For comprehensive and current results, perform a real-time search at Science.gov.

1

Magnetic field calculation and measurement of active magnetic bearings

NASA Astrophysics Data System (ADS)

Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.

Ding, Guoping; Zhou, Zude; Hu, Yefa

2006-11-01

2

Slotless Permanent-Magnet Machines: General Analytical Magnetic Field Calculation

This paper presents a general analytical model for predicting the magnetic field of slotless permanent-magnet machines. The model takes into account the effect of eddy currents in conductive regions and notably in conductive permanent magnets without neglecting their remanent field. The modeling of this effect is important for the design of very high speed slotless permanent-magnet machines, as the power

Pierre-Daniel Pfister; Yves Perriard

2011-01-01

3

Solenoid magnetic fields calculated from superposed semi-infinite solenoids

NASA Technical Reports Server (NTRS)

Calculation of a thick solenoid coils magnetic field components is made by a superposition of the fields produced by four solenoids of infinite length and zero inner radius. The field produced by this semi-infinite solenoid is dependent on only two variables, the radial and axial field point coordinates.

Brown, G. V.; Flax, L.

1966-01-01

4

DISCUSSION ABOUT THE ANALYTICAL CALCULATION OF THE MAGNETIC FIELD CREATED BY PERMANENT MAGNETS

This paper presents an improvement of the calculation of the magnetic field components created by ring permanent magnets. The three-dimensional approach taken is based on the Coulombian Model. Moreover, the magnetic field components are calculated without using the vector potential or the scalar potential. It is noted that all the expressions given in this paper take into account the magnetic

Romain Ravaud; Guy Lemarquand; Valerie Lemarquand; Claude Depollier

2009-01-01

5

Fast dose calculation in magnetic fields with GPUMCD.

A new hybrid imaging-treatment modality, the MRI-Linac, involves the irradiation of the patient in the presence of a strong magnetic field. This field acts on the charged particles, responsible for depositing dose, through the Lorentz force. These conditions require a dose calculation engine capable of taking into consideration the effect of the magnetic field on the dose distribution during the planning stage. Also in the case of a change in anatomy at the time of treatment, a fast online replanning tool is desirable. It is improbable that analytical solutions such as pencil beam calculations can be efficiently adapted for dose calculations within a magnetic field. Monte Carlo simulations have therefore been used for the computations but the calculation speed is generally too slow to allow online replanning. In this work, GPUMCD, a fast graphics processing unit (GPU)-based Monte Carlo dose calculation platform, was benchmarked with a new feature that allows dose calculations within a magnetic field. As a proof of concept, this new feature is validated against experimental measurements. GPUMCD was found to accurately reproduce experimental dose distributions according to a 2%-2 mm gamma analysis in two cases with large magnetic field-induced dose effects: a depth-dose phantom with an air cavity and a lateral-dose phantom surrounded by air. Furthermore, execution times of less than 15 s were achieved for one beam in a prostate case phantom for a 2% statistical uncertainty while less than 20 s were required for a seven-beam plan. These results indicate that GPUMCD is an interesting candidate, being fast and accurate, for dose calculations for the hybrid MRI-Linac modality. PMID:21775790

Hissoiny, S; Raaijmakers, A J E; Ozell, B; Després, P; Raaymakers, B W

2011-08-21

6

Fast dose calculation in magnetic fields with GPUMCD

NASA Astrophysics Data System (ADS)

A new hybrid imaging-treatment modality, the MRI-Linac, involves the irradiation of the patient in the presence of a strong magnetic field. This field acts on the charged particles, responsible for depositing dose, through the Lorentz force. These conditions require a dose calculation engine capable of taking into consideration the effect of the magnetic field on the dose distribution during the planning stage. Also in the case of a change in anatomy at the time of treatment, a fast online replanning tool is desirable. It is improbable that analytical solutions such as pencil beam calculations can be efficiently adapted for dose calculations within a magnetic field. Monte Carlo simulations have therefore been used for the computations but the calculation speed is generally too slow to allow online replanning. In this work, GPUMCD, a fast graphics processing unit (GPU)-based Monte Carlo dose calculation platform, was benchmarked with a new feature that allows dose calculations within a magnetic field. As a proof of concept, this new feature is validated against experimental measurements. GPUMCD was found to accurately reproduce experimental dose distributions according to a 2%-2 mm gamma analysis in two cases with large magnetic field-induced dose effects: a depth-dose phantom with an air cavity and a lateral-dose phantom surrounded by air. Furthermore, execution times of less than 15 s were achieved for one beam in a prostate case phantom for a 2% statistical uncertainty while less than 20 s were required for a seven-beam plan. These results indicate that GPUMCD is an interesting candidate, being fast and accurate, for dose calculations for the hybrid MRI-Linac modality.

Hissoiny, S.; Raaijmakers, A. J. E.; Ozell, B.; Després, P.; Raaymakers, B. W.

2011-08-01

7

Magnetic field calculations for iron oxide nanoparticles for MRI

NASA Astrophysics Data System (ADS)

The susceptibility effects of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with triethylenglycol (TREG) and Polyethylen Glycol (PEG) has been studied, those nanoparticles have the necessary properties to be used in the clinic as contrast media in imaging by MRI[1-3]. We are considering the behavior of the magnetic field as plane wave to explain the electrical and magnetic field produced by SPIONs. Images were acquired on a 1.5T imager Philips, using mFFE Sequence. Three glass capillary tubes with a) TREG (10nm) concentration of 300 ?g/ml, and PEGCOOH 6000(10nm) with 300 ?g/ml, and 2% agarosa. Magnetic field simulations were calculated in Matlab. The plane wave that comes in contact with a sphere of radius a, an propagation constant k1, and it is in an homogeneous space k2. We consider that the electric field is linearly polarized on x-direction, with a propagation on z-positive-axis. The secondary induced field can be explained from the interior of the sphere and valid exterior points. The referred waves are transmitted and reflected, this is valid only when the wavelength is smaller than the radius of the sphere. The obtained vibrational mode is an answer of the electrical oscillation and this is projection of the disturbed magnetic field. TREG-SPIONs produce more serious susceptibility artefacts compared to PEG-SPIONs. This study is promissory due to the concordance of the results of the simulations and the inhomogeneities showed in the MR images.

Hernandez, Ricardo; Mendez Rojas, Miguel; Dies Suarez, Pilar; Hidalgo Tobón, Silvia

2014-11-01

8

We present an alternative method for calculating the magnetic field from a set of permanent magnets in a permanent-magnet motor. The method uses a cylindrical coordinate system to model the geometry of the structure enclosing the magnets. A Fourier series expansion yields an alternative to the more familiar multipole expansion given in spherical coordinates. The expansion is developed by using

Jerry P. Selvaggi; Sheppard Salon; O-Mun Kwon; M. V. K. Chari

2004-01-01

9

Calculation of magnetic error fields in hybrid insertion devices

The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory requires insertion devices with fields sufficiently accurate to take advantage of the small emittance of the ALS electron beam. To maintain the spectral performance of the synchrotron radiation and to limit steering effects on the electron beam these errors must be smaller than 0.25%. This paper develops a procedure for calculating the steering error due to misalignment of the easy axis of the permanent magnet material. The procedure is based on a three dimensional theory of the design of hybrid insertion devices developed by one of us. The acceptable tolerance for easy axis misalignment is found for a 5 cm period undulator proposed for the ALS. 11 refs., 5 figs.

Savoy, R.; Halbach, K.; Hassenzahl, W.; Hoyer, E.; Humphries, D.; Kincaid, B.

1989-08-01

10

Numerical calculation of transient field effects in quenching superconducting magnets

The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

Schwerg, Nikolai; Russenschuck, Stephan

2009-01-01

11

Calculations of the guide and mirror applied magnetic field diffusion were conducted using a commercially available generalized finite element solver. As part of the integrated FRC compression heating experiment (FRCHX), an applied magnetic field captures the translating FRC in the liner region long enough to enable compression. Solenoidal coils inject the necessary magnetic field prior to liner implosion. Since the

Matthew Domonkos; David Amdahl; James Degnan; Michael Frese; Donald Gale; Chris Grabowski; Robin Gribble; Thomas Intrator; Gerald Kiuttu

2007-01-01

12

Calculation of the magnetic field in the active zone of a hysteresis clutch

NASA Technical Reports Server (NTRS)

The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.

Ermilov, M. A.; Glukhov, O. M.

1977-01-01

13

Theoretical calculations of dielectronic recombination in crossed electric and magnetic fields

Recently, Robicheaux and Pindzola [Phys. Rev. Lett. 79, 2237 (1997)] reported on model calculations of dielectronic recombination (DR) in the presence of crossed electric and magnetic fields. They showed that the enhancement of the DR by an electric field may be increased further when a magnetic field perpendicular to the electric field is present in the collision region. In this

D. C. Griffin; F. Robicheaux; M. S. Pindzola

1998-01-01

14

Theoretical calculations of dielectronic recombination in crossed electric and magnetic fields

Recently, Robicheaux and Pindzola [Phys. Rev. Lett. {bold 79}, 2237 (1997)] reported on model calculations of dielectronic recombination (DR) in the presence of crossed electric and magnetic fields. They showed that the enhancement of the DR by an electric field may be increased further when a magnetic field perpendicular to the electric field is present in the collision region. In

D. C. Griffin; F. Robicheaux; M. S. Pindzola

1998-01-01

15

Parallel computation of automatic differentiation applied to magnetic field calculations

The author presents a parallelization of an accelerator physics application to simulate magnetic field in three dimensions. The problem involves the evaluation of high order derivatives with respect to two variables of a multivariate function. Automatic differentiation software had been used with some success, but the computation time was prohibitive. The implementation runs on several platforms, including a network of workstations using PVM, a MasPar using MPFortran, and a CM-5 using CMFortran. A careful examination of the code led to several optimizations that improved its serial performance by a factor of 8.7. The parallelization produced further improvements, especially on the MasPar with a speedup factor of 620. As a result a problem that took six days on a SPARC 10/41 now runs in minutes on the MasPar, making it feasible for physicists at Lawrence Berkeley Laboratory to simulate larger magnets.

Hinkins, R.L. [Univ. of California, Berkeley, CA (United States). Computer Science Dept.]|[Lawrence Berkeley Lab., CA (United States). Information and Computing Sciences Div.

1994-09-01

16

A calculable and correlation-based magnetic field fluctuation thermometer

NASA Astrophysics Data System (ADS)

We have developed a new Magnetic Field Fluctuation Thermometer (MFFT) specifically designed for operation in primary mode, which requires the determination of the relation between thermal flux noise density and thermodynamic temperature. The noise thermometer combines a correlation-based SQUID readout and an integrated conductivity measurement on the metallic temperature sensor with an in situ flux calibration. The operation of the MFFT is modelled theoretically. First temperature measurements in secondary mode between 9 mK and 4.2 K showed excellent agreement with a copy of the PLTS-2000 within 0.5%.

Kirste, A.; Regin, M.; Engert, J.; Drung, D.; Schurig, T.

2014-12-01

17

Magnetic Declination Calculator

NSDL National Science Digital Library

This tool calculates magnetic declination for a variety of locations across Canada and elsewhere. Users select a city (Canada only) from a drop-down menu or enter latitude and longitude values (works for any location), and the tool calculates the proper magnetic declination (the angular difference between observed magnetic North on a compass and geographic or 'true' North). There are also links to information on how to use magnetic declination with a compass, and how to use the calculator to determine values of all seven magnetic components. For locations in Canada, the Canadian Geomagnetic Reference Field (CGRF) is used; for other locations, the International Geomagnetic Reference Field (IGRF) is used.

18

METHOD FOR CALCULATING ELECTRIC AND MAGNETIC FIELDS IN TEM CELLS AT ELF (JOURNAL VERSION)

A method is presented whereby the electric and magnetic field distributions within rectangular strip transmission lines (TEM cells) can be calculated. Quasi-static approximations are employed, thereby restricting the validity of the results to operational frequencies well below t...

19

Magnetic field calculation for a 10 MeV positron emission tomography cyclotron

The magnetic field calculation and correction for a 10 MeV positron emission tomography cyclotron is presented. 3D TOSCA analysis results are compared with the measured data, and the calculation error is used to calibrate the B-H curve to obtain a very precise finite element method estimator, which is used to predict the correction of the magnet pole for achieving the isochronous field. The isochronous field error is approximated with the effects of a set of standard patches. On the assumption that the effect of each small patch is proportional to its surface, the correction of the magnet pole is found by solving a system of equations using the least square scheme. The magnet shimming is performed and the measured magnetic field is found in good agreement with the prediction, with an error less than 2 G.

Chen Dezhi; Liu Kaifeng; Yang Jun; Li Dong; Qin Bin; Xiong Yongqian [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen Zihao [Central Southern Electrical Power Design Institute, Wuhan 430071 (China)

2013-05-15

20

Compact Finite Difference Method for Calculating Magnetic Field Components of Cyclotrons

NASA Astrophysics Data System (ADS)

The compact finite difference method was developed for calculating the off median plane magnetic field components of cyclotrons when only the measured midplane field data are available. It has been shown that the proposed compact finite difference differentiators are better than the finite difference differentiators previously reported by the author. The proposed compact finite difference method was tested by comparing the frequency response, by applying to an analytical magnetic field, and by applying to measured magnetic field data of the K1200 superconducting cyclotron at the National Superconducting Cyclotron Laboratory. It should be pointed out that this improvement was obtained at the expense of more complicated machinery of mathematics, namely solving matrix problems.

Jeon, Dong-o.

1997-04-01

21

We investigate the effects of strong magnetic fields upon the gross properties of neutron and protoneutron stars. In our calculations, the neutron star matter was approximated by the pure neutron matter. Using the lowest order constrained variational approach at zero and finite temperatures, and employing $AV_{18}$ potential, we present the effects of strong magnetic fields on the gravitational mass, radius, and gravitational redshift of the neutron and protoneutron stars. It is found that the equation of state of neutron star becomes stiffer with increase of the magnetic field and temperature. This leads to larger values of the maximum mass and radius for the neutron stars.

Gholam Hossein Bordbar; Zeinab Rezaei

2012-12-08

22

Nonlinear force-free magnetic fields: Calculation and applicatin to astrophysics. Ph.D. Thesis

NASA Technical Reports Server (NTRS)

The problem concerned in this work is that of calculating magnetic field configurations in which the Lorentz force (vector)j x (vector)B is everywhere zero, subject to specified boundary conditions. The magnetic field is represented in terms of Clebsch variables in the form (vector)B = del alpha x del beta. These variables are constant on any field line. The most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. It is proposed that the field lines move in the direction of local Lorentz force and relax towards a force-free field configuration. This concept leads to an iteration procedure for modifying the variables alpha and beta that tends asymptotically towards the force-free state. This method is first applied to a simple problem in two rectangular dimensions; the calculation shows that the convergence of magnetic field energy to a minimum state (force-free) is close to exponential. This method is then applied to study some astrophysical force-free magnetic fields, such as the structures and evolution of magnetic fields of rotating sunspots and accretion disks. The implication of the results, as related to the mechanisms of solar flares, extragalactic radio sources and radio jets, are discussed.

Yang, Wei-Hong

1987-01-01

23

Accurate 2d finite element calculations for hydrogen in magnetic fields of arbitrary strength

NASA Astrophysics Data System (ADS)

Recent observations of hundreds of hydrogen-rich magnetic white dwarf stars with magnetic fields up to 105 T (103 MG) have called for more comprehensive and accurate databases for wavelengths and oscillator strengths of the H atom in strong magnetic fields for all states evolving from the field-free levels with principal quantum numbers n?10. We present a code to calculate the energy eigenvalues and wave functions of such states which is capable of covering the entire regime of field strengths B=0 T to B˜109 T. We achieve this high flexibility by using a two-dimensional finite element expansion of the wave functions in terms of B-splines in the directions parallel and perpendicular to the magnetic field, instead of using asymptotically valid basis expansions in terms of spherical harmonics or Landau orbitals. We have paid special attention to the automation of the program such that the data points for the magnetic field strengths at which the energy of a given state are calculated can be selected automatically. Furthermore, an elaborate method for varying the basis parameters is applied to ensure that the results reach a pre-selected precision, which also can be adjusted freely. Energies and wave functions are stored in a convenient format for further analysis, e.g. for the calculation of transition energies and oscillator strengths. The code has been tested to work for 300 states with an accuracy of better than 10-6 Rydberg across several symmetry subspaces over the entire regime of magnetic field strengths.

Schimeczek, C.; Wunner, G.

2014-02-01

24

Electric-field control of magnetism in graphene quantum dots: Ab initio calculations

Employing ab initio calculations we predict that the magnetic states of hydrogenated diamond-shaped zigzag graphene quantum dots (GQDs), each exhibiting unique electronic structure, can be selectively tuned with gate voltage, through Stark or hybridization electric-field modulation of the spatial distribution and energy of the spin-polarized molecular orbitals, leading to transitions between these states. Electrical read-out of the GQD magnetic state can be accomplished by exploiting the distinctive electrical properties of the various magnetic configurations. PMID:21765631

Agapito, Luis A.; Kioussis, Nicholas; Kaxiras, Efthimios

2011-01-01

25

Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) may be beneficial in the treatment of several neurological and psychiatric disorders. This paper presents numerical simulation of deep transcranial magnetic stimulation (dTMS) by considering double cone, H-and Halo coils. Three-dimensional distributions of the induced fields i.e. magnetic flux density, current density and electric fields in realistic head model by dTMS coils were calculated by impedance method and the results were compared with that of figure-of-eight coil. It was found that double cone and H-coils have significantly deep field penetration at the expense of induced higher and wider spread electrical fields in superficial cortical regions. The Halo coil working with a circular coil carrying currents in opposite directions provides a flexible way to stimulate deep brain structures with much lower stimulation in superficial brain tissues. PMID:24109807

Lu, Mai; Ueno, Shoogo

2013-01-01

26

This paper derives the relative air-gap-specific permeance distribution function by Schwarz-Christoffel transformation, considering the effect of slotting. Neglecting the iron saturation, and employing the analytical algorithm for partial differential equations, efficient and effective analytical calculations of no-load air-gap magnetic field distribution, armature field distribution, and phase electromotive force (EMF), are demonstrated, considering the stator slots. Subsequently, based on the main

Xinghua Wang; Qingfu Li; Shuhong Wang; Qunfeng Li

2003-01-01

27

This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices

Om P. Gandhi; Gang Kang

2001-01-01

28

Calculating Coronal Mass Ejection Magnetic Field at 1 AU Using Solar Observables

NASA Astrophysics Data System (ADS)

It is well-established that most major nonrecurrent geomagnetic storms are caused by solar wind structures with long durations of strong southward (Bz < 0) interplanetary magnetic field (IMF). Such geoeffective IMF structures are associated with CME events at the Sun. Unfortunately, neither the duration nor the internal magnetic field vector of the ejecta--the key determinants of geoeffectiveness--is measurable until the observer (e.g., Earth) passes through the ejecta. In this paper, we discuss the quantitative relationships between the ejecta magnetic field at 1 AU and remotely observable solar quantities associated with the eruption of a given CME. In particular, we show that observed CME trajectories (position-time data) within, say, 1/3 AU of the Sun, contain sufficient information to allow the calculation of the ejecta magnetic field (magnitude and components) at 1 AU using the Erupting Flux Rope (EFR) model of CMEs. Furthermore, in order to accurately determine the size and arrival time of the ejecta as seen by a fixed observer at 1 AU (e.g., ACE), it is essential to accurately calculate the three-dimensional geometry of the underlying magnetic structure. Accordingly, we have extended the physics-based EFR model to include a self-consistent calculation of the transverse expansion taking into account the non-symmetric drag coupling between an expanding CME flux rope and the ambient solar wind. The dependence of the minor radius of the flux rope at 1 AU that determines the perceived size of the ejecta on solar quantities is discussed. Work supported by the NRL Base Program.

Chen, J.; Kunkel, V.

2013-12-01

29

Density-Functional-Theory Calculations of Matter in Strong Magnetic Fields: I. Atoms and Molecules

We present new ab initio calculations of the electronic structure of various atoms and molecules in strong magnetic fields ranging from B=10^12 G to 2x10^15 G, appropriate for radio pulsars and magnetars. For these field strengths, the magnetic forces on the electrons dominate over the Coulomb forces, and to a good approximation the electrons are confined to the ground Landau level. Our calculations are based on the density functional theory, and use a local magnetic exchange-correlation function which is tested to be reliable in the strong field regime. Numerical results of the ground-state energies are given for H_N (up to N=10), He_N (up to N=8), C_N (up to N=5) and Fe_N (up to N=3), as well as for various ionized atoms. Fitting formulae for the B-dependence of the energies are also given. In general, as N increases, the binding energy per atom in a molecule, |E_N|/N, increases and approaches a constant value. For all the field strengths considered in this paper, hydrogen, helium, and carbon molecules are found to be bound relative to individual atoms (although for B less than a few x 10^12 G, the relative binding between C and C_2 is small). Iron molecules are not bound at Batoms at larger field strengths.

Zach Medin; Dong Lai

2007-01-05

30

3D magnetic field analysis and torque calculation of a PM spherical motor

The model of magnetic field inside the permanent magnet spherical stepper motor is developed using integral equation method (IEM) and discrete expressions are also derived. The results by IEM and FEM show the effectiveness and advantages of IEM for the magnetic field computation on PM spherical stepper motor. Based on the results of the magnetic field distribution, a torque computation

Qunjing Wang; Zheng Li; Youyuan Ni; Kun Xia

2005-01-01

31

NASA Technical Reports Server (NTRS)

Steady magnetic field measurements of magnitude 30 to 100 gamma on the lunar surface impose problems of interpretation when coupled with the nondetectability of a lunar field at 0.4 lunar radius altitude and the limb induced perturbations of the solar wind at the Explorer orbit. The lunar time-varying magnetic field clearly indicates the presence of eddy currents in the lunar interior and permits calculation of an electrical conductivity profile. The problem is complicated by the day-night asymmetry of the moon's electromagnetic environment, the possible presence of the transverse magnetic mode, and the variable wave directions of the driving function. The electrical conductivity is calculated to be low near the surface, rising to a peak of .006/ohm meter at 250 km, dropping steeply inwards to a value of about .00005/ohm meter, and then rising toward the interior. A transition at 250 km depth from a high conductivity to a low conductivity material is inferred, suggesting an olivine-like core at approximately 800 C, although other models are possible.

Colburn, D. S.

1971-01-01

32

Calculation of electric fields in a multiple cylindrical volume conductor induced by magnetic coils.

A method is presented for calculating the electric field, that is induced in a cylindrical volume conductor by an alternating electrical current through a magnetic coil of arbitrary shape and position. The volume conductor is modeled as a set of concentric, infinitely long, homogeneous cylinders embedded in an outer space that extends to infinity. An analytic expression of the primary electric field induced by the magnetic coil, assuming quasi-static conditions, is combined with the analytic solution of the induced electric scalar potential due to the inhomogeneities of the volume conductor at the cylindrical interfaces. The latter is obtained by the method of separation of variables based on expansion with modified Bessel functions. Numerical results are presented for the case of two cylinders representing a nerve bundle with perineurium. An active cable model of a myelinated nerve fiber is included, and the effect of the nerve fiber's undulation is shown. PMID:11235594

Schnabel, V; Struijk, J J

2001-01-01

33

Static magnetic field perturbations generated by variations of magnetic susceptibility within samples reduce the quality and integrity of magnetic resonance measurements. These perturbations are difficult to predict in vivo where wide variations of internal magnetic susceptibility distributions are common. Recent developments have provided rapid computational means of estimating static field inhomogeneity within the small susceptibility limits of materials typically studied

Kevin M Koch; Xenophon Papademetris; Douglas L Rothman; Robin A de Graaf

2006-01-01

34

An approach to 3D magnetic field calculation using numerical and differential algebra methods

Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.

Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.

1992-07-17

35

NASA Astrophysics Data System (ADS)

This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.

Gandhi, Om P.; Kang, Gang

2001-11-01

36

Molecular field calculations of the magnetization process in CeBi

NASA Astrophysics Data System (ADS)

The complicated magnetization processes of CeBi have been studied in terms of a molecular field model. A long range oscillatory exchange interaction between Ce ions along the [001]-axis is employed in a wave-like-form molecular field. Hm( i) = ? q?( q, ? q)< J q>cos(? qi+? q), and strong ferromagnetic interactions within the (001)-planes are included. The wavenumber dependent molecular field coefficient, ?( q, ? q), is a sensitive function of temperature for 12 K < T ? 25 K (= TN), and it takes a maximum at q=1 and ? q = 0 and this stabilizes the magnetic structure with a sequence of + -. For T ? 12 K, the ?( q, ? q) is almost independent of temperature. Calculations reproduce the five-step magnetization process for T ? 12 K and the four-step process for 15 K < T<22 K. Numerical results on the wave-like molecular fields and sums of simple harmonic functions for the thermal averages of the total angular momenta, < J q>cos(? qi+? q), are also presented. A brief discussion is made on the simplified Hamiltonian.

Iwata, N.; Nishikawa, M.; Shigeoka, T.

1991-09-01

37

Permanent magnet (PM) synchronous motor has the magnet devices with variable shapes and location, so the electromagnetic field in PM synchronous motor is more complex. Finite element method (FEM) provides an accurate means of determining the electromagnetic field distribution, with due account magnetic saturation characteristics. With the ANSYS, the distribution of electromagnetic field in PM synchronous motor was analyzed and

Cao Yongjuan; Li Qiang; Yu Li

2009-01-01

38

An accurate determination and characterization of electric and magnetic fields produced by power lines is a complex task. Different models must be used for far fields and for near fields. This study is centered on computation and measurement aspects...

Mamishev, Alexander V

1994-01-01

39

The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceled for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.

Bret, A., E-mail: antoineclaude.bret@uclm.es [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

2014-02-15

40

Method for enforcing the solenoidal condition on magnetic field in numerical calculations

A method is proposed for enforcing the selenoidal condition delxB = 0 on the magnetic field B at all times during a transient numerical calculation. The method is based on the observation that Faraday's law for the time evolution of B can be case into an alternative equivalent form which closely resembles the equations of incompressible hydrodynamics. In this alternative formulation, the solenoidal condition appears as a constraint that applied for all time, rather than just as an initial condition. The solenoidal condition may therefore be preserved during a transient calculation simply by basing the numerical scheme on the alternative formulation instead of the usual one. A possible numerical scheme is suggested which is analogous to the MAC method for incompressible fluid flow.

Ramshaw, J.D.

1983-12-01

41

We present a simple time-of-flight analysis of Alfvén pulsations standing on closed terrestrial magnetic field lines. The technique employed in this study in order to calculate the characteristic period of such oscillations builds upon earlier time-of-flight estimates via the implementation of a more recent magnetospheric magnetic field model. In this case the model employed is the Tsyganenko (1996) field model,

J. A. Wild; T. K. Yeoman; C. L. Waters

2005-01-01

42

NSDL National Science Digital Library

Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.

2014-09-18

43

The observable magnetic field of a star is the result of integration over its visible hemisphere, related to the information transferring medium: the spectral line profile. The hitherto practised simple integration of the magnetic field strength neglects the spotty face of the star and is physically wrong. Because of the topographically distributed line-generating elements in the stellar atmosphere, the contribution

E. Gerth; Yu. V. Glagolevskij

2007-01-01

44

In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.

Schöller, Markus

2015-01-01

45

Critical analysis of the mean-field approximation for the calculation of the magnetic moment It is shown that the calculation of the magnetic moment of a Friedel-Anderson impurity in mean-field theory moment calculations of magnetic impurities, for example the spin-density-functional theory, use the mean

Bergmann, Gerd

46

An alternative method is developed to compute the magnetic field from a circular cylindrical magnetic source. Specifically, a Fourier series expansion whose coefficients are toroidal functions is introduced which yields an alternative to the more familiar spherical harmonic solution or the Elliptic integral solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion. This expansion is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. This method can be used to accurately compute the far field where a finite element formulation is known to be inaccurate.

J Selvaggi; S Salon; O Kwon CVK Chari

2006-02-14

47

NASA Astrophysics Data System (ADS)

Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.

Bedard, Claude; Destexhe, Alain

2014-10-01

48

The matrizant method is used to study the nonlinear dynamics of charged particles in magnetic sector analyzers. The calculations\\u000a of matrizants (transfer matrices) allow for both fringing-field effects due to the stray field and higher harmonics of the\\u000a sector magnetic field (up to the third order). For the rectangular distribution of the field components along the optical\\u000a axis, analytical expressions

S. N. Mordik; A. G. Ponomarev

2001-01-01

49

NASA Astrophysics Data System (ADS)

We present an extension of the Nemov algorithm (Nemov V.V. 1988 Nucl. Fusion 28 1727) to compute the magnetic coordinates in stellarators and their associated metric coefficients, requiring only a knowledge of the magnetic field and field line tracing techniques. The method is not limited to the core of the plasma, but also applies to island chains and Scrape-Off Layer regions. The procedure allows the computation of the Clebsch components of the magnetic field by transforming the magnetic differential equations for the radial and angular coordinates into initial-value problems involving field line tracing. Moreover, it has been optimized for numerical accuracy by minimizing recourse to derivatives of derived quantities. Illustrative applications of the algorithm, as applied to W7-X, including a numerical benchmark for the core region, are presented.

Bonnin, X.; Mutzke, A.; Nührenberg, C.; Nührenberg, J.; Schneider, R.

2005-01-01

50

NASA Astrophysics Data System (ADS)

Self-consistent ab initio calculations, based on density functional theory (DFT) approach and using a full potential linear augmented plane wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Fe3O4. Polarized spin and spin-orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Fe plans. Magnetic moment considered to lie along (010) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The exchange interactions between the magnetic atoms Fe-Fe in Fe3O4 are given using the mean field theory. The high temperature series expansions (HTSEs) of the magnetic susceptibility of with the magnetic moments, mFe in Fe3O4 is given up to seventh order series in (1/kBT). The Néel temperature TN is obtained by HTSEs of the magnetic susceptibility series combined with the Padé approximant method. The critical exponent ? associated with the magnetic susceptibility is deduced as well.

Masrour, R.; Hlil, E. K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O.; El Moussaoui, H.

2015-03-01

51

Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

NASA Astrophysics Data System (ADS)

One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

Aschwanden, M. J.

2013-12-01

52

Magnetic properties of mixed Ni-Cu ferrites calculated using mean field approach

NASA Astrophysics Data System (ADS)

The magnetic properties of spinel ferrites [[O4 have been studied by the mean field theory (MFT) and high temperature series expansions (HTSEs) combined with the Padé approximants. The critical temperature, the saturation magnetisation (MS) and the intra-sublattice exchanges interactions (JAA(x,y), JBB(x,y) and JAB(x,y)) are obtained by using a probability distribution law. The critical exponents associate with the magnetic susceptibility have been obtained. The effect of copper doping on the magnetic properties of nickel ferrites has been examined.

Masrour, R.; Hamedoun, M.; Benyoussef, A.; Hlil, E. K.

2014-08-01

53

A circuit model and an ad hoc computer program were set up to evaluate electromagnetic interference in the vicinity of protective structures struck by lightning. This program permits the evaluation of the impulsive magnetic fields by calculating the impulse current distribution in different parts of such structures. It also allows the evaluation of the electromagnetic interference induced on susceptible victim

R. Cortina; A. Porrino

1992-01-01

54

The performance of linear step motors (LSMs) which are being developed for control rod drives in nuclear reactors is governed by their static characteristics. The reliability of control rod drive mechanisms and the safety of the reactor depend on reliable performance of these motors. The authors describe methods of calculation of magnetic fields and static characteristics of LSMs. Two methods

S. H. Khan; A. A. Ivanov

1992-01-01

55

3D field calculation of the GEM prototype magnet and comparison with measurements

The proposed 4 GeV Electron Microtron (GEM) is designed to fill the existing buildings left vacant by the demise of the Zero Gradient Synchrotron (ZGS) accelerator. One of the six large dipole magnets is shown as well as the first 10 electron orbits. A 3-orbit prototype magnet has been built. The stepped edge of the magnet is to keep the beam exiting perpendicular to the pole. The end guards that wrap around the main coils are joined together by the 3 shield plates. The auxiliary coils are needed to keep the end guards and shield plates from saturating. A 0.3 cm Purcell filter air gap exists between the pole and the yoke. Can anyone question this being a truly three-dimensional magnetostatic problem. The computer program TOSCA, developed at the Rutherford Appleton Laboratory by the Computing Applications Group, was used to calculate this magnet and the results have been compared with measurements.

Lari, R.J.

1983-10-28

56

NSDL National Science Digital Library

This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide.

57

A practical method to calculate time evolutions of magnetic field effects (MFEs) on photochemical reactions involving radical pairs is developed on the basis of the theory of the chemically induced dynamic spin polarization proposed by Pedersen and Freed. In theory, the stochastic Liouville equation (SLE), including the spin Hamiltonian, diffusion motions of the radical pair, chemical reactions, and spin relaxations, is solved by using the Laplace and the inverse Laplace transformation technique. In our practical approach, time evolutions of the MFEs are successfully calculated by applying the Miller-Guy method instead of the final value theorem to the inverse Laplace transformation process. Especially, the SLE calculations are completed in a short time when the radical pair dynamics can be described by the chemical kinetics consisting of diffusions, reactions and spin relaxations. The SLE analysis with a short calculation time enables one to examine the various parameter sets for fitting the experimental date. Our study demonstrates that simultaneous fitting of the time evolution of the MFE and of the magnetic field dependence of the MFE provides valuable information on the diffusion motions of the radical pairs in nano-structured materials such as micelles where the lifetimes of radical pairs are longer than hundreds of nano-seconds and the magnetic field dependence of the spin relaxations play a major role for the generation of the MFE. PMID:25773238

Yago, Tomoaki; Wakasa, Masanobu

2015-04-01

58

In low Earth orbit, the geomagnetic field B is strong enough that secondary electrons or photoelectrons emitted from spacecraft surfaces have an average gyroradius much smaller than typical dimensions of large spacecraft. This implies that escape of these electrons will be strongly inhibited on surfaces which are nearly parallel to B, even if a repelling electric field exists outside them. This effect is likely to make an important contribution to the current balance and hence the equilibrium potential of such surfaces, making high-voltage charging of them more likely. The authors presents numerically-calculated escaping electron fluxes for these conditions, based on the approximations of uniform fields and Maxwellian emission-velocity distributions. He also presents an analytic curve-fit to the results for the important case of normal electric field (uniformly-charged surfaces). For strong normal electric fields, escape is effectively suppressed only when a surface is parallel to B within a few degrees or less, and this leads to sensitivity effects in attempts to predict auroral-zone spacecraft charging. A nonzero tangential component in the surface electric field can greatly enlarge the range of surface orientations for which escape is suppressed, and can also produce large surface currents. He also proposes a simple approximate method for calculating the space-charge-density distribution of escaping electrons. His results imply that on a mostly dielectric large spacecraft such as Shuttle, local charging, especially on surfaces nearly parallel to B, may occur in ionospheric conditions which do not produce overall charging.

Laframboise, J.G. (York Univ., Toronto, Ontario (Canada))

1988-03-01

59

Magnetic Fields and Forces in Permanent Magnet Levitated Bearings

Magnetic fields and magnetic forces from magnetic bearings made of circular Halbach permanent-magnet arrays are computed and analyzed. The magnetic fields are calculated using superposition of fields due to patches of magnetization charge at surfaces where the magnetization is discontinuous. The magnetic force from the magnetic bearing is computed using superposition of forces on each patch of magnetization charge. The

Kevin D. Bachovchin; James F. Hoburg; Richard F. Post

2012-01-01

60

Spatially restricted biological current distributions, like the primary neuronal response in the human somatosensory cortex evoked by electric nerve stimulation, can be described adequately by a current multipole expansion. Here analytic formulas are derived for computing magnetic fields induced by current multipoles in terms of an nth-order derivative of the dipole field. The required differential operators are given in closed form for arbitrary order. The concept is realized in different forms for an expansion of the scalar as well as the dyadic Green's function, the latter allowing for separation of those multipolar source components that are electrically silent but magnetically detectable. The resulting formulas are generally applicable for current sources embedded in arbitrarily shaped volume conductors. By using neurophysiologically relevant source parameters, examples are provided for a spherical volume conductor with an analytically given dipole field. An analysis of the signal-to-noise ratio for multipole coefficients up to the octapolar term indicates that the lateral extent of cortical current sources can be detected by magnetoencephalographic recordings. PMID:9284293

Nolte, G; Curio, G

1997-01-01

61

Magnetic field line Hamiltonian

The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained.

Boozer, A.H.

1984-03-01

62

Magnetic Field Safety Magnetic Field Safety

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

63

3-D magnetic field calculations for wigglers using magnus-3D

The recent but steady trend towards increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of

S. Pissanetzky; P. Tompkins

1989-01-01

64

We analyze electron-ion collisions in a magnetic field at a low temperature, for which the electron's Larmor radius is less than the characteristic impact parameter of close collisions without the magnetic field. This ratio of spatial scales is realized in the photospheres of magnetic white dwarfs and in the experiments of antihydrogen creation. Under considered conditions, an electron transits from

S. A. Koryagin

2008-01-01

65

The orders-of-magnitude higher luminosities required by future electron-ion collider concepts require a dissipative force to counteract the numerous factors acting to gradually increase the phase space volume of relativistic ion beams. High-energy electron cooling systems could provide the necessary dissipation via dynamical friction, but will have to be designed for new parameter regimes. It is expected that magnetic field errors, finite interaction time and other effects will reduce the dynamical friction and hence increase the cooling time, so improved understanding of the underlying dynamics is important. We present a generalized form of the classical field-free friction force equation, which conveniently captures some of these effects. Previous work (Bell et al 2008 J. Comput. Phys. 227 8714) shows both numerical and conceptual subtleties associated with undersampling of strong collisions, and we present a rigorous mathematical treatment of such difficulties, based on the use of a modified Pareto distribution for the electron-ion impact parameters. We also present a very efficient numerical algorithm for calculating the dynamical friction on a single ion in the field free case. For the case of arbitrary magnetic field errors, we present numerical simulation results, showing agreement with our generalized friction force formula.

Sobol, A.V.; Fedotov, A.; Bruhwiler, D.L.; Bell, G.I.; Litvinenko, V.

2010-09-24

66

NASA Technical Reports Server (NTRS)

The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

Ilin, Andrew V.

2006-01-01

67

NASA Technical Reports Server (NTRS)

L shell values along the Voyager 2 encounter trajectory and those associated with the N1 through N6 moons and N1R through N6R rings of Neptune are computed numerically on the basis of a simplified description of the Neptunian magnetic field derived from the Goddard Space Flight Center/Bartol Research Institute I8E1 model, which includes internal terms up to and including the octupole (but no external terms). Like Uranus, the large tilt between the dipole term and the rotation axis causes the moons and rings to sweep a very large range of L shells. Their orbital motion introduces additional periodicities, causing the maxima and minima in L space to vary systematically with time.

Acuna, M. H.; Connerney, J. E. P.; Ness, N. F.

1993-01-01

68

In low Earth orbit, the geomagnetic field B is strong enough that secondary electrons or photoelectrons emitted from spacecraft surfaces have an average gyroradius much smaller than typical dimensions of large spacecraft. This implies that escape of these electrons will be strongly inhibited on surfaces which are nearly parallel to B, even if a repelling electric field exists outside them.

J. G. Laframboise

1988-01-01

69

We analyze electron–ion collisions in a magnetic field at a low temperature, for which the electron’s Larmor radius is less\\u000a than the characteristic impact parameter of close collisions without the magnetic field. This ratio of spatial scales is realized\\u000a in the photospheres of magnetic white dwarfs and in the experiments of antihydrogen creation. Under considered conditions,\\u000a an electron transits from

S. A. Koryagin

2008-01-01

70

Finitebasisset calculation of lowlying levels of atomic hydrogen in a magnetic field

stage of quantum theory. However, understanding the quadratic Zeeman e#ect, a strongÂfield phenomenon, was not achieved until much later. Interest in the quadratic Zeeman e#ect was initiated first by a photoabsorption the breakdown of the quadratic Zeeman e#ect, is far from meeting the requirements of astroÂ physical modeling

Stancil, Phillip C.

71

A method is presented for the calculation of the energy eigenvalues and eigenstates of the electron associated with a shallow donor impurity in a GaAs\\/GaAlAs multi-quantum well structure in the presence of a magnetic field parallel to the layers. Compared to the case of an impurity in a magnetic field directed perpendicular to the layers, the problem is complicated by

P. W. Barmby; J. L. Dunn; C. A. Bates

1995-01-01

72

Magnetic-field-dosimetry system

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21

73

The Hamiltonian of the wurtzite quantum dots in the presence of an external homogeneous magnetic field is given. The electronic structure and optical properties are studied in the framework of effective-mass envelope function theory. The energy levels have new characteristics, such as parabolic property, antisymmtric splitting, and so on, different from the Zeeman splitting. With the crystal field splitting energy

X. W. Zhang; J. B. Xia

2005-01-01

74

Magnetic fields in astrophysics

The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent

Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov

1983-01-01

75

NASA Astrophysics Data System (ADS)

Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.

Silva, Nicolas

2012-09-01

76

Exploring Magnetic Field Lines

NSDL National Science Digital Library

In this activity, learners explore the magnetic field of a bar magnet as an introduction to understanding Earth's magnetic field. First, learners explore and play with magnets and compasses. Then, learners trace the field lines of the magnet using the compass on a large piece of paper. This activity will also demonstrate why prominences are always "loops."

2012-06-26

77

We have extended the previously described impedance method for modeling the response of biological bodies exposed to time-varying electromagnetic fields in three dimensions. This method is useful at those frequencies where the quasi-static approximation is valid and calculates the fields, current densities, and power depositions in the biological bodies. We present solutions for homogeneous spheres in plane waves using this

N. Orcutt; O. P. Gandhi

1988-01-01

78

NSDL National Science Digital Library

This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the magnetic field of the Earth. This is the second activity in the Exploring the Earth's Magnetic Field: An IMAGE Satellite Guide to the Magnetosphere educators guide.

2012-08-03

79

NSDL National Science Digital Library

In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.

80

NSDL National Science Digital Library

This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.

2014-09-18

81

Visualizing Magnetic Field Lines

NSDL National Science Digital Library

In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.

VU Bioengineering RET Program, School of Engineering,

82

NSDL National Science Digital Library

This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the magnetic field of the Earth. This is the second activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

2012-08-03

83

The current state of the understanding of the magnetic fields of galaxies is reviewed. A simple model of the turbulent dynamo is developed which explains the main observational features of the global magnetic fields of spiral galaxies. The generation of small-scale chaotic magnetic fields in the interstellar medium is also examined. Attention is also given to the role of magnetic

Aleksandr A. Ruzmaikin; Dmitrii D. Sokolov; Anvar M. Shukurov

1988-01-01

84

Field laser hazard calculations

The authors develop formulae for laser hazard evaluation. Beam diameter, transmitted power through an optical system, nominal ocular hazard distance, and optical density required for eye protection may be calculated. A calculator program is provided which uses experimentally determined laser parameters to return the necessary safety information.

Marshall, W.J.; Conner, P.W.

1987-01-01

85

NSDL National Science Digital Library

This is an activity about bar magnets and their invisible magnetic fields. Learners will experiment with magnets and a compass to detect and draw magnetic fields. This is Activity 1 of a larger resource, entitled Exploring the Sun. The NASA spacecraft missions represented by this material include SOHO, TRACE, STEREO, Hinode, and SDO.

2012-08-03

86

Origin of cosmic magnetic fields.

We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556

Campanelli, Leonardo

2013-08-01

87

NASA Astrophysics Data System (ADS)

Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.

Antunes, A.; Glover, P. M.; Li, Y.; Mian, O. S.; Day, B. L.

2012-07-01

88

NSDL National Science Digital Library

This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.

Jeffrey Barker

89

NSDL National Science Digital Library

Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.

2014-09-18

90

Electricity and Magnetic Fields

NSDL National Science Digital Library

The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.

VU Bioengineering RET Program,

91

Calculating magnetic force of permanent magnet using Maxwell stress method

It is necessary to consider magnetic force of magnetic blocks when a large permanent magnet is constructed. This paper describes the calculation of magnetic force between magnetic bars of a permanent magnet using Maxwell Stress Method. This method is simple and convenient. The calculation result is tested and verified by experiment. The method plays an important role in the structure

Y. M. Du; P. C. Xia; L. Y. Xiao

2000-01-01

92

The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10â»âµ gauss) was observed near closest approach, at a

N. F. Ness; M. H. Acuna; L. F. Burlaga; J. E. P. Connerney; R. P. Lepping; F. M. Neubauer

1989-01-01

93

Reconnection of stressed magnetic fields

NASA Technical Reports Server (NTRS)

It is shown that magnetized plasma configurations under magnetic stress relax irreversibly to the state of minimum stress at a rate that is essentially Alfvenic provided a magnetic null is present. The relaxation is effected by the reconnection at the field null and proceeds at a rate proportional to the absolute value of ln(eta) exp-1, where eta is the resistivity. An analytic calculation in the linear regime is presented.

Hassam, A. B.

1992-01-01

94

Magnetic Fields Analogous to electric field, a magnet

Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic) Opposite magnetic poles attract like magnetic poles repel #12;Like the electric field lines

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

95

NSDL National Science Digital Library

The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You may drag either magnet and double-click anywhere inside the animation to add a magnetic field line, and mouse-down to read the magnitude of the magnetic field at that point.

Wolfgang Christian

96

NASA Astrophysics Data System (ADS)

A strong magnetic field applied along the growth direction of a quantum cascade laser (QCL) active region gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a QCL with a static magnetic field, we can selectively inhibit/enhance non-radiative electron relaxation process between the relevant Landau levels of a triple quantum well and realize a tunable surface emitting device. An efficient numerical algorithm implementation is presented of optimization of GaAs/AlGaAs QCL region parameters and calculation of output properties in the magnetic field. Both theoretical analysis and MATLAB implementation are given for LO-phonon and interface roughness scattering mechanisms on the operation of QCL. At elevated temperatures, electrons in the relevant laser states absorb/emit more LO-phonons which results in reduction of the optical gain. The decrease in the optical gain is moderated by the occurrence of interface roughness scattering, which remains unchanged with increasing temperature. Using the calculated scattering rates as input data, rate equations can be solved and population inversion and the optical gain obtained. Incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. However, it resulted in shifting the existing peaks positions and overall reduction of the optical gain. Catalogue identifier: AERL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 37763 No. of bytes in distributed program, including test data, etc.: 2757956 Distribution format: tar.gz Programming language: MATLAB. Computer: Any capable of running MATLAB version R2010a or higher. Operating system: Any platform supporting MATLAB version R2010a or higher. RAM: Minimum required is 1 GB. Memory usage increases for less intense magnetic fields. Classification: 15. Nature of problem: The nature of the problem is to provide an efficient numerical algorithm implementation for optimization of GaAs/AlGaAs QCL active region parameters and calculation of output properties in the magnetic field. Solution method: The optimization of the QCL laser performance at selected wavelength is performed at entire free-parameters space using simulated annealing algorithm. The scattering rates are calculated in the presence and without magnetic field and used as coefficients in rate equations. The standard MATLAB procedures were used to solve iteratively this system of equations and obtain distribution of electron densities over electronic states. Restrictions: The machine must provide the necessary main memory which decreases roughly quadratically with the increase of the magnetic field intensity. Running time: Optimization time on Intel 3 GHz processor is about 2×104 s. The calculation time of laser output properties for values set automatically in GUI is 5×104 s.

Smiljani?, J.; Žeželj, M.; Milanovi?, V.; Radovanovi?, J.; Stankovi?, I.

2014-03-01

97

NASA Technical Reports Server (NTRS)

The paper presents an overview of the Martian magnetic field measurements and the criticisms made of them. The measurements of the Mars 2, 3, and 5 spacecraft were interpreted by Dolginov et al. (1976, 1978) to be consistent with an intrinsic planetary magnetic moment of 2.5 times 10 to the 22nd power gauss cu cm, basing this result on the apparent size of the obstacle responsible for deflecting the solar wind and an apparent encounter of the spacecraft with the planetary field. It is shown that if the dependence of the Martian magnetic moment on the rotation rate was linear, the estimate of the moment would be far larger than reported by Dolginov et al. An upper limit of 250 km is calculated for the dynamo radius using the similarity law, compared with 500 km obtained by Dolginov et al. It is concluded that the possible strength of a Martian dynamo is below expectations, and it is likely that the Mars dynamo is not presently operative.

Russell, C. T.

1979-01-01

98

NSDL National Science Digital Library

This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.

2012-08-03

99

NSDL National Science Digital Library

This is an activity about magnetism. Using bar magnets, classroom materials, and a compass, learners will explore how bar magnets interact with one another and with other materials, use a compass to find the direction north, and use various materials to make magnetic field lines visible around a bar magnet. This is an activity in a larger poster resource, entitled The Sun Like It's Never Been Seen Before: In 3D.

100

NSDL National Science Digital Library

This webpage is part of the University Corporation for Atmospheric Research (UCAR) Windows to the Universe program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.

Windows to the Universe

1997-12-03

101

Preflare magnetic and velocity fields

NASA Technical Reports Server (NTRS)

A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

1986-01-01

102

Demagnetized rare earth magnets (Nd-Fe-B) can be fully magnetized by scanning them in the intense static fields over 3 T of a HTS bulk magnet which was cooled to the temperature range lower than 77K with use of cryo-coolers and activated by the field of 5 T. We precisely examined the magnetic field distributions of magnetized permanent magnets. The magnetic

Tetsuo Oka; Nobutaka Kawasaki; Satoshi Fukui; Jun Ogawa; Takao Sato; Toshihisa Terasawa; Yoshitaka Itoh; Ryohei Yabuno

2012-01-01

103

The polar heliospheric magnetic field

NASA Technical Reports Server (NTRS)

It is suggested that the polar heliospheric magnetic field, at large heliocentric distances, may deviate considerably from the generally accepted Archimedean spiral. Instead, it is suggested that the large-scale field near the poles may be dominated by randomly-oriented transverse magnetic fields with magnitude much larger than the average spiral. The average vector field is still the spiral, but the average magnitude may be much larger. In addition, the field direction is transverse to the radial direction most of the time instead of being nearly radial. This magnetic-field structure has important consequences for the transport of cosmic rays. Preliminary model calculations suggest changes in the radial gradient of galactic cosmic rays which may improve agreement with observations.

Jokipii, J. R.; Kota, J.

1989-01-01

104

Photodetachment in magnetic fields

The behavior of the photodetachment cross section, near threshold, for atomic negative ioris in a magnetic field is described and illustrated with data on photodetachment of electrons from negative sulfur ions. The effect of the final state interaction is discussed and the photodetachment of atomic negative ions in a magnetic field is compared to photoionization of neutral atoms in a

D. J. Larson; R. Stoneman

1982-01-01

105

THE INTERPLANETARY MAGNETIC FIELD

A new analysis of magnetic and concurrent plasma data collected from the ; space probes Pionecr 5, Explorer 10, and Mariner 2 yields a new model of the ; interplanetary magnetic field. It is hypothesized that the observed ; interplanetary field F\\/sub i\\/ is due to motion of the magnetometer relative to a ; negatively charged rotating sun from which

V. A. BAILEY

1963-01-01

106

Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources

Elisabete M. de Gouveia Dal Pino; Dal Pino

2006-01-01

107

Magnetic fields are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman-alpha systems. In principle, these fields could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic fields aims not only to quantify these effects on large-scale structure and the CMB, but also to answer one of the outstanding puzzles of modern cosmology: when and how do magnetic fields originate? They are either primordial, i.e. created before the onset of structure formation, or they are generated during the process of structure formation itself.

Roy Maartens

2000-07-24

108

Interplanetary Magnetic Field Lines

NSDL National Science Digital Library

This web page, authored and curated by David P. Stern, provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.

Mendez, J.

109

NSDL National Science Digital Library

The magnetic field of the Earth is contained in a region called the magnetosphere. The magnetosphere prevents most of the particles from the sun, carried in solar wind, from hitting the Earth. This site, produced by the University Corporation for Atmospheric Research (UCAR), uses text, scientific illustrations,and remote imagery to explain the occurrence and nature of planetary magnetic fields and magnetospheres, how these fields interact with the solar wind to produce phenomena like auroras, and how magnetic fields of the earth and other planets can be detected and measured by satellite-borne magnetometers.

110

Calculation and analysis of high-speed permanent magnetic generator unilateral magnetic force

Taking a two-pole high-speed permanent magnetic synchronous generator (PMSG) as an example, the mathematic and physical models with generator eccentric are established. This paper presented two different methods to calculate the magnetic field distribution and unilateral magnetic force (UMF) in the whole calculating region. And then analysis of influences of the eccentricity, load current and harmonics on the UMF have

Li Weili; Tang Li; Zhang Xiaocheng; Geng Jiaming

2008-01-01

111

Optical sensor of magnetic fields

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25

112

Sources of Magnetic Field Magnetic Phenomena

push on currents Moving charges can make and feel magnetic forces. We don't understand how permanent will consider the last piece of the puzzle in electromagnetic - changing magnetic fields can make induction. 15Lecture 9 Sources of Magnetic Field 1 Magnetic Phenomena 1. Magnets can push on each other (and

Tobar, Michael

113

NSDL National Science Digital Library

This is an activity about electromagnetism. Learners will use a compass to map the magnetic field lines surrounding a coil of wire that is connected to a battery. This activity requires a large coil or spool of wire, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and magnetic compasses. This is the third lesson in the second session of the Exploring Magnetism teachers guide.

2012-08-03

114

NASA Astrophysics Data System (ADS)

We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars are discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.

Widrow, Lawrence M.; Ryu, Dongsu; Schleicher, Dominik R. G.; Subramanian, Kandaswamy; Tsagas, Christos G.; Treumann, Rudolf A.

2012-05-01

115

NASA Astrophysics Data System (ADS)

We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27?989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap and to provide a program which allows users to calculate as comprehensively as possible energies, wavelengths, and oscillator strengths of medium-Z atoms and ions up to Z=26 in neutron star magnetic field strengths. Obviously, the method for achieving this goal must be highly efficient since for the calculation of synthetic spectra data of many thousands or even millions of atomic transitions may be required. Solution method: As in previous work on the problem (cf. [3,7]) we exploit the fact that a strong magnetic field results in an approximate decoupling of the dynamics of the electrons parallel and perpendicular to the field. In this adiabatic approximation the single-particle wave functions take the form: ?(?,?,z)=?(?,?)?P(z), where ?(?,?) are Landau wave functions, describing the (fast) motion perpendicular to the field, and the P(z) are the longitudinal wave functions, describing the (slow) bound motion along the direction of the field. The spins of the electrons are all aligned antiparallel to the magnetic field and need not be accounted for explicitly. The total N-electron wave function is constructed as a Slater determinant of the single-particle wave functions, and the unknown longitudinal wave functions are determined from the Hartree-Fock equations, which follow from inserting the total N-electron wave function into Schrödinger's variational principle for the total energy. The novel feature of our approach [8] is to use finite-element and B-spline techniques to solve the Hartree-Fock equations for atoms in strong magnetic fields. This is accomplished through the following steps: 1) decomposition of the z-axis into finite elements with quadratically widening element borders; 2) sixth-order B-spline expansion of the single-particle wave functions on the individual finite elements; 3) formulation of the variational principle equivalent to the Hartree-Fock equations in terms of the expansion coefficients. This leads to a simple system of linear equations for the expansion coefficients, which is solved numerically, and, since the direct and

Engel, D.; Klews, M.; Wunner, G.

2009-02-01

116

Magnetic field dosimeter development

In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1980-09-01

117

NASA Technical Reports Server (NTRS)

The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

Smith, E. J.

1995-01-01

118

Magnetic Field Problem: Current

NSDL National Science Digital Library

A cross section of a circular wire loop carrying an unknown current is shown above. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You can double-click in the animation to add magnetic field lines, click-drag the center of the loop to reposition it, and click-drag the top or bottom of the loop to change its size.

Wolfgang Christian

119

NASA Astrophysics Data System (ADS)

The enhancement of the spin-lattice relaxation rate for nuclear spins in a ligand bound to a paramagnetic metal ion [known as the paramagnetic relaxation enhancement (PRE)] arises primarily through the dipole-dipole (DD) interaction between the nuclear spins and the electron spins. In solution, the DD interaction is modulated mostly by reorientation of the nuclear spin-electron spin axis and by electron spin relaxation. Calculations of the PRE are in general complicated, mainly because the electron spin interacts so strongly with the other degrees of freedom that its relaxation cannot be described by second-order perturbation theory or the Redfield theory. Three approaches to resolve this problem exist in the literature: The so-called slow-motion theory, originating from Swedish groups [Benetis et al., Mol. Phys. 48, 329 (1983); Kowalewski et al., Adv. Inorg. Chem. 57, (2005); Larsson et al., J. Chem. Phys. 101, 1116 (1994); T. Nilsson et al., J. Magn. Reson. 154, 269 (2002)] and two different methods based on simulations of the dynamics of electron spin in time domain, developed in Grenoble [Fries and Belorizky, J. Chem. Phys. 126, 204503 (2007); Rast et al., ibid. 115, 7554 (2001)] and Ann Arbor [Abernathy and Sharp, J. Chem. Phys. 106, 9032 (1997); Schaefle and Sharp, ibid. 121, 5387 (2004); Schaefle and Sharp, J. Magn. Reson. 176, 160 (2005)], respectively. In this paper, we report a numerical comparison of the three methods for a large variety of parameter sets, meant to correspond to large and small complexes of gadolinium(III) and of nickel(II). It is found that the agreement between the Swedish and the Grenoble approaches is very good for practically all parameter sets, while the predictions of the Ann Arbor model are similar in a number of the calculations but deviate significantly in others, reflecting in part differences in the treatment of electron spin relaxation. The origins of the discrepancies are discussed briefly.

Belorizky, Elie; Fries, Pascal H.; Helm, Lothar; Kowalewski, Jozef; Kruk, Danuta; Sharp, Robert R.; Westlund, Per-Olof

2008-02-01

120

NASA Technical Reports Server (NTRS)

The Voyager 2 magnetic field experiment discovered a complex and powerful magnetic field in Neptune, as well as an associated magnetosphere and magnetic tail. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar. The auroral zones are probably located far from the rotation poles, and may possess complex geometry. The Neptune rings and all its known moons are imbedded deep within the magnetosphere (except for Nereid, which is outside when it lies sunward of the planet); the radiation belts have a complex structure due to the absorption of energetic particles by the moons and rings of Neptune, as well as losses associated with the significant changes in the diurnally varying magnetosphere configuration.

Ness, Norman F.; Acuna, Mario H.; Burlaga, Leonard F.; Connerney, John E. P.; Lepping, Ronald P.

1989-01-01

121

Origin of astrophysical magnetic fields.

NASA Astrophysics Data System (ADS)

The standard model for the origin of magnetic fields observed in stars and galaxies is the ?-? dynamo, in which a feedback loop involving differential rotation and helical turbulence leads to exponential amplification of a large-scale field. Recently this model has been criticized on the grounds that the Lorentz forces associated with the buildup of small-scale fields by the turbulence prevents the turbulent diffusion of magnetic field that is an essential part of the model. The author discusses the consequences for cosmology if dynamo theory is wrong, and reviews recent criticisms from a new perspective. They suggest new calculations that can help to decide whether the theory is right or wrong.

Field, George B.

122

NSDL National Science Digital Library

In this activity about magnetic fields and their relation to the Sun, learners will simulate sunspots by using iron filings to show magnetic fields around a bar or cow magnet, and draw the magnetic field surrounding two dipole magnets, both in parallel and perpendicular alignments. Finally, learners examine images of sunspots to relate their magnetic field drawings and observations to what is seen on the Sun.

123

Graphene Magnetic Field Sensors

Graphene extraordinary magnetoresistance (EMR) devices have been fabricated and characterized in varying magnetic fields at room temperature. The atomic thickness, high carrier mobility and high current carrying capabilities of graphene are ideally suited for the detection of nanoscale sized magnetic domains. The device sensitivity can reach 10 mV\\/Oe, larger than state of the art InAs 2DEG devices of comparable size

Simone Pisana; Patrick M. Braganca; Ernesto E. Marinero; Bruce A. Gurney

2010-01-01

124

The electronic and magnetic properties of armchair edge MoS{sub 2} nanoribbons (MoS{sub 2}-ANRs) underboth the external strain and transverse electric field (E{sub t}) have been systematically investigated by using the first-principles calculations. It is found that: (1) If no electric field is applied, an interesting structural phase transition would appear under a large tensile strain, leading to a new phase MoS{sub 2}-A'NR, and inducing a big jump peak of the band gap in the transition region. But, the band gap response to compressive strains is much different from that to tensile strain, showing no the structural phase transition. (2) Under the small tensile strains (<10%), the combined E{sub t} and tensile strain give rise to a positive superposition (resonant) effect on the band gap reduction at low E{sub t} (<3?V/nm), and oppositely a negative superposition (antiresonant) one at high E{sub t} (>4?V/nm). On the other hand, the external compressive strains have always presented the resonant effect on the band gap reduction, induced by the electric field. (3) After the structural phase transition, an external large tensile strain could greatly reduce the critical field E{sub tc} causing the band gap closure, and make the system become a ferromagnetic (FM) metal at a relative low E{sub t} (e.g., <4?V/nm), which is very helpful for its promising applications in nano-mechanical spintronics devices. (4) At high E{sub t} (>10?V/nm), the magnetic moments of both the MoS{sub 2}-ANR and MoS{sub 2}-A'NR in their FM states could be enhanced greatly by a tensile strain. Our numerical results of effectively tuning physical properties of MoS{sub 2}-ANRs by combined external strain and electric field may open their new potential applications in nanoelectronics and spintronics.

Hu, Ting; Dong, Jinming, E-mail: jdong@nju.edu.cn [Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhou, Jian [Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Kawazoe, Yoshiyuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai 980-8577 (Japan)

2014-08-14

125

Space Quantization in a Gyrating Magnetic Field

The nonadiabatic transitions which a system with angular momentum J makes in a magnetic field which is rotating about an axis inclined with respect to the field are calculated. It is shown that the effects depend on the sign of the magnetic moment of the system. We therefore have an absolute method for measuring the sign and magnitude of the

I. I. Rabi

1937-01-01

126

Statistical analysis of magnetic-field spectra

We have calculated and statistically analyzed the magnetic-field spectrum (the B spectrum) at fixed electron Fermi energy for two quantum dot systems with classically chaotic shape. This problem arises naturally in transport measurements where the incoming electron has a fixed energy while one tunes the magnetic field to obtain resonance conductance patterns. The B spectrum, defined as the collection of

Jian Wang; Hong Guo

1998-01-01

127

NASA Astrophysics Data System (ADS)

Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comput. Phys. Comm. 180 (2009) 302-311] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error), and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code, and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78 (2008) 032515]. New version program summaryProgram title: HFFER II Catalogue identifier: AECC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: v 55 130 No. of bytes in distributed program, including test data, etc.: 293 700 Distribution format: tar.gz Programming language: Fortran 95 Computer: Cluster of 1-13 HP Compaq dc5750 Operating system: Linux Has the code been vectorized or parallelized?: Yes, parallelized using MPI directives. RAM: 1 GByte per node Classification: 2.1 External routines: MPI/GFortran, LAPACK, BLAS, FMlib (included in the package) Catalogue identifier of previous version: AECC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 302 Does the new version supersede the previous version?: Yes Nature of problem: Quantitative modellings of features observed in the X-ray spectra of isolated magnetic neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product, iron, at strong magnetic field strengths. Our code is intended to provide a powerful tool for calculating energies and oscillator strengths of medium-Z atoms and ions at neutron star magnetic field strengths with sufficient accuracy in a routine way to create such databases. Solution method: The Slater determinants of the atomic wave functions are constructed from single-particle orbitals

Schimeczek, C.; Engel, D.; Wunner, G.

2012-07-01

128

NSDL National Science Digital Library

This is a lesson where learners explore magnetic forces, fields, and the relationship between electricity. Learners will use this information to infer how the Earth generates a protective magnetic field. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes, prerequisite concepts, common misconceptions, student journal and reading. This is lesson seven in the Astro-Venture Geology Training Unit that were developed to increase students' awareness of and interest in astrobiology and the many career opportunities that utilize science, math and technology skills. The lessons are designed for educators to use with with the Astro-Venture multimedia modules.

129

Multiwavelength Magnetic Field Modeling

NASA Astrophysics Data System (ADS)

We model the large-scale Galactic magnetic fields, including a spiral arm compression to generate anisotropic turbulence, by comparing polarized synchrotron and thermal dust emission. Preliminary results show that in the outer Galaxy, the dust emission comes from regions where the fields are more ordered than average while the situation is reversed in the inner Galaxy. We will attempt in subsequent work to present a more complete picture of what the comparison of these observables tells us about the distribution of the components of the magnetized ISM and about the physics of spiral arm shocks and turbulence.

Jaffe, T. R.

2015-03-01

130

NASA Astrophysics Data System (ADS)

The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 ?G) and in central starburst regions (50-100 ?G). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 ?G strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field ? -? dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos around edge-on galaxies out to large distances from the plane, with X-shaped patterns. In the outflow cone above a starburst region of NGC 253, RM data indicate a helical magnetic field.

Beck, Rainer

131

Magnetic Field of a Tubular Linear Motor With Special Permanent Magnet

This paper describes a tubular linear motor with special permanent magnet. Then, two kinds of permanent magnet magnetization directions for this motor are proposed, and the air-gap magnetic field is calculated and researched based on a finite-element method. Moreover, the magnetic field of the slotless tubular linear motor is contrasted with that of the traditional inte- rior axially magnetized permanent

Liyi Li; Huang Xuzhen; Pan Donghua; Cao Jiwei

2011-01-01

132

The Magnetic Field of Helmholtz Coils

ERIC Educational Resources Information Center

Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

Berridge, H. J. J.

1975-01-01

133

High field superconducting magnets

NASA Technical Reports Server (NTRS)

A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

2011-01-01

134

In this paper the effects of the inhomogeneity of the density of charged particles and the initial axial, rotating and radial motion on the dielectric permittivity tensor and the field equations in a long column of multi-layer magnetized plasmas with confocal elliptical cross-sections are investigated. The elements of the dielectric permittivity tensor and the generalized field equations of each region

A. Abdoli-Arani

2011-01-01

135

NASA Technical Reports Server (NTRS)

The conclusions drawn regarding the structure, behavior and composition of the Uranian magnetic field and magnetosphere as revealed by Voyager 2 data are summarized. The planet had a bipolar magnetotail and a bow shock wave which was observed 23.7 Uranus radii (UR) upstream and a magnetopause at 18.0 UR. The magnetic field observed can be represented by a dipole offset from the planet by 0.3 UR. The field vector and the planetary angular momentum vector formed a 60 deg angle, permitting Uranus to be categorized as an oblique rotator, with auroral zones occurring far from the rotation axis polar zones. The surface magnetic field was estimated to lie between 0.1-1.1 gauss. Both the field and the magnetotail rotated around the planet-sun line in a period of about 17.29 hr. Since the ring system is embedded within the magnetosphere, it is expected that the rings are significant absorbers of radiation belt particles.

Ness, N. F.; Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Connerney, J. E. P.; Lepping, R. P.

1986-01-01

136

Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

NASA Technical Reports Server (NTRS)

The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

Burlaga, L. F.; Barouch, E.

1974-01-01

137

The preparation of input to the code and the output options available are described. Several examples, including the magnet design for MFTF and a divertor design for a Tokamak are used for illustration. All input to EFFI is format free, and is checked for validity before any calculations are done. To aid the user in correcting mistakes, each error detected

S. J. Sackett

1977-01-01

138

Evolution of Stellar Magnetic Fields

NASA Astrophysics Data System (ADS)

Stellar magnetic fields can reliably be characterized by several magnetic activity indicators, such as X-ray or radio luminosity. Physical processes leading to such emission provide important information on dynamic processes in stellar atmospheres and magnetic structuring.

Güdel, Manuel

2015-03-01

139

NSDL National Science Digital Library

Students can learn about how the magnetic field of the earth is similar to magnets. Go to the following link: Magnetic Field of the Earth 1. What makes the earth like a magnet? 2. How do we measure magnetism? Be sure to check out the fun games and activities on this web site too!! Now click on the following link and listen to a 2 minute presentation about magnetism: Pulse Planet Next go to ...

Mrs. Merritt

2005-10-18

140

Neutron spin polarization in strong magnetic fields

The effects of strong magnetic fields on the inner crust of neutron stars are investigated after taking into account the anomalous magnetic moments of nucleons. Energy spectra and wave functions for protons and neutrons in a uniform magnetic field are provided. The particle spin polarizations and the yields of protons and neutrons are calculated in a free Fermi gas model. Obvious spin polarization occurs when $B\\geq10^{14}$G for protons and $B\\geq10^{17}$G for neutrons, respectively. It is shown that the neutron spin polarization depends solely on the magnetic field strength.

H. Wen; L. S. Kisslinger; Walter Greiner; G. Mao

2006-01-09

141

NASA Technical Reports Server (NTRS)

Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

Taylor, Patrick T.; Ravat, D.; Frawley, James J.

1999-01-01

142

Numerical analysis of magnetic field in superconducting magnetic energy storage

This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

Kanamaru, Y. (Kanazawa Inst. of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921 (JP)); Amemiya, Y. (Chiba Inst. of Tech., Narashino (Japan))

1991-09-01

143

The WIND magnetic field investigation

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and

R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley

1995-01-01

144

Magnetic Field Topology in Jets

NASA Technical Reports Server (NTRS)

We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

Gardiner, T. A.; Frank, A.

2000-01-01

145

Low field magnetic resonance imaging

A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)

2010-07-13

146

Harmonic analysis of solar magnetic fields

The temporal variations of the global magnetic field in the Sun's photosphere have been investigated through a harmonic analysis of the zonal (m=0) as well as the non-axisymmetric (m!=0) modes. A 25 yr time series of magnetic maps, recorded at the Kitt Peak Observatory (Tucson, AZ) on a daily basis, was used to calculate the spherical coefficients of the radial

R. Knaack; J. O. Stenflo

2002-01-01

147

Magnetic Field Problem: Current and Magnets

NSDL National Science Digital Library

The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. A wire is placed between the magnets and a current that comes out of the page can be turned on.

Wolfgang Christian

148

Probing Magnetic Fields With SNRs

NASA Astrophysics Data System (ADS)

As supernova remnants (SNRs) expand, their shock waves freeze in and compress magnetic field lines they encounter; consequently we can use SNRs as magnifying glasses for interstellar magnetic fields. A simple model is used to derive polarization and rotation measure (RM) signatures of SNRs. This model is exploited to gain knowledge about the large-scale magnetic field in the Milky Way. Three examples are given which indicate a magnetic anomaly, an azimuthal large-scale magnetic field towards the anti-centre, and a chimney that releases magnetic energy from the plane into the halo.

Kothes, Roland

2015-03-01

149

NASA Astrophysics Data System (ADS)

With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ?20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

Jansson, Ronnie; Farrar, Glennys R.

2012-12-01

150

With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

Jansson, Ronnie; Farrar, Glennys R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

2012-12-10

151

NASA Technical Reports Server (NTRS)

A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

1982-01-01

152

Alignment of magnetic uniaxial particles in a magnetic field: Simulation

NASA Astrophysics Data System (ADS)

The numerical investigations of the process of alignment of magnetically uniaxial Nd-Fe-B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient.

Golovnia, O. A.; Popov, A. G.; Sobolev, A. N.; Hadjipanayis, G. C.

2014-09-01

153

NASA Astrophysics Data System (ADS)

In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

2014-11-01

154

Magnetic field programming in quadrupole magnetic field-flow fractionation

NASA Astrophysics Data System (ADS)

Magnetic field-flow fractionation (MgFFF) is a technique for the separation and characterization of magnetic nanoparticles. It is explained that the analysis of polydisperse samples requires a programmed decay of field and field gradient during sample elution. A procedure for achieving reproducible field decay with asymptotic approach to zero field using a quadrupole electromagnet is described. An example of an analysis of a polydisperse sample under programmed field decay is given.

Stephen Williams, P.; Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej

155

Consider the scattering amplitude $s(\\\\omega,\\\\omega^\\\\prime;\\\\lambda)$,\\u000a$\\\\omega,\\\\omega^\\\\prime\\\\in{\\\\Bbb S}^{d-1}$, $\\\\lambda > 0$, corresponding to an\\u000aarbitrary short-range magnetic field $B(x)$, $x\\\\in{\\\\Bbb R}^d$. This is a smooth\\u000afunction of $\\\\omega$ and $\\\\omega^\\\\prime$ away from the diagonal\\u000a$\\\\omega=\\\\omega^\\\\prime$ but it may be singular on the diagonal. If $d=2$, then\\u000athe singular part of the scattering amplitude (for example, in the transversal\\u000agauge) is a

D. R. Yafaev

2005-01-01

156

NASA Astrophysics Data System (ADS)

The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the period

Popov, Aleksey

2013-04-01

157

Magnetic Fields: Visible and Permanent.

ERIC Educational Resources Information Center

Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

Winkeljohn, Dorothy R.; Earl, Robert D.

1983-01-01

158

Quantum Electrodynamics in a Uniform Magnetic Field

A systematic formalism for quantum electrodynamics in a classical uniform magnetic field is discussed. The first order radiative correction to the ground state energy of an electron is calculated. This then leads to the anomalous magnetic moment of an electron without divergent integrals. Thorough analyses of this problem are given for the weak magnetic field limit. A new expression for the radiative correction to the ground state energy is obtained. This contains only one integral with an additional summation with respect to each Landau level. The importance of this formalism is also addressed in order to deal with quantum electrodynamics in an intense external field.

Jun Suzuki

2005-12-28

159

Field Mapping System for Solenoid Magnet

NASA Astrophysics Data System (ADS)

A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

2007-01-01

160

The Heliospheric Magnetic Field

NASA Astrophysics Data System (ADS)

The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

Owens, Mathew J.; Forsyth, Robert J.

2013-11-01

161

Photonic Magnetic Field Sensor

NASA Astrophysics Data System (ADS)

Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

Wyntjes, Geert

2002-02-01

162

Cylindrical Magnets and Coils: Fields, Forces, and Inductances

This paper presents a synthesis of analytical calculations of magnetic parameters (field, force, torque, stiffness) in cylindrical magnets and coils. By using the equivalence between the amperian current model and the coulombian model of a magnet, we show that a thin coil or a cylindrical magnet axially magnetized have the same mathematical model. Consequently, we present first the analytical expressions

R. Ravaud; G. Lemarquand; S. Babic; V. Lemarquand; C. Akyel

2010-01-01

163

Fast superconducting magnetic field switch

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01

164

Magnetic field modification of optical magnetic dipoles.

Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869

Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

2015-03-11

165

Magnetostatic potential theory and the lunar magnetic dipole field

NASA Technical Reports Server (NTRS)

The lunar magnetic dipole moment is discussed. It is proposed that if a primordial core magnetic field existed, it would give rise to a present day nonzero external dipole magnetic field. This conclusion is based on the assumption that the lunar mantle is at least slightly ferromagnetic, and thus would maintain a permanent magnetization after the disappearance of the core magnetic field. Using a simple mathematical model of the moon, calculations are performed which support this hypothesis.

Goldstein, M. L.

1975-01-01

166

Exposure guidelines for magnetic fields

The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

Miller, G.

1987-12-01

167

Magnetic fields in massive stars

Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

S. Hubrig; M. Scholler; M. Briquet; M. A. Pogodin; R. V. Yudin; J. F. Gonzalez; T. Morel; P. De; R. Ignace; G. Mathys; G. J. Peters

2007-01-01

168

Magnetic fields in massive stars

Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

S. Hubrig

2007-03-09

169

The Galileo magnetic field investigation

The Galileo Orbiter carries a complement of fields and particles instruments designed to provide data needed to shed light on the structure and dynamical variations of the Jovian magnetosphere. Many questions remain regarding the temporal and spatial properties of the magnetospheric magnetic field, how the magnetic field maintains corotation of the embedded plasma and the circumstances under which corotation breaks

M. G. Kivelson; K. K. Khurana; J. D. Means; C. T. Russell; R. C. Snare

1992-01-01

170

Mean-field theory for Bose-Hubbard model under a magnetic field

We consider the superfluid-insulator transition for cold bosons under an effective magnetic field. We investigate how the applied magnetic field affects the Mott transition within mean-field theory and find that the critical hopping strength (t/U){sub c} increases with the applied field. The increase in the critical hopping follows the bandwidth of the Hofstadter butterfly at the given value of the magnetic field. We also calculate the magnetization and superfluid density within mean-field theory.

Oktel, M. Oe.; Tanatar, B. [Department of Physics, Bilkent University, 06800 Bilkent, Ankara (Turkey); Nita, M. [Institute of Physics and Technology of Materials, P.O. Box MG7, Bucharest-Magurele (Romania)

2007-01-15

171

Mercury's magnetic field and interior

NASA Technical Reports Server (NTRS)

The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain.

Connerney, J. E. P.; Ness, N. F.

1988-01-01

172

External-field-free magnetic biosensor

In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm?×?200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2014-03-24

173

NASA Astrophysics Data System (ADS)

A vertically draining thin ferrofilm under the influence of gravity and a nonuniform magnetic field is considered. It is observed experimentally that the presence of the magnetic field greatly alters the drainage of the film. A mathematical model is developed to describe the behavior. Experiments are conducted for multiple magnetic field configurations. The model is solved for two different sets of boundary conditions and results are compared to experiments. It is shown that the magnetic field structure, the concentration of magnetite in the solution, and the boundary conditions all have noticeable affects on the evolution of the thinning film. Good qualitative agreement between the model and the experiments is observed.

Back, Randy; Beckham, J. Regan

2012-10-01

174

The magnetic field of current-carrying polygons: An application of vector field rotations

We calculate the magnetic field around a current loop consisting of a regular N-sided polygon by successively rotating the field obtained from a straight, finite, current-carrying wire. This involves developing and applying a vector field rotation operator, which transforms vector fields the way a rotation matrix transforms scalar fields. Using this result, we explore the various magnetic field components about

Matthew I. Grivich; David P. Jackson

2000-01-01

175

Numerical Object Oriented Quantum Field Theory Calculations

The qft++ package is a library of C++ classes that facilitate numerical (not algebraic) quantum field theory calculations. Mathematical objects such as matrices, tensors, Dirac spinors, polarization and orbital angular momentum tensors, etc. are represented as C++ objects in qft++. The package permits construction of code which closely resembles quantum field theory expressions, allowing for quick and reliable calculations.

M. Williams

2009-05-07

176

Evolution of pulsar magnetic fields

Theoretical considerations of neutron star matter and magnetic fields suggest a picture of the evolution of pulsar dipole moments. At birth the spin axis and magnetic dipole are argued to be roughly aligned. Subsequently the magnetic dipole greatly diminishes in strength and changes its direction until it ultimately makes a large angle with the spin axis. This view is supported

E. Flowers; M. A. Ruderman

1977-01-01

177

Theory of fossil magnetic field

NASA Astrophysics Data System (ADS)

Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.

Dudorov, Alexander E.; Khaibrakhmanov, Sergey A.

2015-02-01

178

Cosmic Magnetic Fields - An Overview

NASA Astrophysics Data System (ADS)

Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

Wielebinski, Richard; Beck, Rainer

179

Tachyon Condensation: Calculations in String Field Theory

In this Ph.D. thesis, we study tachyon condensation in string field theories. In chapter 2, we review Witten's bosonic string field theory and calculate the tachyon potential. In chapter 3, we calculate the tachyon potential in Berkovits' superstring field theory. In chapter 4, we look for exact solutions in a toy model. Unpublished result: we use conservation laws to calculate the level (4,8) approximation of the tachyon potential in Berkovits' superstring field theory. We verify Sen's conjecture up to 94.4%.

Pieter-Jan De Smet

2001-09-24

180

NASA Astrophysics Data System (ADS)

This paper investigates the distortion of magnetic field of a brushless dc (BLDC) motor due to deformed rubber magnet. Global or local deformation of rubber magnet in the BLDC motor is mathematically modeled by using the Fourier series. Distorted magnetic field is calculated by using the finite element method, and unbalanced magnetic force is calculated by using the Maxwell stress tensor. When the rubber magnet is globally or locally deformed, the unbalanced magnetic force has the frequencies with the first harmonic and the harmonics of slot number ±1. However, the harmonic deformation with multiple of common divisor of pole and slot does not generate unbalanced magnetic force due to the rotational symmetry.

Lee, C. J.; Jang, G. H.

2008-04-01

181

Measurements of magnetic field alignment

The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

Kuchnir, M.; Schmidt, E.E.

1987-11-06

182

Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm. PMID:24316186

Turek, Krzysztof; Liszkowski, Piotr

2014-01-01

183

The magnetic field of Mercury was measured on two fly-bys of the planet by the Mariner 10 space-craft. The presence of a field at Mercury is interesting for what it implies for both the internal and external sources of field. The internal field of the planet is almost certainly generated by an internal dynamo although there remain many puzzles as

D. J. Southwood

1997-01-01

184

The magnetic field of Mercury was measured on two fly-bys of the planet by the Mariner 10 spacecraft. The presence of a field at Mercury is interesting for what it implies for both the internal and external sources of field. The internal field of the planet is almost certainly generated by an internal dynamo although there remain many puzzles as

D. J. Southwood

1997-01-01

185

OPTIM, a primary expert system for magnetic field shaping

The basic principle, structure, and function of a primary expert system for magnetic field shaping are introduced. The intelligent inference network, inversion calculation method, optimal correcting process, and basic body of the knowledge base are expounded completely. An example of magnetic field shaping design calculation finished by this expert system is given

Shouzhen Han; Naifeng Mao; Gongpan Li

1992-01-01

186

CMB polarization induced by stochastic magnetic fields

The complete calculation of the CMB polarization observables (i.e. E- and B-modes) is reported within the conventional $\\Lambda$CDM paradigm supplemented by a stochastic magnetic field. Intriguing perspectives for present and forthcoming CMB polarization experiments are outlined.

Massimo Giovannini; Kerstin E. Kunze

2008-04-14

187

Diffusion in a stochastic magnetic field

We consider a stochastic differential equation for a charged particle in a stochastic magnetic field, known as A-Langevin equation. The solution of the equation is found, and the Lagrange velocity correlation function is calculated in Corrsin approximation. A corresponding diffusion constant is estimated. We observe different transport regimes, such as quasilinear- or Bohm-type diffusion, depending on the parameters of plasma.

D. Lesnik; S. Gordienko; M. Neuer; K. -H. Spatschek

2005-06-21

188

NASA Astrophysics Data System (ADS)

In earlier works we introduced and tested a nonlinear force-free (NLFF) method designed to self-consistently calculate the coronal free magnetic energy and the relative magnetic helicity budgets of observed solar magnetic structures. In principle, the method requires only a single, photospheric or low-chromospheric, vector magnetogram of a quiet-Sun patch or an active region and performs calculations without three-dimensional magnetic and velocity-field information. In this work we strictly validate this method using three-dimensional coronal magnetic fields. Benchmarking employs both synthetic, three-dimensional magnetohydrodynamic simulations and nonlinear force-free field extrapolations of the active-region solar corona. Our time-efficient NLFF method provides budgets that differ from those of more demanding semi-analytical methods by a factor of approximately three, at most. This difference is expected to come from the physical concept and the construction of the method. Temporal correlations show more discrepancies that are, however, soundly improved for more complex, massive active regions, reaching correlation coefficients on the order of, or exceeding, 0.9. In conclusion, we argue that our NLFF method can be reliably used for a routine and fast calculation of the free magnetic energy and relative magnetic helicity budgets in targeted parts of the solar magnetized corona. As explained in this article and in previous works, this is an asset that can lead to valuable insight into the physics and triggering of solar eruptions.

Moraitis, K.; Tziotziou, K.; Georgoulis, M. K.; Archontis, V.

2014-12-01

189

Preprocessing Magnetic Fields with Chromospheric Longitudinal Fields

NASA Astrophysics Data System (ADS)

Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

Yamamoto, Tetsuya T.; Kusano, K.

2012-06-01

190

PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS

Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

Yamamoto, Tetsuya T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan); Kusano, K., E-mail: tyamamot@stelab.nagoya-u.ac.jp [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001 (Japan)

2012-06-20

191

Field measurement for large quadrupole magnets

NASA Astrophysics Data System (ADS)

The results of the field measurement of the large quadrupole magnet of the MAGNEX spectrometer are presented and analyzed in the view of the possible application of modern techniques of ray reconstruction. The experimental data are checked against the symmetry conditions expected for the magnet. The observed deviations are related both to imperfections on the magnet manufacturing and to the not ideal positioning of the measurement device. In particular a quantitative estimation of the experimental error in the alignment of the probe with respect to the magnet is achieved. The measured field is also compared with the results from three-dimensional finite elements calculation. The obtained discrepancies between the measured and calculated field are too large for a direct application of the latter to ray-reconstruction methods. Nevertheless, these calculations are reliably used to study the impact of the observed inaccuracies in the probe alignment on the overall precision of field reconstruction and to set quantitative constraints on the field interpolation algorithms.

Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S. E. A.; Rodrigues, M. R. D.; Winfield, J. S.

2008-06-01

192

NASA Technical Reports Server (NTRS)

A model is given of the planetary magnetic field of Neptune based on a spherical harmonic analysis of the observations obtained by the Voyager 2. Generalized inverse techniques are used to partially solve a severely underdetermined inverse problem, and the resulting model is nonunique since the observations are limited in spatial distribution. Dipole, quadrupole, and octupole coefficients are estimated independently of other terms, and the parameters are shown to be well constrained by the measurement data. The large-scale features of the magnetic field including dipole tilt, offset, and harmonic content are found to characterize a magnetic field that is similar to that of Uranus. The traits of Neptune's magnetic field are theorized to relate to the 'ice' interior of the planet, and the dynamo-field generation reflects this poorly conducting planet.

Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

1992-01-01

193

Resonant magnetic fields from inflation

We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of O(10{sup ?15} Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

Byrnes, Christian T. [CERN, PH-TH Division, CH-1211, Genève 23 (Switzerland); Hollenstein, Lukas; Jain, Rajeev Kumar [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24, Quai Ernest Ansermet, CH-1211 Genève 4 (Switzerland); Urban, Federico R., E-mail: cbyrnes@cern.ch, E-mail: lukas.hollenstein@unige.ch, E-mail: rajeev.jain@unige.ch, E-mail: urban@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada)

2012-03-01

194

Resonant magnetic fields from inflation

We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of order 10^{-15} Gauss today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

Christian T. Byrnes; Lukas Hollenstein; Rajeev Kumar Jain; Federico R. Urban

2012-03-06

195

Schrödinger operators with magnetic fields

We prove a large number of results about atoms in constant magnetic field including (i) Asymptotic formula for the ground state energy of Hydrogen in large field, (ii) Proof that the ground state of Hydrogen in an arbitrary constant field hasLz = 0 and of the monotonicity of the binding energy as a function ofB, (iii) Borel summability of Zeeman

J. E. Avron; I. W. Herbst; B. Simon

1981-01-01

196

Developments in deep brain stimulation using time dependent magnetic fields

The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

2012-03-07

197

Investigating Magnetic Force Fields

NSDL National Science Digital Library

In this classroom activity, the students will investigate the magnetic pull of a bar magnet at varying distances with the use of paper clips. Students will hypothesize, conduct the experiment, collect the data, and draw conclusions that support their data. Each student will record the experiment and their findings in their science journals. As a class, students will compare each groups' data and their interpretation of the results.

Daryl ("Tish") Monjeau, Bancroft Elementary School, Minneapolis, MN

2012-03-18

198

We have calculated a world grid of cosmic ray cutoff rigidities each 5 degrees in latitude and 15 degrees in longitude at 450 km altitude. The geomagnetic cutoff rigidity values have been calculated employing the Tsyganenko magnetic field model combined with the International Geomagnetic Reference Field for 1995.0 The cutoff values were calculated by the trajectory-tracing method for particles arriving

Don Smart; M. A. Shea; E. O. Flückiger

1999-01-01

199

Preface: Cosmic magnetic fields

NASA Astrophysics Data System (ADS)

Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.

Kosovichev, Alexander

2015-02-01

200

Anomalous currents in dense matter under a magnetic field

We consider fermionic dense matter under a magnetic field, where fermions couple minimally to gauge fields, and calculate anomalous currents at one loop. We find anomalous currents are spontaneously generated along the magnetic field but fermions only in the lowest Landau level contribute to anomalous currents. We then show that there are no more corrections to the anomalous currents from two or higher loops.

Deog Ki Hong

2010-12-31

201

Measuring Earth's Magnetic Field Simply.

ERIC Educational Resources Information Center

Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

Stewart, Gay B.

2000-01-01

202

The ACE Magnetic Fields Experiment

The magnetic field experiment on ACE provides continuous measurements of the local magnetic field in the interplanetary medium.\\u000a These measurements are essential in the interpretation of simultaneous ACE observations of energetic and thermal particles\\u000a distributions. The experiment consists of a pair of twin, boom- mounted, triaxial fluxgate sensors which are located 165 inches\\u000a (=4.19 m) from the center of the

C. W. Smith; J. L'Heureux; N. F. Ness; M. H. Acuña; L. F. Burlaga; J. Scheifele

1998-01-01

203

Magnetic resonance in an elliptic magnetic field

The behaviour of a particle with a spin 1/2 and a dipole magnetic moment in a time-varying magnetic field in the form $(h_0 cn(\\omega t,k), h_0 sn(\\omega t,k), H_0 dn(\\omega t,k))$, where $\\omega$ is the driving field frequency, $t$ is the time, $h_0$ and $H_0$ are the field amplitudes, $cn$, $sn$, $dn$ are Jacobi elliptic functions, $ k$ is the modulus of the elliptic functions has been considered. The variation parameter $k$ from zero to 1 gives rise to a wide set of functions from trigonometric shapes to exponential pulse shapes modulating the field. The problem was reduced to the solution of general Heun' equation. The exact solution of the wave function was found at resonance for any $ k$. It has been shown that the transition probability in this case does not depend on $k$. The present study may be useful for analysis interference experiments, improving magnetic spectrometers and the field of quantum computing.

E. A. Ivanchenko

2004-04-20

204

Magnetic Resonance Imaging System Based on Earth's Magnetic Field

magnetic field can be partly compensated by the receiving coil design and shielding of electromagnetic pick magnetic fields. Common sources of static magnetic fields are super conducting coils, electromagnets, and permanent magnets. The induced magnetization, and thus the signal, is proportional to the magnitude

StepiÂ?nik, Janez

205

NASA Technical Reports Server (NTRS)

The Voyager 2 observations obtained during the Neptune encounter are used to develop a spherical harmonic model of the planetary magnetic field of Neptune. The model yields a dipole of magnitude 0.14 G R(N) exp 3, tilted by 47 deg toward 72 deg west longitude. Neptune's quadrupole is equal to or exceeding in magnitude the surface dipole field; the octupole is also very large, although less well constrained. The characteristics of the Neptune's magnetic field are illustrated using contour maps of the field on the planet's surface.

Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

1991-01-01

206

NASA Technical Reports Server (NTRS)

The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.

Ness, N. F.

1977-01-01

207

Chiral transition with magnetic fields

NASA Astrophysics Data System (ADS)

We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses—taken as functions of the order parameter—can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling constants, and the number of fermions. We show that the critical temperature for the restoration of chiral symmetry monotonically increases from small to intermediate values of the magnetic field and that this temperature is always above the critical temperature for the case when the magnetic field is absent.

Ayala, Alejandro; Hernández, Luis Alberto; Mizher, Ana Júlia; Rojas, Juan Cristóbal; Villavicencio, Cristián

2014-06-01

208

Primordial magnetic fields from self-ordering scalar fields

NASA Astrophysics Data System (ADS)

A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by B~10?9((1+z)/103)?2.5(v/mpl)2(k/Mpc?1)3.5/?N Gauss in the radiation dominated era for klesssim 1 Mpc?1, with v being the vacuum expectation value of the O(N) symmetric scalar fields. By extrapolating our numerical result toward smaller scales, we expect that B~ 10?14.5((1+z)/103)1/2(v/mpl)2(k/Mpc?1)1/2/?N Gauss on scales of kgtrsim 1 Mpc?1 at redshift 0zgtrsim 110. This might be a seed of the magnetic fields observed on large scales today.

Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sekiguchi, Toyokazu; Sugiyama, Naoshi

2015-04-01

209

Constraints on a Primordial Magnetic Field

We derive an upper limit of B{sub 0}{lt}3.4{times}10{sup -9}({Omega}{sub 0}h{sup 2}{sub 50}){sup 1/2} G on the present strength of any primordial homogeneous magnetic field. The microwave background anisotropy created by cosmological magnetic fields is calculated in the most general flat and open anisotropic cosmologies containing expansion-rate and 3-curvature anisotropies. Our limit is derived from a statistical analysis of the 4-year Cosmic Background Explorer (COBE) data for anisotropy patterns characteristic of homogeneous anisotropy averaged over all possible sky orientations with respect to the COBE receiver. The limits we obtain on homogeneous magnetic fields are stronger than those imposed by nucleosynthesis. {copyright} {ital 1997} {ital The American Physical Society}

Barrow, J.D.; Ferreira, P.G.; Silk, J. [Center for Particle Astrophysics, and Departments of Astronomy and Physics, University of California, Berkely, California 94720-7304 (United States)] [Center for Particle Astrophysics, and Departments of Astronomy and Physics, University of California, Berkely, California 94720-7304 (United States); Barrow, J.D. [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)] [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)

1997-05-01

210

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most in Fig. 3.1, the generic structure of the magnetic field can be open (aÂc and f) or closed (d,e). In open). The magnetic field structure in closed configurations (d,e) is toroidal in character or topology. That is, its

Callen, James D.

211

Surface structure of neutron stars with high magnetic fields

NASA Technical Reports Server (NTRS)

The equation of state of cold dense matter in strong magnetic fields is calculated in the Thomas-Fermi and Thomas-Fermi-Dirac approximations. For use in the latter calculation, a new expression is derived for the exchange energy of the uniform electron gas in a strong magnetic field. Detailed calculations of the density profile in the surface region of a neutron star are described for a variety of equations of state, and these show that the surface density profile is strongly affected by the magnetic field, irrespective of whether or not matter in a magnetic field has a condensed state bound with respect to isolated atoms. It is also shown that, as a consequence of the field dependence of the screening potential, magnetic fields can significantly increase nuclear reaction rates.

Fushiki, I.; Gudmundsson, E. H.; Pethick, C. J.

1989-01-01

212

Damping of cosmic magnetic fields

We examine the evolution of magnetic fields in an expanding fluid composed of matter and radiation with particular interest in the evolution of cosmic magnetic fields. We derive the propagation velocities and damping rates for relativistic and non-relativistic fast and slow magnetosonic and Alfv{acute e}n waves in the presence of viscous and heat conducting processes. The analysis covers all magnetohydrodynamics modes in the radiation diffusion and the free-streaming regimes. When our results are applied to the evolution of magnetic fields in the early universe, we find that cosmic magnetic fields are damped from prior to the epoch of neutrino decoupling up to recombination. Similar to the case of sound waves propagating in a demagnetized plasma, fast magnetosonic waves are damped by radiation diffusion on all scales smaller than the radiation diffusion length. The characteristic damping scales are the horizon scale at neutrino decoupling (M{sub {nu}}{approx}10{sup {minus}4}M{sub {circle_dot}} in baryons) and the Silk mass at recombination (M{sub {gamma}}{approx}10{sup 13}M{sub {circle_dot}} in baryons). In contrast, the oscillations of slow magnetosonic and Alfv{acute e}n waves get overdamped in the radiation diffusion regime, resulting in frozen-in magnetic field perturbations. Further damping of these perturbations is possible only if before recombination the wave enters a regime in which radiation free-streams on the scale of the perturbation. The maximum damping scale of slow magnetosonic and Alfv{acute e}n modes is always smaller than or equal to the damping scale of fast magnetosonic waves, and depends on the magnetic field strength and its direction relative to the wave vector. Our findings have multifold implications for cosmology. The dissipation of magnetic field energy into heat during the epoch of neutrino decoupling ensures that most magnetic field configurations generated in the very early universe satisfy big bang nucleosynthesis constraints. Further dissipation before recombination constrains models in which primordial magnetic fields give rise to galactic magnetic fields or density perturbations. Finally, the survival of Alfv{acute e}n and slow magnetosonic modes on scales well below the Silk mass may be of significance for the formation of structure on small scales. {copyright} {ital 1998} {ital The American Physical Society}

Jedamzik, K. [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany)] [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany); Katalinic, V.; Olinto, A.V. [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)] [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)

1998-03-01

213

Magnetic Field Generation in Stars

NASA Astrophysics Data System (ADS)

Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Coherent searches for the Crab pulsar with the Laser Interferometer Gravitational Wave Observatory (LIGO) have already constrained its gravitational wave luminosity to be ?2 % of the observed spin-down luminosity, thus placing a limit of ?1016 G on the internal field. Indirect spin-down limits inferred from recycled pulsars also yield interesting gravitational-wave-related constraints. Thus we may be at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes which control the diffusive magnetic flux transport in stars.

Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan

2015-03-01

214

Cosmic Structure of Magnetic Fields

The simulations of the formation of cosmological structure allows to determine the spatial inhomogeneity of cosmic magnetic fields. Such simulations, however, do not give an absolute number for the strength of the magnetic field due to insufficient spatial resolution. Combining these simulations with observations of the Rotation Measure to distant radio sources allows then to deduce upper limits for the strength of the magnetic field. These upper limits are of order 0.2 - 2 muG along the filaments and sheets of the galaxy distribution. In one case, the sheet outside the Coma cluster, there is a definitive estimate of the strength of the magnetic field consistent with this range. Such estimates are almost three orders of magnitude higher than hitherto assumed usually. High energy cosmic ray particles can be either focussed or strongly scattered in such magnetic filaments and sheets, depending on the initial transverse momentum. The cosmological background in radio and X-ray wavelengths will have contributions from these intergalactic filaments and sheets, should the magnetic fields really be as high as 0.2 - 2 muG.

Peter L. Biermann; Hyesung Kang; Joerg P. Rachen; Dongsu Ryu

1997-09-25

215

IR photodetector based on rectangular quantum wire in magnetic field

NASA Astrophysics Data System (ADS)

In this paper we study rectangular quantum wire based IR detector with magnetic field applied along the wires. The energy spectrum of a particle in rectangular box shows level repulsions & crossings when external magnetic field is applied. Due to this complex level dynamics, we can tune the spacing between any two levels by varying the magnetic field. This method allows user to change the detector parameters according to his/her requirements. In this paper, we numerically calculate the energy sub-band levels of the square quantum wire in constant magnetic field along the wire and quantify the possible operating wavelength range that can be obtained by varying the magnetic field. We also calculate the photon absorption probability at different magnetic fields and give the efficiency for different wavelengths if the transition is assumed between two lowest levels.

Jha, Nandan

2014-04-01

216

NASA Technical Reports Server (NTRS)

Aspherical harmonic model of the planetary magnetic field of Uranus is obtained from the Voyager 2 encounter observations using generalized inverse techniques which allow partial solutions to complex (underdetermined) problems. The Goddard Space Flight Center 'Q3' model is characterized by a large dipole tilt (58.6 deg) relative to the rotation axis, a dipole moment of 0.228 G R(Uranus radii cubed) and an unusually large quadrupole moment. Characteristics of this complex model magnetic field are illustrated using contour maps of the field on the planet's surface and discussed in the context of possible dynamo generation in the relatively poorly conducting 'ice' mantle.

Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.

1987-01-01

217

MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

2004-10-03

218

Magnetic Fields in Molecular Clouds

Magnetic fields are believed to play an important role in the evolution of molecular clouds, from their large scale structure to dense cores, protostellar envelopes, and protoplanetary disks. How important is unclear, and whether magnetic fields are the dominant force driving star formation at any scale is also unclear. In this review we examine the observational data which address these questions, with particular emphasis on high angular resolution observations. Unfortunately the data do not clarify the situation. It is clear that the fields are important, but to what degree we don't yet know. Observations to date have been limited by the sensitivity of available telescopes and instrumentation. In the future ALMA and the SKA in particular should provide great advances in observational studies of magnetic fields, and we discuss which observations are most desirable when they become available.

Tyler L. Bourke; Alyssa A. Goodman

2004-01-14

219

Modeling Earth's magnetic field variation

NASA Astrophysics Data System (ADS)

Observations of the Earth's magnetic field taken at the Earth's surface and at satellite altitude have been combined to construct models of the geomagnetic field and its variation. Lesur et al. (2010) developed a kinematic reconstruction of core field changes that satisfied the frozen-flux constraint. By constraining the field evolution to be entirely due to advection of the magnetic field at the core surface it maintained the spatial complexity of the field morphology imposed by a satellite field model backward in time [Wardinski & Lesur,2012]. In this study we attempt a kinematic construction of future variation in Earth's magnetic field variation. Our approach, first seeks to identify typical time scales of the magnetic field and core surface flows present in decadal and millennial field and flow models. Therefore, the individual spherical harmonic coefficients are treated by methods of time series analysis. The second step employs stochastic modelling of the temporal variability of such spherical harmonic coefficients that represent the field and core surface flow. Difficulties arise due to the non-stationary behavior of the field and core surface flow. However, the broad behavior may consist of some homogeneity, which could be captured by a generalized stochastic model that calls for the d'th difference of the time series to be stationary (ARIMA-Model), or by detrending the coefficient time series. By computing stochastic models, we obtain two sets of field-forecasts, the first set is obtained from stochastic models of the Gauss coefficients. Here, first results suggest that secular variation on time scales shorter than 5 years behaves rather randomly and cannot be described sufficiently well by stochastic models. The second set is derived from forward modeling the secular variation using the diffusion-less induction equation (kinematic construction). This approach has not provide consistent results.

Wardinski, I.

2012-12-01

220

CMB anisotropies in the presence of a stochastic magnetic field

Primordial magnetic fields present since before the epoch of matter-radiation equality have an effect on the anisotropies of the cosmic microwave background (CMB). The CMB anisotropies due to scalar perturbations are calculated in the gauge-invariant formalism for magnetized adiabatic initial conditions. Furthermore, the linear matter power spectrum is calculated. Numerical solutions are complemented by a qualitative analysis.

Kunze, Kerstin E. [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)

2011-01-15

221

Magnetic-Field-Induced Electric Polarization in Multiferroic Nanostructures

Magnetic-field-induced electric polarization in nanostructured multiferroic composite films was studied by using the Green's function approach. The calculations showed that large magnetic-field-induced polarization could be produced in multiferroic nanostructures due to enhanced elastic coupling interaction. Especially, the 1-3 type films with ferromagnetic nanopillars embedded in a ferroelectric matrix exhibited large magnetic-field-induced polarization responses, while the 2-2 type films with ferroelectric

Ce-Wen Nan; Gang Liu; Yuanhua Lin; Haydn Chen

2005-01-01

222

LABORATORY V MAGNETIC FIELDS AND FORCES

's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain to combine magnets to change the magnetic field at any point. You must determine the map of the magnetic

Minnesota, University of

223

Magnetic Fields in Population III Star Formation

We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.

Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg

2012-02-22

224

Calculation of the interaction magnetic force between two ring permanent magnets of trapezoidal cross-section and a ring permanent magnet above the infinite linear magnetic plane is presented in this article. The simple and fast analytical approach is used for these calculations based on the distribution of microscopic surface Ampere's currents and the discretization technique. The results for the interaction magnetic

Ana N. Vu?kovi?; Saša S. Ili?; Slavoljub R. Aleksi?

2012-01-01

225

Self-Consistent Field Calculations Spreadsheet

NSDL National Science Digital Library

A Self-Consistent Field Calculations Spreadsheet can help your students understand the self-consistent field (SCF) procedure, typically presented in an undergraduate physical chemistry course. The spreadsheet helps students easily perform SCF calculations on a two-electron atom and see graphically how the proper solution is obtained. It is also possible for more advanced students to apply this spreadsheet to more ambitious systems. The wave function for the two-electron atom is assumed to be a product of two identical one-electron orbital functions. The system is assumed to be a spin-singlet so that only the spatial functions need to be considered here. The SCF procedure involves two repeated steps. First, using a guess for the orbital function, an effective potential is generated. Second, with this effective potential, the differential equation for the orbital function is solved. The new orbital function is used to generate a new effective potential, which is then used to generate a newer orbital function. The procedure is repeated until successive orbital functions are considered to be close enough to each other. A Self-Consistent Field Calculations Spreadsheet file contains two spreadsheets. The first is the one described in the associated article (1). It performs the calculation with relatively simple approximations and numerical methods, and serves to illustrate the SCF procedure for the student. The second presents a more sophisticated calculation that may be of interest to more advanced students.

226

Indoor localization using magnetic fields

NASA Astrophysics Data System (ADS)

Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.

Pathapati Subbu, Kalyan Sasidhar

227

Black holes and magnetic fields

Stationary axisymmetric magnetic fields are expelled from outer horizons of black holes as they become extremal. Extreme black holes exhibit Meissner effect also within exact Einstein--Maxwell theory and in string theories in higher dimensions. Since maximally rotating black holes are expected to be astrophysically most important, the expulsion of the magnetic flux from their horizons represents a potential threat to an electromagnetic mechanism launching the jets at the account of black-hole rotation.

J. Bicak; V. Karas; T. Ledvinka

2007-04-09

228

Magnetic nanoparticles for applications in oscillating magnetic field

Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

Peeraphatdit, Chorthip

2010-12-15

229

Observations of Mercury's magnetic field

NASA Technical Reports Server (NTRS)

Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

1975-01-01

230

The regular interplanetary magnetic field during the 1980s

NASA Technical Reports Server (NTRS)

The regular magnetic field in the interplanetary space for 1980-1990 is calculated using the results of the Hoeksema-Zhao model for the radial magnetic field on the source surface. The unsteady radial component gives birth to the latitudinal and longitudinal components which could be of importance for, e.g., the galactic cosmic ray modulation.

Kalinin, M. S.; Krainev, M. B.

1995-01-01

231

Quark gap equation in an external magnetic field

NASA Astrophysics Data System (ADS)

The nonperturbative quark gap equation under the rainbow truncation and with two versions of a phenomenological one-gluon exchange interaction is studied in the presence of a uniform external magnetic field, with emphasis on the small field limit. The chiral quark condensate, magnetic moment, and susceptibility are calculated and compared to recent lattice data.

Watson, P.; Reinhardt, H.

2014-02-01

232

Pressure, chaotic magnetic fields, and magnetohydrodynamic equilibria S. R. Hudsona

Pressure, chaotic magnetic fields, and magnetohydrodynamic equilibria S. R. Hudsona and N. Nakajima the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure and not suitable for numerical calculations. If the pressure and magnetic field are continuous, the only nontrivial

Hudson, Stuart

233

Applied magnetic field design for the field reversed configuration compression heating experiment.

Detailed calculations of the formation, guide, and mirror applied magnetic fields in the FRC compression-heating experiment (FRCHX) were conducted using a commercially available generalized finite element solver, COMSOL Multiphysics(®). In FRCHX, an applied magnetic field forms, translates, and finally captures the FRC in the liner region sufficiently long to enable compression. Large single turn coils generate the fast magnetic fields necessary for FRC formation. Solenoidal coils produce the magnetic field for translation and capture of the FRC prior to liner implosion. Due to the limited FRC lifetime, liner implosion is initiated before the FRC is injected, and the magnetic flux that diffuses into the liner is compressed. Two-dimensional axisymmetric magnetohydrodynamic simulations using MACH2 were used to specify optimal magnetic field characteristics, and this paper describes the simulations conducted to design magnetic field coils and compression hardware for FRCHX. This paper presents the vacuum solution for the magnetic field. PMID:23635196

Domonkos, M T; Amdahl, D; Camacho, J F; Coffey, S K; Degnan, J H; Delaney, R; Frese, M; Gale, D; Grabowski, T C; Gribble, R; Intrator, T P; McCullough, J; Montano, N; Robinson, P R; Wurden, G

2013-04-01

234

Calculation of electromagnetic forces for magnet wheels

The characteristics of magnet wheels for magnetic levitation and linear drives are investigated by using a three-dimensional computer simulation. Magnet wheels levitate by revolving permanent magnets over a conducting plate, in which the eddy currents are induced. The thrust is also produced by making the torque unbalance. This paper deals with the ``partial overlap type`` magnet wheels, producing the lift force and the thrust. The magnetic flux density and eddy currents are examined for the 4-pole and the 2-pole structures.

Ogawa, Kokichi; Horiuchi, Yoko [Oita Univ. (Japan). Dept. of Production Systems Engineering] [Oita Univ. (Japan). Dept. of Production Systems Engineering; Fujii, Nobuo [Kyushu Univ., Fukuoka (Japan). Dept. of Electrical and Electronics Systems Engineering] [Kyushu Univ., Fukuoka (Japan). Dept. of Electrical and Electronics Systems Engineering

1997-03-01

235

Magnetic field tomography, helical magnetic fields and Faraday depolarization

NASA Astrophysics Data System (ADS)

Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three-dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along the wave's propagation path to the observer). In order to proceed, reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper, we examine how variations of the intrinsic angle of polarized emission ?0 with the Faraday depth ? within a source affect the observable quantities. Using simple models for the Faraday dispersion F(?) and ?0(?), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimized by combining observations in different wavebands. We also discuss how depolarization by Faraday dispersion due to a random component of the magnetic field attenuates the variations in the spectral energy distribution of the polarization and shifts its peak towards shorter wavelengths. This additional effect reduces the prospect of recovering the characteristics of the magnetic field helicity in magneto-ionic media dominated by the turbulent component of the magnetic field.

Horellou, C.; Fletcher, A.

2014-07-01

236

Magnetic Fields of the Earth and Sun

NSDL National Science Digital Library

This is an activity that compares the magnetic field of the Earth to the complex magnetic field of the Sun. Using images of the Earth and Sun that have magnets attached in appropriate orientations, learners will use a handheld magnetic field detector to observe the magnetic field of the Earth and compare it to that of the Sun, especially in sunspot areas. For each group of students, this activity requires use of a handheld magnetic field detector, such as a Magnaprobe or a similar device, a bar magnet, and ten small disc magnets.

237

Magnetic Forces and Field Line Density

NSDL National Science Digital Library

This is an activity about depicting the relative strength of magnetic fields using field line density. Learners will use the magnetic field line drawing of six magnetic poles created in a previous activity and identify the areas of strong, weak, and medium magnetic intensity using the density of magnetic field lines. This is the fifth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. How to Draw Magnetic Fields - II in the Magnetic Math booklet must be completed prior to this activity.

238

Quantum Monte Carlo Calculations Applied to Magnetic Molecules

We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these ideas in hand, we then provide a detailed explanation of the current QMC method in Chapter 4. The remainder of the thesis is devoted to presenting specific results: Chapters 5 and 6 contain articles in which this method has been used to answer general questions that are relevant to broad classes of systems. Then, in Chapter 7, we provide an analysis of four different species of magnetic molecules that have recently been synthesized and studied. In all cases, comparisons between QMC calculations and experimental data allow us to distinguish a viable microscopic model and make predictions for future experiments. In Chapter 8, the infamous ''negative sign problem'' is described in detail, and we clearly indicate the limitations on QMC that are imposed by this obstacle. Finally, Chapter 9 contains a summary of the present work and the expected directions for future research.

Larry Engelhardt

2006-08-09

239

An algorithm for the efficient and fast calculation of dispersive magnetic excitations in rare earth based systems has been developed. Crystal field anisotropy and anisotropy of the two ion interactions can be taken into account. It is based on the standard mean field–random phase approximation of the problem. In analogy to lattice dynamical calculations the central problem of finding the

M. Rotter

2006-01-01

240

On Generation of magnetic field in astrophysical bodies

In this letter we compute energy transfer rates from velocity field to magnetic field in MHD turbulence using field-theoretic method. The striking result of our field theoretic calculation is that there is a large energy transfer rate from the large-scale velocity field to the large-scale magnetic field. We claim that the growth of large-scale magnetic energy is primarily due to this transfer. We reached the above conclusion without any linear approximation like that in $\\alpha$-dynamo.

Mahendra K. Verma

2001-12-09

241

Electromagnetic radiation by quark-gluon plasma in magnetic field

The electromagnetic radiation by quark-gluon plasma in strong magnetic field is calculated. The contributing processes are synchrotron radiation and one--photon annihilation. It is shown that in relativistic heavy--ion collisions at RHIC and LHC synchrotron radiation dominates over the annihilation. Moreover, it constitutes a significant part of all photons produced by the plasma at low transverse momenta; its magnitude depends on the plasma temperature and the magnetic field strength. Electromagnetic radiation in magnetic field is probably the missing piece that resolves a discrepancy between the theoretical models and the experimental data. It is argued that electromagnetic radiation increases with the magnetic field strength and plasma temperature.

Kirill Tuchin

2012-06-03

242

NASA Astrophysics Data System (ADS)

Ab initio calculations of the parameters of magnetic and electrical hyperfine interactions at the nuclei of magnetic ions 47,49Ti and nonmagnetic ions 139La and 89Y have been performed in the model of a periodic crystal and in the cluster model for lanthanum and yttrium titanates. A comparison has been performed with experimental data and with the results of calculations in the model of crystalline field and with data from calculations in the LDA and LDA + U approximations.

Agzamova, P. A.; Leskova, Yu. V.; Petrov, V. P.; Chernyshev, V. A.; Zakir'yanov, D. O.; Nikiforov, A. E.

2014-12-01

243

CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM.

A mercury jet is being considered as the production target for a muon storage ring facility to produce an intense neutrino beam. A 20 T solenoid magnet that captures pions for muon production surrounds the mercury target. As the liquid metal jet enters or exits the field eddy currents are induced. We calculate the effects that a liquid metal jet experiences in entering and exiting the magnetic field for the magnetic configuration considered in the Neutrino Factory Feasibility Study II.

GALLARDO, J.; KAHN, S.; PALMER, R.B.; THIEBERGER, P.; WEGGEL, R.J.; MCDONALD, K.

2001-06-18

244

The magnetic compression of intense relativistic electron beams under a converging magnetic guide field is studied theoretically and experimentally in this paper. A code to evaluate the compressed-beam transport is set up. Calculations of the beam energy fraction transmitted through magnetic mirror are in good agreement with experimental data. Bibtex entry for this abstract Preferred format for this abstract (see

Liu Guo-zhi; Liu Nai-quan; Xi Xie; Qiu Ai-ci; Fan Ya-jun; Zhang Jia-sheng

1994-01-01

245

Modeling Magnetic Fields with FEMM 3.1

NASA Astrophysics Data System (ADS)

FEMM (Finite Element Method Magnetics) 3.1, a freeware program, is useful for modeling problems involving magnets, currents and magnetic fields. The applications of such a program involve both education and upper-level research. The program interface is intuitive and robust. As an educational tool, this program is useful because it handles internally the complicated equations needed to be solved when working with magnetism in matter. Since most elementary applications of magnetism involve permanent magnets, this program enables the user to calculate field energies and forces between magnets and magnetic materials, which would otherwise be impossible to obtain. An analysis of a popular physics demonstration, that of a diamagnetic-assisted levitating magnet, will be used to illustrate these concepts in more detail. The sensitivity of the equilibrium points to the spacing of the diamagnetic plates and the position of the upper attracting magnet is well-reproduced in this simulation.

Gumbart, James

2003-03-01

246

EXPLORER 10 MAGNETIC FIELD MEASUREMENTS

Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are

J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman

1963-01-01

247

Effects of magnetic fields on iron electrodeposition

The effects of magnetic fields (of 0–5 T magnetic flux density) on iron electrodeposition were investigated in terms of current efficiency, morphology and crystal orientation. The AFM images showed that the shape of iron grains was angular in no magnetic field and roundish in magnetic fields. The occurrence of preferred orientation parallel to the substrate plane was influenced by an

H. Matsushima; T. Nohira; I. Mogi; Y. Ito

2004-01-01

248

How to Draw Magnetic Fields - I

NSDL National Science Digital Library

This is an activity about depicting magnetic fields. Learners will observe two provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines for both orientations. This is the third activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

249

Transverse Magnetic Field Propellant Isolator

NASA Technical Reports Server (NTRS)

An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.

Foster, John E.

2000-01-01

250

Jupiter's magnetic field and magnetosphere

NASA Technical Reports Server (NTRS)

Among the planets of the solar system, Jupiter is unique in connection with its size and its large magnetic moment, second only to the sun's. The Jovian magnetic field was first detected indirectly by radio astronomers who postulated its existence to explain observations of nonthermal radio emissions from Jupiter at decimetric and decametric wavelengths. Since the early radio astronomical studies of the Jovian magnetosphere, four spacecraft have flown by the planet at close distances and have provided in situ information about the geometry of the magnetic field and its strength. The Jovian magnetosphere is described in terms of three principal regions. The inner magnetosphere is the region where the magnetic field created by sources internal to the planet dominates. The region in which the equatorial currents flow is denoted as the middle magnetosphere. In the outer magnetosphere, the field has a large southward component and exhibits large temporal and/or spatial variations in magnitude and direction in response to changes in solar wind pressure.

Acuna, M. H.; Behannon, K. W.; Connerney, J. E. P.

1983-01-01

251

Crystal field and magnetic properties

NASA Technical Reports Server (NTRS)

Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

Flood, D. J.

1977-01-01

252

A magnetic field model for wigglers and undulators

Recent interest in applications of wiggler magnets in storage rings has motivated efforts to incorporate their effects in calculations of beam dynamics. This paper presents an analytic model of wiggler fields that can be used with symplectic integration to evaluate such effects. Coefficients needed by the model are generated by fitting to the results of a finite-element field calculation. The

D. Sagan; J. A. Crittenden; D. Rubin; E. Forest

2003-01-01

253

We present the calculation of the probability production of an electron–positron pair in the presence of a strong magnetic field with time-varying strength. The calculation takes into account the presence of a strong, constant and uniform gravitational field in the same direction of the magnetic field. The results show that the presence of the gravitational field in general enhances very

Antonino Di Piazza; Giorgio Calucci

2006-01-01

254

A high-field superferric NMR magnet.

Strong, extensive magnetic fringe fields are a significant problem with magnetic resonance imaging magnets. This is particularly acute with 4-T, whole-body research magnets. To date this problem has been addressed by restricting an extensive zone around the unshielded magnet or by placing external unsaturated iron shielding around the magnet. This paper describes a solution to this problem which uses superconducting coils closely integrated with fully saturated iron elements. A 4-T, 30-cm-bore prototype, based on this design principle, was built and tested. The 5 G fringe field is contained within 1 meter of the magnet bore along the z axis. Homogeneity of the raw magnetic field is 10 ppm over 30% of the magnet's diameter after passive shimming. Compared with an unshielded magnet, 20% less superconductor is required to generate the magnetic field. Images and spectra are presented to demonstrate the magnet's viability for magnetic resonance imaging and spectroscopy. PMID:8419740

Huson, F R; Bryan, R N; MacKay, W W; Herrick, R C; Colvin, J; Ford, J J; Pissanetzky, S; Plishker, G A; Rocha, R; Schmidt, W

1993-01-01

255

NASA Technical Reports Server (NTRS)

The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

Mullan, D. J.

1974-01-01

256

Magnetic fields in spiral galaxies

NASA Astrophysics Data System (ADS)

The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At ?6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

Krause, Marita

2015-03-01

257

Magnetism of a relativistic degenerate electron gas in a strong magnetic field

The magnetization and magnetic susceptibility of a degenerate electron gas in a strong magnetic field in which electrons are located on the ground Landau level and the electron gas has the properties of a nonlinear paramagnet have been calculated. The paradoxical properties of the electron gas under these conditions-a decrease in the magnetization with the field and an increase in the magnetization with the temperature-have been revealed. It has been shown that matter under the corresponding conditions of neutron stars is a paramagnet with a magnetic susceptibility of {chi} {approx} 0.001.

Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

2012-09-15

258

Relativistic thermal plasmas - Effects of magnetic fields

NASA Technical Reports Server (NTRS)

Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.

Araki, S.; Lightman, A. P.

1983-01-01

259

Primordial magnetic fields from self-ordering scalar fields

A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by $B\\sim{10^{-9}}{((1+z)/10^3)^{-2.5}}({v}/{m_{\\rm pl}})^2({k}/{\\rm Mpc^{-1}})^{3.5}/{\\sqrt{N}}$ Gauss in the radiation dominated era for $k\\lesssim 1$ Mpc$^{-1}$, with $v$ being the vacuum ...

Horiguchi, Kouichirou; Sekiguchi, Toyokazu; Sugiyama, Naoshi

2015-01-01

260

Advances in high field magnetism at Osaka

NASA Astrophysics Data System (ADS)

Recent advances in high field magnetism mainly done in the High Magnetic Field Laboratory, Osaka University, are reviewed. Various magnetic and electronic properties are induced in high fields; it is emphasized that the newly developed incommensurate mean field model is effective in understanding complex phase diagrams such as in CeSb, CeBi and PrCo 2Si 2.

Date, M.

1989-03-01

261

Torque Calculation and Analysis of Permanent-Magnetic Gears

Permanent-magnetic gears are magneto-mechanical devices that are widely used to replace the ordinary mechanical gears and to transmit torque without any mechanical contact. The transmitted torque is one of the most important properties of magnetic gears. The torque characteristics of radial type permanent magnetic gears are investigated using ANSYS Program. The Maxwell stress tensor technique is used to calculate the

Yang Zhiyi; Zhao Han

262

Calculation Method of Permanent Magnet Pickups for Electric Guitars

and the electromotive force in the pickup coil. Index Terms Permanent magnets, pickups for electric guitar, analytical1 Calculation Method of Permanent Magnet Pickups for Electric Guitars G. Lemarquand and V This paper first presents the structures of permanent magnet pickups for electric guitar and the considered

Paris-Sud XI, Université de

263

3D Analytical Calculation of the Interactions between Permanent Magnets

, Permanent Magnets, 3D, Interaction Energy, Force, Torque Contact Author: Jean-Paul YONNET, G2E Lab by interaction forces between permanent magnets. When their length is long in comparison with the airgap1 3D Analytical Calculation of the Interactions between Permanent Magnets Hicham ALLAG and Jean

Paris-Sud XI, Université de

264

LABORATORY V MAGNETIC FIELDS AND FORCES

's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain to combine magnets to change the magnetic field at any point. You decide to determine the form

Minnesota, University of

265

Entanglement of two-qubit photon beam by magnetic field

NASA Astrophysics Data System (ADS)

We have studied the possibility of affecting the entanglement measure of 2-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, by the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact with both the photons and the magnetic field. The possibility of exact theoretical analysis of this scheme is based on known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measure of the photon beam as a function of the applied magnetic field and parameters of the electron medium.

Levin, A. D.; Gitman, D. M.; Castro, R. A.

2014-09-01

266

Entanglement of two-qubit photon beam by magnetic field

We have studied the possibility of affecting the entanglement measure of 2-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, by the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact with both the photons and the magnetic field. The possibility of exact theoretical analysis of this scheme is based on known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measure of the photon beam as a function of the applied magnetic field and parameters of the electron medium.

A. D. Levin; D. M. Gitman; R. C. Castro

2014-09-05

267

NASA Astrophysics Data System (ADS)

The optimization of the field distribution of the analyzing magnet installed in the axial injection beam line of the cyclotron DC-280 is carried out. This optimization is done on the basis of a three-dimensional calculation of the magnet field. The optimum value of the basic geometrical characteristics of the magnet influencing the form of the field distribution is found.

Ivanenko, I. A.; Kazarinov, N. Yu.

2014-11-01

268

Quantitative estimates of magnetic field reconnection properties from electric and magnetic field there are positive electric field components tangential to the magnetopause and a magnetic field component normal to it. Because these three components are the smallest of the six electric and magnetic fields

California at Berkeley, University of

269

Modified methods of stellar magnetic field measurements

NASA Astrophysics Data System (ADS)

The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator \\hat{L} to both sides of this relation. As the operator \\hat{L}, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star ?2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared to be in good agreement with those determined by other methods.

Kholtygin, A. F.

2014-12-01

270

Explaining Mercury's peculiar magnetic field

NASA Astrophysics Data System (ADS)

MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.

Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

2014-05-01

271

PLANT GROWTH UNDER STATIC MAGNETIC FIELD INFLUENCEê

Already germinated seeds of Zea mays were cultivated in the presence of static magnetic field in order to observe several biochemical changes and stimulation effect on plantlets growth. Magnetic treatment involved the application of five different values of magnetic induction of static magnetic field, ranging between 50 mT and 250 mT, during 14 days. In order to investigate the biochemical

M. RÃCUCIU; D. CREANGÃ; I. HORGA

2008-01-01

272

Field errors in superconducting magnets

The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

Barton, M.Q.

1982-01-01

273

Effect of strong magnetic fields on the pasta phase structure

The effect of strong magnetic fields on the properties of the pasta structures is calculated within a Thomas Fermi approach using relativistic mean field models to modulate stellar matter. It is shown how quantities such as the size of the clusters and Wigner-Seitz cells, the surface tension and the transition between configurations are affected. It is expected that these effects may give rise to large stresses in the pasta phase if the local magnetic field suffers fluctuations.

Rafael Camargo Rodrigues de Lima; Sidney dos Santos Avancini; Constança Providência

2013-09-09

274

Measurements of Solar Vector Magnetic Fields

NASA Technical Reports Server (NTRS)

Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

Hagyard, M. J. (editor)

1985-01-01

275

Plasma stability in a dipole magnetic field

The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...

Simakov, Andrei N., 1974-

2001-01-01

276

Travelling wave approach for high field magnetic resonance imaging

A theoretical investigation of the travelling-wave approach for high field magnetic resonance imaging (MRI) is presented. The travelling wave probes excite the fields in the longitudinal direction of the bore, so that the effects of the attenuation constant due to high permittivity and lossy tissue need to be calculated. In addition, the travelling wave modes should affect the B1+ field

Ibrahim A. Elabyad; A. Omar; T. Herrmann; J. Mallow; J. Bernarding

2010-01-01

277

Rotating copper plasmoid in external magnetic field

Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

Pandey, Pramod K.; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208 016 (India)

2013-02-15

278

Minireview: Biological effects of magnetic fields

The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

Villa, M.; Mustarelli, P. (Lab. NMR, Pavia (Italy)); Caprotti, M. (Fondazione Clinica del Lavoro, Pavia (Italy))

1991-01-01

279

Effect of strong magnetic field on surface electric field of strange stars

We made a detailed study of the properties of the electron layer near the quark surface of strange stars with strong ($\\sim 10^{14}-10^{17}$G) magnetic fields. The electrostatic potential and the electric field at the quark surface were calculated as functions of the magnetic field intensity of bare strange stars. Using an ultrastrong ($B\\geq 2.5\\times10^{16}$G) magnetic field, we found that the distribution of electrons becomes an exponential function of radial distance, which is quite different in a magnetic field-free case. We also calculated the variation in gap width between the strange core and the normal nuclear crust for strange stars, which is due to magnetic field effect.

Zheng Xiaoping; Yu Yunwei

2005-09-10

280

Magnetic Moment of Vector Mesons in the Background Field Method

We report some results for the magnetic moments of vector mesons extracted from mass shifts in the presence of static external magnetic fields. The calculations are done on $24^4$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method.

Frank X. Lee; Scott Moerschbacher; Walter Wilcox

2007-10-11

281

Two staged laser acceleration with a static magnetic field

The use of a static magnetic field with a modest intensity in the conventional vacuum laser acceleration scheme has been investigated. It has been found that the applied magnetic field can break the symmetry of the laser acceleration and deceleration phases experienced by the electrons after they leave the focal region, allowing the electrons to be accelerated in the focal region to gain more energy from the combined fields of the laser and the static magnetic field. The later process is the second stage acceleration taking place in the region outside the laser focal area. Explanations of these interaction features based on analytical calculations and simulations are presented.

Chen, Z.; Ho, Y. K.; Kong, Q.; Wang, P. X.; Wang, W.; Xu, J. J. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

2007-08-15

282

Magnetic dipole moment determination by near-field analysis

NASA Technical Reports Server (NTRS)

A method for determining the magnetic moment of a spacecraft from magnetic field data taken in a limited region of space close to the spacecraft. The spacecraft's magnetic field equations are derived from first principles. With measurements of this field restricted to certain points in space, the near-field equations for the spacecraft are derived. These equations are solved for the dipole moment by a least squares procedure. A method by which one can estimate the magnitude of the error in the calculations is also presented. This technique was thoroughly tested on a computer. The test program is described and evaluated, and partial results are presented.

Eichhorn, W. L.

1972-01-01

283

Magnetic field distribution due to domain walls in unconventional superconductors

NASA Astrophysics Data System (ADS)

Steady-state properties of 180? Bloch domain walls (DWs) in superconducting ferromagnets (SCFMs) are studied. The distribution of the magnetic field above and below the surface of the SCFM due to the permanent magnetization supercurrent flowing in the DW plane is calculated by solving Maxwell equations supplemented by the London equation. It is shown that part of the magnetic flux of the two neighboring domains closes in the nearest vicinity of the surface of the sample, giving rise to a decline in the direction of the field from the parallel to the DW plane. As a result, the value of the normal component of the magnetic field at the surface of the sample reaches only half of the value of the bulk magnetic flux. At distances greater than the London penetration depth, the magnetic field decreases as an inverse power law due to the long-range character of the dipole-dipole interaction. The last two circumstances are important for comparing the calculated magnetic field with data obtained by using methods based on measuring the normal component of magnetic field, aiming to confirm the existence of the magnetic order parameter in unconventional superconductors.

Logoboy, N. A.

2008-02-01

284

Proton NMR phenomena such as spin-lattice relaxation, free-induction decays, and solid echoes are analyzed with respect to contributions by intermolecular dipole-dipole interactions in polymer melts. The intermolecular dipole-dipole correlation function is calculated by taking into account the correlation hole effect characteristic for polymer melts. It is shown that the ratio between the intra- and intermolecular contributions to NMR measurands depends on the degree of isotropy of chain dynamics anticipated in different models. This, in particular, refers to the tube/reptation model that is intrinsically anisotropic in clear contrast to n-renormalized Rouse models, where no such restriction is implied. Due to anisotropy, the tube/reptation model predicts that the intramolecular contribution to the dipole-dipole correlation function increases with time relative to the intermolecular contribution. Therefore, the intramolecular contribution is expected to dominate NMR measurands by tendency at long times (or low frequencies). On the other hand, the isotropic nature of the n-renormalized Rouse model suggests that the intermolecular contribution tends to prevail on long-time scales (or low frequencies). Actually, theoretical estimations and the analysis of experimental spin-lattice relaxation data indicate that the intermolecular contribution to proton NMR measurands is no longer negligible for times longer than 10(-7) s-10(-6) s corresponding to frequencies below the megahertz regime. Interpretations not taking this fact into account need to be reconsidered. The systematic investigation of intermolecular interactions in long-time/low frequency proton NMR promises the revelation of the dynamic features of segment displacements relative to each other in polymer melts. PMID:20210412

Fatkullin, N; Gubaidullin, A; Stapf, S

2010-03-01

285

Field calculations of axisymmetric current coils in vacuum

NASA Astrophysics Data System (ADS)

Expressions for the magnetic induction of the field resulting from an axisymmetric current configuration were mutually related. Expressions with elliptic integrals and Legendre functions series for singular circular coils and circle cylindric current films are given. For voluminous circle cylindric current coils, only expressions in Legendre functions series and the form of integrals are known. By an appropriate bifurcation of the integral interval, the induction in each point of the voluminous coil was calculated. The homopolar direct current generator with superconducting coil packet was examined.

Voermans, M. A. J.

286

Magnetic monopole and the nature of the static magnetic field

We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

Xiuqing Huang

2008-12-10

287

Anisotropy of magnetic emulsions induced by magnetic and electric fields

The anisotropy of magnetic emulsions induced by simultaneously acting electric and magnetic fields is theoretically and experimentally investigated. Due to the anisotropy, the electric conductivity and magnetic permeability of a magnetic emulsion are no longer scalar coefficients, but are tensors. The electric conductivity and magnetic permeability tensors of sufficiently diluted emulsions in sufficiently weak electric and magnetic fields are found as functions of the electric and magnetic intensity vectors. The theoretically predicted induced anisotropy was verified experimentally. The experimental data are analyzed and compared with theoretical predictions. The results of the analysis and comparison are discussed.

Yury I. Dikansky; Alexander N. Tyatyushkin; Arthur R. Zakinyan

2011-09-10

288

Microwave Measurements of Coronal Magnetic Field

NASA Astrophysics Data System (ADS)

Magnetic field measurements of the solar corona using microwave observation are reviewed. The solar corona is filled with highly ionised plasma and magnetic field. Moving charged particles interact with magnetic field due to Lorentz force. This results in gyration motion perpendicular to the magnetic field and free motion along the magnetic field. Circularly polarized electro-magnetic waves interact with gyrating electrons efficiently and the interaction depends on the sense of circular polarization (right-handed or left-handed). This is the reason why we can measure magnetic field strength through microwave observations. This process does not require complicated quantum physics but the classical treatment is enough. Hence the inversion of measured values to magnetic field strength is simpler than in the case of optical and infrared measurements. There are several methods to measure magnetic field strength through microwave observations. We can divide them into two categories: one is based on emission mechanisms and the other is based on wave propagation. In the case of emission mechanisms, thermal f-f emission, thermal gyro-resonance emission and non-thermal gyro-synchrotron emission can be used to measure magnetic field strength. In the case of wave propagation, polarization reversal due to propagation through quasi-transverse magnetic field region can be used. Examples of distribution of magnetic field strength in the solar corona measured by Nobeyama Radioheliograph will be presented.

Shibasaki, K.

2006-08-01

289

Pull-in control due to Casimir forces using external magnetic fields

We present a theoretical calculation of the pull-in control in capacitive micro switches actuated by Casimir forces, using external magnetic fields. The external magnetic fields induces an optical anisotropy due to the excitation of magneto plasmons, that reduces the Casimir force. The calculations are performed in the Voigt configuration, and the results show that as the magnetic field increases the system becomes more stable. The detachment length for a cantilever is also calculated for a cantilever, showing that it increases with increasing magnetic field. At the pull-in separation, the stiffness of the system decreases with increasing magnetic field.

R. Esquivel-Sirvent; M. A. Palomino-Ovando; G. H. Cocoletzi

2009-07-13

290

Harmonic undulator radiations with constant magnetic field

NASA Astrophysics Data System (ADS)

Harmonic undulators has been analysed in the presence of constant magnetic field along the direction of main undulator field. The spectrum modifications in harmonic undulator radiations and intensity degradation as a function of constant magnetic field magnitude at fundamental and third harmonics have been evaluated with a numerical integration method and generalised Bessel function. The role of harmonic field to overcome the intensity reduction due to constant magnetic field and energy spread in electron beam has also been demonstrated.

Jeevakhan, Hussain; Mishra, G.

2015-01-01

291

Test chambers for cell culture in static magnetic field

NASA Astrophysics Data System (ADS)

Article presents a test chamber intended to be used for in vitro cell culture in homogenous constant magnetic field with parametrically variable magnitude. We constructed test chambers with constant parameters of control homeostasis of cell culture for the different parameters of static magnetic field. The next step was the computer calculation of 2D and 3D simulation of the static magnetic field distribution in the chamber. The analysis of 2D and 3D calculations of magnetic induction in the cells' exposition plane reveals, in comparison to the detection results, the greater accuracy of 2D calculations (Figs. 9 and 10). The divergence in 2D method was 2-4% and 8 to 10% in 3D method (reaching 10% only out of the cells' cultures margins).

Glinka, Marek; Gawron, Stanis?aw; Siero?, Aleksander; Paw?owska–Góral, Katarzyna; Cie?lar, Grzegorz; Siero?–Sto?tny, Karolina

2013-04-01

292

How to Draw Magnetic Fields - II

NSDL National Science Digital Library

This is an activity about depicting magnetic polarity. Learners will observe several provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines and depict the polarities for several orientations, including an arrangement of six magnetic poles. This is the fourth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

2012-08-03

293

Meson spectrum in strong magnetic fields

NASA Astrophysics Data System (ADS)

We study the relativistic quark-antiquark system embedded in a magnetic field (MF). The Hamiltonian containing confinement, one gluon exchange, and spin-spin interaction is derived. We analytically follow the evolution of the lowest meson states as a function of MF strength. Calculating the one gluon exchange interaction energy ?VOGE? and spin-spin contribution ?aSS? we have observed that these corrections remain finite at large MF, preventing the vanishing of the total ? meson mass at some Bcrit, as previously thought. We display the ? masses as functions of the MF in comparison with recent lattice data.

Andreichikov, M. A.; Kerbikov, B. O.; Orlovsky, V. D.; Simonov, Yu. A.

2013-05-01

294

Interplanetary magnetic field data book

NASA Technical Reports Server (NTRS)

An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

King, J. H.

1975-01-01

295

Graphene transparency in weak magnetic fields

We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order $(eB)^2$, where $e$ is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is radiated with monochromatic light of frequency $\\omega$ along the external field direction, from the modified Maxwell's equations we derive the intensity of transmitted light and the angle of polarization rotation in terms of the longitudinal ($\\sigma_{xx}$) and transverse ($\\sigma_{xy}$) conductivities. Corrections to these quantities, both calculated and measured, are of order $(eB)^2/\\omega^4$. Our findings generalize and complement previously known results reported in literature regarding the light absorption problem in graphene from the experimental and theoretical points of view, with and without external magnetic fields.

David Valenzuela; Saúl Hernández-Ortiz; Marcelo Loewe; Alfredo Raya

2014-10-20

296

Orbital Magnetism in Band Structure Calculations

We discuss abilities of the exact Fock exchange EX to deal with the phenomenon of the orbital magnetism in the density functional theories. The essence of our approach is to decompose the density matrix in terms of invariant (Rwidehatrho_i=widehatrho_i) and noninvariant (Rwidehatrho_n=-widehatrho_n) parts under the time reversal operation R. Stressing the short-range electron-electron interactions, we analyze the exchange enhancement of

I. V. Solovyev; K. Terakura

1997-01-01

297

Analytical representation of cyclotron magnetic field

A model has been developed for the rapid but accurate calculation of the static magnetic field in the Chalk River cyclotron. The field is expressed in terms of elementary functions which can be handled efficiently in differential-algebra trajectory integrations. Maxwell`s equations are satisfied exactly. Each of seven subdivisions of the superconducting coils is treated by a moment expansion about a central circle. Each pole is modeled as a uniformly magnetized semi-infinite prism. Monopoles and dipoles at the vertices of the polygonal pole faces correct for departures from the true pole shape. Uniform distributions of dipole strength along the edges of the pole-face polygons correct for the local inappropriateness of the assumption of uniform magnetization. The contributions of the yoke and of other relatively distant parts of the structure to the field in the region of particle acceleration are represented by low-order polynomials. Some of the source parameters are obtained by fitting to the measured values of B{sub z} in the horizontal plane of symmetry.

Lee-Whiting, G.E.; Davies, W.G. [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.] [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.

1994-07-01

298

Plasma-satellite interaction driven magnetic field perturbations

We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.

Saeed-ur-Rehman, E-mail: surehman@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Theoretical Physics Division, PINSTECH, Nilore Islamabad 44000 (Pakistan); Marchand, Richard, E-mail: Richard.Marchand@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

2014-09-15

299

Magnetic field driven domain-wall propagation in magnetic nanowires

The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

Wang, X.R. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China); Yan, P. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)], E-mail: yanpeng@ust.hk; Lu, J.; He, C. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

2009-08-15

300

Magnetization of the QCD vacuum at large fields

The response of the QCD vacuum to very large static external magnetic fields (q B >> Lambda_QCD^2) is studied. In this regime, the magnetization of the QCD vacuum is naturally described via perturbative QCD. Combining pQCD and the Schwinger proper time formalism, we calculate the magnetization of the QCD vacuum due to a strong magnetic field at leading order (one-loop) to be proportional to B log B. We show that the leading perturbative correction (two-loop) vanishes.

Thomas D. Cohen; Elizabeth S. Werbos

2008-10-28

301

Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

2000-12-19

302

Magnetic fluid flow phenomena in DC and rotating magnetic fields

An investigation of magnetic fluid experiments and analysis is presented in three parts: a study of magnetic field induced torques in magnetorheological fluids, a characterization and quantitative measurement of properties ...

Rhodes, Scott E. (Scott Edward), 1981-

2004-01-01

303

Behavior of the magnetic structures of the magnetic fluid film under tilted magnetic fields

The patterns of the magnetic structure of the magnetic fluid thin film under tilted magnetic fields were taken to investigate the behavior of magnetic structures. The tilted angle ? is the angle between the direction of applied magnetic field and the normal line of the film. In our previous work, a nearly perfect ordered hexagonal structure in magnetic fluid thin

H. C Yang; I. J Jang; H. E Horng; J. M Wu; Y. C Chiou; Chin-Yih Hong

1999-01-01

304

Behavior of the magnetic structures of the magnetic fluid film under tilted magnetic fields

The patterns of the magnetic structure of the magnetic fluid thin film under tilted magnetic fields were taken to investigate the behavior of magnetic structures. The tilted angle theta is the angle between the direction of applied magnetic field and the normal line of the film. In our previous work, a nearly perfect ordered hexagonal structure in magnetic fluid thin

H. C. Yang; I. J. Jang; H. E. Horng; J. M. Wu; Y. C. Chiou; Chin-Yih Hong

1999-01-01

305

Pair production in a strong magnetic field: the effect of a strong background gravitational field

We present the calculation of the probability production of an\\u000aelectron-positron pair in the presence of a strong magnetic field with\\u000atime-varying strength. The calculation takes into account the presence of a\\u000astrong, constant and uniform gravitational field in the same direction of the\\u000amagnetic field. The results show that the presence of the gravitational field\\u000ain general enhances the

Antonino Di Piazza; Giorgio Calucci

2004-01-01

306

Quantitative model of the magnetospheric magnetic field

Quantitative representations of the magnetic fields associated with the magnetopause currents and the distributed currents (tail and quiet time ring currents) have been developed. These fields are used together with a dipole representation of the main field of the earth to model the total vector magnetospheric magnetic field. The model is based on quiet time data averaged over all 'tilt

W. P. Olson; K. A. Pfitzer

1974-01-01

307

Low frequency electric and magnetic fields

NASA Technical Reports Server (NTRS)

Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

Spaniol, Craig

1989-01-01

308

Near-Field Magnetic Dipole Moment Analysis

NASA Technical Reports Server (NTRS)

This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

Harris, Patrick K.

2003-01-01

309

Magnetic field observations in Comet Halley's coma

NASA Astrophysics Data System (ADS)

During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

1986-05-01

310

Full 180° Magnetization Reversal with Electric Fields

NASA Astrophysics Data System (ADS)

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals.

Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

2014-12-01

311

Full 180° magnetization reversal with electric fields.

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

Wang, J J; Hu, J M; Ma, J; Zhang, J X; Chen, L Q; Nan, C W

2014-01-01

312

Magnetic field effects on microwave absorbing materials

NASA Technical Reports Server (NTRS)

The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

1991-01-01

313

Full 180° Magnetization Reversal with Electric Fields

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

2014-01-01

314

Magnetic fields of the solar system: A comparative planetology toolkit

NASA Astrophysics Data System (ADS)

Magnetic fields within the solar system provide a strong organizing force for processes active both within a planet or moon, and outside of it. In the interest of stimulating research and education in the field of comparative planetology, we present documented Fortran and MATLAB source codes and benchmarks to the latest models for planets and satellites that host internal magnetic fields. This presentation is made in the context of an interactive website: http://planetary-mag.net. Models are included for Earth (Comprehensive model CM4 of Sabaka et al., 2004, Geophysics J. Int.), Mercury (Anderson et al, 2011, Science), the Moon (Purucker and Nicholas, 2010, JGR), Mars (Lillis et al., 2010, JGR), and the outer planets Jupiter, Saturn, Uranus, and Neptune (Russell and Dougherty, 2010, Space Science Reviews). All models include magnetic fields of internal origin, and fields of external origin are included in the models for Mercury, the Earth, and the Moon. As models evolve, we intend to include magnetic fields of external origin for the other planets and moons. The website allows the user to select a coordinate system, such as planet-centered, heliocentric, or boundary normal, and the location within that coordinate system, and the vector magnetic field due to each of the component source fields at that location is then calculated and presented. Alternatively, the user can input a range as well as a grid spacing, and the vector magnetic field will be calculated for all points on that grid and be made available as a file for downloading.

Nicholas, J. B.; Purucker, M. E.; Johnson, C. L.; Sabaka, T. J.; Olsen, N.; Sun, Z.; Al Asad, M.; Anderson, B. J.; Korth, H.; Slavin, J. A.; Alexeev, I. I.; Belenkaya, E. S.; Phillips, R. J.; Solomon, S. C.; Lillis, R. J.; Langlais, B.; Winslow, R. M.; Russell, C. T.; Dougherty, M. K.; Zuber, M. T.

2011-12-01

315

Magnetic Force Calculations Applied to Magnetic Force Microscopy

\\u000a In IC failure analysis the detection of currents is often used to indicate the presence of a defective device. One method\\u000a used for this analysis is the Magnetic Force Microscopy (MFM). Employing this technique measurement errors often occur as\\u000a for instance due to heterogeneous magnetic tip coatings, fabrication\\/abrasion errors of the MFM tips and vibrations during\\u000a a MFM scanning process.

Thomas Preisner; Wolfgang Mathis

316

Electromagnetic radiation from a synchrotron beam in a field of short magnets

NASA Astrophysics Data System (ADS)

Dipole elctromagnetic radiation from a synchrotron beam in a sharply azimuthally nonuniform magnetic field is examined. The spectum-angle characteristics of the radiation are determined by an analytical calculation of the magnetic field of short plane rectangular magnets. It is shown that the spectral density of the radiation increases exponentially as the gap between the magnetic poles decreases.

Smoliakov, N. V.

1988-03-01

317

We study the effect of poloidal magnetic field on type I planetary migration by linear perturbation analysis in the shearing sheet approximation, and the analytic results are compared with numerical calculations. In contrast to the unmagnetized case, the basic equations that describe the wake due to a planet in the disk allow magnetic resonances at which the density perturbation diverges.

Takayuki Muto; Masahiro N. Machida; Shu-ichiro Inutsuka

2008-01-01

318

Diluted magnetic semiconductors: Novel properties in high magnetic fields

NASA Astrophysics Data System (ADS)

Diluted magnetic semiconductors, II-VI and IV-VI compounds in which the cation is partially replaced by a magnetic ion such as Mn or a rare earth, combine interesting semiconducting and magnetic properties. At zero applied field, the materials behave like normal semiconductors or semimetals with energy gaps that can be varied with the composition of the magnetic ion. In the presence of an applied field, however, novel properties are observed. These include large field-induced splittings of energy levels, leading to strong Faraday rotations and the possibility of energy-gap tuning by magnetic field, field and temperature-dependent g-factors, large negative magnetoresistance followed at higher fields by a slowly varying positive magnetoresistance, and large paramagnetism with coupling of the magnetic ions by superexchange. Not only can these properties be observed in bulk crystal, but also they suggest promising physics and applications in artificially structured materials.

Anderson, J. R.

1990-06-01

319

Deformation of Water by a Magnetic Field

ERIC Educational Resources Information Center

After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

Chen, Zijun; Dahlberg, E. Dan

2011-01-01

320

Exploring Magnetic Fields with a Compass

ERIC Educational Resources Information Center

A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

Lunk, Brandon; Beichner, Robert

2011-01-01

321

Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

2001-12-12

322

Universality of critical magnetic field in holographic superconductor

In this letter we study aspects of the holographic superconductors analytically in the presence of a constant external magnetic field. We show that the critical temperature and critical magnetic field can be calculated at nonzero temperature. We detect the Meissner effect in such superconductors. A universal relation between black hole mass $ M$ and critical magnetic field $H_c$ is proposed as $\\frac{H_c}{M^{2/3}}\\leq 0.687365$. We discuss some aspects of phase transition in terms of black hole entropy and the Bekenstein's entropy to energy upper bound.

D. Momeni; R. Myrzakulov

2015-02-11

323

Bremsstrahlung absorption of photons in a strong magnetic field

Coefficients are calculated for radiation absorption due to free-free transitions (Bremsstrahlung absorption) in a strong magnetic field where the electron-cyclotron frequency is much greater than the radiation frequency and the cyclotron energy is much greater than the electron temperature. Using standard quantum-mechanical formulas, absorption coefficients are obtained for photons with parallel and perpendicular polarization (relative to the magnetic field). Absorption

G. G. Pavlov; A. D. Kaminker

1975-01-01

324

Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

2007-06-26

325

Analysis of magnetic field levels at KSC

NASA Technical Reports Server (NTRS)

The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

Christodoulou, Christos G.

1994-01-01

326

Optical band gap width in GaAs in megagauss magnetic fields

The band gap width in GaAs in magnetic fields of up to 10 MG is calculated using a five-band kp model. The selection rules for interband electron transitions in strong magnetic fields are found, and the dependences of\\u000a the interband transition probabilities on a magnetic field are calculated. The electronic spectra calculated in the five-band\\u000a model are compared with those

V. Ya. Aleshkin; N. V. Zakrevskii

2007-01-01

327

Pressure, Chaotic Magnetic Fields and MHD Equilibria

Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ?p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ?p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.

S.R. Hudson & N. Nakajima

2010-05-12

328

Magnetic field waves at Uranus

NASA Technical Reports Server (NTRS)

The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

1994-01-01

329

Discretization of the magnetic field in MPD thrusters

For the numerical simulation of magnetoplasmadynamic (MPD) self-field thruster flow, the solution of one of the two dynamical Maxwell equations – Faraday's law – is required. The Maxwell equations and Ohm's law for plasmas can be summarized in one equation for the stream function so that the two-dimensional, axisymmetric magnetic field can be calculated. The finite volume (FV) discretization of

Jörg Heiermann; Monika Auweter-Kurtz

2004-01-01

330

Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

NASA Astrophysics Data System (ADS)

We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

2015-03-01

331

Abnormal magnetic field effects on electrogenerated chemiluminescence.

We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)3(3+) … TPrA(•)] complexes in solution at room temperature. PMID:25772580

Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

2015-01-01

332

Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580

Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

2015-01-01

333

Magnetic Field Restructuring Associated with Two Successive Solar Eruptions

NASA Astrophysics Data System (ADS)

We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the "implosion" phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong

2014-08-01

334

Unique topological characterization of braided magnetic fields

We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

Yeates, A. R. [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom); Hornig, G. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

2013-01-15

335

Bipolar pulse field for magnetic refrigeration

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

Lubell, Martin S. (Oak Ridge, TN)

1994-01-01

336

Bipolar pulse field for magnetic refrigeration

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

Lubell, M.S.

1994-10-25

337

NASA Astrophysics Data System (ADS)

The dynamic susceptibility of an uniaxial single-domain iron particle is calculated under conditions of stochastic resonance as a function of the strength of an additional constant magnetic field applied along the direction of easy magnetization. Calculations are performed for the model of discrete orientations using the governing equation for the Kramers above-the-barrier transition rates of the magnetic moment vector of the particle. It is demonstrated that the presence of this constant field that breaks the symmetry of the bistable potential results in a decrease in the magnitude of the system response to an external periodic perturbation.

Isavnin, A. G.

2005-07-01

338

The magnetic fields of accreting T Tauri stars

NASA Astrophysics Data System (ADS)

Models of magnetospheric accretion on to classical T Tauri stars often assume that the stellar magnetic field is a simple dipole. Recent Zeeman-Doppler imaging studies of V2129 Oph and BP Tau have shown however that their magnetic fields are more complex. V2129 Oph is a high mass T Tauri star and despite its young age is believed to have already developed a radiative core. In contrast to this, the lower mass BP Tau is likely to be completely convective. As the internal structure and therefore the magnetic field generation process is different in both stars, it is of particular interest to compare the structure of their magnetic fields obtained by field extrapolation from magnetic surface maps. We compare both field structures to mulitpole magnetic fields, and calculate the disk truncation radius for both systems. We find that by considering magnetic fields with a realistic degree of complexity, the disk is truncated at, or within, the radius obtained for dipole fields.

Gregory, S. G.; Matt, S. P.; Donati, J.-F.; Jardine, M.

2009-02-01

339

Cross correlations from back reaction on stochastic magnetic fields

The induction equation induces non trivial correlations between the primordial curvature mode and the magnetic mode which is a non linear effect. Assuming a stochastic, gaussian magnetic field the resulting power spectra determining the two point cross correlation functions between the primordial curvature perturbation and the magnetic energy density contrast as well as the magnetic anisotropic stress are calculated approximately. The corresponding numerical solutions are used to calculate the angular power spectra determining the temperature anisotropies and polarization of the cosmic microwave background, C{sub l}. It is found that the resulting C{sub l} are sub-leading in comparison to those generated by the compensated mode for a magnetic field which only redshifts with the expansion of the universe. The main focus are scalar modes, however, vector modes will also be briefly discussed.

Kunze, Kerstin E., E-mail: kkunze@usal.es [Departamento de Física Fundamental and IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain)

2013-02-01

340

Analytical Method of Torque Calculation for Interior Permanent Magnet Synchronous Machines

magnetomotive force PM permanent magnet II. INTRODUCTION The interior permanent magnet synchronous motor (IPMSMAnalytical Method of Torque Calculation for Interior Permanent Magnet Synchronous Machines Seong method for performing the output torque calculations of an interior permanent magnet synchronous motor

Tolbert, Leon M.

341

Exploring Magnetic Fields in Your Environment

NSDL National Science Digital Library

This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide.

342

Comparison of extremely low frequency (ELF) magnetic field personal exposure monitors

The MultiWave® System III (MW III), a recently developed personal monitor for extremely low frequency (ELF) magnetic fields, was compared with the standard EMDEX Lite (Electric and Magnetic Field Digital Exposure System), the type of monitor widely used in epidemiology and other exposure assessments. The MW III captures three-axis magnetic field waveforms for the calculation of many exposure metrics, while

JAMES J MCDEVITT; PATRICK N BREYSSE; JOSEPH D BOWMAN; DINA M SASSONE

2002-01-01

343

Dirac oscillator in an external magnetic field

We show that 2+1 dimensional Dirac oscillators in an external magnetic field is mapped onto the same with reduced angular frequency in absence of magnetic field. This can be used to study the atomic transitions in a radiation field. Relativistic Landau levels are constructed explicitly. Several interesting features of this system are discussed.

Bhabani Prasad Mandal; Shweta Verma

2009-12-19

344

DC-based magnetic field controller

A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

1994-01-01

345

Representation of magnetic fields in space

NASA Technical Reports Server (NTRS)

Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

Stern, D. P.

1975-01-01

346

DC-based magnetic field controller

A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

1994-05-31

347

Ohm's law for mean magnetic fields

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively

Boozer

1986-01-01

348

The generation of magnetic fields by the polarization electric field in the ionosphere of Venus

NASA Technical Reports Server (NTRS)

Measurements by the magnetometer on the Pioneer Venus orbiter have established that during conditions of low solar wind dynamic pressure, large-scale magnetic fields are not present in the ionosphere of Venus but that during conditions of high solar wind dynamic pressure the ionosphere of Venus is magnetized. The source of the magnetic field is thought to be currents induced in the ionosphere by the solar wind. We will show that ionospheric polarization electric field can act as a source, or 'battery', producing a small magnetic field, even without any initial magnetic field. We have calculated this polarization source as a function of altitude and solar zenith angle. The magnetic field was then determined using a 2D kinematic dynamo model of the ionosphere of Venus. The magnetic field attains a maximum strength of about 5 nT at a solar zenith angle of about 120 deg. This magnetic field might act as a 'seed' field for magnetic flux ropes and terminator waves.

Shinagawa, H.; Cravens, T. E.; Wu, D.

1993-01-01

349

Interaction of magnetic resonators studied by the magnetic field enhancement

It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

Hou, Yumin, E-mail: ymhou@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)] [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

2013-12-15

350

Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

NASA Technical Reports Server (NTRS)

A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

2001-01-01

351

Radio Frequency Field Calculations for Plasma Heating Simulations in VASIMR

NASA Astrophysics Data System (ADS)

(VASIMR)1 is plasma heating by ion-cyclotron RF heating (ICRF). Mathematical simulation helps to design an ICRF antenna, i.e. make maximal absorption of RF power into the plasma in the resonance area. Another goal of a particle simulation is design of a magnetic nozzle and optimize the performance of VASIMR2. field in the plasma, 2) ion density and velocity, 3) ion-cyclotron radio-frequency electromagnetic field. The assumptions of quasineutral and collisionless plasma are based on the range of operating VASIMR parameters. Carlo simulations for systems of million of particles in a reasonable time and without the need for a powerful supercomputer. The particle to grid weighting method is used for calculating the ion density, which is used for recalculation of the electric potential and RF field. dimensional problem to a weighted sum over two-dimensional solutions. Absorption is introduced in the cold plasma model by adding an imaginary collision frequency to the RF driven frequency, which is equivalent to adding an imaginary particle mass in the dielectric tensor elements. static and RF fields using the VASIMR code2. The VASIMR and EMIR codes are then iterated to estimate the ICRF effects on the plasma density. The iteration is performed by calculating the RF fields with the EMIR code, and using these fields to follow nonlinear ion trajectories with the VASIMR code on the gyro-frequency time scale. The ion trajectories are used to generate RF power absorption values and a density input for the next EMIR calculation. The codes are iterated until the density profile becomes reasonably stable, then the collisional absorption parameter in the EMIR code is adjusted and the iteration is continued until the power deposited by the RF system matches the power absorbed by the ion trajectories in a global sense. electric field. The solved algebraic system of equations is represented by ill-conditioned 18-diagonal matrix with complex elements. Since early development of the EMIR code, the frontal method direct solver was used. That solver requires large CPU time and RAM, which both are proportional to Nr Nz2, for a grid of the size Nr x Nz. These requirements make almost impossible to use existent EMIR solver on PC to obtain RF fields with good accuracy. system. The suggested iterative method is Modified Incomplete Cholesky Preconditioned Conjugate Gradient Squared solver4. The solver involves a couple of the control parameters, which let a user tune the code to make iterations converge as fast as possible for a particular grid. Since the iterative solver does not require large RAM, and works much faster than the direct solver, the new algorithm lets us resolve RF fields on a PC with required accuracy. REFERENCES 1. Chang Díaz F.R., "Research Status of The Variable Specific Impulse Magnetoplasma Rocket", Proc. 39th Annual Meeting of the Division of Plasma Physics (Pittsburgh, PA, 1997), Bulletin of APS, 42 2057. 2. Ilin A.V., Chang Díaz F.R., Squire J.P. and Carter M.D. "Monte Carlo Particle Dynamics in a Variable Specific Impulse Magnetoplasma Rocket", (Proceedings of Open Systems' 98), Transactions of Fusion Technology, 35 330 - 334 (1999). 3. Jaeger E.F., Batchelor D.B., Weitzner H. and Whealton J.H. "ICRF Wave Propagation And Absorption in Tokamak And Mirror Magnetic Fields - A Full-wave Calculation", Computer Physics Com., 40 33 - 64 (1986). 4. Ilin, A. V., Bagheri, B., Scott, L. R., Briggs, J. M., and McCammon, J. A. "Parallelization of Poisson-Boltzmann and Brownian Dynamics calculation", Parallel Computing in Computational Chemistry, ACB Books, Washington D.C., (1995) 170-185.

Ilin, A. V.; Díaz, F. R. Chang; Squire, J. P.; Carter, M. D.

2002-01-01

352

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value total azimuthal flux with a power-law distribution over the poloidal field. Particular attention is paid

Fornberg, Bengt

353

The effect of Birkeland currents on magnetic field topology

NASA Technical Reports Server (NTRS)

A technique was developed for the inclusion of large scale magnetospheric current systems in magnetic field models. The region 1 and 2 Birkeland current systems are included in the source surface model of the terrestrial magnetosphere. The region 1 and 2 Birkeland currents are placed in the model using a series of field aligned, infinitely thin wire segments. The normal component of the magnetic field from these currents is calculated on the surface of the magnetopause and shielded using image current carrying wires placed outside of the magnetosphere. It is found that the inclusion of the Birkeland currents in the model results in a northward magnetic field in the near-midnight tail, leading to the closure of previously open flux in the tail, and a southward magnetic field in the flanks. A sunward shift in the separatrix is observed.

Peroomian, Vahe; Lyons, Larry R.; Schulz, Michael

1996-01-01

354

A classical calculation of the leptonic magnetic moment

In this paper we will show that purely classical concepts based on a few heuristic considerations about extended field configurations are enough to compute the leptonic magnetic moment with corrections up to the order $\\alpha$ perturbatively.

Luca Fabbri

2014-11-24

355

Magnetic field waves at Uranus

NASA Technical Reports Server (NTRS)

The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

1991-01-01

356

Power spectrum of post-inflationary primordial magnetic fields

NASA Astrophysics Data System (ADS)

The origin of large scale magnetic fields is one of the most puzzling topics in cosmology and astrophysics. It is assumed that the observed magnetic fields result from the amplification of an initial field produced in the early universe. In this paper we compute the exact power spectrum of magnetic fields created after inflation best known as post-inflationary magnetic fields, using the first order cosmological perturbation theory. Our treatment differs from others' works because we include an infrared cutoff which encodes only causal modes in the spectrum. The cross-correlation between magnetic energy density with Lorentz force and the anisotropic part of the electromagnetic field are exactly computed. We compare our results with previous works finding agreement in cases where the ratio between lower and upper cutoff is very small. However, we found that spectrum is strongly affected when this ratio is greater than 0.2. Moreover, the effect of a post-inflationary magnetic field with a lower cutoff on the angular power spectrum in the temperature distribution of cosmic microwave background was also exactly calculated. The main feature is a shift of the spectrum's peak as a function of the infrared cutoff, therefore analyzing this effect we could infer the value of this cutoff and thus constraining the primordial magnetic fields generation models.

Hortúa, Héctor J.; Castañeda, Leonardo

2014-12-01

357

Spectra of magnetic fields injected during baryogenesis

Helical magnetic fields are injected into the cosmic medium during cosmological baryogenesis and can potentially provide a useful probe of the early universe. We construct a model to study the injection process during a first order phase transition and to determine the power spectra of the injected magnetic field. By Monte Carlo simulations we evaluate the Fourier space symmetric and helical power spectra of the magnetic field at the time the phase transition completes. The spectra are peaked at the scale given by the inverse size of bubbles at percolation and with a comparable width. These injected magnetic fields set the initial conditions for further cosmological magneto-hydrodynamical evolution.

Ng Yifung [CERCA, Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079 (United States); Vachaspati, Tanmay [CERCA, Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079 (United States); Institute for Advanced Study, Princeton, New Jersey 08540 (United States)

2010-07-15

358

Flow Transitions in a Rotating Magnetic Field

NASA Technical Reports Server (NTRS)

Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

Volz, M. P.; Mazuruk, K.

1996-01-01

359

Magnetic Fields in the Milky Way

NASA Astrophysics Data System (ADS)

This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.

Haverkorn, Marijke

360

Magnetic fields in anisotropic relativistic stars

Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

Vladimir Folomeev; Vladimir Dzhunushaliev

2015-02-28

361

Ferroelectric Cathodes in Transverse Magnetic Fields

Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

2002-07-29

362

Magnetic fields in anisotropic relativistic stars

Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

Folomeev, Vladimir

2015-01-01

363

Electron-magnetized vacuum arc plasma transport in a magnetic toroidal duct is calculated numerically taking in account electron - ion collisions, electron and ion temperatures, and the high conductivity of the duct wall. The longitudinal magnetic field in the duct, the fully ionized plasma density and the electric potential distribution at the torus entrance are given, while the plasma density, electrical

B. Alterkop; E. Gidalevich; S. Goldsmith; R. L. Boxman

1996-01-01

364

Magnetic field screening effect in electroweak model

It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of this phenomenon can be traced to the mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in the finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying a variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that a corresponding magnetic bound state exists in the electroweak theory and can be detected by experiment.

A. S. Bakry; D. G. Pak; P. M. Zhang; L. P. Zou

2014-10-03

365

Generation of the magnetic field in jets

We consider dynamo action under the combined influence of turbulence and large-scale shear in sheared jets. Shear can stretch turbulent magnetic field lines in such a way that even turbulent motions showing mirror symmetry become suitable for generation of a large-scale magnetic field. We derive the integral induction equation governing the behaviour of the mean field in jets. The main result is that sheared jets may generate a large-scale magnetic field if shear is sufficiently strong. The generated mean field is mainly concentrated in a magnetic sheath surrounding the central region of a jet, and it exhibits sign reversals in the direction of the jet axis. Typically, the magnetic field in a sheath is dominated by the component along the jet that can reach equipartition with the kinetic energy of particles, The field in the central region of jets has a more disordered structure.

V. Urpin

2006-05-22

366

Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field

Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329

Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.

2014-01-01

367

Transport properties of high-temperature air in a magnetic field

Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

Bruno, D. [Institute of Inorganic Methodologies and Plasmas, CNR, 70126 Bari (Italy); Capitelli, M.; Catalfamo, C. [Department of Chemistry, University of Bari, 70126 Bari (Italy); Giordano, D. [Aerothermodynamics Section, ESA-ESTEC, 2200 AG Noordwijk (Netherlands)

2011-01-15

368

Reducing Field Distortion in Magnetic Resonance Imaging

NASA Technical Reports Server (NTRS)

A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

2010-01-01

369

SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

We present self-consistent high-resolution simulations of NGC 4038/4039 (the 'Antennae galaxies') including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10{sup -9} to 10{sup -4} G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of {approx}10 {mu}G, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Dolag, K.; Stasyszyn, F. A., E-mail: kotarba@usm.lmu.d [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

2010-06-20

370

Polarized neutron reflectometry in high magnetic fields

A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe{sub 2}/DyFe{sub 2} multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada.

Fritzsche, H. [National Research Council Canada, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario K0J 1J0 (Canada)

2005-11-15

371

The AGN origin of cluster magnetic fields

NASA Astrophysics Data System (ADS)

The origin of magnetic fields in galaxy clusters is one of the most fascinating but challenging problems in astrophysics. In this dissertation, the possibility of an Active Galactic Nucleus (AGN) origin of cluster magnetic fields is studied through state of the art simulations of magnetic field evolution in large scale structure formation using a newly developed cosmological Adaptive Mesh Refinement (AMR) Magnetohydrodynamics (MHD) code -- EnzoMHD. After presenting a complete but concise description and verification of the code, we discuss the creation of magnetic fields through the Biermann Battery effect during first star formation and galaxy cluster formation. We find that magnetic fields are produced as predicted by theory in both cases. For the first star formation, we obtain a lower limit of (~ 10 -9 G) for magnetic fields when the first generation stars form. On the other hand, we find that the magnetic energy is amplified 4 orders of magnitude within ~ 10 Gyr during cluster formation. We then study magnetic field injection from AGN into the Intra- Cluster Medium (ICM) and their impact on the ICM. We reproduce the X-ray cavities as well as weak shocks seen in observations in the simulation, and further confirm the idea that AGN outburst must contain lots of magnetic energy (up to 10 61 ergs) and the magnetic fields play an important part in the formation of jet/lobe system. We present high resolution simulations of cluster formation with magnetic fields injected from high redshift AGN. We find that these local magnetic fields are spread quickly throughout the whole cluster by cluster mergers. The ICM is in a turbulent state with a Kolmogorov-like power spectrum. Magnetic fields are amplified to and maintained at the observational level of a few mG by bulk flows at large scale and the ICM turbulence at small scale. The total magnetic energy increases about 25 times to ~ 1.2 × 10^61 ergs at the present time. We conclude that magnetic fields from AGN at high redshift may provide sufficient initial magnetic fields to magnetize the whole cluster.

Xu, Hao

372

It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of SDO, earlier studies have mostly used MDI/SOHO line of sight magnetograms and assumed that magnetic fields are radial when calculating magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and line of sight magnetograms, both taken by HMI/SDO, to estimate the effects of non-radial magnetic field on measuring magnetic helicity injection rate. We find that: 1) The effect of non-radial magnetic field on estimating tangential velocity is relatively small; 2) On estimating magnetic helicity injection rate, the effect of non-radial magnetic field is strong when active regions are observed near the limb and is relatively small when active regions are close to disk center; 3) The effect of non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only conce...

Song, Yongliang

2015-01-01

373

The contrasting magnetic fields of superconducting pulsars and magnetars

NASA Astrophysics Data System (ADS)

We study equilibrium magnetic field configurations in a neutron star (NS) whose core has type-II superconducting protons. Unlike the equations for normal matter, which feature no special field strength, those for superconductors contain the lower critical field, of the order of 1015 G. We find that the ratio of this critical field to the smooth-averaged stellar field at the crust-core boundary is the key feature dictating the field geometry. Our results suggest that pulsar- and magnetar-strength fields have notably different configurations. Field decay for NSs with Bpole ˜ 1014 G could thus result in substantial internal rearrangements, pushing the toroidal field component out of the core; this may be related to observed magnetar activity. In addition, we calculate the magnetically induced ellipticities of our models.

Lander, S. K.

2014-01-01

374

Detecting ultra-low magnetic fields with common magnetic minerals

Growing volume of extraterrestrial material is being used to analyze magnetic paleo-intensities. They are important for estimation of paleo-fields that once existed in extraterrestrial environment. The extraterrestrial field can be several orders of magnitudes weaker than a terrestrial field. The data demonstrating that the TRM linear acquisition is valid for such low fields are virtually not existent. We tested the

G. Kletetschka; P. J. Wasilewski; T. Kohout; E. Herrero-Bervera; M. D. Fuller

2004-01-01

375

A calculation of the {Delta}{sup ++} magnetic moment

A fully relativistic, gauge invariant, and nonperturbative calculation of the {Delta}{sup ++} magnetic moment, {mu}{sub {Delta}++} is made using equal-time commutation relations (ETCRs) and the dynamical concept of asymptotic SU{sub F}(2) symmetry and realization. The author finds that {mu}{sub {delta}++} = 2.04{mu}{sub p}, where {mu}{sub p} is the proton magnetic moment and the {Delta} mass is 1.232 GeV/c{sup 2}.

Slaughter, M.D.

1993-04-01

376

NASA Astrophysics Data System (ADS)

In the last few decades, the development and use of nanotechnology has become of increasing importance. Magnetic nanoparticles, because of their unique properties, have been employed in many different areas of application. They are generally made of a core of magnetic material coated with some other material to stabilize them and to help disperse them in suspension. The unique feature of magnetic nanoparticles is their response to a magnetic field. They are generally superparamagnetic, in which case they become magnetized only in a magnetic field and lose their magnetization when the field is removed. It is this feature that makes them so useful for drug targeting, hyperthermia and bioseparation. For many of these applications, the synthesis of uniformly sized magnetic nanoparticles is of key importance because their magnetic properties depend strongly on their dimensions. Because of the difficulty of synthesizing monodisperse particulate materials, a technique capable of characterizing the magnetic properties of polydisperse samples is of great importance. Quadrupole magnetic field-flow fractionation (MgFFF) is a technique capable of fractionating magnetic particles based on their content of magnetite or other magnetic material. In MgFFF, the interplay of hydrodynamic and magnetic forces separates the particles as they are carried along a separation channel. Since the magnetic field and the gradient in magnetic field acting on the particles during their migration are known, it is possible to calculate the quantity of magnetic material in the particles according to their time of emergence at the channel outlet. Knowing the magnetic properties of the core material, MgFFF can be used to determine both the size distribution and the mean size of the magnetic cores of polydisperse samples. When magnetic material is distributed throughout the volume of the particles, the derived data corresponds to a distribution in equivalent spherical diameters of magnetic material in the particles. MgFFF is unique in its ability to characterize the distribution in magnetic properties of a particulate sample. This knowledge is not only of importance to the optimization and quality control of particle preparation. It is also of great importance in modeling magnetic cell separation, drug targeting, hyperthermia, and other areas of application.

Carpino, Francesca

377

Charged and neutral vector meson under magnetic field

The vector meson $\\rho$ in the presence of external magnetic field has been investigated in the framework of the Nambu--Jona-Lasinio model, where mesons are constructed by infinite sum of quark-loop chains by using random phase approximation. The $\\rho$ meson polarization function is calculated to the leading order of $1/N_c$ expansion. It is found that the constituent quark mass increases with magnetic field, the masses of the neutral vector meson $\\rho^{0}$ with spin component $s_z=0,\\,\\pm1$ and the charged vector meson $\\rho^{\\pm}$ with $s_z=0$ also increases with magnetic field. However, the mass square of the charged vector meson $\\rho^{+}$ ($\\rho^{-}$) with $s_z=+1$ ($s_z=-1$) decreases linearly with magnetic field and drops to zero at the critical magnetic field $e B_c \\simeq 0.2 {\\rm GeV}^2$, which indicates the possible condensation of charged vector meson in the vacuum. This critical magnetic field is much lower than the value $eB_c=0.6 {\\rm GeV}^2$ predicted by a point-like vector meson. We also show that if we use lowest Landau level approximation, the mass of the charged vector meson $\\rho^{\\pm}$ for $s_z=\\pm1$ cannot drop to zero at high magnetic fields.

Hao Liu; Lang Yu; Mei Huang

2014-08-06

378

Field theoretic calculation of scalar turbulence

The cascade rate of passive scalar and Bachelor's constant in scalar turbulence are calculated using the flux formula. This calculation is done to first order in perturbation series. Batchelor's constant in three dimension is found to be approximately 1.25. In higher dimension, the constant increases as $d^{1/3}$.

Mahendra K. Verma

2002-05-08

379

Quark antiscreening at strong magnetic field and inverse magnetic catalysis

NASA Astrophysics Data System (ADS)

The dependence of the QCD coupling constant with a strong magnetic field and the implications for the critical temperature of the chiral phase transition are investigated. It is found that the coupling constant becomes anisotropic in a strong magnetic field and that the quarks, confined by the field to the lowest Landau level where they pair with antiquarks, produce an antiscreening effect. These results lead to inverse magnetic catalysis, providing a natural explanation for the behavior of the critical temperature in the strong-field region.

Ferrer, E. J.; de la Incera, V.; Wen, X. J.

2015-03-01

380

The Evolution of the Earth's Magnetic Field.

ERIC Educational Resources Information Center

Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

Bloxham, Jeremy; Gubbins, David

1989-01-01

381

Magnetic Braiding and Parallel Electric Fields

The braiding of the solar coronal magnetic field via photospheric motions - with subsequent relaxation and magnetic reconnection -- is one of the most widely debated ideas of solar physics. We readdress the theory in the light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field to an ideal force-free equilibrium; that equilibrium is found to be smooth, with only large- scale current structures. However, the equilibrium is shown to have a highly filamentary integrated parallel current structure with extremely short length- scales. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of a force- free field. Thus the inevitable consequence of the magnetic braiding process is shown to be a loss of equilibrium of the coronal field, probably via magnetic reconnection events.

A. L. Wilmot-Smith; G. Hornig; D. I. Pontin

2008-10-08

382

Magnetic Field Seeding through Supernova Feedback

NASA Astrophysics Data System (ADS)

Stellar feedback occurring at small-scales can significantly impact the evolution of galaxies at much larger scales. For example, an appropriate feedback mechanism, including thermal and radiative components, can help regulate star formation, particularly in low-mass galaxies. While feedback models are generally prevalent in numerical simulations, the magnetic component is often neglected. However, measurements of galaxies indicate the presence of fields with a strength on the order of µG. Previous studies have demonstrated the formation of these fields through the amplification of a primordial magnetic field. Here, we describe a self-consistent prescription where magnetic fields are injected in supernova injections, calibrated by observations of magnetic fields in supernova remnants. These fields will then become seeds that evolve by way of mixing and turbulence to result in galactic-scale magnetic fields. As a proof of concept, we apply this method to model the supernova of a single Population III star and trace the evolution of the injected magnetic field. Future studies will apply this prescription to study not only the effects of magnetic fields on galaxy formation and evolution, but also the growth of the magnetized bubbles that form in the IGM.

Koh, Daegene; Wise, John

2015-01-01

383

Graphene Nanoribbon in Sharply Localized Magnetic Fields

We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

2013-03-20

384

Coronal magnetic fields produced by photospheric shear

NASA Technical Reports Server (NTRS)

The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.

Sturrock, P. A.; Yang, W.-H.

1987-01-01

385

Control of magnetism by electric fields

NASA Astrophysics Data System (ADS)

The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

2015-03-01

386

Control of magnetism by electric fields.

The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field. PMID:25740132

Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

2015-03-01

387

Magnetic isotope and magnetic field effects on the DNA synthesis

Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases ? with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases ? carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases ? with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases ? with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

2013-01-01

388

The effect of magnetic fields on star cluster formation

NASA Astrophysics Data System (ADS)

We examine the effect of magnetic fields on star cluster formation by performing simulations following the self-gravitating collapse of a turbulent molecular cloud to form stars in ideal magnetohydrodynamics. The collapse of the cloud is computed for global mass-to-flux ratios of ?,20,10,5 and 3, i.e. using both weak and strong magnetic fields. Whilst even at very low strengths the magnetic field is able to significantly influence the star formation process, for magnetic fields with plasma ? < 1 the results are substantially different to the hydrodynamic case. In these cases we find large-scale magnetically supported voids imprinted in the cloud structure; anisotropic turbulent motions and column density striations aligned with the magnetic field lines, both of which have recently been observed in the Taurus molecular cloud. We also find strongly suppressed accretion in the magnetized runs, leading to up to a 75 per cent reduction in the amount of mass converted into stars over the course of the calculations and a more quiescent mode of star formation. There is also some indication that the relative formation efficiency of brown dwarfs is lower in the strongly magnetized runs due to a reduction in the importance of protostellar ejections.

Price, Daniel J.; Bate, Matthew R.

2008-04-01

389

Parallel magnetic field perturbations in gyrokinetic simulations

At low beta it is common to neglect parallel magnetic field perturbations on the basis that they are of order beta{sup 2}. This is only true if effects of order beta are canceled by a term in the nablaB drift also of order beta[H. L. Berk and R. R. Dominguez, J. Plasma Phys. 18, 31 (1977)]. To our knowledge this has not been rigorously tested with modern gyrokinetic codes. In this work we use the gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)] to investigate whether the compressional magnetic field perturbation B{sub ||} is required for accurate gyrokinetic simulations at low beta for microinstabilities commonly found in tokamaks. The kinetic ballooning mode (KBM) demonstrates the principle described by Berk and Dominguez strongly, as does the trapped electron mode, in a less dramatic way. The ion and electron temperature gradient (ETG) driven modes do not typically exhibit this behavior; the effects of B{sub ||} are found to depend on the pressure gradients. The terms which are seen to cancel at long wavelength in KBM calculations can be cumulative in the ion temperature gradient case and increase with eta{sub e}. The effect of B{sub ||} on the ETG instability is shown to depend on the normalized pressure gradient beta{sup '} at constant beta.

Joiner, N.; Hirose, A. [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Dorland, W. [University of Maryland, College Park, Maryland 20742 (United States)

2010-07-15

390

Hydrogen atom in a strong magnetic field

The asymptotic solution for a hydrogen atom in a uniform magnetic field of arbitrary strength is obtained. It is derived in the form of common exponential factor multiplied by a finite power of radius time a power series in two variables, the sine of the cone angle and the inverse of radius, with explicit recurrent relations for the coefficients of the power series. It is proven that there exists only one physically acceptable solution in this form. Combining this solution at some radius R with similar series solution in the form of a power series in the radial variable with coefficient being polynomials in the sine, determines the binding energies and wave functions of bound states. To illustrate the usefulness of this approach, the ground-state binding energy of the magnetic field B=100 (in units of 2.35x10{sup 9} G) has been computed with accuracy in 10{sup -12} hartree. The precision required is {approx_equal}30 decimal digits, while the previous result of the same accuracy obtained by direct numerical summation of the series using simple exponential decay as the boundary conditions at finite radius R has been computed in high-precision arithmetic of {approx_equal}280 decimal digits. The accuracy of the binding energies of the excited state evolving from 2s{sub 0} exceeds that of previous calculations.

Rutkowski, A.; Poszwa, A. [Department of Physics and Computer Methods, University of Warmia and Mazury in Olsztyn, ul. Zolnierska 14, 10-561 Olsztyn (Poland)

2003-01-01

391

the presence of a weak interplanetary magnetic field may lead to the ; formation of a collision-free shock wave upstream from the boundary of the ; geomagnetic field and to a transition region characterized by an irregular ; magnetic field in the intervening space. Previous calculations of the ; coordinates of the shock wave are improved upon by application of

John R. Spreiter; Wm. Prichard Jones

1963-01-01

392

Protein crystals orientation in a magnetic field.

Nucleation and crystal growth of hen egg-white lysozyme, bovine pancreatic trypsin inhibitor and porcine pancreatic alpha-amylase were carried out in the presence of a magnetic field of 1.25 T produced by small permanent magnets. Crystals were oriented in the magnetic field, except when heterogeneous nucleation occurred. The orientation of protein crystals in the presence of a magnetic field can be attributed to the anisotropic diamagnetic susceptibility of proteins resulting from the large anisotropy of the alpha-helices due to the axial alignment of the peptide bonds. PMID:9761881

Astier, J P; Veesler, S; Boistelle, R

1998-07-01

393

High concentration ferronematics in low magnetic fields

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field $B_{bias}$, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that $B_{bias}$ is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

T. Tóth-Katona; P. Salamon; N. Éber; N. Tomašovi?ová; Z. Mitróová; P. Kop?anský

2014-09-05

394

Magnetic forces for type II superconductors in a levitation field

NASA Astrophysics Data System (ADS)

A complete loop of hysteretic force has been calculated for hard superconductors in an almost-constant-gradient magnetic suspension system, which consists of a pair of oppositely wound superconducting coils. The dependences of levitation forces on the sample size, critical current density, external field strength, field gradient, and the magnetic history were investigated. Dynamic spring constants as well as magnetic damping coefficients were inferred from minor loop calculations. The minor loops, similar to the Rayleigh loops for ferromagnetic materials, could be described in quadratic terms. The major loops strongly depend on the magnetic passage, a flux-trap effect which is responsible for the subtlety in obtaining reproducible hysteresis loop. The basic physics of levitation and inverse levitation will be quantitatively illustrated.

Torng, Terry; Chen, Q. Y.

1993-02-01

395

Fluctuating magnetic field induced resonant activation

NASA Astrophysics Data System (ADS)

In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (?) increases under the fixed field strength then the mean first passage time rapidly grows at low ? and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers' turn over phenomenon may occur in the presence of a fluctuating magnetic field.

Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

2014-12-01

396

Magnetic field spectral crossings of Luttinger holes in quantum wells

NASA Astrophysics Data System (ADS)

We develop an analytic approach to two-dimensional (2D) holes in a magnetic field that allows us to gain insight into physics of measuring the parameters of holes, such as cyclotron resonance, Shubnikov-de Haas effect and spin resonance. We derive hole energies, cyclotron masses, and the g factors in the semiclassical regime analytically, as well as analyze numerical results outside the semiclassical range of parameters, qualitatively explaining the experimentally observed magnetic field dependence of the cyclotron mass. In the semiclassical regime with large Landau level indices, and for size quantization energy much bigger than the cyclotron energy, the cyclotron mass coincides with the in-plane effective mass, calculated in the absence of a magnetic field. The hole g factor in a magnetic field perpendicular to the 2D plane is defined not only by the constant of direct coupling of the angular momentum of the holes to the magnetic field, but also by the Luttinger constants defining the effective masses of holes. We find that the g factor for quasi-2D holes with heavy mass in the [001] growth direction in GaAs quantum well is g =4.05 in the semiclasssical regime. Outside the semiclassical range of parameters, holes behave as a species completely different from electrons. Spectra for size- and magnetic-field-quantized holes are nonequidistant, not fanlike, and exhibit multiple crossings, including crossing in the ground level. We calculate the effect of Dresselhaus terms, which transform some of the crossings into anticrossings, and the effects of the anisotropy of the Luttinger Hamiltonian on the 2D hole spectra. Dresselhaus terms of different symmetries are taken into account, and a regularization procedure is developed for the kz3 Dresselhaus terms. Control of the nonequidistant levels and crossing structure by the magnetic field can be used to control the Landau level mixing in hole systems, and thereby control hole-hole interactions in the magnetic field.

Simion, G. E.; Lyanda-Geller, Y. B.

2014-11-01

397

Two-axis magnetic field sensor

NASA Technical Reports Server (NTRS)

A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

2006-01-01

398

Astrophysical magnetic fields and nonlinear dynamo theory

The current understanding of astrophysical magnetic fields is reviewed, focusing on their generation and maintenance by turbulence. In the astrophysical context this generation is usually explained by a self-excited dynamo, which involves flows that can amplify a weak ‘seed’ magnetic field exponentially fast. Particular emphasis is placed on the nonlinear saturation of the dynamo. Analytic and numerical results are discussed

Axel Brandenburg; Kandaswamy Subramanian

2005-01-01

399

Magnetic fields, branes, and noncommutative geometry

We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels. Interactions of such particles include

Daniela Bigatti; Leonard Susskind

2000-01-01

400

Appendix E: Software MEASURING CONSTANT MAGNETIC FIELD

, and the Guide Box, shown below. The Guide Box will give you directions and tasks to perform. It will also tell "degree" will make a plot of magnetic field strength as a function of angle (B vs. ). Click "OK" when you. This process is called "zeroing the Hall probe" in the Guide Box. Place the magnetic field sensor wand

Minnesota, University of

401

CHROMOSPHERIC AND CORONAL MAGNETIC FIELDS Eric Priest

CHROMOSPHERIC AND CORONAL MAGNETIC FIELDS Eric Priest Mathematics Institute, St Andrews University the structure of the magnetic field (in the pho tosphere, chromosphere and corona) and the dynamics, so that a corona lay above spherical shells of tran sition region, chromosphere and photosphere

Priest, Eric

402

CHROMOSPHERIC AND CORONAL MAGNETIC FIELDS Eric Priest

CHROMOSPHERIC AND CORONAL MAGNETIC FIELDS Eric Priest Mathematics Institute, St Andrews University the structure of the magnetic field (in the pho- tosphere, chromosphere and corona) and the dynamics, so that a corona lay above spherical shells of tran- sition region, chromosphere and photosphere

Priest, Eric

403

On the origins of galactic magnetic fields

We present a five dimensional unified theory of gravity and electromagnetism which leads to modified Maxwell equations, suggesting a new origin for galactic magnetic fields. It is shown that a region with nonzero scalar curvature would amplify the magnetic fields under certain conditions.

A. Borzou; H. R. Sepangi; R. Yousefi; A. H. Ziaie

2009-11-18

404

Manipulation of molecular structures with magnetic fields

The present thesis deals with the use of magnetic fields as a handle to manipulate matter at a molecular level and as a tool to probe molecular properties or inter molecular interactions. The work consists of in situ optical studies of (polymer) liquid crystals and molecular aggregates in high magnetic fields up to 20T, together with a description of the

Marius Iosif Boamfa

2003-01-01

405

Magnetic Fields at the Center of Coils

ERIC Educational Resources Information Center

In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

2014-01-01

406

Permanent magnet edge-field quadrupole

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

Tatchyn, Roman O. (Mountain View, CA)

1997-01-01

407

Magnetic Helicity and Large Scale Magnetic Fields: A Primer

NASA Astrophysics Data System (ADS)

Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

Blackman, Eric G.

2014-04-01

408

MRI Magnetic Field Stimulates Rotational Sensors of the Brain

SUMMARY Vertigo in and around MRI machines has been noted for years [1, 2]. Several mechanisms have been suggested to explain these sensations [3, 4], yet without direct, objective measures, the cause is unknown. We found that all healthy human subjects lying in the static magnetic field of an MRI machine develop a robust nystagmus. Patients lacking labyrinthine function do not. Here we use the pattern of eye movements as a measure of vestibular stimulation to show that the stimulation is static (continuous, proportional to static magnetic field strength, requiring neither head movement nor dynamic change in magnetic field strength) and directional (sensitive to magnetic field polarity and head orientation). Our calculations and geometric model suggest that magnetic vestibular stimulation derives from a Lorentz force due to interaction between the magnetic field and naturally-occurring ionic currents in the labyrinthine endolymph fluid. This force pushes on the semicircular canal cupula, leading to nystagmus. We emphasize that the unique, dual role of endolymph in the delivery of both ionic current and fluid pressure, coupled with the cupula’s function as a pressure sensor, makes magnetic field induced nystagmus and vertigo possible. Such effects could confound fMRI studies of brain behavior, including resting-state brain activity. PMID:21945276

Roberts, Dale C.; Marcelli, Vincenzo; Gillen, Joseph S.; Carey, John P.; Santina, Charles C. Della; Zee, David S.

2012-01-01

409

Comparison of adjustable permanent magnetic field sources

NASA Astrophysics Data System (ADS)

A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found.

Bjørk, R.; Bahl, C. R. H.; Smith, A.; Pryds, N.

2010-11-01

410

Chaotic magnetic fields: Particle motion and energization

Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

Dasgupta, Brahmananda [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Ram, Abhay K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Li, Gang [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Li, Xiaocan [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2014-02-11

411

The paper presents theoretical calculations and the results of experimental studies of the behaviour of a plasma contained in a strong constant magnetic field when a rotating high-frequency field of dipole configuration with frequency ? is superimposed upon it. It is shown that for ?ei > ? (where ?ei is the frequency of collisions between electrons and ions) the high-frequency

R. A. Demirkhanov; T. I. Gutkin; Yu. V. Kursanov; I. R. Yampolsky; Yu. N. Gubin; L. Ya. Malykh; S. N. Lozovsky

1972-01-01

412

Vacuum polarization by a Coulomb center and a strong magnetic field. Uehling's correction

NASA Astrophysics Data System (ADS)

The problem of vacuum polarization by the Coulomb field of the nucleus and a constant homogeneous magnetic field is examined by the “proper time” method. For this the magnetic field is exactly taken into account, and the Coulomb field is considered by perturbation theory. In the case of a magnetic field equal to zero, we calculate the change of the Coulomb potential which results from vacuum polarization. The result obtained coincides with the well-known Uehling correction.

Khalilov, V. R.; Maslov, I. N.

1986-09-01

413

Magnetic fields in Neutron Stars

Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

Viganò, Daniele; Miralles, Juan A; Rea, Nanda

2015-01-01

414

Shape of the proton in a uniform magnetic field

The effect of a uniform background magnetic field on the wave function of the d-quark in the ground state of the proton is calculated in Lattice QCD. We focus on the wave functions in the Landau and Coulomb gauges. When the quarks are annihilated at different lattice sites, we observe the formation of a scalar u-d diquark pair within the proton in the Landau gauge, which is not present in the Coulomb gauge. The overall distortion of the wave function under a very large magnetic field, as demanded by the quantisation conditions on the field, is quite small.

Roberts, Dale S.; Kamleh, Waseem; Leinweber, Derek B. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics, University of Adelaide 5005 (Australia); Bowman, Patrick O. [Centre for Theoretical Chemistry and Physics and Institute of Natural Sciences, Massey University (Albany), Private Bag 102904, North Shore City 0745 (New Zealand)

2010-07-27

415

Proton Wave Functions in a Uniform Magnetic Field

The wave function of the d-quark in the ground state of the proton, and how it is affected in the presence of a uniform background magnetic field is calculated in lattice QCD. We focus on the wave functions in the Landau and Coulomb gauges. When the quarks are annihilated at different lattice sites, we observe the formation of a scalar u-d diquark pair within the proton in the Landau gauge, which is not present in the Coulomb gauge. The overall distortion of the wave function under a very large magnetic field, as demanded by the quantisation conditions on the field, is quite small.

Roberts, Dale S.; Kamleh, Waseem; Leinweber, Derek B. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics, University of Adelaide 5005 (Australia); Bowman, Patrick O. [Centre for Theoretical Chemistry and Physics and Institute of Natural Sciences, Massey University (Albany), Private Bag 102904, North Shore City 0745 (New Zealand)

2011-05-24

416

Wannier-based calculation of the orbital magnetization in crystals

NASA Astrophysics Data System (ADS)

We present a first-principles scheme that allows the orbital magnetization of a magnetic crystal to be evaluated accurately and efficiently even in the presence of complex Fermi surfaces. Starting from an initial electronic-structure calculation with a coarse ab initio k-point mesh, maximally localized Wannier functions are constructed and used to interpolate the necessary k-space quantities on a fine mesh, in parallel to a previously developed formalism for the anomalous Hall conductivity [X. Wang, J. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.195118 74, 195118 (2006)]. We formulate our new approach in a manifestly gauge-invariant manner, expressing the orbital magnetization in terms of traces over matrices in Wannier space. Since only a few (e.g., of the order of 20) Wannier functions are typically needed to describe the occupied and partially occupied bands, these Wannier matrices are small, which makes the interpolation itself very efficient. The method has been used to calculate the orbital magnetization of bcc Fe, hcp Co, and fcc Ni. Unlike an approximate calculation based on integrating orbital currents inside atomic spheres, our results nicely reproduce the experimentally measured ordering of the orbital magnetization in these three materials.

Lopez, M. G.; Vanderbilt, David; Thonhauser, T.; Souza, Ivo

2012-01-01

417

Calculation and Analysis of magnetic gradient tensor components of global magnetic models

NASA Astrophysics Data System (ADS)

Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.

Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina

2014-05-01

418

Warm inflation in presence of magnetic fields

We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

Piccinelli, Gabriella [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico)] [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico); Sánchez, Ángel [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States)] [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ayala, Alejandro; Mizher, Ana Julia [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)] [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)

2013-07-23

419

Deriving the Coronal Magnetic Field Using Parametric Transformation Analysis

NASA Technical Reports Server (NTRS)

When plasma-beta greater than 1 then the gas pressure dominates over the magnetic pressure. This ratio as a function along the coronal magnetic field lines varies from beta greater than 1 in the photosphere at the base of the field lines, to beta much less than 1 in the mid-corona, to beta greater than 1 in the upper corona. Almost all magnetic field extrapolations do not or cannot take into account the full range of beta. They essentially assume beta much less than 1, since the full boundary conditions do not exist in the beta greater than 1 regions. We use a basic parametric representation of the magnetic field lines such that the field lines can be manipulated to match linear features in the EUV and SXR coronal images in a least squares sense. This research employs free-form deformation mathematics to generate the associated coronal magnetic field. In our research program, the complex magnetic field topology uses Parametric Transformation Analysis (PTA) which is a new and innovative method to describe the coronal fields that we are developing. In this technique the field lines can be viewed as being embedded in a plastic medium, the frozen-in-field-line concept. As the medium is deformed the field lines are similarly deformed. However the advantage of the PTA method is that the field line movement represents a transformation of one magnetic field solution into another magnetic field solution. When fully implemented, this method will allow the resulting magnetic field solution to fully match the magnetic field lines with EUV/SXR coronal loops by minimizing the differences in direction and dispersion of a collection of PTA magnetic field lines and observed field lines. The derived magnetic field will then allow beta greater than 1 regions to be included, the electric currents to be calculated, and the Lorentz force to be determined. The advantage of this technique is that the solution is: (1) independent of the upper and side boundary conditions, (2) allows non-vanishing magnetic forces, and (3) provides a global magnetic field solution, which contains high- and low-beta regimes and maximizes the similarity between the field lines structure and all the coronal images of the region. The coronal image analysis is crucial to the investigation and for the first time these images can be exploited to derive the coronal magnetic field in a well-posed mathematical formulation. This program is an outgrowth of an investigation in which an extrapolated potential field was required to be "inflated" in order to have the field lines match the Yohkoh/SXT images. The field lines were radially stretched resulting in a better match to the coronal loops of an active region. The PTA method of radial and non-radial deformations of field lines to provide a match to the EUV/SXR images will be presented.

Gary, G. Allen; Rose, M. Franklin (Technical Monitor)

2001-01-01

420

Particle acceleration and transport in a chaotic magnetic field

NASA Astrophysics Data System (ADS)

Time-dependent chaotic magnetic field can arise from a simple asymmetric current wire-loop system (CWLS). Such simple CWLSs exist, for example, in solar flares. Indeed one can use an ensemble of such systems to model solar active region magnetic field [1,2]. Here we use test particle simulation to investigate particle transport and energization in such a time-dependent chaotic magnetic field, and through induction, a chaotic electric field. We first construct an ensemble of simple systems based on the estimated size and field strength of solar active region. By following the trajectories of single charged particles, we will examine how particle energy is changed. Diffusion coefficients in both real space and momentum space can be calculated as well as the average trapped time of the particles within chaotic field region. Particle energy spectrum as a function of time will be examined. [1] Dasgupta, B. and Abhay K. Ram, (2007) Chaotic magnetic fields due to asymmetric current configurations -application to cross field diffusion of particles in cosmic rays, (Presented at the 49th Annual Meeting of the DPP, APS, Abstract # BP8.00102) [2] G. Li, B. Dasgupta, G. Webb, and A. K. Ram, (2009) Particle Motion and Energization in a Chaotic Magnetic Field, AIP Conf. Proc. 1183, pp. 201-211; doi: http://dx.doi.org/10.1063/1.3266777

Li, X.; Li, G.; Dasgupta, B.

2012-12-01

421

Accounting for crustal magnetization in models of the core magnetic field

NASA Technical Reports Server (NTRS)

The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.

Jackson, Andrew

1990-01-01

422

Magnetic field effect on laser isotope separation of gadolinium and zirconium

In laser isotope separation based on polarization selection rules the effect of magnetic field on isotopic selectivity was investigated. Excitation dynamics of atoms by linearly polarized lasers were numerically analyzed for J equals 2 yields 2 yields 1 yields 0 stepwise excitation under a magnetic field. Time evolution of the population in each magnetic substrate was calculated by solving the

Hideaki Niki; Iwao Kitazima

2000-01-01

423

Neutrino oscillations in matter and in twisting magnetic fields

We find the solution to the Dirac equation for a massive neutrino with a magnetic moment propagating in background matter and interacting with the twisting magnetic field. In frames of the relativistic quantum mechanics approach to the description of neutrino evolution we use the obtained solution to derive neutrino wave functions satisfying the given initial condition. We apply the results to the analysis of neutrino spin oscillations in matter under the influence of the twisting magnetic field. Then on the basis of the yielded results we describe spin-flavor oscillations of Dirac neutrinos that mix and have non-vanishing matrix of magnetic moments. We again formulate the initial condition problem, derive neutrinos wave functions and calculate the transition probabilities for different magnetic moments matrices. The consistency of the obtained results with the quantum mechanical treatment of spin-flavor oscillations is discussed. We also consider several applications to astrophysical and cosmological neutrinos.

Maxim Dvornikov

2007-11-30

424

Ohm's law for mean magnetic fields

Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory.

Boozer, A.H.

1984-11-01

425

Magnetic fields in noninvasive brain stimulation.

The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

2014-04-01

426

Gyrokinetic Calculations of the Neoclassical Radial Electric Field in Stellarator Plasmas

A novel method to calculate the neoclassical radial electric field in stellarator plasmas is described. The method, which does not have the inconvenience of large statistical fluctuations (noise) of standard Monte Carlo technique, is based on the variation of the combined parallel and perpendicular pressures on a magnetic surface. Using a three-dimensional gyrokinetic delta f code, the calculation of the radial electric field in the National Compact Stellarator Experiment has been carried out. It is shown that a direct evaluation of radial electric field based on a direct calculation of the radial particle flux is not tractable due to the considerable noise.

Lewandowski, J.L.V.; Williams, J.; Boozer, A.H.; Lin, Z.

2001-04-09

427

Dynamic Magnetic Field Applications for Materials Processing

NASA Technical Reports Server (NTRS)

Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

2001-01-01

428

Protein detection with magnetic nanoparticles in a rotating magnetic field

NASA Astrophysics Data System (ADS)

A detection scheme based on magnetic nanoparticle (MNP) dynamics in a rotating magnetic field for a quantitative and easy-to-perform detection of proteins is illustrated. For the measurements, a fluxgate-based setup was applied, which measures the MNP dynamics, while a rotating magnetic field is generated. The MNPs exhibit single iron oxide cores of 25 nm and 40 nm diameter, respectively, as well as a protein G functionalized shell. IgG antibodies were utilized as binding target molecules for the physical proof-of-concept. The measurement results were fitted with a theoretical model describing the magnetization dynamics in a rotating magnetic field. The established detection scheme allows quantitative determination of proteins even at a concentration lower than of the particles. The observed differences between the two MNP types are discussed on the basis of logistic functions.

Dieckhoff, Jan; Lak, Aidin; Schilling, Meinhard; Ludwig, Frank

2014-01-01

429

The contributions of 4f, 5d and 6s electrons to the saturation magnetic moments and magnetic hyperfine fields in the heavy rare earth metals are calculated using the model described in the previous paper. It is found that 4f shell moments are reduced from their free ion values by amounts varying from 0.05µB in Gd to several tenths of a Bohr

D. M. Eagles

1975-01-01

430

Magnetic field experiment on the Freja Satellite

NASA Astrophysics Data System (ADS)

Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600×1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth, language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth's magnetic field taken at 128 vector samples s-1 and digitized to 16 bit, resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis ‘AC’ channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (˜40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (˜160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users. Distributed management of spacecraft operations by the science team is also achieved by this advanced communications system. An exciting new discovery of the field-aligned current systems is the high frequency wave power or structure associated with the various large-scale currents. The spin axis ‘AC’ data and its standard deviation is a measure of this high-frequency component of the Birkeland current regions. The exact response of these channels and filters as well as the physics behind these wave and/or fine-scale current structures accompanying the large-scale currents is being pursued; nevertheless, the association is clear and the results are used for the MFE Birkeland current monitor calculated in the MFE microprocessor. This monitor then sets a trigger when it is greater than a commandable, preset threshold. This ‘event’ flag can be read by the system unit and used to remotely command all instruments into burst mode data taking and local memory storage. In addition,Freja is equipped with a 400 MHz ‘Low Speed Link’ transmitter which transmits spacecraft hcusekeeping that can be received with a low cost, portable receiver. These housekeeping data include the MFE auroral zone current detector; this space weather information indicates the location and strength of ionospheric current systems that directly impact communications, power systems, long distance telephone lines and near-Earth satellite operations. The JHU/APL MFE is a joint effort with NASA/GSFC and was co-sponsored by the Office of Naval Research and NASA/Headquarters in cooperation with the Swedish National Space Board and the Swedish Space Corporation.

Freja Magnetic Field Experiment Team

1994-11-01

431

Theory of magnetic superconductors in an external magnetic field

The theory of Abrikosov and Gor'kov has been extended to study superconducting systems containing a lattice of magnetic ions. Differential equations have been set up for the Green's-function matrices which describe a magnetic superconductor in the presence of local-spin--conduction-electron exchange and external magnetic field. The self-consistent gap equation for the system has been formulated in terms of normal-state Green's functions.

Narayan C. Das

1984-01-01

432

Theory of magnetic superconductors in an external magnetic field

The theory of Abrikosov and Gor'kov has been extended to study superconducting systems containing a lattice of magnetic ions. Differential equations have been set up for the Green's-function matrices which describe a magnetic superconductor in the presence of local-spin-conduction-electron exchange and external magnetic field. The self-consistent gap equation for the system has been formulated in terms of normal-state Green's functions.

Narayan C. Das

1984-01-01

433

Compact low field magnetic resonance imaging magnet: Design and optimization

NASA Astrophysics Data System (ADS)

Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

2000-03-01

434

Polymer gel dosimetry of an electron beam in the presence of a magnetic field

NASA Astrophysics Data System (ADS)

The effect of a strong external magnetic field on 4 MeV electron beam was measured with polymer gel dosimetry. The measured entrance dose distribution was compared with a calculated fluence map. The magnetic field was created by use of two permanent Neodymium (NdFeB) magnets that were positioned perpendicular to the electron beam. The magnetic field between the magnets was measured with Hall sensors. Based on the magnetic field measurement and the law of Biot-Savart, the magnetic field distribution was extrapolated. Electron trajectories were calculated using a relativistic Lorentz force operator. Although the simplified computational model that was applied, the shape and position of the calculated entrance fluence map are found to be in good agreement with the measured dose distribution in the first layer of the phantom. In combination with the development of low density polymer gel dosimeters, these preliminary results show the potential of 3D gel dosimetry in MRI-linac applications.

Vandecasteele, J.; De Deene, Y.

2013-06-01

435

Colour superconductivity in a strong magnetic field

We explore the effects of an applied strong external magnetic field in a three flavour massless colour superconductor. The long-range component of the B field that penetrates the superconductor enhances some quark condensates, leading to a different condensation pattern. The external field also reduces the flavour symmetries in the system, and thus it changes drastically the corresponding low energy physics. Our considerations are relevant for the study of highly magnetized compact stars.

Efrain J. Ferrer; Vivian de la Incera; Cristina Manuel

2005-11-30

436

Ohm's law for mean magnetic fields

The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity.

Boozer, A.H.

1986-05-01

437

Ohm's law for mean magnetic fields

The magnetic fields associated with plasmas frequently exhibit small-amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions, it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the

A. H. Boozer

1986-01-01

438

Magnetic field corrections to solar oscillation frequencies

NASA Technical Reports Server (NTRS)

It is argued that the frequencies of both the solar p- and g-modes of oscillation are modified by a magnetic field. In particular, the decrease in p-mode frequencies is attributed to a magnetic field within the solar interior evolving over the solar cycle. Field strengths at the base of the convection zone of at least 500,000 G are required.

Roberts, B.; Campbell, W. R.

1986-01-01

439

Thermodynamics of the Magnetic-Field-Induced \\

High magnetic fields are used to kill superconductivity and probe what happens to system when it cannot reach the ideal ground state, i.e. what is the normal-state ground state? Early work in High-Tc, where the application of magnetic field destroyed the zero resistance state and recovered a resistivity value that connected continuously with the zero field curve, lead people to

Scott Chandler Riggs

2010-01-01

440

Stability of accretion discs threaded by a strong magnetic field

We study the stability of poloidal magnetic fields anchored in a thin accretion disc. The two-dimensional hydrodynamics in the disc plane is followed by a grid-based numerical simulation including the vertically integrated magnetic forces. The 3--dimensional magnetic field outside the disc is calculated in a potential field approximation from the magnetic flux density distribution in the disc. For uniformly rotating discs we confirm numerically the existence of the interchange instability as predicted by Spruit, Stehle & Papaloizou (1995). In agreement with predictions from the shearing sheet model, discs with Keplerian rotation are found to be stabilized by the shear, as long as the contribution of magnetic forces to support against gravity is small. When this support becomes significant, we find a global instability which transports angular momentum outward and allows mass to accrete inward. The instability takes the form of a $m=1$ rotating `crescent', reminiscent of the purely hydrodynamic nonlinear instability previously found in pressure-supported discs. A model where the initial surface mass density $\\Sigma(r)$ and $B_{\\mathrm{z}}(r)$ decrease with radius as power laws shows transient mass accretion during about 6 orbital periods, and settles into a state with surface density and field strength decreasing approximately exponentially with radius. We argue that this instability is likely to be the main angular momentum transport mechanism in discs with a poloidal magnetic field sufficiently strong to suppress magnetic turbulence. It may be especially relevant in jet-producing discs.

R. Stehle; H. C. Spruit

2001-03-25

441

Relation between magnetic fields and electric currents in plasmas

Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the

V. M. Vasyliunas

2005-01-01

442

Theory of Passive Magnetic Field Transport

In recent years, our knowledge of photospheric magnetic fields went through a thorough transformation--nearly unnoticed by dynamo theorists. It is now practically certain that the overwhelming majority of the unsigned magnetic flux crossing the solar surface is in turbulent form (intranetwork and hidden fields). Furthermore, there are now observational indications (supported by theoretical arguments discussed in this paper) that the net polarity imbalance of the turbulent field may give a significant or even dominant contribution to the weak large-scale background magnetic fields outside unipolar network areas. This turbulent magnetic field consists of flux tubes with magnetic fluxes below 1e10 Wb (1e18 Mx). The motion of these thin tubes is dominated by the drag of the surrounding flows, so the transport of this component of the solar magnetic field must fully be determined by the kinematics of the turbulence (i.e. it is "passive"), and it can be described by a one-fluid model like mean-field theory (MFT). This paper reviews the theory of passive magnetic field transport using mostly first (and occasionally higher) order smoothing formalism; the most important transport effects are however also independently derived using Lagrangian analysis for a simple two-component flow model. Solar applications of the theory are also presented. Among some other novel findings it is proposed that the observed unsigned magnetic flux density in the photosphere requires a small-scale dynamo effect operating in the convective zone and that the net polarity imbalance in turbulent (and, in particular, hidden) fields may give a major contribution to the weak large-scale background magnetic fields on the Sun.

Kristof Petrovay

1997-03-25

443

Nonlinear evolution of the coronal magnetic field under reconnective relaxation

NASA Technical Reports Server (NTRS)

Recently, Vekstein et al. (Vekstein, Priest, & Steele 1993) have developed a model for coronal heating in which the corona responds to photospheric footpoint motions by small-scale reconnection events that bring about a relaxed state while conserving magnetic helicity but not field-line connectivity. Vekstein et al. consider a partially open field configuration in which magnetic helicity is ejected to infinity on open field lines but retained in the closed-field region. Under this scheme, they describe the evolution of an initially potential field, in response to helicity injection, in the linear regime. The present work uses numerical calculations to extend the model of Vekstein et al. into the fully nonlinear regime. The results show a rise and bulging of the field lines of the closed-field region with increasing magnetic helicity, to a point where further solutions are impossible. We interpret these solution-sequence endpoints as indicating a possible loss of equilibrium, in the sense that a relaxed equilibrium state may no longer be available to the corona when sufficient helicity has been injected. The rise and bulging behavior is reminiscent of what is observed in a helmet streamer just before the start of a coronal mass ejection (CME), and so our model suggests that a catastrophic loss of magnetic equilibrium might be the initiation mechanism for CMEs. We also find that some choices of boundary conditions can result in qualitative changes in the magnetic topology, with the appearance of magnetic islands. Whether or not this behavior occurs depends on the relative strengths of the fields in the closed- and open-field regions; in particular, island formation is most likely when the open field (which is potential) is strong and thus acts to confine the force-free closed field. Finally, we show that the energy released through reconnective relaxation can be a substantial fraction of the magnetic energy injected into the corona through footpoint motions and may be sufficient for heating the corona above active regions.

Wolfson, R.; Vekstein, G. E.; Priest, E. R.

1994-01-01

444

Magnetic reconnection at the edge of Uranus's magnetic field

NASA Astrophysics Data System (ADS)

A new modeling study sheds light on how the magnetosphere of Uranus compares to those of other planets. Magnetospheres around the inner planets Mercury and Earth are primarily driven by the solar wind—the charged particles spewed out from the Sun—through magnetic reconnection, in which the planet's magnetic field lines break and reconnect, releasing energy in the process.

Balcerak, Ernie

2014-09-01

445

Coronal magnetic fields from multiple type II bursts

NASA Astrophysics Data System (ADS)

Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘?’ varied from -3 to -2 for variation of density factor from 1 to 5. Key Words: Magnetic field, photosphere, corona, solar wind, bursts *Email:drvkdmani@gmail.com

Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

446

Tuning permanent magnets with adjustable field clamps

The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.

Schermer, R.I.

1987-01-01

447

Earth-directed ICME magnetic field configurations

NASA Astrophysics Data System (ADS)

It is known that the geoeffectiveness of interplanetary coronal mass ejections (ICMEs) depends on their magnetic field configuration. However, it remains unclear how the ICME interactions with the solar wind or other solar transient structures affect their magnetic configuration through, say, distortion of their cross-section, or deformation of their front. Obviously, precise space weather forecasting is depended on precise understanding of the evolution of the ICME internal magnetic topology.The goal of this study is to identify the ambient solar wind parameters that affect the flux-rope geometry and magnetic field configuration.

Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Szabo, Adam; Savani, Neel; Mays, M. Leila; Hidalgo, Miguel Angel; Wenyuan, Yu

2015-04-01

448

NASA Astrophysics Data System (ADS)

External applied field effect in magnetization process by pulsed field (PFM) method of rectangular bulk superconductor is analysed by solving the A-V magnetic equation coupled to the thermal one in order to show the influence of the amplitude of the external field on the trapped magnetic field of bulk superconductor. A numerical model based on the control volume method (CVM) has been developed, which uses a power-law model with temperature dependency and magnetic field dependence on critical current density. For low cooling temperature Tco = 20 K, a good distribution of the trapped magnetic field of the bulk superconductor is obtained when we applied high external field.

Lotfi Khene, Mohamed; Alloui, Lotfi; Mimoune, Souri Mohamed; Bouillault, Frédéric; Feliachi, Mouloud

2014-04-01