Connect

    Afnan, I. R.; Gibson, B. F.

    2010-12-15

    Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the {sup 3}P{sub 1} channel, the latter being sensitive to the off-shell behavior of the {sup 3}P{sub 1} amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the {sup 2}H EDM until such time as a measurement better than 10% is obtained.

  2. Neutron electric dipole moment in the gauge-Higgs unification

    SciTech Connect

    Adachi, Yuki; Lim, C. S.; Maru, Nobuhito

    2009-09-01

    We study the neutron electric dipole moment (EDM) in a five-dimensional SU(3) gauge-Higgs unification compactified on M{sup 4}xS{sup 1}/Z{sub 2} space-time including a massive fermion. We point out that to realize the CP violation is a nontrivial task in the gauge-Higgs unification scenario and argue how the CP symmetry is broken spontaneously by the vacuum expectation value of the Higgs, the extra space component of the gauge field. We emphasize the importance of the interplay between the vacuum expectation value of the Higgs and the Z{sub 2}-odd bulk mass term to get physically the CP violation. We then calculate the one-loop contributions to the neutron EDM as the typical example of the CP violating observable and find that the EDM appears already at the one-loop level, without invoking the three-generation scheme. We then derive a lower bound for the compactification scale, which is around 2.6 TeV, by comparing the contribution due to the nonzero Kaluza-Klein modes with the experimental data.

  3. Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram; Pndme Collaboration

    2015-11-01

    We present lattice QCD results on the neutron tensor charges including, for the first time, a simultaneous extrapolation in the lattice spacing, volume, and light quark masses to the physical point in the continuum limit. We find that the "disconnected" contribution is smaller than the statistical error in the "connected" contribution. Our estimates in the modified minimal subtraction scheme at 2 GeV, including all systematics, are gTd -u=1.020 (76 ), gTd=0.774 (66 ), gTu=-0.233 (28 ), and gTs=0.008 (9 ). The flavor diagonal charges determine the size of the neutron electric dipole moment (EDM) induced by quark EDMs that are generated in many new scenarios of C P violation beyond the standard model. We use our results to derive model-independent bounds on the EDMs of light quarks and update the EDM phenomenology in split supersymmetry with gaugino mass unification, finding a stringent upper bound of dn<4 ×1 0-28 e cm for the neutron EDM in this scenario.

  4. Atomic electric dipole moments: The Schiff theorem and its corrections

    NASA Astrophysics Data System (ADS)

    Liu, C.-P.; Ramsey-Musolf, M. J.; Haxton, W. C.; Timmermans, R. G. E.; Dieperink, A. E. L.

    2007-09-01

    Searches for the permanent electric dipole moments (EDMs) of diamagnetic atoms provide powerful probes of CP-violating hadronic and semileptonic interactions. The theoretical interpretation of such experiments, however, requires careful implementation of a well-known theorem by Schiff that implies a vanishing net EDM for an atom built entirely from pointlike, nonrelativistic constituents that interact only electrostatically. Any experimental observation of a nonzero atomic EDM would result from corrections to the pointlike, nonrelativistic, electrostatic assumption. We reformulate Schiff's theorem at the operator level and delineate the electronic and nuclear operators whose atomic matrix elements generate corrections to “Schiff screening.” We obtain a form for the operator responsible for the leading correction associated with finite nuclear size—the so-called Schiff moment operator—and observe that it differs from the corresponding operator used in previous Schiff moment computations. We show that the more general Schiff moment operator reduces to the previously employed operator only under certain approximations that are not generally justified. We also identify other corrections to Schiff screening that may not be included properly in previous theoretical treatments. We discuss practical considerations for obtaining a complete computation of corrections to Schiff screening in atomic EDM calculations.

  5. MAGNETIC MODELING VS MEASUREMENTS OF THE DIPOLES FOR THE JLAB 10 KW FREE ELECTRON LASER UPGRADE

    SciTech Connect

    David Douglas; Robin Wines; Tom Hiatt; George Biallas; Kenneth Baggett; T.J. Schultheiss; V.A. Christina; J.W. Rathke; A. Smirnov; D. Newsham; Y. Luo; D. Yu

    2003-05-01

    Magnetic measurements of the six families of dipoles for the infrared Free Electron Laser Upgrade at the Thomas Jefferson National Accelerator Facility (Jlab) are compared to the magnetic models on which their design is based. The magnets were designed in parallel by three organizations. They used ANSYS, Radia or Opera 3D as a 3D magnetic modeling program. Comparison of the discrepancies between model and magnet measurement is presented along with analysis of their potential causes. These dipoles operate in two field ranges. The Injector/ Extractor Dipoles operate around 0.05 T and the Arc Dipoles and Optical Chicane Dipoles operate between 0.22 to 0.71 T. All magnets are required to meet core field and field integral flatness to parts in 104 over their good field region.

  6. Nb/sub 3/Sn dipole magnet reacted after winding

    SciTech Connect

    Taylor, C.; Scanlan, R.; Peters, C.; Wolgast, R.; Gilbert, W.; Hassenzahl, W.; Meuser, R.; Rechen, J.

    1984-09-01

    A 5 cm bore dia., 1-m-long dipole model magnet was constructed by winding un-reacted cable, followed by reaction and epoxy-impregnation. Experience and test results are described on the 1.7 mm dia. internal-tin wire, the eleven-strand flattened cable, fiberglass insulation, and construction of the magnet. Each half of the magnet has two double-pancake-type windings that were reacted in a single operation. The two double-pancakes were then separately vacuum impregnated after soldering the flexible Nb-Ti leads to the Nb/sub 3/Sn conductors. No iron flux return yoke was used. In initial tests a central field of 8.0 T was reached at 4.4 K. However, evidence from training behavior, and 1.8 K tests indicate that premature quenching, rather than critical current of the cable, limited the field intensity. The magnet was reassembled and more rigidly clamped; additional test results are reported.

  7. Electric dipolar Kondo effect emerging from a vibrating magnetic ion.

    PubMed

    Hotta, Takashi; Ueda, Kazuo

    2012-06-15

    When a magnetic ion vibrates in a metal, it inevitably introduces a new channel of hybridization with conduction electrons, and in general, the vibrating ion induces an electric dipole moment. In such a situation, we find that magnetic and nonmagnetic Kondo effects alternatively occur due to the screening of the spin moment and electric dipole moment of the vibrating ion. In particular, the electric dipolar two-channel Kondo effect is found to occur for a weak Coulomb interaction. We also show that a magnetically robust heavy-electron state appears near the fixed point of the electric dipolar two-channel Kondo effect. We believe that the vibrating magnetic ion opens a new door in Kondo physics. PMID:23004326

  8. Ramp-rate sensitivity of SSC dipole magnet prototypes

    SciTech Connect

    Devred, A.; Ogitsu, T.

    1994-07-01

    One of the major achievements of the magnet R&D program for the Superconducting Super Collider (SSC) is the fabrication and test of a series of 20 5-cm aperture, 15-m long dipole magnet prototypes. The ramp rate sensitivity of these magnets appears to fall in at least two categories that can be correlated to the manufacturer and production batch of the strands used for the inner-coil cables. The first category, referred to as type-A, is characterized by a strong quench current degradation at high ramp rates, usually accompanied by large distortions of the multipole fields and large energy losses. The second category, referred to as type-B, is characterized by a sudden drop of quench current at low ramp rates, followed by a much milder degradation at larger rates. The multipole fields of the type-B magnets show little ramp-rate sensitivity, and the energy losses are smaller than for the type-A magnets. The behavior of the Type-A magnets can be explained in terms of inter-strand eddy currents arising from low and non-uniform resistances at the crossovers between the strands of the two-layer Rutherford-type cable. Anomalies in the transport-current repartition among the cable strands are suggested as a possible cause for the type-B behavior. The origins of these anomalies have not yet been clearly identified. The SSC project was canceled by decision of the United States Congress on October 21, 1994.

  9. Nucleon electric dipole moment with the gradient flow: The ? -term contribution

    NASA Astrophysics Data System (ADS)

    Shindler, Andrea; Luu, Thomas; de Vries, Jordy

    2015-11-01

    We propose a new method to calculate electric dipole moments induced by the strong QCD ? term. The method is based on the gradient flow for gauge fields and is free from renormalization ambiguities. We test our method by computing the nucleon electric dipole moments in pure Yang-Mills theory at several lattice spacings, enabling a first-of-its-kind continuum extrapolation. The method is rather general and can be applied for any quantity computed in a ? vacuum. This first application of the gradient flow has been successful and demonstrates proof-of-principle, thereby providing a novel method to obtain precise results for nucleon and light nuclear electric dipole moments.

  10. Contamination of dark matter experiments from atmospheric magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Bueno, A.; Masip, M.; Sánchez-Lucas, P.; Setzer, N.

    2013-10-01

    Dark matter collisions with heavy nuclei (Xe, Ge, Si, Na) may produce recoils observable at direct-search experiments. Given that some of these experiments are yielding conflicting information, however, it is worth asking if physics other than dark matter may produce similar nuclear recoils. We examine under what conditions an atmospherically produced neutral particle with a relatively large magnetic dipole moment could fake a dark matter signal. We argue that a very definite flux could explain the signals seen at DAMA/LIBRA, CDMS/Si and CoGeNT consistently with the bounds from XENON100 and CDMS/Ge. To explore the plausibility of this scenario, we discuss a concrete model with 10-50 MeV sterile neutrinos that was recently proposed to explain the LSND and MiniBooNE anomalies.

  11. Challenges and opportunities in the search for electric dipole moment (EDM) in 225Ra atom

    NASA Astrophysics Data System (ADS)

    Kalita, Mukut; Bailey, Kevin; Dietrich, Matthew; Greene, John; Holt, Roy; Korsch, Wolfgang; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas; Parker, Richard; Sulai, Ibrahim; Singh, Jaideep

    2011-10-01

    The observation of a permanent electric dipole moment (EDM) in a non-degenerate system would indicate violation of time reversal symmetry. 225Ra atom is a particularly attractive candidate for this search since it has a nuclear spin I = 1/2 and has a significant nuclear octupole deformation. This property increases the Schiff moment of the nucleus and therefore enhances the atomic EDM. The half life (t1/2 = 14.9 days) of 225Ra is sufficiently long to perform EDM searches. Our group has already demonstrated the trapping of laser cooled Ra atoms in a magneto-optical trap (MOT) and transferring them to a far off resonant optical dipole trap (ODT). We will discuss our recent progress on manipulation of ultra cold Ra atoms in the ODT, efforts in improving our laser systems and generation of electric and magnetic fields required for the measurement. This work is supported by DOE, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and contract No. DE-FG02-99ER41101.

  12. Investigation of a new magnetic dipole mode in the heavy, deformed nuclei 154 Sm, 156 Gd, 158 Gd, 164 Dy, 168 Er, and 174 Yb with high resolution electron scattering

    NASA Astrophysics Data System (ADS)

    Bohle, Detlev

    A magnetic dipole mode in heavy, deformed nuclei is demonstrated using inelastic electron scattering with high energy resolution. The nuclei were investigated in an electron linear accelerator; additional measurements with inelastically scattered protons were conducted in a synchrocyclotron. A collective, magnetic dipole excitation is discovered in all nuclei, and characterized as an orbit mode. The measurements on 156 Gd show strong fragmentation of the magnetic dipole strength. The experimental results were explained using three models: the two-rotor model, the random phase approximation, and the interacting boson approximation. In a macroscopic picture, the models reveal the discovered mode as a magnetic analogy of the electric dipole resonance.

  13. ANALYTICAL CALCULATION OF STOKES PROFILES OF ROTATING STELLAR MAGNETIC DIPOLE

    SciTech Connect

    Martinez Gonzalez, M. J.

    2012-08-20

    The observation of the polarization emerging from a rotating star at different phases opens up the possibility to map the magnetic field in the stellar surface thanks to the well-known Zeeman-Doppler imaging. When the magnetic field is sufficiently weak, the circular and linear polarization profiles locally in each point of the star are proportional to the first and second derivatives of the unperturbed intensity profile, respectively. We show that the weak-field approximation (for weak lines in the case of linear polarization) can be generalized to the case of a rotating star including the Doppler effect and taking into account the integration on the stellar surface. The Stokes profiles are written as a linear combination of wavelength-dependent terms expressed as series expansions in terms of Hermite polynomials. These terms contain the surface-integrated magnetic field and velocity components. The direct numerical evaluation of these quantities is limited to rotation velocities not larger than eight times the Doppler width of the local absorption profiles. Additionally, we demonstrate that in a rotating star, the circular polarization flux depends on the derivative of the intensity flux with respect to the wavelength and also on the profile itself. Likewise, the linear polarization depends on the profile and on its first and second derivatives with respect to the wavelength. We particularize the general expressions to a rotating dipole.

  14. Neptune radio emission in dipole and multipole magnetic fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.

    1995-01-01

    We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.

  15. Low-energy electric dipole response of Sn isotopes

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, P.; Hergert, H.; Ponomarev, V. Yu.; Roth, R.

    2014-03-01

    We study the low-energy dipole (LED) strength distribution along the Sn isotopic chain in both the isoscalar (IS) and the isovector (IV, or E1) electric channels, to provide testable predictions and guidance for new experiments with stable targets and radioactive beams. We use the self-consistent quasi-particle random-phase approximation (QRPA) with finite-range interactions and mainly the Gogny D1S force. We analyze also the performance of a realistic two-body interaction supplemented by a phenomenological three-body contact term. We find that from N =50 and up to the N =82 shell closure (132Sn) the lowest-energy part of the IS-LED spectrum is dominated by a collective transition whose properties vary smoothly with neutron number and which cannot be interpreted as a neutron-skin oscillation. For the neutron-rich species this state contributes to the E1 strength below particle threshold, but much more E1 strength is carried by other, weak but numerous transitions around or above threshold. We find that strong structural changes in the spectrum take effect beyond N =82, namely increased LED strength and lower excitation energies. Our results with the Gogny interaction are compatible with existing data. On this basis we predict that (a) the summed IS strength below particle threshold shall be of the same order of magnitude for N =50-82, (b) the summed E1 strength up to approximately 12 MeV shall be similar for N =50-82 MeV, while (c) the summed E1 strength below threshold shall be of the same order of magnitude for N ≈64-82 and much weaker for the lighter, more-symmetric isotopes. We point out a general agreement of our results with other nonrelativistic studies, the absence of a collective IS mode in some of those studies, and a possibly radical disagreement with relativistic models.

  16. Theoretical prediction and impact of fundamental electric dipole moments

    NASA Astrophysics Data System (ADS)

    Ellis, Sebastian A. R.; Kane, Gordon L.

    2016-01-01

    The predicted Standard Model (SM) electric dipole moments (EDMs) of electrons and quarks are tiny, providing an important window to observe new physics. Theories beyond the SM typically allow relatively large EDMs. The EDMs depend on the relative phases of terms in the effective Lagrangian of the extended theory, which are generally unknown. Underlying theories, such as string/M-theories compactified to four dimensions, could predict the phases and thus EDMs in the resulting supersymmetric (SUSY) theory. Earlier one of us, with collaborators, made such a prediction and found, unexpectedly, that the phases were predicted to be zero at tree level in the theory at the unification or string scale ˜ O(1016 GeV). Electroweak (EW) scale EDMs still arise via running from the high scale, and depend only on the SM Yukawa couplings that also give the CKM phase. Here we extend the earlier work by studying the dependence of the low scale EDMs on the constrained but not fully known fundamental Yukawa couplings. The dominant contribution is from two loop diagrams and is not sensitive to the choice of Yukawa texture. The electron EDM should not be found to be larger than about 5 × 10-30 e cm, and the neutron EDM should not be larger than about 5 × 10-29 e cm. These values are quite a bit smaller than the reported predictions from Split SUSY and typical effective theories, but much larger than the Standard Model prediction. Also, since models with random phases typically give much larger EDMs, it is a significant testable prediction of compactified M-theory that the EDMs should not be above these upper limits. The actual EDMs can be below the limits, so once they are measured they could provide new insight into the fundamental Yukawa couplings of leptons and quarks. We comment also on the role of strong CP violation. EDMs probe fundamental physics near the Planck scale.

  17. Magnetic field measurements of 1. 5 meter model SSC collider dipole magnets at Fermilab

    SciTech Connect

    Lamm, M.J.; Bleadon, M.; Coulter, K.J.; Delchamps, S.; Hanft, R.; Jaffery, T.S.; Kinney, W.; Koska, W.; Ozelis, J.P.; Strait, J.; Wake, M. ); DiMarco, J. )

    1991-09-01

    Magnetic field measurements have been performed at Fermilab on 1.5 m magnetic length model dipoles for the Superconducting Supercollider. Harmonic measurements are recorded at room temperature before and after the collared coil is assembled into the yoke and at liquid helium temperature. Measurements are made as a function of longitudinal position and excitation current. High field data are compared with room temperature measurements of both the collared coil and the completed yoked magnet and with the predicted fields for both the body of the magnet and the coil ends.

  18. Theory for electric dipole superconductivity with an application for bilayer excitons

    PubMed Central

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X. C.

    2015-01-01

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current. PMID:26154838

  19. Charged Lepton Electric Dipole Moment Enhancement in the Lorentz Violated Extension of the Standard Model

    NASA Astrophysics Data System (ADS)

    Haghighat, M.; Motie, I.; Rezaei, Z.

    2013-08-01

    We consider the Lorentz violated extension of the standard model. In this framework, there are terms that explicitly violate CP-symmetry. We examine the CPT-even dμν-term to find the electric dipole moment of charged leptons. We show that the form factors besides the momentum transfer, depend on a new Lorentz-scalar, constructing by dμν and the four momenta of the lepton, as well. Such an energy dependence of the electric dipole form factor leads to an enhancement of the lepton electric dipole moment at high energy, even at the zero momentum transfer. We show that at {\\vert}d/{\\vert}p2{m^2l ˜ 1 the electric dipole moment of the charged lepton can be as large as 10-14e cm.

  20. CryoEDM: A cryogenic experiment to measure the neutron electric dipole moment

    NASA Astrophysics Data System (ADS)

    van der Grinten, M. G. D.; CryoEDM Collaboration; Balashov, S. N.; Francis, V.; Green, K.; Iaydjiev, P. S.; Ivanov, S. N.; Khazov, A.; Tucker, M. A. H.; Wark, D. L.; Davidson, A.; Hardiman, M.; Harris, P. G.; Katsika, K.; Pendlebury, J. M.; Peeters, S. J. M.; Shiers, D. B.; Smith, P.; Townsley, C.; Wardell, I.; Clarke, C.; Henry, S.; Kraus, H.; McCann, M.; Geltenbort, P.; Yoshiki, Y.

    2009-12-01

    CryoEDM is an experiment that aims to measure the electric dipole moment (EDM) of the neutron to a precision of 10 -28 e cm. A description of CryoEDM, the apparatus, technologies and commissioning is presented.

  1. Electric and Magnetic Field Detection in Elasmobranch Fishes

    NASA Astrophysics Data System (ADS)

    Kalmijn, Ad. J.

    1982-11-01

    Sharks, skates, and rays receive electrical information about the positions of their prey, the drift of ocean currents, and their magnetic compass headings. At sea, dogfish and blue sharks were observed to execute apparent feeding responses to dipole electric fields designed to mimic prey. In training experiments, stingrays showed the ability to orient relative to uniform electric fields similar to those produced by ocean currents. Voltage gradients of only 5 nanovolts per centimeter would elicit either behavior.

  2. Progress Towards a New Measurement of the Electric Dipole Moment of ^199Hg.

    NASA Astrophysics Data System (ADS)

    Swallows, M. D.; Griffith, W. C.; Heckel, B. R.; Fortson, E. N.; Romalis, M. V.

    2007-06-01

    We are currently undertaking a four vapor cell search for the permanent electric dipole moment (EDM) of ^199Hg. The existence of a nonzero EDM would imply a source of CP violation beyond the standard model. The present limit on the EDM of ^199 Hg is |dHg| < 2.1 x10-28 ,,, which was established several years ago by our group at the University of Washington. In that experiment, two quartz vapor cells containing polarized Hg vapor were placed in parallel magnetic and anti-parallel electric fields (the use of two cells permitted the removal of common-mode effects), and the spin precession frequency was measured using an optical technique. In our current experiment, two additional cells at zero electric field serve to cancel magnetic gradient noise and to improve limits on systematic effects due to charging and leakage currents. We have recently overcome several systematic issues and begun acquiring data with our upgraded apparatus. To prevent experimenter bias from influencing the data, we have also instituted a blind analysis protocol. The statistical error of the data at the time of this writing was ±0.15x10-28 e cm, and we hope to improve the sensitivity by a further factor of two. We will discuss recent progress and our plans to place improved limits on systematic effects.

  3. Electrically Tunable Magnetism in Magnetic Topological Insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Shou-Cheng; Wang, Jing; Lian, Biao

    2015-03-01

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modication of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a topological transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. The simultaneous electrical control of magnetic order and chiral edge transport in such a device may lead to electronic and spintronic applications for topological insulators. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515.

  4. Dynamical interaction effects on an electric dipole moving parallel to a flat solid surface

    SciTech Connect

    Villo-Perez, Isidro; Abril, Isabel; Garcia-Molina, Rafael; Arista, Nestor R.

    2005-05-15

    The interaction experienced by a fast electric dipole moving parallel and close to a flat solid surface is studied using the dielectric formalism. Analytical expressions for the force acting on the dipole, for random and for particular orientations, are obtained. Several features related to the dynamical effects on the induced forces are discussed, and numerical values are obtained for the different cases. The calculated energy loss of the electric dipole provides useful estimations which could be of interest for small-angle scattering experiments using polar molecules.

  5. New search for the neutron electric dipole moment with ultracold neutrons at ILL

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoschekova, I. A.; Vassiljev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.; Alexandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.

    2015-11-01

    The search for an electric dipole moment (EDM) of the neutron is a crucial test for theoretical particle physics models with violation of time and spatial invariance. A new experiment recently has been carried out at the High-Flux Reactor at Institut Laue-Langevin, using the upgraded double-chamber magnetic resonance spectrometer developed at Petersburg Nuclear Physics Institute. The result is interpreted as an upper limit on the value of the neutron EDM, | dn|<5.5 × 10-26ecm (90% C.L.). This article provides a detailed description of the setup and experimental procedures, along with a discussion of possibilities for further improvement of the experimental accuracy.

  6. Estimation of Systematic Errors for Deuteron Electric Dipole Moment Search at COSY

    NASA Astrophysics Data System (ADS)

    Chekmenev, Stanislav

    2016-02-01

    An experimental method which is aimed to find a permanent EDM of a charged particle was proposed by the JEDI (Jülich Electric Dipole moment Investigations) collaboration. EDMs can be observed by their influence on spin motion. The only possible way to perform a direct measurement is to use a storage ring. For this purpose, it was decided to carry out the first precursor experiment at the Cooler Synchrotron (COSY). Since the EDM of a particle violates CP invariance it is expected to be tiny, treatment of all various sources of systematic errors should be done with a great level of precision. One should clearly understand how misalignments of the magnets affects the beam and the spin motion. It is planned to use a RF Wien filter for the precusor experiment. In this paper the simulations of the systematic effects for the RF Wien filter device method will be discussed.

  7. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  8. Electric dipole moments and polarizability in the quark-diquark model of the neutron

    SciTech Connect

    Srivastava, Y. N.; Widom, A.; Swain, J.; Panella, O.

    2010-11-01

    For a bound state internal wave function respecting parity symmetry, it can be rigorously argued that the mean electric dipole moment must be strictly zero. Thus, both the neutron, viewed as a bound state of three quarks, and the water molecule, viewed as a bound state of ten electrons, two protons, and an oxygen nucleus, have zero mean electric dipole moments. Yet, the water molecules are said to have a nonzero dipole moment strength d=e{Lambda} with {Lambda}{sub H{sub 2O{approx_equal}}}0.385 A. The neutron may also be said to have an electric dipole moment strength with {Lambda}{sub neutron{approx_equal}}0.612 fm. The neutron analysis can be made experimentally consistent, if one employs a quark-diquark model of neutron structure.

  9. Search For The Electric Dipole Moment Of The Neutron

    SciTech Connect

    Grinten, Maurits van der

    2006-07-11

    We report on the nEDM experiment at the Institut Laue Langevin (ILL), based on a precision measurement of the Larmor precession frequency of polarised ultra-cold neutrons stored in a cell in a magnetic field. An EDM would reveal itself by a response of the Larmor precession frequency of the neutron to an electric field applied over the storage volume. The experiment has been taking data over a period of six years and has subsequently been running for one year devoted to systematic studies related to the experiment. These systematic studies have now been completed. This experiment will result in an EDM measurement with a sensitivity of the order of 10-26 e cm. The experimental techniques used in the experiment are presented as well as the systematic studies and results of the data analysis of the experiment.

  10. Exploration of resistive targets within shallow marine environments using the Circular Electrical Dipole and the Differential Electrical Dipole methods: A time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-02-01

    Two novel transient controlled source electromagnetic methods called Circular Electrical Dipole (CED) and Differential Electrical Dipole (DED) are theoretically analysed for applications in shallow marine environments. One-dimensional and three-dimensional time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong affects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  11. Exploration of resistive targets within shallow marine environments using the circular electrical dipole and the differential electrical dipole methods: a time-domain modelling study

    NASA Astrophysics Data System (ADS)

    Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent

    2016-05-01

    Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.

  12. MAGNETIC FIELD MEASUREMENTS OF HD2, A HIgh Nb3Sn DIPOLE MAGNET

    SciTech Connect

    Wang, X.; Caspi, S.; Cheng, D. W.; Felice, H.; Ferracin, P.; Hafalia, R. R.; Joseph, J. M.; Lietzke, A. F.; Lizarazo, J.; McInturff, A. D.; Sabbi, G. L.; Sasaki, K.

    2009-05-04

    The Superconducting Magnet Program at Lawrence Berkeley National Laboratory has designed and tested HD2, a 1 m long Nb{sub 3}Sn accelerator-type dipole based on a simple block-type coil geometry with flared ends. HD2 represents a step toward the development of cost-effective accelerator quality magnets operating in the range of 13-15 T. The design was optimized to minimize geometric harmonics and to address iron saturation and conductor magnetization effects. Field quality was measured during recent cold tests. The measured harmonics are presented and compared to the design values.

  13. Solar rotating magnetic dipole?. [around axis perpendicular to rotation axis of the sun

    NASA Technical Reports Server (NTRS)

    Antonucci, E.

    1974-01-01

    A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure.

  14. Test results of a single aperture 10 tesla dipole model magnet for the Large Hadron Collider

    SciTech Connect

    Yamamoto, Akira; Shintomi, Takakazu; Kimura, Nobuhiro

    1996-07-01

    A single aperture dipole magnet has been developed with a design magnetic field of 10 tesla by using Nb-Ti/Cu conductor to be operated at 1.8 K in pressurized super fluid helium. The magnet features double shell coil design by using high keystone Rutherford cable and compact non-magnetic steel collars to be adaptable in split/symmetric coil/collar design for twin aperture dipoles. A design central magnetic field of 10 tesla has been successfully achieved in excitation at 1.95 K in pressurized superfluid helium. Test results of the magnet with a summary of the design and fabrication will be presented.

  15. Nb3Sn accelerator magnet technology scale up using cos-theta dipole coils

    SciTech Connect

    Nobrega, F.; Andreev, N.; Ambrosio, G.; Barzi, E.; Bossert, R.; Carcagno, R.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; /Fermilab

    2007-06-01

    Fermilab is working on the development of Nb{sub 3}Sn accelerator magnets using shell-type dipole coils and the wind-and-react method. As a part of the first phase of technology development, Fermilab built and tested six 1 m long dipole model magnets and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. The technology scale up phase has started by building 2 m and 4 m dipole coils and testing them in a mirror configuration in which one of the two coils is replaced by a half-cylinder made of low carbon steel. This approach allows for shorter fabrication times and extensive instrumentation preserving almost the same level of magnetic field and Lorentz forces in the coils as in a complete dipole model magnet. This paper presents details on the 2 m (HFDM07) and 4 m long (HFDM08) Nb{sub 3}Sn dipole mirror magnet design and fabrication technology, as well as the magnet test results which are compared with 1 m long models.

  16. Comparative anatomy of dipole magnets or the magnet designer's coloring book

    SciTech Connect

    Meuser, R.B.

    1983-04-01

    A collection of dipole magnet cross sections is presented together with an indication of how they are related geometrically. The relationships indicated do not necessarily imply the actual path of evolutionary development. Brief consideration is given to magnets of higher multipole order, i.e., quadrupole magnets, etc.). The magnets under consideration have currents parallel to the axis except at the ends, and are long. The relationship between current distribution and magnetic field is essentially two-dimensional. The coils are usually surrounded by an iron yoke, but the emphasis is on conductor-dominated configurations capable of producing a rather uniform magnetic field in the aperture; the iron usually has a small effect.

  17. Direct detection of light anapole and magnetic dipole DM

    SciTech Connect

    Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo E-mail: gelmini@physics.ucla.edu E-mail: jhhuh@physics.ucla.edu

    2014-06-01

    We present comparisons of direct detection data for ''light WIMPs'' with an anapole moment interaction (ADM) and a magnetic dipole moment interaction (MDM), both assuming the Standard Halo Model (SHM) for the dark halo of our galaxy and in a halo-independent manner. In the SHM analysis we find that a combination of the 90% CL LUX and CDMSlite limits or the new 90% CL SuperCDMS limit by itself exclude the parameter space regions allowed by DAMA, CoGeNT and CDMS-II-Si data for both ADM and MDM. In our halo-independent analysis the new LUX bound excludes the same potential signal regions as the previous XENON100 bound. Much of the remaining signal regions is now excluded by SuperCDMS, while the CDMSlite limit is much above them. The situation is of strong tension between the positive and negative search results both for ADM and MDM. We also clarify the confusion in the literature about the ADM scattering cross section.

  18. Self-force on an electric dipole in the spacetime of a cosmic string

    SciTech Connect

    Muniz, C.R.; Bezerra, V.B.

    2014-01-15

    We calculate the electrostatic self-force on an electric dipole in the spacetime generated by a static, thin, infinite and straight cosmic string. The electric dipole is held fixed in different configurations, namely, parallel, perpendicular to the cosmic string and oriented along the azimuthal direction around this topological defect, which is stretched along the z axis. We show that the self-force is equivalent to an interaction of the electric dipole with an effective dipole moment which depends on the linear mass density of the cosmic string and on the configuration. The plots of the self-forces as functions of the parameter which determines the angular deficit of the cosmic string are shown for those different configurations. -- Highlights: •Review of regularized Green’s function applied to the problem. •Self-force on an electric dipole in the string spacetime for some orientations. •Representation via graphs of the self-forces versus angular parameter of the cosmic string. •Self-force induced by the string seen as an interaction between two dipoles. •Discussion about the superposition principle in this non-trivial background.

  19. Full QCD calculation of neutron electric dipole moment with the external electric field method

    SciTech Connect

    Shintani, E.; Aoki, S.; Kuramashi, Y.

    2008-07-01

    We have calculated the neutron electric dipole moment (EDM) in the presence of the CP violating {theta} term in lattice QCD with two-flavor dynamical clover quarks, using the external electric field method. Accumulating a large number of statistics by the averages over 16 different source points and over forward and backward nucleon propagators, we have obtained nonzero signals of neutron and proton EDM beyond 1 standard deviation at each quark mass in full QCD. We have investigated the quark mass dependence of nucleon EDM in full QCD, and have found that nucleon EDM in full QCD does not decrease toward the chiral limit, as opposed to the theoretical expectation. We briefly discuss possible reasons for this behavior.

  20. A class of Fourier integrals based on the electric potential of an elongated dipole.

    PubMed

    Skianis, Georgios Aim

    2014-01-01

    In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals are associated with a group of functions at space domain, which represent the electric potential of a distribution of elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by the Fourier transform of the Green's function of the potential of the dipole distribution, times a definite integral in which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated dipole distributions, at spatial frequency domain. PMID:26034699

  1. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    SciTech Connect

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-09-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications.

  2. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    NASA Technical Reports Server (NTRS)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  3. Regular and chaotic dynamics of a chain of magnetic dipoles with moments of inertia

    SciTech Connect

    Shutyi, A. M.

    2009-05-15

    The nonlinear dynamic modes of a chain of coupled spherical bodies having dipole magnetic moments that are excited by a homogeneous ac magnetic field are studied using numerical analysis. Bifurcation diagrams are constructed and used to find conditions for the presence of several types of regular, chaotic, and quasi-periodic oscillations. The effect of the coupling of dipoles on the excited dynamics of the system is revealed. The specific features of the Poincare time sections are considered for the cases of synchronous chaos with antiphase synchronization and asynchronous chaos. The spectrum of Lyapunov exponents is calculated for the dynamic modes of an individual dipole.

  4. Prospects for measuring the electric dipole moment of the electron using electrically trapped polar molecules.

    PubMed

    Tarbutt, M R; Hudson, J J; Sauer, B E; Hinds, E A

    2009-01-01

    Heavy polar molecules can be used to measure the electric dipole moment of the electron, which is a sensitive probe of physics beyond the Standard Model. The value is determined by measuring the precession of the molecule's spin in a plane perpendicular to an applied electric field. The longer this precession evolves coherently, the higher the precision of the measurement. For molecules in a trap, this coherence time could be very long indeed. We evaluate the sensitivity of an experiment where neutral molecules are trapped electrically, and compare this to an equivalent measurement in a molecular beam. We consider the use of a Stark decelerator to load the trap from a supersonic source, and calculate the deceleration efficiency for YbF molecules in both strong-field seeking and weak-field seeking states. With a 1 s holding time in the trap, the statistical sensitivity could be ten times higher than it is in the beam experiment, and this could improve by a further factor of five if the trap can be loaded from a source of larger emittance. We study some effects due to field inhomogeneity in the trap and find that rotation of the electric field direction, leading to an inhomogeneous geometric phase shift, is the primary obstacle to a sensitive trap-based measurement. PMID:20151537

  5. Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Ashida, Y.; Usui, H.; Shinohara, I.; Nakamura, M.; Funaki, I.; Miyake, Y.; Yamakawa, H.

    2014-12-01

    We examined the plasma flow response to meso- and microscale magnetic dipoles by performing three-dimensional full particle-in-cell simulations. We particularly focused on the formation of a magnetosphere and its dependence on the intensity of the magnetic moment. The size of a magnetic dipole immersed in a plasma flow can be characterized by a distance L from the dipole center to the position where the pressure of the local magnetic field becomes equal to the dynamic pressure of the plasma flow under the magnetohydrodynamics (MHD) approximation. In this study, we are interested in a magnetic dipole whose L is smaller than the Larmor radius of ions riL calculated with the unperturbed dipole field at the distance L from the center. In the simulation results, we confirmed the clear formation of a magnetosphere consisting of a magnetopause and a tail region in the density profile, although the spatial scale is much smaller than the MHD scale. One of the important findings in this study is that the spatial profiles of the plasma density as well as the current flows are remarkably affected by the finite Larmor radius effect of the plasma flow, which is different from the Earth's magnetosphere. The magnetopause found in the upstream region is located at a position much closer to the dipole center than L. In the equatorial plane, we also found an asymmetric density profile with respect to the plasma flow direction, which is caused by plasma gyration in the dipole field region. The ion current layers are created in the inner region of the dipole field, and the electron current also flows in the region beyond the ion current layer because ions with a large inertia can closely approach the dipole center. Unlike the ring current structure of the Earth's magnetosphere, the current layers in the microscale dipole fields are not circularly closed around the dipole center. Since the major current is caused by the particle gyrations, the current is independently determined to be in the direction of the electron and ion gyrations, which are the same in both the upstream and downstream regions. The present analysis on the formation of a magnetosphere in the regime of a microscale magnetic dipole is significant for understanding the solar wind response to the crustal magnetic anomalies on the Moon surface, such as were recently observed by spacecraft.

  6. Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles

    SciTech Connect

    Ashida, Y.; Yamakawa, H.; Usui, H.; Miyake, Y.; Shinohara, I.; Funaki, I.; Nakamura, M.

    2014-12-15

    We examined the plasma flow response to meso- and microscale magnetic dipoles by performing three-dimensional full particle-in-cell simulations. We particularly focused on the formation of a magnetosphere and its dependence on the intensity of the magnetic moment. The size of a magnetic dipole immersed in a plasma flow can be characterized by a distance L from the dipole center to the position where the pressure of the local magnetic field becomes equal to the dynamic pressure of the plasma flow under the magnetohydrodynamics (MHD) approximation. In this study, we are interested in a magnetic dipole whose L is smaller than the Larmor radius of ions r{sub iL} calculated with the unperturbed dipole field at the distance L from the center. In the simulation results, we confirmed the clear formation of a magnetosphere consisting of a magnetopause and a tail region in the density profile, although the spatial scale is much smaller than the MHD scale. One of the important findings in this study is that the spatial profiles of the plasma density as well as the current flows are remarkably affected by the finite Larmor radius effect of the plasma flow, which is different from the Earth's magnetosphere. The magnetopause found in the upstream region is located at a position much closer to the dipole center than L. In the equatorial plane, we also found an asymmetric density profile with respect to the plasma flow direction, which is caused by plasma gyration in the dipole field region. The ion current layers are created in the inner region of the dipole field, and the electron current also flows in the region beyond the ion current layer because ions with a large inertia can closely approach the dipole center. Unlike the ring current structure of the Earth's magnetosphere, the current layers in the microscale dipole fields are not circularly closed around the dipole center. Since the major current is caused by the particle gyrations, the current is independently determined to be in the direction of the electron and ion gyrations, which are the same in both the upstream and downstream regions. The present analysis on the formation of a magnetosphere in the regime of a microscale magnetic dipole is significant for understanding the solar wind response to the crustal magnetic anomalies on the Moon surface, such as were recently observed by spacecraft.

  7. Production of trilobite Rydberg molecule dimers with kilo-Debye permanent electric dipole moments

    NASA Astrophysics Data System (ADS)

    Booth, D.; Rittenhouse, S. T.; Yang, J.; Sadeghpour, H. R.; Shaffer, J. P.

    2015-04-01

    Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of “trilobite” molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics.

  8. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  9. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    PubMed

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  10. Dynamics of the magnetic moments for chain of dipoles in domain wall

    NASA Astrophysics Data System (ADS)

    Shutyıˇ, Anatoliy M.; Sementsov, Dmitriy I.

    2016-03-01

    We report on the dynamics of the magnetic moment numerically simulated for a chain of the magnetic nanodots coupled through the dipole-dipole interaction and in the presence of the magnetic anisotropy of various types. It is shown that a static field applied to the system causes specific fluctuations of the transverse components of the magnetic moment leading to a sequence of the oscillation trains observed in the domain wall. Various oscillation modes governed by the external alternating field are revealed. The influence of the unidirectional and uniaxial anisotropy ("easy-plane" and "easy axis" anisotropy) on the system behavior is described.

  11. Measurements of passive correction of magnetization higher multipoles in one meter long dipoles

    SciTech Connect

    Green, M.A.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Gilbert, W.S.; Green, M.I.; Scanlan, R.M.; Taylor, C.E.

    1990-09-01

    The use of passive superconductor to correct the magnetization sextupole and decapole in SSC dipoles appears to be promising. This paper presents the results of a series of experiments of passive superconductor correctors in one meter long dipole magnets. Reduction of the magnetization sextupole by a factor of five to ten has been achieved using the passive superconductor correctors. The magnetization decapole was also reduced. The passive superconductor correctors reduced the sextupole temperature sensitivity by an order of magnitude. Flux creep decay was partially compensated for by the correctors. 13 refs., 7 figs.

  12. Implications of stochastic magnetization dynamics on reliability of dipole coupled nanomagnetic logic

    NASA Astrophysics Data System (ADS)

    Salehi Fashami, Mohammad; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2013-03-01

    Straintronic nanomagnetic logic (SML), where Boolean computation is elicited from dipole coupled multiferroic nanomagnets switched with electrically generated strain, has emerged as an extremely energy-efficient computing paradigm. We have studied the reliability of such logic circuits by computing the gate error rates in the presence of thermal noise by simulating switching trajectories with the stochastic Landau-Lifshitz-Gilbert (LLG) equation. In addition, we examine the lower bound of energy dissipation as a function of switching error and explain how the out-of-plane excursion of the magnetization vector leads to excess energy dissipation over this bound for a given switching error. This analysis is performed to understand the connection between reliability and energy dissipation for a single switch and then extended to larger nanomagnetic logic circuits to assess the viability of dipole coupled SML. This work is supported by the US National Science Foundation under the SHF-Small grant CCF-1216614, NEB 2020 grant ECCS-1124714 and by the Semiconductor Research Corporation (SRC) under NRI Task 2203.001.

  13. Polarity reversals and tilt of the Earth's magnetic dipole

    NASA Technical Reports Server (NTRS)

    Dolginov, A. Z.

    1993-01-01

    There is evidence that the terrestrial magnetic field is connected with the Earth's mantle: (1) there are magnetic anomalies that do not take part in the westward drift of the main field, but are fixed with respect to the mantle; (2) the geomagnetic pole position flips in a particular way by preferred meridional paths during a reversal; and (3) magnetic polarity reversals are correlated with the activations of geological processes. These facts may be explained if we take into account that a significant horizontal temperature gradient can exist in the top levels of the liquid core because of the different thermoconductivity of the different areas of the core-mantle boundary. These temperature inhomogeneities can penetrate the core because fluxes along the core boundary (the thermal wind) can be strongly suppressed by a small redistribution of the chemical composition in the top of the core. The nonparallel gradients of the temperature, density, and composition on the top of the core create a curled electric field that produces a current and a magnetic field. This seed-field can be amplified by motions in the core. The resulting field does not forget the seed-field distribution and in this way the field on the Earth surface (that can be created only in regions with high conductivity, i.e. in the core) is connected with the core-mantle boundary. Contrary to the usual approach to the dynamo problem, we will take into account that the seed field of thermoelectric origin is acting not only at some initial moment of time but permanently.

  14. Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.

    PubMed

    Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2016-02-17

    We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work. PMID:26837666

  15. Electric dipole response of {sup 208}Pb and constraints on the symmetry energy

    SciTech Connect

    Tamii, A.

    2014-05-02

    The electric dipole (E1) response of {sup 208}Pb has been precisely determined by measuring polarized proton inelastic scattering at very forward angles including zero degrees. The electric dipole polarizability, that is defined as the inverse energy-weighted sum rule of the E1 reduced transition strength, has been extracted as α{sub D} = 20.1 ±0.6 fm{sup 3}. A constraint band has been extracted in the plane of the symmetry energy (J) and its slope parameter (L) at the saturation density.

  16. Electron in the Field of a Molecule with an Electric Dipole Moment

    SciTech Connect

    Alhaidari, A. D.; Bahlouli, H.

    2008-03-21

    In solving the eigenvalue wave equation, we relax the usual diagonal constraint on its matrix representation by allowing it to be tridiagonal. This results in a larger representation space that incorporates an analytic solution for the noncentral electric dipole pole potential cos{theta}/r{sup 2}, which was believed not to belong to the class of exactly solvable potentials. Consequently, we obtain closed form solution of the time-independent Schroedinger equation for an electron in the field of a molecule treated as a point electric dipole.

  17. Designs and measurements of gradient dipole magnets for the upgrade of Pohang Light Source

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Kim, D. E.; Kang, W.; Chen, F. S.; Yang, M.; Zhang, Z.; Yin, B. G.; Zhou, J. X.

    2012-08-01

    The compact size of the upgrade of Pohang Light Source (PLS-II) ring implies the use of gradient dipole magnets, with high field quality requirements. The PLS-II ring contains 24 such dipoles. Detailed 2D and 3D physical designs are reported; they include conformal mapping, equivalent 2D compact factor, residues fitting technique and end chamfer in a concise straight line style. According to the field measurement results, a beam based alignment technique for the rms variation reduction was employed. With that, the uniformities for these dipoles can be reduced to less than 2.0E-04, and the rms variation from dipole to dipole can reach 5.82E-04.

  18. Electric & Magnetic Fields

    MedlinePlus

    ... radiation , that are associated with the use of electrical power and various forms of natural and man-made ... exposures stemming from conventional power sources, such as power lines, electrical substations, or home appliances. While some of these ...

  19. The dynamics of high energy density plasma jets magnetized by large dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Gourdain, Pierre; Byvank, Tom; Hammer, Dave; Kusse, Bruce; Seyler, Charlie; Bland, Simon; Lebedev, Sergey; Swadling, George

    2014-10-01

    Astrophysical plasma jets expelled by proto-stars or galactic nuclei are often magnetized by the magnetic field that the star or galaxy generates. This field resembles the one of a dipole and, while strong near the celestial body, the field decays rapidly away from the source. Experimental observations of supersonic high energy density plasma jets generated in the laboratory by radial foils have shown that the field impacts strongly the dynamics of the jet. Such jets share some similarities with astrophysical jets in the magneto-hydrodynamics sense, e.g. large Reynolds, magnetic Reynolds and Peclet numbers. This work shows how a dipole field generated at the base of the supersonic jet affects the plasma dynamics. In regions where the plasma beta is low (near the base of the jet), the jet is conical. At higher altitudes, where the beta is high, the jet is strongly collimated. Numerical computations highlight the mechanisms responsible for such transitions. Research supported by NSF Grant # PHY-1102471, the DOE Grant # DE-SC0002151 and the NNSA/DOE Cooperative Agreement DE-NA0001836 and DE-NA0001847.

  20. A robust limit for the electric dipole moment of the electron

    NASA Astrophysics Data System (ADS)

    Jung, Martin

    2013-05-01

    Electric dipole moments constitute a competitive method to search for new physics, being particularly sensitive to new CP -violating phases. Given the experimental and theoretical progress in this field and more generally in particle physics, the necessity for more reliable bounds than the ones usually employed emerges. We therefore propose an improved extraction of the electric dipole moment of the electron and the relevant coefficient of the electron-nucleon coupling, taking into account theoretical uncertainties and possible cancellations, to be used in model-dependent analyses. Specifically, we obtain at 95% C.L. | d e | ≤ 0.14 × 10-26 e cm with present data, which is very similar to the bound typically quoted from the YbF molecule, but obtained in a more conservative manner. We examine furthermore in detail the prospects for improvements and derive upper limits for the dipole moments of several paramagnetic systems presently under investigation, i.e. cesium, rubidium and francium.

  1. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    PubMed

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence). PMID:26196797

  2. Model SSC (Superconducting Super Collider) dipole magnet cryostat assembly at Fermilab

    SciTech Connect

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs.

  3. Modeling the interaction of solar wind with a dipole magnetic field with Shenguang II intense lasers

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Zhong, J. Y.; Wang, J. Q.; Pei, X. X.; Wei, H. G.; Yuan, D. W.; Yang, Z. W.; Wang, C.; Li, F.; Han, B.; Yin, C. L.; Liao, G. Q.; Fang, Y.; Yang, S.; Yuan, X. H.; Sakawa, Y.; Morita, T.; Cao, Z. R.; Jiang, S. E.; Ding, Y. K.; Kuramitsu, Y.; Liang, G. Y.; Wang, F. L.; Li, Y. T.; Zhu, J. Q.; Zhang, J.; Zhao, G.

    2015-12-01

    The interaction of solar wind with a dipole magnetic field is modeled in a laboratory setting with a small cylindrical permanent magnet and magnetized plasma driven by intense lasers. The result shows a potential application in the understanding of Earth's magnetosphere near the pole region. Some significant features are observed in our experiments, such as magnetic reconnection and repulsion, which agree well with magnetohydrodynamics (MHD) simulation results.

  4. Comparative study of the exciton states in CdSe/ZnS core-shell quantum dots under applied electric fields with and without permanent electric dipole moment

    NASA Astrophysics Data System (ADS)

    Cristea, M.

    2016-04-01

    Due to its non-centrosymmetric wurtzite crystal structure, the CdSe dot presents a permanent electric dipole moment. In this paper we study the effect of an electric applied field on the emission wavelength of a CdSe/ZnS core-shell quantum dot with a permanent electric dipole. The electron and hole single-particle energy and wave function in the presence of an electric dipole are obtained in the effective-mass and parabolic-band approximation for various electric field strengths. The Schrödinger equation was solved by use of the finite element method. The exciton binding energy is calculated in the first-order perturbation theory and the optical emission wavelengths are found and compared to the experimental values. We find that the photoluminescence emission can be tuned by varying the electric dipole size, the electric field strength and by an appropriate orientation between the permanent dipole moment and applied electric field.

  5. Design and end chamfer simulation of PEFP beam line curved dipole magnets

    NASA Astrophysics Data System (ADS)

    Zhu, Ying-Shun; Yang, Mei; Zhang, Zhuo; Chen, Wan; Yin, Bao-Gui; Shi, Cai-Tu; Kang, Wen

    2011-07-01

    The design, fabrication and field measurement of 11 DC curved dipole magnets for the PEFP Beam Line have been completed. In this paper, a design method for a complex end chamfer using OPERA-3D is proposed. The conventional method for estimating chamfer shape is extended and applied to a curved dipole magnet by a coordinate transformation. Using the interface with CAD software, the complex end chamfer is modeled and fully determined by 3D simulation to meet the field uniformity requirement. The magnetic field measurement results are in good agreement with the simulation. The design considerations, field simulation results, end chamfer development process and measurement results are presented in detail.

  6. Quench performance of 50-mm aperture, 15-m-long SSC dipole magnets built at Fermilab

    SciTech Connect

    Kuzminski, J.; Bush, T.; Coombes, R.

    1992-07-01

    The quench performance, ramp rate dependence, and mechanical behavior of ten full-length, 50-mm-aperture, SSC dipole magnets built at Fermilab are discussed. Cold testing of these magnets shows that the quench plateau established at 4.35 K exceeds the design value by more than 10%, virtually without training.

  7. Test results of BNL built 40-mm aperture, 17-m-long SSC collider dipole magnets

    SciTech Connect

    Kuzminski, J.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R. )

    1992-01-01

    Eleven 17 m long, 40 mm aperture SSC R and D superconducting collider dipole magnets, built at BNL, have been extensively tested at BNL and Fermilab during 1990-91. In this paper quench performance of these magnets and details of their mechanical behavior are presented.

  8. Test results of BNL built 40-mm aperture, 17-m-long SSC collider dipole magnets

    SciTech Connect

    Kuzminski, J.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.C.; Wolf, Z.; Yu, Y.; Zheng, H. ); Ogitsu, T. National Lab. for High Energy Physics, Tsukuba, Ibaraki ); Anerella, M.; Cottingham, J.

    1991-06-01

    Eleven 17 m long, 40 mm aperture SSC R D superconducting collider dipole magnets, built at BNL, have been extensively tested at BNL and Fermilab during 1990--91. Quench performance of these magnets and details of their mechanical behavior are presented. 7 refs., 5 figs.

  9. Electric dipole moments for a CP-violating neutral Higgs sector

    SciTech Connect

    Gunion, J.F.

    1992-12-31

    The authors briefly survey the consequences for the electric dipole moments of the electron and neutron (d{sub e} and d{sub n}, respectively) of a neutral Higgs sector that is CP-violating. They find that current experimental limits are on the verge of placing significant constraints on such CP violation.

  10. The 2H electric dipole moment in a separable potential approach

    SciTech Connect

    Gibson, Benjamin; Afnan, I. R.

    2009-01-01

    Measurement of the electric dipole moment of H or HE may well come prior to the coveted measurement of the neutron EDM. Exact model calculations for the deuteron are feasible, and we explore here the model dependence of such deuteron EDM calculations.

  11. Interpretation of dipole-dipole electrical resistivity survey, Colado geothermal area, Pershing County, Nevada

    NASA Astrophysics Data System (ADS)

    Mackelprang, C. E.

    1980-09-01

    An electrical resistivity survey in the Colado geothermal area, Pershing County, Nevada has defined areas of low resistivity on each of five lines surveyed. Some of these areas appear to be fault controlled. Thermal fluids encountered in several drill holes support the assumption that the hot fluids may be associated with areas of low resistivity. The evidence of faulting as interpreted from modeling of the observed resistivity data is therefore particularly significant since these structures may be the conduits for the thermal fluids. Sub-alluvial fault zones are interpreted to occur between stations 0-5 NW on Line D and on Line A between stations 4 NW and 4 SE. Fault zones are also interpreted on Line C near stations 1 NW, 1 SE, and 3 SE, and on Line E between stations 2-4 NW and near 1 SE. No faulting is evident under the alluvial cover on the southwest end of Line B. A deep conductive zone is noted within the mountain range on two resistivity lines. There is no definite indication that thermal fluids are associated with this resistivity feature.

  12. Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Feng, Guosheng; Xu, Rundong; Wang, Xiaofeng; Wu, Jizhou; Chen, Gang; Dai, Xingcan; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2015-05-01

    We report a detailed study of effective magnetically levitated loading of cold atoms in a crossed dipole trap: an appropriate magnetic field gradient precisely compensates for the destructive gravitational force of the atoms and an additional bias field simultaneously eliminates the antitrapping potential induced by the magnetic field gradient. The magnetic levitation is required for a large-volume crossed dipole trap to form a shallow but very effective loading potential, making it a promising method for loading and trapping more cold atoms. For cold cesium atoms in the F =3 , m F =3 state prepared by three-dimensional degenerated Raman sideband cooling, a large number of atoms ˜3.2 ×106 have been loaded into a large-volume crossed dipole trap with the help of the magnetic levitation technique. The dependence of the number of atoms loaded and trapped in the dipole trap on the magnetic field gradient and bias field, respectively, is in good agreement with the theoretical analysis. The optimum magnetic field gradient of 31.13 G/cm matches the theoretical value of 31.3 G/cm well. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for many atomic species in high-field seeking states.

  13. Search for a permanent electric dipole moment using liquid 129Xe

    SciTech Connect

    PROFESSOR MICHAEL ROMALIS

    2008-11-24

    Search for an electric dipole moment is one of the best motivated low-energy approaches for investigating physics beyond the Standard Model. Our experimental effort is focused on improving the limit on EDM in liquid 129Xe to put constraints on nuclear CP-violating interactions. High nuclear spin density and high electrical breakdown strength make 129Xe a promising medium for EDM searches. At the time the project started, the transverse nuclear spin relaxation time T2 of 129Xe was unknown. We made measurements of T2 using NMR spin-echo techniques and found that it is exceeds 1300 sec, the longest relaxation time ever measured in a liquid [1]. We also began to investigate non-linear dipolar interaction effects in a high-density spin-polarized liquid Xe. In the second iteration of the experiment we setup a high-Tc SQUID system in magnetic shields and performed detailed studies of Xe spin precession. We developed a model for non-linear dipolar interactions and found that for one set of conditions non-linear interactions can delay spin dephasing due to magnetic field gradients, while for another set of conditions they can lead to exponential amplification of the spin precession signals [2]. Our experimental data were in good quantitative agreement with predictions of the model. We also developed a series of numerical simulations to understand various imperfections in the system and made detailed experimental measurements to confirm these numerical predictions [3]. We demonstrated that non-linear interactions can amplify small precession signals and achieved an amplification factor of 10 [4]. This general phenomenon can be used in other precision measurements with non-linear interactions. We also explored practical applications of the liquid Xe system that we developed. We demonstrated that by mixing Xe with organic liquids, such as cyclopentane, one can enhance the proton spin polarization by a factor of 106 [5]. We have used this technique to perform the first measurement of the scalar J-coupling between nuclear spins in van-der-Waals molecules, something that has never been observed before. More recently, we constructed a liquid-He apparatus to acquire Xe spin precession data using a low-Tc SQUID and achieved a signal-to-noise ratio of 106. We are currently investigating factors affecting the stability of Xe spin precession signals in this system using a superconducting magnetic shield and a persistent current magnetic field coil.

  14. Regular and Chaotic Motion in General Relativity. Case of Magnetized Black Hole and a Massive Magnetic Dipole

    NASA Astrophysics Data System (ADS)

    Karas, Vladimir; Kovar, J.; Kopacek, O.; Kojima, Y.; Slany, P.; Stuchlik, Z.

    2012-05-01

    Near a rotating black hole, circular motion of particles, dust grains and complex fluids have been investigated as a model for accretion of gaseous and dusty environment in the toroidal geometry. Here we further discuss, within the framework of general relativity, figures of equilibrium of matter under the influence of combined gravitational and large-scale magnetic fields, assuming that the accreted material acquires a small (but non-vanishing) electric charge due to the interplay of plasma processes and photoionization. We employ different solutions for the central body (magnetized Kerr metric, or a massive magnetic dipole) and we identify the corresponding regions of stability. The action of gravitational and electromagnetic forces jointly determine the regions of stable motion, in particular, whether the halo lobes develop where particles can be captured in permanent circulation around the central body. Therefore, our set-up is relevant in the context of accreting compact objects where the halo motion can describe the overall global motion through corona of an accretion disc or a geometrically thick torus. We also investigate situations when the motion exhibits the onset of chaos. In order to characterize the measure of chaoticness we employ techniques of Poincare surfaces of section and Recurrence plots. Acknowledgments: Czech-US collaboration project (ref. ME09036) and the Czech Science Foundation program (ref. P209/10/P190) are gratefully acknowledged for their continued support.

  15. Theoretical study of the potential energy surface and electric dipole moment of aniline

    NASA Astrophysics Data System (ADS)

    Farasat, Mahshid; Shojaei, S. H. Reza; Golzan, M. Maqsood; Farhadi, Khalil

    2016-03-01

    The potential energy surface (PES) of aniline was comprehensively investigated at different levels in this paper. The stable conformer of aniline has CS point group while the transition states possess CS and C2V symmetries. The computed transition states of aniline are highly dependent on the level of the computations including Hartree-Fock, Density functional and Moller-Plesset perturbation theories. The electric dipole moment of the molecule varies by the rotation of the amino group with respect to the phenyl plane, while in the range of 60-120 degrees, the changes of the dipole moment is not noticeable.

  16. Theoretical study of the electric dipole moment function of the ClO molecule

    NASA Technical Reports Server (NTRS)

    Pettersson, L. G. M.; Langhoff, S. R.; Chong, D. P.

    1986-01-01

    The potential energy function and electric dipole moment function (EDMF) are computed for ClO X 2Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 + or - 2 per sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.

  17. Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1976-01-01

    The acquisition of thermoremanent magnetization (TRM) by a cooling spherical shell is studied for internal magnetizing dipole fields, using Runcorn's (1975) theorems on magnetostatics. If the shell cools progressively inward, inner regions acquire TRM in a net field composed of the dipole source term plus a uniform field due to the outer magnetized layers. In this case, the global dipole moment and external remanent field are nonzero when the whole shell has cooled below the Curie point and the source dipole has disappeared. The remanent field outside the shell is found to depend on the thickness, radii, and cooling rate of the shell, as well as the coefficient of TRM and the intensity of the magnetizing field. Some implications for the moon's remanent dipole moment are discussed.

  18. Magnetic anomaly inversion using magnetic dipole reconstruction based on the pipeline section segmentation method

    NASA Astrophysics Data System (ADS)

    Pan, Qi; Liu, De-Jun; Guo, Zhi-Yong; Fang, Hua-Feng; Feng, Mu-Qun

    2016-06-01

    In the model of a horizontal straight pipeline of finite length, the segmentation of the pipeline elements is a significant factor in the accuracy and rapidity of the forward modeling and inversion processes, but the existing pipeline segmentation method is very time-consuming. This paper proposes a section segmentation method to study the characteristics of pipeline magnetic anomalies—and the effect of model parameters on these magnetic anomalies—as a way to enhance computational performance and accelerate the convergence process of the inversion. Forward models using the piece segmentation method and section segmentation method based on magnetic dipole reconstruction (MDR) are established for comparison. The results show that the magnetic anomalies calculated by these two segmentation methods are almost the same regardless of different measuring heights and variations of the inclination and declination of the pipeline. In the optimized inversion procedure the results of the simulation data calculated by these two methods agree with the synthetic data from the original model, and the inversion accuracies of the burial depths of the two methods are approximately equal. The proposed method is more computationally efficient than the piece segmentation method—in other words, the section segmentation method can meet the requirements for precision in the detection of pipelines by magnetic anomalies and reduce the computation time of the whole process.

  19. Polarization of Magnetic Dipole Emission and Spinning Dust Emission from Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, Alex

    2016-04-01

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flying magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.

  20. Hyperfine structure of OH molecules in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2014-03-01

    Ultracold polar molecules offer a unique opportunity in table-top experiments to study quantum phenomena originating from strong dipole-dipole interactions and incorporating internal degrees of freedom controllable by external electric and magnetic fields. Recently, a gas of OH molecules was evaporatively cooled at JILA to milliKelvin temperatures. However, in the presence of electric and magnetic fields, the energy spectra of OH were calculated only to energy scales of mK, far from the sub-microKelvin temperatures at which OH molecules will become quantum degenerate. We investigate single-particle energy spectra of the OH radical in the lowest rovibrational and electric ground states under combined electric and magnetic fields. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account, yielding the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz ~100nK. We also examine level crossings and repulsions in hyperfine structures induced by applied electric and magnetic fields. We will mention many-body applications of ultracold OH molecules to simulate quantum dipolar systems. Funded by AFOSR and NSF.

  1. Radiation effects in a muon collider ring and dipole magnet protection

    SciTech Connect

    Mokhov, N.V.; Kashikhin, V.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2011-03-01

    The requirements and operating conditions for a Muon Collider Storage Ring (MCSR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. and a luminosity of 10{sup 34} cm{sup -2}s{sup -1}. Unlike dipoles in proton machines, the MCSR dipoles should allow this dynamic heat load to escape the magnet helium volume in the horizontal plane, predominantly towards the ring center. This paper presents the analysis and comparison of radiation effects in MCSR based on two dipole magnets designs. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.

  2. Calculated electric dipole moment of NiH X2Delta

    NASA Technical Reports Server (NTRS)

    Walch, S.; Bauschlicher, C. W., Jr.; Langhoff, S. R.

    1985-01-01

    A calculated dipole moment of 2.39 D at R sub e = 2.79 a sub 0 is reported, obtained from complete active space SCF/configuration interaction calculations plus one natural orbital iteration. The calculation is in good agreement with the experimental value of 2.4 + or - 0.1 D measured for the lowest vibrational level. In agreement with Gray et al. (1985), it is found that the dipole moment is strongly correlated with the 3d electron population; the good agreement with experiment thus provides verification of the mixed state model of NiH. It is concluded that the electric dipole moment of NiH is a sensitive test of the quality of the NiH wave function.

  3. Theoretical Study of the Electric Dipole Moment Function of the CIO Molecule

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.; Chong, Delano P.

    1986-01-01

    The potential energy function and electric dipole moment function (EDMF) are computed for CIO Chi(sup 2)Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. Remaining questions concerning the position of the maximum of the EDMF may be resolved through experimental measurement of dipole moments of higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 +/- 2 /sq cm atm in good agreement with three experimental values, but larger than a recent value of 5 /sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.

  4. Self-assembling of tubular skeletons from electric current filaments composed of magnetized thin rods

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Cherepanov, K. V.

    2007-04-01

    Formation of a skeleton composed of a fractal condensed matter was suggested [A.B. Kukushkin, V.A. Rantsev-Kartinov, in: Proceedings of the 17th IAEA Fusion Energy Conference, vol. 3, Yokohama, Japan, 1998, pp. 1131 1134, http://www.iaea.org/programmes/ripc/physics/pdf/ifp_17.pdf ] to explain unexpected longevity of filamentary structures observed in laboratory electric discharges. A simple 3D model [A.B. Kukushkin, K.V. Cherepanov, physics/0512234] of many-body system of magnetized, electrically conducting thin rods (1D magnetic dipoles) managed to describe the integrity of a hypothetical, “manually-assembled” tubular skeleton under the action of external forces. Here we demonstrate the possibility of electrodynamic self-assembling of coaxial tubular skeleton in a system of ˜500 magnetic dipoles, which are initially arranged as 25 50 linear electric current filaments with a fraction of the dipoles with uncompensated magnetic flux.

  5. Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials.

    PubMed

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-27

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present. PMID:24116780

  6. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    NASA Astrophysics Data System (ADS)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  7. Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles.

    PubMed

    Rolly, Brice; Stout, Brian; Bonod, Nicolas

    2012-08-27

    Dielectric particles supporting both magnetic and electric Mie resonances are shown to be able to either reflect or collect the light emitted by a single photon source. An analytical model accurately predicts the scattering behavior of a single dielectric particle electromagnetically coupled to the electric dipole transition moment of a quantum emitter. We derive near field extensions of the Kerker conditions in order to determine the conditions that strongly reduce scattering in either the forward or backward directions. This concept is then employed to design a lossless dielectric collector element whose directivity is boosted by the coherent scattering of both electric and magnetic dipoles. PMID:23037088

  8. Induced Magnetic Dipole at Callisto: 3-D Hybrid Modeling of Flybys by Galileo

    NASA Astrophysics Data System (ADS)

    Holmstrom, M.; Lindkvist, J.; Khurana, K. K.; Fatemi, S.; Barabash, S.

    2014-12-01

    Modeling the interaction between Callisto and Jupiter's magnetosphere is important to understand the origin of the magnetic field perturbations observed by Galileo, potentially related to subsurface oceans. By using a 3-D hybrid plasma solver, we have varied the induced magnetic dipole responses due to the time-varying magnetic field of the Jovian magnetosphere corresponding to the C3 and C9 flybys by Galileo. The internal conductivity of Callisto has been set to match the induced dipole response. The model is thus including the physics of a time-varying magnetic field and the dynamics of the magnetospheric plasma. We see that the magnetic response by Callisto depends strongly on the magnetospheric plasma environment.

  9. Magnetic field distribution of injection chicane dipoles in Spallation Neutron Source accumulator ring

    SciTech Connect

    Wang, Jian-Guang

    2006-01-01

    We have performed 3D computing simulations to study the magnetic field distribution of the injection chicane dipoles in the SNS accumulator ring. The simulations yield the performance characteristics of the magnets and generate the magnetic field data in three dimensional grids for further beam tracking study. Based on the simulation data, a 3D multipole expansion of the chicane dipole field, consisting of the generalized gradients and their derivatives, has been made. The harmonic and pseudo-harmonic components in the expansion give much insight into the magnet physics and can fit directly into theoretical frame work of beam optics. The expansion is quasi-analytical by fitting numeric data into interpolation functions. A 5th-order representation of the magnetic field is generated, and the effects of even higher order terms on the field representation are discussed.

  10. Quench antenna and fast-motion investigations during training of a 7T dipole magnet

    SciTech Connect

    Lietzke, A.F.; Benjegerdes, R.; Bish, P.; Krywinski, J.; Scanlan, R.; Schmidt, R.; Taylor, C.

    1994-10-17

    Equipment was installed to detect fast conductor motion and quench propagation in a 1 meter long superconducting dipole magnet (1) The fast-motion antenna, centered within the bore of the magnet, used three long dipole coils, mounted end-to-end to span the magnet length. Coil signals were nulled against a neighbor to produce low-ripple signals that were sensitive to local flux changes. A low-microphonic signal was used as an event trigger. (2) Nulling improvements were made for the magnet`s coil-imbalance signals for improved cross-correlation information. (3) A quench-propagation antenna was installed to observe current redistribution during quench propagation. It consisted of quadrupole/sextupole coil sets distributed at three axial locations within the bore of the magnet. Signals were interpreted in terms of the radius, angle, orientation, and rate of change of an equivalent dipole. The magnet was cooled to 1.8K to maximize the number of events. Twenty-four fast-motion events occurred before the first quench. The signals were correlated with the magnet-coil imbalance signals. The quench-propagation antenna was installed for all subsequent quenches. Ramp-rate triggered quenches produced adequate signals for analysis, but pole-turn quenches yielded such small signals that angular localization of a quench was not precise.

  11. Fabrication and Test Results of a Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect

    Chow, K.; Dietderich, D.R.; Gourlay, S.A.; Gupta, R.; Harnden, W.; Lietzke, A.F.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1999-03-22

    A 'proof-of-principle' Nb{sub 3}Sn superconducting dual-bore dipole magnet was built from racetrack coils, as a first step in a program to develop an economical, 15 Tesla, accelerator-quality magnet. The mechanical design and magnet fabrication procedures are discussed. No training was required to achieve temperature-dependent plateau currents, despite several thermal cycles that involved partial magnet disassembly and substantial pre-load variations. Subsequent magnets are expected to approach 15 Tesla with substantially improved conductor.

  12. Fabrication and Test Results of a Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect

    Chow, K.; Dietderich, D.R.; Gourlay, S.A.; Gupta, R.; Harnden, W.; Lietzke, A. F.; McInturff, A.D.; Millos, G.A.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    2000-02-06

    A 'proof-of-principle' Nb{sub 3}Sn superconducting dual-bore dipole magnet was built from racetrack coils, as a first step in a program to develop an economical, 15 Tesla, accelerator-quality magnet. The mechanical design and magnet fabrication procedures are discussed. No training was required to achieve temperature-dependent plateau currents, despite several thermal cycles that involved partial magnet disassembly and substantial pre-load variations. Subsequent magnets are expected to approach 15 Tesla with substantially improved conductor.

  13. A proposed method of measuring the electric-dipole moment of the neutron by ultracold neutron interferometry

    SciTech Connect

    Freedman, M.S.; Peshkin, M.; Ringo, G.R.; Dombeck, T.W.; Los Alamos National Lab., NM )

    1989-08-01

    The use of an ultracold neutron interferometer incorporating an electrostatic accelerator having a strong electric field gradient to accelerate neutrons by their possible electric dipole moment is proposed as a method of measuring the neutron electric dipole moment. The method appears to have the possibility of extending the sensitivity of the measurement by several orders of magnitude, perhaps to 10{sup -30} e-cm. 9 refs., 3 figs.

  14. Development of Magnetometer Based on the Nonlinear Magneto-Optical Rotation Effect Toward the Measurement of the Electron Electric Dipole Moment

    NASA Astrophysics Data System (ADS)

    Inoue, Takeshi; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A.; Aoki, T.; Asahi, K.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshimi, A.; Yoshida, H. P.; Sakemi, Y.

    Toward an experimental search for an electron electric dipole moment by using laser cooled francium atoms, a development of a rubidium (Rb) atomic magnetometer based on a nonlinear magneto-optical rotation (NMOR) effect is presented. In order to obtain a narrow linewidth of the NMOR spectrum, a wall relaxation time of a paraffin coated glass cell, which confined the Rb atom, was experimentally confirmed. A residual field inside a magnetic shield was also evaluated.

  15. Information Content of the Low-Energy Electric Dipole Strength: Correlation Analysis

    SciTech Connect

    Reinhard, P.-G.; Nazarewicz, Witold

    2013-01-01

    Background: Recent experiments on the electric dipole (E1) polarizability in heavy nuclei have stimulated theoretical interest in the low-energy electric dipole strength, both isovector and isoscalar. Purpose: We study the information content carried by the electric dipole strength with respect to isovector and isoscalar indicators characterizing bulk nuclear matter and finite nuclei. To separate isoscalar and isovector modes, and low-energy strength and giant resonances, we analyze the E1 strength as a function of the excitation energy E and momentum transfer q. Methods: We use the self-consistent nuclear density functional theory with Skyrme energy density functionals, augmented by the random phase approximation, to compute the E1 strength and covariance analysis to assess correlations between observables. Calculations are performed for the spherical, doubly magic nuclei 208Pb and 132Sn. Results: We demonstrate that E1 transition densities in the low-energy region below the giant dipole resonance exhibit appreciable state dependence and multinodal structures, which are fingerprints of weak collectivity. The correlation between the accumulated low-energy strength and the symmetry energy is weak, and dramatically depends on the energy cutoff assumed. On the other hand, a strong correlation is predicted between isovector indicators and the accumulated isovector strength at E around 20 MeV and momentum transfer q 0.65 fm 1. Conclusions: Momentum- and coordinate-space patterns of the low-energy dipole modes indicate a strong fragmentation into individual particle-hole excitations. The global measure of low-energy dipole strength correlates poorly with the nuclear symmetry energy and other isovector characteristics. Consequently, our results do not support the suggestion that there exists a collective pygmy dipole resonance, which is a strong indicator of nuclear isovector properties. By considering nonzero values of momentum transfer, one can isolate individual excitations and nicely separate low-energy excitations from the T=1 and T=0 giant collective modes. That is, measurements at q>0 may serve as a tool to correlate the E1 strength with certain bulk observables, such as incompressibility and symmetry energy.

  16. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.

    PubMed

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-12

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory. PMID:26919009

  17. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-01

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  18. Electric Dipole Aggregates in Very Dilute Polar Liquids:. Theory and Experimental Evidence

    NASA Astrophysics Data System (ADS)

    Yinnon, Tamar A.; Yinnon, Carmi A.

    We show that rotational excited aggregates with an electric dipole moment may be created in polar liquids. Under proper storage conditions, the life times of the aggregates are very long, e.g., days and even years. In solutions, the aggregates are composed of solvent molecules only or a combination of these and solute particles. The process steps leading to the formation of the aggregates are: (1) vigorous succussing the liquid or its solution; (2) adding nonsuccussed liquid; (3) repetition of step (1) and (2). In solutions, formation of the aggregates requires that these steps are repeated until the concentration is reduced below a solvent and solute specific molarity, which under room temperature and pressure conditions, typically, is of the order of 10-4 M or below. The characteristics of liquids containing aggregates with an electric dipole, theoretically derived in this paper, conform to the experimentally observed ones, reported in the literature.

  19. Electric dipole moment of the top quark within an effective theory

    SciTech Connect

    Novales-Sanchez, H.; Toscano, J. J.

    2009-04-20

    Using the effective Lagrangian approach, we develope the trilinear contributions originated in the dimension-six electroweak invariants O-tilde{sub W} = (1/3){epsilon}{sub ijk}W{sup i{mu}}{sub v}W{sup jv}{sub {lambda}}W{sup k{lambda}}{sub {mu}} and O-tilde{sub WB} = (1/2)B-tilde{sub {alpha}}{sub {beta}}W{sup c{alpha}}{sup {beta}}{phi}{sup {dagger}}{tau}{sup c}{phi}, and then we insert the corresponding vertices in a one-loop ttV diagram, with V off-shell, generating the structure of the electric dipole moment. Using a nonlinear gauge, we prove that the results are gauge independent. Finally, we present the analytic expressions for the electric dipole form factors originated in each invariant introduced.

  20. Large tau and tau neutrino electric dipole moments in models with vectorlike multiplets

    SciTech Connect

    Ibrahim, Tarek; Nath, Pran

    2010-02-01

    It is shown that the electric dipole moment of the {tau} lepton several orders of magnitude larger than predicted by the standard model can be generated from mixings in models with vectorlike mutiplets. The electric dipole moment (EDM) of the {tau} lepton arises from loops involving the exchange of the W, the charginos, the neutralinos, the sleptons, the mirror leptons, and the mirror sleptons. The EDM of the Dirac {tau} neutrino is also computed from loops involving the exchange of the W, the charginos, the mirror leptons, and the mirror sleptons. A numerical analysis is presented, and it is shown that the EDMs of the {tau} lepton and the {tau} neutrino which lie just a couple of orders of magnitude below the sensitivity of the current experiment can be achieved. Thus the predictions of the model are testable in an improved experiment on the EDM of the {tau} and the {tau} neutrino.

  1. Permanent electric dipole moments of alkaline-earth-metal monofluorides: Interplay of relativistic and correlation effects

    NASA Astrophysics Data System (ADS)

    Prasannaa, V. S.; Sreerekha, S.; Abe, M.; Bannur, V. M.; Das, B. P.

    2016-04-01

    The interplay of the relativistic and correlation effects in the permanent electric dipole moments of the X 2Σ+ electronic ground states of the alkaline-earth-metal monofluorides (BeF, MgF, CaF, SrF, and BaF) has been studied using a relativistic coupled cluster method. The calculations were carried out using double, triple, and quadruple zeta basis sets, and with no core orbitals frozen. The results are compared with those of other calculations available in the literature and with experiments. The correlation trends in the permanent electric dipole moments of these molecules are discussed in detail. This information will be useful in throwing light on the interplay between relativistic and correlation effects of other properties that are relevant to fundamental physics.

  2. Development of cos-theta Nb{sub 3}Sn dipole magnets for VLHC

    SciTech Connect

    Alexander Zlobin et al.

    2001-07-20

    This paper describes the double aperture dipole magnets developed for a VLHC based on Nb{sub 3}Sn superconductor, a cos-theta coil, cold and warm iron yokes, and the wind-and-react fabrication technique. Status of the model R and D program, strand and cable and other major component development are also discussed.

  3. Charged spinning fluids with magnetic dipole moment in the Einstein-Cartan theory

    SciTech Connect

    Amorim, R.

    1985-06-15

    A classical perfect charged spinning fluid with magnetic dipole moment in the Einstein-Cartan theory is described by using an Eulerian Lagrangian formalism. The field equations and equations of motion so obtained generalize those proposed by Ray and Smalley. We also clarify some open questions which appear in the works of Ray and Smalley and of de Ritis et al.

  4. Different Paths to Some Fundamental Physical Laws: Relativistic Polarization of a Moving Magnetic Dipole

    ERIC Educational Resources Information Center

    Kholmetskii, Alexander L.; Yarman, T.

    2010-01-01

    In this paper we consider the relativistic polarization of a moving magnetic dipole and show that this effect can be understood via the relativistic generalization of Kirchhoff's first law to a moving closed circuit with a steady current. This approach allows us to better understand the law of relativistic transformation of four-current density…

  5. Ramp rate sensitivities of several superconducting dipole magnets operated in He I and superfluid He II

    SciTech Connect

    Caspi, S.; Gilbert, W.S.; Rechen, J.B.

    1982-11-01

    The quench current of a superconducting dipole magnet decreases from its slow-ramp value as the current ramp-rate is increased, due to heat buildup in the coil winding. This ramp-rate dependence has been measured for several superconducting dipoles in both normal He I and in superfluid He II. The heat generated by charging fields has been measured for severall magnets in He II, where particularly sensitive and accurate measurements can be made of any heat input to the essentially isothermal helium bath by its temperature rise. Previously measured values of heat transfer are applied to the data from one magnet to explain its observed behavior. The conclusion is drawn that at a given cycle rate, a superfluid He II-cooled superconducting accelerator can operate closer to the short-sample limit of the magnet's superconductor than can a corresponding He I-cooled machine.

  6. Nonspreading Wave Packets for Rydberg Electrons in Rotating Molecules with Electric Dipole Moments

    SciTech Connect

    Bialynicki-Birula, I.

    1996-11-01

    Nonspreading wave packets for Rydberg electrons are predicted in rotating molecules with electric dipole moments. We have named them the Trojan wave packets since their stability is due to the same mechanism that governs the motion of the Trojan asteroids in the Sun-Jupiter system. Unlike all previously predicted Trojan wave packets in atoms, molecular Trojan states do not require external fields for their existence.

  7. Exact solution for a noncentral electric dipole ring-shaped potential in the tridiagonal representation

    SciTech Connect

    Huangfu Guoqing; Zhang Mincang

    2011-04-15

    The Schroedinger equation with noncentral electric dipole ring-shaped potential is investigated by working in a complete square integrable basis that supports an infinite tridiagonal matrix representation of the wave operator. The three-term recursion relations for the expansion coefficients of both the angular and radial wavefunctions are presented. The discrete spectrum for the bound states is obtained by the diagonalization of the radial recursion relation. Some potential applications of this system in different fields are discussed.

  8. Electric dipole transitions for 3d64s-3d64p in Mn I

    NASA Astrophysics Data System (ADS)

    Kabakçı, Selda; Özdemir, Leyla; Usta, Betül Karaçoban

    2015-10-01

    We have calculated the logarithmic weighted oscillator strengths and transition probabilities (or rates) for 3d64s-3d64p electric dipole transitions in neutral manganese (Mn I, Z=25) by using two configuration interaction methods (the multiconfiguration Hartree-Fock (MCHF) method within the framework of Breit-Pauli relativistic corrections developed by Fischer and Cowan's relativistic Hartree-Fock (HFR) method). Results obtained have been compared with other calculations and experiments.

  9. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A.; Aoki, T.; Asahi, K.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Yoshimi, A.; Sakemi, Y.

    2015-04-01

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  10. Development of francium atomic beam for the search of the electron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Sato, Tomoya; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-03-01

    For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the "orthotropic" type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.

  11. Low lying electric dipole excitations in nuclei of the rare earth region

    SciTech Connect

    von Brentano, P.; Zilges, A.; Herzberg, R.D. . Inst. fuer Kernphysik); Zamfir, N.V. ); Kneissl, U.; Heil, R.D.; Pitz, H.H. . Inst. fuer Strahlenphysik); Wesselborg, C. . Inst. fuer Kernphysik)

    1992-01-01

    From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J[sup [pi

  12. Shell model estimate of electric dipole moment in medium and heavy nuclei

    SciTech Connect

    Yoshinaga, Naotaka; Higashiyama, Koji

    2011-05-06

    The nuclear electric dipole moment (EDM) and the nuclear Schiff moment for the lowest 1/2{sup +} state of {sup 129}Xe are investigated in terms of the nuclear shell model. We estimate the upper limit for the EDM of neutral {sup 129}Xe atom using the Schiff moment. We also estimate the upper limit of the nuclear EDM, which may be directly measured through ionic atoms.

  13. Resonance Method of Electric-Dipole-Moment Measurements in Storage Rings

    SciTech Connect

    Orlov, Yuri F.; Morse, William M.; Semertzidis, Yannis K.

    2006-06-02

    A 'resonance method' of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles' velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

  14. RESONANCE METHOD OF ELECTRIC-DIPOLE-MOMENT MEASUREMENTS IN STORAGE RINGS.

    SciTech Connect

    ORLOV, Y.F.; MORSE, W.M.; SEMERTZIDIS, Y.K.

    2006-05-10

    A ''resonance method'' of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

  15. Torque for electron spin induced by electron permanent electric dipole moment

    SciTech Connect

    Senami, Masato E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo E-mail: akitomo@scl.kyoto-u.ac.jp

    2014-10-06

    The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.

  16. Tables of branching ratios for electric dipole transitions between arbitrary levels of hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    The branching ratios in hydrogen-like atoms due to the electric-dipole transitions are tabulated for the initial principal and azimuthal quantum numbers n prime l prime, and final principal and azimuthal quantum numbers n l. Average values with respect to l prime are given. The branching ratios not tabulated, including the initial states n prime yields infinity l prime corresponding to the threshold of the continuum, could be obtained by extrapolation.

  17. Supercriticality of novel type induced by electric dipole in gapped graphene

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Gusynin, V. P.; Sobol, O. O.

    2015-12-01

    We reveal a new type of supercritical behavior in gapped graphene with two oppositely charged impurities by studying the two-dimensional Dirac equation for quasiparticles with the Coulomb potential regularized at small distances accounting the lattice effects. By utilizing the variational Galerkin-Kantorovich method, we show that for supercritical electric dipole the wave function of the electron bound state changes its localization from the negatively charged impurity to the positively charged one as the distance between the impurities changes. Such a migration of the wave function corresponds to the electron and hole spontaneously created from the vacuum in bound states screening the positively and negatively charged impurities of the supercritical electric dipole, respectively. We generalize our results to a particle-hole asymmetric case, where the charges of impurities differ in signs and absolute values, and demonstrate that the necessary energetic condition for the supercriticality of novel type to occur is that the energy levels of single positively and negatively charged impurities traverse together the energy distance separating the upper and lower continua. The robustness of the supercriticality of novel type is confirmed by the study of an exactly solvable one-dimensional problem of the Dirac equation with the square well and barrier potential modeling an electric-dipole potential.

  18. Neutron electric dipole moment using Nf=2 +1 +1 twisted mass fermions

    NASA Astrophysics Data System (ADS)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Koutsou, G.; Ottnad, K.; Petschlies, M.

    2016-04-01

    We evaluate the neutron electric dipole moment |d→ N| using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using Nf=2 +1 +1 twisted mass fermions at one value of the lattice spacing of a ≃0.082 fm and a light quark mass corresponding to mπ≃373 MeV . Our approach to extract the neutron electric dipole moment is based on the calculation of the C P -odd electromagnetic form factor F3(Q2) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q2. The limit Q2→0 is realized either by adopting a parametrization of the momentum dependence of F3(Q2) and performing a fit or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F3(Q2). The computation in the presence of a C P -violating term requires the evaluation of the topological charge Q . This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of |d→ N|=0.045 (6 )(1 )θ ¯ e .fm for the ensemble with mπ=373 MeV considered.

  19. Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic Dipole

    SciTech Connect

    Levitt, B.; Maslovsky, D.; Mauel, M.E.

    2005-05-06

    Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic field. The instabilities appear when an equatorial mesh is biased to drive a radial current that causes rapid axisymmetric plasma rotation. The observed instabilities are quasicoherent in the laboratory frame of reference; they have global radial mode structures and low azimuthal mode numbers, and they are modified by the presence of energetic, magnetically confined electrons. Results from a self-consistent nonlinear simulation reproduce the measured mode structures.

  20. Design of Racetrack Coils for High Field Dipole Magnets

    SciTech Connect

    Sabbi, G.; Caspi, S.; Gourlay, S.A.; Hafalia, R.; Jackson, A.; Lietzke, A.; McInturff, A.D.; Scanlan, R.M.

    2000-09-08

    The magnet group at LBNL is currently in the process of developing high-field accelerator magnets for use in future colliders. One of the primary challenges is to provide a design which is cost-effective and simple to manufacture, at the same time resulting in good training performance and field quality adequate for accelerator operation. Recent studies have focused on a racetrack geometry that has the virtues of simplicity and conductor compatibility. The results have been applied to the design of a series of prototype high-field magnets based on Nb{sub 3}Sn conductor.

  1. Structural performance of the first SSC (Superconducting Super Collider) Design B dipole magnet

    SciTech Connect

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs.

  2. Modeling the magnetic field of Mercury using the Time Dependent Equivalent Source Dipole method

    NASA Astrophysics Data System (ADS)

    Oliveira, Joana; Langlais, Benoit; Amit, Hagay; Pais, Maria Alexandra

    2014-05-01

    We introduce the Time Dependent Equivalent Source Dipole (TD-ESD) method developed with the purpose of modeling the Hermean magnetic field. It takes into account the partial orbital coverage provided by MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) mission. The TD-ESD method is based on the Equivalent Source Dipole approach, which has been largely used to downward or upward continue to constant altitude measurements of magnetic fields of crustal origin, on local or global scale. In this present application to Mercury, for which an internal core field is expected, the dipoles are uniformly distributed at a spherical surface placed deep into the planet's interior. Both their magnitude and directions are not a priori imposed and are free to evolve with time. Using synthetic data generated at MESSENGER orbit positions we successfully recover the three components of the magnetic field. We also recover the temporal variation that we a priori imposed. We find that downward and upward continuation is possible over a certain limited region. The resulting field is within 6% of the initial field for altitudes ranging between -100km and 1500km. Here we present the first constant altitude magnetic field maps derived from MESSENGER measurements acquired during the first mercury's solar day. We identify a strong time dependent signature of the external magnetic field, even when only measurements over the northern hemisphere below ~1000 km altitude are used. A future improvement of the method will consist in the simultaneous analysis of the external and internal magnetic fields.

  3. Near-field characteristics of electric dipole antennas in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Chevalier, Timothy W.

    Electric dipole antennas are commonly used in space plasmas with applications that range from radio frequency probing of the magnetosphere to plasma diagnostics. With the recent interest in the in-situ injection of ELF/VLF waves for the study of magnetospheric wave-particle interactions, the characterization of the antenna-plasma coupling behavior in this regime is of primary importance. The coupling considered in this dissertation occurs in an operating environment that corresponds to magnetospheric conditions found between L=2 and L=3 in the geomagnetic equatorial plane. The near field of the antenna consists of a plasma sheath which directly affects the terminal impedance properties. Inside the sheath region, the plasma dynamics are highly nonlinear and must be solved numerically. In order to optimally inject VLF waves and thereby maximize the antenna-plasma coupling response, it is necessary to determine the characteristics of electric dipole antennas operating within this region of space. This dissertation addresses the efficacy of using electric dipole antennas as in-situ wave injection instruments and focuses on the near-field coupling of these antennas to the environment in which they are immersed. A two-tiered hydrodynamic approach has been developed to solve for the plasma dynamics in the region surrounding the antenna. First, a three-dimensional full wave solution of Maxwell's equations is implemented to simulate the current distribution and input impedance of an electric dipole antenna operating in a cold magnetoplasma at VLF. It is shown that the current distribution for antennas with length <100 m is approximately triangular for magnetospheric conditions considered herein. Calculated variations of input impedance as a function of drive frequency are presented for two case studies and compared with predictions of existing analytical work. This model is then extended to include finite temperature effects allowing for the determination of the sheath characteristics as a function of drive frequency and voltage. The primary assumptions underlying the closure mechanisms for the infinite set of fluid moments are examined through theoretical observations and simulated comparisons of the various truncation schemes. Results from these two models allow for the complete characterization of the near-field properties of electric dipole antennas operating in this highly anisotropic environment.

  4. Quark loop contributions to neutron, deuteron, and mercury electric dipole moments from supersymmetry without R parity

    NASA Astrophysics Data System (ADS)

    Chiou, Chan-Chi; Kong, Otto C. W.; Vaidya, Rishikesh D.

    2007-07-01

    We present a detailed analysis together with numerical calculations on one-loop contributions to the neutron, deuteron, and mercury electric dipole moment from supersymmetry without R parity, focusing on the quark-scalar loop contributions. Being proportional to top Yukawa and top mass, such contributions are often large, and since these are proportional to hitherto unconstrained combinations of bilinear and trilinear R-parity violating (RPV) parameters, they are all the more interesting. Complete formulas are given for the various contributions through the quark dipole operators including the contribution from the color dipole operator. The contribution from the color dipole operator is found to be a similar order in magnitude when compared to the electric dipole operator and should be included in any consistent analysis. Analytical expressions illustrating the explicit role of the R-parity violating parameters are given following perturbative diagonalization of mass-squared matrices for the scalars. Dominant contributions come from the combinations Bi*λij1' for which we obtain robust bounds. It turns out that neutron and deuteron electric dipole moments (EDMs) receive much stronger contributions than the mercury EDM and any null result at the future deuteron EDM experiment or Los Alamos neutron EDM experiment can lead to extraordinary constraints on RPV parameter space. Even if R-parity violating couplings are real, Cabibbo-Kobayashi-Maskawa (CKM) phase does induce RPV contribution and for some cases such a contribution is as strong as the contribution from phases in the R-parity violating couplings. Hence, we have bounds directly on |Bi*λij1'| even if the RPV parameters are all real. Interestingly, even if slepton mass and/or μ0 is as high as 1 TeV, it still leads to neutron EDM that is an order of magnitude larger than the sensitivity at the Los Alamos experiment. Since the results are not much sensitive to tan⁡β, our constraints will survive even if other observables tighten the constraints on tan⁡β.

  5. Electric/magnetic dipolein an electromagnetic field: force, torque and energy

    NASA Astrophysics Data System (ADS)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, T.

    2014-10-01

    In this paper we collect the relativistic expressions for the force, torque and energy of a small electric/magnetic dipole in an electromagnetic field, which we recently obtained (A.L. Kholmetskii et al., Eur. J. Phys. 33, L7 (2011), Prog. Electromagn. Res. B 45, 83 (2012), Can. J. Phys. 9, 576 (2013)) and consider a number of subtle effects, characterized the behavior of the dipole in an external field, which seem interesting from the practical viewpoint.

  6. Studies of time dependence of fields in TEVATRON superconducting dipole magnets

    SciTech Connect

    Hanft, R.W.; Brown, B.C.; Herrup, D.A.; Lamm, M.J.; McInturff, A.D.; Syphers, M.J.

    1988-08-22

    The time variation in the magnetic field of a model Tevatron dipole magnet at constant excitation current has been studied. Variations in symmetry allowed harmonic components over long time ranges show a log t behavior indicative of ''flux creep.'' Both short time range and long time range behavior depend in a detailed way on the excitation history. Similar effects are seen in the remnant fields present in full-scale Tevatron dipoles following current ramping. Both magnitudes and time dependences are observed to depend on details for the ramps, such as ramp rate, flattop duration, and number of ramps. In a few magnets, variations are also seen in symmetry unallowed harmonics. 9 refs., 10 figs.

  7. Magnetic design and field optimization of a superferric dipole for the RISP fragment separator

    NASA Astrophysics Data System (ADS)

    Zaghloul, A.; Kim, J. Y.; Kim, D. G.; Jo, H. C.; Kim, M. J.

    2015-10-01

    The in-flight fragment separator of the Rare Isotope Science Project requires eight dipole magnets to produce a gap field of 1.7 T in a deflection sector of 30 degree with a 6-m central radius. If the beam-optics requirements are to be met, an integral field homogeneity of a few units (1 unit = 10-4) must be achieved. A superferric dipole magnet has been designed by using the Low-Temperature Superconducting wire NbTi and soft iron of grade SAE1010. The 3D magnetic design and field optimization have been performed using the Opera code. The length and the width of the air slots in the poles have been determined in an optimization process that considered not only the uniformity of the field in the straight section but also the field errors in the end regions. The field uniformity has also been studied for a range of operation of the dipole magnet from 0.4 T to 1.7 T. The magnetic design and field uniformity are discussed.

  8. Magnetic and structural design of a 15 T Nb3Sn accelerator dipole model

    NASA Astrophysics Data System (ADS)

    Kashikhin, V. V.; Andreev, N.; Barzi, E.; Novitski, I.; Zlobin, A. V.

    2015-12-01

    Hadron Colliders (HC) are the most powerful discovery tools in modern high energy physics. A 100 TeV scale HC with a nominal operation field of at least 15 T is being considered for the post-LHC era. The choice of a 15 T nominal field requires using the Nb3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance. The experience gained during the 11-T dipole R&D campaign is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb3Sn dipole and the steps towards the demonstration model.

  9. Search for a Permanent Electric Dipole Moment of the Mercury Atom

    SciTech Connect

    Fortson, E. N.

    2009-12-17

    There has been exciting progress in recent years in the search for a permanent electric dipole moment (EDM) of an atom, a molecule, or the neutron. An EDM along the axis of spin can exist only if time reversal symmetry (T) is violated. Although such a dipole has not yet been detected, mainstream theories of possible new physics, such as Supersymmetry, predict the existence of EDMs within reach of modern experiments. Here I discuss the results of our new experimental search for a permanent electric dipole moment of {sup 199}Hg utilizing a stack of four vapor cells. We find d({sup 199}Hg) (0.49{+-}1.29{sub stat}{+-}0.76{sub syst})x10{sup -29} e cm, and interpret this as a new upper bound, d({sup 199}Hg)<3.1x10{sup -29} e cm(95% C.L.). This result improves our previous {sup 199}Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the Standard Model.

  10. Tests of 40 mm SSC dipole model magnets with vertically split yokes

    SciTech Connect

    Koska, W.; Bossert, R.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Kinney, W.; Jaffery, T.S.; Lamm, M.J.; Strait, J.; Wake, M.

    1991-05-01

    Several 1 meter long, 40 mm aperture model SSC dipole magnets with vertically split yokes have been built and tested at Fermilab. In addition to the yoke design, these magnets were used to evaluate several variants of the collet clamps which apply prestress to the magnet ends. The magnets were instrumented with voltage taps for quench localization and strain gage based devices for measuring stresses, forces and deflections resulting from cooldown and excitation. Test were carried out in a vertical dewar at temperatures from 3.8{degree}K to 4.4{degree}K. The quench and mechanical behavior of these magnets will be presented and magnetic field measurements will be shown. A comparison with an earlier series of magnets with horizontally split yokes will be made. 7 refs., 4 figs., 1 tab.

  11. Modeling the magnetic field of Mercury using the Time Dependent Equivalent Source Dipole method

    NASA Astrophysics Data System (ADS)

    Oliveira, J. S.; Langlais, B.; Amit, H.; Pais, M. A.

    2013-12-01

    We introduce the Time Dependent Equivalent Source Dipole (TD-ESD) method developed with the purpose of modeling the Hermean magnetic field, taking into account the partial orbital coverage provided by MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) mission. The TD-ESD method is based on the Equivalent Source Dipole approach, which has been largely used to downward or upward continue to constant altitude measurements of magnetic fields of crustal origin, on local or global scale. In this present application to Mercury, for which an internal core field is expected, the dipoles are uniformly distributed in a spherical shell placed deep into the planet's interior; their magnitude and direction are free to evolve with time. We ran several tests in order to validate the new method. We successfully recover the three components of the synthetic Hermean magnetic field. We also recover the temporal variation that we a priori imposed. Using synthetic data generated at MESSENGER orbit positions we find that downward and upward continuation is possible over a certain delimited region. When the dipole layer is placed at a depth of 640 km below the planet's surface, the resulting field is within 6% of the initial field model for altitudes ranging between -100km and 1500km. Here we present constant altitude magnetic field maps derived from MESSENGER measurements acquired during the first solar mercury year. We identify a strong signature of the external magnetic field, even when only measurements over the northern hemisphere below ~1000 km altitude are used. A future improvement of the method will consist in the simultaneous analysis of the external and internal magnetic fields.

  12. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well as unpublished notes of Courant describing machine studies performed in 1954-1955. This paper describes the practical application of the eteapot code and provides sample results, with emphasis on emulating lattice optics in the AGS analog ring for comparison with the historical machine studies and to predict the electron spin evolution they would have measured if they had polarized electrons and electron polarimetry. Of greater present day interest is the performance to be expected for a proton storage ring experiment. To exhibit the eteapot code performance and confirm its symplecticity, results are also given for 30 million turn proton spin tracking in an all-electric lattice that would be appropriate for a present day measurement of the proton EDM. The accompanying paper "Symplectic orbit and spin tracking code for all-electric storage rings" documents in detail the theoretical formulation implemented in eteapot, which is a new module in the Unified Accelerator Libraries (ual) environment.

  13. Location and depth estimation of point-dipole and line of dipoles using analytic signals of the magnetic gradient tensor and magnitude of vector components

    NASA Astrophysics Data System (ADS)

    Oruç, Bülent

    2010-01-01

    The magnetic gradient tensor (MGT) provides gradient components of potential fields with mathematical properties which allow processing techniques e.g. analytic signal techniques. With MGT emerging as a new tool for geophysical exploration, the mathematical modelling of gradient tensor fields is necessary for interpretation of magnetic field measurements. The point-dipole and line of dipoles are used to approximate various magnetic objects. I investigate the maxima of the magnitude of magnetic vector components (MMVC) and analytic signals of magnetic gradient tensor (ASMGT) resulting from point-dipole and line of dipoles sources in determining horizontal locations. I also present a method in which depths of these sources are estimated from the ratio of the maximum of MMVC to the maximum of ASMGT. Theoretical examples have been carried out to test the feasibility of the method in obtaining source locations and depths. The method has been applied to the MMVC and ASMGT computed from the total field data over a basic/ultrabasic body at the emerald deposit of Socotó, Bahia, Brazil and buried water supply pipe near Jadaguda Township, India. In both field examples, the method produces good correlations with previous interpretations.

  14. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    NASA Astrophysics Data System (ADS)

    Li, Rui

    2016-05-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field.

  15. Progress toward a measurement of the electron's electric dipole moment using PbO

    NASA Astrophysics Data System (ADS)

    Eckel, Stephen; Hamilton, Paul; Kirilov, Emil; Smith, Hunter; Demille, David

    2012-06-01

    Searches for permanent electric dipole moments (EDMs) of fundamental particles provide a way to detect new sources of time-reversal symmetry violation. We present recent results on an experiment to search for the electron's EDM, using the polar molecule PbO. PbO offers several advantages compared to atoms, including a much larger effective internal electric field (>10 GV/cm) and parity doubling, which can be used to reverse the effective internal electric field without reversing the laboratory electric field. This technique allows for significant rejection of systematic errors. Recent improvements to the experiment have resulted in statistical sensitivities of approximately 1 x10-27 ecm/?day, which could allow for an improvement over the current experimental limit on the electron EDM in only a few days of integration time. Details of the approach and studies of possible systematic errors will be described.

  16. Fabrication and component testing results for a Nb{sub 3}Sn dipole magnet

    SciTech Connect

    Dell`Orco, D.; Scanlan, R.M.; Taylor, C.E.; Lietzke, A.; Caspi, S.; van Oort, J.M.; McInturff, A.D.

    1994-10-01

    At present, the maximum field achieved in accelerator R&D dipoles is slightly over 10T, with NbTi conductor at 1.8 K. Although Nb{sub 3}Sn has the potential to achieve much higher fields, none of the previous dipoles constructed from Nb{sub 3}Sn have broken the 10T barrier. We report here on the construction of a dipole with high current density Nb{sub 3}Sn with a predicted short sample limit of 13T. A wind and react technique, followed by epoxy impregnation of the fiberglass insulated coils, was used. The problems identified with the use of Nb{sub 3}SD in earlier dipole magnets were investigated in a series of supplemental tests. This includes measurement of the degradation of J{sub c} with transverse strain, cabling degradation, joint resistance measurements, and epoxy strength tests. In addition, coff assembly techniques were developed to ensure that adequate prestress could be applied without damaging the reacted Nb{sub 3}Sn cable. We report here the results of these tests and the construction status of this 50 mm bore dipole.

  17. Vanishing of dipole matrix elements at level crossings.

    NASA Technical Reports Server (NTRS)

    Kocher, C. A.

    1972-01-01

    Demonstration that the vanishing of certain coupling matrix elements at level crossings follow from angular momentum commutation relations. A magnetic dipole transition having delta M = plus or minus 1, induced near a crossing of the levels in a nonzero magnetic field, is found to have a dipole matrix element comparable to or smaller than the quotient of the level separation and the field. This result also applies in the analogous electric field electric dipole case.

  18. Observation of CS Trilobite Molecules with Kilo-Debye Molecular Frame Permanent Electric Dipole Moments

    NASA Astrophysics Data System (ADS)

    Shaffer, James P.

    2015-06-01

    We present results on Cs ultracold Rydberg atom experiments involving trilobite and butterfly molecules. Trilobite molecules are predicted to have giant, body-fixed permanent dipole moments, on the order of 1000 Debye. We present spectra for nS1/2+6S1/2 ^3σ^+ molecules, where n=37, 39 and 40, and measurements of the Stark broadenings of selected trilobite states in Cs due to the application of a constant external electric field. These results show that for Cs, because of its near integer s-state quantum defect, it is possible to photoassociate molecules whose wavefunction is predominantly of trilobite character yielding molecular frame dipole moments of around 2000 Debye. In addition, we have also recently observed states whose spectra show characteristics of p-wave dominated butterfly states. The work on what we believe to be the butterfly states will be compared and contrasted to the measurements of the trilobite states.

  19. Preliminary results from a study of collar lamination variation in SSC Prototype Dipole Magnets

    SciTech Connect

    Gattu, R.; Brown, G.M.; Pollock, D.

    1993-04-01

    The collar laminations used in SSC Prototype Collider Dipole Magnets determine the volume within which the magnet coils are constrained after collaring and keying. The uniformity and symmetry of the inside volume of the collars along the length of the magnet may have a significant influence on the field quality of the finished assembly. This paper describes an on-going Statistical Quality Control study of collar lamination dimensional variation being performed by SSCL Magnet Systems Division Quality Assurance. Samples of collars have been measured using a coordinate measuring machine evaluate manufacturing process capability as well as the overall uniformity of the inventory population of collar laminations. The collar data will be used to predict variation in the coil assembly center and radius for inner and outer top-bottom, left-right coil combinations well as pole angles. Collar results will be combined with azimuthal coil size measurements part of a manufacturing cause and effect model for predicting axial geometric multipoles based on the observed mechanical variation. This work focuses on Prototype Collider Dipole Magnet DCA 102 currently being built at the SSCL MDL in Waxahachie, Texas. This magnet is being made on the same coil curing and collaring mold cavities that were used for the DCA 300 series magnets built at FNAL in 1991--1992 and which were later used in the 1992 Accelerator Systems String Test (ASST). The collars are part of the same procurement used for the DCA300 series magnets.

  20. Is the Non-Dipole Magnetic Field Random?

    NASA Technical Reports Server (NTRS)

    Walker, Andrew D.; Backus, George E.

    1996-01-01

    Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.

  1. When electric charge becomes also magnetic

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

    2015-08-01

    In nonlinear electrodynamics, QED included, we find a static solution to the field equations with an electric charge as its source, which is comprised of homogeneous parallel magnetic and electric fields, and a radial spherically nonsymmetric long-range magnetic field, whose magnetic charge is proportional to the electric charge and also depends on the homogeneous component of the solution.

  2. Patterned time-orbiting potentials for the confinement and assembly of magnetic dipoles

    PubMed Central

    Chen, A.; Sooryakumar, R.

    2013-01-01

    We present an all-magnetic scheme for the assembly and study of magnetic dipoles within designed confinement profiles that are activated on micro-patterned permalloy films through a precessing magnetic field. Independent control over the confinement and dipolar interactions is achieved by tuning the strength and orientation of the revolving field. The technique is demonstrated with superparamagnetic microspheres field-driven to assemble into closely packed lattice sheets, quasi-1D and other planar structures expandable into dipolar arrays that mirror the patterned surface motifs. PMID:24185093

  3. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish

    PubMed Central

    Jun, James Jaeyoon; Longtin, André; Maler, Leonard

    2013-01-01

    In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source localization. PMID:23805244

  4. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    SciTech Connect

    M. Spata, G.A. Krafft

    2011-09-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  5. Production and study of high-beta plasma confined by a superconducting dipole magnet

    SciTech Connect

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-05-15

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure ({beta}>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.

  6. Dipole magnetic-field disturbance and generation of current systems by asymmetric plasma pressure

    NASA Astrophysics Data System (ADS)

    Vovchenko, V. V.; Antonova, E. E.

    2014-03-01

    Nonlinear disturbance of the dipole field by nonaxisymmetric plasma pressure distribution was analyzed under the assumption of magnetostatic equilibrium for finite values of the plasma parameter at the pressure maximum area. The distributions of isolines of the constant value of magnetic-field component B Z and the volume of magnetic flux tube in the equatorial plane were obtained. At a finite plasma pressure, local minima and maxima of the magnetic field are formed. The formation of these local maxima and minima leads to the formation of contours (not surrounding the Earth) B min = const, where B min is the minimum magnetic field on the magnetic field line. This changes the direction of the gradient of the volume of the magnetic flux tube. The configuration of appearing field-aligned currents was determined. The results obtained are discussed in terms of their use in explaining a number of effects observed in the Earth's magnetosphere.

  7. Recent improvements in superconducting cable for accelerator dipole magnets

    SciTech Connect

    Scanlan, R.M.; Royet, J.M.

    1991-05-01

    The superconducting magnets required for the SSC have provided a focus and substantial challenge for the development of superconducting wire and cable. The number of strands in the cables have been increased from 23 for the Tevatron to 30 for the SSC inner layer cable and 36 for the SSC outer cable. Critical current degradation associated with cabling has been reduced from 15% for the Tevatron to less than 5%. R D which has led to these improvements will be described and the opportunities for further advances will be discussed. 11 refs., 2 figs., 1 tab.

  8. Investigation of the magnetic dipole field at the atomic scale in quasi-one-dimensional paramagnetic conductor Li0.9Mo6O17.

    PubMed

    Wu, Guoqing; Ye, Xiao-shan; Zeng, Xianghua; Wu, Bing; Clark, W G

    2016-01-13

    We report magnetic dipole field investigation at the atomic scale in a single crystal of quasi-one-dimensional (Q1D) paramagnetic conductor Li0.9Mo6O17, using a paramagnetic electron model and (7)Li-NMR spectroscopy measurements with an externally applied magnetic field B 0  =  9 T. We find that the magnetic dipole field component ([Formula: see text]) parallel to B 0 at the Li site from the Mo electrons has no lattice axial symmetry; it is small around the middle between the lattice a and c axes in the ac-plane with the minimum at the field orientation angle [Formula: see text], while the [Formula: see text] maximum is at [Formula: see text] when B 0 is applied perpendicular to b ([Formula: see text]), where [Formula: see text] represents the direction of [Formula: see text]. Further estimation indicates that [Formula: see text] has a maximum value of 0.35 G at B 0  =  9 T. By minimizing the potential magnetic contributions to the NMR spectra satellites with the NMR spectroscopy measurements at the direction where the value of the magnetic dipole field component [Formula: see text] is  ∼0, the behavior of the electron charge statics is exhibited. This work demonstrates that the magnetic dipole field of the Mo electrons is the dominant source of the local magnetic fields at the Li site, and suggests that the unknown metal-'insulator' crossover at low temperatures is not a charge effect. The work also reveals valuable local electric and magnetic field information for further NMR investigation as recently suggested (2012 Phys. Rev. B 85 235128) regarding the unusual properties of the material. PMID:26571041

  9. Investigation of the magnetic dipole field at the atomic scale in quasi-one-dimensional paramagnetic conductor Li0.9Mo6O17

    NASA Astrophysics Data System (ADS)

    Wu, Guoqing; Ye, Xiao-shan; Zeng, Xianghua; Wu, Bing; Clark, W. G.

    2016-01-01

    We report magnetic dipole field investigation at the atomic scale in a single crystal of quasi-one-dimensional (Q1D) paramagnetic conductor Li0.9Mo6O17, using a paramagnetic electron model and 7Li-NMR spectroscopy measurements with an externally applied magnetic field B 0??=??9 T. We find that the magnetic dipole field component (B\\parallel\\text{dip} ) parallel to B 0 at the Li site from the Mo electrons has no lattice axial symmetry; it is small around the middle between the lattice a and c axes in the ac-plane with the minimum at the field orientation angle ? =+{{52.5}\\circ} , while the B\\parallel\\text{dip} maximum is at ? =+{{142.5}\\circ} when B 0 is applied perpendicular to b ({{B}0}\\bot b ), where ? ={{0}\\circ} represents the direction of {{B}0}\\parallel c . Further estimation indicates that B\\parallel\\text{dip} has a maximum value of 0.35 G at B 0??=??9 T. By minimizing the potential magnetic contributions to the NMR spectra satellites with the NMR spectroscopy measurements at the direction where the value of the magnetic dipole field component B\\parallel\\text{dip} is???0, the behavior of the electron charge statics is exhibited. This work demonstrates that the magnetic dipole field of the Mo electrons is the dominant source of the local magnetic fields at the Li site, and suggests that the unknown metal-insulator crossover at low temperatures is not a charge effect. The work also reveals valuable local electric and magnetic field information for further NMR investigation as recently suggested (2012 Phys. Rev. B 85 235128) regarding the unusual properties of the material.

  10. Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems

    NASA Astrophysics Data System (ADS)

    Imamoǧlu, Atac

    2009-02-01

    We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.

  11. Dynamical map for combined function magnets with solenoid, dipole, and quadrupole fields

    SciTech Connect

    Venturini, Marco; Wolski, Andy

    2004-06-30

    The interaction regions of colliders invariably include strong solenoid fields. Where quadrupoles and dipoles are embedded in the solenoid, the beam dynamics in the combined fields can be complicated to model using the traditional approach of interleaving slices of the different fields. The complexity increases if the design trajectory is offset from the magnetic axis; this is the case, for example, in PEP-II. In this paper, we present maps for combined solenoid, dipole and quadrupole fields that provide a much simpler alternative to the traditional approach, and show that the deviation of the design trajectory from the magnetic axis can be handle in a straightforward manner. We illustrate the techniques presented by reference to the PEP-II interaction region.

  12. Future Muon Dipole Moment Measurements

    NASA Astrophysics Data System (ADS)

    Roberts, B. Lee

    2005-10-01

    From the famous experiments of Stern and Gerlach to the present, measurements of magnetic dipole moments, and searches for electric dipole moments of "elementary" particles have played a major role in our understanding of sub-atomic physics. In this talk I discuss the progress on measurements and theory of the magnetic dipole moment of the muon. I also discuss a new proposal to search for a permanent electric dipole moment (EDM) of the muon and put it into the more general context of other EDM searches. These experiments, along with searches for the lepton flavor violating decays μ→eγ and μ+A→e+A, provide a path to the high-energy frontier through precision measurements.

  13. The permanent electric dipole moment of thorium sulfide, ThS

    SciTech Connect

    Le, Anh; Steimle, Timothy C.; Heaven, Michael C.

    2014-01-14

    Numerous rotational lines of the (18.26)1-X{sup 1}Σ{sup +} band system of thorium sulfide, ThS, were recorded near 547.6 nm at a resolution of approximately 30 MHz. Measurements were made under field-free conditions, and in the presence of a static electric field. The field-free spectrum was analyzed to produce rotational and Λ-doubling parameters. The Stark shifts induced by the electric field were analyzed to determine permanent electric dipole moments, μ{sup -vector}{sub el}, of 4.58(10) D and 6.72(5) D for the X{sup 1}Σ{sup +} (v = 0) and (18.26)1 states, respectively. The results are compared with the predictions of previous and new electronic structure calculations for ThS, and the properties of isovalent ThO.

  14. The permanent electric dipole moment of thorium sulfide, ThS.

    PubMed

    Le, Anh; Heaven, Michael C; Steimle, Timothy C

    2014-01-14

    Numerous rotational lines of the {18.26}1-X(1)Σ(+) band system of thorium sulfide, ThS, were recorded near 547.6 nm at a resolution of approximately 30 MHz. Measurements were made under field-free conditions, and in the presence of a static electric field. The field-free spectrum was analyzed to produce rotational and Λ-doubling parameters. The Stark shifts induced by the electric field were analyzed to determine permanent electric dipole moments, μ⃗el, of 4.58(10) D and 6.72(5) D for the X(1)Σ(+) (v = 0) and {18.26}1 states, respectively. The results are compared with the predictions of previous and new electronic structure calculations for ThS, and the properties of isovalent ThO. PMID:24437877

  15. The permanent electric dipole moments of chromium and vanadium mononitride: CrN and VN

    SciTech Connect

    Steimle, T.C.; Robinson, J.S.; Goodridge, D.

    1999-01-01

    The P{sub e}(1), F{sup {double_prime}}=2.5 branch feature of the (0,0) Dthinsp{sup 3}{Pi}{sub 0e}{endash}Xthinsp{sup 3}{Delta}{sub 1} band system of {sup 51}VN was recorded as a function of an applied static electric field. The resultant Stark splitting and shifts were analyzed giving values of 3.07(7) D and 6.1(4) D for the Xthinsp{sup 3}{Delta}{sub 1} and Dthinsp{sup 3}{Pi}{sub 0e} states, respectively, for the magnitude of the permanent electric dipole moment, {vert_bar}{mu}{vert_bar}. Similarly, the R{sub ee}(0.5) branch feature of the (0,0) Athinsp{sup 4}{Pi}{sub 3/2}{endash}Xthinsp{sup 4}{Sigma}{sup {minus}} band system of {sup 52}CrN was recorded as a function of an applied static electric field and analyzed to produce {vert_bar}{mu}{vert_bar} values of 2.31(4) D and 5.42(2) D for the Xthinsp{sup 4}{Sigma}{sup {minus}} and Athinsp{sup 4}{Pi}{sub 3/2} states, respectively. In order to facilitate the dipole moment determinations for {sup 52}CrN it was necessary to record and analyze the field free spectrum of the (0,0) Athinsp{sup 4}{Pi}{sub 3/2}{endash}Xthinsp{sup 4}{Sigma}{sup {minus}} subband system. A comparison of the dipole moments for the first row monoxides and mononitrides is made and trends are discussed with reference to a molecular orbital correlation scheme. {copyright} {ital 1999 American Institute of Physics.}

  16. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    PubMed Central

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  17. Electro-Magnetic Dipole Properties of The Even-Even {sup 160}Gd Nucleus in The Spectroscopic Region

    SciTech Connect

    Ertugral, Filiz; Kuliev, Ali; Guliyev, Ekber

    2008-11-11

    In this study result of calculations using rotational, translational and Galilean invariant quasiparticle random-phase approximation is presented for the low lying dipole excitations in the even-even {sup 60}Gd nucleus. To make detail structure analysis for electric and magnetic dipole states, calculations carried out for both {delta}K = 1 and {delta}K = 0 branches. The analysis shows that almost all transitions with {delta}K = 1 are magnetic character in 2.4 divide 4 MeV energy interval. However, the calculations indicate the presence of a few prominent negative parity K{sup {pi}} = 1 states in the investigated energy interval, one of them with rather high E1 strength B(E1) = 7.1{center_dot}10{sup -3} e{sup 2} fm{sup 2} at energy 3.2 MeV. Calculated M1 dipole strength of the scissors mode K{sup {pi}} = 1{sup +} excitations clustered in two groups around 2.7 and 3.3 MeV. A similar situation arises for the experimentally obtained states two bumps around {omega}{sub i} = 2.7 MeV and {omega}{sub i} = 3.3 MeV. It has been shown that main part of spin-1 states, observed at energy 2.4 divide 4 MeV in {sup 160}Gd may be attributed to have M1 character and may be interpreted as main fragments of the scissors mode. However, it is apparent that the experimental data exceeds the calculation results for the summed B(M1) by a factor of 1.13 for M1 transitions.

  18. Reduced Limit on the Permanent Electric Dipole Moment of Hg 199

    NASA Astrophysics Data System (ADS)

    Graner, B.; Chen, Y.; Lindahl, E. G.; Heckel, B. R.

    2016-04-01

    This Letter describes the results of the most recent measurement of the permanent electric dipole moment (EDM) of neutral Hg 199 atoms. Fused silica vapor cells containing enriched Hg 199 are arranged in a stack in a common magnetic field. Optical pumping is used to spin polarize the atoms orthogonal to the applied magnetic field, and the Faraday rotation of near-resonant light is observed to determine an electric-field-induced perturbation to the Larmor precession frequency. Our results for this frequency shift are consistent with zero; we find the corresponding Hg 199 EDM dHg=(-2.20 ±2.7 5stat±1.4 8syst)×10-30e cm . We use this result to place a new upper limit on the Hg 199 EDM |dHg|<7.4 ×10-30e cm (95% C.L.), improving our previous limit by a factor of 4. We also discuss the implications of this result for various C P -violating observables as they relate to theories of physics beyond the standard model.

  19. Further evidence for the new collective magnetic dipole mode in heavy deformed nuclei

    NASA Astrophysics Data System (ADS)

    Bohle, D.; Küchler, G.; Richter, A.; Steffen, W.

    1984-11-01

    High-resolution inelastic electron scattering on 154Sm, 158Gd, 164Dy, 168Er and 174Yb provides further evidence on the recently discovered low-lying magnetic dipole mode. We present here spectra, form factors and estimates for transition strengths and use mainly the interacting boson model (IBA-2) for comparison. We also show first results on the fragmentation of the strength of the new mode in 156Gd.

  20. Spin response of magnetic dipole transitions in 156Gd and 164Dy

    NASA Astrophysics Data System (ADS)

    Frekers, D.; Bohle, D.; Richter, A.; Abegg, R.; Azuma, R. E.; Celler, A.; Chan, C.; Drake, T. E.; Jackson, K. P.; King, J. D.; Miller, C. A.; Schubank, R.; Watson, J.; Yen, S.

    1989-03-01

    Intermediate energy proton scattering has been used to probe the spin part of the recently discovered low-lying isovector magnetic dipole transitions in the rotational rare earth nuclei 156Gd and 164Dy. A large spin response is found in 164Dy, whereas in 156Gd the results are consistent with the picture of a predominantly convective excitation. The results are discussed in the context of the IBA-2 model and recent RPA calculations.

  1. Construction and results of the 50 mm short R D dipole magnets

    SciTech Connect

    Morgan, G.H.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Morgillo, A.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E. ); Goodzeit, C.; Radusewicz, P. )

    1991-01-01

    The first at Brookhaven National Laboratory (BNL) of the large bore, 1.8 m SSC dipoles have been built and tested. The 2-D design of the coil, using the new, wider cables and the iron cross section are reviewed and the coil ends are described. Results from tests, including quench performance, magnetic field measurements and strain-gauge data are presented. 5 refs., 4 figs., 1 tab.

  2. The identification of hot electron rings in spindle cusp using a magnetic dipole analyzer

    SciTech Connect

    Leal-Quiros, E.; Prelas, M.A. . Dept. of Nuclear Engineering)

    1991-12-01

    This paper reports on a magnetic dipole analyzer that has been built and used to measure fundamental parameters on the M4X, an experimental mirror machine with a spindle cusp and simple mirror modes of operation. A result using the M4X is the direct observation of the dimagnetic effect during the formation of hot electron rings in the spindle cusp configuration using electron cyclotron resonance heating.

  3. Neutron and electron electric dipole moment in N=1 supergravity unification

    SciTech Connect

    Ibrahim, T.; Nath, P.

    1998-01-01

    An analysis of the neutron EDM and of the electron EDM in minimal N=1 supergravity unification with two CP-violating phases is given. For the neutron the analysis includes the complete one loop gluino, chargino, and neutralino exchange diagrams for the electric dipole and the chromoelectric dipole operators, and also the contribution of the purely gluonic dimension-six operator. It is shown that there exist significant regions in the six-dimensional parameter space of the model where cancellations between the gluino and the chargino exchanges reduce the electric and the chromoelectric contributions, and further cancellations among the electric, the chromoelectric, and the purely gluonic parts lead to a dramatic lowering of the neutron EDM sometimes below the electron EDM value. This phenomenon gives a new mechanism, i.e., that of internal cancellations, for the suppression of the neutron EDM in supersymmetric theories. The cancellation mechanism can significantly reduce the severe fine-tuning problem associated with CP-violating phases in SUSY and SUGRA unified models. {copyright} {ital 1997} {ital The American Physical Society}

  4. Geometric-phase-induced false electric dipole moment signals for particles in traps

    SciTech Connect

    Pendlebury, J.M.; Harris, P.G.; Richardson, J.D.; Baskin, R.J.; Doyle, D.D.; May, D.J.R.; Smith, K.F.; Heil, W.; Sobolev, Yu.; Geltenbort, P.; Green, K.; Grinten, M.G.D. van der; Iaydjiev, P.S.; Ivanov, S.N.

    2004-09-01

    Theories are developed to evaluate Larmor frequency shifts, derived from geometric phases, in experiments to measure electric dipole moments (EDM's) of trapped, atoms, molecules, and neutrons. A part of these shifts is proportional to the applied electric field and can be interpreted falsely as an electric dipole moment. A comparison is made between our theoretical predictions for these shifts and some results from our recent experiments, which shows agreement to within the experimental errors of 15%. The comparison also demonstrates that some trapped particle EDM experiments have reached a sensitivity where stringent precautions are needed to minimize and control such false EDM's. Computer simulations of these processes are also described. They give good agreement with the analytical results and they extend the study by investigating the influence of varying surface reflection laws in the hard-walled traps considered. They also explore the possibility to suppress such false EDM's by introducing collisions with buffer gas particles. Some analytic results for frequency shifts proportional to the square of the E field are also given and there are results for the averaging of the B field in the absence of an E field.

  5. Combined Electrical and Magnetic Resistivity Tomography: Theory and Inverse Modeling

    SciTech Connect

    Heath, Gail Lynn; Svoboda, John Mark; LaBrecque, Douglas; Sharpe, Roger; Casale, Dan

    2003-09-01

    Electrical Resistivity Tomography (ERT), which has seen increasingly wide use for environmental monitoring, uses the measurement of electrical potentials induced by a low-frequency electric current source. An alternative technique, magnetometric resistivity (MMR), measures the magnetic fields created by the same type of low-frequency electric current source used for ERT. Combining these two methods and thus the two types of data, provides an opportunity for producing improved subsurface images in a wider range of environments. This paper discusses the use of a fully three-dimensional inverse routine that combines magnetic and electric field measurements. The algorithm is based on a 3-D finite difference forward algorithm. The magnetic fields are modeled by applying the reciprocity theorem to model the electric fields induced by a coil of unit moment at a frequency of one radian per second. Using this method, allows for an adjoint formulation for calculating sensitivities of both magnetic and electric fields with respect to changes in the conductivities of individual cells within the finite-difference mesh. In initial model studies, combined MMR/ERT surveys were better able to resolve 3-D structures than ERT alone. The paper also considers design issues and choices of arrays for MMR surveys over a simple 3-D model. In this case, an integral-equation modeling algorithm is used to calculate the expected magnetic fields over a simple 3-D model. Several horizontal and buried vertical electric sources with surface magnetic receivers are employed. This work suggest that in-well horizontal arrays produce the strongest anomalous signals, while vertical dipoles provide the best sensitivity to target location.

  6. On the nature of low-lying electric dipole excitations in light and heavy deformed nuclei

    NASA Astrophysics Data System (ADS)

    Guhr, T.; Hummel, K.-D.; Kilgus, G.; Bohle, D.; Richter, A.; De Jager, C. W.; De Vries, H.; De Witt Huberts, P. K. A.

    1989-09-01

    Form factors from high-resolution inelastic electron scattering on 48Ti, 164Dy, 232Th and 238U display the fact that the E1 transition to the lowest lying Jπ = 1 - states is excited by the same mode in light and heavy nuclei. A description of the form factor in terms of surface octupole vibrations of the nucleus around a quadrupole deformed shape is shown to work quite well up to its second maximum. The E1 strength found at the photon point is explained satisfactorily by taking into account the mixing with the electric giant dipole resonance.

  7. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  8. Search for the Neutron Electric Dipole Moment at the SNS at Oak Ridge

    SciTech Connect

    Kolarkar, Ameya

    2010-02-10

    The possible existence of a non-zero electric dipole moment (EDM) of the neutron is of fundamental interest for our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. A new experiment being developed at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory seeks to lower the current EDM limit of the neutron by a factor of 50 to 100 over the present upper limit of 2.9x10{sup -26} e cm.

  9. Atomic Spin Squeezing Towards Sub-Shot-Noise Measurement Of Permanent Electric Dipole Moment

    SciTech Connect

    Takano, T.; Fuyama, M.; Yamamoto, H.; Takahashi, Y.

    2007-06-13

    We have been studying laser-cooled and trapped atoms towards the detection of the permanent electric dipole moment (p-EDM). The existence of the p-EDM shows the CP-violation and its detection has significant implications for the test of the proposed elementary particle models. However, the current experimental accuracy has not yet reached the range of the predicted value of the standard model. Especially, a measurement error due to a shot noise is one of the important factors. To overcome the shot-noise limit, we are now trying to generate the atomic squeezed spin state.

  10. Electric dipole moments as probes of new CP-odd physics

    SciTech Connect

    Ritz, Adam

    2009-12-17

    We review the importance of precision probes for flavor-diagonal CP-violation, specifically searches for electric dipole moments of nucleons, atoms and molecules, in accessing new CP-odd physics at high scales. We summarize the effective field theory analysis of observable EDMs in terms of a general set of CP-odd operators at 1 GeV, and the ensuing model-independent new physics constraints, incorporating the recently improved limit on the Hg EDM. We also discuss the current status of these limits in the context of 1- and 2-loop contributions in supersymmetric models.

  11. New concept for a neutron electric dipole moment search using a pulsed beam

    NASA Astrophysics Data System (ADS)

    Piegsa, Florian M.

    2013-10-01

    A concept to search for a neutron electric dipole moment (nEDM) is presented, which employs a pulsed neutron beam instead of the established use of storable ultracold neutrons (UCN). The technique takes advantage of the high peak flux and the time structure of a next-generation pulsed spallation source like the planned European Spallation Source. It is demonstrated that the sensitivity for a nEDM can be improved by several orders of magnitude compared to the best beam experiments performed in the 1970s and can compete with the sensitivity of UCN experiments.

  12. Theory of global thermoremanent magnetization of planetary lithospheres in dipole fields of internal origin

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.; Mendenhall, M. H.

    1979-01-01

    A model is presented for the global thermoremanent magnetization of spherical lithospheres which cool in the presence of central dipole fields. Reversals and intensity variations of the field are incorporated in this model, which is applicable to bodies whose interiors have remained above the Curie point throughout their evolution. The model demonstrates that even considering Runcorn's (1975) magnetostatics theorems for spherical shells, a nonzero magnetic permeability and a finite cooling rate in the lithosphere permit the acquisition of a sizable global remanent dipole moment, which would be detectable by external measurements after the magnetizing field has disappeared. Preliminary application of this model to Mercury, Venus, and Mars suggests that only the combination of a nonreversing ancient source field with a surface value near 1 Oe plus a sizable concentration (about 1% by volume) of ferromagnetic material in their crusts could produce remanent planetary dipole fields as large as those measured by spacecraft. On the other hand, if ancient reversing dynamos existed in these planets, it is unlikely that large planetary-scale fields like those observed at Mercury could be due to remanence in their crusts, irrespective of their composition.

  13. Cryostat design for the Superconducting Super Collider 50mm aperture dipole magnet

    SciTech Connect

    Nicol, T.H. ); Tsavalas, Y.P. . Medical Systems)

    1990-09-01

    The cryostat of an SSC dipole magnet consists of all magnet components except the cold mass assembly. It serves to support the cold mass accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation (MLI) system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course their 25 year expected life. This paper describes the design of the current SSC collider dipole magnet cryostat and includes discussions on the thermal, structural, and dynamic considerations involved in the development of each of the major systems. 7 refs., 1 fig., 2 tabs.

  14. Control of magnetic dipole terahertz radiation by cavity-based phase modulation.

    PubMed

    Li, J; Higuchi, T; Kanda, N; Konishi, K; Tikhodeev, S G; Kuwata-Gonokami, M

    2011-11-01

    Although it is well accepted that the ultrafast manipulation of spins or magnetization in solid promises potential applications in coherent terahertz (THz) radiation source, spintronics and quantum information processing, their performance is significantly limited by the weak coupling between radiation field and magnetic dipole oscillation. For such 'weak' magnetic system, we propose an effective and simple route based on the cavity-based phase modulation technique towards the efficient energy extraction, demonstrated via controlling the magnetic dipole THz radiation generated in the nonlinear Raman process from antiferromagnetic (AFM) NiO. An asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a metallic planar mirror in the vicinity of a NiO slab. The energy-extraction (THz radiation) can be effectively manipulated by changing the NiO-mirror distance to modulate the phase relation between the magnetic wave and the induced magnetization in NiO. The distinct radiation control can be observed and the experiments are well explained by numerically analyzing the radiation dynamics that highlights the role of phase modulation during the radiation process. PMID:22109133

  15. Design study of 15-Tesla RHQT Nb3Al block type dipole magnet

    SciTech Connect

    Yamada, R.; Ambrosio, G.; Barzi, E.; Kashikin, V.; Kikuchi, A.; Novitski, I.; Takeuchi, T.; Wake, M.; Zlobin, A.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2005-09-01

    The design study of the block type 15-Tesla RHQT Nb{sub 3}Al dipole magnet, and its merits over Nb{sub 3}Sn magnets are presented. The copper stabilized RHQT Nb{sub 3}Al strand is now becoming commercially available for the application to the accelerator magnets. A 1 mm diameter RHQT Nb{sub 3}Al strand with filament size about 50 {mu}, non-copper Jc about 1000 A/mm{sup 2} at 15 Tesla at 4.2K, copper ratio of 50%, can now be produced over several hundred meters. The stress and strain characteristics of the Nb{sub 3}Al strand are superior to the Nb{sub 3}Sn strand. Another advantage is that it can tolerate a longitudinal strain up to 0.55%. The RHQT Nb{sub 3}Al Rutherford cable will have less chance of contamination of the stabilizer, compared to Nb{sub 3}Sn cable. These characteristics of the RHQT Nb{sub 3}Al will be beneficial for designing and producing 15-Tesla dipole magnets. An example 15-Tesla magnet cross section, utilizing the RHQT Nb{sub 3}Sn strand is presented. A systematic investigation on RHQT Nb{sub 3}Al strands, its Rutherford cables, and building a small racetrack magnet for cable testing are proposed.

  16. Magnetic dipole excitations in nuclei: Elementary modes of nucleonic motion

    SciTech Connect

    Heyde, Kris; Neumann-Cosel, Peter von; Richter, Achim

    2010-07-15

    The nucleus is one of the most multifaceted many-body systems in the Universe. It exhibits a multitude of responses depending on the way one ''probes'' it. With increasing technical advancements of beams at the various accelerators and of detection systems the nucleus has, over and over again, surprised us by expressing always new ways of ''organized'' structures and layers of complexity. Nuclear magnetism is one of those fascinating faces of the atomic nucleus discussed in the present review. We shall not just limit ourselves to presenting the by now large data set that has been obtained in the past two decades using various probes, electromagnetic and hadronic alike and that presents ample evidence for a low-lying orbital scissors mode around 3 MeV, albeit fragmented over an energy interval of the order of 1.5 MeV, and higher-lying spin-flip strength in the energy region 5-9 MeV in deformed nuclei nor to the presently discovered evidence for low-lying proton-neutron isovector quadrupole excitations in spherical nuclei. To the contrary, the experimental evidence is put in the perspectives of understanding the atomic nucleus and its various structures of well-organized modes of motion and thus enlarges the discussion to more general fermion and bosonic many-body systems.

  17. Mechanical analysis of the Nb3Sn dipole magnet HD1

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich,Daniel R.; Gourlay, Steve A.; Hannaford, Carles R.; Hafalia, Aurelio R.; Lietzke, Alan F.; Mattafirri, Sara; Sabbi, Gianluca

    2005-04-14

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has recently fabricated and tested HD1, a Nb{sub 3}Sn dipole magnet. The magnet reached a 16 T field, and exhibited training quenches in the end regions and in the straight section. After the test, HD1 was disassembled and inspected, and a detailed 3D finite element mechanical analysis was done to investigate for possible quench triggers. The study led to minor modifications to mechanical structure and assembly procedure, which were verified in a second test (HD1b). This paper presents the results of the mechanical analysis, including strain gauge measurements and coil visual inspection. The adjustments implemented in the magnet structure are reported and their effect on magnet training discussed.

  18. Mechanical Analysis of the Nb3Sn Dipole Magnet HD1

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich, Daniel R.; Gourlay, Steve A.; Hannaford, Charles R.; Hafalia, Aurelio R.; Lietzke, Alan F.; Mattafirri, Sara; Sabbi, Gianluca

    2005-06-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has recently fabricated and tested HD1, a Nb3Sn dipole magnet. The magnet reached a 16 T field, and exhibited training quenches in the end regions and in the straight section. After the test, HD1 was disassembled and inspected, and a detailed 3D finite element mechanical analysis was done to investigate for possible quench triggers. The study led to minor modifications to mechanical structure and assembly procedure, which were verified in a second test (HD1b). This paper presents the results of the mechanical analysis, including strain gauge measurements and coil visual inspection. The adjustments implemented in the magnet structure are reported and their effect on magnet training discussed.

  19. Thermodynamic Properties of the Superconducting Dipole Magnet of the SIS100 Synchrotron

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Fischer, E.; Freisleben, W.; Mierau, A.; Schnizer, P.; Szwangruber, P.

    The Heavy Ion Synchrotron SIS100 is the core facility of the international FAIR project at GSI in Darmstadt. The magnet system of the synchrotron will operate with a high cycle frequency up to 1 Hz. The magnet coils are made of a hollow NbTi composite cable cooled by forced flow of two phase helium. The dynamic heat losses in the magnets caused by fast ramping provide the major part of the heat load to the cryogenic system of SIS100. Recently the first series dipole magnet was produced and is being intensively tested at the cryogenic magnet test facility at GSI. We present the status of these tests together with the obtained opera- tion characteristics like a cool down and training behaviour, dynamic heat release and mass flow rates.

  20. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab`s new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  1. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  2. SQUIDs as detectors in a new experiment to measure the neutron electric dipole moment

    SciTech Connect

    Espy, M.A.; Cooper, M.; Lamoreaux, S.; Kraus, R.H. Jr.; Matlachov, A.; Ruminer, P.

    1998-12-31

    A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4{times}10{sup {minus}28} ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large ({approximately}100 cm{sup 2}) pick-up coils to measure the precision frequency of the spin-polarized {sup 3}He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the {sup 3}He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of {approximately}2{times}10{sup {minus}16} Tm{sup 2} (0.1 {Phi}{sub 0}) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of d{Phi}{sub SQ} = 2{times}10{sup {minus}6}{Phi}{sub 0}/{radical}Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application the authors designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and they developed a two-SQUID readout system that will reduce SQUID noise in the experiment. They present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. The authors also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout technique.

  3. SQUIDs as Detectors in a New Experiment to Measure the Neutron Electric Dipole Moment

    SciTech Connect

    Espy, M.A.; Cooper, M.; Lamoreaux, S.; Kraus, R.H., Jr.; Matlachov, A.; Ruminer, P.

    1998-09-13

    A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4x10{sup {minus}28} ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large ({approximately}100 cm{sup 2}) pick-up coils to measure the precession frequency of the spin-polarized {sup 3}He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the {sup 3}He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of {approximately}2x10{sup {minus}16} Tm{sup 2} (0.1 F{sub 0}) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of d F{sub SQ}=2x10{sup {minus}6} F{sub 0}/{radical}Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application we designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and we developed a two-SQUID readout system that will reduce SQUID noise in the experiment. We present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. We also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout technique

  4. The Magnetic Dipole as an Attractive Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Dawson, John M.

    1997-11-01

    Stability for low β plasma confined by closed B field lines is PV^γ = C_0, P = pressure, V = flux tube volume, γ is c_p/cv = 5/3. Kesner(J. Kesner, Innovative Confinement Concepts Workshop, Mar. 3-6, 1997) proposed a levitated current ring with the plasma stabilized by this condition as an alternate fusion reactor. Such a reactor has many attractive features; at radii large compared to the ring radius, V goes like r^4; the stability condition is Pr^20/3 = C_1. If nr^4 = C_2, then interchanges keep the density constant. The temperature can drop according to Tr^8/3 = C_3. If the chamber is ten times the ring radius, the density can drop from 10^14 near the ring to 10^10 at the edge and the temperature can drop from 50 keV near the ring to 100 eV at the edge. This plasma should present no problems for a divertor. Reacting plasma near the ring will heat it, upsetting the stability relation and cause convection to carry burnt plasma out; it will cool as it expands. At the same time the convection will bring in fresh fuel from the outside which will be compressed and heated to ignition. A super conducting ring design that can float in reacting D-He^3 for 16 hours exists(J.M. Dawson, FUSION, edited by Edward Teller, Vol. 1, Magnetic Confinement, Part, Ch. 16, Academic Press, 1981).

  5. Zeeman interaction in ThO H3Δ1 for the electron electric-dipole-moment search

    NASA Astrophysics Data System (ADS)

    Petrov, A. N.; Skripnikov, L. V.; Titov, A. V.; Hutzler, N. R.; Hess, P. W.; O'Leary, B. R.; Spaun, B.; DeMille, D.; Gabrielse, G.; Doyle, J. M.

    2014-06-01

    The current limit on the electron's electric dipole moment, |de|<8.7×10-29 ecm (90% confidence), was set using the molecule thorium monoxide (ThO) in the J =1 rotational level of its H3Δ1 electronic state [J. Baron et al., Science 343, 269 (2014), 10.1126/science.1248213]. This state in ThO is very robust against systematic errors related to magnetic fields or geometric phases, due in part to its Ω-doublet structure. These systematics can be further suppressed by operating the experiment under conditions where the g-factor difference between the Ω doublets is minimized. We consider the g factors of the ThO H3Δ1 state both experimentally and theoretically, including dependence on Ω doublets, the rotational level, and the external electric field. The calculated and measured values are in good agreement. We find that the g-factor difference between Ω doublets is smaller in J =2 than in J =1 and reaches zero at an experimentally accessible electric field. This means that the H ,J=2 state should be even more robust against a number of systematic errors compared to H ,J=1.

  6. Measurements of the persistent current decay and snapback effect in Tevatron dipole magnets

    SciTech Connect

    Velev, G.V.; Bauer, P.; DiMarco, J.; Hanft, R.; Lamm, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2006-08-01

    A systematic study of the persistent current decay and snapback effect in the fields of Tevatron accelerator dipoles was performed at the Fermilab Magnet Test Facility (MTF). The decay and snapback were measured under a range of conditions including variations of the current ramp parameters and magnet operational history. The study has mostly focused on the dynamic behavior of the normal sextupole component. In addition, the paper presents the persistent current effects observed in the other allowed field harmonics as well. The results provide new information about the previously observed ''excess'' decay during the first several seconds of the sextupole decay during injection and the correlation between the snapback amplitude and its duration.

  7. A. C. losses in the SSC high energy booster dipole magnets

    SciTech Connect

    Jayakumar, R.; Kovachev, V.; Snitchler, G.; Orrell, D.

    1991-06-01

    The baseline design for the SSC High Energy Booster (HEB) has dipole bending magnets with a 50 mm aperture. An analysis of the cryogenic heat load due to A.C. losses generated in the HEB ramp cycle are reported for this magnet. Included in this analysis are losses from superconductor hysteresis, yoke hysteresis, strand eddy currents, and cable eddy currents. The A.C. loss impact of 2.5 {mu}m vs. 6 {mu}m filament conductor is presented. A 60 mm aperture design is also investigated. 8 refs., 3 tabs.

  8. A 50 Hz dipole magnet for the TRIUMF KAON Factory booster ring

    SciTech Connect

    Otter, A.J. )

    1992-01-01

    The 3 GeV Booster synchrotron for TRIUMF's KAON Factory will need 24 dipole magnets each 3.0 m long operating with a resonant power system designed to give a 50 Hz ac field superimposed onto a dc field. The maximum and minimum field levels are 1.118 and 0.295 T respectively. In this paper the magnet design is presented and compared with measured results from a prototype which was constructed to evaluate fabrication procedures and to verify the ac loss calculations. The experiences gained from this fabrication are described.

  9. Electric dipole moment and spin supercurrent in superfluid [sup 3]He

    SciTech Connect

    Mineev, V.P.; Volovik, G.E. Helsinki Univ. of Technology, Espoo )

    1992-12-01

    The SU(2) gauge invariant theory of the relativistic interaction of the electrically neutral superfluid [sup 3]He with electric and magnetic fields is formulated. The spin supercurrent response on the electric field is calculated for this interaction. The comparison with the nonrelativistic flexoelectric effect, arising due to the distortion of the atomic shell by the gradients of the superfluid order parameter, is made. 5 refs.

  10. Sign Changes in the Electric Dipole Moment of Excited States in Rubidium-Alkaline Earth Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2015-06-01

    In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347

  11. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  12. Modeling the internal magnetic field of Mercury using the Time Dependent Equivalent Source Dipole method

    NASA Astrophysics Data System (ADS)

    Oliveira, J. S.; Langlais, B.; Amit, H.; Pais, M. A.

    2014-04-01

    We model the internal magnetic field of Mercury as measured by the MESSENGER probe during its first year. We introduce a new modeling technique, the Time-Dependent Equivalent Source Dipole approach (TD-ESD). At a given location, the measured magnetic field is assumed to result from the sum of the contributions of individual dipoles located deep inside Mercury's interior which may vary with time to reflect the temporal variation of the Hermean magnetic field. We report first models computed with the TDESD method using only Mercury's sideral days separately. We discuss the time-evolution of the modeled field and compare it to the time-evolution of the residuals. There is a strong correlation between these two quantities, which confirms that external magnetic fields are somehow affecting the modeled, supposedly internal, field. We also compute a mean model using a complete solar day and find that most of the external fields are reduced. The mean magnetic equator at 200 km altitude is found at 10°N latitude on average, corresponding to a g02/g01 ratio of 0.28.

  13. Time Dependent Equivalent Source Dipole - a new method to model the internal magnetic field of Mercury

    NASA Astrophysics Data System (ADS)

    Oliveira, J. S.; Langlais, B.; Amit, H.; Pais, M. A.

    2012-12-01

    The MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) mission has been in orbit around Mercury since March 2011, providing a partial coverage of the Hermean magnetic field. Depending on the local time, MESSENGER may be inside the magnetosphere between 60°S and to 86°N latitude. There is however a strong signature of the external magnetic field, and only the lowest altitude measurements over the northern hemisphere (below ~1500 km) can be used to robustly characterize the internal magnetic field. Standard and global methods, such as the Spherical Harmonics analysis, are therefore not the most appropriate ones because of the very partial data coverage. Here we present a new method based on the Equivalent Source Dipole (ESD) approach. This method can be used either as a global or local one and is usually applied to downward or upward continue at constant altitude magnetic fields of crustal origin, i.e. static magnetic fields. We expand the method into a Time Dependent Equivalent Source Dipole (TD-ESD). This new method results from placing uniformly distributed dipolar sources at the surface of a spherical shell located deep into Mercury's interior. These sources are set to represent the internal magnetic field, and as a new feature, their parameters may vary with time. We are then able to model not only the three components of the Hermean magnetic field, but also its temporal variation. We test this approach using synthetic data predicted at spacecraft location. The internal magnetic field and its secular variation can be modeled and described from the pole down to 40°N latitude or so without edge effects. We next apply the TD-ESD method to MESSENGER's measurements. We will present the first constant altitude maps of the Hermean magnetic field that we derive, and discuss of the importance of the external fields.

  14. Operator evolution for ab initio electric dipole transitions of 4He

    DOE PAGESBeta

    Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; Jurgenson, Eric D.; Navartil, Petr

    2015-07-24

    A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less

  15. Contribution of relativistic quantum chemistry to electron's electric dipole moment for CP violation

    NASA Astrophysics Data System (ADS)

    Abe, M.; Gopakumar, G.; Das, B. P.; Tatewaki, H.; Mukherjee, D.; Hada, M.

    2015-12-01

    The search for the electric dipole moment of the electron (eEDM) is important because it is a probe of Charge Conjugation-Parity (CP) violation. It can also shed light on new physics beyond the standard model. It is not possible to measure the eEDM directly. However, the interaction energy involving the effective electric field (Eeff) acting on an electron in a molecule and the eEDM can be measured. This quantity can be combined with Eeff, which is calculated by relativistic molecular orbital theory to determine eEDM. Previous calculations of Eeff were not sufficiently accurate in the treatment of relativistic or electron correlation effects. We therefore developed a new method to calculate Eeff based on a four-component relativistic coupled-cluster theory. We demonstrated our method for YbF molecule, one of the promising candidates for the eEDM search. Using very large basis set and without freezing any core orbitals, we obtain a value of 23.1 GV/cm for Eeff in YbF with an estimated error of less than 10%. The error is assessed by comparison of our calculations and experiments for two properties relevant for Eeff, permanent dipole moment and hyperfine coupling constant. Our method paves the way to calculate properties of various kinds of molecules which can be described by a single-reference wave function.

  16. Electromagnetic induction by a finite electric dipole source over a 2-D earth

    SciTech Connect

    Unsworth, M.J. ); Travis, B.J. ); Chave, A.D. )

    1993-02-01

    A numerical solution for the frequency domain electromagnetic response of a two-dimensional (2-D) conductivity structure to excitation by a three-dimensional (3-D) current source has been developed. The fields are Fourier transformed in the invariant conductivity direction and then expressed in a variational form. At each of a set of discrete spatial wavenumbers a finite-element method is used to obtain a solution for the secondary electromagnetic fields. The finite element uses exponential elements to efficiently model the fields in the far-field. In combination with an iterative solution for the along-strike electromagnetic fields, this produces a considerable reduction in computation costs. The numerical solutions for a horizontal electric dipole are computed and shown to agree with closed form expressions and to converge with respect to the parameterization. Finally some simple examples of the electromagnetic fields produced by horizontal electric dipole sources at both the sea floor and air-earth interface are presented to illustrate the usefulness of the code.

  17. SGR 0418+5729: A SMALL INCLINATION ANGLE RESULTING IN A NOT SO LOW DIPOLE MAGNETIC FIELD?

    SciTech Connect

    Tong, H.; Xu, R. X.

    2012-09-20

    The spin-down behaviors of SGR 0418+5729 are investigated. The pulsar spin-down model of Contopoulos and Spitkovsky is applied to SGR 0418+5729. It is shown that SGR 0418+5729 lies below the pulsar death line and its rotation-powered magnetospheric activities may therefore have stopped. The compact star is now spun down by the magnetic dipole moment perpendicular to its rotation axis. Our calculations show that under these assumptions there is the possibility of SGR 0418+5729 having a strong dipole magnetic field, if there is a small magnetic inclination angle. Its dipole magnetic field may be much higher than the characteristic magnetic field. Therefore, SGR 0418+5729 may be a normal magnetar instead of a low magnetic field magnetar.

  18. Electrically charged matter rotating around magnetized black holes

    NASA Astrophysics Data System (ADS)

    Kovar, Jiri; Slany, Petr; Stuchlik, Zdenek; Karas, Vladimir

    2015-08-01

    We present results of our study of charged-fluid toroidal structures surrounding a non-rotating black hole surrounded by a dipole and large-scale, asymptotically uniform magnetic fields. In continuation of our former study of electrically charged matter in approximation of zero conductivity, we demonstrate the existence of orbiting structures in the equatorial plane, levitating above it and those hovering near the symmetry axis. We constrain the range of black-hole, magnetic fields and matter parameters that allow stable configurations of the fluid structures and derive the geometrical shape of equi-pressure surfaces, characterizing the temperature and other astrophysical characteristic profiles. Our simplified analytical study suggests that these regions of stability may be relevant for trapping electrically charged particles and dust grains in some areas of the black hole magnetosphere, being thus important in some astrophysical situations.

  19. The dipole corrector magnets for the RHIC fast global orbit feedback system

    SciTech Connect

    Thieberger, P.; Arnold, L.; Folz, C.; Hulsart, R.; Jain, A.; Karl, R.; Mahler, G.; Meng, W.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Ptitsyn, V.; Ritter, J.; Smart, L.; Tuozzolo, J.; White, J.

    2011-03-28

    The recently completed RHIC fast global orbit feedback system uses 24 small 'window-frame' horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring's magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.

  20. Performance analysis of HD1: a 16 Tesla Nb3Sn dipole Magnet

    SciTech Connect

    Mattafirri, S.; Bartlett, S.E.; Bish, P.A.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hannaford, C.R.; Hafalia, A.R.; Lau, W.G.; Lietzke, A.F.; McInturff, A.D.; Nyman, M.; Sabbi, G.L.; Scanlan, R.M.

    2005-06-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory (LBNL) has been developing technology for high field accelerator magnets from brittle conductors. HD1 is a single bore block dipole magnet using two, double-layer Nb{sub 3}Sn flat racetrack coils. The magnet was tested in October 2003 and reached a bore peak field of 16 T (94.5% of short sample). The average quench current plateau appeared to be limited by 'stick slip' conductor motions. Diagnostics recorded quench origins and preload distributions. Cumulative deformation of the mechanical structure has been observed. Quench velocity in different field regions has been measured and compared with model predictions. The results obtained during the HD1 test are presented and discussed.

  1. Thermal equilibrium of non-neutral plasma in dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Sato, N.; Kasaoka, N.; Yoshida, Z.

    2015-04-01

    Self-organization of a long-lived structure is one of the remarkable characteristics of macroscopic systems governed by long-range interactions. In a homogeneous magnetic field, a non-neutral plasma creates a "thermal equilibrium," which is a Boltzmann distribution on a rigidly rotating frame. Here, we study how a non-neutral plasma self-organizes in inhomogeneous magnetic field; as a typical system, we consider a dipole magnetic field. In this generalized setting, the plasma exhibits its fundamental mechanism that determines the relaxed state. The scale hierarchy of adiabatic invariants is the determinant; the Boltzmann distribution under the topological constraint by the robust adiabatic invariants (hence, the homogeneous distribution with respect to the fragile invariant) is the relevant relaxed state, which turns out to be a rigidly rotating clump of particles (just same as in a homogeneous magnetic field), while the density is no longer homogeneous.

  2. Axial variations in the magnetic field of superconducting dipoles and quadrupoles

    SciTech Connect

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1993-09-01

    A periodic variation in the magnetic field along the axis has been observed in both quadrupole and dipole magnets made from superconducting cable. This oscillation is present in all components of the field and has a wavelength equal to the transposition length of the cable. In general the amplitude of these variations increases with magnet current and is not reversible. The residual field patten at zero current depends on the energizing cycle and increases with time spent at high field. The decay of the oscillations has a complex time dependence which contains some extremely long time constants. Unbalanced currents in the individual strands of the cable appear to cause these effects and the field variations can only be completely erased by raising the magnet above its critical temperature.

  3. HD1: Design and Fabrication of a 16 Tesla Nb3Sn DipoleMagnet

    SciTech Connect

    Hafalia, A.R.; Bartlett, S.E.; Capsi, S.; Chiesa, L.; Dietderich,D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Highley,H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Nyman,M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

    2003-11-10

    The Lawrence Berkeley National Laboratory (LBNL) Superconducting Magnet Group has completed the design, fabrication and test of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil pre-stress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

  4. HD1: Design and Fabrication of a 16 Tesla Nb3Sn Dipole Magnet

    SciTech Connect

    Hafalia, A.R.; Barlett, S.E.; Caspi, S.; Chiesa, L.; Dietderich, D.R.; Ferracin, P.; Goli, M.; Gourlay, S.A.; Hannaford, C.R.; Higley, H.; Lietzke, A.F.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Myman, M.; Sabbi, G.L.; Scanlan, R.M.; Swanson, J.

    2003-10-01

    The Lawrence Berkeley National Laboratory (LBNL) Supcrconducting Magnet Group has completed the design, fabrication and tcst of HD1, a 16 T block-coil dipole magnet. State of the art Nb{sub 3}Sn conductor was wound in double-layer racetrack coils and supported by an iron yoke and a tensioned aluminum shell. In order to prevent conductor movement under magnetic forces up to the design field, a coil prestress of 150 MPa was required. To achieve this level without damaging the brittle conductor, the target stress was generated during cool-down to 4.2 K by exploiting the thermal contraction differentials between yoke and shell. Accurate control of the shell tension during assembly was obtained using pressurized bladders and interference load keys. An integrated 3D CAD model was used to optimize magnetic and mechanical design and analysis.

  5. Thermal equilibrium of non-neutral plasma in dipole magnetic field

    SciTech Connect

    Sato, N.; Kasaoka, N.; Yoshida, Z.

    2015-04-15

    Self-organization of a long-lived structure is one of the remarkable characteristics of macroscopic systems governed by long-range interactions. In a homogeneous magnetic field, a non-neutral plasma creates a “thermal equilibrium,” which is a Boltzmann distribution on a rigidly rotating frame. Here, we study how a non-neutral plasma self-organizes in inhomogeneous magnetic field; as a typical system, we consider a dipole magnetic field. In this generalized setting, the plasma exhibits its fundamental mechanism that determines the relaxed state. The scale hierarchy of adiabatic invariants is the determinant; the Boltzmann distribution under the topological constraint by the robust adiabatic invariants (hence, the homogeneous distribution with respect to the fragile invariant) is the relevant relaxed state, which turns out to be a rigidly rotating clump of particles (just same as in a homogeneous magnetic field), while the density is no longer homogeneous.

  6. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source

    NASA Technical Reports Server (NTRS)

    Armoundas, A. A.; Feldman, A. B.; Sherman, D. A.; Cohen, R. J.

    2001-01-01

    Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius. Finally, a method is devised to obtain the size of the distributed source during the cardiac cycle.

  7. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    SciTech Connect

    Kim, Jin Young; Lee, Taekoon E-mail: tlee@kunsan.ac.kr

    2011-11-01

    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  8. Experimental determination of the magnetic dipole moment of candidate magnetoreceptor cells in trout

    NASA Astrophysics Data System (ADS)

    Winklhofer, M.; Eder, S.; Cadioiu, H.; McNaughton, P. A.; Kirschvink, J. L.

    2011-12-01

    Based on histological, physiological, and physical evidence, Walker et al (1997) and Diebel et al (2000) have identified distinctive cells in the olfactory epithelium of the rainbow trout (Onchorynchus mykiss) that contain magnetite and are closely associated with neurons that respond to changes in magnetic field. To put biophysical constraints on the possible transduction mechanism of magnetic signals, and in particular, to find out if the intracellular magnet is free to rotate or rather firmly anchored within the cell body, we have studied the magneto-mechanical response of isolated candidate receptor cells in suspension using a light microscope equipped with two pairs of Helmholtz coils. From the characteristic re-orientation time of suspended cells after a change in magnetic field direction, we have determined the magnitude of the magnetic dipole moment of the cells in function of the external field strength (0.4 mT to 3.2 mT) in order to find out whether or not the natural magnetic moment is remanence-based or induced (i.e., single-domain vs. superparamagnetic/multi-domain). Results: 1) The mechanical response of isolated cells to a change in magnetic field direction was always immediate, irrespective of the direction of change, which implies that the intracellular magnet is not free to rotate in the cell, but rather rigidly attached, probably to the plasma membrane, which is also suggested by our confocal fluorescence-microscope studies. 2) The cellular dipole moment turned out to be independent of the external field strength. Thus, the natural magnetic dipole moment is based on magnetic remanence, which points to single-domain particles and corroborates the results by Diebel et al (2000), who obtained switching fields consistent with single-domain magnetite. 3). The magnetic dipole moment is found to be of the order of several tens of fAm2, which greatly exceeds previous estimates (0.5 fAm2), and thus is similar to values reported for the most strongly magnetic types of magnetotactic bacteria (Hanzlik et al. 2002). Our results demonstrate that the magnetically identified cells clearly meet the physical requirements for a magnetoreceptor capable of rapidly detecting small changes in the external magnetic field. Diebel, C.E., Proksch, R., Green, C.R., Neilson, P. & Walker, M.M. (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406, 299-302. Hanzlik, M., Winklhofer, M., Petersen, N. (2002) Pulsed-field-remanence measurements on individual magnetotactic bacteria, J. Magn. Magn. Mater., 248(2), 258-267. Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C. & Green, C.R. (1997) Structure and function of the vertebrate magnetic sense. Nature 390, 371-376.

  9. Axisymmetric p-mode pulsations of stars with dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Gautschy, Alfred

    2004-05-01

    The effect of a dipole magnetic field on adiabatic axisymmetric non-radial p-mode pulsations is studied numerically. The angular dependence of pulsation, which cannot be represented by a single spherical harmonic in the presence of a magnetic field, is expanded into a series of spherical harmonics with different degrees l. The presence of a magnetic field not only shifts the pulsation frequency, the pulsations are also damped due to the generation of magnetic slow waves. In agreement with the results of Cunha & Gough, who used a different approach from ours, we find that the effect of a magnetic field on the intermediate-to-high-order p-modes is not monotonic but cyclic with respect to the pulsation frequency and the magnetic field strength. The damping rate of a high-order p-mode becomes very small at about 3 kG and 8 kG; the corresponding field strengths are higher for lower overtones. The diminished magnetic damping is favourable for the corresponding modes, if they are excited by the classical κ-mechanism, to survive even in the presence of a strong magnetic field. This picture could explain the mode selection as observed in the rapidly oscillating Ap stars. For a low-order p-mode, the damping rate increases as the strength of the magnetic field increases. We find that in the presence of a magnetic field of a few kG, magnetic damping seems to exceed the driving owing to the κ-mechanism of oscillations representative of δ Scuti variability. This may explain why δ Scuti-type oscillations are unlikely to be seen in magnetic Ap stars. The amplitude of a mainly dipole (or quadrupole) mode is strongly confined to the magnetic axis in the outer layers. Furthermore, horizontal motion can be comparable to radial motion even for high-order p-modes. We discuss the influence of the magnetic distortion of the eigenfunction on the pulsation amplitude modulation with respect to the rotation phase.

  10. Interferometric methods for mapping static electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2014-02-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p-n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.

  11. A dominant magnetic dipole for the evolved Ap star candidate EK Eridani

    NASA Astrophysics Data System (ADS)

    Aurière, M.; Konstantinova-Antova, R.; Petit, P.; Roudier, T.; Donati, J.-F.; Charbonnel, C.; Dintrans, B.; Lignières, F.; Wade, G. A.; Morgenthaler, A.; Tsvetkova, S.

    2011-10-01

    Context. EK Eri is one of the most slowly rotating active giants known, and has been proposed to be the descendant of a strongly magnetic Ap star. Aims: We have performed a spectropolarimetric study of EK Eri over 4 photometric periods with the aim of inferring the topology of its magnetic field. Methods: We used the NARVAL spectropolarimeter at the Bernard Lyot telescope at the Pic du Midi Observatory, along with the least-squares deconvolution method, to extract high signal-to-noise ratio Stokes V profiles from a timeseries of 28 polarisation spectra. We have derived the surface-averaged longitudinal magnetic field Bℓ. We fit the Stokes V profiles with a model of the large-scale magnetic field and obtained Zeeman Doppler images of the surface magnetic strength and geometry. We studied the classical activity indicators, the Ca ii H and K lines, the Ca ii infrared triplet, and Hα line, as well as the stellar radial velocity. Results: Bℓ variations of up to about 80 G are observed without any reversal of its sign, and which are in phase with photometric ephemeris. The activity indicators are shown to vary smoothly on a timescale compatible with the rotational period inferred from photometry (308.8 d), however large deviations can occur from one rotation to another. The surface magnetic field variations of EK Eri appear to be dominated by a strong magnetic spot (of negative polarity) which is phased with the dark (cool) photometric spot. Our modeling shows that the large-scale magnetic field of EK Eri is strongly poloidal. For a rotational axis inclination of i = 60°, we obtain a model that is almost purely dipolar. Conclusions: In the dipolar model, the strong magnetic/photometric spot corresponds to the negative pole of the dipole, which could be the remnant of that of an Ap star progenitor of EK Eri. Our observations and modeling conceptually support this hypothesis, suggesting an explanation of the outstanding magnetic properties of EK Eri as the result of interaction between deep convection and the remnant of an Ap star magnetic dipole. Nevertheless, the longitudinal magnetic field curve clearly shows changes from one rotation to the next, indicating that the surface magnetic topology is not static as in an Ap star. Based on data obtained using the Télescope Bernard Lyot at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France.

  12. Combined Panofsky Quadrupole & Corrector Dipole

    SciTech Connect

    George Biallas; Nathan Belcher; David Douglas; Tommy Hiatt; Kevin Jordan

    2007-07-02

    Two styles of Panofsky Quadrupoles with integral corrector dipole windings are in use in the electron beam line of the Free Electron Laser at Jefferson Lab. We combined steering and focusing functions into single magnets, adding hundreds of Gauss-cm dipole corrector capability to existing quadrupoles because space is at a premium along the beam line. Superposing a one part in 100 dipole corrector field on a 1 part in 1000, weak (600 to 1000 Gauss) quadrupole is possible because the parallel slab iron yoke of the Panofsky Quadrupole acts as a window frame style dipole yoke. The dipole field is formed when two electrically floating “current sources”, designed and made at JLab, add and subtract current from the two opposite quadrupole current sheet windings parallel to the dipole field direction. The current sources also drive auxiliary coils at the yoke’s inner corners that improve the dipole field. Magnet measurements yielded the control system field maps that characterize the two types of fields. Field analysis using TOSCA, construction and wiring details, magnet measurements and reference for the current source are presented.

  13. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new tool to constrain the size of neutron stars. The pulsed fractions obtained in all our models increase with photon energy: the strong decrease observed in Geminga at energies 0.3-0.5 keV is definitely a genuine effect of the magnetic field on the spectrum in contradistinction to the magnetic effects on the surface temperature considered her. Thus, a detailed analysis of thermal emission from the four pulsars we consider will require both complex surface field configurations and the inclusion of magnetic effects in the atmosphere (i.e., on the emitted spectrum).

  14. Spectrum of relativistic radiation from electric charges and dipoles as they fall freely into a black hole

    SciTech Connect

    Shatskiy, A. A. Novikov, I. D.; Lipatova, L. N.

    2013-06-15

    The motion of electric charges and dipoles falling radially and freely into a Schwarzschild black hole is considered. The inverse effect of the electromagnetic fields on the black hole is neglected. Since the dipole is assumed to be a point particle, the deformation due to the action of tidal forces on it is neglected. According to the theorem stating that 'black holes have no hair', the multipole electromagnetic fields should be completely radiated as a multipole falls into a black hole. The electromagnetic radiation power spectrum for these multipoles (a monopole and a dipole) has been found. Differences have been found in the spectra for different orientations of the falling dipole. A general method has been developed to find the radiated multipole electromagnetic fields for multipoles (including higher-order multipoles-quadrupoles, etc.) falling freely into a black hole. The calculated electromagnetic spectra can be compared with observational data from stellar-mass and smaller black holes.

  15. Towards the Measurement of the Electric-Dipole Moment of Radioactive Francium using Laser-Cooling and Trapping Techniques

    NASA Astrophysics Data System (ADS)

    Kawamura, Hirokazu; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    An experiment to search for the electron electric dipole moment using francium is planned to test the new physics beyond the standard model. The optical lattice trapping of the francium that is produced through the nuclear fusion reaction at high heat may allow for a precise measurement of the electric dipole moment. The magneto-optical trapping of the francium is required as a precooling treatment. The factory of laser-cooled francium atoms has been developed for the magneto-optical trap. Currently, the apparatus that is able to trap a few atoms is constructed to identify the resonant frequency of francium.

  16. Are you positive? Electric dipole polarity discrimination in the yellow stingray, Urobatis jamaicensis.

    PubMed

    Siciliano, Avery M; Kajiura, Stephen M; Long, John H; Porter, Marianne E

    2013-10-01

    It is well established that elasmobranchs can detect dipole electric fields. However, it is unclear whether they can discriminate between the anode and cathode. To investigate this subject, we employed a behavioral assay to determine the discriminatory ability of the yellow stingray, Urobatis jamaicensis. We conditioned stingrays with food rewards to bite either the anode (n=5) or the cathode (n=6) of a direct-current dipole located on the floor of an experimental tank. All individuals successfully performed the task after 18 to 22 days. Stingrays were then tested in experimental sessions when they were rewarded only after they identified the correct pole. Stingrays successfully discriminated between the poles at a rate greater than chance, ranging among individuals from a mean of 66% to 93% correct. During experimental sessions, stingrays conditioned to distinguish the anode performed similarly to those conditioned to distinguish the cathode. We hypothesize that the ability to discriminate anode from cathode is physiologically encoded, but its utility in providing spatial information under natural conditions remains to be demonstrated. The ability to discriminate polarity may eliminate ambiguity in induction-based magnetoreception and facilitate navigation with respect to the geomagnetic field. PMID:24243961

  17. Laser Cooled Francium Factory for the Electron Electric Dipole Moment Search

    NASA Astrophysics Data System (ADS)

    Hayamizu, Tomohiro; Arikawa, Hiroshi; Ezure, Saki; Harada, Ken-ichi; Inoue, Takeshi; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Tomohiro; Kawamura, Hirokazu; Sato, Tomoya; Ando, Shun; Aoki, Takahiro; Kato, Ko; Uchiyama, Aiko; Aoki, Takatoshi; Furukawa, Takeshi; Hatakeyama, Atsushi; Hatanaka, Kichiji; Imai, Kenichi; Murakami, Tetsuya; Nataraj, Huliyar; Shimizu, Yasuhiro; Wakasa, Tomotsugu; Yoshida, Hidetomo; Sakemi, Yasuhiro

    A permanent electric dipole moment (EDM) of an elementary particle is a candidate observable exhibiting CP violation beyond the standard model. In the present study, we plan to search for the electron EDM in francium (Fr), which is the heaviest alkali atom, captured in a far-off resonance optical trap. Since the number of Fr atoms is essential to high precision measurements, we have developed a cold Fr source called "Laser cooled Fr factory" in order to trap the radioactive Fr produced through a nuclear fusion reaction. The Fr produced was released as an ion from a gold production target in a Fr ion source, transported as an ion beam, and converted from ion to atom in a neutralizer. The neutralized Fr atom will be trapped in a magneto-optical trap(MOT) and then be transferred to an optical dipole trap. The rate of Fr atoms so far achieved was 1 × 106 ions/sec from the ion source and 1 atom/sec of the neutralized Fr atom from the neutralizer. In order to optimize performance of the Fr beam line, Rb atoms were trapped in the MOT. In addition to the beam-line experiment, in an off-line MOT system, polarization gradient cooling was applied to the trapped Rb atoms to cool them down to temperatures lower than the Rb Doppler-cooling limit. In this paper, we describe the present status of this experimental apparatus.

  18. Search for the electron electric dipole moment using ?-doublet levels in PbO

    NASA Astrophysics Data System (ADS)

    Eckel, S.; Hamilton, P.; Kirilov, E.; Smith, H. W.; DeMille, D.

    2013-05-01

    We present results of an experiment to probe for the electric dipole moment (EDM) of the electron using an ?-doublet state in a polar molecule. If the molecule is both massive and has a large molecular-fixed frame dipole moment, then the ?-doublet states have the potential to greatly increase the sensitivity of experiments searching for the EDM while also allowing for new methods of systematic error rejection. Here, we use the metastable a(1)3?+ state of lead monoxide (PbO) to probe for the electron EDM. Our best fit for the electron EDM of de=(-4.49.5stat1.8syst)10-27ecm allows us to place an upper limit on the magnitude of the EDM of |de|<1.710-26ecm (90% confidence). While this is less stringent than limits from other, previous experiments, our work emphasizes the systematic error rejection properties associated with the ?-doublet level structure. The results should inform the work of other, ongoing experiments that use molecules with analogous level structure.

  19. Implications of R-parity violating supersymmetry for atomic and hadronic electric dipole moments

    SciTech Connect

    Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Kovalenko, Sergey

    2006-10-01

    We calculate the electric dipole moments (EDM) of the neutral {sup 199}Hg atom, deuteron, nucleons and neutral hyperons {lambda}, {sigma}{sup 0} and {xi}{sup 0} in the framework of a generic SUSY model without R-parity conservation (Re{sub p}SUSY) on the basis of the SU(3) version of chiral perturbation theory (ChPT). We consider CP-violation in the hadronic sector induced by the chromoelectric quark dipole moments and CP-violating 4-quark effective interactions. From the null experimental results on the neutron and {sup 199}Hg atom EDMs we derive limits on the imaginary parts of certain products Im({lambda}{sup '}{lambda}{sup '}*) of the trilinear Re{sub p}-couplings and demonstrate that they are more stringent than those existing in the literature. Using these limits we give predictions for the EDMs of neutral hyperons. We also estimate the prospects of future storage ring experiments on the deuteron EDM and show that the expected improvement of the above limits in these experiments may reach several orders of magnitude.

  20. Equivalent dipole source imaging of brain electric activity by means of parametric projection filter.

    PubMed

    Hori, J; He, B

    2001-05-01

    In the present study, spatial filters for inverse estimation of an equivalent dipole layer from the scalp-recorded potentials have been explored for their suitability in achieving high-resolution electroencephalogram (EEG) imaging. The performance of the parametric projection filter (PPF), which we propose to use for high-resolution EEG imaging, has been evaluated by computer simulations in the presence of a priori information on noise. An inhomogeneous three-concentric-sphere head model was used in the present simulation study to represent the head volume conductor. An equivalent dipole layer was used to model brain electric sources and estimated from the scalp potentials. Various noise conditions were simulated and the parametric projection filter was compared with standard regularization procedures such as the truncated singular value decomposition (TSVD) and the Tikhonov regularization (TKNV). The present simulation results suggest that the proposed method performs better than that of commonly used inverse regularization techniques, such as the general inverse using the TSVD and the TKNV, when the correlation between the original source distribution and the noise distribution is low, and performs similarly when the correlation is high. A method for determining the optimum regularization parameter, which can be applied to parametric inverse techniques, has also been developed. PMID:11400724

  1. Static Electric Dipole Polarizabilities of Tri- and Tetravalent U, Np, and Pu Ions

    SciTech Connect

    Parmar, Payal; Peterson, Kirk A.; Clark, Aurora E.

    2013-11-21

    High-quality static electric dipole polarizabilities have been determined for the ground states of the hard-sphere cations of U, Np, and Pu in the III and IV oxidation states. The polarizabilities have been calculated using the numerical finite field technique in a four-component relativistic framework. Methods including Fock-space coupled cluster (FSCC) and Kramers-restricted configuration interaction (KRCI) have been performed in order to account for electron correlation effects. Comparisons between polarizabilities calculated using Dirac-Hartree-Fock (DHF), FSCC, and KRCI methods have been made using both triple- and quadruple-ζ basis sets for U⁴⁺. In addition to the ground state, this study also reports the polarizability data for the first two excited states of U3+/4+, Np3+/4+, and Pu3+/4+ ions at different levels of theory. The values reported in this work are the most accurate to date calculations for the dipole polarizabilities of the hard-sphere tri- and tetravalent actinide ions and may serve as reference values, aiding in the calculation of various electronic and response properties (for example, intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications.

  2. Design, Fabrication, and Test of a Superconducting Dipole Magnet Based on Tilted Solenoids

    SciTech Connect

    Caspi, S.; Dietderich, D. R.; Ferracin, P.; Finney, N. R.; Fuery, M. J.; Gourlay, S. A.; Hafalia, A. R.

    2007-06-01

    It can be shown that, by superposing two solenoid-like thin windings that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is 'cos-theta' like and the resulting magnetic field in the bore is a pure dipole. As a proof of principle, such a magnet was designed, built and tested as part of a summer undergraduate intern project. The measured field in the 25mm bore, 4 single strand layers using NbTi superconductor, exceeded 1 T. The simplicity of this high field quality design, void of typical wedges end-spacers and coil assembly, is especially suitable for insert-coils using High Temperature Superconducting wire as well as for low cost superconducting accelerator magnets for High Energy Physics. Details of the design, construction and test are reported.

  3. Relativistic charged particle in magnetic dipole-spherical geometry. III. Local three-dimensional states

    SciTech Connect

    Gopinath, K.S.; Kennedy, D.C.; Gelb, J.M.

    1997-07-01

    Following two previous papers, we examine single- and many-body states of relativistic charged particles in an intense, rotating magnetic dipole field. Single-body orbits are derived classically and semiclassically, and then applied to the many-body orbits are derived classically and semiclassically, and then applied to the many-body case via the Thomas-Fermi approximation. Examples of electrons in a realistic neutron star crust are considered with both fixed density profiles and constant Fermi energy. In the first case, the varying magnetic field and Coriolis correction lead to a varying Fermi energy and macroscopic currents; in the second, the electron density is redistributed by the magnetic field. Further questions are outlined. 16 refs., 10 figs.

  4. Design and Fabrication of a 14 T, Nb3Sn Superconducting Racetrack Dipole Magnet

    SciTech Connect

    Gourlay, S.A.; Bish, P.; Caspi, S.; Chow, K.; Dietderich, D.R.; Gupta, R.; Hannaford, R.; Harnden, W.; Higley, H.; Lietzke, A.; Liggins, N.; McInturff, A.D.; Millos, G.A.; Morrison, L. Morrison M.; Scanlan, R.M.

    1999-09-01

    Most accelerator magnets for applications in the field range up to 10 T utilize NbTi superconductor and a cosine theta coil design. For fields above 10 T, it is necessary to use Nb{sub 3}Sn or other strain sensitive superconductors land other coil geometries that are more compatible with these materials. This paper describes our recent efforts to design a series of racetrack coil magnets that will provide experimental verification of an alternative magnet design philosophy, with the near-term goal of reaching a field level of approximately 14 T. The conductor and fabrication issues relevant to building high field, racetrack dipoles utilizing Nb{sub 3}Sn superconductor and a wind and react approach will also be discussed.

  5. Effect of core polarization on magnetic dipole moments in deformed odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Bonneau, L.; Minkov, N.; Duc, Dao Duy; Quentin, P.; Bartel, J.

    2015-05-01

    Magnetic properties of deformed odd-mass nuclei are studied within a nonrelativistic mean-field-plus-pairing approach, namely the Skyrme-Hartree-Fock-BCS approach with self-consistent blocking. For an odd number of nucleons these approaches lead to the breaking of the time-reversal invariance. The deviation from the Schmidt values of the isoscalar magnetic dipole moment is known to result from a subtle balance between core-polarization effects and meson-exchange current effects. However, the former are usually calculated in the random phase approximation without time-reversal symmetry breaking at the mean-field level. In this work we show that if one takes into account this symmetry breaking already in the mean-field solution, the correction from core polarization yields a significant contribution to the empirical quenching of the spin gyromagnetic ratios as compared to the free values in deformed odd-mass nuclei. Moreover, we calculate magnetic dipole moments in the Bohr and Mottelson unified-model description with self-consistent blocked mean-field intrinsic states. The obtained results in the A ˜100 and A ˜180 mass regions as well as for three actinide nuclei compare favorably with experimental data.

  6. Material Procurement Report for the FNAL pp Forward Detector's Toroids and Cos8 Dipole Magnets

    SciTech Connect

    Cline, D.; Morse, R.; Orosz, I.; Thomas, L.C.;

    1980-10-27

    We outline the possibilities of starting construction of the {bar p}p forward detector toroids and cos{theta} dipole magnets described in CDP Note 64 as soon as possible using material that already exists on the FNAL site. Personal inspection of the steel supplies indicates that as much as 2000 tons of steel or over 50% of all the steel needed for the toroids is now available at the FNAL boneyard. Copper inventories indicate that there is enough copper on the FNAL site to construct both the toroid magnets and the cos{theta} dipole magnets. A construction schedule of one toroid in FY81, two toroids in FY82, and the final toroid in FY83 is shown to be feasible. Floor space and loading requirements for the IR Hall housing the forward detector are examined and finally, budgets for the initial FY8l phase and the completed project are given. The FY81 costs are $393K and to-completion costs are $1506K.

  7. Electric-field guiding of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  8. Dissipation of energy in model experiments. [plasma interaction with magnetic dipole

    NASA Technical Reports Server (NTRS)

    Podgornyy, I. M.

    1974-01-01

    Interaction studies of a plasma stream with a magnetic dipole have shown that the thickness of the plasma/field interlayer is considerably greater than the characteristic plasma dimension c/omega sub 0. Broadening of the layer is due to the formation of a collisionless shock wave. To demonstrate collisionless dissipation, the Joulean losses were calculated using the conductivity value obtained from the skin layer thickness. Analysis of the various physical processes showed that the hypothesis of collisionless dissipation of the directional plasma flow is justified.

  9. Temperature-dependent terahertz magnetic dipole radiation from antiferromagnetic GdFeO{sub 3} ceramics

    SciTech Connect

    Fu, Xiaojian; Xi, Xiaoqing; Bi, Ke; Zhou, Ji

    2013-11-18

    Temperature-dependent terahertz magnetic dipole radiation in antiferromagnetic GdFeO{sub 3} ceramic is investigated both theoretically and experimentally in this work. A two-level quantum transition mechanism is introduced to describe the excitation-radiation process, and radiative lifetime is derived analytically from the change of spin state density during this process. Terahertz spectral measurements demonstrate that the radiative frequency exhibits a red-shift and lifetime shortens as temperature increases, which is in good agreement with theoretical predictions. The temperature-sensitive radiative frequency and excellent terahertz emission mean that the antiferromagnetic ceramics show potential for application in terahertz sensors and frequency-tunable terahertz lasers.

  10. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    PubMed

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found. PMID:25815248

  11. A D-He/sup 3/ fusion reactor based on a dipole magnetic field

    SciTech Connect

    Hasegawa, Akira; Chen, Liu

    1989-07-01

    An innovative fusion reactor suitable for D-He/sup 3/ fuel is proposed, based on a dipole magnetic field produced by a simple one-turn coil with /approx lt/16 T near-field intensity. The equilibrium plasma, phase-space density satisfies /partial derivative//cflx f//sub 0/(/mu/, J, /psi/)//partial derivative//psi/ = O, where /psi/ is the flux function, has a steep enough pressure profile for an efficient fusion reaction yet is stable for low frequency instabilities to local beta exceeding unity. The semi-open field configuration is particularly suitable for D-He/sup 3/ reactions. 8 refs., 1 fig.

  12. Quench problems of Nb3 Sn cosine theta high field dipole model magnets

    SciTech Connect

    Yamada, Ryuji; Wake, Masayoshi; /KEK, Tsukuba

    2004-12-01

    We have developed and tested several cosine theta high field dipole model magnets for accelerator application, utilizing Nb{sub 3}Sn strands made by MJR method and PIT method. With Rutherford cables made with PIT strand we achieved 10.1 Tesla central field at 2.2 K operation, and 9.5 Tesla at 4.5 K operation. The magnet wound with the MJR cable prematurely quenched at 6.8 Tesla at 4.5 K due to cryo-instability. Typical quench behaviors of these magnets are described for both types of magnets, HFDA-04 of MJR and HFDA-05 of PIT. Their characteristics parameters are compared on d{sub eff}, RRR, thermal conductivity and others, together with other historical Nb{sub 3}Sn magnets. It is suggested a larger RRR value is essential for the stability of the epoxy impregnated high field magnets made with high current density strands. It is shown that a magnet with a larger RRR value has a longer MPZ value and more stable, due to its high thermal conductivity and low resistivity.

  13. Dipole Well Location

    Energy Science and Technology Software Center (ESTSC)

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The anglemore » between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.« less

  14. Analysis of the AC loss measurements on the one-metre dipole model magnets for the CERN LHC

    SciTech Connect

    Verweij, A.P.; Leroy, D.; Walckiers, L.; Wolf, R.; Kate, H.H.J. ten

    1994-07-01

    Superconducting single and twin-aperture dipole model magnets for the future CERN Large Hadron Collider have been built in industry and tested at CERN. In this paper the results of AC loss measurements are presented that are performed on 6 magnets all having a bore of 50 mm diameter and coils wound of 17 mm wide superconducting cables. The cables that are used in these models differ with respect to the filament diameter, the strand coating and the fact whether the cable is (partially) soldered or not. The energy loss, determined electrically as the difference between the stored energy and the extracted energy during a current cycle, consists mainly of filament hysteresis and inter-strand coupling loss. The hysteresis component is in fair agreement with calculations. The inter-strand coupling loss varies with about a factor 5 between the models due to a different contact resistance between crossing strands in the cable (varying in the range from 1 to 10 {mu}{Omega}). Even for model magnets which are made with the same cable the inter-strand coupling loss can differ significantly.

  15. Ultralight gravitons with tiny electric dipole moment are seeping from the vacuum

    NASA Astrophysics Data System (ADS)

    Novikov, Evgeny A.

    2016-05-01

    Mass and electric dipole moment (EDM) of graviton, which is identified as dark matter particle (DMP), are estimated. This change the concept of dark matter and can help to explain the baryon asymmetry of the universe. The calculations are based on quantum modification of the general relativity (Qmoger) with two additional terms in the Einstein equations, which takes into account production/absorption of gravitons. In this theory, there are no Big Bang in the beginning (some local bangs during the evolution of the universe are probable), no critical density of the universe, no dark energy (no need in cosmological constant) and no inflation. The theory (without fitting) is in good quantitative agreement with cosmic data.

  16. Electric dipole moments of actinide atoms and RaO molecule

    SciTech Connect

    Flambaum, V. V.

    2008-02-15

    We have calculated the atomic electric dipole moments (EDMs) induced in {sup 229}Pa and {sup 225}Ac by their respective nuclear Schiff moments S. The results are d({sup 229}Pa)=-9.5x10{sup -17} [S/(e fm)]e cm=-1.1x10{sup -20}{eta} e cm and d({sup 225}Ac)=-8.6x10{sup -17} [S/(e fm)]e cm=-0.8x10{sup -21}{eta} e cm. EDM of {sup 229}Pa is 3x10{sup 4} times larger than {sup 199}Hg EDM and 40 times larger than {sup 225}Ra EDM. Possible use of actinides in solid state experiments is also discussed. The (T,P)-odd spin-axis interaction in RaO molecule is 500 times larger than in TlF.

  17. Enhancement of the C P -odd effect in the nuclear electric dipole moment of 6Li

    NASA Astrophysics Data System (ADS)

    Yamanaka, Nodoka; Hiyama, Emiko

    2015-05-01

    We calculate for the first time the electric dipole moment (EDM) of the 6Li nucleus within the α +p +n three-body cluster model using the Gaussian expansion method, assuming the one-meson exchange P , CP-odd nuclear forces. It is found that the EDM of 6Li is 2 times more sensitive to the isovector pion exchange P , CP-odd nuclear force than the deuteron EDM because of the CP-odd interaction between the nucleons and the α cluster. The 9Be EDM is also calculated in the same framework as an α +α +n three-body system. We also test the ab initio calculation of the EDM of the deuteron, 3H , and 3He nuclei using the realistic Argonne v 18 nuclear force. In the ab initio calculations, good agreements with previous studies are obtained. We finally discuss the prospects for new physics beyond the standard model.

  18. A New Measurement of the Electric Dipole Moment of the Muon

    SciTech Connect

    Carey, Robert M.

    2009-12-17

    Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Brief details on the experimental apparatus and the three analyses are presented. Since the individual results on the positive and negative muon, as well as the combined result, d{sub {mu}} = (-0.1{+-}0.9)x10{sup -19} e{center_dot}cm, are all consistent with zero, we set a new muon EDM limit, |d{sub {mu}}|<1.9x10{sup -19} e{center_dot}cm(95% C.L.). This represents a factor of 5 improvement over the previous best limit on the muon EDM.

  19. Revised experimental upper limit on the electric dipole moment of the neutron

    NASA Astrophysics Data System (ADS)

    Pendlebury, J. M.; Afach, S.; Ayres, N. J.; Baker, C. A.; Ban, G.; Bison, G.; Bodek, K.; Burghoff, M.; Geltenbort, P.; Green, K.; Griffith, W. C.; van der Grinten, M.; Grujić, Z. D.; Harris, P. G.; Hélaine, V.; Iaydjiev, P.; Ivanov, S. N.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; May, D. J. R.; Musgrave, M.; Naviliat-Cuncic, O.; Piegsa, F. M.; Pignol, G.; Prashanth, P. N.; Quéméner, G.; Rawlik, M.; Rebreyend, D.; Richardson, J. D.; Ries, D.; Roccia, S.; Rozpedzik, D.; Schnabel, A.; Schmidt-Wellenburg, P.; Severijns, N.; Shiers, D.; Thorne, J. A.; Weis, A.; Winston, O. J.; Wursten, E.; Zejma, J.; Zsigmond, G.

    2015-11-01

    We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons; an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of dn=-0.21 ±1.82 ×1 0-26 e cm , which may be interpreted as a slightly revised upper limit on the magnitude of the EDM of 3.0 ×1 0-26 e cm (90% C.L.) or 3.6 ×1 0-26 e cm (95% C.L.).

  20. Effects of confinement on the permanent electric-dipole moment of Xe atoms in liquid Xe

    SciTech Connect

    Ravaine, Boris; Derevianko, Andrei

    2004-05-01

    Searches for permanent electric-dipole moments (EDM) of atoms provide important constraints on competing extensions to the standard model of elementary particles. Recently proposed experiment with liquid {sup 129}Xe [M.V. Romalis and M.P. Ledbetter, Phys. Rev. Lett. 87, 067601 (2001)] may significantly improve present limits on the EDMs. To interpret experimental data in terms of CP-violating sources, one must relate measured atomic EDM to various model interactions via electronic-structure calculations. Here we study density dependence of atomic EDMs. The analysis is carried out in the framework of the cell model of the liquid coupled with relativistic atomic-structure calculations. We find that compared to an isolated atom, the EDM of an atom of liquid Xe is suppressed by about 40%.

  1. P- and T-odd two-nucleon interaction and the deuteron electric dipole moment

    SciTech Connect

    Liu, C.-P.; Timmermans, R.G.E.

    2004-11-01

    The nuclear physics relevant to the electric dipole moment (EDM) of the deuteron is addressed. The general operator structure of the P- and T-odd nucleon-nucleon interaction is discussed and applied to the two-body contributions of the deuteron EDM, which can be calculated in terms of P- and T-odd meson-nucleon coupling constants with only small model dependence. The one-body contributions, the EDMs of the proton and the neutron, are evaluated within the same framework. Although the total theoretical uncertainties are sizable, we conclude that, compared to the neutron, the deuteron EDM is competitive in terms of sensitivity to CP violation, and complementary with respect to the microscopic sources of CP violation that can be probed.

  2. Microgravity Electron Electric Dipole Moment Experiment with a Cold Atom Beam

    NASA Technical Reports Server (NTRS)

    Gould, Harvey

    2003-01-01

    New physics beyond the Standard Model: The small CP violation contained in the Standard Model is insufficient to account for the baryon/antibaryon asymmetry in the universe. New sources of CP violation are provided by extensions to the Standard Model. They contain CP-violating phases that couple directly to leptons and from which a large electron electric dipole moment (EDM) may be generated. Observation of an electron EDM would be proof of a Standard Model extension because the Standard Model only allows an electron EDM of less than 10(exppp -57) C-m (S.I. units; 1 C-m = 1.6 x 10(exp -21) e-cm). A null result, however, constrains models and improving the limit tightens constraints, further restricting the models.

  3. Electric-dipole 5s - 5p Transitions in Promethiumlike Ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2008-02-29

    The 5s-5p electric-dipole resonance transitions in highly ionized promethiumlike ions have been studied applying relativistic multi-reference Moeller-Plesset second-order perturbation theory. The transition wavelengths are determined to within 0.2 {angstrom} in the more highly charged ions, where the level degeneracies are small. For somewhat lighter ions a very large reference space was used in order to account for the many degeneracies. In order to calculate transition probabilities and lifetimes, correlation corrections have been added to the transition operator in the next order. The contributions from the higher orders of the theory, that is, frequency-dependent Breit correction, Lamb shift, and mass shifts, have been estimated. The results are used to re-assess spectroscopic data from beam-foil, electron beam ion trap, and tokamak observations.

  4. Electric Dipole Moments in Radioactive Nuclei, Tests of Time Reversal Symmetry

    SciTech Connect

    Auerbach, N.

    2010-11-24

    The research of radioactive nuclei opens new possibilities to study fundamental symmetries, such as time reversal and reflection symmetry. Such nuclei often provide conditions to check in an optimal way certain symmetries and the violation of such symmetries. We will discuss the possibility of obtaining improved limits on violation of time reversal symmetry using pear shaped radioactive nuclei. An effective method to test time reversal invariance in the non-strange sector is to measure parity and time reversal violating (T-P-odd) electromagnetic moments, (such as the static electric dipole moment). Parity and time reversal violating components in the nuclear force may produce P-T-odd moments in nuclei which in turn induce such moments in atoms. We will discuss the possibility that in some reflection asymmetric, heavy nuclei (which are radioactive) these moments are enhanced by several orders of magnitude. Present and future experiments, which will test this idea, will be mentioned.

  5. Neutron and proton electric dipole moments from Nf=2 +1 domain-wall fermion lattice QCD

    NASA Astrophysics Data System (ADS)

    Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; Soni, Amarjit; Rbc; Ukqcd Collaborations

    2016-05-01

    We present a lattice calculation of the neutron and proton electric dipole moments (EDMs) with Nf=2 +1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use pion masses of 0.33 and 0.42 GeV and 2.7 fm3 lattices with Iwasaki gauge action, and a 0.17 GeV pion and a 4.6 fm3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode averaging technique enables an efficient and high statistics calculation. Chiral behavior of lattice EDMs is discussed in the context of baryon chiral perturbation theory. In addition, we also show numerical evidence on the relationship of three- and two-point correlation functions with the local topological charge distribution.

  6. A comparison of calculations and measurements of the field harmonics as a function of current in the SSC dipole magnets

    SciTech Connect

    Gupta, R.C.; Cottingham, J.G.; Kahn, S.A.; Morgan, G.H.; Wanderer, P.

    1991-01-01

    A large number of short and long superconducting dipole magnets for the Superconducting Super Collider (SSC) have been constructed and measured for their magnetic field properties at Brookhaven National Laboratory (BNL). In this paper we compare the calculations and measurements for the variation of field harmonics as a function of current in 40 mm aperture and 50 mm aperture dipole magnets. The primary purpose of this paper is to examine the iron saturation effects on the field harmonics. The field harmonics also change due to the persistent current in the superconducting wires and due to the deformation of the coil shape because of Lorentz forces. We discuss the variation in the sextupole harmonics (b{sub 2}) with current and explain the differences between the calculations and measurements. We also discuss the skew quadrupole harmonic at high field in the long dipole magnets. 3 refs., 3 figs., 1 tab.

  7. Status of 4-cm-aperture, 17-m-long SSC dipole magnet R D program at BNL

    SciTech Connect

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H. ); Ogitsu, T. National Lab. for High Energy Physics, Tsukuba, Ibaraki ); Anerella, M.; Cottin

    1991-03-01

    Over the last year, several 4-cm-aperture, 17-m-long dipole magnet prototypes were built by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R D program, carried out in collaboration with Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main ring magnets. They also lay the ground for the 5-cm aperture dipole magnet program to be started soon. After reviewing the design features of the BNL 4-cm-aperture, 17-m-long dipole magnets, we describe in detail the various steps of their fabrication. For each step, we discuss the parameters that need to be mastered, and we compare the values that were achieved for the five most recent prototypes. The data appear coherent and reproducible, demonstrating that the assembly process in under control. 23 refs., 10 figs., 4 tabs.

  8. Exploratory conformational study of (+)-catechin. Modeling of the polarizability and electric dipole moment.

    PubMed

    Bentz, Erika N; Pomilio, Alicia B; Lobayan, Rosana M

    2014-12-01

    The extension of the study of the conformational space of the structure of (+)-catechin at the B3LYP/6-31G(d,p) level of theory is presented in this paper. (+)-Catechin belongs to the family of the flavan-3-ols, which is one of the five largest phenolic groups widely distributed in nature, and whose biological activity and pharmaceutical utility are related to the antioxidant activity due to their ability to scavenge free radicals. The effects of free rotation around all C-O bonds of the OH substituents at different rings are taken into account, obtaining as the most stable conformer, one that had not been previously reported. One hundred seven structures, and a study of the effects of charge delocalization and stereoelectronic effects at the B3LYP/6-311++G(d,p) level are reported by natural bond orbital analysis, streamlining the order of these structures. For further analysis of the structural and molecular properties of this compound in a biological environment, the calculation of polarizabilities, and the study of the electric dipole moment are performed considering the whole conformational space described. The results are analyzed in terms of accumulated knowledge for (4α → 6″, 2α → O → 1″)-phenylflavans and (+)-catechin in previous works, enriching the study of both types of structures, and taking into account the importance of considering the whole conformational space in modeling both the polarizability and the electric dipole moment, also proposing to define a descriptive subspace of only 16 conformers. PMID:25431187

  9. Generation of Electric and Magnetic Fields During Detonation of High Explosive Charges in Boreholes

    SciTech Connect

    Soloviev, S; Sweeney, J

    2004-06-04

    We present experimental results of a study of electromagnetic field generation during underground detonation of high explosive charges in holes bored in sandy loam and granite. Test conditions and physico-mechanical properties of the soil exert significant influence on the parameters of electromagnetic signals generated by underground TNT charges with masses of 2 - 200 kg. The electric and magnetic field experimental data are satisfactorily described by an electric dipole model with the source embedded in a layered media.

  10. Stress management as an enabling technology for high-field superconducting dipole magnets

    NASA Astrophysics Data System (ADS)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole research laboratory and has not yet been put to a definitive high-field test. The TAMU Physics Accelerator Research Laboratory has constructed a Nb 3Sn dipole, TAMU3, that is specially designed to provide a test bed for high-field stress management.

  11. β-decay and the electric dipole moment: searches for time-reversal violation in radioactive nuclei and atoms

    NASA Astrophysics Data System (ADS)

    Wilschut, H. W.; van der Hoek, D. J.; Jungmann, K.; Kruithof, W.; Onderwater, C. J. G.; Santra, B.; Shidling, P.; Willmann, L.

    2010-11-01

    At the KVI preparations are underway to study time-reversal violation. We will discuss two complementary experiments: Correlations in β decay of 21Na and the search for an electric dipole moment in Radium. We discuss the complementarity of these measurements and put them in the context of current research.

  12. Electromagnetic fields due to a horizontal electric dipole antenna laid on the surface of a two-layer medium

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.

    1974-01-01

    With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.

  13. TOPICAL REVIEW: Electrical polarization and orbital magnetization: the modern theories

    NASA Astrophysics Data System (ADS)

    Resta, Raffaele

    2010-03-01

    Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M—phenomenologically known as bulk properties—apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out analogies and differences. Both theories are deeply rooted in geometrical concepts, elucidated in this work. The main formulae for crystalline systems express P and M in terms of Brillouin-zone integrals, discretized for numerical implementation. I also provide the corresponding formulae for disordered systems in a single k-point supercell framework. In the case of P the single-point formula has been widely used in the Car-Parrinello community to evaluate IR spectra.

  14. Correlation of superparamagnetic relaxation with magnetic dipole interaction in capped iron-oxide nanoparticles.

    PubMed

    Landers, J; Stromberg, F; Darbandi, M; Schöppner, C; Keune, W; Wende, H

    2015-01-21

    Six nanometer sized iron-oxide nanoparticles capped with an organic surfactant and/or silica shell of various thicknesses have been synthesized by a microemulsion method to enable controllable contributions of interparticle magnetic dipole interaction via tunable interparticle distances. Bare particles with direct surface contact were used as a reference to distinguish between interparticle interaction and surface effects by use of Mössbauer spectroscopy. Superparamagnetic relaxation behaviour was analyzed by SQUID-magnetometry techniques, showing a decrease of the blocking temperature with decreasing interparticle interaction energies kBT0 obtained by AC susceptibility. A many-state relaxation model enabled us to describe experimental Mössbauer spectra, leading to an effective anisotropy constant Keff ≈ 45 kJm(-3) in case of weakly interacting particles, consistent with results from ferromagnetic resonance. Our unique multi-technique approach, spanning a huge regime of characteristic time windows from about 10 s to 5 ns, provides a concise picture of the correlation of superparamagnetic relaxation with interparticle magnetic dipole interaction. PMID:25502104

  15. Possible shape coexistence and magnetic dipole transitions in {sup 17}C and {sup 21}Ne

    SciTech Connect

    Sagawa, H.; Zhou, X. R.; Suzuki, Toshio; Yoshida, N.

    2008-10-15

    Magnetic dipole (M1) transitions of N=11 nuclei {sup 17}C and {sup 21}Ne are investigated by using shell model and deformed Skyrme Hartree-Fock + blocked BCS wave functions. Shell model calculations predict well observed energy spectra and magnetic dipole transitions in {sup 21}Ne, while the results are rather poor to predict these observables in {sup 17}C. In the deformed HF calculations, the ground states of the two nuclei are shown to have large prolate deformations close to {beta}{sub 2}=0.4. It is also pointed out that the first K{sup {pi}}=1/2{sup +} state in {sup 21}Ne is prolately deformed, while the first K{sup {pi}}=1/2{sup +} state in {sup 17}C is predicted to have a large oblate deformation close to the ground state in energy, We point out that the experimentally observed large hindrance of the M1 transition between I{sup {pi}}=1/2{sup +} and 3/2{sup +} in {sup 17}C can be attributed to a shape coexistence near the ground state of {sup 17}C.

  16. Correlation of superparamagnetic relaxation with magnetic dipole interaction in capped iron-oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Landers, J.; Stromberg, F.; Darbandi, M.; Schöppner, C.; Keune, W.; Wende, H.

    2015-01-01

    Six nanometer sized iron-oxide nanoparticles capped with an organic surfactant and/or silica shell of various thicknesses have been synthesized by a microemulsion method to enable controllable contributions of interparticle magnetic dipole interaction via tunable interparticle distances. Bare particles with direct surface contact were used as a reference to distinguish between interparticle interaction and surface effects by use of Mössbauer spectroscopy. Superparamagnetic relaxation behaviour was analyzed by SQUID-magnetometry techniques, showing a decrease of the blocking temperature with decreasing interparticle interaction energies kBT0 obtained by AC susceptibility. A many-state relaxation model enabled us to describe experimental Mössbauer spectra, leading to an effective anisotropy constant Keff ≈ 45 kJm-3 in case of weakly interacting particles, consistent with results from ferromagnetic resonance. Our unique multi-technique approach, spanning a huge regime of characteristic time windows from about 10 s to 5 ns, provides a concise picture of the correlation of superparamagnetic relaxation with interparticle magnetic dipole interaction.

  17. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    SciTech Connect

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  18. Gravitational electrical generator on magnetic fluid cushion

    NASA Astrophysics Data System (ADS)

    Călin Popa, Nicolae; Siblini, Ali; Jorat, Luc

    1999-07-01

    The paper describes the possibility to capture the energy of the vertical movement of the ocean waves, using a gravitational electrical generator on magnetic fluid cushion. This is constructed from a permanent magnet in a magnetic fluid shell, which, under the ocean waves action, is moving by translation inside a hermetically sealed tube.

  19. Magnetism and Electricity Activity "Attracts" Student Interest

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this

  20. Magnetism and Electricity Activity "Attracts" Student Interest

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Electricity and magnetism are intimately linked, this relationship forming the basis of the modern electric utility system and the generation of bulk electrical energy. There is rich literature from which to teach students the basics, but nothing drives the point home like having them learn from firsthand experience--and that is what this…