Magnetic field calculation and measurement of active magnetic bearings
NASA Astrophysics Data System (ADS)
Ding, Guoping; Zhou, Zude; Hu, Yefa
2006-11-01
Magnetic Bearings are typical devices in which electric energy and mechanical energy convert mutually. Magnetic Field indicates the relationship between 2 of the most important parameters in a magnetic bearing - current and force. This paper presents calculation and measurement of the magnetic field distribution of a self-designed magnetic bearing. Firstly, the static Maxwell's equations of the magnetic bearing are presented and a Finite Element Analysis (FEA) is found to solve the equations and get post-process results by means of ANSYS software. Secondly, to confirm the calculation results a Lakeshore460 3-channel Gaussmeter is used to measure the magnetic flux density of the magnetic bearing in X, Y, Z directions accurately. According to the measurement data the author constructs a 3D magnetic field distribution digital model by means of MATLAB software. Thirdly, the calculation results and the measurement data are compared and analyzed; the comparing result indicates that the calculation results are consistent with the measurement data in allowable dimension variation, which means that the FEA calculation method of the magnetic bearing has high precision. Finally, it is concluded that the magnetic field calculation and measurement can accurately reflect the real magnetic distribution in the magnetic bearing and the result can guide the design and analysis of the magnetic bearing effectively.
Calculations of the field distribution of a spectrometric magnet
NASA Astrophysics Data System (ADS)
Polyakova, R. V.; Perepelkin, E. E.; Shavrina, T. V.; Yudin, I. P.
2006-12-01
The design and construction of magnetic systems of electrophysical installations require preliminary mathematical modeling. Mathematical modeling is necessary in the process of adjustment and subsequent operation of an installation. Calculations of fields of magnetic systems, although performed on the basis of the solution of direct magnetostatic problems, are related to the class of inverse magnetostatic problems, since they actually include the search for optimal design of current elements and an iron yoke for a given magnetic field distribution. In this work, the method of numerical solution of the magnetostatic problem for domains with boundaries containing cusps is proposed. Using this numerical method, magnetic systems of rectangular configuration were modeled with high accuracy. In particular, the calculations of several modifications of the magnetic system SP-94 used in certain experimental installations are presented.
Calculations of the field distribution of a spectrometric magnet
R. V. Polyakova; E. E. Perepelkin; T. V. Shavrina; I. P. Yudin
2006-01-01
The design and construction of magnetic systems of electrophysical installations require preliminary mathematical modeling.\\u000a Mathematical modeling is necessary in the process of adjustment and subsequent operation of an installation. Calculations\\u000a of fields of magnetic systems, although performed on the basis of the solution of direct magnetostatic problems, are related\\u000a to the class of inverse magnetostatic problems, since they actually include
Calculating and Measuring Self-Generated Magnetic Fields in Hohlraums
NASA Astrophysics Data System (ADS)
Town, R. P. J.; Haines, M. G.; Li, C. K.
2005-10-01
The spontaneous generation of magnetic fields in laser-produced plasmas has been observed experimentally and theoretically by many authors. The main generation term for these fields is the well-known ?nex?Te term, where ne is the density and Te is the temperature. For typical laser-plasma conditions Mega-gauss magnetic fields are predicted to be generated. It has previously been shown that the main effect of these magnetic fields for Nova-scale hohlraums is to modify the electron temperature around the laser entrance hole [1]. We will review these calculations and report on recent calculations of NIF design-1 ignition hohlraums. We will also report on simulations to directly measure the magnetic fields using proton deflectometry [2]. We will assess the effect that the magnetic fields have on electron transport, laser-plasma instabilities, and symmetry in ignition and OMEGA hohlraums. [1] S. H. Glenzer, Contrib. Plasma Phys. 40, 36 (2000). [2] A. J. Mackinnon, et al, Rev. Sci. Instrum. 75, 3531 (2004). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Calculation and optimization of stray fields of septum dipole magnets
Holmes, Andrew J T
1976-01-01
A theoretical treatment is described of the external stray field of C- shaped septum magnets, such as those designed for the beam extraction systems of the 400 GeV CERN Super Proton Synchrotron. A special conformal transformation of the magnetic plane yields analytic expressions for the four components of the stray field: the septum- shape field (due to the form of the septum conductor), the edge-effect field (due to the mechanical clearance between septum and yoke), the cooling-duct field (due to the presence of these ducts in the septum), and the magnetomotance field (caused by the ampere-turn losses in the yoke). These expressions can be computed by numerical iteration. The septum-shape field turns out to be opposite in sign to the other three, making possible a criterion which creates a minimal stray field for a given magnetic induction. Plots of calculated and measured stray fields are presented for four prototype septum magnets whose total induction is between 0.38 and 1.41 T. (3 refs).
Calculation of magnetic error fields in hybrid insertion devices
Savoy, R.; Halbach, K.; Hassenzahl, W.; Hoyer, E.; Humphries, D.; Kincaid, B.
1989-08-01
The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory requires insertion devices with fields sufficiently accurate to take advantage of the small emittance of the ALS electron beam. To maintain the spectral performance of the synchrotron radiation and to limit steering effects on the electron beam these errors must be smaller than 0.25%. This paper develops a procedure for calculating the steering error due to misalignment of the easy axis of the permanent magnet material. The procedure is based on a three dimensional theory of the design of hybrid insertion devices developed by one of us. The acceptable tolerance for easy axis misalignment is found for a 5 cm period undulator proposed for the ALS. 11 refs., 5 figs.
Analytical calculation of the magnetic field produced by electric power lines
George Filippopoulos; Dimitris Tsanakas
2005-01-01
The magnetic field produced by electric power lines is usually calculated numerically with the use of a computer. However, the analytical calculation of the magnetic field is preferable because it results in a mathematical expression for showing its dependences on the various parameters of the line arrangement. A method to derive the analytical formula of the magnetic field vector produced
Yutaka Yokota; Tsutomu li; Toshio Toyofuku; Katsutoshi Tabatake
1979-01-01
The practical calculation method for the magnetic field analysis of a saddle-shaped magnetic deflection coil with an iron core has already been reported. The authors used this calculation method to determine the deflection magnetic field. Further, by numerically solving the equation which was derived from the variation principle, the authors developed the program which determined the electron beam trajectory. By
a Study of Stiff Converging Problems in Magnetic Field Calculation
Mohammad Ali Golbazi
1985-01-01
This thesis is mainly devoted to the numerical solutions of stiff converging problems in magnetic fields. Stiff problems are the ones whose converging process in iterative methods is extremely slow. The solution of many micromagnetic problems lead to unbounded nonlinear partial differential equations. A standard technique to convert these problems to boundary value problems is to assume that the geometry
Calculation of magnetic fields from electric power transmission lines
M. Abdel-Salam; H. Abdallah; M. Th. El-Mohandes; H. El-Kishky
1999-01-01
The conventional method is applied for computation of magnetic fields around multi-phase AC lines where each subconductor is represented by a filament current extending along its axis. The method is checked against a more accurate efficient method based on the simulation technique. In this technique, each subconductor current is simulated by a finite number of filamentary line currents distributed within
Calculation of the magnetic field in the active zone of a hysteresis clutch
NASA Technical Reports Server (NTRS)
Ermilov, M. A.; Glukhov, O. M.
1977-01-01
The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.
New expressions for calculating the magnetic field created by radial current in massive disks
Slobodan Babic; Cevdet Akyel; Sheppard J. Salon; Slaven Kincic
2002-01-01
In this paper, new expressions are presented for three-dimensional magnetic-field calculation for a massive disk currying radial currents. These expressions have been obtained in analytical form as functions of incomplete elliptical integrals (of the first, second, and third kind) and an integral to be solved numerically. This approach enables one to easily calculate the magnetic field everywhere in space at
Analytical field calculation of helical magnets with an axially symmetric iron yoke
T. Tominaka; M. Okamura; T. Katayama
2002-01-01
The magnetic field due to the current flowing in a helical conductor placed inside a cylindrical hole in iron is investigated. In order to calculate the contribution of an axially symmetric iron yoke on the inner field of helical magnets, a three-dimensional potential problem is solved. The obtained analytical expressions are applied for the helical dipole magnet for the Relativistic
Magnetic field calculation under EHV transmission lines for more realistic cases
E. M. Adel Zein
2008-01-01
Ground level electric and magnetic fields from overhead power transmission lines are of increasingly important considerations in several research areas. Common methods for the calculation of the magnetic fields created by power transmission lines assume straight horizontal lines parallel to a flat ground and parallel with each other. The influence of the sag due to the line weight is neglected
A Rigorous Solution for the Calculation of the Magnetic-Field Problem
Adalbert Beyer
1985-01-01
A method is presented for the calculation of the magneticfield strength inside as well as outside an inhomogeneously magnetized three-dimensional body. Employing the method derived in earlier papers for the solution of the magnetic field problem of two-dimensional magnetized body we show how the analytic supplement can be generalized for the three-dimensional case. The calculation scheme developed here is well
Analytical field calculation of helical magnets with an axially symmetric iron yoke
NASA Astrophysics Data System (ADS)
Tominaka, T.; Okamura, M.; Katayama, T.
2002-05-01
The magnetic field due to the current flowing in a helical conductor placed inside a cylindrical hole in iron is investigated. In order to calculate the contribution of an axially symmetric iron yoke on the inner field of helical magnets, a three-dimensional potential problem is solved. The obtained analytical expressions are applied for the helical dipole magnet for the Relativistic Heavy Ion Collider (RHIC), with good agreement.
Magnetic field calculation for a 10 MeV positron emission tomography cyclotron
Chen Dezhi; Liu Kaifeng; Yang Jun; Li Dong; Qin Bin; Xiong Yongqian [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen Zihao [Central Southern Electrical Power Design Institute, Wuhan 430071 (China)
2013-05-15
The magnetic field calculation and correction for a 10 MeV positron emission tomography cyclotron is presented. 3D TOSCA analysis results are compared with the measured data, and the calculation error is used to calibrate the B-H curve to obtain a very precise finite element method estimator, which is used to predict the correction of the magnet pole for achieving the isochronous field. The isochronous field error is approximated with the effects of a set of standard patches. On the assumption that the effect of each small patch is proportional to its surface, the correction of the magnet pole is found by solving a system of equations using the least square scheme. The magnet shimming is performed and the measured magnetic field is found in good agreement with the prediction, with an error less than 2 G.
Calculating the 3D magnetic field of ITER for European TBM studies
Äkäslompolo, Simppa; Bergmans, Thijs; Gagliardi, Mario; Galabert, Jose; Hirvijoki, Eero; Kurki-Suonio, Taina; Sipilä, Seppo; Snicker, Antti
2015-01-01
The magnetic perturbation due to the ferromagnetic test blanket modules (TBMs) may deteriorate fast ion confinement in ITER. This effect must be quantified by numerical studies in 3D. We have implemented a combined finite element method (FEM) -- Biot-Savart law integrator method (BSLIM) to calculate the ITER 3D magnetic field and vector potential in detail. Unavoidable geometry simplifications changed the mass of the TBMs and ferritic inserts (FIs) up to 26%. This has been compensated for by modifying the nonlinear ferromagnetic material properties accordingly. Despite the simplifications, the computation geometry and the calculated fields are highly detailed. The combination of careful FEM mesh design and using BSLIM enables the use of the fields unsmoothed for particle orbit-following simulations. The magnetic field was found to agree with earlier calculations and revealed finer details. The vector potential is intended to serve as input for plasma shielding calculations.
Kurz, S
1999-01-01
In this paper a new technique for the accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modelling of the nonlinear interior of the yoke. The BEM-FEM method is therefore specially suited for the calculation of 3-dimensional effects in the magnets, as the coils and the air regions do not have to be represented in the finite-element mesh and discretization errors only influence the calculation of the magnetization (reduced field) of the yoke. The method has been recently implemented into the CERN-ROXIE program package for the design and optimization of the LHC magnets. The field shape and multipole errors in the two-in-one LHC dipoles with its coil ends sticking out of the common iron yoke is presented.
Boundary-Integral method for calculating poloidal axisymmetric AC magnetic fields
J. Priede; G. Gerbeth
2006-01-01
This paper presents a boundary-integral equation (BIE) method for the calculation of poloidal axisymmetric magnetic fields applicable in a wide range of ac frequencies. The method is based on the vector potential formulation, and it uses the Green's functions of Laplace and Helmholtz equations for the exterior and interior of conductors, respectively. The paper focuses on a calculation of axisymmetric
S. Kurz; Stephan Russenschuck
1999-01-01
In this paper a new technique for the accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets is presented. This method couples boundary elements (BEM) which discretize the surface of the iron yoke and finite elements (FEM) for the modelling of the nonlinear interior of the yoke. The BEM-FEM method is therefore specially suited for the
Boyer, Edmond
(Appendix 1) where 03BCr, 03BC~ and M z are the components of stator core magnetic permeability tensor ; 03C661 Three dimensional magnetic field mathematical model and its applications to calculation of the generator design instead of creating a physical model much less correct and much more costly. Revue Phys
Electric-field control of magnetism in graphene quantum dots: Ab initio calculations
Luis A. Agapito; Nicholas Kioussis; Efthimios Kaxiras
2010-01-01
Employing ab initio calculations we predict that the magnetic states of hydrogenated diamond-shaped zigzag graphene quantum dots (GQDs), each exhibiting unique electronic structure, can be selectively tuned with gate voltage, through Stark or hybridization electric-field modulation of the spatial distribution and energy of the spin-polarized molecular orbitals, leading to transitions between these states. Electrical read-out of the GQD magnetic state
Xinghua Wang; Qingfu Li; Shuhong Wang; Qunfeng Li
2003-01-01
This paper derives the relative air-gap-specific permeance distribution function by Schwarz-Christoffel transformation, considering the effect of slotting. Neglecting the iron saturation, and employing the analytical algorithm for partial differential equations, efficient and effective analytical calculations of no-load air-gap magnetic field distribution, armature field distribution, and phase electromotive force (EMF), are demonstrated, considering the stator slots. Subsequently, based on the main
Suleimanov, Yu V; Tscherbul, T V; Krems, R V
2012-07-14
We show that the cross sections for molecule-molecule collisions in the presence of an external field can be computed efficiently using a total angular momentum basis, defined either in the body-fixed frame or in the space-fixed coordinate system. This method allows for computations with much larger basis sets than previously possible. We present calculations for (15)NH-(15)NH collisions in a magnetic field. Our results support the conclusion of the previous study that the evaporative cooling of rotationally ground (15)NH molecules in a magnetic trap has a prospect of success. PMID:22803524
Tellgren, Erik I; Fliegl, Heike
2013-10-28
In the present study a non-perturbative approach to ab initio calculations of molecules in strong, linearly varying, magnetic fields is developed. The use of London atomic orbitals (LAOs) for non-uniform magnetic fields is discussed and the standard rationale of gauge-origin invariance is generalized to invariance under arbitrary constant shifts of the magnetic vector potential. Our approach is applied to study magnetically induced anapole moments (or toroidal moments) and the related anapole susceptibilities for a test set of chiral and nonchiral molecules. For the first time numerical anapole moments are accessible on an ab initio level of theory. Our results show that the use of London atomic orbitals dramatically improves the basis set convergence also for magnetic properties related to non-uniform magnetic fields, at the cost that the Hellmann-Feynman theorem does not apply for a finite LAO basis set. It is shown that the mixed anapole susceptibility can be related to chirality, since its trace vanishes for an achiral molecule. PMID:24182015
Calculating Coronal Mass Ejection Magnetic Field at 1 AU Using Solar Observables
NASA Astrophysics Data System (ADS)
Chen, J.; Kunkel, V.
2013-12-01
It is well-established that most major nonrecurrent geomagnetic storms are caused by solar wind structures with long durations of strong southward (Bz < 0) interplanetary magnetic field (IMF). Such geoeffective IMF structures are associated with CME events at the Sun. Unfortunately, neither the duration nor the internal magnetic field vector of the ejecta--the key determinants of geoeffectiveness--is measurable until the observer (e.g., Earth) passes through the ejecta. In this paper, we discuss the quantitative relationships between the ejecta magnetic field at 1 AU and remotely observable solar quantities associated with the eruption of a given CME. In particular, we show that observed CME trajectories (position-time data) within, say, 1/3 AU of the Sun, contain sufficient information to allow the calculation of the ejecta magnetic field (magnitude and components) at 1 AU using the Erupting Flux Rope (EFR) model of CMEs. Furthermore, in order to accurately determine the size and arrival time of the ejecta as seen by a fixed observer at 1 AU (e.g., ACE), it is essential to accurately calculate the three-dimensional geometry of the underlying magnetic structure. Accordingly, we have extended the physics-based EFR model to include a self-consistent calculation of the transverse expansion taking into account the non-symmetric drag coupling between an expanding CME flux rope and the ambient solar wind. The dependence of the minor radius of the flux rope at 1 AU that determines the perceived size of the ejecta on solar quantities is discussed. Work supported by the NRL Base Program.
Fourier Bessel transform method for efficiently calculating the magnetic field of solenoids
Nachamkin, J.; Maggiore, C.J.
1980-08-01
A numerical procedure for calculating the magnetic field of a selenoid is derived. Based on the properties of Bessel functions, the procedure is shown to be convergent everywhere, including within the windings of the solenoid. The most critical part of the procedure is detailed in the main text. A simple method is used to ensure numerical significance while allowing economical computational times. In the appendix the procedure is generalized to universal convergence by appropriate partitioning of the solenoid windings.
Calculation of the magnetic field due to a bioelectric current dipole in an ellipsoid
Andrei Irimia
2008-01-01
The bioelectric current dipole model is important both theoretically and computationally in the study of electrical activity\\u000a in the brain and stomach due to the resemblance of the shape of these two organs to an ellipsoid. To calculate the magnetic\\u000a field B due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving ellipsoidal harmonics $$\\u000a\\\\mathbb{E}_n^m
NASA Astrophysics Data System (ADS)
Zavodszky, Peter; Marti, Felix; Zeller, Al; Biri, Sandor
2002-04-01
An ECR Ion Source (ECRIS) is designed to serve as a test bench for development of different ion species, emittance optimization and other applications. The radial confinement for this ECRIS will be provided by a special permanent magnet hexapole reaching 1.5 T at the aluminum plasma chamber wall (R=37 mm). The axial trapping will be produced with normal conducting solenoids enclosed in an iron yoke. The maximum magnetic field at the injection end will be 2.6 T and 1.5 T at extraction. A third set of coils polarized in the opposite direction between the injection and extraction coils is used to decrease the minimum value of the axial magnetic field to produce magnetic mirror ratios as high as 20. Three different microwave frequencies (6.4, 14.5 and 18 GHz) will be used to heat the plasma. Detailed magnetic field calculations will be presented comparing the results obtained with the SUPERFISH, TrapCAD and OPERA codes.
An approach to 3D magnetic field calculation using numerical and differential algebra methods
Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.
1992-07-17
Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.
The use of a relaxation method to calculate the 3D magnetic field contribution of an iron yoke
S. Caspi; M. Helm; L. J. Laslett
1991-01-01
A computational procedure has been developed for calculating the three-dimensional field produced by an axisymmetric iron yoke of high permeability in the presence of a system of conductors. The procedure is particularly applicable to the end regions of multipole magnets of the sort used in particle accelerators. The field produced by the conductors is calculated using the Biot-Savart law. We
The use of a relaxation method to calculate the 3D magnetic field contribution of an iron yoke
S. Caspi; M. Helm; L. J. Laslett
1992-01-01
A computational procedure has been developed for calculating the 3-D field produced by an axisymmetric iron yoke of high permeability in the presence of a system of conductors. The procedure is particularly applicable to the end regions of multipole magnets of the sort used in particle accelerators. The field produced by the conductors is calculated using the Biot-Savart law. If
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Ali, Halima
2008-12-01
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (?,?) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ? is the toroidal magnetic flux and ? is the poloidal angle. Natural canonical coordinates (?,?,?) can be transformed to physical position (R,Z,?) using a canonical transformation. (R,Z,?) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.
NASA Astrophysics Data System (ADS)
Hamal, Dipendra Bahadur; Higuchi, Masahiko; Higuchi, Katsuhiko
2015-06-01
The magnetic-field-containing relativistic tight-binding approximation (MFRTB) method [Phys. Rev. B 91, 075122 (2015), 10.1103/PhysRevB.91.075122] is the first-principles calculation method for electronic structures of materials immersed in the magnetic field. In this paper, the MFRTB method is applied to the simple cubic lattice immersed in the magnetic field. The total energy and magnetization oscillate with the inverse of the magnitude of the magnetic field, which means that the de Haas-van Alphen oscillation is revisited directly through the MFRTB method. It is shown that the conventional Lifshitz-Kosevich (LK) formula is a good approximation to the results of the MFRTB method in the experimentally available magnetic field. Furthermore, the additional oscillation peaks of the magnetization are found especially in the high magnetic field, which cannot be explained by the LK formula.
NASA Astrophysics Data System (ADS)
Park, Min-Gyu; Choi, Jang-Young; Shin, Hyeon-Jae; Jang, Seok-Myeong
2014-05-01
This paper presents the torque analysis and measurements of a permanent magnet (PM) type eddy current brake (ECB) with a Halbach magnet array based on analytical magnetic field calculations. On the basis of a magnetic vector potential and using a two-dimensional (2D) polar coordinate system, the analytical solution for magnetic flux density, including the eddy current reaction is evaluated. Based on these solutions, the magnetic torque is also determined analytically. A 2D finite element analysis is employed to validate the method used. Practical issues in the analytical study of the PM type ECBs, such as the maximum braking torque, the required rotor speed, and the segment-dependent, are fully discussed. Finally, the braking torque as a function of the rotor speed is measured to verify the results of the analytical study.
Holographic calculation of the QCD crossover temperature in a magnetic field
Rougemont, Romulo; Noronha, Jorge
2015-01-01
Lattice data for the QCD equation of state and the magnetic susceptibility computed near the crossover phase transition (at zero magnetic field) are used to determine the input parameters of a five dimensional Einstein-Maxwell-Dilaton holographic model. Once the model parameters are fixed at zero magnetic field, one can use this holographic construction to study the effects of a magnetic field on the equilibrium and transport properties of the quark-gluon plasma. In this paper we use this model to study the dependence of the crossover temperature with an external magnetic field. The crossover temperature in our holographic model decreases with an increasing magnetic field, which is in agreement with recent lattice results.
NSDL National Science Digital Library
2014-09-18
Students visualize the magnetic field of a strong permanent magnet using a compass. The lesson begins with an analogy to the effect of the Earth's magnetic field on a compass. Students see the connection that the compass simply responds to the Earth's magnetic field since it is the closest, strongest field, and thus the compass responds to the field of the permanent magnets, allowing them the ability to map the field of that magnet in the activity. This information will be important in designing a solution to the grand challenge in activity 4 of the unit.
Schöller, Markus
2015-01-01
In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.
J Selvaggi; S Salon; O Kwon CVK Chari
2006-02-14
An alternative method is developed to compute the magnetic field from a circular cylindrical magnetic source. Specifically, a Fourier series expansion whose coefficients are toroidal functions is introduced which yields an alternative to the more familiar spherical harmonic solution or the Elliptic integral solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion. This expansion is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. This method can be used to accurately compute the far field where a finite element formulation is known to be inaccurate.
Feng Liu; Stuart Crozier
2004-01-01
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields\\/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This
NASA Astrophysics Data System (ADS)
Salas, Jorge; Varga, Kalman
2015-03-01
Strong magnetic fields can significantly alter the properties of atoms and allow the formation of stable negative ions such as He-. We have calculated the energies of systems comprised of three electrons in the presence of strong magnetic fields by using the Stochastic Variational Method with deformed Explicitly Correlated Gaussian basis. This approach yields accurate values for three-electron systems and predicts that the He- ion in a strong magnetic field has stable states, within the non-relativistic framework, in the infinite nuclear mass approximation. The energy spectrum and the properties of three-electron systems as a function of the strength of the magnetic field show the effect of the rivalry between the Coulomb interaction and the magnetic confinement.
NASA Astrophysics Data System (ADS)
Bedard, Claude; Destexhe, Alain
2014-10-01
Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.
Calculations on High Field Magnets with Iron Yokes and Rectangular Coils
H. H. Umstütter
1973-01-01
Most studies on high-field bending magnets for superconducting synchrotrons or high energy beam transport in the last years concentrated on designs with a circular aperture and cos ¿ current distribution which is approximated by blocks of windings of stepwise decreasing current density. An alternative solution consists in the design of a magnet with square or rhomb shaped aperture which has
NASA Astrophysics Data System (ADS)
Liu, Jun; Jia, Wen-Zhi; Wang, Shun-Jin
2009-09-01
Based on the Dirac equation describing an electron moving in a uniform and cylindrically symmetric magnetic field which may be the result of the self-consistent mean field of the electrons themselves in a neutron star, we have obtained the eigen solutions and the orbital magnetic moments of electrons in which each eigen orbital can be calculated. From the eigen energy spectrum we find that the lowest energy level is the highly degenerate orbitals with the quantum numbers pz = 0, n = 0, and m >= 0. At the ground state, the electrons fill the lowest eigen states to form many Landau magnetic cells and each cell is a circular disk with the radius ?free and the thickness ?e, where ?free is the electron mean free path determined by Coulomb cross section and electron density and ?e is the electron Compton wavelength. The magnetic moment of each cell and the number of cells in the neutron star are calculated, from which the total magnetic moment and magnetic field of the neutron star can be calculated. The results are compared with the observational data and the agreement is reasonable.
Zhi-Yong Jiao; Yu-Cheng Li
2002-01-01
Using the adiabatic approximation and adiabatic variational approximation with an effective potential, the total energies and the equilibrium internuclear separations of H2+ ion in states sigmag, piu, deltag, phiu, gammag, etau in strong magnetic fields have been calculated. Our results reproduced those obtained by Vincke and Baye (Vincke M and Baye D 1985 J. Phys. B: At. Mol. Phys. 18
R. Cortina; A. Porrino
1992-01-01
A circuit model and an ad hoc computer program were set up to evaluate electromagnetic interference in the vicinity of protective structures struck by lightning. This program permits the evaluation of the impulsive magnetic fields by calculating the impulse current distribution in different parts of such structures. It also allows the evaluation of the electromagnetic interference induced on susceptible victim
Calculating Non-Potentiality in Solar Active Regions Using SDO/HMI Vector Magnetic Field Data
NASA Astrophysics Data System (ADS)
Bobra, M.; Hoeksema, J. T.
2010-12-01
Non-potential magnetic fields in solar active regions are thought to be associated with flare occurrence. In this study, we parametrize the non-potentiality of several active regions, using data from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO), and correlate these parameters with flare occurrence. In particular, we focus on a parameter that we call the Gradient-Weighted Inversion Line Length (GWILL). Using data from SOHO/MDI, Mason et al. found that GWILL generally tends to increase before a solar flare. We investigate whether extending the analysis of Mason et. al. to a three-dimensional field enables us to derive better near real-time indicators of flare occurrence. Before HMI, the availability of vector magnetograms was sparse at best. HMI provides continuous vector magnetogram data at a 12-minute cadence. As such, this study represents the first parametrization of non-potentiality in solar active regions using continuous vector magnetic field data.
The use of a relaxation method to calculate the 3D magnetic field contribution of an iron yoke
Caspi, S.; Helm, M.; Laslett, L.J. (Lawrence Berkeley Lab., Berkeley, CA (US))
1992-03-01
This paper reports on a computational procedure that has been developed for calculating the three-dimensional field produced by an axisymmetric iron yoke of high permeability in the presence of a system of conductors. The procedure is particularly applicable to the end regions of multipole magnets of the sort used in particle accelerators. The field produced by the conductor is calculated using the Biot-Savart law. We speak of the field contribution of the yoke as an Image field, although it is associated with a distinctly diffuse distribution of image currents or magnetic moments. At every point of the boundary of the yoke the total scalar potential is constant, so V{sup i} = {minus}V{sup d} where i = image and d = direct contribution from the conductors.
NSDL National Science Digital Library
2012-08-03
This is an activity about the declining strength of Earth's magnetic field. Learners will review a graph of magnetic field intensity and calculate the amount by which the field has changed its intensity in the last century, the rate of change of its intensity, and when the field should decrease to zero strength at the current rate of change. Learners will also use evidence from relevant sources to create a conjecture on the effects on Earth of a vanished magnetic field. Access to information sources about Earth's magnetic field strength is needed for this activity. This is Activity 7 in the Exploring Magnetism on Earth teachers guide.
NASA Astrophysics Data System (ADS)
Zavodszky, P. A.; Dekamp, J.; Marti, F.; Miller, P.; Ottarson, J.; Zeller, A.
2004-05-01
An ECR ion source is being designed to initially serve as a test bench for development and later will replace the existing 6.4 GHz SC-ECRIS. The radial magnetic field will be produced by six superconducting hexapole coils, achieving 1.4 T at the aluminum plasma chamber wall (R=50 mm). The axial trapping potentials will be produced with six superconducting solenoids enclosed in an iron yoke. The maximum magnetic field at the injection end will be 2.6 T and 1.5 T at extraction. The two central solenoids operated in reverse polarity from the injection and extraction coils are used to decrease the minimum value of the axial magnetic field to produce magnetic mirror ratios as high as 20. The six solenoids will allow changing the separation between the two axial magnetic maxima in the range of 330 to 480 mm. It also allow varying the distance between the plasma electrode aperture and the resonant zone in the plasma. Two different microwave frequencies (14.5 and 18 GHz) will be used to heat the plasma.
Design and Analysis of 1 MW Synchronous Machine via 3D Magnetic Field Calculation
Seung-Kyu Baik; Young-Kil Kwon; Eon-Young Lee; Jae-Deuk Lee; Jung-Pyo Hong; Yeong-Chun Kim; Tae-Sun Moon; Heui-Joo Park; Woon-Sik Kwon
2007-01-01
A 1 MW class superconducting synchronous rotating machine has been designed as a draft based on 2-dimensional (2D) magnetic field distribution considering several conditions such as superconducting wire length, machine efficiency, size and so on. By the way from 2D design it is not possible to consider the effect of end coils and end portions of stator iron yoke especially
Tachas, Nikolaos J; Samaras, Theodoros
2014-07-01
In the present work we studied some of the features related to transcranial magnetic stimulation (TMS) computational modeling. Particularly we investigated the impact of head model resolution on the estimated distribution of the induced electric field, as well as the role of the stimulating magnetic coil model in TMS. Using the impedance method we calculated the induced electric field inside a realistic numerical phantom of the human head from a commercially available eight-shaped coil, which was modeled in two ways. The results showed that finer resolution of the model has better performance at tissue interfaces eliminating numerical artifacts of local peaks. Furthermore, the geometrical details of a TMS coil must be taken into account since the predicted amount of volume of brain tissue involved can have great variation. Finally, the secondary magnetic field that is generated by the induced eddy currents in the tissues can be neglected. PMID:23872490
Magnetic Field Safety Magnetic Field Safety
McQuade, D. Tyler
Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain fields will rapidly accelerate any magnetic material towards the magnet. § Magnetic material is commonly
Beam emittance calculation in the presence of an axially symmetric magnetic field
Sergei Nagaitsev and Alexander Shemyakin
2000-05-15
The Fermilab electron cooling project requires low transverse electron velocities (both coherent and incoherent) in the solenoidal cooling section. One of the possible reasons for an increase of these velocities is aberrations introduced by optical elements in the axially symmetric portion of the beam channel (first of all, in the acceleration tube) preceding the cooling section. Most of these optical elements can be treated as thin lenses so that the aberrations can be characterized by an increase of an effective beam emittance as a function of the beam radius in this element. The goal of this note is to formulate a method that would allow to correctly estimate these aberrations in the presence of linear coupling and a non-zero longitudinal magnetic field at the cathode. This is of particular interest for electron beam simulation programs that are employed to optimize beam transport in the presence of a varying longitudinal magnet field.
Magnetic field line Hamiltonian
Boozer, A.H.
1984-03-01
The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained.
NASA Astrophysics Data System (ADS)
Zhao, Li-Bo; Du, Meng-Li
2009-08-01
Using the recently developed finite-basis-set method with B splines, excited states of H atoms in a magnetic field have been calculated. Energy levels are presented for the ten excited states, 2s0, 3d'0, 3p0, 3p-1, 3d-1, 4d-1, 3d-2, 4d-2, 4f-2, and 5f-2 as a function of magnetic field strengths with a range from zero up to 2.35 × 106 T. The obtained results are compared with available high accuracy theoretical data reported in the literature and found to be in excellent agreement. The comparison also shows that the current method can produce energy levels with an accuracy higher than the existing high accuracy method [Phys. Rev. A 54 (1996) 287]. Here high accuracy energy levels are for the first time reported for the 3d'0, 4d-1, 4d-2, 4f-2, and 5f-2 states.
Magnetic Fields Classroom Activity
NSDL National Science Digital Library
Reinhart, Rose
In this lesson from Math Machines, students will learn about the effects of magnetic fields on moving, electrically charged particles. The activity consists of two exercises. The first involves analyzing how a robot is controlled in a magnetic field. The second has students design and test a "magnetic bottle."A participant handout (including worksheets) and facilitator notes are made available for download in DOC file format. A link to a required calculator program is also provided.
ICRF wave propagation and absorption in tokamak and mirror magnetic fields: a full-wave calculation
Jaeger, E.F.; Batchelor, D.B.; Weitzner, H.; Whealton, J.H.
1985-01-01
Global solutions for the ion cyclotron resonant frequency (ICRF) wave fields in a straight tokamak with rotational transform and a poloidally symmetric mirror are calculated in the cold plasma limit. The component of the wave electric field parallel to vector Bis assumed zero. Symmetry in each problem allows Fourier decomposition in one ignorable coordinate, and the remaining set of two coupled, two-dimensional partial differential equations is solved by finite differencing. Energy absorption and antenna impedance are calculated using a simple collisional absorption model. When large gradients in vertical barBvertical bar along vectorB are present in either geometry, ICRF heating at the fundamental ion cyclotron resonance is observed. For the mirror, such gradients are always present. But for the tokamak, the rotational transform must be large enough that vectorB . delB greater than or equal to 0(1). For smaller transforms more typical of real tokamaks, only heating at the two-ion hybird resonance is observed. This suggests that direct resonant absorption at the fundamental ion cyclotron resonance may be possible in stellarators where vectorB . delB approx. 0(1) + 11.
(version 6/26/06) Magnetic Fields
Collins, Gary S.
(version 6/26/06) Magnetic Fields GOALS (1) To visualize the magnetic fields produced by several to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3) To calculate where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic field
NASA Astrophysics Data System (ADS)
Yesilleten, Dicle
1998-03-01
We show that extensive statistical mechanics information can be obtained by the calculation of local densities such as local magnetizations and neighbor correlations, made possible by renormalization-group theory. This is illustrated with quenched random-bond, random-field, and spin-glass systems, in two and three dimensions. The different ordering mechanisms thus become vividly and quantitatively apparent. (D. Yesilleten and A. N. Berker, Phys. Rev. Lett. 78), 1564 (1997)'(D. Yesilleten and A. N. Berker, Tr. J. Phys., in press (1998))
Lee, Seong T [ORNL; Burress, Timothy A [ORNL; Hsu, John S [ORNL
2009-01-01
This paper introduces a new method for calculating the power factor with consideration of the cross saturation between the direct-axis (d-axis) and the quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross-saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux at high speed, which was developed for the traction motor of a hybrid electric vehicle.
The use of a relaxation method to calculate the 3D magnetic field contribution of an iron yoke
Caspi, S.; Helm, M.; Laslett, L.J.
1991-07-01
A computational procedure has been developed for calculating the three-dimensional field produced by an axisymmetric iron yoke of high permeability in the presence of a system of conductors. The procedure is particularly applicable to the end regions of multipole magnets of the sort used in particle accelerators. The field produced by the conductors is calculated using the Biot-Savart law. We speak of the field contribution of the yoke as an image field'' although it is associated with a distinctly diffuse distribution of image currents or magnetic moments. At every point on the boundary of the yoke the total scalar potential is constant, so V{sup i} = -V{sup d} where i=image and d=direct contribution from the conductors. If we describe both potentials as a series of harmonic components'' with respect to azimuthal dependence, then the nature of the boundary condition is such that a de-coupling of one harmonic component from another is preserved and therefore it is also true that V{sup i}(n)=-V{sup d}(n) at the iron interface, where n is a harmonic number. If we solve the appropriate individual differential equations for the scalar potential functions V{sup i}(n) throughout the iron-free region, with the proper applied boundary condition for the scalar potential of each harmonic number, we shall achieve upon summation the appropriate potential function to describe the field contribution of the surrounding high-permeability iron. 2 refs., 3 figs.
Calculation of nonlinear magnetization components in ferrites
NASA Astrophysics Data System (ADS)
Schied, E.
1986-10-01
In this paper ferrites are treated in a phenomenological description. The motion of the magnetization vector is calculated under the influence of a strong magnetic field HO and an additional microwave magnetic field h(t). The magnetic field h(t) and the magnetization m(t) are represented by their Fourier components. From the nonlinear equation of motion due to Landau and Lifshitz, an infinite system of algebraic equations is derived. Only tensor notation is used: the vectors need not to be split up into their spatial components. This leads to clear and comprehensive solutions which will be given for some cases.
NASA Astrophysics Data System (ADS)
Meyer, Dirk; Boblest, Sebastian; Wunner, Günter
2013-03-01
We apply the correlation-function quantum Monte Carlo (CFQMC) method to the calculation of the energies of ground and excited states for helium in neutron-star magnetic fields. The method has been successfully applied by Jones, Ortiz, and Ceperley to the calculation of helium in white dwarf magnetic fields [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.55.6202 55, 6202 (1997)]. We extend the accessible range of magnetic field strengths by introducing a fixed-phase variant of the CFQMC method. We find that with growing magnetic field strength the variances increase significantly and put a limit to the applicability of the method for atoms in strong magnetic fields. The behavior of the variances is traced back to the logarithmic divergence of the energy of the bosonic ground state with increasing magnetic field strength. We use basis sets, which account for the growing dominance of the cylindrical symmetry as the magnetic field is increased and incorporate them into the CFQMC algorithm. These basis sets are taken from Hartree-Fock calculations, performed using a B-Spline and Landau expansion beyond the adiabatic approximation.
Peter Zavodszky; Felix Marti; Al Zeller; Sandor Biri
2002-01-01
An ECR Ion Source (ECRIS) is designed to serve as a test bench for development of different ion species, emittance optimization and other applications. The radial confinement for this ECRIS will be provided by a special permanent magnet hexapole reaching 1.5 T at the aluminum plasma chamber wall (R=37 mm). The axial trapping will be produced with normal conducting solenoids
Effects of fibril magnetic fields on solar p-modes. II - Calculation of mode frequency shifts
NASA Technical Reports Server (NTRS)
Zweibel, E. G.; Bogdan, T. J.
1986-01-01
The effect of magnetic flux tubes in the solar convection zone on p-mode oscillations is investigated analytically using WKB ray theory, extending the results of Bogdan and Zweibel (1985) to the case of propagation not perpendicular to the tubes. Results for the frequency shift in polytropic slabs with vertical or horizontal flux tubes are presented in graphs and discussed.
The external magnetic field environment
NASA Technical Reports Server (NTRS)
1977-01-01
Calculations were made to predict magnetic field intensities surrounding an aircraft following a lightning strike. Aircraft design and aircraft structural geometry were considered in the computations. A wire grid aircraft model was used to aid in magnetic flux estimation.
E. M. ATZINGER
1966-01-01
The literature contains several contributions to the boundary value problem of calculating the magnetic field due to an oscillating dipole. Of these, Wait and Campbell [1953] provide the calculation that places both a loop antenna and the point of observation inside a semi-infinite conducting medium. Treating a current loop with horizontal axis, they have solved the general boundary value problem,
Evolution of twisted magnetic fields
Zweibel, E.G.; Boozer, A.H.
1985-02-01
The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
Magnetic fields in astrophysics
Ia. B. Zeldovich; A. A. Ruzmaikin; D. D. Sokolov
1983-01-01
The evidence of cosmic magnetism is examined, taking into account the Zeeman effect, beats in atomic transitions, the Hanle effect, Faraday rotation, gyro-lines, and the strength and scale of magnetic fields in astrophysics. The origin of magnetic fields is considered along with dynamos, the conditions for magnetic field generation, the topology of flows, magnetic fields in stationary flows, kinematic turbulent
Cyclical magnetic field flow fractionation
NASA Astrophysics Data System (ADS)
Tasci, T. O.; Johnson, W. P.; Gale, B. K.
2012-04-01
In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 ?m) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.
Exploring Magnetic Field Lines
NSDL National Science Digital Library
NASA
2012-06-26
In this activity, learners explore the magnetic field of a bar magnet as an introduction to understanding Earth's magnetic field. First, learners explore and play with magnets and compasses. Then, learners trace the field lines of the magnet using the compass on a large piece of paper. This activity will also demonstrate why prominences are always "loops."
M. de Dios-Leyva; C. A. Duque; L. E. Oliveira
2007-01-01
The variational procedure, in the effective-mass and parabolic-band approximations, is used in order to investigate the effects of crossed electric and magnetic fields on the exciton states in GaAs\\/Ga1-xAlxAs coupled double quantum wells. Calculations are performed for double quantum wells under applied magnetic fields parallel to the layers and electric fields in the growth direction. The exciton envelope wave function
K. B. Maracas
1994-01-01
Increasing electrification brings increased human exposures to electric and magnetic fields, commonly called EMFs, and growing evidence suggests that exposure to even low frequency, low energy, electric and magnetic fields may be related to adverse health effects. This paper focuses on magnetic fields and strategies that address them. The challenges faced by scientists in understanding magnetic field interactions with humans,
Park, BuSik; Webb, Andrew G; Collins, Christopher M
2009-08-01
This work presents a method to separately analyze the conservative electric fields (E(c), primarily originating with the scalar electric potential in the coil winding), and the magnetically-induced electric fields (E(i), caused by the time-varying magnetic field B1) within samples that are much smaller than one wavelength at the frequency of interest. The method consists of first using a numerical simulation method to calculate the total electric field (E(t)) and conduction currents (J), then calculating E(i) based on J, and finally calculating E(c) by subtracting E(i) from E(t). The method was applied to calculate electric fields for a small cylindrical sample in a solenoid at 600MHz. When a non-conductive sample was modeled, calculated values of E(i) and E(c) were at least in rough agreement with very simple analytical approximations. When the sample was given dielectric and/or conductive properties, E(c) was seen to decrease, but still remained much larger than E(i). When a recently-published approach to reduce heating by placing a passive conductor in the shape of a slotted cylinder between the coil and sample was modeled, reduced E(c) and improved B1 homogeneity within the sample resulted, in agreement with the published results. PMID:19520593
NSDL National Science Digital Library
2014-09-18
This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.
NSDL National Science Digital Library
In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.
Analytical field calculation of helical coils
NASA Astrophysics Data System (ADS)
Tominaka, T.; Okamura, M.; Katayama, T.
2001-03-01
Various helical coils such as helical dipole magnets, multifilamentary superconductors and superconducting strands have something in common with the helical structure. In this paper, we discuss the analytical calculation for the magnetic field of helical coils. In addition, the comparison between the analytical and numerical calculations is presented for simple helical coils. In particular, the helical multipole coefficients are introduced for helical dipole magnets, which are essential components of Siberian Snakes and spin rotators for polarized proton acceleration at Relativistic Heavy-Ion Collider (RHIC). The relation between the field homogeneity and helical multipoles is also studied. Finally, the analytically and numerically calculated and measured results of the magnetic field at the middle of the slotted helical dipole prototypes with the half-length for RHIC are compared. In this paper, the end effects of helical dipoles is not treated.
NSDL National Science Digital Library
2012-08-03
This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the magnetic field of the Earth. This is the second activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.
Visualizing Magnetic Field Lines
NSDL National Science Digital Library
2014-09-18
In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.
Aleksandr A. Ruzmaikin; Dmitrii D. Sokolov; Anvar M. Shukurov
1988-01-01
The current state of the understanding of the magnetic fields of galaxies is reviewed. A simple model of the turbulent dynamo is developed which explains the main observational features of the global magnetic fields of spiral galaxies. The generation of small-scale chaotic magnetic fields in the interstellar medium is also examined. Attention is also given to the role of magnetic
Abdelmalek Boumali
2014-10-10
In this paper, we show, by using the approach of effective mass, that the model of a two-dimensional Dirac oscillator can be used to describe the thermal properties of graphene under an uniform magnetic field. All thermal quantities of graphene, such as the free energy, the mean energy, the entropy and the specific heat, have been found by using an approach based on the zeta function.
NASA Astrophysics Data System (ADS)
Takahashi, H.; Fredrickson, E. D.; Schaffer, M. J.; Brooks, N. H.; Evans, T. E.; Lao, L. L.; Strait, E. J.; Austin, M. E.; Watkins, J. G.
2006-10-01
Current flowing along open field lines in the SOL may play a role in the ELM trigger process through the error field it generates [1]. A toroidally narrow ribbon-like SOLC, similar to those often found experimentally in the precursor phase of the ELM, produces a characteristic helical field structure, with appreciable intensity concentrated only over a narrow toroidal region on the outboard side and spread more evenly toroidally on the inboard side. This field pattern, calculated based in part on the spatial distribution of the SOLC observed during the ELM, has many features similar to those measured with Mirnov coil arrays. The SOLC during the ELM is non-axisymmetric, and reverses its direction as a function of its radial location. Impact of this structure on the intensity and distribution of the error field it generates is also investigated. 6pt [1] H. Takahashi, et al., EPS 2005 Paper 4.018, Tarragona, Spain.
Facility Measures Magnetic Fields
NASA Technical Reports Server (NTRS)
Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.
1991-01-01
Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.
Ironless Permanent Magnet Motors: Three-Dimensional Analytical Calculation
Paris-Sud XI, Université de
1 Ironless Permanent Magnet Motors: Three-Dimensional Analytical Calculation Romain Ravaud, Guy and the rotor of an ironless permanent magnet motor. The calculations are carried out without using any, torque, magnetic field, PM Synchronous motors ! 1 INTRODUCTION IRONLESS electrical machines are generally
NASA Technical Reports Server (NTRS)
Flowers, E. G.; Ruderman, M. A.; Lee, J.-F.; Sutherland, P. G.; Hillebrandt, W.; Mueller, E.
1977-01-01
Variational calculations of the binding energies of iron atoms and condensed matter in strong magnetic fields (greater than 10 to the 12th gauss). These calculations include the electron exchange energy. The cohesive energy of the condensed matter, which is the difference between these two binding energies, is of interest in pulsar theories and in the description of the surfaces of neutron stars. It is found that the cohesive energy ranges from 2.6 keV to 8.0 keV.
Magnetic Field Line Simulation Using a Microcomputer.
ERIC Educational Resources Information Center
Kirkup, L.
1986-01-01
Describes the implementation of a computer simulation of magnetic field lines. Discusses properties of magnetic fields and the calculation of magnetic fields at points. Provides a program listing (additional programs and teaching notes available from the author) and gives examples of several field plots. (JM)
NASA Astrophysics Data System (ADS)
Antunes, A.; Glover, P. M.; Li, Y.; Mian, O. S.; Day, B. L.
2012-07-01
Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.
Magnetic Fields Analogous to electric field, a magnet
Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University
Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction
LABORATORY VI MAGNETIC FIELDS AND FORCES
Minnesota, University of
. · Calculate the motion of a particle with a constant acceleration. · Calculate the motion of a particle of the universe, the atomic structure of materials, and the quark structure of elementary particles. Magnetic; · Calculate the magnetic force on a charged particle moving in a uniform magnetic field and describe its
NSDL National Science Digital Library
Jeffrey Barker
This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.
Electricity and Magnetic Fields
NSDL National Science Digital Library
VU Bioengineering RET Program,
The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.
NSDL National Science Digital Library
VU Bioengineering RET Program,
Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.
NSDL National Science Digital Library
VU Bioengineering RET Program,
Students use the same method as in the activity from lesson 2 of this unit to explore the magnetism due to electric current instead of a permanent magnet. Students use a compass and circuit to trace the magnetic field lines induced by the electric current moving through the wire. Students develop an understanding of the effect of the electrical current on the compass needle through the induced magnetic field and understand the complexity of a three dimensional field system.
N. F. Ness; M. H. Acuna; L. F. Burlaga; J. E. P. Connerney; R. P. Lepping; F. M. Neubauer
1989-01-01
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10â»âµ gauss) was observed near closest approach, at a
NASA Astrophysics Data System (ADS)
Boteler, D. H.; Pirjola, R. J.
1998-01-01
For studying the auroral electrojet and for examining the effects it can produce in power systems on the ground, it is useful to be able to calculate the magnetic and electric fields that the electrojet produces at the surface of the Earth. Including the effects of currents induced in the Earth leads to a set of integral expressions, the numerical computation of which is complicated and demanding of computer resources. An approximate solution can be achieved by representing the induced currents by an image current at a complex depth. We present a simple derivation of the complex-image expressions and use them to calculate the fields produced by the auroral electrojet at the surface of an earth represented by layered conductivity models. Comparison of these results with ones obtained using the exact integral solution show that the errors introduced are insignificant compared to the uncertainties in the parameters used. The complex-image method thus provides a simple, fast and accurate means of calculating the magnetic and electric fields.
NASA Technical Reports Server (NTRS)
Howard, R.
1972-01-01
Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.
NSDL National Science Digital Library
Wolfgang Christian
The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You may drag either magnet and double-click anywhere inside the animation to add a magnetic field line, and mouse-down to read the magnitude of the magnetic field at that point.
NASA Astrophysics Data System (ADS)
Smiljani?, J.; Žeželj, M.; Milanovi?, V.; Radovanovi?, J.; Stankovi?, I.
2014-03-01
A strong magnetic field applied along the growth direction of a quantum cascade laser (QCL) active region gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a QCL with a static magnetic field, we can selectively inhibit/enhance non-radiative electron relaxation process between the relevant Landau levels of a triple quantum well and realize a tunable surface emitting device. An efficient numerical algorithm implementation is presented of optimization of GaAs/AlGaAs QCL region parameters and calculation of output properties in the magnetic field. Both theoretical analysis and MATLAB implementation are given for LO-phonon and interface roughness scattering mechanisms on the operation of QCL. At elevated temperatures, electrons in the relevant laser states absorb/emit more LO-phonons which results in reduction of the optical gain. The decrease in the optical gain is moderated by the occurrence of interface roughness scattering, which remains unchanged with increasing temperature. Using the calculated scattering rates as input data, rate equations can be solved and population inversion and the optical gain obtained. Incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. However, it resulted in shifting the existing peaks positions and overall reduction of the optical gain. Catalogue identifier: AERL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 37763 No. of bytes in distributed program, including test data, etc.: 2757956 Distribution format: tar.gz Programming language: MATLAB. Computer: Any capable of running MATLAB version R2010a or higher. Operating system: Any platform supporting MATLAB version R2010a or higher. RAM: Minimum required is 1 GB. Memory usage increases for less intense magnetic fields. Classification: 15. Nature of problem: The nature of the problem is to provide an efficient numerical algorithm implementation for optimization of GaAs/AlGaAs QCL active region parameters and calculation of output properties in the magnetic field. Solution method: The optimization of the QCL laser performance at selected wavelength is performed at entire free-parameters space using simulated annealing algorithm. The scattering rates are calculated in the presence and without magnetic field and used as coefficients in rate equations. The standard MATLAB procedures were used to solve iteratively this system of equations and obtain distribution of electron densities over electronic states. Restrictions: The machine must provide the necessary main memory which decreases roughly quadratically with the increase of the magnetic field intensity. Running time: Optimization time on Intel 3 GHz processor is about 2×104 s. The calculation time of laser output properties for values set automatically in GUI is 5×104 s.
Calculations of Magnetic Variations Induced by Internal Ocean Waves
H. T. Beal; J. T. Weaver
1970-01-01
Previous theoretical and experimental work has shown that the motion of an ocean swell across the earth's main field induces magnetic signals of detectable magnitude. Here we present calculations giving the magnetic field induced by internal waves whose periods fall in the range 1-30 min. Solutions for the induced field, both within and above the ocean, are derived for a
NASA Astrophysics Data System (ADS)
Rai, R. C.; Cao, J.; Brown, S.; Musfeldt, J. L.; Kasinathan, D.; Singh, D. J.; Lawes, G.; Rogado, N.; Cava, R. J.; Wei, X.
2006-12-01
We use a combination of optical spectra, first-principles calculations, and energy-dependent magneto-optical measurements to elucidate the electronic structure and to study the phase diagram of Ni3V2O8 . We find a remarkable interplay of magnetic field and optical properties that reveals additional high magnetic-field phases and an unexpected electronic structure, which we associate with the strong magnetodielectric couplings in this material over a wide energy range. Specifically, we observed several prominent magnetodielectric effects that derive from changes in the crystal-field environment around Ni spine and cross tie centers. This effect is consistent with a field-induced modification of local structure. Symmetry-breaking effects are also evident with temperature. We find Ni3V2O8 to be an intermediate-gap, local-moment band insulator. This electronic structure is particularly favorable for magnetodielectric couplings, because the material is not subject to the spin-charge separation characteristic of strongly correlated large-gap Mott insulators, while at the same time remaining a magnetic insulator independent of the particular spin order and temperature.
NSDL National Science Digital Library
This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.
Preflare magnetic and velocity fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.
1986-01-01
A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares
NSDL National Science Digital Library
Windows to the Universe
1997-12-03
This webpage is part of the University Corporation for Atmospheric Research (UCAR) Windows to the Universe program. It describes the nature and configuration of magnetic fields, which are the result of moving electric charges, including how they cause magnetic objects to orient themselves along the direction of the magnetic force points, which are illustrated as lines. Magnetic field lines by convention point outwards at the north magnetic pole and inward at the south magnetic pole. The site features text, scientific illustrations and an animation. Text and vocabulary are selectable for the beginning, intermediate, or advanced reader.
Melatonin and magnetic fields.
Karasek, Michal; Lerchl, Alexander
2002-04-01
There is public health concern raised by epidemiological studies indicating that extremely low frequency electric and magnetic fields generated by electric power distribution systems in the environment may be hazardous. Possible carcinogenic effects of magnetic field in combination with suggested oncostatic action of melatonin lead to the hypothesis that the primary effects of electric and magnetic fields exposure is a reduction of melatonin synthesis which, in turn, may promote cancer growth. In this review the data on the influence of magnetic fields on melatonin synthesis, both in the animals and humans, are briefly presented and discussed. PMID:12019358
NASA Astrophysics Data System (ADS)
Kanim, Stephen; Thompson, John R.
2005-09-01
For some years now laminated cards containing a green, magnetically sensitive film have been available from science education suppliers. When held near a magnet, these cards appear dark green in regions where the field is perpendicular to the card and light green where the field is parallel to the card. The cards can be used to explore the magnetic field near a variety of magnets as well as near wire loops. In this paper we describe how to make these cards and how we have used them in our physics classrooms and labs.
Elisabete M. de Gouveia Dal Pino; Dal Pino
2006-01-01
Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources
NASA Astrophysics Data System (ADS)
Beck, Rainer
Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.
Interplanetary Magnetic Field Lines
NSDL National Science Digital Library
Mendez, J.
This web page, authored and curated by David P. Stern, provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.; Suess, S. T.
1990-01-01
The magnetic field of the sun extends outward through the photosphere into the corona. The resulting coronal and interplanetary magnetic fields therefore respond to and evolve with the solar cycle, as well as on shorter and longer time scales. These fields are modeled using photospheric magnetic field observations under the assumption that the coronal field is current free, becomes radial at a 'source surface' placed at 2.5 solar radii from the center of the sun, and is passively advected by the solar wind beyond the source surface. This review covers the computation of such models and their applications to characterize the morphology, evolution, and rotation of coronal and interplanetary magnetic fields using data collected between 1976 and the present at the Wilcox Solar Observatory.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Chiba, Masashi
The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.
Detecting Exoplanetary Magnetic Fields
NASA Astrophysics Data System (ADS)
Llama, Joe
2015-01-01
Asymmetries in exoplanet transits are proving to be a useful tool for furthering our understanding of magnetic activity on both stars and planets outside our Solar System.Near-UV observations of the WASP-12 system have revealed asymmetries in the timing of the transit when compared with the optical light curve. A number of possible explanations have been suggested for this variation, including the presence of a magnetospheric bow shock arising from the interaction of the planet's magnetic field with the stellar wind from it's host star. Such observations provide the first method for directly detecting the presence of a magnetic field on exoplanets.The shape and size of such asymmetries is highly dependent on the structure of the host stars magnetic field at the time of observation. This implies we may observe highly varying near-UV transit light curves for the same system. These variations can then be used to learn about the geometry of the host star's magnetic field.In this presentation I will show modelling a bow shock around an exoplanet can help us to not only detect, but also also place constraints on the magnetic field strength of hot Jupiters. For some systems, such as HD 189733, we have maps of the surface magnetic field of the star at various epochs. I will also show how incorporating these maps into a stellar wind model, I can model the formation of a bow shock around the planet and hence demonstrate the variability of the near-UV transits.
NASA Astrophysics Data System (ADS)
Zhang, Yuexia; Liu, Qiang; Shi, Tingyun
2012-04-01
An accurate one-centre method is here applied to the calculation of the equilibrium distances and the energies for the hydrogen molecular ion in magnetic fields ranging from 109G to 4.414 × 1013 G. Both the radial and angular wavefunctions were expanded in terms of optimization B-splines. The slow convergence problem in the general one-centre method and singularities at the nuclear positions of the H+2 were solved well. The accuracy of the one-centre method has been improved in this way. We compared our results with those generated by high-precision methods from published studies. Equilibrium distances of the 1?g, u, 1?g, u, 1?g, u and 2?g states of the H+2 in strong magnetic fields were found to be accurate to three to four significant digits at least up to 2.35 × 1012 G, even for the antibonding states 1?u, 1?g and 1?u, whose equilibrium distances Req are very large.
NSDL National Science Digital Library
This is an activity about electromagnetism. Learners will use a compass to map the magnetic field lines surrounding a coil of wire that is connected to a battery. This activity requires a large coil or spool of wire, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and magnetic compasses. This is the third lesson in the second session of the Exploring Magnetism teachers guide.
Hussein Attia; Leila Yousefi; Omar M. Ramahi
2011-01-01
A fast analytical solution for the radiation field of a microstrip antenna loaded with a generalized superstrate is proposed using the cavity model of microstrip antennas in con- junction with the reciprocity theorem and the transmission line analogy. The proposed analytical formulation for the antenna's far-field is much faster when compared to full-wave numerical methods. It only needs 2% of
NASA Astrophysics Data System (ADS)
Schimeczek, C.; Engel, D.; Wunner, G.
2014-05-01
Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comp. Phys. Comm. 180, 3-2-311 (2009)] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error) and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78, 032515 (2008)].
N Schwerg; C Völlinger
2007-01-01
The superconducting coil of an accelerator magnet is usually surrounded by magnetic material, the iron yoke, in order to enhance the field in the aperture and to reduce the fringe field outside the magnet. For the calculation of the magnetic field of such superconducting magnets, numerical methods, typically FEM are used. Nevertheless, analytic solutions of simplified geometries are still needed
Magnetic field dosimeter development
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1980-09-01
In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.
Lee, Seong T [ORNL; Burress, Timothy A [ORNL; Tolbert, Leon M [ORNL
2009-01-01
This paper introduces a new method for calculating the power factor and output torque by considering the cross saturation between direct-axis (d-axis) and quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux at high speed, which was developed for the traction motor of a hybrid electric vehicle. The conventional two-axis IPMSM model was modified to include the cross-saturation effect by adding the cross-coupled inductance terms Ldq and Lqd. By the advantage of the excited structure of the experimental IPMSM, the analyzing works were performed under two conditions, the highest and lowest excited conditions. Therefore, it is possible to investigate the cross-saturation effect when a machine has higher magnetic flux from its rotor. The following is a summary of conclusions that may be drawn from this work: (1) Considering cross saturation of an IPMSM offers more accurate expected values of motor parameters in output torque calculation, especially when negative d-axis current is high; (2) A less saturated synchronous machine could be more affected by the cross-coupled saturation effect; (3) Both cross-coupled inductances, L{sub qd} and L{sub dq}, are mainly governed by d-axis current rather than q-axis current; (4) The modified torque equation, can be used for the dynamic model of an IPMSM for developing a better control model or control strategy; and (5) It is possible that the brushless field excitation structure has a common magnetic flux path on both d- and q-axis, and as a result, the reluctance torque of the machine could be reduced.
Magnetic Field Problem: Current
NSDL National Science Digital Library
Wolfgang Christian
A cross section of a circular wire loop carrying an unknown current is shown above. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You can double-click in the animation to add magnetic field lines, click-drag the center of the loop to reposition it, and click-drag the top or bottom of the loop to change its size.
Hu, Ting; Dong, Jinming, E-mail: jdong@nju.edu.cn [Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhou, Jian [Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Kawazoe, Yoshiyuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai 980-8577 (Japan)
2014-08-14
The electronic and magnetic properties of armchair edge MoS{sub 2} nanoribbons (MoS{sub 2}-ANRs) underboth the external strain and transverse electric field (E{sub t}) have been systematically investigated by using the first-principles calculations. It is found that: (1) If no electric field is applied, an interesting structural phase transition would appear under a large tensile strain, leading to a new phase MoS{sub 2}-A'NR, and inducing a big jump peak of the band gap in the transition region. But, the band gap response to compressive strains is much different from that to tensile strain, showing no the structural phase transition. (2) Under the small tensile strains (<10%), the combined E{sub t} and tensile strain give rise to a positive superposition (resonant) effect on the band gap reduction at low E{sub t} (<3?V/nm), and oppositely a negative superposition (antiresonant) one at high E{sub t} (>4?V/nm). On the other hand, the external compressive strains have always presented the resonant effect on the band gap reduction, induced by the electric field. (3) After the structural phase transition, an external large tensile strain could greatly reduce the critical field E{sub tc} causing the band gap closure, and make the system become a ferromagnetic (FM) metal at a relative low E{sub t} (e.g., <4?V/nm), which is very helpful for its promising applications in nano-mechanical spintronics devices. (4) At high E{sub t} (>10?V/nm), the magnetic moments of both the MoS{sub 2}-ANR and MoS{sub 2}-A'NR in their FM states could be enhanced greatly by a tensile strain. Our numerical results of effectively tuning physical properties of MoS{sub 2}-ANRs by combined external strain and electric field may open their new potential applications in nanoelectronics and spintronics.
NASA Astrophysics Data System (ADS)
Schimeczek, C.; Engel, D.; Wunner, G.
2012-07-01
Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comput. Phys. Comm. 180 (2009) 302-311] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error), and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code, and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78 (2008) 032515]. New version program summaryProgram title: HFFER II Catalogue identifier: AECC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: v 55 130 No. of bytes in distributed program, including test data, etc.: 293 700 Distribution format: tar.gz Programming language: Fortran 95 Computer: Cluster of 1-13 HP Compaq dc5750 Operating system: Linux Has the code been vectorized or parallelized?: Yes, parallelized using MPI directives. RAM: 1 GByte per node Classification: 2.1 External routines: MPI/GFortran, LAPACK, BLAS, FMlib (included in the package) Catalogue identifier of previous version: AECC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 302 Does the new version supersede the previous version?: Yes Nature of problem: Quantitative modellings of features observed in the X-ray spectra of isolated magnetic neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product, iron, at strong magnetic field strengths. Our code is intended to provide a powerful tool for calculating energies and oscillator strengths of medium-Z atoms and ions at neutron star magnetic field strengths with sufficient accuracy in a routine way to create such databases. Solution method: The Slater determinants of the atomic wave functions are constructed from single-particle orbitals
NASA Astrophysics Data System (ADS)
Hoeksema, Jon T.; HMI Magnetic Field Team
2013-07-01
The Helioseismic and Magnetic Imager (HMI) on SDO has measured magnetic field, velocity, and intensity in the photosphere over the full disk continuously since May 2010 with arc-second resolution. Scalar images are measured every 45 seconds. From these basic observables the pipeline automatically identifies and tracks active regions on the solar disk. The vector magnetic field and a variety of summary quantities are determined every 720s in these tracked Space-weather HMI Active Region Patches (SHARPS). Synoptic and synchronic maps are constructed daily and after each Carrington Rotation Most data products are available with definitive scientific calibration after a few day deal at and in a quick-look near-real-time version a few minutes after the observations are made. Uncertainties are determined for the derived products. All of the magnetic field products along with movies and images suitable for browsing are available at http:://Hmi.stanford.edu/magnetic. Other products, e.g. coronal field over active regions, can be computed on demand.
NASA Astrophysics Data System (ADS)
Beck, Rainer
The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 ?G) and in central starburst regions (50-100 ?G). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 ?G strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field ? -? dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos around edge-on galaxies out to large distances from the plane, with X-shaped patterns. In the outflow cone above a starburst region of NGC 253, RM data indicate a helical magnetic field.
Inclination angle of vector magnetic fields.
NASA Astrophysics Data System (ADS)
Yanping, Lü; Wang, Jingxiu
1994-11-01
The authors further elaborate on an empirical method to improve the consistency of the line-of-sight and transverse field calibration. The method can also be used to check the transverse field calibration. Furthermore, based on the correction, the authors calculate the inclination angle of the vector magnetic field related to the solar surface, which can give some information on how the vector magnetic field is distributed in space.
Analytical formulae for magnetic fields in undulators
V. A. Papadichev
1991-01-01
Analytical formulae are presented for the calculation of the magnetic field in various types of undulators, including plane (with and without ferromagnetic poles), helical and azimuthally symmetrical ones. The use of analytical rather than numerical methods allows one to calculate more rapidly undulator fields and to optimize them with respect to various parameters. Conformal mapping in the case of iron-pole
Magnetic Field Measurements in Beam Guiding Magnets
K. N. Henrichsen
1998-01-01
Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as
High field superconducting magnets
NASA Technical Reports Server (NTRS)
Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)
2011-01-01
A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Barouch, E.
1974-01-01
The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.
Ekström, Ulf; Norman, Patrick; Rizzo, Antonio
2005-02-15
The effects of relativity on the magnetic-field induced circular birefringence, or Faraday effect, in He, Ne, Ar, Xe, Rn, F2, Cl2, Br2, and I2 have been determined at the four-component Hartree-Fock level of theory. A measure of the birefringence is given by the Verdet constant, which is a third-order molecular property and thus relates to quadratic response functions. A fully analytical nonlinear polarization propagator approach is employed. The results are gauge invariant as a consequence of the spatial symmetries in the molecular systems. The calculations include electronic as well as vibrational contributions to the property. Comparison with experiment is made for He, Ne, Ar, Xe, and Cl2, and, apart from neon, the theoretical values of the Verdet constant are within 10% of the experimental ones. The inclusion of nonrelativistically spin-forbidden excitations in the propagator parametrization has significant effects on the dispersion in general, but such effects are in the general case largely explained by the use of a resonant-divergent propagator theory. In the present work we do, however, observe noticeable relativistic corrections to the Verdet constant in the off-resonant regions for systems with light elements (F2 and Cl2), and nonrelativistic results for the Verdet constant of Br2 are in error by 25% in the low-frequency region. PMID:15743246
NSDL National Science Digital Library
Roberta Johnson
2000-07-01
This section of the Windows to the Universe website provides information and images about Earth's magnetic field (the magnetosphere), including detailed information about the aurora borealis, magnets, and solar wind. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging website that includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate and advanced levels.
M. Bencsik; R. Bowtell; R. M. Bowley
2002-01-01
A homogeneous spherical volume conductor is used as a model system for the purpose of calculating electric fields induced in the human head by externally applied time-varying magnetic fields. We present results for the case where magnetic field gradient coils, used in magnetic resonance imaging (MRI), form the magnetic field, and we use these data to put limits on the
Magnetic Fields and Rotations of Protostars
Masahiro N. Machida; Shu-ichiro Inutsuka; Tomoaki Matsumoto
2007-07-21
The evolution of the magnetic field and angular momentum in the collapsing cloud core is studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (n=10^4 cm^-3) to the stellar core (n \\simeq 10^22 cm^-3). The magnetic field strengths at the center of the clouds converge to a certain value as the clouds collapse, when the clouds have the same angular momenta but different strengths of the magnetic fields at the initial state. For 10^12 cm^-3 magnetic field from the collapsing cloud core, and the magnetic field lines, which are strongly twisted for n magnetic field lines are twisted and amplified again for nc > 10^16 cm^-3, because the magnetic field is recoupled with the warm gas. Finally, protostars at their formation epoch have 0.1-1kG of the magnetic fields, which are comparable to observations. The magnetic field strength of protostar slightly depends on the angular momentum of the host cloud. The protostar formed from the slowly rotating cloud core has a stronger magnetic field. The evolution of the angular momentum is closely related to the evolution of the magnetic field. The angular momentum in the collapsing cloud is removed by the magnetic effect. The formed protostars have 0.1-2 days of the rotation period at their formation epoch, which are slightly shorter than the observation. This indicates that the further removal mechanism of the angular momentum such as interaction between the protostar and disk, wind gas or jet is important in further evolution of the protostar.
Coulomb crystals in the magnetic field
Baiko, D. A. [A.F. Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)
2009-10-15
The body-centered-cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic-field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields B > or approx. 10{sup 14} G). The effect of the magnetic field on ion displacements in a strongly magnetized neutron star crust can suppress the nuclear reaction rates and make them extremely sensitive to the magnetic-field direction.
Field Corrections of Open MRI Superconducting Magnets
NASA Astrophysics Data System (ADS)
Matsuda, Tetsuya; Ariyoshi, Akihiko; Tanabe, Hajime
We constructed open MRI superconducting magnets with an iron yoke that generates a 0.7T highly uniform magnetic field. A program that compensates for the error field of those magnets was developed that uses linear programming to achieve an optimal arrangement of a large number of small iron shims. Since additional homogeneity compensation near the target value becomes difficult, we also used nonlinear programming. We must evaluate all shim magnetizations precisely by making a 3D finite element shim model. Since, it is impossible to make such shims in a large magnet model, we describe a fast calculation method of shim magnetizations without that model. Homogeneity of 0.35ppm (Vrms) at 35cm Diameter Spherical Volume (DSV), which is the top value of an open MRI magnet, is obtained by applying these methods. The number of correction times were reduced by half of initial manufactured magnets.
Low field magnetic resonance imaging
Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)
2010-07-13
A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.
Simulation of lightning magnetic field
Chen Yazhou; Wu Xiaorong; Liu Shanghe; Zhang Feizhou
2002-01-01
The lightning magnetic field is simulated when a pulse current is injected into the loop from the lightning surge generator. Different waveforms of lightning magnetic field can be simulated by regulating the parameters of the loop according to the relation between the parameters of the loop and the simulated wave. The dot loop is made to measure the magnetic field
The WIND magnetic field investigation
R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley
1995-01-01
The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and
AC Magnetic Field Survey Report
Krstic, Miroslav
AC Magnetic Field Survey Report of Literature Building - 3000 University of California San Diego:..........................................................................................................2 ELF OR AC MAGNETIC FIELD CHARACTERISTICS:...............................................2 UNITS of California San Diego La Jolla, California PROJECT: AC Magnetic Field Survey SCOPE: The scope of this project
Stray Field Magnetic Resonance Imaging
K. Zick
1994-01-01
In many applications of magnetic resonance imaging large linewidths means that to achieve useful resolution in the image large magnetic field gradients should be employed. This paper outlines the principles of stray field imaging that utilises the large gradients intrinsic to the fringe field of superconducting solenoidal magnets. Examples of images from strongly broadened everyday objects are given.
Analytical formulae for magnetic fields in undulators
NASA Astrophysics Data System (ADS)
Papadichev, V. A.
1991-07-01
Analytical formulae are presented for the calculation of the magnetic field in various types of undulators, including plane (with and without ferromagnetic poles), helical and azimuthally symmetrical ones. The use of analytical rather than numerical methods allows one to calculate more rapidly undulator fields and to optimize them with respect to various parameters. Conformal mapping in the case of iron-pole undulators is justified by the fact that with high stray fluxes iron saturation occurs first in the magnet yoke, and the poles are far from saturation and have high magnetic permeability.
Magnetic nanoparticle motion in external magnetic field
NASA Astrophysics Data System (ADS)
Usov, N. A.; Liubimov, B. Ya
2015-07-01
A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director.
Shear angle of magnetic fields.
NASA Astrophysics Data System (ADS)
Yanping, Lü; Wang, Jingxiu; Wang, Huaning
1993-11-01
The authors introduce a new parameter, the shear angle of vector magnetic fields, ??, to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the "angular shear", ??, defined by Hagyard et al. (1984). ?? can be considered as the projection of the shear angle, ??, on the photosphere. For the active region studied, the shear angle, ??, seems to have a better and neater correspondence with flare activity than does ??. It gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.
Vacuum Birefringence in a Rotating Magnetic Field
Stephen L. Adler
2007-04-10
We calculate the vacuum polarization-induced ellipticity acquired by a linearly polarized laser beam of angular frequency $\\bar \\omega$ on traversing a region containing a transverse magnetic field rotating with a small angular velocity $\\Omega$ around the beam axis. The transmitted beam contains the fundamental frequency $\\bar \\omega$ and weak sidebands of frequency $\\bar \\omega \\pm 2 \\Omega$, but no other sidebands. To first order in small quantities, the ellipticity acquired by the transmitted beam is independent of $\\Omega$, and is the same as would be calculated in the approximation of regarding the magnetic field as fixed at its instantaneous angular orientation, using the standard vacuum birefringence formulas for a static magnetic field. Also to first order, there is no rotation of the polarization plane of the transmitted beam. Analogous statements hold when the magnetic field strength is slowly varying in time.
Kuc, Agnieszka; Heine, Thomas
2015-05-01
Transition-metal dichalcogenides TX2 (T = W, Mo; X = S, Se, Te) are layered materials that are available in ultrathin forms such as mono-, bi- and multilayers, which are commonly known as two-dimensional materials. They have an intrinsic band gap in the range of some 500 meV to 2 eV, depending on the composition and number of layers, and giant intrinsic spin-orbit splittings for odd layer numbers, and, in conjunction with their high chemical and mechanical stability, they qualify as candidate materials for two-dimensional flexible electronics and spintronics. The electronic structure of each TX2 material is very sensitive to external factors, in particular towards electric and magnetic fields. A perpendicular electric field reduces the band gap, and for some structures semiconductor-metal transitions could be possible. Moreover, the electric field triggers the spin-orbit splitting for bilayers. A magnetic field applied normal to the layers causes the Hall effect, which in some cases may result in a quantum (spin) Hall effect and thus in magnetic switches. Finally, we discuss how valleytronics is possible in these materials by selective interaction of electrons in the different valleys using polarized light. PMID:25529067
Field Mapping System for Solenoid Magnet
NASA Astrophysics Data System (ADS)
Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.
2007-01-01
A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.
Schwerg, N
2007-01-01
The superconducting coil of an accelerator magnet is usually surrounded by magnetic material, the iron yoke, in order to enhance the field in the aperture and to reduce the fringe field outside the magnet. For the calculation of the magnetic field of such superconducting magnets, numerical methods, typically FEM are used. Nevertheless, analytic solutions of simplified geometries are still needed in order to cross-check numerically obtained results and gain deeper understanding of the underlying principles. For the calculation of the effect of the iron yoke on the field distribution and field quality of superconducting coils as a first approximation a circular hollow cylinder of high permeable material could be used.
Magnetic fields of degenerate stars
NASA Astrophysics Data System (ADS)
Chanmugam, G.
The magnetic fields of degenerate stars are discussed with emphasis on such basic issues as how their magnetic field strengths are determined, their origin, and evolution. The magnetic fields of both white dwarfs and neutron stars are discussed together, and it is speculated that the origin and evolution of their fields may be related. It is also suggested that it may be possible to apply and test models for the evolution of the magnetic fields in neutron stars by using white dwarfs and vice versa.
Fast superconducting magnetic field switch
Goren, Y.; Mahale, N.K.
1996-08-06
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.
Fast superconducting magnetic field switch
Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)
1996-01-01
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.
Martian external magnetic field proxies
NASA Astrophysics Data System (ADS)
Langlais, Benoit; Civet, Francois
2015-04-01
Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.
Mean-field theory for Bose-Hubbard model under a magnetic field
Oktel, M. Oe.; Tanatar, B. [Department of Physics, Bilkent University, 06800 Bilkent, Ankara (Turkey); Nita, M. [Institute of Physics and Technology of Materials, P.O. Box MG7, Bucharest-Magurele (Romania)
2007-01-15
We consider the superfluid-insulator transition for cold bosons under an effective magnetic field. We investigate how the applied magnetic field affects the Mott transition within mean-field theory and find that the critical hopping strength (t/U){sub c} increases with the applied field. The increase in the critical hopping follows the bandwidth of the Hofstadter butterfly at the given value of the magnetic field. We also calculate the magnetization and superfluid density within mean-field theory.
Theory of cosmological seed magnetic fields
Saleem, H. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P. O. Nilore, Islamabad (Pakistan)
2007-07-15
A theory for the generation of seed magnetic field and plasma flow on cosmological scales driven by externally given baroclinic vectors is presented. The Beltrami-like plasma fields can grow from zero values at initial time t=0 from a nonequilibrium state. Exact analytical solutions of the set of two-fluid equations are obtained that are valid for large plasma {beta}-values as well. Weaknesses of previous models for seed magnetic field generation are also pointed out. The analytical calculations predict the galactic seed magnetic field generated by this mechanism to be of the order of 10{sup -14} G, which may be amplified later by the {alpha}{omega} dynamo (or by some other mechanism) to the present observed values of the order of {approx}(2-10) {mu}G. The theory has been applied to laser-induced plasmas as well and the estimate of the magnetic field's magnitude is in agreement with the experimentally observed values.
Magnetic field fluctuations in SC dipole magnet
Vladimir Shiltsev et al.
2001-08-15
Magnetic field fluctuations at the betatron frequency can lead to emittance growth in circular accelerators. Tolerances are extremely tight for large hadron colliders like LHC and VLHC[1]. We performed experimental studies of the fluctuations in a stand-alone superconducting Tevatron magnet. Here we give a general description of the experimental set-up, present main results and discuss consequences for the colliders.
Exposure guidelines for magnetic fields
Miller, G.
1987-12-01
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.
Relativistic stars with purely toroidal magnetic fields
Kiuchi, Kenta [Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Yoshida, Shijun [Astronomical Institute, Tohoku University, Sendai 980-8578 (Japan)
2008-08-15
We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.
(Revised December 30, 2013) Magnetic Fields
Collins, Gary S.
(Revised December 30, 2013) Magnetic Fields GOALS (1) To visualize the magnetic fields produced compasses to trace out the magnetic field lines of a single bar magnet on a large sheet of paper. (3 of the points where the magnetic fields of the Earth and the bar magnet sum to zero. INTRODUCTION A magnetic
On sunspot magnetic field diffusion.
NASA Astrophysics Data System (ADS)
Krivodubskij, V. N.
The efficiency of different mechanisms of sunspot magnetic field dissipation depending on the stage of sunspot decay and optical depth is investigated. The highest rate of the magnetic field diffusion has place at the initial stage of sunspot decay, when the turbulence motion in the sunspot umbra takes a two-dimensional structure due to the strong magnetic field (B ? 3000 G). The turbulence degeneracy withdraws at the later stage of the sunspot decay (B ? 2000 G) and the dissipation slows down.
Kemner, Ken
Eddy-Current-Induced Multipole Field Calculations September 29, 2003 1 Eddy-Current-Induced Multipole Field Calculations Nicholas S. Sereno, Suk H. Kim 1.0 Abstract Time-varying magnetic fields of magnets in booster accelerators induce substantial eddy currents in the vacuum chambers. The eddy currents
NASA Astrophysics Data System (ADS)
Back, Randy; Beckham, J. Regan
2012-10-01
A vertically draining thin ferrofilm under the influence of gravity and a nonuniform magnetic field is considered. It is observed experimentally that the presence of the magnetic field greatly alters the drainage of the film. A mathematical model is developed to describe the behavior. Experiments are conducted for multiple magnetic field configurations. The model is solved for two different sets of boundary conditions and results are compared to experiments. It is shown that the magnetic field structure, the concentration of magnetite in the solution, and the boundary conditions all have noticeable affects on the evolution of the thinning film. Good qualitative agreement between the model and the experiments is observed.
NASA Astrophysics Data System (ADS)
Ritter, C.; Pankrats, A. I.; Demidov, A. A.; Velikanov, D. A.; Temerov, V. L.; Gudim, I. A.
2015-04-01
The magnetic structure of the mixed rare-earth system P rxY1 -xF e3(BO3)4 has been studied by elastic neutron powder diffraction and magnetic measurements. A spin reorientation from easy axis to easy plane occurs in the concentration range x =0.67 -0.45 through the formation of inclined magnetic structures. The inclination of the Fe moments from the basal plane depends on the Pr content and ranges from 67(2)° for x =0.67 to 16 (4) ? for x =0.45 at T =3 K . A nonmonotonic change of the inclination angle with temperature is found for all compounds but there is no sign of a spontaneous spin reorientation in the temperature range of magnetic order. An approach based on a crystal-field model for the P r3 + ion and on the molecular-field approximation is used to describe the magnetic characteristics of the system P rxY1 -xF e3(BO3)4 . A good agreement between the experimental and calculated temperature dependences of the magnetic susceptibilities and the angle of inclination of Fe moments from the basal plane has been achieved.
A. Thorolfsson; Oe. E. Roegnvaldsson; J. Yngvason; E. H. Gudmundsson
1998-01-01
We present numerical calculations of the equation of state for dense matter in high magnetic fields, using a temperature-dependent Thomas-Fermi theory with a magnetic field that takes all Landau levels into account. Free energies for atoms and matter are also calculated, as well as profiles of the electron density as a function of distance from the atomic nucleus for representative
The Sun's global magnetic field.
Mackay, Duncan H
2012-07-13
Our present-day understanding of solar and stellar magnetic fields is discussed from both an observational and theoretical viewpoint. To begin with, observations of the Sun's large-scale magnetic field are described, along with recent advances in measuring the spatial distribution of magnetic fields on other stars. Following this, magnetic flux transport models used to simulate photospheric magnetic fields and the wide variety of techniques used to deduce global coronal magnetic fields are considered. The application and comparison of these models to the Sun's open flux, hemispheric pattern of solar filaments and coronal mass ejections are then discussed. Finally, recent developments in the construction of steady-state global magnetohydrodynamic models are considered, along with key areas of future research. PMID:22665897
Magnetic Field Created by Tile Permanent R. Ravaud, G. Lemarquand, V. Lemarquand
Boyer, Edmond
1 Magnetic Field Created by Tile Permanent Magnets R. Ravaud, G. Lemarquand, V. Lemarquand Abstract1 This paper presents the analytical calculation of the three components of the magnetic field are based on the3 coulombian model of permanent magnets. The magnetic field is directly calculated, without
Magnetic fields around evolved stars
NASA Astrophysics Data System (ADS)
Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.
2014-04-01
A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.
Axial magnetic field contacts with nonuniform distributed axial magnetic fields
Zongqian Shi; Shenli Jia; Jun Fu; Zheng Wang
2003-01-01
It is well known that axial magnetic fields (AMFs) can keep vacuum arc in diffuse mode at high current. According to our recent research and other published papers, it has been found that vacuum arc can be maintained in high-current diffuse mode at much higher current if nonuniform AMF is applied, that the axial magnetic field is higher at contact
Quantitative Calculation of the Magnetic Ripple of Uniaxial Thin Permalloy Films
Horst Hoffmann
1964-01-01
The magnetic ripple of thin films with uniaxial anisotropy is calculated for the field and the magnetization lying along the easy and the hard direction of the uniaxial anisotropy. For small dispersion of the direction of magnetization, the variational principle, applied to all energy terms including the exchange, crystalline anisotropy, uniaxial anisotropy, magnetostriction, magnetostatic, and stray field energies, yields a
Discontinuities in the Magnetic Field near Enceladus
NASA Astrophysics Data System (ADS)
Simon, S.; Saur, J.; van Treeck, S.; Kriegel, H.; Dougherty, M. K.
2014-12-01
The plasma interaction of Saturn's icy moon Enceladus generates a hemisphere coupling current system that directly connects the giant planet's northern and southern polar magnetosphere. Based on Cassini magnetometer observations from all 20 targeted Enceladus flybys between 2004 and 2014, we study the magnetic field discontinuities associated with these hemisphere coupling currents. We identify a total number of 11 events during which the magnetic field was discontinuous at the surface of the Enceladus fluxtube (defined by the bundle of magnetic field lines tangential to the solid body of the moon). A Minimum Variance Analysis is applied to calculate the surface normals of these discontinuities. In agreement with theoretical expectations, the normals are found to be perpendicular to the surface of the Enceladus fluxtube. The variation of the hemisphere coupling currents with Enceladean longitude leaves a clear imprint in the strengths of the observed magnetic field jumps as well.
CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic
Callen, James D.
CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most interesting plasmas are permeated by or imbedded in magnetic fields.1 As shown in Fig. 3.1, the magnetic field properties of magnetic fields in plasmas can be discussed without specifying a model for the plasma
The flexible magnetic field thruster
NASA Technical Reports Server (NTRS)
Brophy, J. R.; Wilbur, P. J.
1982-01-01
The thruster is designed so that ion currents to various internal surfaces can be measured directly; these measurements facilitate calculations of the distribution of ion currents inside the discharge chamber. Experiments are described suggesting that the distribution of ion currents inside the discharge chamber is strongly dependent on the shape and strength of the magnetic field but independent of the discharge current, discharge voltage, and neutral flow rate. Measurements of the energy cost per plasma ion suggest that this cost decreases with increasing magnetic field strength as a consequence of increased anode shielding from the primary electrons. Energy costs per argon plasma ion as low as 50 eV are measured. The energy cost per beam ion is found to be a function of the energy cost per plasma ion, extracted ion fraction, and discharge voltage. Part of the energy cost per beam ion has to do with creating many ions in the plasma and then extracting only a fraction of them into the beam. The balance of the energy goes into accelerating the remaining plasma ions into the walls of the discharge chamber.
Measurements of magnetic field alignment
Kuchnir, M.; Schmidt, E.E.
1987-11-06
The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.
Intergalactic Magnetic Fields from Quasar Outflows
Steven Furlanetto; Abraham Loeb
2001-02-05
Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z=3, about 5-20% of the IGM volume is filled by magnetic fields with an energy density >10% of the mean thermal energy density of a photo-ionized IGM (at T=10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the field strength observed in these systems without a need for further dynamo amplification. The intergalactic magnetic field could also provide a nonthermal contribution to the pressure of the photo-ionized gas that may account for the claimed discrepancy between the simulated and observed Doppler width distributions of the Ly-alpha forest.
Attenuation of Coronal Magnetic Fields in Solar Microwave Bursts
NASA Astrophysics Data System (ADS)
Huang, Guangli; Li, Jianping; Song, Qiwu; Tan, Baolin; Huang, Yu; Wu, Zhao
2015-06-01
Based on the observed data by the Nobeyama Radio Observatory and the nonthermal gyrosynchrotron theory, the calculated magnetic field in a loop-like radio source of the 2001 October 23 flare attenuates from hundreds to tens of Gauss, except in the region with very weak magnetic fields. Meanwhile, the viewing angle between the magnetic field and line of sight has a similar attenuation from tens to around ten degrees, implying that the transverse magnetic component attenuates much faster than the longitudinal one. All of these results can be understood by the magnetic energy release process in solar flares. Moreover, the column density of nonthermal electrons decreases from 109?10 to 107?8 cm?2 during the flare, except in the region with very weak magnetic fields, where its value is larger than that with strong magnetic fields due to the mirroring effect. The calculated error and harmonic number of gyrofrequency better suit the region with strong magnetic fields.
The MAVEN Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2015-06-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.
The MAVEN Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
Diffusion in a stochastic magnetic field
D. Lesnik; S. Gordienko; M. Neuer; K. -H. Spatschek
2005-06-21
We consider a stochastic differential equation for a charged particle in a stochastic magnetic field, known as A-Langevin equation. The solution of the equation is found, and the Lagrange velocity correlation function is calculated in Corrsin approximation. A corresponding diffusion constant is estimated. We observe different transport regimes, such as quasilinear- or Bohm-type diffusion, depending on the parameters of plasma.
Laser method for producing strong magnetic fields
V. V. Korobkin; S. L. Motylev
1979-01-01
A method for producing strong magnetic fields by the generation of a laser plasma is presented. Calculations of the plasma emf excited by a laser beam are performed which show that high voltage can be produced in a small region with a rise time in the nanosecond or picosecond range, and that the emf can produce a high pulsed current
3D Analytical Calculation of the Interactions between Permanent Magnets
Paris-Sud XI, Université de
1 3D Analytical Calculation of the Interactions between Permanent Magnets Hicham ALLAG and Jean, the analytical calculation has been made only when the magnets own parallel magnetization directions. We have succeeded in two new results of first importance for the analytical calculation: the torque between two
High latitude solar magnetic fields
NASA Technical Reports Server (NTRS)
Murray, Norman
1992-01-01
Kitt Peak magnetograms are used to measure polar magnetic fields. The polar mean absolute field increases at the same time as the polar mean field decreases. That is, the polar mean absolute field varies in phase with solar activity, in contrast to the out of phase variation of the mean polar field. It is found that the polar fields have a large bipolar component even at solar minimum, with a magnitude equal to that found at low latitudes outside the active latitude bands.
Don Smart; M. A. Shea; E. O. Flückiger
1999-01-01
We have calculated a world grid of cosmic ray cutoff rigidities each 5 degrees in latitude and 15 degrees in longitude at 450 km altitude. The geomagnetic cutoff rigidity values have been calculated employing the Tsyganenko magnetic field model combined with the International Geomagnetic Reference Field for 1995.0 The cutoff values were calculated by the trajectory-tracing method for particles arriving
Magnetic Multipole Field Generated by Columns of Permanent Magnets Arranged on a Cylindrical Surface
Hitoshi Nihei; Hiroyuki Enomoto; Junji Morikawa
1992-01-01
The magnetic multipole field generated by columns of permanent magnets arranged on a cylindrical surface at equal intervals is calculated. Each magnet is replaced by two sheet currents flowing in opposite directions through each side of the magnet. The results have been compared with measured values and found to be in good agreement with them. These expressions are simple and
Developments in deep brain stimulation using time dependent magnetic fields
NASA Astrophysics Data System (ADS)
Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.
2012-04-01
The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.
Developments in deep brain stimulation using time dependent magnetic fields
Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.
2012-03-07
The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.
Turolla, R
2013-01-01
It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.
NASA Astrophysics Data System (ADS)
Turolla, Roberto; Esposito, Paolo
2013-11-01
It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these "magnetar candidates" exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (? 4.4×1013 G). The recent discovery of fully qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.
Primordial Magnetic Fields in Cosmology
Iain A. Brown
2008-12-09
Magnetic fields have been observed in galaxies, clusters of galaxies and probably in superclusters. While mechanisms exist to generate these in the late universe, it is possible that magnetic fields have existed since very early times. This thesis is concerned with methods to predict the form of such imprints. We review in detail a standard, linearised cosmology before introducing an electromagnetic field. We then consider the intrinsic statistics of the magnetic stresses in two ways, analytically and via static realisations. We construct the power spectra, some of which we present for the first time. At the one- and three-point level we find significant intrinsic non-Gaussianities. Finally we turn to the observable impacts a primordial magnetic field. Assuming coherence, the statistics of the source can be mapped onto the CMB in a simple manner. We demonstrate that our approach is valid by reproducing the signals for Gaussian power law fields on the microwave sky. [ABRIDGED
Calculation and Analysis of Magnetic Gradient Tensor Components of Global Magnetic Models
NASA Astrophysics Data System (ADS)
Schiffler, M.; Queitsch, M.; Schneider, M.; Goepel, A.; Stolz, R.; Krech, W.; Meyer, H. G.; Kukowski, N.
2014-12-01
Global Earth's magnetic field models like the International Geomagnetic Reference Field (IGRF), the World Magnetic Model (WMM) or the High Definition Geomagnetic Model (HDGM) are harmonic analysis regressions to available magnetic observations stored as spherical harmonic coefficients. Input data combine recordings from magnetic observatories, airborne magnetic surveys and satellite data. The advance of recent magnetic satellite missions like SWARM and its predecessors like CHAMP offer high resolution measurements while providing a full global coverage. This deserves expansion of the theoretical framework of harmonic synthesis to magnetic gradient tensor components. Measurement setups for Full Tensor Magnetic Gradiometry equipped with high sensitive gradiometers like the JeSSY STAR system can directly measure the gradient tensor components, which requires precise knowledge about the background regional gradients which can be calculated with this extension. In this study we develop the theoretical framework for calculation of the magnetic gradient tensor components from the harmonic series expansion and apply our approach to the IGRF and HDGM. The gradient tensor component maps for entire Earth's surface produced for the IGRF show low gradients reflecting the variation from the dipolar character, whereas maps for the HDGM (up to degree N=729) reveal new information about crustal structure, especially across the oceans, and deeply situated ore bodies. From the gradient tensor components, the rotational invariants, the Eigenvalues, and the normalized source strength (NSS) are calculated. The NSS focuses on shallower and stronger anomalies. Euler deconvolution using either the tensor components or the NSS applied to the HDGM reveals an estimate of the average source depth for the entire magnetic crust as well as individual plutons and ore bodies. The NSS reveals the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.
Neutron Beta Decay in a Uniform Constant Magnetic Field
J. J. Matese; R. F. O'Connell
1969-01-01
The beta-decay rate of a polarized neutron source in a constant, uniform magnetic field of arbitrary strength is calculated. We show that the decay rate is substantially changed if the magnetic field is of order 1013 G or larger. Fields of such strength have been speculated to exist in the early universe or in neutron stars.
Investigating Magnetic Force Fields
NSDL National Science Digital Library
Daryl ("Tish") Monjeau, Bancroft Elementary School, Minneapolis, MN
2012-03-18
In this classroom activity, the students will investigate the magnetic pull of a bar magnet at varying distances with the use of paper clips. Students will hypothesize, conduct the experiment, collect the data, and draw conclusions that support their data. Each student will record the experiment and their findings in their science journals. As a class, students will compare each groups' data and their interpretation of the results.
Magnetic field properties of the ISABELLE Project superconducting dipole magnets
Kirk, H.G.; Engelmann, R.; Herrera, J.; Jaeger, K.; Robins, K.; Willen, E.
1981-01-01
A series of prototype superconducting dipole magnets have been constructed and tested as part of the ISABELLE Project research and development program. Results of magnetic field measurements are presented with emphasis placed on the DC and AC components of the main field. Magnetization and the effects of the magnetic fields at the ends of the magnet are displayed.
Measuring Earth's Magnetic Field Simply.
ERIC Educational Resources Information Center
Stewart, Gay B.
2000-01-01
Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)
Calculation of electromagnetic forces for magnet wheels
Kokichi Ogawa; Yoko Horiuchi; Nobuo Fujii
1997-01-01
The characteristics of magnet wheels for magnetic levitation and linear drive applications are investigated by using a three-dimensional computer simulation. Magnet wheels levitate by revolving permanent magnets over a conducting plate, in which eddy currents are induced. Thrust is also produced by making the torque unbalanced. This paper deals with “partial overlap type” magnet wheels, producing a lift force and
Impedance calculation of integrated magnetic components in a wide frequency range
M. Arab; E. Laboure; F. Costa
2005-01-01
Based on a simplified field analysis, expressions are derived to calculate the set of frequency-dependent impedances of a planar magnetic component. This model is derived from the layout, the dimensions and the magnetic materials properties. It provides the foundation for a flexible approach to design and optimize integrated passive components. Data issued from an integrated magnetic component are used to
NASA Technical Reports Server (NTRS)
Ness, N. F.
1977-01-01
The Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The first and third encounters provided detailed observations of a well-developed detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field and a modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as earth, tilted 12 deg from the rotation axis. The magnetic moment corresponds to an undistorted equatorial field intensity of 350 gammas, approximately 1% of earth's. The field, while unequivocally intrinsic to the planet, may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. The latter possibility appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature differentiated planetary interior with a large core (core radius about 0.7 Mercury radius) and a record of the history of planetary formation in the magnetization of the crustal rocks.
Surface structure of neutron stars with high magnetic fields
NASA Technical Reports Server (NTRS)
Fushiki, I.; Gudmundsson, E. H.; Pethick, C. J.
1989-01-01
The equation of state of cold dense matter in strong magnetic fields is calculated in the Thomas-Fermi and Thomas-Fermi-Dirac approximations. For use in the latter calculation, a new expression is derived for the exchange energy of the uniform electron gas in a strong magnetic field. Detailed calculations of the density profile in the surface region of a neutron star are described for a variety of equations of state, and these show that the surface density profile is strongly affected by the magnetic field, irrespective of whether or not matter in a magnetic field has a condensed state bound with respect to isolated atoms. It is also shown that, as a consequence of the field dependence of the screening potential, magnetic fields can significantly increase nuclear reaction rates.
Calculation of eddy currents in magnetically nonlinear anisotropic conductors
NASA Astrophysics Data System (ADS)
McAvoy, P.; Serpico, C.; Mayergoyz, I.
2012-04-01
Exact analytical expressions for eddy currents in magnetically nonlinear isotropic conducting media can be derived in the case of circular polarizations of magnetic field. It is shown that by using the perturbation technique analytical expressions for eddy currents can be derived for magnetically nonlinear anisotropic conducting media and elliptically polarized magnetic fields.
Constraints on a Primordial Magnetic Field
Barrow, J.D.; Ferreira, P.G.; Silk, J. [Center for Particle Astrophysics, and Departments of Astronomy and Physics, University of California, Berkely, California 94720-7304 (United States)] [Center for Particle Astrophysics, and Departments of Astronomy and Physics, University of California, Berkely, California 94720-7304 (United States); Barrow, J.D. [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)] [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)
1997-05-01
We derive an upper limit of B{sub 0}{lt}3.4{times}10{sup -9}({Omega}{sub 0}h{sup 2}{sub 50}){sup 1/2} G on the present strength of any primordial homogeneous magnetic field. The microwave background anisotropy created by cosmological magnetic fields is calculated in the most general flat and open anisotropic cosmologies containing expansion-rate and 3-curvature anisotropies. Our limit is derived from a statistical analysis of the 4-year Cosmic Background Explorer (COBE) data for anisotropy patterns characteristic of homogeneous anisotropy averaged over all possible sky orientations with respect to the COBE receiver. The limits we obtain on homogeneous magnetic fields are stronger than those imposed by nucleosynthesis. {copyright} {ital 1997} {ital The American Physical Society}
Primordial Magnetic Fields and Causality
Ruth Durrer; Chiara Caprini
2003-10-29
We discuss the implications of causality on a primordial magnetic field. We show that the residual field on large scales is much more suppressed than usually assumed and that a helical component is even more reduced. Due to this strong suppression, even maximal primordial fields generated at the electroweak phase transition can just marginally seed the fields in clusters, but they cannot leave any detectable imprint on the cosmic microwave background.
Magnetic field induced dynamical chaos
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra, E-mail: bidhanchandra.bag@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati, Santiniketan 731 235 (India)
2013-12-15
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.
IR photodetector based on rectangular quantum wire in magnetic field
Jha, Nandan, E-mail: nandanj@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)
2014-04-24
In this paper we study rectangular quantum wire based IR detector with magnetic field applied along the wires. The energy spectrum of a particle in rectangular box shows level repulsions and crossings when external magnetic field is applied. Due to this complex level dynamics, we can tune the spacing between any two levels by varying the magnetic field. This method allows user to change the detector parameters according to his/her requirements. In this paper, we numerically calculate the energy sub-band levels of the square quantum wire in constant magnetic field along the wire and quantify the possible operating wavelength range that can be obtained by varying the magnetic field. We also calculate the photon absorption probability at different magnetic fields and give the efficiency for different wavelengths if the transition is assumed between two lowest levels.
Magnetic properties of the nucleon in a uniform background field
Thomas Primer; Waseem Kamleh; Derek Leinweber; Matthias Burkardt
2013-07-05
We present results for the magnetic moment and magnetic polarisability of the neutron and the magnetic moment of the proton. These results are calculated using the uniform background field method on 32^3 x 64 dynamical QCD lattices provided by the PACS-CS collaboration as part of the ILDG. We use a uniform background magnetic field quantised by the periodic spatial volume. We investigate ways to improve the effective energy plots used to calculate magnetic polarisabilities, including the use of correlation matrix techniques with various source smearings.
Damping of cosmic magnetic fields
Jedamzik, K. [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany)] [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany); Katalinic, V.; Olinto, A.V. [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)] [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)
1998-03-01
We examine the evolution of magnetic fields in an expanding fluid composed of matter and radiation with particular interest in the evolution of cosmic magnetic fields. We derive the propagation velocities and damping rates for relativistic and non-relativistic fast and slow magnetosonic and Alfv{acute e}n waves in the presence of viscous and heat conducting processes. The analysis covers all magnetohydrodynamics modes in the radiation diffusion and the free-streaming regimes. When our results are applied to the evolution of magnetic fields in the early universe, we find that cosmic magnetic fields are damped from prior to the epoch of neutrino decoupling up to recombination. Similar to the case of sound waves propagating in a demagnetized plasma, fast magnetosonic waves are damped by radiation diffusion on all scales smaller than the radiation diffusion length. The characteristic damping scales are the horizon scale at neutrino decoupling (M{sub {nu}}{approx}10{sup {minus}4}M{sub {circle_dot}} in baryons) and the Silk mass at recombination (M{sub {gamma}}{approx}10{sup 13}M{sub {circle_dot}} in baryons). In contrast, the oscillations of slow magnetosonic and Alfv{acute e}n waves get overdamped in the radiation diffusion regime, resulting in frozen-in magnetic field perturbations. Further damping of these perturbations is possible only if before recombination the wave enters a regime in which radiation free-streams on the scale of the perturbation. The maximum damping scale of slow magnetosonic and Alfv{acute e}n modes is always smaller than or equal to the damping scale of fast magnetosonic waves, and depends on the magnetic field strength and its direction relative to the wave vector. Our findings have multifold implications for cosmology. The dissipation of magnetic field energy into heat during the epoch of neutrino decoupling ensures that most magnetic field configurations generated in the very early universe satisfy big bang nucleosynthesis constraints. Further dissipation before recombination constrains models in which primordial magnetic fields give rise to galactic magnetic fields or density perturbations. Finally, the survival of Alfv{acute e}n and slow magnetosonic modes on scales well below the Silk mass may be of significance for the formation of structure on small scales. {copyright} {ital 1998} {ital The American Physical Society}
An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976-1985
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.; Scherrer, P. H.
1986-01-01
Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of solar cycle 21. Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field-Source Surface model. This provides a three-dimensional picture of the heliospheric field evolution during the solar cycle. This paper announces the publication of UAG Report No. 94, an Atlas containing the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structures of the solar and heliospheric fields, which determine the environment for solar-terrestrial relations and provide the context within which solar activity related events occur, can be approximated from these data.
Safety concerns related to magnetic field exposure
Amanda K. Andriola Silva; Érica L. Silva; E. Sócrates T. Egito; Artur S. Carriço
2006-01-01
The recent development of superconducting magnets has resulted in a huge increase in human exposure to very large static magnetic fields of up to several teslas (T). Considering the rapid advances in applications and the great increases in the strength of magnetic fields used, especially in magnetic resonance imaging, safety concerns about magnetic field exposure have become a key issue.
Neutron polarization evolution calculations along the SNS magnetism reflectometer beam line
NASA Astrophysics Data System (ADS)
de A. Parizzi, André; Klose, Frank; Christoph, Volker
2005-02-01
In polarized neutron scattering instruments, most polarization devices apply magnetic fields of different space and time profiles for achieving the desired conditioning of the beam. Magnetic fields created at each device impose fringe/stray fields onto other devices in the beam line, which may affect their functionalities as well as the evolution of the neutron polarization. For the SNS magnetism reflectometer, it is desirable that different sample environment magnets and beam conditioning devices can be used in variable experimental conditions. Spin polarizers and analyzers, broad-band spin flippers and other polarized neutron devices must be capable of working reliably in the vicinity of small magnetic fields generated by an iron-yoke electromagnet and of much larger magnetic fields created, for example, by a high-field superconducting magnet. The latter may not only impose relatively large stray fields along the beam path, but also produce relatively large field gradients. In this paper, we present calculations treating the magnetic field interference between devices, the effect of sample environment magnets and the resultant neutron polarization evolution along the beam line. Calculations are presented for polarized instrumentation configurations that will typically be applied in standard experimental conditions at the SNS magnetism reflectometer.
Spectral functions of the Luttinger liquid in a magnetic field
NASA Astrophysics Data System (ADS)
Rabello, Silvio; Si, Qimiao
2000-03-01
We study the single-particle properties of the one-dimensional Luttinger model in the presence of a magnetic field. The single-particle spectral functions are calculated and it is shown that the magnetic field induce shifts on both the spinon and holon peak positions, but with different magnitude. From these results, we discuss the possibility of using angular-resolved photoemission in a magnetic field to probe spin-charge separation.
A pooled analysis of magnetic fields and childhood leukaemia
A Ahlbom; N Day; M Feychting; E Roman; J Skinner; J Dockerty; M Linet; M McBride; J Michaelis; J H Olsen; T Tynes; P K Verkasalo
2000-01-01
Previous studies have suggested an association between exposure to 50–60 Hz magnetic fields (EMF) and childhood leukaemia. We conducted a pooled analysis based on individual records from nine studies, including the most recent ones. Studies with 24\\/48-hour magnetic field measurements or calculated magnetic fields were included. We specified which data analyses we planned to do and how to do them
Electric and magnetic field exposure
S. S. Sussman
1988-01-01
The possible health hazards of low-level, power line frequency (50\\/60 Hz) electric and magnetic fields are considered. The historical background to this concern is briefly discussed. The types of studies being carried out and the results so far are summarized. It is concluded that while the scientific evidence on field effects is inconclusive, inferences of health effects justify further evaluation
Magnetic fields and coronal heating
NASA Technical Reports Server (NTRS)
Golub, L.; Maxson, C.; Rosner, R.; Vaiana, G. S.; Serio, S.
1980-01-01
General considerations concerning the scaling properties of magnetic-field-related coronal heating mechanisms are used to build a two-parameter model for the heating of closed coronal regions. The model predicts the way in which coronal temperature and electron density are related to photospheric magnetic field strength and the size of the region, using the additional constraint provided by the scaling law of Rosner, Tucker, and Vaiana. The model duplicates the observed scaling of total thermal energy content with total longitudinal flux; it also predicts a relation between the coronal energy density (or pressure) and the longitudinal field strength modified by the region scale size.
Magnetic fields in neutron stars
NASA Astrophysics Data System (ADS)
Viganò, Daniele
2013-09-01
This work aims at studying how magnetic fields affect the observational properties and the long-term evolution of isolated neutron stars, which are the strongest magnets in the universe. The extreme physical conditions met inside these astronomical sources complicate their theoretical study, but, thanks to the increasing wealth of radio and X-ray data, great advances have been made over the last years. A neutron star is surrounded by magnetized plasma, the so-called magnetosphere. Modeling its global configuration is important to understand the observational properties of the most magnetized neutron stars, magnetars. On the other hand, magnetic fields in the interior are thought to evolve on long time-scales, from thousands to millions of years. The magnetic evolution is coupled to the thermal one, which has been the subject of study in the last decades. An important part of this thesis presents the state-of-the-art of the magneto-thermal evolution models of neutron stars during the first million of years, studied by means of detailed simulations. The numerical code here described is the first one to consistently consider the coupling of magnetic field and temperature, with the inclusion of both the Ohmic dissipation and the Hall drift in the crust.
MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.
JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.
2004-10-03
Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.
Magnetic Fields in Population III Star Formation
Turk, Matthew J.; Oishi, Jeffrey S.; Abel, Tom; Bryan, Greg
2012-02-22
We study the buildup of magnetic fields during the formation of Population III star-forming regions, by conducting cosmological simulations from realistic initial conditions and varying the Jeans resolution. To investigate this in detail, we start simulations from identical initial conditions, mandating 16, 32 and 64 zones per Jeans length, and studied the variation in their magnetic field amplification. We find that, while compression results in some amplification, turbulent velocity fluctuations driven by the collapse can further amplify an initially weak seed field via dynamo action, provided there is sufficient numerical resolution to capture vortical motions (we find this requirement to be 64 zones per Jeans length, slightly larger than, but consistent with previous work run with more idealized collapse scenarios). We explore saturation of amplification of the magnetic field, which could potentially become dynamically important in subsequent, fully-resolved calculations. We have also identified a relatively surprising phenomena that is purely hydrodynamic: the higher-resolved simulations possess substantially different characteristics, including higher infall-velocity, increased temperatures inside 1000 AU, and decreased molecular hydrogen content in the innermost region. Furthermore, we find that disk formation is suppressed in higher-resolution calculations, at least at the times that we can follow the calculation. We discuss the effect this may have on the buildup of disks over the accretion history of the first clump to form as well as the potential for gravitational instabilities to develop and induce fragmentation.
Magnetic nanoparticles for applications in oscillating magnetic field
Peeraphatdit, Chorthip
2010-12-15
Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.
EFFECTS OF MAGNETIC FIELDS ON THE PROPAGATION OF NUCLEAR FLAMES IN MAGNETIC WHITE DWARFS
Kutsuna, Masamichi; Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2012-04-10
We investigate the effects of the magnetic field on the propagation of laminar flames of nuclear reactions taking place in white dwarfs with masses close to the Chandrasekhar limit. We calculate the velocities of laminar flames parallel and perpendicular to uniform magnetic fields as eigenvalues of steady solutions for magnetic hydrodynamical equations. As a result, we find that even when the magnetic pressure does not dominate the entire pressure it is possible for the magnetic field to suppress the flame propagation through the thermal conduction. Above the critical magnetic field, the flame velocity decreases with increasing magnetic field strength as v {approx} B{sup -1}. In media with densities of 10{sup 7}, 10{sup 8}, and 10{sup 9} g cm{sup -3}, the critical magnetic fields are orders of {approx}10{sup 10}, 10{sup 11}, and 10{sup 12} G, respectively.
Magnetic shielding by soft magnetic materials in alternating magnetic field
Yasuo Okazaki; Kiyoshi Ueno
1992-01-01
The magnetic shielding effect of an alternating field up to 20 kHz was examined in 3% Si steel sheets and amorphous ribbons. Not only the permeability but also the domain configuration was found to affect the shielding effects. The annealed Fe-based amorphous shield without field showed exceedingly high shielding effectiveness for higher frequencies.
Magnetic-field generation and electron acceleration in relativistic laser channel
Magnetic-field generation and electron acceleration in relativistic laser channel I. Yu. Kostyukov itself as a strong axial magnetic field inverse Faraday effect . The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field
Quantum Monte Carlo Calculations Applied to Magnetic Molecules
Larry Engelhardt
2006-08-09
We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these ideas in hand, we then provide a detailed explanation of the current QMC method in Chapter 4. The remainder of the thesis is devoted to presenting specific results: Chapters 5 and 6 contain articles in which this method has been used to answer general questions that are relevant to broad classes of systems. Then, in Chapter 7, we provide an analysis of four different species of magnetic molecules that have recently been synthesized and studied. In all cases, comparisons between QMC calculations and experimental data allow us to distinguish a viable microscopic model and make predictions for future experiments. In Chapter 8, the infamous ''negative sign problem'' is described in detail, and we clearly indicate the limitations on QMC that are imposed by this obstacle. Finally, Chapter 9 contains a summary of the present work and the expected directions for future research.
Theorem on magnet fringe field
Jie Wei; R. Talman
1995-01-01
Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b{sub n}) and skew (a{sub n}) multipoles, B{sub y} + iBâ = â(b{sub n} + ia{sub n})(x + iy)â¿, where x, y, and z denote horizontal, vertical, and longitudinal (along the
Applied magnetic field design for the field reversed configuration compression heating experiment.
Domonkos, M T; Amdahl, D; Camacho, J F; Coffey, S K; Degnan, J H; Delaney, R; Frese, M; Gale, D; Grabowski, T C; Gribble, R; Intrator, T P; McCullough, J; Montano, N; Robinson, P R; Wurden, G
2013-04-01
Detailed calculations of the formation, guide, and mirror applied magnetic fields in the FRC compression-heating experiment (FRCHX) were conducted using a commercially available generalized finite element solver, COMSOL Multiphysics(®). In FRCHX, an applied magnetic field forms, translates, and finally captures the FRC in the liner region sufficiently long to enable compression. Large single turn coils generate the fast magnetic fields necessary for FRC formation. Solenoidal coils produce the magnetic field for translation and capture of the FRC prior to liner implosion. Due to the limited FRC lifetime, liner implosion is initiated before the FRC is injected, and the magnetic flux that diffuses into the liner is compressed. Two-dimensional axisymmetric magnetohydrodynamic simulations using MACH2 were used to specify optimal magnetic field characteristics, and this paper describes the simulations conducted to design magnetic field coils and compression hardware for FRCHX. This paper presents the vacuum solution for the magnetic field. PMID:23635196
Calculation of the Thermal Footprint of Resonant Magnetic Perturbations in DIII-D
I Joseph; T Evans; R Moyer; M Fenstermacher; M Groth; S Kasilov; C Lasnier; G Porter; A Runov; M Schaffer; R Schneider; J Watkins
2007-01-01
The effect of resonant magnetic perturbations on heat transport in DIII-D H-mode plasmas has been calculated by combining the TRIP3D field-line tracing code with the E3D two-fluid transport code. Simulations show that the divertor heat flux distribution becomes non-axisymmetric because heat flux is efficiently guided to the divertor along the three-dimensional invariant manifolds of the magnetic field. Calculations demonstrate that
A. Thorolfsson; O. E. Rognvaldsson; J. Yngvason; E. H. Gudmundsson
1997-01-01
We present numerical calculations of the equation of state for dense matter\\u000ain high magnetic fields, using a temperature dependent Thomas-Fermi theory with\\u000aa magnetic field that takes all Landau levels into account. Free energies for\\u000aatoms and matter are also calculated as well as profiles of the electron\\u000adensity as a function of distance from the atomic nucleus for
Observations of Mercury's magnetic field
NASA Technical Reports Server (NTRS)
Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.
1975-01-01
Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.
Ivlev, B. [Department of Physics and Astronomy and NanoCenter, University of South Carolina, Columbia, South Carolina 29208 (United States) and Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, San Luis Potosi 78000 Mexico
2006-05-15
Quantum tunneling across a static potential barrier in a static magnetic field is very sensitive to an analytical form of the potential barrier. Depending on that, the oscillatory structure of the modulus of the wave function can be formed in the direction of tunneling. Due to an underbarrier interference, the probability of tunneling through a higher barrier can be larger than through a lower one. For some barriers the quantum interference of underbarrier cyclotron paths results in a strong enhancement of tunneling. This occurs in the vicinity of the certain magnetic field and is referred to as Euclidean resonance. This strongly contrasts to the Wentzel, Kramers, and Brillouin type tunneling which occurs with no magnetic field.
Protogalactic evolution and magnetic fields
Harald Lesch; Masashi Chiba
1994-11-17
We show that the relatively strong magnetic fields ($\\ge 1 \\mu$G) in high redshift objects can be explained by the combined action of an evolving protogalactic fluctuation and electrodynamic processes providing the magnetic seed fields. Three different seed field mechanisms are reviewed and incorporated into a spherical "top-hat" model and tidal torque theory for the fate of a forming galaxy in an expanding universe. Very weak fields $10^{-19} \\sim 10^{-23}$G created in an expanding over-dense region are strongly enhanced due to the dissipative disk formation by a factor $\\sim 10^4$, and subsequently amplified by strong non-axisymmetric flow by a factor $\\sim 10^{6-10}$, depending on the cosmological parameters and the epoch of galaxy formation. The resulting field strength at $z \\sim 0.395$ can be of the order of a few $\\mu$G and be close to this value at $z \\sim 2$.
Magnetic Forces and Field Line Density
NSDL National Science Digital Library
2012-08-03
This is an activity about depicting the relative strength of magnetic fields using field line density. Learners will use the magnetic field line drawing of six magnetic poles created in a previous activity and identify the areas of strong, weak, and medium magnetic intensity using the density of magnetic field lines. This is the fifth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. How to Draw Magnetic Fields - II in the Magnetic Math booklet must be completed prior to this activity.
Simulations of magnetic fields in filaments
M. Bruggen; M. Ruszkowski; A. Simionescu; M. Hoeft; C. Dalla Vecchia
2005-08-10
The intergalactic magnetic field within filaments should be less polluted by magnetised outflows from active galaxies than magnetic fields in clusters. Therefore, filaments may be a better laboratory to study magnetic field amplification by structure formation than galaxy clusters which typically host many more active galaxies. We present highly resolved cosmological AMR simulations of magnetic fields in the cosmos and make predictions about the evolution and structure of magnetic fields in filaments. Comparing our results to observational evidence for magnetic fields in filaments suggests that amplification of seed fields by gravitational collapse is not sufficient to produce IGM fields. Finally, implications for cosmic ray transport are discussed.
Origin of primordial magnetic fields
Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)
2008-02-15
Magnetic fields of intensities similar to those in our galaxy are also observed in high redshift galaxies, where a mean field dynamo would not have had time to produce them. Therefore, a primordial origin is indicated. It has been suggested that magnetic fields were created at various primordial eras: during inflation, the electroweak phase transition, the quark-hadron phase transition (QHPT), during the formation of the first objects, and during reionization. We suggest here that the large-scale fields {approx}{mu}G, observed in galaxies at both high and low redshifts by Faraday rotation measurements (FRMs), have their origin in the electromagnetic fluctuations that naturally occurred in the dense hot plasma that existed just after the QHPT. We evolve the predicted fields to the present time. The size of the region containing a coherent magnetic field increased due to the fusion of smaller regions. Magnetic fields (MFs) {approx}10 {mu}G over a comoving {approx}1 pc region are predicted at redshift z{approx}10. These fields are orders of magnitude greater than those predicted in previous scenarios for creating primordial magnetic fields. Line-of-sight average MFs {approx}10{sup -2} {mu}G, valid for FRMs, are obtained over a 1 Mpc comoving region at the redshift z{approx}10. In the collapse to a galaxy (comoving size {approx}30 kpc) at z{approx}10, the fields are amplified to {approx}10 {mu}G. This indicates that the MFs created immediately after the QHPT (10{sup -4} s), predicted by the fluctuation-dissipation theorem, could be the origin of the {approx}{mu}G fields observed by FRMs in galaxies at both high and low redshifts. Our predicted MFs are shown to be consistent with present observations. We discuss the possibility that the predicted MFs could cause non-negligible deflections of ultrahigh energy cosmic rays and help create the observed isotropic distribution of their incoming directions. We also discuss the importance of the volume average magnetic field predicted by our model in producing the first stars and in reionizing the Universe.
Precision Magnetic Field Mapping for the 3He Neutron Spin Filter
NASA Astrophysics Data System (ADS)
Ino, Takashi; Arimoto, Yasushi; Kira, Hiroshi; Sakaguchi, Yoshifumi; Shinohara, Takenao; Sakai, Kenji; Oku, Takayuki; Kakurai, Kazuhisa; Ohoyama, Kenji
3He neutron spin filters require a homogeneous magnetic field, otherwise the nuclear polarization of the 3He gas will easily be lost by small magnetic field gradients. Magnetic cavities with field gradients of 10-4/cm or better are often in demand, and many such cavities - Helmholtz coils, solenoids, permanent magnet circuits, etc - have been developed [1]. These magnetic cavities are designed mostly by using simulations, but the actual magnetic fields may differ from the calculations because of the presence of the environmental magnetic field as well as nearby magnetic materials. To evaluate the real magnetic fields, a precision magnetometry system with a precision of 10-5 was developed.
Magnetic field tomography, helical magnetic fields and Faraday depolarization
NASA Astrophysics Data System (ADS)
Horellou, C.; Fletcher, A.
2014-07-01
Wide-band radio polarization observations offer the possibility to recover information about the magnetic fields in synchrotron sources, such as details of their three-dimensional configuration, that has previously been inaccessible. The key physical process involved is the Faraday rotation of the polarized emission in the source (and elsewhere along the wave's propagation path to the observer). In order to proceed, reliable methods are required for inverting the signals observed in wavelength space into useful data in Faraday space, with robust estimates of their uncertainty. In this paper, we examine how variations of the intrinsic angle of polarized emission ?0 with the Faraday depth ? within a source affect the observable quantities. Using simple models for the Faraday dispersion F(?) and ?0(?), along with the current and planned properties of the main radio interferometers, we demonstrate how degeneracies among the parameters describing the magneto-ionic medium can be minimized by combining observations in different wavebands. We also discuss how depolarization by Faraday dispersion due to a random component of the magnetic field attenuates the variations in the spectral energy distribution of the polarization and shifts its peak towards shorter wavelengths. This additional effect reduces the prospect of recovering the characteristics of the magnetic field helicity in magneto-ionic media dominated by the turbulent component of the magnetic field.
Y. Azzouz; A. Mouillet
2002-01-01
This paper deals with the characterization of the magnetic permeability of soft magnetic materials under a rotating magnetic field. The paper reviews the principle of the rotating-flux-density device used for measurement of flux density, then describes the mathematical method used to calculate permeability from the measurements. The method combines direct and inverse solutions and is based on a functional minimization
J. L. G. Janssen; J. J. H. Paulides; E. A. Lomonova
2011-01-01
This paper presents novel equations that enable the direct analytical calculation of the interaction torque between perpendicularly magnetized cuboidal permanent magnets in free space. These expressions complement the expressions for the interaction force and stiffness that are already available in literature and are computationally inexpensive due to their analytical nature. They are suitable in the design and analysis of ironless
Bulk properties of a Fermi gas in a magnetic field
NASA Astrophysics Data System (ADS)
Strickland, M.; Dexheimer, V.; Menezes, D. P.
2012-12-01
We calculate the number density, energy density, transverse pressure, longitudinal pressure, and magnetization of an ensemble of spin one-half particles in the presence of a homogenous background magnetic field. The magnetic field direction breaks spherical symmetry causing the pressure transverse to the magnetic field direction to be different than the pressure parallel to it. We present explicit formulas appropriate at zero and finite temperature for both charged and uncharged particles including the effect of the anomalous magnetic moment. We demonstrate that the resulting expressions satisfy the canonical relations ?=-P? and P?=P?-MB, with M=-??/?B being the magnetization of the system. We numerically calculate the resulting pressure anisotropy for a gas of protons and a gas of neutrons and demonstrate that the inclusion of the anomalous magnetic increases the level of pressure anisotropy in both cases.
Reduced MHD in Nearly Potential Magnetic Fields
Strauss, Hank
Reduced MHD in Nearly Potential Magnetic Fields H.R. Strauss Courant Institute of Mathematical that the magnetic field is close to a potential field. The potential field can have an arbitrary three dimensional of equations have essentially the same structure. The main time dependent variables are the magnetic field
Bosonic Casimir effect in external magnetic field
NASA Astrophysics Data System (ADS)
Cougo-Pinto, M. V.; Farina, C.; Negrão, M. R.; Tort, A. C.
1999-06-01
We compute the influence of an external magnetic field on the Casimir energy of a massive charged scalar field confined between two parallel infinite plates. For this case the obtained result shows that the magnetic field inhibits the Casimir effect.
New Magnetic Susceptibility and Magnetic Field Tools for Wireline Logging
NASA Astrophysics Data System (ADS)
Williams, T.; Evans, H.; Robinson, S.; Goldberg, D.; Tool Design Team
2008-12-01
Two new tools are being developed to provide downhole magnetic measurements for the Integrated Ocean Drilling Program (IODP) and other scientific drilling programs. The Magnetic Susceptibility Sonde (MSS) is built and has been run successfully in land boreholes, and the Multi-sensor Magnetometer Module (MMM) is at the design stage. Magnetic susceptibility is one of the best measurements for investigating stratigraphic changes in marine sediments, because the measurement is quick, repeatable, and non-destructive, and because different lithologies often have strongly contrasting susceptibilities. The MSS includes a Bartington sensor with a 12-cm vertical resolution, sufficient to resolve thin beds and track astronomical cyclicity for paleoceanographic studies, together with a deep-reading sensor that is minimally affected by tool standoff from the borehole wall. These downhole susceptibility measurements will complement the susceptibility measured on core and be invaluable for core-log integration. We have proposed to build a new magnetometer tool, the MMM, to measure the magnetic field in the borehole, from which we can calculate the magnetization and polarity of the rocks surrounding the borehole. The combination of a three-axis fluxgate magnetometer, an accurate Overhauser effect total-field magnetometer, and optical gyroscope orientation in a single tool will provide the capability to measure a wide range of rock types, from highly magnetic basalts to more weakly magnetized unlithified sediments. The magnetization of the igneous ocean crust is a fundamental subject in marine geophysics, and downhole measurements offer the advantages of oriented paleomagnetic data and continuous coverage in these difficult-to-recover rocks. The tool will also be able to provide downhole magnetostratigraphy in marine sediment sequences, as demonstrated with the previous generation of IODP downhole magnetometer (a commercial tool, no longer available). Both these new tools will run in-line with the standard Schlumberger tools used in IODP, a major advance in integration over previous third-party tools that will save operational time.
Photospheric and coronal magnetic fields
Sheeley, N.R., Jr. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))
1991-01-01
Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.
Hydrogen-molecule ion in a strong magnetic field
V. K. Khersonskii
1983-01-01
The potential energy functions of a molecular ion of hydrogen H\\/sup +\\/â are calculated in a strong magnetic field B approx. = 10Â¹Â°â»â»Â¹Â°sup 13\\/ G. The calculations were carried out for symmetric and antisymmetric configurations. Equilibrium internuclear separations and dissociation energies were determined for the symmetric configuration, and quadrupole moments were calculated.
Hydrogen-molecule ion in a strong magnetic field
Khersonskii, V.K.
1983-11-01
The potential energy functions of a molecular ion of hydrogen H/sup +//sub 2/ are calculated in a strong magnetic field B approx. = 10/sup 10/--10/sup 13/ G. The calculations were carried out for symmetric and antisymmetric configurations. Equilibrium internuclear separations and dissociation energies were determined for the symmetric configuration, and quadrupole moments were calculated.
HMI Measurements Of The Solar Magnetic Field
NASA Astrophysics Data System (ADS)
Hoeksema, Jon Todd; HMI Magnetic Field Team
2011-05-01
The Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO) routinely produces a comprehensive array of magnetic field data products including 45-second line-of-sight magnetograms, synoptic maps and synchronic frames, 12-minute vector field time series in HMI Active Region Patches (HARPs), model calculations of the coronal field and solar wind, and near-real-time parameters for space weather. Other products, such as surface flow maps, can be produced on demand or on request. We present examples of data products generated during the first year of operations and compare some of these with measurements from other observatories, including the now-dormant MDI. The HMI Team is sponsored by NASA.
Non-Gaussianity from Cosmic Magnetic Fields
Iain Brown; Robert Crittenden
2005-09-22
Magnetic fields in the early universe could have played an important role in sourcing cosmological perturbations. While not the dominant source, even a small contribution might be traceable through its intrinsic non-Gaussianity. Here we calculate analytically the one, two and three point statistics of the magnetic stress energy resulting from tangled Gaussian fields, and confirm these with numerical realizations of the fields. We find significant non-Gaussianity, and importantly predict higher order moments that will appear between the scalar, vector and tensor parts of the stress energy (e.g. scalar-tensor-tensor moments). Such higher order cross correlations are a generic feature of non-linear theories and could prove to be an important probe of the early universe.
How to Draw Magnetic Fields - I
NSDL National Science Digital Library
2012-08-03
This is an activity about depicting magnetic fields. Learners will observe two provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines for both orientations. This is the third activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.
Core shifts, magnetic fields and magnetization of extragalactic jets
NASA Astrophysics Data System (ADS)
Zdziarski, Andrzej A.; Sikora, Marek; Pjanka, Patryk; Tchekhovskoy, Alexander
2015-07-01
We study the effect of radio-jet core shift, which is a dependence of the position of the jet radio core on the observational frequency. We derive a new method of measuring the jet magnetic field based on both the value of the shift and the observed radio flux, which complements the standard method that assumes equipartition. Using both methods, we re-analyse the blazar sample of Zamaninasab et al. We find that equipartition is satisfied only if the jet opening angle in the radio core region is close to the values found observationally, ?0.1-0.2 divided by the bulk Lorentz factor, ?j. Larger values, e.g. 1/?j, would imply magnetic fields much above equipartition. A small jet opening angle implies in turn the magnetization parameter of ?1. We determine the jet magnetic flux taking into account this effect. We find that the transverse-averaged jet magnetic flux is fully compatible with the model of jet formation due to black hole (BH) spin-energy extraction and the accretion being a magnetically arrested disc (MAD). We calculate the jet average mass-flow rate corresponding to this model and find it consists of a substantial fraction of the mass accretion rate. This suggests the jet composition with a large fraction of baryons. We also calculate the average jet power, and find it moderately exceeds the accretion power, dot{M} c^2, reflecting BH spin energy extraction. We find our results for radio galaxies at low Eddington ratios are compatible with MADs but require a low radiative efficiency, as predicted by standard accretion models.
EXPLORER 10 MAGNETIC FIELD MEASUREMENTS
J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman
1963-01-01
Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are
Probing Primordial Magnetic Fields with the 21cm Fluctuations
Hiroyuki Tashiro; Naoshi Sugiyama
2006-07-10
Primordial magnetic fields possibly generated in the very early universe are one of the candidates for the origin of magnetic fields observed in many galaxies and galaxy clusters. After recombination, the dissipation process of the primordial magnetic fields increases the baryon temperature. The Lorentz force acts on the residual ions and electrons to generate density fluctuations. These effects are imprinted on the cosmic microwave background (CMB) brightness temperature fluctuations produced by the neutral hydrogen 21cm line. We calculate the angular power spectrum of brightness temperature fluctuations for the model with the primordial magnetic fields of a several nano Gauss strength and a power-law spectrum. It is found that the overall amplitude and the shape of the brightness temperature fluctuations depend on the strength and the spectral index of the primordial magnetic fields. Therefore, it is expected that the observations of the CMB brightness temperature fluctuations give us a strong constraint on the primordial magnetic fields.
Transverse Magnetic Field Propellant Isolator
NASA Technical Reports Server (NTRS)
Foster, John E.
2000-01-01
An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.
Levin, Michael
Levin and Ernst, DC Magnetic Field Effects on Development Applied DC Magnetic Fields Cause urchin, static magnetic field, gastrulation, development, mitotic cycle, teratogenic effects running title: static Magnetic Field Effects on Development #12;Levin and Ernst, DC Magnetic Field Effects
M. J. Lunt
1985-01-01
Pulsed magnetic field therapy for tibial nonunion has become an established orthopaedic procedure in many centres. The field\\u000a is generated by passing pulses of current through coils positioned one each side of the limb but the magnitudes of the magnetic\\u000a and induced electric fields produced are not usually known. The paper describes a method of calculating the fields that gives
Radiation from Relativistic Shocks with Turbulent Magnetic Fields
NASA Technical Reports Server (NTRS)
Nishkawa, K.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Mizuno, A.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Oka, M.; Fishman, J.
2009-01-01
Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked region. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. New recent calculation of spectra with various different Lorentz factors of jets (two electrons) and initial magnetic fields. New spectra based on small simulations will be presented.
Separation of magnetic field lines
Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)
2012-11-15
The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.
NASA Astrophysics Data System (ADS)
Umehara, Masakatsu
2006-07-01
We investigated the effects of the external magnetic field on the compositional-fluctuation potentials (APFs) in diluted magnetic semiconductors (DMSs). The APFs in DMSs are divided into two parts: one is the nonmagnetic part usually considered in mixed nonmagnetic semiconductors and the other is the magnetic part caused by the compositional fluctuations of the substituted magnetic ions and the sp-d exchange interaction under the external magnetic field. The APFs in DMSs, thus, depend on the external magnetic field and the temperature as well as the concentration of the magnetic ions; for example in Cd1-xMnxTe, the APFs increase with the magnetic field up to about 40 kOe for an Mn concentration of x = 0.2 and 0.3, while the APFs decrease drastically with the magnetic field for x less than 0.05 at low temperatures. After a general discussion of the APFs in DMSs, we calculated the exciton magnetic polarons weakly bound to APFs under the external magnetic field. The calculated results were compared with the experiment on the L2 photoluminescence in Cd1-xMnxTe, with the purpose of revealing the peculiar properties caused by the magnetic part of the APFs.
Ulf Ekström; Patrick Norman; Antonio Rizzo
2006-01-01
level of theory. A measure of the birefringence is given by the Verdet constant, which is a third-order molecular property and thus relates to quadratic response functions. A fully analytical nonlinear polarization propagator approach is employed. The results are gauge invariant as a consequence of the spatial symmetries in the molecular systems. The calculations include electronic as well as vibrational
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Krause, Marita
2015-03-01
The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At ?6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1974-01-01
The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1974-01-01
The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according as the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 G. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.
NASA Astrophysics Data System (ADS)
Kadivar, Erfan
Using the Oseen-Zöcher-Frank theory, in the steady state, I study the distortion energy of a disclination line in nematic liquid crystal in the presence of an external magnetic field. The director field around a disclination line is exactly calculated by minimizing the total free energy. The behavior of total free energy as a function of magnetic field for two kinds of nematic material (positive and negative magnetic anisotropy) are discussed. In the short distance limit, the total free energy per unit length is calculated. In this case, the magnetic dependence of total free energy is discussed.
Primordial magnetic fields from self-ordering scalar fields
Horiguchi, Kouichirou; Sekiguchi, Toyokazu; Sugiyama, Naoshi
2015-01-01
A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by $B\\sim{10^{-9}}{((1+z)/10^3)^{-2.5}}({v}/{m_{\\rm pl}})^2({k}/{\\rm Mpc^{-1}})^{3.5}/{\\sqrt{N}}$ Gauss in the radiation dominated era for $k\\lesssim 1$ Mpc$^{-1}$, with $v$ being the vacuum ...
Non-axisymmetric magnetic modes of neutron stars with purely poloidal magnetic fields
Asai, Hidetaka; Yoshida, Shijun
2015-01-01
We calculate non-axisymmetric oscillations of neutron stars magnetized by purely poloidal magnetic fields. We use polytropes of index $n=1$ and 1.5 as a background model, where we ignore the equilibrium deformation due to the magnetic field. Since separation of variables is not possible for the oscillation of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. Solving the oscillation equations as the boundary and eigenvalue problem, we find two kinds of discrete magnetic modes, that is, stable (oscillatory) magnetic modes and unstable (monotonically growing) magnetic modes. For isentropic models, the frequency or the growth rate of the magnetic modes is exactly proportional to $B_{\\rm S}$, the strength of the field at the surface. The oscillation frequency and the growth rate are affected by the buoyant force in the interior, and the stable stratification tends to stabilize the unstable magnetic modes.
Entanglement of two-qubit photon beam by magnetic field
A. D. Levin; D. M. Gitman; R. C. Castro
2014-09-05
We have studied the possibility of affecting the entanglement measure of 2-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, by the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact with both the photons and the magnetic field. The possibility of exact theoretical analysis of this scheme is based on known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measure of the photon beam as a function of the applied magnetic field and parameters of the electron medium.
NASA Astrophysics Data System (ADS)
Ivanenko, I. A.; Kazarinov, N. Yu.
2014-11-01
The optimization of the field distribution of the analyzing magnet installed in the axial injection beam line of the cyclotron DC-280 is carried out. This optimization is done on the basis of a three-dimensional calculation of the magnet field. The optimum value of the basic geometrical characteristics of the magnet influencing the form of the field distribution is found.
Low-frequency fluctuations in plasma magnetic fields
Cable, S.; Tajima, T.
1992-02-01
It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.
Magnetic fields in gaps surrounding giant protoplanets
NASA Astrophysics Data System (ADS)
Keith, Sarah L.; Wardle, Mark
2015-07-01
Giant protoplanets evacuate a gap in their host protoplanetary disc, which gas must cross before it can be accreted. A magnetic field is likely carried into the gap, potentially influencing the flow. Gap crossing has been simulated with varying degrees of attention to field evolution [pure hydrodynamical, ideal, and resistive magnetohydrodynamical (MHD)], but as yet there has been no detailed assessment of the role of the field accounting for all three key non-ideal MHD effects: Ohmic resistivity, ambipolar diffusion, and Hall drift. We present a detailed investigation of gap magnetic field structure as determined by non-ideal effects. We assess susceptibility to turbulence induced by the magnetorotational instability (MRI) and angular momentum loss from large-scale fields. As full non-ideal simulations are computationally expensive, we take an a posteriori approach, estimating MHD quantities from the pure hydrodynamical gap-crossing simulation by Tanigawa, Ohtsuki & Machida. We calculate the ionization fraction and estimate field strength and geometry to determine the strength of non-ideal effects. We find that the protoplanetary disc field would be easily drawn into the gap and circumplanetary disc. Hall drift dominates, so that much of the gap is conditionally MRI unstable depending on the alignment of the field and disc rotation axes. Field alignment also influences the strong toroidal field component permeating the gap. Large-scale magnetic forces are small in the circumplanetary disc, indicating that they cannot drive accretion there. However, turbulence will be key during satellite growth as it affects critical disc features, such as the location of the ice line.
Effect of magnetic field on ball milled hard magnetic particles
NASA Astrophysics Data System (ADS)
Altuncevahir, B.; Poudyal, N.; Chakka, V. M.; Chen, K. H.; Black, T. D.; Liu, T. D.
2004-03-01
In this investigation, the powder particles of NdFeB and SmCo based alloys prepared by the ball milling in a uniform magnetic field are compared to those milled without an applied magnetic field. The ball milling was carried out for a total of 100 hours, and the powders were sampled every 25 hours. The particle size after 100 hours of milling was around 100 nm and the grain size in the particles was below 20 nm. The particles were then aligned in a magnetic field in hardening epoxy. It was found that the remanence ratios of the samples milled in an applied magnetic field were remarkably higher than those milled without field. XRD patterns also showed that the powder milled in magnetic field has better alignment than those milled without magnetic field. This technique is a novel approach to preparing anisotropic magnetic nanoparticles and has potential for producing high energy-product nanocomposite permanent magnets.
The Magnetism of Meteorites and Early Solar System Magnetic Fields
NASA Astrophysics Data System (ADS)
Collinson, D. W.
1994-11-01
The characteristics of the remanent magnetization of chondrite, achondrite and shergottite, nakhlite and chassignite (SNC) meteorites are described, and interpretation in terms of magnetizing fields in the ancient Solar System discussed. The magnetism of ordinary chondrites is commonly scattered in direction within samples, implying magnetization of constituent fragments before accumulation. The magnetic history of these meteorites is uncertain because of lack of knowledge of the origin and properties of tetrataenite, an ordered FeNi alloy often carrying the bulk of the magnetization. Achondrites also often possess scattered magnetization, the primary component probably being acquired during cooling after differentiation of the parent body. A magnetizing field of internal origin is possible. Estimates of magnetizing field strength are in the approximate range 5-100 ? T, with carbonaceous chondrites showing the highest values. The SNC meteorites, probably originating on Mars, provide evidence for a weak, ancient Martian magnetic field of the order 1 ? T.
MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2
Fornberg, Bengt
MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy
Modified methods of stellar magnetic field measurements
NASA Astrophysics Data System (ADS)
Kholtygin, A. F.
2014-12-01
The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator \\hat{L} to both sides of this relation. As the operator \\hat{L}, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star ?2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared to be in good agreement with those determined by other methods.
Electronic structure of diluted magnetic semiconductor superlattices: In-plane magnetic field effect
Hai-Bin Wu; Kai Chang; Jian-Bai Xia
2002-01-01
The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially
Influence of nonuniform magnetic field on a ferrite junction circulator
H. How; S. A. Oliver; S. W. McKnight; P. M. Zavracky; N. E. McGruer; C. Vittoria; R. Schmidt
1999-01-01
We have analytically formulated the problem that a ferrite circulator junction is biased by a nonuniform magnetic field. Interport impedances of the junction can, therefore, be solved numerically. Nonuniform-bias field will reduce the transmission bandwidth, and the circulation condition is apt to be altered if the bias field shows nonuniformity near the center of the junction. Our calculation compares very
Diffusion of charged particles in a random magnetic field
NASA Technical Reports Server (NTRS)
Earl, J. A.
1972-01-01
When charged particles move in a random magnetic field superimposed upon a relatively large constant field, their pitch angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.
Explaining Mercury's peculiar magnetic field
NASA Astrophysics Data System (ADS)
Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.
2014-05-01
MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.
Anisotropic Magnetism in Field-Structured Composites
Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene
1999-06-24
Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.
Variability in Martian Magnetic Field Topology
NASA Astrophysics Data System (ADS)
Brain, D. A.; Halekas, J. S.; Eastwood, J. P.; Ulusen, D.; Lillis, R. J.
2014-07-01
We have determined the locations of open and closed magnetic field lines at Mars as a function of four different controlling influences: solar wind magnetic field direction, solar wind pressure, martian season, and solar EUV flux.
Passive Magnetic Shielding in Gradient Fields
Bidinosti, C P
2013-01-01
The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...
Plasma stability in a dipole magnetic field
Simakov, Andrei N., 1974-
2001-01-01
The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...
Magnetic field diffusion and dissipation in reversed-field plasmas
NASA Technical Reports Server (NTRS)
Drake, J. F.; Gladd, N. T.; Huba, J. D.
1981-01-01
A diffusion equation is derived which describes the evolution of a magnetic field in a plasma of arbitrary beta and resistivity. The equation is valid for a one-dimensional slab geometry, assumes the plasma remains in quasi-equilibrium throughout its evolution and does not include thermal transport. Scaling laws governing the rate of change of the magnetic energy, particle drift energy, and magnetic flux are calculated. It is found that the magnetic free energy can be substantially larger than the particle drift energy and can be an important energy reservoir in driving plasma instabilities (e.g., the lower-hybrid-drift instability). In addition, the effect of a spatially varying resistivity on the evolution of a reversed-field plasma is studied. The resistivity model used is based upon the anomalous transport properties associated with the nonlocal mode structure of the lower-hybrid-drift instability. The relevance of this research to laboratory plasmas (e.g., theta pinches, reversed-field theta pinches) and space plasmas (e.g., the earth's magnetotail) is discussed.
Aggregation of magnetic holes in a rotating magnetic field
Jozef ?ernák; Geir Helgesen
2008-06-20
We have experimentally investigated field induced aggregation of nonmagnetic particles confined in a magnetic fluid layer when rotating magnetic fields were applied. After application of a magnetic field rotating in the plane of the fluid layer, the single particles start to form two-dimensional (2D) clusters, like doublets, triangels, and more complex structures. These clusters aggregated again and again to form bigger clusters. During this nonequilibrium process, a broad range of cluster sizes was formed, and the scaling exponents, $z$ and $z'$, of the number of clusters $N(t)\\sim t^{z'}$and average cluster size $S(t)\\sim t^{z}$ were calculated. The process could be characterized as diffusion limited cluster-cluster aggregation. We have found that all sizes of clusters that occured during an experiment, fall on a single curve as the dynamic scaling theory predicts. Hovewer, the characteristic scaling exponents $z',\\: z$ and crossover exponents $\\Delta$ were not universal. A particle tracking method was used to find the dependence of the diffusion coefficients $D_{s}$ on cluster size $s$. The cluster motions show features of \\textit{\\emph{Brownian}} motion. The average diffusion coefficients $$ depend on the cluster sizes $s$ as a power law $\\propto s^{\\gamma}$ where values of $\\gamma$ as different as $\\gamma=-0.62\\pm0.19$ and $\\gamma=-2.08\\pm0. were found in two of the experiments.
A variable-field permanent-magnet dipole for accelerators
Kraus, R.H. Jr.; Barlow, D.B.; Meyer, R.
1992-01-01
A new concept for a variable-field permanent-magnet dipole has been developed and fabricated at Los Alamos. The application requires an extremely uniform dipole field in the magnet aperture and precision variability over a large operating range. An iron-core permanent- magnet design using a shunt that was specially shaped to vary the field in a precise and reproducible fashion with shunt position. The key to this design is in the shape of the shunt. The field as a function of shunt position is very linear from 90% of the maximum field to 20% of the minimum field. The shaped shunt also results in a small maximum magnetic force attracting the shunt to the yoke allowing a simple mechanical design. Calculated and measured results agree well for the magnet.
A variable-field permanent-magnet dipole for accelerators
Kraus, R.H. Jr.; Barlow, D.B.; Meyer, R.
1992-09-01
A new concept for a variable-field permanent-magnet dipole has been developed and fabricated at Los Alamos. The application requires an extremely uniform dipole field in the magnet aperture and precision variability over a large operating range. An iron-core permanent- magnet design using a shunt that was specially shaped to vary the field in a precise and reproducible fashion with shunt position. The key to this design is in the shape of the shunt. The field as a function of shunt position is very linear from 90% of the maximum field to 20% of the minimum field. The shaped shunt also results in a small maximum magnetic force attracting the shunt to the yoke allowing a simple mechanical design. Calculated and measured results agree well for the magnet.
Near-field magnetic communication
R. Bansal
2004-01-01
Even as cell phones have shrunk in size while boasting an ever-increasing array of features, two things about them haven't changed much: they still sprout a stubby antenna and, if you want a headset, you have to put up with an unwieldy wire connecting the headset and the phone. Thanks to a patented technology called near-field magnetic communication (NFMC), from
Rotating copper plasmoid in external magnetic field
Pandey, Pramod K.; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Uttar Pradesh 208 016 (India)
2013-02-15
Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.
Magnetic field effect for cellulose nanofiber alignment
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Chen, Yi; Kang, Kwang-Sun; Park, Young-Bin; Schwartz, Mark
2008-11-01
Regenerated cellulose formed into cellulose nanofibers under strong magnetic field and aligned perpendicularly to the magnetic field. Well-aligned microfibrils were found as the exposure time of the magnetic field increased. Better alignment and more crystalline structure of the cellulose resulted in the increased decomposition temperature of the material. X-ray crystallograms showed that crystallinity index of the cellulose increased as the exposure time of the magnetic field increased.
Extraterrestrial magnetic fields - Achievements and opportunities
E. J. Smith; C. P. Sonett
1976-01-01
The major scientific achievements associated with the measurement of magnetic fields in space over the past decade and a half are reviewed. Aspects of space technology relevant to magnetic-field observations are discussed: magnetometers and how they operate, problems arising from spacecraft-generated magnetic fields and appropriate countermeasures and on-board processing of magnetometer data. The solar wind and interplanetary magnetic field, the
Van der Waals torque induced by external magnetic fields
NASA Astrophysics Data System (ADS)
Esquivel-Sirvent, R.; Cocoletzi, G. H.; Palomino-Ovando, M.
2010-12-01
We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III-IV semiconductors such as InSb, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of InSb. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of InSb increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropic materials when the magnetic fields is close to 1 T.
Rotation of the coronal magnetic field
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.; Scherrer, P. H.
1987-01-01
The coronal magnetic field rotates differently than the photosphere. The field configuration of the corona can be calculated from the observed photosphpere field using a potential field model. Correlation of the field patterns at different latitudes with a lag near one solar rotation shows much less differential rotation than observed in the photospheric field; however, the peak is very broad and determines the rotation rate rather poorly. Consideration of longer lags reveals a more complex rotational structure and indicates different rotation rates in the Northern and Southern Hemispheres. Spectral analysis of the equatorial dipole component of the coronal field reveals an organization into just a few discrete rotation frequencies which are apparently present simultaneously. Spectral analysis of the field at different latitudes shows that the frequencies are present simultaneously. Spectra analysis of the field at different latitudes shows that the frequencies are present simultaneously, but in different hemispheres, and that the Southern Hemisphere fields rotate more slowly than those in the north in solar cycle 21.
Numerical calculations of ultrasonic fields. [STEALTH
Johnson, J.A.
1982-02-01
A code for calculating ultrasonic fields has been developed by revisng the thermal-hydraulics code STEALTH. This code may be used in a wide variety of situations in which a detailed knowledge of a propagating wave field is required. Among the potential used are: interpretation of pulse-echo or pitch-catch ultrasonic signals in complicated geometries; ultrasonic transducer modeling and characterization; optimization and evaluation of transducer design; optimization and reliability of inspection procedures; investigation of the response of different types of reflectors; flaw modeling; and general theoretical acoustics. The code is described, and its limitations and potential are discussed. A discussion of the required input and of the general procedures for running the code is presented. Three sample problems illustrate the input and the use of the code.
Pulsed-Field Gradient Nuclear Magnetic
Duncan, James S.
Pulsed-Field Gradient Nuclear Magnetic Resonance as a Tool for Studying Translational Diffusion and biochemical systems. Pulsed-field gradient nuclear magnetic resonance pro- vides a convenient and noninvasive spin-echo pulse sequence contain- ing a magnetic field gradient pulse in each period is used to measure
Primordial magnetic field limits from cosmological data
Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)
2010-10-15
We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.
Magnetic monopole and the nature of the static magnetic field
Xiuqing Huang
2008-12-10
We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.
Pull-in control due to Casimir forces using external magnetic fields
NASA Astrophysics Data System (ADS)
Esquivel-Sirvent, R.; Palomino-Ovando, M. A.; Cocoletzi, G. H.
2009-08-01
We present a theoretical calculation of the pull-in control in capacitive microswitches actuated by Casimir forces using external magnetic fields. The external magnetic fields induce an optical anisotropy due to the excitation of magnetoplasmons that reduces the Casimir force. The calculations are performed in the Voigt configuration and the results show that as the magnetic field increases the system becomes more stable. The detachment length for a cantilever is also calculated for a cantilever, showing that it increases with increasing magnetic field. At the pull-in separation, the stiffness of the system decreases with the increasing magnetic field.
Pull-in control due to Casimir forces using external magnetic fields
R. Esquivel-Sirvent; M. A. Palomino-Ovando; G. H. Cocoletzi
2009-07-13
We present a theoretical calculation of the pull-in control in capacitive micro switches actuated by Casimir forces, using external magnetic fields. The external magnetic fields induces an optical anisotropy due to the excitation of magneto plasmons, that reduces the Casimir force. The calculations are performed in the Voigt configuration, and the results show that as the magnetic field increases the system becomes more stable. The detachment length for a cantilever is also calculated for a cantilever, showing that it increases with increasing magnetic field. At the pull-in separation, the stiffness of the system decreases with increasing magnetic field.
Cluster Magnetic Fields from Galactic Outflows
J. Donnert; K. Dolag; H. Lesch; E. Müller
2008-10-24
We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by \\citet{2006MNRAS.370..319B} to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intra-cluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.
Magnetic properties of the neutron in a uniform background field
Thomas Primer; Waseem Kamleh; Derek Leinweber; Matthias Burkardt
2012-12-10
We present calculations of the magnetic moment and magnetic polarisability of the neutron from the background field method. The calculations are performed on $32^3\\times64$ dynamical lattices generated by the PACS-CS collaboration and made available via the ILDG. We consider uniform fields quantised by the periodic spatial volume. We explore different approaches for improving the quality of the fits used in the results. Also included are initial results for the magnetic moment of the lowest lying negative parity nucleon states.
Bats respond to very weak magnetic fields.
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 ?T; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 ?T), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944
Suppression of magnetic relaxation by a transverse alternating magnetic field
Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. [All-Russia Electrical Engineering Institute (Russian Federation)], E-mail: fisher@vei.ru; Yampol'skii, V. A. [National Academy of Sciences of Ukraine, Institute of Radiophysics and Electronics (Ukraine)], E-mail: yam@vk.kharkov.ua
2007-07-15
The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.
Magnetic field sources and their threat to magnetic media
NASA Technical Reports Server (NTRS)
Jewell, Steve
1993-01-01
Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.
Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field
Mauel, M; Ryutov, D; Kesner, J
2003-12-02
In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.
Paris-Sud XI, Université de
. This element of information is important for the design of tile permanent magnets. In addition, we show. Therefore, the calculations of the three magnetic field components are exact for all points in space of discretizing elements is required for precisely calculating the three components of the magnetic field
Compact low field magnetic resonance imaging magnet: Design and optimization
M. Sciandrone; G. Placidi; L. Testa; A. Sotgiu
2000-01-01
Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter.
Shull, Kenneth R.
Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers, MRI) are present in research laboratories. Such magnets typically have fields of 14,000 to 235,000 G (1.4 to 23.5 T), far above that of Earth's magnetic field, which is approximately 0.5 G
Magnetic field perturbations in the systems where only poloidal magnetic field is present*
1 Magnetic field perturbations in the systems where only poloidal magnetic field is present* D In some plasma confinement systems the confinement is provided by a poloidal magnetic field (no toroidal magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider
How to Draw Magnetic Fields - II
NSDL National Science Digital Library
This is an activity about depicting magnetic polarity. Learners will observe several provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines and depict the polarities for several orientations, including an arrangement of six magnetic poles. This is the fourth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.
Magnetic field dependence of nuclear magnetic shielding in closed-shell atomic systems
Juha Vaara; Pekka Manninen; Juhani Lounila
2003-01-01
We present a response theory formulation for the dependence of nuclear magnetic shielding on the external magnetic field B0 in closed-shell atomic systems. The dependence appears in even powers of B0, and we include terms up to the sixth power of the field. Calculations are carried out for the field-dependence coefficient ? for noble gas atoms as well as halogen
gamma-positronium in strong magnetic fields
L. B. Leinson; V. N. Oraevsky
1985-01-01
The probabilities of positronium-photon and photon-positronium transitions in a magnetic field alpha2H0 << H ⪷ H0 have been calculated (H0=m20c3\\/eh=4.4×1013 G, alpha=e2\\/hc=1\\/137). We consider the propagation of a photon with an energy exceeding the positronium energy in curved lines of force in the magnetosphere of a pulsar. The possibility of gamma --> gamma1 + gamma2 decay through the intermediate positronium
Intrinsic trapping of stochastic sheared magnetic field lines
Negrea, M.; Petrisor, I.; Balescu, R. [Department of Physics, University of Craiova, A.I. Cuza str. 13, Craiova, Dolj 1100, Romania Association Euratom-MEC (Romania); Department of Statistical Physics and Plasma, Association Euratom-Etat Belge-sur la Fusion, CP 231, Universite Libre de Bruxelles, Campus Plaine, 1050 Brussels (Belgium)
2004-10-01
The decorrelation trajectory method is applied to the diffusion of magnetic field lines in a perturbed sheared slab magnetic configuration. Some interesting decorrelation trajectories for several values of the magnetic Kubo number and of the shear parameter are exhibited. The asymmetry of the decorrelation trajectories appears in comparison with those obtained in the purely electrostatic case studied in earlier work. The running and asymptotic diffusion tensor components are calculated and displayed.
Graphene transparency in weak magnetic fields
David Valenzuela; Saúl Hernández-Ortiz; Marcelo Loewe; Alfredo Raya
2014-10-20
We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order $(eB)^2$, where $e$ is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is radiated with monochromatic light of frequency $\\omega$ along the external field direction, from the modified Maxwell's equations we derive the intensity of transmitted light and the angle of polarization rotation in terms of the longitudinal ($\\sigma_{xx}$) and transverse ($\\sigma_{xy}$) conductivities. Corrections to these quantities, both calculated and measured, are of order $(eB)^2/\\omega^4$. Our findings generalize and complement previously known results reported in literature regarding the light absorption problem in graphene from the experimental and theoretical points of view, with and without external magnetic fields.
Calculation of the magnetic energy barrier in nanostructured cells of synthetic ferrimagnets
NASA Astrophysics Data System (ADS)
Han, C. W.; Han, J. K.; Lim, S. H.
2009-11-01
A method is proposed to calculate the magnetic energy barrier of nanostructured cells of synthetic ferrimagnets. An important feature of the method is the use of an equation for the total energy that contains the magnetostatic fields at the saddle point as parameters of the energy equation. With no suitable methods of accessing the magnetic configuration at the unstable saddle point, it is difficult to obtain the saddle point magnetostatic fields. This difficulty is overcome with the use of equations that link the magnetostatic fields at the saddle point and critical fields, which are readily obtained by micromagnetic simulation. The present method is essentially based on the micromagnetic simulation, and, therefore, it should provide accurate results for the magnetic energy barrier. A contour diagram showing the thermal stability parameter is constructed as a function of the cell geometry and the thickness asymmetry, and the result should be of great value in designing magnetic cells for high density magnetic random access memory.
Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization
Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)
2000-12-19
In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.
Analytical representation of cyclotron magnetic field
Lee-Whiting, G.E.; Davies, W.G. [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.] [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.
1994-07-01
A model has been developed for the rapid but accurate calculation of the static magnetic field in the Chalk River cyclotron. The field is expressed in terms of elementary functions which can be handled efficiently in differential-algebra trajectory integrations. Maxwell`s equations are satisfied exactly. Each of seven subdivisions of the superconducting coils is treated by a moment expansion about a central circle. Each pole is modeled as a uniformly magnetized semi-infinite prism. Monopoles and dipoles at the vertices of the polygonal pole faces correct for departures from the true pole shape. Uniform distributions of dipole strength along the edges of the pole-face polygons correct for the local inappropriateness of the assumption of uniform magnetization. The contributions of the yoke and of other relatively distant parts of the structure to the field in the region of particle acceleration are represented by low-order polynomials. Some of the source parameters are obtained by fitting to the measured values of B{sub z} in the horizontal plane of symmetry.
Magnetic field driven domain-wall propagation in magnetic nanowires
Wang, X.R. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China); Yan, P. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)], E-mail: yanpeng@ust.hk; Lu, J.; He, C. [Physics Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
2009-08-15
The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.
The ISO standard for the Earth's magnetospheric magnetic field model (CD 22009)
I. Alexeev; V. Kalegaev; Yu. Lyutov; S. Bobrovnikov; M. Panasyuk
2004-01-01
The proposed ISO standard is the model which intended to calculate the magnetic field generated from a variety of current systems located in the Earth's magnetosphere under a wide range of environmental conditions, quiet and disturbed, affected by Solar-Terrestrial interactions which induce terrestrial magnetic disturbances such as magnetic storms and magnetospheric substorms. The model of the magnetospheric magnetic field is
Magnetic field observations in Comet Halley's coma
NASA Astrophysics Data System (ADS)
Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.
1986-05-01
During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.
Low-frequency fluctuations in plasma magnetic fields
Cable, S.; Tajima, T. (Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States))
1992-09-15
It is shown that even a nonmagnetized plasma with temperature {ital T} sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, nonmagnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wave number is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic-field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta} function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low-frequency cutoff in the typical blackbody radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic-field wave-vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes that forms the zero-frequency peak of the nonmagnetized plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves is found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic-field fluctuation spectrum as well. For the degenerate plasma, we find that electric-field fluctuations and number-density fluctuations vanish at zero frequency; however, the magnetic-field power spectrum diverges at zero frequency.
Full 180° Magnetization Reversal with Electric Fields
Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.
2014-01-01
Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070
Full 180° magnetization reversal with electric fields.
Wang, J J; Hu, J M; Ma, J; Zhang, J X; Chen, L Q; Nan, C W
2014-01-01
Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070
Full 180° Magnetization Reversal with Electric Fields
NASA Astrophysics Data System (ADS)
Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.
2014-12-01
Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals.
Vlasov Equation In Magnetic Field
Biao Wu
1999-09-07
The linearized Vlasov equation for a plasma system in a uniform magnetic field and the corresponding linear Vlasov operator are studied. The spectrum and the corresponding eigenfunctions of the Vlasov operator are found. The spectrum of this operator consists of two parts: one is continuous and real; the other is discrete and complex. Interestingly, the real eigenvalues are infinitely degenerate, which causes difficulty solving this initial value problem by using the conventional eigenfunction expansion method. Finally, the Vlasov equation is solved by the resolvent method.
Thomson scattering in magnetic fields. [of white dwarf stars
NASA Technical Reports Server (NTRS)
Whitney, Barbara
1989-01-01
The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.
Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel
I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax
2001-12-12
The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.
Magnetic field, closed orbit, and energy measurement in the Bevatron
Crebbin, K.C.
1981-11-01
This report provides the information necessary for a better evaluation of particle energy in the Bevatron. Previously, the nominal magnetic field value and radius were used to calculate the value for the kinetic energy of the particle. This value was good to a few percent. Today, more and more experimenters would like to know the energy to a more precise value. To this end, corrections to the measured magnetic field values and the radial closed orbit are provided.
Electric and magnetic fields at power frequencies.
Miller, Anthony B; Green, Lois M
2010-01-01
Exposures to electric and magnetic fields are among the most ubiquitous exposures that the Canadian population experiences. Sources of electric and magnetic field exposures may be occupational or residential and include proximity to certain types of electrical equipment, transmission and distribution power lines as well as appliance use. The early studies of children tended toward a consistent association between risks for leukemia and brain cancer and residential proximity to power lines having high wire configuration. More recent studies-and studies which have attempted to improve upon the measurement of exposure by using calculated fields, point-in-time or personal monitoring-have been inconsistent, with some suggesting increased risk and others not. Occupational exposures have suggested an increase in risk for leukemia, and to a lesser extent brain cancer and Non-Hodgkin lymphoma. However, studies of residential exposures and cancer in adults generally have suggested no effect. Laboratory work has been unable to demonstrate a biological mechanism which might explain the epidemiological findings. In spite of extensive efforts over the past 20 years and many expert reviews, it has been difficult to reach consensus regarding the carcinogenic effects of electric and magnetic fields. Exposure assessment has proven to be complex, and agreement on the relevant exposure metric has not yet been obtained. There is justification to question whether point-in-time measures in homes are appropriate indices of the relevant etiological exposure, as they fail to account for changes over time, peak exposures or time-varying fields. Nevertheless, it is probably desirable to err on the side of caution in not placing too much weight on the inconsistencies. The IARC has classified EMF as a "possible carcinogen" which refers to the circumstances where there is limited evidence of carcinogenicity in humans and inadequate evidence in experimental animals. The IARC review indicated limited evidence for the carcinogenicity of extremely low-frequency magnetic fields in relation to childhood leukemia at high level exposure in the residential environment (average residential magnetic field strength >0.4 ?T). Even higher levels of exposure in the occupational environment may increase the risk of leukemia in adults. PMID:21199600
Deformation of Water by a Magnetic Field
ERIC Educational Resources Information Center
Chen, Zijun; Dahlberg, E. Dan
2011-01-01
After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…
Coupled Field Synthesis in Magnetic Fluid Hyperthermia
Paolo Di Barba; Fabrizio Dughiero; Elisabetta Sieni; Alessandro Candeo
2011-01-01
AGNETIC fluid hyperthermia (MFH) uses magnetic nanoparticles (NPs) excited by an ac magnetic field to destroy cancer tissues (i.e., the target tissue) by means of induced heat [1]. In general, this kind of device exhibits a large iron core. For instance, at the Charité hospital in Berlin, Germany, the equipment for this kind of technique has a magnetic field source
Field Corrections of Open MRI Superconducting Magnets
Tetsuya Matsuda; Akihiko Ariyoshi; Hajime Tanabe
2005-01-01
We constructed open MRI superconducting magnets with an iron yoke that generates a 0.7T highly uniform magnetic field. A program that compensates for the error field of those magnets was developed that uses linear programming to achieve an optimal arrangement of a large number of small iron shims. Since additional homogeneity compensation near the target value becomes difficult, we also
Neutrinos with Mixing in Twisting Magnetic Fields
E. Kh. Akhmedov; S. T. Petcov; A. Yu. Smirnov
1993-01-06
Transitions in a system of neutrinos with vacuum mixing and magnetic moments, propagating in matter and transverse magnetic field, are considered. It is shown that in the realistic case of magnetic field direction varying along the neutrino path qualitatively new phenomena become possible: permutation of neutrino conversion resonances, appearance of resonances in the neutrino-antineutrino ($\
Helicity of the Solar Magnetic Field
Sanjiv Kumar Tiwari
2009-01-01
Magnetic helicity is a physical quantity that measures the degree of linkages and twistedness in the field lines. It is given by a volume integral over the scalar product of magnetic field B and its vector potential A. Direct computation of magnetic helicity in the solar atmosphere is not possible due to two reasons. First, we do not have the
ELECTRON SPECTROMETER WITH TOROIDAL MAGNETIC FIELD
A. E. Dubinov; N. V. Minashkin; V. D. Selemir; N. V. Stepanov; V. E. Vatrunin
1993-01-01
The spectrometer allows to measure the spectrum of the electron beam, generated in the magnetized diode. Principle of the spectrometer's operation consists in spatial separation of Merent energies particles in gradient static magnetic field. Numerical integration of electron movement equations in the toroidal magnetic field %l\\/r -manner, is consistent with the experimental results received at 1-3000 accelerator. The results of
ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric and magnetic fields. Credits: 4 Terms Offered: Fall Prerequisites: MTH 255, ENGR 203 (concurrent enrollment fields in free space, Ampere's circuital law, vector magnetic potential · Biot-Savart law, magnetic
Hydrogen atom in a magnetic field: The quadrupole moment
NASA Astrophysics Data System (ADS)
Potekhin, Alexander Y.; Turbiner, Alexander V.
2001-06-01
The quadrupole moment of a hydrogen atom in a magnetic field B for field strengths from 0 to 4.414×1013 G is calculated by two different methods. The first method is variational, and based on a single trial function. The second method deals with a solution of the Schrödinger equation in the form of a linear combination of Landau orbitals.
Pressure, chaotic magnetic fields, and magnetohydrodynamic equilibria
Hudson, S. R.; Nakajima, N. [National Institute for Natural Sciences, National Institute for Fusion Studies, 322-6 Oroshi, Toki 509-5292 (Japan)
2010-05-15
Analyses of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, nablap=jxB. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic field are continuous, the only nontrivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the field-lines, Bcentre dotnablap=0. A simple method to ameliorate the singularities is to include a small but finite perpendicular diffusion. A self-consistent set of equilibrium equations is described, and some algorithmic approaches aimed at solving these equations are discussed.
Pressure, Chaotic Magnetic Fields and MHD Equilibria
S.R. Hudson & N. Nakajima
2010-05-12
Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ?p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ?p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.
Stable Magnetic Field Gradient Levitation of Xenopus laevis: Towards Low Gravity Simulation
James M. Valles Jr.; Kevin Lin; James Denegre; Kimberly Mowry
1996-01-01
We report the stable levitation of embryos of the frog species Xenopus laevis using the technique of Magnetic Field Gradient Levitation (MFGL). The magnetic field\\/magnetic field gradient product required for levitation was ~= 1500 Tesla^2\\/m consistent with the embryo's susceptibility being dominated by the diamagnetism of water and proteins. Calculations using measurements of susceptibilities of components of the embryos indicate
Stopping of charged particles in a Maxwellian plasma with a magnetic field
S. V. Bozhokin; E. A. Choban
1984-01-01
Expressions describing the energy loss of a charged particle in a Maxwellian plasma with a strong magnetic field are described. The dielectric constant found by means of quantum-mechanical correlation functions is used. The Coulomb logarithm is calculated for strong magnetic fields and is found to be a function of the magnetic field. The anisotropy of the energy loss of a
Fourier extrapolation of magnetic fields measured by electron-beam tomography
Hiroyuki Shinada; Yoshio Suzuki
1994-01-01
A method for calculating the magnetic field on a plane near a magnetic recording head is presented. In this method, the magnetic field is measured at a plane farther from the head. The method involves taking a Fourier transform of the measured field, enhancing the large wave-number region of the spectrum, and effecting the reverse Fourier transform of the modified
R. Schlickeiser; I. Lerche
2002-07-02
Using linear kinetic plasma theory the relation between electron density and magnetic field fluctuations for low-frequency plasma waves for Maxwellian background distribution functions of arbitrary temperatures in an uniform magnetic field is derived. By taking the non-relativistic temperature limit this relation is calculated for the diffuse intercloud medium in our Galaxy. The diffuse intercloud medium is the dominant phase of the interstellar medium with respect to radio wave propagation, dispersion and rotation measure studies. The differences between the relation of electron density and magnetic field fluctuations from the linear kinetic theory as compared to the classical MHD theory are established and discussed.
Propagation of photons in homogeneous magnetic fields: Index of refraction
Wu-Yang Tsai; Thomas Erber
1975-01-01
The index of refraction associated with the vacuum polarization induced ; by homogeneous magnetic fields is calculated for two cases: high energy photons ; traversing fields weak compared with the critical field, H\\/sub cr\\/ = m$sup ; 2$cÂ³\\/eh approximately 4.41 x 10Â¹Â³ G; and low energy photons in fields ; of arbitrary intensity. Some implications for the physical optics of
The magnetic fields of accreting T Tauri stars
S. G. Gregory; S. P. Matt; J. -F. Donati; M. Jardine
2008-09-24
Models of magnetospheric accretion on to classical T Tauri stars often assume that the stellar magnetic field is a simple dipole. Recent Zeeman-Doppler imaging studies of V2129 Oph and BP Tau have shown however that their magnetic fields are more complex. V2129 Oph is a high mass T Tauri star and despite its young age is believed to have already developed a radiative core. In contrast to this, the lower mass BP Tau is likely to be completely convective. As the internal structure and therefore the magnetic field generation process is different in both stars, it is of particular interest to compare the structure of their magnetic fields obtained by field extrapolation from magnetic surface maps. We compare both field structures to mulitpole magnetic fields, and calculate the disk truncation radius for both systems. We find that by considering magnetic fields with a realistic degree of complexity, the disk is truncated at, or within, the radius obtained for dipole fields.
LABORATORY V MAGNETIC FIELDS AND FORCES
Minnesota, University of
of a particle with a constant acceleration. · Calculate the motion of a particle with an acceleration structure of materials, and the quark structure of elementary particles. The magnetic interaction can best current-carrying wires, and coils of wire. · Calculate the magnetic force on a charged particle moving
Bipolar pulse field for magnetic refrigeration
Lubell, Martin S. (Oak Ridge, TN)
1994-01-01
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.
Thermodynamics of ferrofluids in applied magnetic fields.
Elfimova, Ekaterina A; Ivanov, Alexey O; Camp, Philip J
2013-10-01
The thermodynamic properties of ferrofluids in applied magnetic fields are examined using theory and computer simulation. The dipolar hard sphere model is used. The second and third virial coefficients (B(2) and B(3)) are evaluated as functions of the dipolar coupling constant ?, and the Langevin parameter ?. The formula for B(3) for a system in an applied field is different from that in the zero-field case, and a derivation is presented. The formulas are compared to results from Mayer-sampling calculations, and the trends with increasing ? and ? are examined. Very good agreement between theory and computation is demonstrated for the realistic values ??2. The analytical formulas for the virial coefficients are incorporated in to various forms of virial expansion, designed to minimize the effects of truncation. The theoretical results for the equation of state are compared against results from Monte Carlo simulations. In all cases, the so-called logarithmic free energy theory is seen to be superior. In this theory, the virial expansion of the Helmholtz free energy is re-summed in to a logarithmic function. Its success is due to the approximate representation of high-order terms in the virial expansion, while retaining the exact low-concentration behavior. The theory also yields the magnetization, and a comparison with simulation results and a competing modified mean-field theory shows excellent agreement. Finally, the putative field-dependent critical parameters for the condensation transition are obtained and compared against existing simulation results for the Stockmayer fluid. Dipolar hard spheres do not undergo the transition, but the presence of isotropic attractions, as in the Stockmayer fluid, gives rise to condensation even in zero field. A comparison of the relative changes in critical parameters with increasing field strength shows excellent agreement between theory and simulation, showing that the theoretical treatment of the dipolar interactions is robust. PMID:24229175
Thermodynamics of ferrofluids in applied magnetic fields
NASA Astrophysics Data System (ADS)
Elfimova, Ekaterina A.; Ivanov, Alexey O.; Camp, Philip J.
2013-10-01
The thermodynamic properties of ferrofluids in applied magnetic fields are examined using theory and computer simulation. The dipolar hard sphere model is used. The second and third virial coefficients (B2 and B3) are evaluated as functions of the dipolar coupling constant ?, and the Langevin parameter ?. The formula for B3 for a system in an applied field is different from that in the zero-field case, and a derivation is presented. The formulas are compared to results from Mayer-sampling calculations, and the trends with increasing ? and ? are examined. Very good agreement between theory and computation is demonstrated for the realistic values ??2. The analytical formulas for the virial coefficients are incorporated in to various forms of virial expansion, designed to minimize the effects of truncation. The theoretical results for the equation of state are compared against results from Monte Carlo simulations. In all cases, the so-called logarithmic free energy theory is seen to be superior. In this theory, the virial expansion of the Helmholtz free energy is re-summed in to a logarithmic function. Its success is due to the approximate representation of high-order terms in the virial expansion, while retaining the exact low-concentration behavior. The theory also yields the magnetization, and a comparison with simulation results and a competing modified mean-field theory shows excellent agreement. Finally, the putative field-dependent critical parameters for the condensation transition are obtained and compared against existing simulation results for the Stockmayer fluid. Dipolar hard spheres do not undergo the transition, but the presence of isotropic attractions, as in the Stockmayer fluid, gives rise to condensation even in zero field. A comparison of the relative changes in critical parameters with increasing field strength shows excellent agreement between theory and simulation, showing that the theoretical treatment of the dipolar interactions is robust.
Exploring Magnetic Fields in Your Environment
NSDL National Science Digital Library
This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide.
A carpet cloak for static magnetic field
NASA Astrophysics Data System (ADS)
Wang, Rongfeng; Lei Mei, Zhong; Jun Cui, Tie
2013-05-01
We present a two-dimensional carpet cloak for static magnetic field, a design that renders the magnetic response of a given volume invisible from its exterior, without altering the external magnetic fields. The device is designed using transformation optics method and can be implemented with alternating superconducting and magnetic material layers. Through the proper design of the constitutive tensors and relative thicknesses of each slab, we achieve the perfect performance of invisibility. Full wave numerical simulations confirm our design.
Numerical calculations of ultrasonic fields I: transducer near fields
Johnson, J.A.
1982-03-01
A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two-dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two-dimensional plane strain or two-dimensional axial symmetries can be solved. Free, fixed, or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. This paper gives a brief description of the method and shows the results of the calculation of the near fields of circular flat and focused transducers. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens reconstruction technique off-axis.
Numerical calculations of ultrasonic fields I: transducer near fields
Johnson, J.A.
1982-04-01
A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two dimensional plane strain or two dimensional axial symmetries can be solved. Free, fixed or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. A brief description of the method is given and the results of the calculation of the near fields of circular flat and focused transducers are shown. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens' reconstruction technique off axis.
Plasma and Magnetic Field Inside Magnetic Clouds: a Global Study
C. Cid; M. A. Hidalgo; T. Nieves-Chinchilla; J. Sequeiros; A. F. Viñas
2002-01-01
Data observed during spacecraft encounters with magnetic clouds have been extensively analyzed in the literature. Moreover, several models have been proposed for the magnetic topology of these events, and fitted to the observations. Although these interplanetary events present well-defined plasma features, none of those models have included a simultaneous analysis of magnetic field and plasma data. Using as a starting
NASA Astrophysics Data System (ADS)
Hotta, H.; Rempel, M.; Yokoyama, T.
2014-05-01
We carry out non-rotating high-resolution calculations of the solar global convection, which resolve convective scales of less than 10 Mm. To cope with the low Mach number conditions in the lower convection zone, we use the reduced speed of sound technique (RSST), which is simple to implement and requires only local communication in the parallel computation. In addition, the RSST allows us to expand the computational domain upward to about 0.99 R ?, as it can also handle compressible flows. Using this approach, we study the solar convection zone on the global scale, including small-scale near-surface convection. In particular, we investigate the influence of the top boundary condition on the convective structure throughout the convection zone as well as on small-scale dynamo action. Our main conclusions are as follows. (1) The small-scale downflows generated in the near-surface layer penetrate into deeper layers to some extent and excite small-scale turbulence in the region >0.9 R ?, where R ? is the solar radius. (2) In the deeper convection zone (<0.9 R ?), the convection is not influenced by the location of the upper boundary. (3) Using a large eddy simulation approach, we can achieve small-scale dynamo action and maintain a field of about 0.15B eq-0.25B eq throughout the convection zone, where B eq is the equipartition magnetic field to the kinetic energy. (4) The overall dynamo efficiency varies significantly in the convection zone as a consequence of the downward directed Poynting flux and the depth variation of the intrinsic convective scales.
Hotta, H.; Yokoyama, T. [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Rempel, M., E-mail: hotta.h@eps.s.u-tokyo.ac.jp [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States)
2014-05-01
We carry out non-rotating high-resolution calculations of the solar global convection, which resolve convective scales of less than 10 Mm. To cope with the low Mach number conditions in the lower convection zone, we use the reduced speed of sound technique (RSST), which is simple to implement and requires only local communication in the parallel computation. In addition, the RSST allows us to expand the computational domain upward to about 0.99 R {sub ?}, as it can also handle compressible flows. Using this approach, we study the solar convection zone on the global scale, including small-scale near-surface convection. In particular, we investigate the influence of the top boundary condition on the convective structure throughout the convection zone as well as on small-scale dynamo action. Our main conclusions are as follows. (1) The small-scale downflows generated in the near-surface layer penetrate into deeper layers to some extent and excite small-scale turbulence in the region >0.9 R {sub ?}, where R {sub ?} is the solar radius. (2) In the deeper convection zone (<0.9 R {sub ?}), the convection is not influenced by the location of the upper boundary. (3) Using a large eddy simulation approach, we can achieve small-scale dynamo action and maintain a field of about 0.15B {sub eq}-0.25B {sub eq} throughout the convection zone, where B {sub eq} is the equipartition magnetic field to the kinetic energy. (4) The overall dynamo efficiency varies significantly in the convection zone as a consequence of the downward directed Poynting flux and the depth variation of the intrinsic convective scales.
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
M. J. Lunt
1982-01-01
Pulsed-magnetic-field therapy for non-union of the tibia is becoming, in some centres, an established orthopaedic technique.\\u000a The field is generated by passing pulses of current through coils positioned around the leg, but the mechanism of interaction\\u000a is not understood. This paper gives a qualitative description of the fields produced and then develops a theoretical model\\u000a to calculate the fields for
DC-based magnetic field controller
Kotter, D.K.; Rankin, R.A.; Morgan, J.P.
1994-05-31
A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.
DC-based magnetic field controller
Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)
1994-01-01
A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.
Static uniform magnetic fields and amoebae
Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A. [Tennessee Technological Univ., Cookeville, TN (United States)] [Tennessee Technological Univ., Cookeville, TN (United States)
1997-03-01
Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.
Power spectrum of post-inflationary primordial magnetic fields
NASA Astrophysics Data System (ADS)
Hortúa, Héctor J.; Castañeda, Leonardo
2014-12-01
The origin of large scale magnetic fields is one of the most puzzling topics in cosmology and astrophysics. It is assumed that the observed magnetic fields result from the amplification of an initial field produced in the early universe. In this paper we compute the exact power spectrum of magnetic fields created after inflation best known as post-inflationary magnetic fields, using the first order cosmological perturbation theory. Our treatment differs from others' works because we include an infrared cutoff which encodes only causal modes in the spectrum. The cross-correlation between magnetic energy density with Lorentz force and the anisotropic part of the electromagnetic field are exactly computed. We compare our results with previous works finding agreement in cases where the ratio between lower and upper cutoff is very small. However, we found that spectrum is strongly affected when this ratio is greater than 0.2. Moreover, the effect of a post-inflationary magnetic field with a lower cutoff on the angular power spectrum in the temperature distribution of cosmic microwave background was also exactly calculated. The main feature is a shift of the spectrum's peak as a function of the infrared cutoff, therefore analyzing this effect we could infer the value of this cutoff and thus constraining the primordial magnetic fields generation models.
Transport properties of high-temperature air in a magnetic field
Bruno, D. [Institute of Inorganic Methodologies and Plasmas, CNR, 70126 Bari (Italy); Capitelli, M.; Catalfamo, C. [Department of Chemistry, University of Bari, 70126 Bari (Italy); Giordano, D. [Aerothermodynamics Section, ESA-ESTEC, 2200 AG Noordwijk (Netherlands)
2011-01-15
Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.
The generation of magnetic fields in the sun
NASA Technical Reports Server (NTRS)
Fox, Peter A.; Bernstein, Ira B.
1987-01-01
In this paper results of a preliminary investigation into the existence of large scale magnetic fields in the sun are given. Using a kinematic model with prescribed internal rotation and a standard solar model, the poloidal and toroidal components of the magnetic field are calculated. The basic decay time is of the order of the age of the sun. In addition the fields are quite sensitive to slight variations in the internal rotation. The boundary condition at the solar surface also does not seem to influence the inner regions where large scale fields seem possible.
Extraterrestrial Magnetic Fields: Achievements and Opportunities
EDWARD J. SMITHAND; Charles Sonett
1976-01-01
The major scientific achievements associated with the measurement of magnetic fields in space over the past decade and a half are reviewed. Aspects of space technology relevant to magnetic-field observations are discussed, including the different types of magnetometers used and how they operate, problems arising from spacecraft-generated magnetic fields and the appropriate countermeasures that have been developed and on-board processing
Magnetic field effects on plasma ionization balance
Weisheit, J.C.
1995-12-31
Magnetic fields give rise to several phenomena that can significantly affect ionization balance in a plasma. Theoretical models commonly used to determine the charge state distribution (viz.,
Origin of magnetic fields in galaxies
Rafael S. de Souza; Reuven Opher
2010-01-01
Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts ˜0.034muG fields over ˜0.3kpc regions in galaxies. If the dipole magnetic
The rate of separation of magnetic lines of force in a random magnetic field.
NASA Technical Reports Server (NTRS)
Jokipii, J. R.
1973-01-01
The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.
Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field
NASA Astrophysics Data System (ADS)
Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.
2014-02-01
Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations.
Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field
Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.
2014-01-01
Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329
Magnetic field sensor utilizing bent fiber taper and magnetic fluid
NASA Astrophysics Data System (ADS)
Li, Jie; Tian, Zhuang; Sun, Li-Peng; Guan, Bai-Ou
2014-05-01
A magnetic field sensor is demonstrated by placing a bent-fiber taper modal interferometer inside a magnetic fluid sealed with an organic glass base. Owing to the strong refractive index dependency of the interferometer and magneto-optics property of the fluid, our sensor exhibits high sensitivity to the external magnetic field change. A linear wavelength dependency of ~58pm/Oe is experimentally obtained within a magnetic field range from 30 to 80 Oe. Our structure is featured of high sensitivity, fiber-compatibility, compactness, and robustness.
Yoke-free magnetic system for low field studies in magnetically affected reaction yield spectroscopy
NASA Astrophysics Data System (ADS)
Kalneus, Evgeny V.; Stass, Dmitri V.; Grishin, Yuri A.
2005-08-01
The article reports the development of a specialized magnetic system for application in low field studies of chemical reactions involving paramagnetic intermediates. We have designed and built a yoke-free magnetic system optimized for creating rather low static homogeneous magnetic fields that can be cleanly swept through zero value. The actually built system creates magnetic field in the range from "-500" to "+500" G in a cylindrical working region with a length of 8 cm and a diameter of 1 cm with a relative field homogeneity of about 10-4 without using ferromagnetic elements or employing a field-sensing feedback loop. At a distance of greater than or equal to 15 cm from the center of the system along the sweeping axis, the magnetic field does not exceed 100 G due to active shielding, which allows putting magnetic field-sensitive elements of the installation that close to the sample. We have tried to provide a detailed account of the design choices we faced and the compromises we had reached for each key aspect of the system, being rather specific about the reasoning behind each decision. The system actually built was thoroughly tested to verify the assumptions made at the design and the calculation stages and to check their practical realizability. The system will serve as the basis of a magnetically affected reaction yield spectrometer that is currently being developed in our laboratory, but hopefully can also be used in a wider array of applications centered around studies in low magnetic fields.
Minimizing magnetic fields for precision experiments
NASA Astrophysics Data System (ADS)
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-01
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Minimizing magnetic fields for precision experiments
Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U
2015-01-01
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Calculation of three-dimensional electromagnetic force field during arc welding
NASA Astrophysics Data System (ADS)
Kumar, A.; DebRoy, T.
2003-07-01
Electromagnetic force is an important driving force for convection in the weld pool during arc welding. Accurate calculation of the electromagnetic force field requires complex numerical calculations of three-dimensional current density and magnetic flux fields. Several simplifying assumptions have been suggested to avoid the complex calculations. The resulting analytical expressions for the electromagnetic force field have been widely used without any critical evaluation of their intrinsic merit, since accurate numerical calculations were difficult in the past because of lack of fast computers. A numerical model has been developed to accurately calculate the current density and magnetic flux fields and the resulting electromagnetic force field in three dimensions in the entire weldment. The model can take into account any current distribution on the work piece surface and evaluate the effects of different arc locations and work piece geometry on the electromagnetic force field. Contributions of the electrode current, arc plasma, and current distribution inside the three-dimensional work piece to the magnetic field and the electromagnetic force field are determined. The electromagnetic force field computed from the model is compared with those obtained from the commonly used simplified expressions of electromagnetic force to examine the accuracy of the commonly used simplifying assumptions. The accuracy of the computed electromagnetic force field can be significantly improved by using the proposed numerical model.
The QCD equation of state in background magnetic fields
G. S. Bali; F. Bruckmann; G. Endrodi; S. D. Katz; A. Schafer
2014-09-01
We determine the equation of state of 2+1-flavor QCD with physical quark masses, in the presence of a constant (electro)magnetic background field on the lattice. To determine the free energy at nonzero magnetic fields we develop a new method, which is based on an integral over the quark masses up to asymptotically large values where the effect of the magnetic field can be neglected. The method is compared to other approaches in the literature and found to be advantageous for the determination of the equation of state up to large magnetic fields. Thermodynamic observables including the longitudinal and transverse pressure, magnetization, energy density, entropy density and interaction measure are presented for a wide range of temperatures and magnetic fields, and provided in ancillary files. The behavior of these observables confirms our previous result that the transition temperature is reduced by the magnetic field. We calculate the magnetic susceptibility and permeability, verifying that the thermal QCD medium is paramagnetic around and above the transition temperature, while we also find evidence for weak diamagnetism at low temperatures.
Magnetic field properties of SSC model dipole magnets
Wake, M.; Bossert, R.; Carson, J.; Delchamps, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J. (Fermi National Accelerator Lab., Batavia, IL (United States)); Butteris, J.; Sims, R.; Winters, M. (Superconducting Super Collider Lab., Dallas, TX (United States))
1992-09-01
SSC 1.5m model dipole magnets were built and tested at Fermilab. Magnetic field properties were studied in term of transfer function variation and multipole components. The results were satisfactory. Observation of periodicity of remanent field along the axis is also reported.
Magnetic Resonance Imaging System Based on Earth's Magnetic Field
Stepi?nik, Janez
of the magnetic field enables scanning of very large volume samples. Reduction in S/N ratio due to the weak in the case of strong magnetic fields, detection and processing of low frequency signal are less 655 DOI: 10 Vol. 32, No. 6, pp. 655667, 2004 #12;demanding for the electronics. The techniques used
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1991-01-01
The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.
Magnetic monopole field exposed by electrons
NASA Astrophysics Data System (ADS)
Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo
2014-01-01
The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.
Magnetic vector field tag and seal
Johnston, Roger G.; Garcia, Anthony R.
2004-08-31
One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.
Ferroelectric Cathodes in Transverse Magnetic Fields
Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch
2002-07-29
Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.
Magnetic fields in anisotropic relativistic stars
NASA Astrophysics Data System (ADS)
Folomeev, Vladimir; Dzhunushaliev, Vladimir
2015-02-01
Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.
Magnetic Fields in the Milky Way
NASA Astrophysics Data System (ADS)
Haverkorn, Marijke
This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.
Magnetic fields in anisotropic relativistic stars
Vladimir Folomeev; Vladimir Dzhunushaliev
2015-02-28
Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.
Magnetic field spectrum at cosmological recombination revisited
NASA Astrophysics Data System (ADS)
Saga, Shohei; Ichiki, Kiyotomo; Takahashi, Keitaro; Sugiyama, Naoshi
2015-06-01
If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, k ?10 h Mpc-1 , is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about Brec=5.0 ×10-24 Gauss on k =5.0 ×10-1 h Mpc-1 . Finally, we discuss the reason for the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.
Nuclear magnetic resonances in weak fields
Mitchell, Richard Warren
1953-01-01
?s technique involves ~ su41ng a molecular beam through tuo sueeessive static magnetic fields shish have gradients in opposite direotions, While passing from ene magnetic field ts tho other~ the beam is irradiated eith electro-mag- nstio ?nsrgy? When tho...Lgneto The ssmple was placed in, the best pert of the field Then a permanent magnet was brought close to the solenoid& snd pointed to a spot gust beyond the sample in such a manner that, the field of the permanent magnet was roughly opposibx to that...
Song, Yongliang
2015-01-01
It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of SDO, earlier studies have mostly used MDI/SOHO line of sight magnetograms and assumed that magnetic fields are radial when calculating magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and line of sight magnetograms, both taken by HMI/SDO, to estimate the effects of non-radial magnetic field on measuring magnetic helicity injection rate. We find that: 1) The effect of non-radial magnetic field on estimating tangential velocity is relatively small; 2) On estimating magnetic helicity injection rate, the effect of non-radial magnetic field is strong when active regions are observed near the limb and is relatively small when active regions are close to disk center; 3) The effect of non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only conce...
Generation of the magnetic field in jets
V. Urpin
2006-05-22
We consider dynamo action under the combined influence of turbulence and large-scale shear in sheared jets. Shear can stretch turbulent magnetic field lines in such a way that even turbulent motions showing mirror symmetry become suitable for generation of a large-scale magnetic field. We derive the integral induction equation governing the behaviour of the mean field in jets. The main result is that sheared jets may generate a large-scale magnetic field if shear is sufficiently strong. The generated mean field is mainly concentrated in a magnetic sheath surrounding the central region of a jet, and it exhibits sign reversals in the direction of the jet axis. Typically, the magnetic field in a sheath is dominated by the component along the jet that can reach equipartition with the kinetic energy of particles, The field in the central region of jets has a more disordered structure.
Can the observed large scale magnetic fields be seeded by helical primordial fields?
Caprini, Chiara [IPhT, CEA-Saclay, CNRS, URA 2306, F-91191 Gif-sur-Yvette (France); Durrer, Ruth; Fenu, Elisa, E-mail: chiara.caprini@cea.fr, E-mail: ruth.durrer@unige.ch, E-mail: elisa.fenu@unige.ch [Département de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, CH–1211 Genève 4 (Switzerland)
2009-11-01
Gravitational wave production induces a strong constraint on the amplitude of a primordial magnetic field. It has been shown that the nucleosynthesis bound for a stochastic gravitational wave background implies that causally generated fields cannot have enough power on large scales to provide the seeds necessary for the observed magnetic fields in galaxies and clusters, even by the most optimistic dynamo amplification. Magnetic fields generated at inflation can have high enough amplitude only if their spectrum is very red. Here we show that helicity, which leads to an inverse cascade, can mitigate these limits. In particular, we find that helical fields generated at the QCD phase transition or at inflation with red spectrum are possible seeds for the dynamo. Helical fields generated at the electroweak phase transition are instead excluded as seeds at large scales. We also calculate the spectrum of gravitational waves generated by helical magnetic fields.
Decay of massive scalar field in a black hole background immersed in magnetic field
Wu, Chen
2015-01-01
We calculated quasinormal modes of massive scalar field of the Ernst black holes, i.e., neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution when the magnetic field vanishes. It is found that the quasinormal spectrum for massive scalar field in the vicinity of the magnetized black holes acquires an effective mass $\\mu_{eff}= \\sqrt{4B^2 m^2+\\mu^2}$, where $m$ is the azimuthal number, $\\mu$ the mass of scalar field and $B$ the parameter describing the magnetic field. The numerical result shows that increasing of the field effective mass gives rise to decreasing of the imaginary part of the quasinormal modes until reaching the vanishing damping rate.
Decay of massive scalar field in a black hole background immersed in magnetic field
Chen Wu; Renli Xu
2015-07-16
We calculated quasinormal modes of massive scalar field of the Ernst black holes, i.e., neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution when the magnetic field vanishes. It is found that the quasinormal spectrum for massive scalar field in the vicinity of the magnetized black holes acquires an effective mass $\\mu_{eff}= \\sqrt{4B^2 m^2+\\mu^2}$, where $m$ is the azimuthal number, $\\mu$ the mass of scalar field and $B$ the parameter describing the magnetic field. The numerical result shows that increasing of the field effective mass gives rise to decreasing of the imaginary part of the quasinormal modes until reaching the vanishing damping rate.
Global entanglement in ground state of {Cu3} single-molecular magnet with magnetic field
NASA Astrophysics Data System (ADS)
Li, Ji-Qiang; Zhou, Bin
2014-07-01
We investigate global entanglement in the ground state of single-molecular magnet Na9[Cu3Na3(H2O)9(?-AsW9O33)2]·26H2O with an external magnetic field. The concurrence, tangle, and measure function Q, which characterize the pairwise entanglement, 3-party entanglement and total entanglement, respectively, are calculated numerically at zero temperature. The results show that the magnitude and direction of the applied magnetic field play a significant role in the properties of three kinds of entanglement measures. We give a physical interpretation of the variation of the global entanglement with the magnetic field. Finally, the phase diagram of the global entanglement characterized by the critical magnetic fields is presented.
Thermal reversal of exchange spring composite media in magnetic fields
NASA Astrophysics Data System (ADS)
Goll, D.; Macke, S.; Bertram, H. N.
2007-04-01
For exchange coupled composite particles composed of a soft and a hard magnetic layer, the minimum energy paths between equilibrium states of the hysteresis loops are calculated using a path approach based on the nudged elastic band method. From the minimum energy paths the energy barriers for thermal reversal are determined as a function of the applied magnetic field. The field dependence of the energy barrier can be described approximately by power laws. Until reaching the saddle point for thermal reversal a domain wall is nucleated and compressed to the width of a wall propagating through a hard magnetic reference particle.
Energy buildup in sheared force-free magnetic fields
NASA Technical Reports Server (NTRS)
Wolfson, Richard; Low, Boon C.
1992-01-01
Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.
NASA Astrophysics Data System (ADS)
Oyama, D.; Hatta, J.; Miyamoto, M.; Adachi, Y.; Higuchi, M.; Kawai, J.; Fujihira, J.; Tsuyuguchi, N.; Uehara, G.
2014-05-01
We are developing a compact ultra-low-field MRI system that is composed of a SQUID gradiometer and a coil set that generates magnetic fields for capturing MR images. The magnetic interference induced from a power amplifier potentially disturbs MRI measurements. We investigated the path of the interference by experimental measurements and calculation of the magnetic field generated by the coil set. We found that the magnetic field generated from a particular gradient coil affected the SQUID gradiometer and that the level of the interference was strongly dependent on the shape of the gradient coils. When the coils' shapes are designed, minimizing the noise introduced from the power amplifier is crucial, in addition to consideration of the homogeneities of the magnetic field.
Reducing Field Distortion in Magnetic Resonance Imaging
NASA Technical Reports Server (NTRS)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2010-01-01
A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T
The contrasting magnetic fields of superconducting pulsars and magnetars
NASA Astrophysics Data System (ADS)
Lander, S. K.
2014-01-01
We study equilibrium magnetic field configurations in a neutron star (NS) whose core has type-II superconducting protons. Unlike the equations for normal matter, which feature no special field strength, those for superconductors contain the lower critical field, of the order of 1015 G. We find that the ratio of this critical field to the smooth-averaged stellar field at the crust-core boundary is the key feature dictating the field geometry. Our results suggest that pulsar- and magnetar-strength fields have notably different configurations. Field decay for NSs with Bpole ˜ 1014 G could thus result in substantial internal rearrangements, pushing the toroidal field component out of the core; this may be related to observed magnetar activity. In addition, we calculate the magnetically induced ellipticities of our models.
Polarized neutron reflectometry in high magnetic fields
Fritzsche, H. [National Research Council Canada, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario K0J 1J0 (Canada)
2005-11-15
A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe{sub 2}/DyFe{sub 2} multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada.
Status of lattice field theory calculations
Sharpe, S.R.
1990-01-01
This report briefly discusses the following topics: overview of all present calculation; reliability criteria for quenched calculation; quenched versus full QCD, and difficulties facing full QCD; results for the quenched pion wavefunction''; results for the quenched hadron spectrum; results for quenched B{sub K}; A new method for calculating the surface tension; the non-pertubative upper bound on the Higgs mass; and toward the TERAFLOP machine.
Long-term evolution of crustal neutron star magnetic fields
NASA Technical Reports Server (NTRS)
Urpin, V. A.; Chanmugam, G.; Sang, Yeming
1994-01-01
We have derived an analytic solution to the asymptotic behavior of dipolar magnetic fields that are generated in the crusts of neutron stars. We show that if the conductivity is due to impurity scattering, as expected for late stages of evolution, the surface field strength at the magnetic pole declines with the power law B(sub p) approximately = (t/t(sub 0))(exp -2/3). The results are shown to be qualitatively consistent with detailed numerical calculations. These latter results are consistent with some recent analyses of pulsar statistics and the magnetic fields of several binary pulsars with white dwarf companions whose ages have been determined. The dependence of the surface magnetic field on spin period of the pulsar is derived.
Non-radial oscillations of the magnetized rotating stars with purely toroidal magnetic fields
NASA Astrophysics Data System (ADS)
Asai, Hidetaka; Lee, Umin; Yoshida, Shijun
2015-06-01
We calculate non-axisymmetric oscillations of uniformly rotating polytropes magnetized with a purely toroidal magnetic field, taking account of the effects of the deformation due to the magnetic field. As for rotation, we consider only the effects of Coriolis force on the oscillation modes, ignoring those of the centrifugal force, that is, of the rotational deformation of the star. Since separation of variables is not possible for the oscillation of rotating magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We calculate magnetically modified normal modes such as g-, f-, p-, r-, and inertial modes. In the lowest order, the frequency shifts produced by the magnetic field scale with the square of the characteristic Alfvén frequency. As a measure of the effects of the magnetic field, we calculate the proportionality constant for the frequency shifts for various oscillation modes. We find that the effects of the deformation are significant for high frequency modes such as f- and p-modes but unimportant for low-frequency modes such as g-, r-, and inertial modes.
Magnetic phase control by an electric field
Thomas Lottermoser; Thomas Lonkai; Uwe Amann; Dietmar Hohlwein; Jörg Ihringer; Manfred Fiebig
2004-01-01
The quest for higher data density in information storage is motivating investigations into approaches for manipulating magnetization by means other than magnetic fields. This is evidenced by the recent boom in magnetoelectronics and `spintronics', where phenomena such as carrier effects in magnetic semiconductors and high-correlation effects in colossal magnetoresistive compounds are studied for their device potential. The linear magnetoelectric effect-the
Magnetic Field Mapping by Selective Equipotential Excitation
Ouajdi Felfoul; Michelle Raimbert; Sylvain Martel
2006-01-01
A new magnetic field mapping method in MRI is presented. This technique is ideal for severe inhomogeneities where plane warp cannot be ignored. The present study employs a ferromagnetic ball to create a perturbation within the imaged volume. The magnetic moment and position of the device are acquired experimentally with a new technique that excites magnetic equipotentials within a volume.
The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields
NASA Astrophysics Data System (ADS)
Nakotte, Heinz
2001-11-01
The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.
Gang Li; Meng Jun Qin; Hua Kun Liu; Shi Xue Dou
2003-01-01
The vertical levitation force between a superconductor disk (SC) and a permanent magnet disk (PM) has been calculated from first principles using different Jc(B) relationships of the magnetic field. Based upon the first principles, the current distribution inside the SC induced by the applied inhomogeneous magnetic field generated by the PM and the field profiles have been calculated with a
Liu Guo-zhi; Song Xiao-xin
1998-01-01
The self-magnetic-field-limiting current of intense relativistic electron beam (IREB) without an externally applied magnetic field is reported and briefly commented in this paper. By using dynamic balance method the self-magnetic-field-limiting current of IREB under externally applied magnetic field is derived, showing that in this case it will increase. This result is obtained for the first time, so far as we
Magnetic field decay in model SSC dipoles
Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.
1988-08-01
We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.
Diffusion of charged particles in a random magnetic field.
NASA Technical Reports Server (NTRS)
Earl, J. A.
1973-01-01
When charged particles move in a random magnetic field superposed upon a relatively large constant field, their pitch-angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch-angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.
Electric and magnetic field measurements in a high voltage center
A. S. Safigianni; A. I. Spyridopoulos; V. L. Kanas
2011-01-01
This paper investigates the electric and magnetic fields inside a high voltage center in Philippi, Greece, constituted both of 400\\/150 kV and 150\\/20 kV substation areas. Results of previous field measurements and calculations in substations are presented first. The basic data distinguishing the examined center from previously examined substations follow. The main results of the field measurements in the areas
Graphene Nanoribbon in Sharply Localized Magnetic Fields
Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal
2013-03-20
We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.
The Alpha Effect and the Observed Twist and Current Helicity of Solar Magnetic Fields
K. M. Kuzanyan; V. V. Pipin; N. Seehafer
2006-01-01
We present a straightforward comparison of model calculations for the ?-effect, helicities, and magnetic field line twist\\u000a in the solar convection zone with magnetic field observations at atmospheric levels. The model calculations are carried out\\u000a in a mixing-length approximation for the turbulence with a profile of the solar internal rotation rate obtained from helioseismic\\u000a inversions. The magnetic field data consist
Chiaki Ishikawa; Kaori Suzuki; Kazuetsu Yoshida; Yutaka Sugita; Kiminari Shinagawa; Yoshinobu Nakatani; Nobuo Hayashi
1994-01-01
The magnetization distribution in the magnetoresistive (MR) film has been calculated by self-consistently solving the three-dimensional field of the MR head. The magnetization distribution was calculated based on the Landau–Lifshitz–Gilbert equation and the head field was obtained by the Maxwell equation. The longitudinal bias field for the domain control was generated by exchange-coupled antiferromagnetic or permanent magnetic films which were
Coronal magnetic fields produced by photospheric shear
NASA Technical Reports Server (NTRS)
Sturrock, P. A.; Yang, W.-H.
1987-01-01
The magneto-frictional method is used for computing force free fields to examine the evolution of the magnetic field of a line dipole, when there is relative shearing motion between the two polarities. It found that the energy of the sheared field can be arbitrarily large compared with the potential field. It is also found that it is possible to fit the magnetic energy, as a function of shear, by a simple functional form.
Single-layer high field dipole magnets
Vadim V. Kashikhin and Alexander V. Zlobin
2001-07-30
Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.
Equivalence of periodic magnetic field to uniform magnetic field in electron beam focusing
K. Ura; M. Terada
1966-01-01
The general solution of the electron trajectory equation in a periodic magnetic field is derived in the form of series expansion, assuming laminar electron flow and small perturbation. It is concluded that if the cathode is not very heavily immersed in a magnetic field, beam focusing by a periodic magnetic field would be almost equivalent to that by a uniform
Local magnetic fields in an anyon superconductor
Halperin, B.I. (Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States))
1992-03-01
As has been noted previously, there should be orbital currents and magnetic fields associated with any inhomogeneities in the carrier density {rho}({bold r}) in anyon models of high-temperature superconductors. For a simple effective-mass model with two species of semions, one can calculate exactly the zero-temperature value of the coefficient {gamma}, which determines ratio between the current and {del}{rho}, for IsmallP values of {del}{rho}. We consider here various situations where {del}{rho} is IlargeP. For a circularly symmetric localized perturbation, we find constraints on the induced orbital magnetic moment at {ital T}=0 which show that the current cannot vanish, if the net inhomogeneity has a magnitude of one electronic charge. We also show that at temperatures above the superconducting transition, the total current at the boundary of a macroscopic sample is determined if the coefficient {gamma} is known; i.e., in this case the net current is the same as if the density gradients were small. As an intermediate step in our analyses, we review the formulation of the Hartree or Hartree-Fock approximation for an inhomogeneous anyon system. We also introduce a generalized anyon model, where the fictitious charge that couples to the Chern-Simons gauge field is smeared by a Gaussian of width {ital w}, for which the Hartree approximation becomes exact in the limit {ital w}{r arrow}{infinity}.
Parallel magnetic field perturbations in gyrokinetic simulations
Joiner, N.; Hirose, A. [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Dorland, W. [University of Maryland, College Park, Maryland 20742 (United States)
2010-07-15
At low beta it is common to neglect parallel magnetic field perturbations on the basis that they are of order beta{sup 2}. This is only true if effects of order beta are canceled by a term in the nablaB drift also of order beta[H. L. Berk and R. R. Dominguez, J. Plasma Phys. 18, 31 (1977)]. To our knowledge this has not been rigorously tested with modern gyrokinetic codes. In this work we use the gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)] to investigate whether the compressional magnetic field perturbation B{sub ||} is required for accurate gyrokinetic simulations at low beta for microinstabilities commonly found in tokamaks. The kinetic ballooning mode (KBM) demonstrates the principle described by Berk and Dominguez strongly, as does the trapped electron mode, in a less dramatic way. The ion and electron temperature gradient (ETG) driven modes do not typically exhibit this behavior; the effects of B{sub ||} are found to depend on the pressure gradients. The terms which are seen to cancel at long wavelength in KBM calculations can be cumulative in the ion temperature gradient case and increase with eta{sub e}. The effect of B{sub ||} on the ETG instability is shown to depend on the normalized pressure gradient beta{sup '} at constant beta.
The National High Magnetic Field Laboratory
NASA Astrophysics Data System (ADS)
Jaime, M.; Lacerda, A.; Takano, Y.; Boebinger, G. S.
2006-11-01
The National High Magnetic Field Laboratory, established in 1990 with support from the National Science Foundation, the State of Florida, and the US Department of Energy, is a facility open to external users around the world. The experimental capabilities are distributed in three campuses. In Tallahassee, Florida, continuous magnetic fields are produced by means of superconducting and resistive magnets reaching fields of up to 33T (resistive), and 45T (hybrid). EMR, ICR, and a 900MHz wide bore NMR magnet are also available. The facility in Gainesville, Florida, is devoted to generating extremely low temperatures in the presence of external magnetic fields (15T, down to 0.4mK), and large MRI imaging capabilities. In Los Alamos, New Mexico, a 9 kV-capable capacitor bank and a number of different liquid Nitrogen-cooled resistive magnets produce repetitive pulses up to 75 T and now a single-shot pulsed up to 300T.
Two-axis magnetic field sensor
NASA Technical Reports Server (NTRS)
Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)
2006-01-01
A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.
Coronal holes and solar magnetic fields
NASA Technical Reports Server (NTRS)
Harvey, J. W.; Sheeley, N. R., Jr.
1979-01-01
Since 1972 nearly continuous observations of coronal holes and their associated photospheric magnetic fields have been made using a variety of satellite and ground-based equipment. The present paper reviews the results of comparisons of these data and shows that the structure and evolution of coronal holes is basically governed by the large-scale distribution of photospheric magnetic flux. Nonpolar holes form in the decaying remnants of bipolar magnetic regions in areas with a large-scale flux imbalance. In addition, there is strong indirect evidence that the magnetic field in coronal holes is always open to interplanetary space, but not all open-field regions have associated coronal holes.
Magnetic fields and rotation of spiral galaxies
E. Battaner; H. Lesch; E. Florido
1998-02-02
We present a simplified model in which we suggest that two important galactic problems -the magnetic field configuration at large scales and the flat rotation curve- may be simultaneously explained. A highly convective disc produces a high turbulent magnetic diffusion in the vertical direction, stablishing a merging of extragalactic and galactic magnetic fields. The outer disc may then adquire a magnetic energy gradient very close to the gradient required to explain the rotation curve, without the hypothesis of galactic dark matter. Our model predicts symmetries of the galactic field in noticeable agreement with the large scale structure of our galaxy.
High concentration ferronematics in low magnetic fields
T. Tóth-Katona; P. Salamon; N. Éber; N. Tomašovi?ová; Z. Mitróová; P. Kop?anský
2014-09-05
We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field $B_{bias}$, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that $B_{bias}$ is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.
Efficient calculation of winding-loss resistance matrices for magnetic components
Donald R. Zimmanck; Charles R. Sullivan
2010-01-01
There are a number of different analytical and numerical methods for calculating the winding loss of magnetic components. Analytical methods such as Dowell's method and Bessel-function methods require assumptions which severely reduce their accuracy for designs with 2-D field geometries such as those present in gapped transformers and inductors. While numerical methods such as finite-element-analysis (FEA) are capable of calculating
Fluctuating magnetic field induced resonant activation.
Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra
2014-12-14
In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (?) increases under the fixed field strength then the mean first passage time rapidly grows at low ? and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers' turn over phenomenon may occur in the presence of a fluctuating magnetic field. PMID:25494726
Beam tracking of SXLS with realistic magnetic field
Huang, Yun-Xiang.
1991-09-01
In early 1977, while working for NSLS at Brookhaven National Lab., Dr. Ohnuma noticed that tunes of NSLS calculated with code SYNCH were significantly different from those obtained with code PATRICIA. This problem surfaced again in 1991 when people at BNL discovered discrepancies in their compact ring SXLS chromaticities calculated with different code. One potential source of the ambiguities is the different treatment of the edge field and the combined function field of dipole magnet. There are two dipoles each of which with the bending angle of 180{degrees} instead of at most a few degrees which is common in high energy synchrotrons. The calculation of a three-dimensional field using TOSCA indicates that the fringe field extends to cover the whole region between the dipole and the quadrupole, having a vertical field strength of 250 gauss at the edge of the quadrupole. In this case, the fringe multiple field will undoubtedly play a nontrival role in determining basic machine parameters. Therefore, the classical treatment for simulating particle motion in synchrotron, which uses the isomagnetic approximation plus then lens kicks, no longer accurately models the closed orbit of the machine. In order to correctly calculate tunes, chromaticities as well as the dynamic aperture in such kind of machine with a large magnetic bending angle, it is necessary to integrate the exact equations of motion in a realistic representation of the magnetic field.
Magnetic Helicity and Large Scale Magnetic Fields: A Primer
NASA Astrophysics Data System (ADS)
Blackman, Eric G.
2015-05-01
Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.
Decay of positronium in strong magnetic fields
G. Wunner; H. Herold
1979-01-01
We investigate the decay of bound electron-positron pairs (positronium) in strong magnetic fields (of order 1012 Gauss, which are assumed for neutron stars) on the basis of a correct treatment of the two-body problem, thus improving previous work by Carr and Sutherland (1978). We find that, even in the presence of a strong magnetic field, the decay of the ground
Ensemble Solar Global Magnetic Field Modeling
C. J. Henney; C. N. Arge; J. Koller; W. A. Toussaint; S. L. Young; J. W. Harvey
2010-01-01
The ability to forecast geoeffective space weather events is critically dependent on the estimation of the global solar photospheric magnetic field distribution as input to coronal and heliospheric models. Currently, the solar magnetic field can only be recorded for approximately half of the solar surface at any given time. Since the rotation period of the Sun as observed from Earth
Photon-neutrino interactions in magnetic fields
Shaisultanov R
1998-02-28
The low-energy two neutrino-two photon interactions in the presence of homogeneous magnetic field are studied. The cross sections in external magnetic field are shown to be larger than in vacuum by factor $\\sim (m_W /m_e) ^4(B/B_c) ^2$. The energy-loss rate due to the process $\\gamma \\gamma \\to \
Lengthwise field variation in CBA magnets
Willen
1984-01-01
The multipole content of the magnetic field in accelerator superconducting magnets built with a cos theta current distribution inside an iron yoke is determined by the placement of the individual current-carrying turns in the coil, by the location of the coil inside the iron yoke and by the amount of iron saturation at high field. Differences in these parameters cause
Line Sink in Uniform Magnetic Field
Jai Prakash Narain; Mahinder S. Uberoi
1971-01-01
The motion of an inviscid, incompressible, and conducting fluid due to a line sink in a uniform strong magnetic field is considered. The solutions show that motion is confined in a narrow region parallel to the magnetic field. Such a motion for a point sink has erroneously been named as a wake or backward jet flow. Finally, the known solution
Directional discontinuities in the interplanetary magnetic field
Leonard F. Burlaga
1969-01-01
It is shown that the interplanetary magnetic field has different characteristics on different scales, and it is noted that a given physical theory may not be applicable or relevant on all scales. Four scales are defined in terms of time intervals on which the data may be viewed. Many discontinuities in the magnetic-field direction are seen on the mesoscale (˜
On the origins of galactic magnetic fields
A. Borzou; H. R. Sepangi; R. Yousefi; A. H. Ziaie
2009-11-18
We present a five dimensional unified theory of gravity and electromagnetism which leads to modified Maxwell equations, suggesting a new origin for galactic magnetic fields. It is shown that a region with nonzero scalar curvature would amplify the magnetic fields under certain conditions.
Magnetic fields, branes, and noncommutative geometry
Daniela Bigatti; Leonard Susskind
2000-01-01
We construct a simple physical model of a particle moving on the infinite noncommutative 2-plane. The model consists of a pair of opposite charges moving in a strong magnetic field. In addition, the charges are connected by a spring. In the limit of large magnetic field, the charges are frozen into the lowest Landau levels. Interactions of such particles include
Magnetic Fields in Stars: Origin and Impact
NASA Astrophysics Data System (ADS)
Langer, N.
2014-08-01
Various types of magnetic fields occur in stars: small scale fields, large scale fields, and internal toroidal fields. While the latter may be ubiquitous in stars due to differential rotation, small scale fields (spots) may be associated with envelop convection in all low and high mass stars. The stable large scale fields found in only about 10% of intermediate mass and massive stars may be understood as a consequence of dynamical binary interaction, e.g., the merging of two stars in a binary. We relate these ideas to magnetic fields in white dwarfs and neutron stars, and to their role in core-collapse and thermonuclear supernova explosions.
Solar Mean Magnetic Field Observed by GONG
J. W. Harvey; G. Petrie; R. Clark
2009-01-01
The average line-of-sight (LOS) magnetic field of the Sun has been observed for decades, either by measuring the circular polarization across a selected spectrum line using integrated sunlight or by averaging such measurements in spatially resolved images. The GONG instruments produce full-disk LOS magnetic images every minute, which can be averaged to yield the mean magnetic field nearly continuously. Such
Permanent magnet edge-field quadrupole
Tatchyn, Roman O. (Mountain View, CA)
1997-01-01
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.
Simple basis for hydrogenic atoms in magnetic fields
Gallas, J.A.C.
1984-01-01
A field-dependent hydrogenic basis is used to obtain the evolution of the energy spectrum of atoms in strong (approx.10/sup 8/ G) and uniform magnetic fields. The basis allows results to be derived analytically. Numerical values for the first 13 excited states of hydrogen are found to be in very good agreement with much more elaborate calculations of Smith et al. and of Brandi. In addition, the possibility of having a remnant type of degeneracy in the presence of the magnetic field is investigated.
Manipulation of Raman Resonances Using Magnetic Fields
NASA Astrophysics Data System (ADS)
Desavage, Sara A.; Davis, Jon P.; Narducci, Frank A.
2012-06-01
We have theoretically and experimentally studied Raman resonances in multi-level atoms (specifically ^85Rb). Our emphasis has been on varying the relative orientation of the magnetic field with respect to the propagation direction of the Raman fields. We find that, in general, the spectrum consists of up to 11 peaks. By considering selection rules, we show that it is possible to orient the magnetic field so that either a 6 peak spectrum or 5 peak spectrum results, depending on whether the Raman fields contain a polarization component along the magnetic field direction or not. Furthermore, we find that the spectrum is not always symmetric with respect to the magnetically insensitive transition (clock transition). We explore the origins of the asymmetry and the overall shape of the spectra. We will discuss applications to magnetically sensitive atom interferometry.
Processing of polymers in high magnetic fields
Douglas, E.P.; Smith, M.E.; Benicewicz, B.C. [Los Alamos National Lab., NM (United States); Earls, J.D.; Priester, R.D. Jr. [Dow Chemical Co., Freeport, TX (United States)
1996-05-01
Many organic molecules and polymers have an anisotropic diamagnetic susceptibility, and thus can be aligned in high magnetic fields. The presence of liquid crystallinity allows cooperative motions of the individual molecules, and thus the magnetic energy becomes greater than the thermal energy at experimentally obtainable field strengths. This work has determined the effect of magnetic field alignment on the thermal expansion and mechanical properties of liquid crystalline thermosets in the laboratory. Further advances in magnet design are needed to make magnetic field alignment a commercially viable approach to polymer processing. The liquid crystal thermoset chosen for this study is the diglycidyl ether of dihydroxy-{alpha}-methylstilbene cured with the diamine sulfamilamide. This thermoset has been cured at field strengths up to 18 Tesla.
Accounting for crustal magnetization in models of the core magnetic field
NASA Technical Reports Server (NTRS)
Jackson, Andrew
1990-01-01
The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.
Chaotic magnetic fields: Particle motion and energization
Dasgupta, Brahmananda [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Ram, Abhay K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Li, Gang [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Li, Xiaocan [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2014-02-11
Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.
Particle acceleration and transport in a chaotic magnetic field
NASA Astrophysics Data System (ADS)
Li, X.; Li, G.; Dasgupta, B.
2012-12-01
Time-dependent chaotic magnetic field can arise from a simple asymmetric current wire-loop system (CWLS). Such simple CWLSs exist, for example, in solar flares. Indeed one can use an ensemble of such systems to model solar active region magnetic field [1,2]. Here we use test particle simulation to investigate particle transport and energization in such a time-dependent chaotic magnetic field, and through induction, a chaotic electric field. We first construct an ensemble of simple systems based on the estimated size and field strength of solar active region. By following the trajectories of single charged particles, we will examine how particle energy is changed. Diffusion coefficients in both real space and momentum space can be calculated as well as the average trapped time of the particles within chaotic field region. Particle energy spectrum as a function of time will be examined. [1] Dasgupta, B. and Abhay K. Ram, (2007) Chaotic magnetic fields due to asymmetric current configurations -application to cross field diffusion of particles in cosmic rays, (Presented at the 49th Annual Meeting of the DPP, APS, Abstract # BP8.00102) [2] G. Li, B. Dasgupta, G. Webb, and A. K. Ram, (2009) Particle Motion and Energization in a Chaotic Magnetic Field, AIP Conf. Proc. 1183, pp. 201-211; doi: http://dx.doi.org/10.1063/1.3266777
Early SDO/HMI Magnetic Field Observations (Invited)
NASA Astrophysics Data System (ADS)
Hoeksema, J. T.; Hmi Magnetic Field Team
2010-12-01
Solar magnetic features no longer have any expectation of privacy and understanding the Sun’s magnetic field is the key to space weather prediction. The Helioseismic and Magnetic Imager on the Solar Dynamics Observatory measures polarized line profiles that measure both line-of-sight and vector magnetic fields in the photosphere. The longitudinal field is measured every 45 seconds with filtergrams from the same camera used to determine the velocity. The Stokes parameters are calculated from a longer sequence taken with a second 4096 x 4096 CCD. Inversion and disambiguation provide an estimate of the vector magnetic field components and uncertainties at least every 12 minutes in active regions. Full disk synoptic observations began in April and magnetograms are available shortly after they are observed from jsoc.stanford.edu along with a plethora of other useful magnetic field products. The low-noise line-of-sight measurements compare favorably with MDI and GONG. The vector field is being compared with other observations and appears quite stable, even in small strong-field concentrations outside of active regions. Scattered light is low and the sensitivity is very good. HMI observes the entire disk all of the time, so any feature of interest can be tracked during its entire disk passage without interruption. Knowing the detailed time development will lead to better understanding of energy storage and release in the atmosphere above and what leads to the spectacular events detected by AIA, EVE, and other instruments.
Study of mechanisms for magnetic field diffusion into an expanding laser plasma
Bessarab, A. V.; Bondarenko, G. A.; Dolgoleva, G. V.; Zhmailo, V. A.; Kunin, A. V.; Nikitin, I. N.; Novikova, E. A.; Statsenko, V. P.; Sungatullin, R. R. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation)
2007-10-15
The interaction of plasma clouds generated during laser irradiation of a spherical target in a background gas with a magnetic field was studied on the MKV-4 test bench of the Iskra-5 facility. The dynamics of the plasma cloud expansion in a 300- to 500-Oe magnetic field was investigated using magnetic and probe diagnostics. The results obtained are compared with calculations by different models of laser plasma diffusion in a magnetic field.
Quark condensate in a magnetic field
Shushpanov, I A
1997-01-01
We study the dependence of quark condensate $\\Sigma$ on an external magnetic field. For weak fields, it rises linearly with the field. Pion mass and residue are also shifted so that the Gell-Mann - Oakes - Renner relation is satisfied. In the strong field region, $\\Sigma(H) \\propto (eH)^{3/2}$.
NASA Astrophysics Data System (ADS)
Jiang, Changwei; Feng, Wei; Zhong, Hui; Zeng, Junyong; Zhu, Qiangming
2014-05-01
The thermomagnetic convection of air in a two-dimensional porous square enclosure under a magnetic quadrupole field is investigated numerically. The scalar magnetic potential method is used to calculate the magnetic field. A generalized model, which includes a Brinkman term, a Forcheimmer term and a nonlinear convective term, is used to solve the momentum equations. The flow and temperature fields for the air thermomagnetic convection are presented and the local and average Nusselt numbers on the walls are calculated and compared. The results show that the magnetic field intensity, Darcy number and Rayleigh number have a significant effect on the flow field and heat transfer in a porous square enclosure.
Polymer gel dosimetry of an electron beam in the presence of a magnetic field
NASA Astrophysics Data System (ADS)
Vandecasteele, J.; De Deene, Y.
2013-06-01
The effect of a strong external magnetic field on 4 MeV electron beam was measured with polymer gel dosimetry. The measured entrance dose distribution was compared with a calculated fluence map. The magnetic field was created by use of two permanent Neodymium (NdFeB) magnets that were positioned perpendicular to the electron beam. The magnetic field between the magnets was measured with Hall sensors. Based on the magnetic field measurement and the law of Biot-Savart, the magnetic field distribution was extrapolated. Electron trajectories were calculated using a relativistic Lorentz force operator. Although the simplified computational model that was applied, the shape and position of the calculated entrance fluence map are found to be in good agreement with the measured dose distribution in the first layer of the phantom. In combination with the development of low density polymer gel dosimeters, these preliminary results show the potential of 3D gel dosimetry in MRI-linac applications.
Stopping of charged particles in a Maxwellian plasma with a magnetic field
NASA Astrophysics Data System (ADS)
Bozhokin, S. V.; Choban, E. A.
1984-07-01
Expressions describing the energy loss of a charged particle in a Maxwellian plasma with a strong magnetic field are described. The dielectric constant found by means of quantum-mechanical correlation functions is used. The Coulomb logarithm is calculated for strong magnetic fields and is found to be a function of the magnetic field. The anisotropy of the energy loss of a slow test particle in terms of the direction of the particle's velocity with respect to the magnetic field is described. Calculations are carried out for the slow test particles. It is concluded that the rate of energy loss of a slow test particle as it moves across a strong magnetic field is some 1.2-1.5 times the energy loss rate for a particle moving along the magnetic field. It is also shown that the anisotropy grows with increasing magnetic field.
Magnetic fields in Neutron Stars
NASA Astrophysics Data System (ADS)
Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.
2015-05-01
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.
Warm inflation in presence of magnetic fields
Piccinelli, Gabriella [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico)] [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico); Sánchez, Ángel [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States)] [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ayala, Alejandro; Mizher, Ana Julia [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)] [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)
2013-07-23
We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.
D. M. Eagles
1975-01-01
The contributions of 4f, 5d and 6s electrons to the saturation magnetic moments and magnetic hyperfine fields in the heavy rare earth metals are calculated using the model described in the previous paper. It is found that 4f shell moments are reduced from their free ion values by amounts varying from 0.05µB in Gd to several tenths of a Bohr
Gyrokinetic Calculations of the Neoclassical Radial Electric Field in Stellarator Plasmas
Lewandowski, J.L.V.; Williams, J.; Boozer, A.H.; Lin, Z.
2001-04-09
A novel method to calculate the neoclassical radial electric field in stellarator plasmas is described. The method, which does not have the inconvenience of large statistical fluctuations (noise) of standard Monte Carlo technique, is based on the variation of the combined parallel and perpendicular pressures on a magnetic surface. Using a three-dimensional gyrokinetic delta f code, the calculation of the radial electric field in the National Compact Stellarator Experiment has been carried out. It is shown that a direct evaluation of radial electric field based on a direct calculation of the radial particle flux is not tractable due to the considerable noise.
Stabilization of plasma flow in a transverse magnetic field
S. G. Zaitsev; I. K. Favorskaya; Yu. A. Chistyakov
1977-01-01
Results are given of a theoretical and experimental investigation of the intensive interaction between a plasma flow and a transverse magnetic field. The calculation is made for problems formulated so as to approximate the conditions realized experimentally. The experiment is carried out in a magneto-hydrodynamic (MHD) channel with segmented electrodes (altogether, a total of 10 pairs of electrodes). The electrode
External fields created by uniformly magnetized ellipsoids and spheroids
M. Tejedor; H. Rubio; L. Elbaile; R. Iglesias
1995-01-01
In this work we have obtained the fields for external points created by uniformly magnetized ellipsoids and spheroids. The problem is solved directly in rectangular coordinates, obtaining the potential created by a uniformly charged ellipsoid everywhere by a variational method, in contrast to the usual method due to Dirichlet. Using the preceding result, we calculate the potential created by a
Modified Coulomb potential of QED in a strong magnetic field
Néda Sadooghi
2007-01-01
The static Coulomb potential of Quantum Electrodynamics is calculated in the presence of a strong magnetic field by computing perturbatively the vacuu m expectation value of the cor- responding Wilson loop in the lowest Landau level (LLL) approximation. In the LLL, two different regimes of dynamical mass, mdyn., can be distinguished. These two regimes are |q2k | ? m 2
Improving magnetic field gradient coils for NMR imaging
B. H. Suits; D. E. Wilken
1989-01-01
A general method of designing magnetic field gradient coils for NMR imaging is suggested and developed. The method utilises a combination of exact calculations for infinite continuous current sheets with a series expansion method to analyse finite discrete models of the continuous case. The method is applied to two orientations for coils on a cylindrical form resulting in improvements of
Spectral confinement and current for atoms in strong magnetic fields
S. Fournais
2006-08-28
We study confinement of the ground state of atoms in strong magnetic fields to different subspaces related to the lowest Landau band. The results obtained allow us to calculate the quantum current in the entire semiclassical region $B \\ll Z^3$.
Banana regime pressure anisotropy in a bumpy cylinder magnetic field
Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.; Hegna, C.C. [University of Wisconsin-Madison, Madison, Wisconsin 53706-1609 (United States)
2006-01-15
The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations ({epsilon}{identical_to}{delta}B/2B<<1). Solutions are obtained by integrating the drift-kinetic equation along field lines in steady state. A closure for the local value of the parallel viscous force B{center_dot}{nabla}{center_dot}{pi}{sub parallel} is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force by a factor of O(1/{epsilon}). A high-frequency limit ({omega}>>{nu}) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion in Cordey eigenfunctions.
Magnetic-field-controlled reconfigurable semiconductor logic.
Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark
2013-02-01
Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687
Compact low field magnetic resonance imaging magnet: Design and optimization
NASA Astrophysics Data System (ADS)
Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.
2000-03-01
Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.
Casimir Effect in External Magnetic Field
NASA Astrophysics Data System (ADS)
Ostrowski, M.
2006-06-01
In this paper we examine the Casimir effect for charged fields in presence of external magnetic field. We consider scalar field (connected with spinless particles) and the Dirac field (connected with 1/2-spin particles). In both cases we describe quantum field using the canonical formalism. We obtain vacuum energy by direct solving field equations and using the mode summation method. In order to compute the renormalized vacuum energy we use the Abel--Plana formula.
Origin of magnetic fields in galaxies
Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)
2010-03-15
Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts {approx}0.034 {mu}G fields over {approx}0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation-dissipation theorem are not completely random, microgauss fields over regions > or approx. 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in < or approx. 10{sup 9} years in high redshift galaxies.
Decay of Resonaces in Strong Magnetic Field
Peter Filip
2015-04-27
We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of $K^{\\pm *}\\!$, $K^{0*}$ vector mesons as well as $\\Lambda^*(1520)$ and $\\Xi^{0*}$ baryonic states is considered in static fields $10^{13}$-\\,$10^{15}$ T. In particular, $n=0$ Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from $\\rho^0(770)$ mesons may occur if strong decay channel $\\rho^0 \\rightarrow \\pi^+\\pi^-$ is significantly suppressed. CP - violating $\\pi^+\\pi^-$ decays of pseudoscalar $\\eta_c$ and $\\eta(547)$ mesons in the magnetic field are discussed, and superpositions of quarkonium states $\\eta_{c,b}$ and $\\chi_{c,b}(nP)$ with $\\Psi(nS), \\Upsilon(nS)$ mesons in the external field are considered.
Magnetic phase control by an electric field.
Lottermoser, Thomas; Lonkai, Thomas; Amann, Uwe; Hohlwein, Dietmar; Ihringer, Jörg; Fiebig, Manfred
2004-07-29
The quest for higher data density in information storage is motivating investigations into approaches for manipulating magnetization by means other than magnetic fields. This is evidenced by the recent boom in magnetoelectronics and 'spintronics', where phenomena such as carrier effects in magnetic semiconductors and high-correlation effects in colossal magnetoresistive compounds are studied for their device potential. The linear magnetoelectric effect-the induction of polarization by a magnetic field and of magnetization by an electric field-provides another route for linking magnetic and electric properties. It was recently discovered that composite materials and magnetic ferroelectrics exhibit magnetoelectric effects that exceed previously known effects by orders of magnitude, with the potential to trigger magnetic or electric phase transitions. Here we report a system whose magnetic phase can be controlled by an external electric field: ferromagnetic ordering in hexagonal HoMnO3 is reversibly switched on and off by the applied field via magnetoelectric interactions. We monitor this process using magneto-optical techniques and reveal its microscopic origin by neutron and X-ray diffraction. From our results, we identify basic requirements for other candidate materials to exhibit magnetoelectric phase control. PMID:15282600
Polarized radiation diagnostics of stellar magnetic fields
NASA Astrophysics Data System (ADS)
Mathys, Gautier
The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the geometric structure of these fields. How this can possibly be achieved is briefly discussed. An overview of the current status of polarimetric studies of magnetic fields in non-degenerate stars of other types is presented. The final section is devoted to magnetic fields of white dwarfs. Current knowledge of magnetic fields of isolated white dwarfs is briefly reviewed. Diagnostic techniques are discussed, with particular emphasis on the variety of physical processes to be considered for understanding of spectral line formation over the broad range of magnetic field strengths encountered in these stars.
Sources of Magnetic Field Magnetic Phenomena
Tobar, Michael
+ y2 6 Force between two bits of wire Field from bottom wire at top wire: F = Itop LBB = µ0Ibottom 2r Force on top wire: F/L = µ0IbottomItop 2r F = 1 4 0 q1q2 r2viz. 7 SI definition of the ampere: "One
Coronal magnetic fields from multiple type II bursts
NASA Astrophysics Data System (ADS)
Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.
Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘?’ varied from -3 to -2 for variation of density factor from 1 to 5. Key Words: Magnetic field, photosphere, corona, solar wind, bursts *Email:drvkdmani@gmail.com
Radiative processes in strong magnetic fields
A. K. Harding
1991-01-01
The behavior of electromagnetic processes in strong magnetic fields is currently of great interest in high-energy astrophysics. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved and electron\\/positron spin is important. The relaxation of transverse momentum conservation allows first order processes and their inverses: one-photon pair production
Origin of magnetic fields in galaxies
Rafael S. de Souza; Reuven Opher
2010-01-01
Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts â0.034 Î¼G fields over â0.3 kpc regions in galaxies. If the
Emittance measurement in a magnetic field
Boyd, J.K.
1991-04-15
Emittance can be measured by intercepting an electron beam on a range thick plate and then observing the expansion of beamlets transmitted through small holes. The hole size is selected to minimize space charge effects. In the presence of a magnetic field the beamlets have a spiral trajectory and the usual field free formulation must be modified. To interpret emittance in the presence of a magnetic field an envelope equation is derived in the appropriate rotating frame. 1 ref.
Turbulence and Magnetic Fields in Astrophysical Plasmas
Alexander A. Schekochihin; Steven C Cowley
2007-01-01
Magnetic fields permeate the Universe. They are found in planets, stars, accretion discs, galaxies, clusters of galaxies,\\u000a and the intergalactic medium. While there is often a component of the field that is spatially coherent at the scale of the\\u000a astrophysical object, the field lines are tangled chaotically and there are magnetic fluctuations at scales that range over\\u000a orders of magnitude.
Single-layer high field dipole magnets
Vadim V. Kashikhint; Alexander V. Zlobin
2001-01-01
Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good
Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway)] [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)] [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2014-01-21
We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.
Magnetic Helicity of the Parker Interplanetary Magnetic Field and Alfvén Simple Waves
NASA Astrophysics Data System (ADS)
Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D. A.
2011-09-01
We discuss the relative magnetic helicity of (a) the Parker [1] interplanetary spiral magnetic field, and (b) multi-dimensional simple Alfvén waves in the solar wind. We discuss the different forms of the magnetic vector potential A using either (a) the Coulomb gauge associated with solving a Poisson equation for A, in which the current acts as a source, (b) by using the homotopy form of A or (c) using a poloidal-toroidal decomposition of the magnetic field B. For the Parker field, we show that the relative helicity for a hemispherical volume north of the current sheet is negative, and the relative helicity for a similar volume south of the current sheet is positive. The relative helicity is also calculated in terms of the linkage of the poloidal and toroidal magnetic flux. These results extend the results of Bieber et al. [2] on the magnetic helicity of the Parker field, and are related to the helicity injection rate into the solar wind determined by Berger and Ruzmaikin [3]. Similar methods are used to determine the magnetic helicity for fully nonlinear Alfvén waves in the solar wind for which the magnetic field B has a constant magnitude, and the hodograph of B moves on a sphere. The solutions have |B| = const. hodographs, similar to nonlinear Alfvén waves observed in the solar wind by Bruno et al. [4], Roberts and Goldstein [5] and Gosling et al. [6]. Both shear and 2D torsional Alfvén waves are investigated.
Earth-directed ICME magnetic field configuration
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, Teresa; Vourlidas, Angelos; Adam, Szabo; Neel, Savani; Mays Leila, M.; Hidalgo Miguel, A.; Wenyuan, Yu
2015-04-01
It is known that the geoeffectiveness of interplanetary coronal mass ejections (ICMEs) depends on their magnetic field configuration. However, it remains unclear how the ICME interactions with the solar wind or other solar transient structures affect their magnetic configuration through, say, distortion of their cross-section, or deformation of their front. Obviously, precise space weather forecasting is depended on precise understanding of the evolution of the ICME internal magnetic topology. The goal of this study is to identify the ambient solar wind parameters that affect the flux-rope geometry and magnetic field configuration.
Tuning permanent magnets with adjustable field clamps
Schermer, R.I.
1987-01-01
The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius.
NASA Astrophysics Data System (ADS)
Lotfi Khene, Mohamed; Alloui, Lotfi; Mimoune, Souri Mohamed; Bouillault, Frédéric; Feliachi, Mouloud
2014-04-01
External applied field effect in magnetization process by pulsed field (PFM) method of rectangular bulk superconductor is analysed by solving the A-V magnetic equation coupled to the thermal one in order to show the influence of the amplitude of the external field on the trapped magnetic field of bulk superconductor. A numerical model based on the control volume method (CVM) has been developed, which uses a power-law model with temperature dependency and magnetic field dependence on critical current density. For low cooling temperature Tco = 20 K, a good distribution of the trapped magnetic field of the bulk superconductor is obtained when we applied high external field.
Mapping of the lithospheric magnetic field using CHAMP satellite data
NASA Astrophysics Data System (ADS)
Saich, B.; Hamoudi, M.; Berguig, M. C.
2013-09-01
In this work, we will present a mapping of the magnetic field generated by the heterogeneities of magnetization of the lithospheric rocks. This field is so called the lithospheric field and it is the result of two contributions: the induced contribution and the remanent magnetization contribution. It therefore brings a crucial constraint on the magnetic properties of the crustal rocks. To map this field, we will use the scalar and vector data collected during CHAMP mission from July 15th, 2000 to September 19th, 2010. The sampling frequencies of 1 Hz at the average altitude of about 350 km of measurements allow us to obtain a high resolution mapping. The method used to reduce the effect of the other contributions of the Earth magnetic field is based on the separation of the internal field using models of 16th degrees. These models were calculated for each of three months in order to move secular variations. The use of these algorithms has permitted to map the strong lithospheric magnetic anomalies of large wavelength using only raw satellite observations.
Particle Acceleration and Magnetic Field Generation in Shear-Flows
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Du?an, I.; Zhang, B.; Medvedev, M.; Meli, A.; Choi, E. J.; Min, K. W.; Niemiec, J.; Nordlund, Å.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Marscher, A.; Gómez, J. L.
2014-03-01
We have investigated the generation of magnetic fields associated with velocity shear between an unmagnetized relativistic (core) jet and an unmagnetized sheath plasma by the kinetic Kelvin-Helmholtz instability for different mass ratios (mi/me = 1, 20, and 1836) and different jet Lorentz factors. We found that electron-positron cases have alternating magnetic fields instead of the DC magnetic fields found in electron-ion cases. We have also investigated particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma for electron-positron and electron-ion plasmas. Strong magnetic fields generated in the trailing shock lead to transverse deflection and acceleration of the electrons. We have self-consistently calculated the radiation from the electrons accelerated in the turbulent magnetic fields for different jet Lorentz factors. We find that the synthetic spectra depend on the bulk Lorentz factor of the jet, the jet temperature, and the strength of the magnetic fields generated in the shock.
Comparison of computer predictions and magnetic field measurements for an iron spectrometer magnet
Danby, G.T.; Jackson, J.W.; Meng, W.; Spataro, C.
1993-06-01
Three dimensional computer calculations using the Program TOSCA have been made for a complex-shaped iron magnet. Precision field measurements were made on this magnet in preparation for its installation in a new Low Energy Separated Beam for the post-Booster high proton intensity AGS at Brookhaven National Laboratory. Point-by-point direct comparisons for field values will be described encompassing the entire useful acceptance. The predictability of high order multipoles will be described, including the region of the magnet ends. Computer predicted focal properties will be compared with results of experimental data analysis. The method of measurement and analysis, as well as comments on the computer calculations will be described. Conclusions will be drawn on the accuracy of calculations with respect to higher order moments and the impact on future beam optical design and execution of three dimensional computer codes.
Comparison of computer predictions and magnetic field measurements for an iron spectrometer magnet
Danby, G.T.; Jackson, J.W.; Meng, W.; Spataro, C.
1993-01-01
Three dimensional computer calculations using the Program TOSCA have been made for a complex-shaped iron magnet. Precision field measurements were made on this magnet in preparation for its installation in a new Low Energy Separated Beam for the post-Booster high proton intensity AGS at Brookhaven National Laboratory. Point-by-point direct comparisons for field values will be described encompassing the entire useful acceptance. The predictability of high order multipoles will be described, including the region of the magnet ends. Computer predicted focal properties will be compared with results of experimental data analysis. The method of measurement and analysis, as well as comments on the computer calculations will be described. Conclusions will be drawn on the accuracy of calculations with respect to higher order moments and the impact on future beam optical design and execution of three dimensional computer codes.
Effect of magnetic field on ball milled hard magnetic particles
B. Altuncevahir; N. Poudyal; V. M. Chakka; K. H. Chen; T. D. Black; T. D. Liu
2004-01-01
In this investigation, the powder particles of NdFeB and SmCo based alloys prepared by the ball milling in a uniform magnetic field are compared to those milled without an applied magnetic field. The ball milling was carried out for a total of 100 hours, and the powders were sampled every 25 hours. The particle size after 100 hours of milling
Polarization Diagnostics of Solar Magnetic Fields
NASA Astrophysics Data System (ADS)
Manso Sainz, R.
2011-12-01
The solar atmosphere is a highly ionized medium which is the playground of magnetic fields. In the deepest layer (the photosphere), magnetic fields disturb the 'normal' fluid motions forcing the plasma to behave incounterintuitive ways; in the outer layers (the chromosphere and the corona) magnetic fields rule, making the plasma levitate or even ejecting it out of the gravitational well of the Sun, with important consequences for us here on Earth. However, magnetic fields are elusive. The only quantitative evidence of their presence is through the polarization state of the light emitted by the plasma they are playing with. Remote sensing of magnetic fields from 150 million km away through spectropolarimetry is a challenge on applied physics as well as an art. It requires the application of quantum mechanics, radiative transfer theory, and advanced optics to the interpretation and analysis of spectropolarimetric observations. I will review standard diagnostic techniques and recent developments on this field. I will discuss their limitations and how to overcome them through the complementary aspects of different diagnostic techniques, spectral regions, and statistical analysis. Finally, I will review what are the main areas for progress in this regard: most notably, the 'measurement' of magnetic fields in the extremely dilute and weakly magnetized outer layers of the sun.
Superconducting tubular wires in transverse magnetic fields
NASA Astrophysics Data System (ADS)
Mawatari, Yasunori
2011-04-01
The electromagnetic response of a round tubular wire of superconducting film to a transverse magnetic field is investigated theoretically. For a superconducting tubular wire (STW) in which the thickness d of the superconducting layer is much smaller than the radius R of the wire, analytical expressions for the magnetic-field and current distributions are obtained on the basis of the critical state model with constant critical current density jc. When an applied transverse magnetic field Ha increases monotonically from zero, the penetration of the magnetic field into an STW occurs in two stages: for 0
The sun and interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Smith, Edward J.
1991-01-01
The interplanetary magnetic field (IMF) serves as a link between the sun, the response of the earth to solar activity and variations in galactic cosmic radiation. The IMF originates as a solar-coronal magnetic field that is transported into space by the solar wind. The close connection between solar magnetic fields and the origin and structure of the solar wind is described. The solar wind forms the heliosphere, a cavity containing the magnetized solar plasma from which the interstellar plasma and field are excluded. The entry of galactic cosmic rays into the heliosphere and their strong interaction with the IMF are discussed, this topic being of primary importance to the production and temporal variations of radiogenic elements. The profound influence of the IMF on geomagnetic activity and the aurora is discussed within the context of merging or reconnection with the planetary field. The physical connection is thus established between solar magnetic fields, magnetic storms and aurora. The state of the solar wind and IMF during the Maunder minimum is considered and an explanation for the (relative) absence of sunspots and aurora is proposed. The mechanism is an interruption of the oscillatory solar dynamo, a consequent reduction in the heating of the corona, a cessation of the supersonic solar wind and a weakening or absence of southward-directed magnetic fields in the vicinity of the earth.
LABORATORY V MAGNETIC FIELDS AND FORCES
Minnesota, University of
with a constant acceleration. · Calculate the motion of a particle with an acceleration of constant magnitude, the atomic structure of materials, and the quark structure of elementary particles. In this set of laboratory-carrying wires, and coils of wire. · Calculate the magnetic force on a charged particle moving in a uniform
Magnetic Field Measurement with Ground State Alignment
NASA Astrophysics Data System (ADS)
Yan, Huirong; Lazarian, A.
Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ? B ? 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.
Screening magnetic fields by superconductors: A simple model
Caputo, J.-G., E-mail: caputo@insa-rouen.fr [Laboratoire de Mathématiques, INSA de Rouen, Avenue de l'Université, 76801 Saint-Etienne du Rouvray (France); Gozzelino, L.; Laviano, F.; Ghigo, G.; Gerbaldo, R. [Department of Applied Science and Technology, Politecnico di Torino, 10129, Torino (Italy); Noudem, J.; Thimont, Y.; Bernstein, P. [CRISMAT/LUSAC, Physics Department, Université de Caen (France)
2013-12-21
We introduce a simple approach to evaluate the magnetic field distribution around superconducting samples, based on the London equations; the elementary variable is the vector potential. This procedure has no adjustable parameters, only the sample geometry and the London length, ?, determine the solution. This approach was validated by comparing the induction field calculated to the one measured above MgB{sub 2} disks of different diameters, at 20?K and for applied fields lower than 0.4?T. The model can be applied if the flux line penetration inside the sample can be neglected when calculating the induction field distribution outside the superconductor. We conclude by showing on a cup-shape geometry how one can design a magnetic shield satisfying a specific constraint.
The magnetic field of Mercury, part 1
NASA Technical Reports Server (NTRS)
Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.
1974-01-01
An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.
Force-free magnetic fields - The magneto-frictional method
NASA Technical Reports Server (NTRS)
Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.
1986-01-01
The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.
Vector magnetic field camera for permanent magnets inspection
NASA Astrophysics Data System (ADS)
Chady, T.; Psuj, G.; Todaka, T.; Enokizono, M.
2013-01-01
Permanent magnets are widely used in many applications. A fast and reliable system for online evaluation of permanent magnets is required for their quality assurance. Therefore, a new measurement system has been developed to measure the spatial distribution of the vector magnetic field. The system consists of a complex Hall transducer, an analog multiplexer, a mechanical XYZ scanner and a control computer. The matrix of Hall sensors is designed in this way that all 3 components can be measured at once in multiple points. Such kind of transducer enables to reduce the time needed for inspection. The similar matrix transducer was also utilized to evaluate state of magnetized ferromagnetic materials.
The earth's magnetic field: Its history, origin and planetary perspective
R. T. Merrill; M. W. McElhinny
1983-01-01
The history of geomagnetism and palaeomagnetism is examined, and an analysis and description of the present geomagnetic field is presented. The magnetic compass is discussed along with declination, inclination, secular variation, magnetic charts and the search for the poles, fossil magnetism and the magnetic field in the past, transient magnetic variations regarding the external magnetic field, the origin of the
Hyperon Stars in Strong Magnetic Fields
R. O. Gomes; V. Dexheimer; C. A. Z. Vasconcellos
2013-07-29
We investigate the effects of strong magnetic fields on the properties of hyperon stars. The matter is described by a hadronic model with parametric coupling. The matter is considered to be at zero temperature, charge neutral, beta-equilibrated, containing the baryonic octet, electrons and muons. The charged particles have their orbital motions Landau-quantized in the presence of strong magnetic fields (SMF). Two parametrisations of a chemical potential dependent static magnetic field are considered, reaching $1-2 \\times 10^{18}\\,G$ in the center of the star. Finally, the Tolman-Oppenheimer-Volkov (TOV) equations are solved to obtain the mass-radius relation and population of the stars.
Ultracold atoms in strong synthetic magnetic fields
NASA Astrophysics Data System (ADS)
Ketterle, Wolfgang
2015-03-01
The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.
TRANSITION REGION MAGNETIC FIELD AND POLAR MAGNETIC DISTURBANCES
D. H. Fairfield; L. J. Jr. Cahill
1966-01-01
The Explorer 12 measurements of the magnetic field outside the magnetosphere are compared with ground magnetograms from arctic observatories. Results indicate that an exterior field with a southerly component tends to be associated with ground disturbance, whereas a northward field is associated with quiet conditions. Examples are presented show- ing how a north-to-south field-direction change accompanies an increase in ground
Magnetic field evolution in white dwarfs: The hall effect and complexity of the field
NASA Technical Reports Server (NTRS)
Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.
1995-01-01
We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.
Magnetic field evolution in white dwarfs: The hall effect and complexity of the field
NASA Astrophysics Data System (ADS)
Muslimov, A. G.; van Horn, H. M.; Wood, M. A.
1995-04-01
We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 109 G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 109 to 1010 year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.
Mean magnetic field generation in sheared rotators
Eric G. Blackman
1999-08-31
A generalized mean magnetic field induction equation for differential rotators is derived, including a compressibility, and the anisotropy induced on the turbulent quantities from the mean magnetic field itself and a mean velocity shear. Derivations of the mean field equations often do not emphasize that there must be anisotropy and inhomogeneity in the turbulence for mean field growth. The anisotropy from shear is the source of a term involving the product of the mean velocity gradient and the cross-helicity correlation of the isotropic parts of the fluctuating velocity and magnetic field, $\\lb{\\bfv}\\cdot{\\bfb}\\rb^{(0)}$. The full mean field equations are derived to linear order in mean fields, but it is also shown that the cross-helicity term survives to all orders in the velocity shear. This cross-helicity term can obviate the need for a pre-existing seed mean magnetic field for mean field growth: though a fluctuating seed field is necessary for a non-vanishing cross-helicity, the term can produce linear (in time) mean field growth of the toroidal field from zero mean field. After one vertical diffusion time, the cross-helicity term becomes sub-dominant and dynamo exponential amplification/sustenance of the mean field can subsequently ensue. The cross-helicity term should produce odd symmetry in the mean magnetic field, in contrast to the usually favored even modes of the dynamo amplification in sheared discs. This may be important for the observed mean field geometries of spiral galaxies. The strength of the mean seed field provided by the cross- helicity depends linearly on the magnitude of the cross-helicity.
Large-Scale Magnetic Field Structures and Coronal Holes on the Sun
E. I. Mogilevsky; V. N. Obridko; N. S. Shilova
1997-01-01
This paper is aimed at establishing the relationship between the large-scale magnetic fields (LSMF), coronal holes (CH), and active regions (AR) in the Sun. The LSMF structure was analyzed by calculating the vector photospheric magnetic field under a potential approximation. Synoptic maps were drawn to study the distribution of the B? field component and to isolate regions where the open
Dynamical quark mass generation in a strong external magnetic field
NASA Astrophysics Data System (ADS)
Mueller, Niklas; Bonnet, Jacqueline A.; Fischer, Christian S.
2014-05-01
We investigate the effect of a strong magnetic field on dynamical chiral symmetry breaking in quenched and unquenched QCD. To this end we apply the Ritus formalism to the coupled set of (truncated) Dyson-Schwinger equations for the quark and gluon propagator under the presence of an external constant Abelian magnetic field. We work with an approximation that is trustworthy for large fields eH >?QCD2 but is not restricted to the lowest Landau level. We confirm the linear rise of the quark condensate with a large external field previously found in other studies and observe the transition to the asymptotic power law at extremely large fields. We furthermore quantify the validity of the lowest Landau level approximation and find substantial quantitative differences to the full calculation even at very large fields. We discuss unquenching effects in the strong field propagators, condensate and the magnetic polarization of the vacuum. We find a significant weakening of magnetic catalysis caused by the backreaction of quarks on the Yang-Mills sector. Our results support explanations of the inverse magnetic catalysis found in recent lattice studies due to unquenching effects.
Discovery of a magnetic field on Vega
Lignières, F; Böhm, T; Aurière, M
2009-01-01
We report the detection of a magnetic field on Vega through spectropolarimetric observations. We acquired 257 Stokes V high signal-to-noise and high-resolution echelle spectra during four consecutive nights with NARVAL spectropolarimeter at the 2-m Telescope Bernard Lyot of Observatoire du Pic du Midi (France). A circularly polarized signal in line profiles is detected after gathering the contribution of about 1200 spectral lines for each spectrum and summing up the signal over the 257 spectra. Interpreting this polarization as a Zeeman signature leads to a value of $-0.6 \\pm 0.3$ G for the disk-averaged line-of-sight component of the surface magnetic field. This is the first time a magnetic field is unambiguously detected in an A-type star which is not an Ap chemically peculiar star. Moreover, the Vega longitudinal magnetic field is smaller by about two orders of magnitude than the longitudinal magnetic field (taken at its maximum phase) of the most weakly magnetic Ap stars. Magnetic fields similar to the Ve...
Heat Transport Along an Inhomogeneous Magnetic Field. I. Periodic Magnetic Mirrors
Chandran, Benjamin D. G.; Cowley, Steven C.; Ivanushkina, Mariya; Sydora, Richard
1999-11-10
Thermal conduction plays a critical role in the evolution of galaxy-cluster gas, and an accurate determination of the thermal conductivity is important for determinations of mass accretion rates within clusters. Since clusters are believed to possess magnetic fields with a dominant length scale lB that is much smaller than a typical cluster size, the calculation of the mean conductivity over cluster scales is extremely complicated. In this paper, we treat a small portion of the general problem: the effects of magnetic mirrors on the diffusion of charged particles along magnetic field lines. For simplicity, we take the field strength to be periodic along field lines. We derive an analytic expression for the suppression factor as a function of the fractional variation in field strength (for arbitrarily large fractional variations), and verify our analytic findings with the use of Monte Carlo particle simulations. (c) 1999 The American Astronomical Society.
The topological description of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Berger, Mitchell A.
1986-01-01
Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topology, how the topology of a finite collection of flux tubes may be classified is discussed.
A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields
NASA Astrophysics Data System (ADS)
Manz, B.; Benecke, M.; Volke, F.
2008-05-01
A new portable, pocket-size NMR probe based on a novel permanent magnet arrangement is presented. It is based on a Halbach-type magnet design which mimics the field of a spherical dipole by using cylindrical bar and ring magnets. The magnet system is made up of only three individual magnets, and most field calculations and optimisations can be performed analytically. A prototype system has been built using a set of small, off the shelf commercially available permanent magnets. Proton linewidths of 50 ppm FWHM could be achieved at a field strength of 1 T. Calculations show that with custom-sized permanent magnets, linewidths of less than 1 ppm can be achieved over sample volumes of up to 1 mm 3, which would in theory enable chemical shift resolved proton spectroscopy on mass-limited samples. But even with the achieved linewidth of 50 ppm, this can be a useful portable sensor for small amounts of liquid samples with restricted molecular mobility, like gels, polymers or high viscosity liquids.
NASA Astrophysics Data System (ADS)
Yang, Q. X.; Li, S. H.; Smith, M. B.
The magnetic field homogeneity of a radiofrequency coil is very important in both magnetic resonance imaging and spectroscopy. In this report, a method is proposed for quantitatively evaluating the RF magnetic field homogeneity from its histogram, which is obtained by either experimental measurement or theoretical calculation. The experimental histogram and theoretical histogram can be compared directly to verify the theoretical findings. The RF field homogeneities of the bird-cage coil, slotted-tube resonator, cosine wire coil, and a new radial plate coil design were evaluated using this method. The results showed that the experimental histograms and the corresponding theoretical histograms are consistent. This method provides an easy and sensitive way of evaluating the magnetic field homogeneity and facilitates the design and evaluation of new RF coil configurations.