These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Advanced magnetic calculations for high magnetic field compact ion source  

NASA Astrophysics Data System (ADS)

The design of the advanced electronic cyclotronic resonance ion source (ECRIS) requires relatively high axial and radial magnetic inductions to allow the ECR frequency increase and to take advantage of the subsequent density increase (scaling laws). The last improvements of the commercial rare-earth magnet characteristics open new opportunities for ECRIS and enable the design of very high hexapolar magnetic fields for next generation compact ECRIS. Moreover, the high temperature superconducting (HTS) wires allow designing reliable and compact axial field coils (30 K cooled) at a very effective cost. It is thus very relevant to study a compact hybrid ECRIS using high remanence magnet and HTS technologies. In such a design, the volume of the plasma chamber is a free parameter that can be adjusted to the user requirement. It can be dedicated to very high ionic current production or high charge state production, pulsed, or cw operations. This paper presents the three-dimensional overall simulation of a 3 T axial magnetic field compact ECRIS with a high radial field sextupole composed with several magnet types and reaching ˜1.9 T in front of the radially magnetized magnets. This design study will lead to the building of the 28-40 GHz A-PHOENIX source at the laboratory which will deliver its first beam by the end of 2004.

Thuillier, T.; Curdy, J.-C.; Lamy, T.; Sole, P.; Sortais, P.; Vieux-Rochaz, J.-L.; Voulot, D.

2004-05-01

2

Calculation of pulsed kicker magnetic field attenuation inside beam chambers.  

SciTech Connect

The ceramic beam chambers in the sections of the kicker magnets for the beam injection and extraction in the Advanced Photon Source (APS) are made of alumina. The inner surface of the ceramic chamber is coated with a conductive paste. The choice of coating thickness is intended to reduce the shielding of the pulsed kicker magnetic field while containing the electromagnetic fields due to the beam bunches inside the chamber, and minimize the Ohmic heating due to the fields on the chamber [1]. The thin coating generally does not give a uniform surface resistivity for typical dimensions of the ceramic chambers in use. The chamber cross section is a circular or an elliptic shape. The chamber or its wall thickness refers to the conductive coating in the following sections. This note calculates the penetration of the kicker magnetic field inside the beam chamber. The kicker field is assumed to be a half-sine pulse and be spatially uniform over the chamber dimensions. The purpose of the calculation is to be able to deduce the average surface resistivity of a chamber by fitting the measured magnetic field data with the calculation inside the chamber. In the following section, assuming that the coating thickness d is much smaller than the classical skin depth {delta}, the penetrated field inside the chamber is calculated by subtracting the shielding field due to the eddy currents. In Section 3, for the kicker fields parallel and perpendicular to the axis of a circular beam chamber, the fields inside the chamber with an arbitrary wall thickness are calculated. For both directions of the kicker fields, the approximations made for d << {delta} achieve the same results as given in Section 2. For elliptic chambers, the calculations for the vector potentials are not completed because of the tedious approximation procedure with Mathieu functions. Instead, the results in Section 2 and the time constants calculated for the elliptic geometries in Table 1 could be used for the purpose of this note.

Kim, S. H.

2001-04-06

3

Fast dose calculation in magnetic fields with GPUMCD  

NASA Astrophysics Data System (ADS)

A new hybrid imaging-treatment modality, the MRI-Linac, involves the irradiation of the patient in the presence of a strong magnetic field. This field acts on the charged particles, responsible for depositing dose, through the Lorentz force. These conditions require a dose calculation engine capable of taking into consideration the effect of the magnetic field on the dose distribution during the planning stage. Also in the case of a change in anatomy at the time of treatment, a fast online replanning tool is desirable. It is improbable that analytical solutions such as pencil beam calculations can be efficiently adapted for dose calculations within a magnetic field. Monte Carlo simulations have therefore been used for the computations but the calculation speed is generally too slow to allow online replanning. In this work, GPUMCD, a fast graphics processing unit (GPU)-based Monte Carlo dose calculation platform, was benchmarked with a new feature that allows dose calculations within a magnetic field. As a proof of concept, this new feature is validated against experimental measurements. GPUMCD was found to accurately reproduce experimental dose distributions according to a 2%-2 mm gamma analysis in two cases with large magnetic field-induced dose effects: a depth-dose phantom with an air cavity and a lateral-dose phantom surrounded by air. Furthermore, execution times of less than 15 s were achieved for one beam in a prostate case phantom for a 2% statistical uncertainty while less than 20 s were required for a seven-beam plan. These results indicate that GPUMCD is an interesting candidate, being fast and accurate, for dose calculations for the hybrid MRI-Linac modality.

Hissoiny, S.; Raaijmakers, A. J. E.; Ozell, B.; Després, P.; Raaymakers, B. W.

2011-08-01

4

Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations  

SciTech Connect

During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system.

Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

1983-11-21

5

Magnetic field calculations for iron oxide nanoparticles for MRI  

NASA Astrophysics Data System (ADS)

The susceptibility effects of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with triethylenglycol (TREG) and Polyethylen Glycol (PEG) has been studied, those nanoparticles have the necessary properties to be used in the clinic as contrast media in imaging by MRI[1-3]. We are considering the behavior of the magnetic field as plane wave to explain the electrical and magnetic field produced by SPIONs. Images were acquired on a 1.5T imager Philips, using mFFE Sequence. Three glass capillary tubes with a) TREG (10nm) concentration of 300 ?g/ml, and PEGCOOH 6000(10nm) with 300 ?g/ml, and 2% agarosa. Magnetic field simulations were calculated in Matlab. The plane wave that comes in contact with a sphere of radius a, an propagation constant k1, and it is in an homogeneous space k2. We consider that the electric field is linearly polarized on x-direction, with a propagation on z-positive-axis. The secondary induced field can be explained from the interior of the sphere and valid exterior points. The referred waves are transmitted and reflected, this is valid only when the wavelength is smaller than the radius of the sphere. The obtained vibrational mode is an answer of the electrical oscillation and this is projection of the disturbed magnetic field. TREG-SPIONs produce more serious susceptibility artefacts compared to PEG-SPIONs. This study is promissory due to the concordance of the results of the simulations and the inhomogeneities showed in the MR images.

Hernandez, Ricardo; Mendez Rojas, Miguel; Dies Suarez, Pilar; Hidalgo Tobón, Silvia

2014-11-01

6

Guide and Mirror Magnetic Field Diffusion Calculations for the FRC Compression Heating Experiment (FRCHX) at AFRL  

Microsoft Academic Search

Calculations of the guide and mirror applied magnetic field diffusion were conducted using a commercially available generalized finite element solver. As part of the integrated FRC compression heating experiment (FRCHX), an applied magnetic field captures the translating FRC in the liner region long enough to enable compression. Solenoidal coils inject the necessary magnetic field prior to liner implosion. Since the

Matthew Domonkos; David Amdahl; James Degnan; Michael Frese; Donald Gale; Chris Grabowski; Robin Gribble; Thomas Intrator; Gerald Kiuttu

2007-01-01

7

Calculation of magnetic fields from electric power transmission lines  

Microsoft Academic Search

The conventional method is applied for computation of magnetic fields around multi-phase AC lines where each subconductor is represented by a filament current extending along its axis. The method is checked against a more accurate efficient method based on the simulation technique. In this technique, each subconductor current is simulated by a finite number of filamentary line currents distributed within

M. Abdel-Salam; H. Abdallah; M. Th. El-Mohandes; H. El-Kishky

1999-01-01

8

Calculation of the magnetic field in the active zone of a hysteresis clutch  

NASA Technical Reports Server (NTRS)

The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.

Ermilov, M. A.; Glukhov, O. M.

1977-01-01

9

Calculation of electric fields induced near metal implants by magnetic resonance imaging switched-gradient magnetic fields  

Microsoft Academic Search

Electric (E) fields induced near metal implants by MRI switched-gradient magnetic fields are calculated by a new equivalent-circuit numerical technique. Induced E-field results are found for a metallic spinal-fusion implant consisting of two thin wires connected to the metallic case of a current generator as well as for its subsections: a bare U-shaped wire, an insulated U-shaped wire, a cut

D. N. Buechler; C. H. Durney; D. A. Christensen

1997-01-01

10

A calculable and correlation-based magnetic field fluctuation thermometer  

NASA Astrophysics Data System (ADS)

We have developed a new Magnetic Field Fluctuation Thermometer (MFFT) specifically designed for operation in primary mode, which requires the determination of the relation between thermal flux noise density and thermodynamic temperature. The noise thermometer combines a correlation-based SQUID readout and an integrated conductivity measurement on the metallic temperature sensor with an in situ flux calibration. The operation of the MFFT is modelled theoretically. First temperature measurements in secondary mode between 9 mK and 4.2 K showed excellent agreement with a copy of the PLTS-2000 within 0.5%.

Kirste, A.; Regin, M.; Engert, J.; Drung, D.; Schurig, T.

2014-12-01

11

Magnetic Declination Calculator  

NSDL National Science Digital Library

This tool calculates magnetic declination for a variety of locations across Canada and elsewhere. Users select a city (Canada only) from a drop-down menu or enter latitude and longitude values (works for any location), and the tool calculates the proper magnetic declination (the angular difference between observed magnetic North on a compass and geographic or 'true' North). There are also links to information on how to use magnetic declination with a compass, and how to use the calculator to determine values of all seven magnetic components. For locations in Canada, the Canadian Geomagnetic Reference Field (CGRF) is used; for other locations, the International Geomagnetic Reference Field (IGRF) is used.

12

METHOD FOR CALCULATING ELECTRIC AND MAGNETIC FIELDS IN TEM CELLS AT ELF (JOURNAL VERSION)  

EPA Science Inventory

A method is presented whereby the electric and magnetic field distributions within rectangular strip transmission lines (TEM cells) can be calculated. Quasi-static approximations are employed, thereby restricting the validity of the results to operational frequencies well below t...

13

Analytical field calculation of helical magnets with an axially symmetric iron yoke  

NASA Astrophysics Data System (ADS)

The magnetic field due to the current flowing in a helical conductor placed inside a cylindrical hole in iron is investigated. In order to calculate the contribution of an axially symmetric iron yoke on the inner field of helical magnets, a three-dimensional potential problem is solved. The obtained analytical expressions are applied for the helical dipole magnet for the Relativistic Heavy Ion Collider (RHIC), with good agreement.

Tominaka, T.; Okamura, M.; Katayama, T.

2002-05-01

14

Magnetic field calculation for a 10 MeV positron emission tomography cyclotron  

SciTech Connect

The magnetic field calculation and correction for a 10 MeV positron emission tomography cyclotron is presented. 3D TOSCA analysis results are compared with the measured data, and the calculation error is used to calibrate the B-H curve to obtain a very precise finite element method estimator, which is used to predict the correction of the magnet pole for achieving the isochronous field. The isochronous field error is approximated with the effects of a set of standard patches. On the assumption that the effect of each small patch is proportional to its surface, the correction of the magnet pole is found by solving a system of equations using the least square scheme. The magnet shimming is performed and the measured magnetic field is found in good agreement with the prediction, with an error less than 2 G.

Chen Dezhi; Liu Kaifeng; Yang Jun; Li Dong; Qin Bin; Xiong Yongqian [State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen Zihao [Central Southern Electrical Power Design Institute, Wuhan 430071 (China)

2013-05-15

15

Comparison of measured and calculated magnetic fields along the Ulysses orbit  

NASA Astrophysics Data System (ADS)

The existence of close relations between the temperature, density and velocity of the solar plasma and the heliospheric magnetic field (HMF) was shown along the space probe Ulysses orbit. A simple mathematical formula describing a relation between the HMF and the solar plasma temperature and density was introduced and the expected values of the HMF were calculated using daily and hourly Ulysses data. Correlation coefficients and regression equation between the values of the measured and calculated magnetic fields have been defined. An origin of the peaks in the magnetic field which are observed in the heliospheric sector zone near the corotating interaction regions is discussed as well as the specific role of plasma density and temperature in the formation of magnetic peaks.

Svirzhevsky, N. S.; Bazilevskaya, G. A.; Svirzhevskaya, A. K.; Stozhkov, Yu. I.

2015-02-01

16

Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance.  

PubMed

Static magnetic field perturbations generated by variations of magnetic susceptibility within samples reduce the quality and integrity of magnetic resonance measurements. These perturbations are difficult to predict in vivo where wide variations of internal magnetic susceptibility distributions are common. Recent developments have provided rapid computational means of estimating static field inhomogeneity within the small susceptibility limits of materials typically studied using magnetic resonance. Such a predictive mechanism could be a valuable tool for sequence simulation, field shimming and post-acquisition image correction. Here, we explore this calculation protocol and demonstrate its predictive power in estimating in vivo inhomogeneity within the human brain. Furthermore, we quantitatively explore the predictive limits of the computation. For in vivo comparison, a method of magnetic susceptibility registration using MRI and CT data is presented and utilized to carry out subject-specific inhomogeneity estimation. Using this algorithm, direct comparisons in human brain and phantoms are made between field map acquisitions and calculated inhomogeneity. Distortion correction in echo-planar images due to static field inhomogeneity is also demonstrated using the computed field maps. PMID:17148824

Koch, Kevin M; Papademetris, Xenophon; Rothman, Douglas L; de Graaf, Robin A

2006-12-21

17

Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance  

NASA Astrophysics Data System (ADS)

Static magnetic field perturbations generated by variations of magnetic susceptibility within samples reduce the quality and integrity of magnetic resonance measurements. These perturbations are difficult to predict in vivo where wide variations of internal magnetic susceptibility distributions are common. Recent developments have provided rapid computational means of estimating static field inhomogeneity within the small susceptibility limits of materials typically studied using magnetic resonance. Such a predictive mechanism could be a valuable tool for sequence simulation, field shimming and post-acquisition image correction. Here, we explore this calculation protocol and demonstrate its predictive power in estimating in vivo inhomogeneity within the human brain. Furthermore, we quantitatively explore the predictive limits of the computation. For in vivo comparison, a method of magnetic susceptibility registration using MRI and CT data is presented and utilized to carry out subject-specific inhomogeneity estimation. Using this algorithm, direct comparisons in human brain and phantoms are made between field map acquisitions and calculated inhomogeneity. Distortion correction in echo-planar images due to static field inhomogeneity is also demonstrated using the computed field maps.

Koch, Kevin M.; Papademetris, Xenophon; Rothman, Douglas L.; de Graaf, Robin A.

2006-12-01

18

A Calculation of Required Magnetic Field Strength in a Magnetohydrodynamic Supersonic Generator and Accelerator  

NASA Astrophysics Data System (ADS)

A one-dimensional supersonic CFD code was utilized to solve for the required magnetic field strength, as a function of conductivity, for fixed length and constant static enthalpy magnetohydrodynamic generator and accelerator. The inlet velocity and pressure to the generator were varied, while requiring the exit Mach number of the generator to remain at 2.0. The flow after the generator proceeded through a simple supersonic combustion process, and the bypassed energy was then used in the accelerator to increase the flow velocity. Results show that varying the conductivity between 7 and 70 mho/m and inlet velocity between 5000 and 14000 ft/s, require magnetic fields in the generator between 1 and 12 Tesla with greater magnetic field strength required at lower conductivities. It was also calculated that for the same energy and conductivity used in the accelerator, a lower magnetic field was needed.

Lang, Amy W.; Czysz, Paul

2001-11-01

19

Calculations of lightning return stroke electric and magnetic fields above ground  

NASA Technical Reports Server (NTRS)

A lightning return stroke model with which the two station electric and magnetic fields measured at ground level can be reproduced is used to compute fields at altitudes up to 10 km and at ranges from 20 m to 10 km. These calculations provide the first detailed estimates of the return strokes fields that are encountered by aircraft in flight. With the advent of modern aircraft utilizing low voltage digital electronics and reduced electromagnetic shielding by way of structures containing advanced composite materials, these calculations are of considerable practical interest. Further, since airborne electric and magnetic field measurements are presently being attempted, a comparison of the calculations presented with appropriate experimental data, when they are available, will constitute a test of the return stroke model.

Uman, M. A.; Lin, Y. T.; Standler, R. B.; Master, M. J.; Fisher, R. J.

1980-01-01

20

Full 3D MHD calculations of accretion flow structure in magnetic cataclysmic variables with strong, complex magnetic fields  

NASA Astrophysics Data System (ADS)

We have performed three-dimensional magnetohydrodynamical calculations of stream accretion in cataclysmic variable stars for which the white dwarf primary possesses a strong, complex magnetic field. These calculations were motivated by observations of polars: cataclysmic variables containing white dwarfs with magnetic fields sufficiently strong to prevent the formation of an accretion disk. In this case, an accretion stream flows from the L1 point and impacts directly onto one or more spots on the surface of the white dwarf. Observations indicate that the white dwarfs in some binaries possess complex (non-dipolar) magnetic fields. We performed simulations of ten polars, with the only variable being the azimuthal angle of the secondary with respect to the white dwarf. These calculations are also applicable to asynchronous polars, where the spin period of the white dwarf differs by a few percent from the orbital period. Our results are equivalent to calculating the structure of one asynchronous polar at ten different spin-orbit beat phases. Our models have an aligned dipolar plus quadrupolar magnetic field centered on the whitedwarf primary. We find that, with a sufficiently strong quadrupolar component, an accretion spot arises near the magnetic equator for slightly less than half our simulations, while a polar accretion zone is active for most of the remaining simulations. For two configurations, accretion at a dominant polar region and in an equatorial zone occurs simultaneously. Most polar studies assume that the magnetic field is dipolar, especially for single-pole accretors. We demonstrate that, with the orbital parameters and magnetic-field strengths typical of polars, the accretion flow patterns can vary widely in the case of a complex magnetic field. This may make it difficult formany polars to determine observationally whether the field is pure dipolar or is more complex, but there shoulid be indications for some systems. In particular, a complex magnetic field should be suspected if there is an accretion zone near the white dwarf's equator (assumed to be in the orbital plane) or if there are two or more accretion regions that cannot be fitted by dipolar magnetic field. Magnetic-field constraints are expected to be substantially stronger for asynchronous polars, with clearer signs of complex field geometry due to changes in the accretion flow structure as a function of azimuthal angle. These indications become clearer in asynchronous polars because each azimuthal angle corresponds to a different spin-orbit beat phase.

Zhilkin, A. G.; Bisikalo, D. V.; Mason, P. A.

2012-04-01

21

Accurate 2d finite element calculations for hydrogen in magnetic fields of arbitrary strength  

NASA Astrophysics Data System (ADS)

Recent observations of hundreds of hydrogen-rich magnetic white dwarf stars with magnetic fields up to 105 T (103 MG) have called for more comprehensive and accurate databases for wavelengths and oscillator strengths of the H atom in strong magnetic fields for all states evolving from the field-free levels with principal quantum numbers n?10. We present a code to calculate the energy eigenvalues and wave functions of such states which is capable of covering the entire regime of field strengths B=0 T to B˜109 T. We achieve this high flexibility by using a two-dimensional finite element expansion of the wave functions in terms of B-splines in the directions parallel and perpendicular to the magnetic field, instead of using asymptotically valid basis expansions in terms of spherical harmonics or Landau orbitals. We have paid special attention to the automation of the program such that the data points for the magnetic field strengths at which the energy of a given state are calculated can be selected automatically. Furthermore, an elaborate method for varying the basis parameters is applied to ensure that the results reach a pre-selected precision, which also can be adjusted freely. Energies and wave functions are stored in a convenient format for further analysis, e.g. for the calculation of transition energies and oscillator strengths. The code has been tested to work for 300 states with an accuracy of better than 10-6 Rydberg across several symmetry subspaces over the entire regime of magnetic field strengths.

Schimeczek, C.; Wunner, G.

2014-02-01

22

Parametric calculation of pulse transformer with open magnetic cores based on magnetostatic-field theory  

NASA Astrophysics Data System (ADS)

An analytical method for calculating the magnetostatic field of a pulse transformer with open magnetic cores is put forward in this paper, and formulas for calculating inductances of a small aspect-ratio transformer are derived. In comparison to results calculated by finite element magnetostatic-field simulations, the calculated values of inductance of primary winding L1 and the inductance of secondary winding L2 have a relative error of about 5%, while the error of the coupling coefficient (k) is less than 2%. Meanwhile, the effect of current nonuniformity in the primary winding on magnetizing inductance is studied. According to the calculated results, this effect reduces the magnetizing inductance and the coupling coefficient of the transformer, and can lead to an overvoltage phenomenon on the secondary winding. A small aspect-ratio pulse transformer with open magnetic cores is developed, which has a small size of 250mm×150mm in length and diameter, respectively. Inductances of the transformer are measured. The measured results conform to the law obtained in this work. Tests of the pulsed transformer are carried out. Experimental results show that the transformer can export a high-voltage pulse with an amplitude of 310 kV and full width at half maximum of 1?s.

Yu, Bin-xiong; Liu, Jin-liang

2013-01-01

23

Calculations of lightning return stroke electric and magnetic fields above ground  

NASA Technical Reports Server (NTRS)

Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

1981-01-01

24

Calculating Coronal Mass Ejection Magnetic Field at 1 AU Using Solar Observables  

NASA Astrophysics Data System (ADS)

It is well-established that most major nonrecurrent geomagnetic storms are caused by solar wind structures with long durations of strong southward (Bz < 0) interplanetary magnetic field (IMF). Such geoeffective IMF structures are associated with CME events at the Sun. Unfortunately, neither the duration nor the internal magnetic field vector of the ejecta--the key determinants of geoeffectiveness--is measurable until the observer (e.g., Earth) passes through the ejecta. In this paper, we discuss the quantitative relationships between the ejecta magnetic field at 1 AU and remotely observable solar quantities associated with the eruption of a given CME. In particular, we show that observed CME trajectories (position-time data) within, say, 1/3 AU of the Sun, contain sufficient information to allow the calculation of the ejecta magnetic field (magnitude and components) at 1 AU using the Erupting Flux Rope (EFR) model of CMEs. Furthermore, in order to accurately determine the size and arrival time of the ejecta as seen by a fixed observer at 1 AU (e.g., ACE), it is essential to accurately calculate the three-dimensional geometry of the underlying magnetic structure. Accordingly, we have extended the physics-based EFR model to include a self-consistent calculation of the transverse expansion taking into account the non-symmetric drag coupling between an expanding CME flux rope and the ambient solar wind. The dependence of the minor radius of the flux rope at 1 AU that determines the perceived size of the ejecta on solar quantities is discussed. Work supported by the NRL Base Program.

Chen, J.; Kunkel, V.

2013-12-01

25

Density-Functional-Theory Calculations of Matter in Strong Magnetic Fields: I. Atoms and Molecules  

E-print Network

We present new ab initio calculations of the electronic structure of various atoms and molecules in strong magnetic fields ranging from B=10^12 G to 2x10^15 G, appropriate for radio pulsars and magnetars. For these field strengths, the magnetic forces on the electrons dominate over the Coulomb forces, and to a good approximation the electrons are confined to the ground Landau level. Our calculations are based on the density functional theory, and use a local magnetic exchange-correlation function which is tested to be reliable in the strong field regime. Numerical results of the ground-state energies are given for H_N (up to N=10), He_N (up to N=8), C_N (up to N=5) and Fe_N (up to N=3), as well as for various ionized atoms. Fitting formulae for the B-dependence of the energies are also given. In general, as N increases, the binding energy per atom in a molecule, |E_N|/N, increases and approaches a constant value. For all the field strengths considered in this paper, hydrogen, helium, and carbon molecules are found to be bound relative to individual atoms (although for B less than a few x 10^12 G, the relative binding between C and C_2 is small). Iron molecules are not bound at Batoms at larger field strengths.

Zach Medin; Dong Lai

2006-07-10

26

The South Atlantic Magnetic Field Anomaly and Its Effect on the Calculated Production of Atmospheric Neutrinos  

E-print Network

The theoretical calculations of the production of neutrinos via cosmic rays incident upon the earth's atmosphere (Barr et al., 1989; Becker-Szendy et al., 1992; Bugaev & Naumov, 1989; Gaisser et al, 1988; Honda et al., 1995) are examined. These calculations use a one-dimensional approximation in the production, transport, and decay of the produced particles. Examined are various additional effects of the earth's magnetic field and the three-dimensional nature of the problem which have the effect of decreasing the calulated ratio of muon neutrinos to electron neutrinos.

J. Poirier

2000-08-25

27

Models of radio galaxies with tangled magnetic fields. I - Calculation of magnetic field transport, Stokes parameters and synchrotron losses. II - Numerical simulations and their interpretation  

Microsoft Academic Search

Consideration is given to numerical simulations of radio sources in which a randomly tangled magnetic field is introduced in the jet and is convected passively with the fluid flow. The intrinsic polarization distribution of the source model is determined by the distortion of the field by compression and shear in the flow. Results are presented from calculations of the distortion

A. P. Matthews; P. A. G. Scheuer

1990-01-01

28

An approach to 3D magnetic field calculation using numerical and differential algebra methods  

SciTech Connect

Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.

Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.

1992-07-17

29

Limitations of Calculating Field Distributions and Magnetic Susceptibilities in MRI using a Fourier Based Method  

PubMed Central

A discrete Fourier based method for calculating field distributions and local magnetic susceptibility in MRI is carefully studied. Simulations suggest that the method based on discrete Greens functions in both 2D and 3D spaces has less error than the method based on continuous Greens functions. The 2D field calculations require the correction of the “Lorentz disk, which is similar to the Lorentz sphere term in the 3D case. A standard least squares fit is proposed for the extraction of susceptibility for a single object from MR images. Simulations and a phantom study confirm both the discrete method and the feasibility of the least squares fit approach. Finding accurate susceptibility values of local structures in the brain from MR images may be possible with this approach in the future. PMID:19182322

Cheng, Yu-Chung N.; Neelavalli, Jaladhar; Haacke, E. Mark

2010-01-01

30

The calculation of coronal magnetic field and density of nonthermal electrons in the 2003 October 27 microwave burst  

NASA Astrophysics Data System (ADS)

Based on Dulk and Marsh's approximate theory about nonthermal gyrosynchrotron radiation, one simple impulsive microwave burst with a loop-like structure is selected for radio diagnostics of the coronal magnetic field and column density of nonthermal electrons, which are calculated from the brightness temperature, polarization degree, and spectral index, as well as the turnover frequency, observed by using the Nobeyama Radioheliograph and the Nobeyama Radio Polarimeters, respectively. Very strong variations (up to one or two orders of magnitude) of the calculated transverse and longitudinal magnetic fields with respect to the line-of-sight, as well as the calculated electron column density, appear in the looptop and footpoint sources during the burst. The absolute magnitude and varied range of the transverse magnetic field are evidently larger than those of the longitudinal magnetic field. The time evolution of the transverse magnetic field is always anti-correlated with that of the longitudinal magnetic field, but positively correlated with that of the electron column density. These results strongly support the idea that quantifying the energy released in a flare depends on a reconstruction of the coronal magnetic field, especially for the transverse magnetic field, and they are basically consistent with the recent theoretical and observational studies on the photospheric magnetic field in solar flares.

Huang, Guang-Li; Li, Jian-Ping; Song, Qi-Wu

2013-02-01

31

Robustness of the filamentation instability in arbitrarily oriented magnetic field: Full three dimensional calculation  

SciTech Connect

The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceled for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.

Bret, A., E-mail: antoineclaude.bret@uclm.es [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

2014-02-15

32

Mean magnetic field calculation program with allowance for flutter for isochronous cyclotron (Cyclotron Analytic Model Program - CAMP)  

E-print Network

The Cyclotron Analytic Model Program (CAMP) written in C++ with the use of Visual C++ is described. The program is intended for the mean magnetic field calculation of the isochronous cyclotron with allowance for flutter. The program algorithm was developed on the basis of the paper 'Calculation of Isochronous Fields for Sector-Focused Cyclotrons', by M.M.Gordon (Particle Accelerators. 1983. V.13). The accuracy of the calculations, performed with this program, was tested with the use of maps of isochronous magnetic fields of different cyclotrons with the azimuthally varying fields - AVF cyclotrons, in which the ion beams were produced. The calculation by CAMP showed that the isochronous mean magnetic field curve for the measured magnetic field, in which the ion beam was produced, exactly corresponded to the curve of the isochronous mean magnetic field, calculated with the allowance for flutter for all the AVF cyclotrons that were considered. As is evident from the calculations, this program can be used for cal...

Kiyan, I N; Vorozhtsov, S B

2002-01-01

33

Magnetic Fields  

E-print Network

In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.

Schöller, Markus

2015-01-01

34

A General Method for Calculating the External Magnetic Field from a Cylindrical Magnetic Source using Toroidal Functions  

SciTech Connect

An alternative method is developed to compute the magnetic field from a circular cylindrical magnetic source. Specifically, a Fourier series expansion whose coefficients are toroidal functions is introduced which yields an alternative to the more familiar spherical harmonic solution or the Elliptic integral solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion. This expansion is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. This method can be used to accurately compute the far field where a finite element formulation is known to be inaccurate.

J Selvaggi; S Salon; O Kwon CVK Chari

2006-02-14

35

Method of auxiliary sources for calculating the magnetic and electric fields induced in a layered Earth  

NASA Astrophysics Data System (ADS)

Time varying ionospheric currents caused by geomagnetic storms originating from the Sun induce electric currents in expansive technological networks located on the Earth's surface. These so-called geomagnetically induced currents (GICs) can be damaging to the systems in which they flow. The ability to estimate the magnitude of GICs is, therefore, desirable in order to mitigate any serious effects from this common space weather occurrence. A necessary element in determining GICs is the accurate calculation of the geoelectric field due to ionospheric current sources. Until now, methods for calculating these fields have primarily focused on computational efficiency. These methods are inaccurate to varying degrees and almost entirely restricted to layered or one-dimensional models of the Earth's conductivity. This work introduces a new technique to the geomagnetic induction problem known as the method of auxiliary sources (MAS). The MAS uses elementary electric/magnetic currents placed on auxiliary surfaces to produce the fields resulting from the primary ionospheric current and secondary currents induced in the Earth. Numerical results for a single- and two-layer Earth model show that the MAS is extremely accurate over the frequency range of interest in geomagnetic induction (0-1Hz). The MAS is not, however, limited to layered Earth models and can be used with general three-dimensional structures. Furthermore, it is shown that by using the MAS, it is possible to determine the fields at any location and with any resolution on the surface or within the Earth. The combination of accuracy and flexibility demonstrate the potential of the MAS for studying complicated geomagnetic induction problems.

Shepherd, Simon G.; Shubitidze, Fridon

2003-07-01

36

Finite element method-based calculation of the theoretical limit of sensitivity for detecting weak magnetic fields in the human brain using magnetic-resonance imaging  

NASA Astrophysics Data System (ADS)

Detection of weak magnetic fields induced by neuronal electrical activities using magnetic-resonance imaging is a potentially effective method for functional imaging of the brain. In this study, we performed a numerical analysis of the theoretical limit of sensitivity for detecting weak magnetic fields induced in the human brain. The limit of sensitivity was estimated from the intensities of signal and noise in the magnetic-resonance images. The signal intensity was calculated with parameters which are commonly used in measurements of the human brain. The noise due to the head was calculated using the finite element method. The theoretical limit of sensitivity was approximately 10-8T.

Hatada, Tomohisa; Sekino, Masaki; Ueno, Shoogo

2005-05-01

37

Calculation methods and detection techniques for electric and magnetic fields from power lines with measurement verification  

E-print Network

components, the electric field may be described by the real part vector and the imaginary part vector: E, = E?a~ + E?uv. (3 lfi) E, = E?aJ & Ewuv. (3 17) Both representations describe an elliptical rotation of the electric field vector in space. Since... been performed in accorilance v:ith the require- ments of the IEEE Standard [li& The magnetic field calibration is normally done by introducing the sensor into a nearly uniform non-polanzed magnetic field of known niagnitude and direction (I~ A...

Mamishev, Alexander V

1994-01-01

38

Magnetic Fields  

NSDL National Science Digital Library

This page and its annex describes, in trivial terms, the physics of magnetic fields and the history of its discovery. Included is the work of Halley, Oersted, Ampere and Maxwell. It also describes a way of demonstrating it in the classroom, using a vu-graph projector. Later sections #5, #5a and #6 extend this to magnetic field lines and electromagnetism.

Stern, David

2005-01-04

39

Calculation of the electric hypershielding at the nuclei of molecules in a strong magnetic field  

NASA Astrophysics Data System (ADS)

The third-rank electric hypershielding at the nuclei of 14 small molecules has been evaluated at the Hartree-Fock level of accuracy, by a pointwise procedure for the geometrical derivatives of magnetic susceptibilities and by a straightforward use of its definition within the Rayleigh-Schrödinger perturbation theory. The connection between these two quantities is provided by the Hellmann-Feynman theorem. The magnetically induced hypershielding at the nuclei accounts for distortion of molecular geometry caused by strong magnetic fields and for related changes of magnetic susceptibility. In homonuclear diatomics H2, N2, and F2, a field along the bond direction squeezes the electron cloud toward the center, determining shorter but stronger bond. It is shown that constraints for rotational and translational invariances and hypervirial theorems provide a natural criterion for Hartree-Fock quality of computed nuclear electric hypershielding.

Caputo, M. C.; Ferraro, M. B.; Pagola, G. I.; Lazzeretti, P.

2007-04-01

40

Calculation of the electric hypershielding at the nuclei of molecules in a strong magnetic field.  

PubMed

The third-rank electric hypershielding at the nuclei of 14 small molecules has been evaluated at the Hartree-Fock level of accuracy, by a pointwise procedure for the geometrical derivatives of magnetic susceptibilities and by a straightforward use of its definition within the Rayleigh-Schrodinger perturbation theory. The connection between these two quantities is provided by the Hellmann-Feynman theorem. The magnetically induced hypershielding at the nuclei accounts for distortion of molecular geometry caused by strong magnetic fields and for related changes of magnetic susceptibility. In homonuclear diatomics H(2), N(2), and F(2), a field along the bond direction squeezes the electron cloud toward the center, determining shorter but stronger bond. It is shown that constraints for rotational and translational invariances and hypervirial theorems provide a natural criterion for Hartree-Fock quality of computed nuclear electric hypershielding. PMID:17461610

Caputo, M C; Ferraro, M B; Pagola, G I; Lazzeretti, P

2007-04-21

41

Magnetic fields calculated by INTMAG compared with analytical solutions and precision measurements  

NASA Astrophysics Data System (ADS)

The computer program INTMAG [R. Becker, Nucl. Instr. and Meth. B42 (1989) 303] calculates magnetostatic fields by integrating the contributions of real filaments, which result from splitting up solid windings, and of assumed filaments on the surface of iron pieces, in order to simulate the behaviour of the iron-air interface. The currents of the surface filaments are determined in succeeding steps by an iterative procedures, which saves memory at the expense of computing time, but allows to use as much as 999 filaments in a problem, even on a PC. Due to the integration calculus, the results are more accurate and much more "smooth" than from any finite difference or finite element method program. For the use in trajectory-optics programs such as EGN2 [W.B. Herrmannsfeldt, SLAC-331 (1988)], where radial expansion of axial data is a common procedure, the results of INTMAG do not need any "Maxwellisation", because they are exact solutions of Maxwell's equations. New features added to INTMAG comprise a finite permeability, rectangular coordinates, and mirroring to save numerical work in the case of mirror or angular symmetry as well as an improvement of the integration over the discretised boundary filaments. The PC versions of INTMAG is compiled with MS-Fortran 5.0 (Microsoft Corp., Redmont, WA, USA) which allows to use NAMELIST input, making the input file easy to read and easy to set up. Besides explaining the new features added, the emphasis of this paper is on the comparison of INTMAG calculations with analytical solutions, namely the magnetisation of iron ball and sphere in the case of axisymmetric coordinates and of iron rod and cylinder in rectangular coordinates for different values of permeability. As a further example in rectangular coordinates, a quadrupole is calculated, demonstrating the option of mirroring. Also a comparison is made with precision measurements (B. Langenbeck, private communication) in the gap of a bending magnet of the ESR [B. Franzke, Nucl. Instr. and Meth. B24 (1986) 18] ring at GSI. For this example, POISSON (POISSON, group of programs at GSI) calculations can be included into the comparison.

Becker, Reinard

1990-12-01

42

862 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 26, NO. 3, SEPTEMBER 2011 Analytical Method for Magnetic Field Calculation in  

E-print Network

862 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 26, NO. 3, SEPTEMBER 2011 Analytical Method to achieve energy conversion and transmission. The detailed knowledge of the field distributions in the air element method. Index Terms--Analytical calculation, direct drive, harmonic ma- chine, low speed, magnetic

Mi, Chunting "Chris"

43

Calculation of impulse current distributions and magnetic fields in lightning protection structures-a computer program and its laboratory validation  

Microsoft Academic Search

A circuit model and an ad hoc computer program were set up to evaluate electromagnetic interference in the vicinity of protective structures struck by lightning. This program permits the evaluation of the impulsive magnetic fields by calculating the impulse current distribution in different parts of such structures. It also allows the evaluation of the electromagnetic interference induced on susceptible victim

R. Cortina; A. Porrino

1992-01-01

44

Magnetic Field Safety Magnetic Field Safety  

E-print Network

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

45

Density-Functional-Theory Calculations of Matter in Strong Magnetic Fields: II. Infinite Chains and Condensed Matter  

E-print Network

We present new, ab initio calculations of the electronic structure of one-dimensional infinite chains and three-dimensional condensed matter in strong magnetic fields ranging from B=10^12 G to 2x10^15 G, appropriate for observed magnetic neutron stars. At these field strengths, the magnetic forces on the electrons dominate over the Coulomb forces, and to a good approximation the electrons are confined to the ground Landau level. Our calculations are based on the density functional theory, and use a local magnetic exchange-correlation function appropriate in the strong field regime. The band structures of electrons in different Landau orbitals are computed self-consistently. Numerical results of the ground-state energies and electron work functions are given for one-dimensional chains of H, He, C, and Fe. Fitting formulae for the B-dependence of the energies are also provided. For all the field strengths considered in this paper, hydrogen, helium, and carbon chains are found to be bound relative to individual atoms (although for B less than a few x 10^12 G, the relative binding between C and C_infinity is small). Iron chains are significantly bound for B>10^14 G and are weakly bound if at all at Bcondensed matter of H, He, C, and Fe at zero pressure, constructed from interacting chains in a body-centered tetragonal lattice. Such three-dimensional condensed matter is found to be bound relative to individual atoms, with the cohesive energy increasing rapidly with increasing B.

Zach Medin; Dong Lai

2006-07-12

46

Benchmark calculations of nonconservative charged-particle swarms in dc electric and magnetic fields crossed at arbitrary angles.  

PubMed

A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles when nonconservative collisions are present. The hierarchy resulting from a spherical-harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. Results are given for electron swarms in certain collisional models for ionization and attachment over a range of angles between the fields and field strengths. The implicit and explicit effects of ionization and attachment on the electron-transport coefficients are considered using physical arguments. It is found that the difference between the two sets of transport coefficients, bulk and flux, resulting from the explicit effects of nonconservative collisions, can be controlled either by the variation in the magnetic field strengths or by the angles between the fields. In addition, it is shown that the phenomena of ionization cooling and/or attachment cooling/heating previously reported for dc electric fields carry over directly to the crossed electric and magnetic fields. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. The comparison confirms the theoretical basis and numerical integrity of the moment method for solving the Boltzmann equation and gives a set of well-established data that can be used to test future codes and plasma models. PMID:20481843

Dujko, S; White, R D; Petrovi?, Z Lj; Robson, R E

2010-04-01

47

Finite-difference calculation of donor energy levels in a spherical quantum dot subject to a magnetic field  

NASA Astrophysics Data System (ADS)

The ground and excited states of a donor impurity at the center of a spherical quantum dot subject to a magnetic field are calculated within the effective-mass approximation. The barriers are infinitely high and the differential equation is solved by combining the finite-difference method with the Richardson extrapolation. The binding and transition energies are more accurate than the available variational values, and excellent agreement is found with the hydrogen atom. The transition energies for a medium-size quantum dot are given.

de Souza, G. V. B.; Bruno-Alfonso, A.

2015-02-01

48

Effect of a metallized chamber upon the field response of a kicker magnet: simulations results and analytical calculations  

Microsoft Academic Search

Metallized racetrack vacuum chambers will be used in the pulsed magnets of the Austrian cancer therapy and research facility, MedAustron. It is important that the metallization does not unduly degrade field rise and fall times or the flattop of the field pulse in the kicker magnets. This was of particular concern for a tune kicker magnet, which has a specified

M J Barnes; T Fowler; M G Atanasov; T Kramer; T Stadlbauer

2012-01-01

49

Magnetic Field Solver  

NASA Technical Reports Server (NTRS)

The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

Ilin, Andrew V.

2006-01-01

50

Numerical calculation of dynamical friction in electron cooling systems, including magnetic field perturbations and finite time effects  

SciTech Connect

The orders-of-magnitude higher luminosities required by future electron-ion collider concepts require a dissipative force to counteract the numerous factors acting to gradually increase the phase space volume of relativistic ion beams. High-energy electron cooling systems could provide the necessary dissipation via dynamical friction, but will have to be designed for new parameter regimes. It is expected that magnetic field errors, finite interaction time and other effects will reduce the dynamical friction and hence increase the cooling time, so improved understanding of the underlying dynamics is important. We present a generalized form of the classical field-free friction force equation, which conveniently captures some of these effects. Previous work (Bell et al 2008 J. Comput. Phys. 227 8714) shows both numerical and conceptual subtleties associated with undersampling of strong collisions, and we present a rigorous mathematical treatment of such difficulties, based on the use of a modified Pareto distribution for the electron-ion impact parameters. We also present a very efficient numerical algorithm for calculating the dynamical friction on a single ion in the field free case. For the case of arbitrary magnetic field errors, we present numerical simulation results, showing agreement with our generalized friction force formula.

Sobol, A.V.; Fedotov, A.; Bruhwiler, D.L.; Bell, G.I.; Litvinenko, V.

2010-09-24

51

Nonperturbative ab initio calculations in strong magnetic fields using London orbitals  

E-print Network

functions, which is tantamount to computing molecular integrals in a hybrid Gaussian and plane-wave basis nanotubes and graphene nanoribbons and flakes are examples of systems whose conducting prop- erties can for graphene nanoribbons has been predicted by means of model calculations within the screened nuclei

Helgaker, Trygve

52

Finite element method-based calculation of the theoretical limit of sensitivity for detecting weak magnetic fields in the human brain using magnetic-resonance imaging  

Microsoft Academic Search

Detection of weak magnetic fields induced by neuronal electrical activities using magnetic-resonance imaging is a potentially effective method for functional imaging of the brain. In this study, we performed a numerical analysis of the theoretical limit of sensitivity for detecting weak magnetic fields induced in the human brain. The limit of sensitivity was estimated from the intensities of signal and

Tomohisa Hatada; Masaki Sekino; Shoogo Ueno

2005-01-01

53

Improvement of magnetosphere structure calculations using eccentric dipole to account for the internal magnetic field  

NASA Astrophysics Data System (ADS)

In this paper we build upon the results previously produced by numerous attempts, including our own, to approximate the geomagnetic field with a an eccentric dipole instead of spherical harmonics expansions. Among other motivations to do so is that dipole-related effects are much more pronounced relative to higher-order harmonics at large distances from the Earth, and that the shift of the order of magnitude about 0.1 Earth radii is significant enough for many magnetospheric structures such as the current sheet. We present the results of multivariate simulated annealing, which includes translational and rotational repositioning of the dipole. We also include similar results produced for Mercury and Saturn, and we extend Earth-related data with Oersted and Cluster measurements in order to further improve our accuracy.

Parunakian, David

2014-05-01

54

Magnetic-field-dosimetry system  

DOEpatents

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21

55

Calculated Hanle transmission and absorption spectra of the {sup 87}Rb D{sub 1} line with residual magnetic field for arbitrarily polarized light  

SciTech Connect

This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

Noh, Heung-Ryoul [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Moon, Han Seb [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of)

2010-09-15

56

Alternating current loss calculation in a high-TC superconducting transmission cable considering the magnetic field distribution  

NASA Astrophysics Data System (ADS)

We have calculated the alternating current (ac) losses of a 114 MVA high-TC superconducting (HTS) transmission cable using an electric-circuit (EC) model. The HTS cable is fabricated by Tokyo Electric Power Company and Sumitomo Electric Industries, Ltd. The EC model is comprised of a resistive part and an inductive part. The resistive part is obtained by the approximated Norris equation for a HTS tape. The Norris equation indicates hysteresis losses due to self-fields. The inductive part has two components, i.e. inductances related to axial fields and those related to circumferential fields. The layer currents and applied fields of each layer were calculated by the EC model. By using both values, the ac losses of the one-phase HTS cable were obtained by calculation considering the self-field, the axial field and the circumferential field of the HTS tape. The measured ac loss transporting 1 kArms is 0.7 W m-1 ph-1, which is equal to the calculation. The distribution of each layer loss resembles in shape the distribution of the circumferential field in each layer, which indicates that the circumferential fields strongly influence the ac losses of the HTS cable.

Noji, H.; Haji, K.; Hamada, T.

2003-01-01

57

Effect of a metallized chamber upon the field response of a kicker magnet: simulations results and analytical calculations  

E-print Network

Metallized racetrack vacuum chambers will be used in the pulsed magnets of the Austrian cancer therapy and research facility, MedAustron. It is important that the metallization does not unduly degrade field rise and fall times or the flattop of the field pulse in the kicker magnets. This was of particular concern for a tune kicker magnet, which has a specified rise and fall time of 100 ns. The impact of the metallization, upon the transient field response, has been studied using Finite Element Method (FEM) simulations: the dependency of the field response to the metallization thickness and resistivity are presented in this paper and formulae for the field response, for a ramped transient excitation current, are given. An equivalent circuit for the metallization allows the effect of an arbitrary excitation to be studied, with a circuit simulator, and the circuit optimized. Furthermore, results of simulations of the effect of a magnetic brazing collar, located between the ceramic vacuum chamber and flange, of t...

Barnes, M J; Atanasov, M G; Kramer, T; Stadlbauer, T

2012-01-01

58

Exploring Magnetic Fields  

NSDL National Science Digital Library

In this activity, students investigate the presence of magnetic fields around magnets, the sun and the earth. They will explore magnetic field lines, understand that magnetic lines of force show the strength and direction of magnetic fields, determine how field lines interact between attracting and repelling magnetic poles, and discover that the earth and sun have magnetic properties. They will also discover that magnetic force is invisible and that a "field of force" is a region or space in which one object can attract or repel another.

59

Visualizing Magnetic Field Lines  

NSDL National Science Digital Library

In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.

VU Bioengineering RET Program, School of Engineering,

60

What are Magnetic Fields?  

NSDL National Science Digital Library

This is an activity about magnetic fields. Using iron filings, learners will observe magnets in various arrangements to investigate the magnetic field lines of force. This information is then related to magnetic loops on the Sun's surface and the magnetic field of the Earth. This is the second activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

61

Magnetic field line Hamiltonian  

SciTech Connect

The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined.

Boozer, A.H.

1985-02-01

62

Mapping Magnetic Fields  

NSDL National Science Digital Library

This is an activity about bar magnets and their invisible magnetic fields. Learners will experiment with magnets and a compass to detect and draw magnetic fields. This is Activity 1 of a larger resource, entitled Exploring the Sun. The NASA spacecraft missions represented by this material include SOHO, TRACE, STEREO, Hinode, and SDO.

2012-08-03

63

condensate in constant magnetic fields  

Microsoft Academic Search

We solve the Dirac equation in the presence of a constant magnetic field in (3+1) and (2+1) dimensions. Quantizing the fermion field, we calculate the condensate from first principles for parity conserving and violating Lagrangians for arbitrary field strength. We make a comparison with the results already known in the literature for some particular cases and point out the relevance

M. de J Anguiano-Galicia; A. Bashir; A. Raya

2007-01-01

64

Introduction to Magnetic Fields  

NSDL National Science Digital Library

This is an activity about magnetic fields. Learners will use various magnets, magnetic film, and a compass to see and illustrate what magnetic fields look like. This is the fourth activity as part of the iMAGiNETICspace: Where Imagination, Magnetism, and Space Collide educator's guide. Instructions for downloading the iBook educator's guide and the associated Transmedia book student guide are available at the resource link.

2013-05-06

65

Drawing Magnetic Fields  

NSDL National Science Digital Library

Students use a compass and a permanent magnet to trace the magnetic field lines produced by the magnet. By positioning the compass in enough spots around the magnet, the overall magnet field will be evident from the collection of arrows representing the direction of the compass needle. In activities 3 and 4 of this unit, students will use this information to design a way to solve the grand challenge of separating metal for a recycling company.

2014-09-18

66

Electricity and Magnetic Fields  

NSDL National Science Digital Library

The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.

VU Bioengineering RET Program,

67

Circuits and Magnetic Fields  

NSDL National Science Digital Library

Students use the same method as in the activity from lesson 2 of this unit to explore the magnetism due to electric current instead of a permanent magnet. Students use a compass and circuit to trace the magnetic field lines induced by the electric current moving through the wire. Students develop an understanding of the effect of the electrical current on the compass needle through the induced magnetic field and understand the complexity of a three dimensional field system.

VU Bioengineering RET Program,

68

Magnetic fields at Neptune  

Microsoft Academic Search

The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10⁻⁵ gauss) was observed near closest approach, at a

N. F. Ness; M. H. Acuna; L. F. Burlaga; J. E. P. Connerney; R. P. Lepping; F. M. Neubauer

1989-01-01

69

Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force.  

PubMed

Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo. PMID:22722424

Antunes, A; Glover, P M; Li, Y; Mian, O S; Day, B L

2012-07-21

70

The First Magnetic Fields  

E-print Network

We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

2011-01-01

71

Solar magnetic fields - Extended.  

NASA Technical Reports Server (NTRS)

Spacecraft observations of the interplanetary magnetic field have revealed that almost always each solar rotation can be divided into sectors, within each of which the field has a predominant polarity toward the sun or away from the sun. Comparisons of this interplanetary magnetic sector pattern with observations of the photospheric magnetic field have revealed a similar solar magnetic pattern. The boundaries between solar magnetic sectors are approximately in the north-south direction over a wide range of latitudes on both sides of the equator. This solar magnetic sector structure can be described as a rotating dipole whose magnetic axis makes an angle of approximately 90 deg with the axis of rotation. Possible similarities between this solar-sector magnetism and the models derived from observations of stellar magnetism are discussed.

Wilcox, J. M.

1971-01-01

72

RESEARCH PAPERS : The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet  

NASA Astrophysics Data System (ADS)

For studying the auroral electrojet and for examining the effects it can produce in power systems on the ground, it is useful to be able to calculate the magnetic and electric fields that the electrojet produces at the surface of the Earth. Including the effects of currents induced in the Earth leads to a set of integral expressions, the numerical computation of which is complicated and demanding of computer resources. An approximate solution can be achieved by representing the induced currents by an image current at a complex depth. We present a simple derivation of the complex-image expressions and use them to calculate the fields produced by the auroral electrojet at the surface of an earth represented by layered conductivity models. Comparison of these results with ones obtained using the exact integral solution show that the errors introduced are insignificant compared to the uncertainties in the parameters used. The complex-image method thus provides a simple, fast and accurate means of calculating the magnetic and electric fields.

Boteler, D. H.; Pirjola, R. J.

1998-01-01

73

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is a lesson about the magnetic field of a bar magnet. The lesson begins with an introductory discussion with learners about magnetism to draw out any misconceptions that may be in their minds. Then, learners freely experiment with bar magnets and various materials, such as paper clips, rulers, copper or aluminum wire, and pencils, to discover that magnets attract metals containing iron, nickel, and/or cobalt but not most other materials. Next, learners experiment with using a magnetic compass to discover how it is affected by the magnet and then draw the magnetic field lines of the magnet by putting dots at the location of the compass arrow. This is the first lesson in the first session of the Exploring Magnetism teacher guide.

74

Cyclic Magnetic Field Reconnection  

NASA Astrophysics Data System (ADS)

Using a 2.5D electromagnetic particle-in-cell model, we study the magnetic field reconnection around the rotating plasma embedded in a magnetic field. Considering plasma rotation driven by an external electric field, it was found that during one rotational cycle, first the magnetic field energy increases and then decreases to its initial value. The magnetic reconnection occurring during this cycle plays two roles: first, it produces the closed magnetic islands and later on it reopens them to the initial form of magnetic field lines. Thus, the magnetic reconnection can be cyclically repeated in following plasma rotations. Simultaneously, the kinetic particle energy in the system increases due to dissipative processes in this externally driven plasma system. We think that this cyclic reconnection can operate around rapidly rotating stars and in the plasma vortices formed in unstable plasma flows.

Karlický, Marian

2009-02-01

75

MAXWELLIAN FIELD EXPANSION OF HELICAL MAGNET  

Microsoft Academic Search

Three dimensional (3D) magnetic field calculated by the computer code TOSCA was analyzed including the fring- ing field region. The magnetic field in the median plane was well simulated by a simple function. Off median plane, contributions from the coils should be taken into account. Superconducting helical dipole magnets will be used in RHIC as Siberian snakes and rotators(1). Extensive

K. Hatanaka; T. Katayama; T. Tominaka

1998-01-01

76

MATLAB-based program for optimization of quantum cascade laser active region parameters and calculation of output characteristics in magnetic field  

NASA Astrophysics Data System (ADS)

A strong magnetic field applied along the growth direction of a quantum cascade laser (QCL) active region gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a QCL with a static magnetic field, we can selectively inhibit/enhance non-radiative electron relaxation process between the relevant Landau levels of a triple quantum well and realize a tunable surface emitting device. An efficient numerical algorithm implementation is presented of optimization of GaAs/AlGaAs QCL region parameters and calculation of output properties in the magnetic field. Both theoretical analysis and MATLAB implementation are given for LO-phonon and interface roughness scattering mechanisms on the operation of QCL. At elevated temperatures, electrons in the relevant laser states absorb/emit more LO-phonons which results in reduction of the optical gain. The decrease in the optical gain is moderated by the occurrence of interface roughness scattering, which remains unchanged with increasing temperature. Using the calculated scattering rates as input data, rate equations can be solved and population inversion and the optical gain obtained. Incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. However, it resulted in shifting the existing peaks positions and overall reduction of the optical gain. Catalogue identifier: AERL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 37763 No. of bytes in distributed program, including test data, etc.: 2757956 Distribution format: tar.gz Programming language: MATLAB. Computer: Any capable of running MATLAB version R2010a or higher. Operating system: Any platform supporting MATLAB version R2010a or higher. RAM: Minimum required is 1 GB. Memory usage increases for less intense magnetic fields. Classification: 15. Nature of problem: The nature of the problem is to provide an efficient numerical algorithm implementation for optimization of GaAs/AlGaAs QCL active region parameters and calculation of output properties in the magnetic field. Solution method: The optimization of the QCL laser performance at selected wavelength is performed at entire free-parameters space using simulated annealing algorithm. The scattering rates are calculated in the presence and without magnetic field and used as coefficients in rate equations. The standard MATLAB procedures were used to solve iteratively this system of equations and obtain distribution of electron densities over electronic states. Restrictions: The machine must provide the necessary main memory which decreases roughly quadratically with the increase of the magnetic field intensity. Running time: Optimization time on Intel 3 GHz processor is about 2×104 s. The calculation time of laser output properties for values set automatically in GUI is 5×104 s.

Smiljani?, J.; Žeželj, M.; Milanovi?, V.; Radovanovi?, J.; Stankovi?, I.

2014-03-01

77

Numerical calculations of flow fields  

NASA Technical Reports Server (NTRS)

Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.

Anderson, D.; Vogel, J. M.

1973-01-01

78

Magnetic field generator  

DOEpatents

A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

Krienin, Frank (Shoreham, NY)

1990-01-01

79

THE INTERPLANETARY MAGNETIC FIELD  

Microsoft Academic Search

A new analysis of magnetic and concurrent plasma data collected from the ; space probes Pionecr 5, Explorer 10, and Mariner 2 yields a new model of the ; interplanetary magnetic field. It is hypothesized that the observed ; interplanetary field F\\/sub i\\/ is due to motion of the magnetometer relative to a ; negatively charged rotating sun from which

V. A. BAILEY

1963-01-01

80

Cosmic Magnetic Fields  

Microsoft Academic Search

Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources

Elisabete M. de Gouveia Dal Pino; Dal Pino

2006-01-01

81

The solar magnetic field  

Microsoft Academic Search

The magnetic field of the Sun is the underlying cause of the many diverse phenomena combined under the heading of solar activity. Here we describe the magnetic field as it threads its way from the bottom of the convection zone, where it is built up by the solar dynamo, to the solar surface, where it manifests itself in the form

Sami K. Solanki; Bernd Inhester; Manfred Schüssler

2006-01-01

82

Interplanetary Magnetic Field Lines  

NSDL National Science Digital Library

This web page provides information and a graphical exercise for students regarding the interaction between magnetic field lines and a plasma. The activity involves tracing a typical interplanetary magnetic field line, dragged out of a location on the Sun by the radial flow of the solar wind. This illustrates the way magnetic field lines are "frozen to the plasma" and the wrapping of field lines due to the rotation of the sun. This is part of the work "The Exploration of the Earth's Magnetosphere". A Spanish translation is available.

Stern, David

2005-04-27

83

Anomalous global strings and primordial magnetic fields  

SciTech Connect

We propose a new mechanism for the generation of primordial magnetic fields, making use of the magnetic fields which are induced by anomalous global strings, such as pion and axion strings, which couple to electromagnetism via Wess-Zumino type interactions. We calculate the magnitude and coherence length of these fields. They are seen to depend on the string dynamics. With optimistic assumptions, both the magnitude and coherence scale of the induced magnetic fields can be large enough to explain the seed magnetic fields of greater than 10{sup {minus}23} G necessary to produce the observed galactic magnetic fields via the galactic dynamo mechanism. {copyright} {ital 1999} {ital The American Physical Society}

Brandenberger, R.H. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States)] [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Zhang, X. [CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, Peoples Republic of (China)] [CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, Peoples Republic of (China); [Institute of High Energy Physics, Academia Sinica, Beijing 100039, Peoples Republic of (China)

1999-04-01

84

Solar polar magnetic field  

NASA Astrophysics Data System (ADS)

The solar polar magnetic field has attracted the attention of researchers since the polar magnetic field reversal was revealed in the middle of the last century (Babcock and Livingston, 1958). The polar magnetic field has regularly reversed because the magnetic flux is transported from the sunspot formation zone owing to differential rotation, meridional circulation, and turbulent diffusion. However, modeling of these processes leads to ambiguous conclusions, as a result of which it is sometimes unclear whether a transport model is actual. Thus, according to the last Hinode data, the problem of a standard transport model (Shiota et al., 2012) consists in that a decrease in the polar magnetic flux in the Southern Hemisphere lags behind such a decrease in the flux in the Northern Hemisphere (from 2008 to June 2012). On the other hand, Svalgaard and Kamide (2012) consider that the asymmetry in the sign reversal simply results from the asymmetry in the emerging flux in the sunspot formation region. A detailed study of the polar magnetic flux evolution according to the Solar Dynamics Observatory (SDO) data for May 2010-December 2012 is illustrated in the present work. Helioseismic & Magnetic Imager (HMI) magnetic data in the form of a magnetic field component along the line of sight (the time resolution is 720 s) are used here. The magnetic fluxes in sunspot formation regions and at high latitudes have been compared.

Benevolenskaya, E. E.

2013-12-01

85

Detecting Exoplanetary Magnetic Fields  

NASA Astrophysics Data System (ADS)

Asymmetries in exoplanet transits are proving to be a useful tool for furthering our understanding of magnetic activity on both stars and planets outside our Solar System.Near-UV observations of the WASP-12 system have revealed asymmetries in the timing of the transit when compared with the optical light curve. A number of possible explanations have been suggested for this variation, including the presence of a magnetospheric bow shock arising from the interaction of the planet's magnetic field with the stellar wind from it's host star. Such observations provide the first method for directly detecting the presence of a magnetic field on exoplanets.The shape and size of such asymmetries is highly dependent on the structure of the host stars magnetic field at the time of observation. This implies we may observe highly varying near-UV transit light curves for the same system. These variations can then be used to learn about the geometry of the host star's magnetic field.In this presentation I will show modelling a bow shock around an exoplanet can help us to not only detect, but also also place constraints on the magnetic field strength of hot Jupiters. For some systems, such as HD 189733, we have maps of the surface magnetic field of the star at various epochs. I will also show how incorporating these maps into a stellar wind model, I can model the formation of a bow shock around the planet and hence demonstrate the variability of the near-UV transits.

Llama, Joe

2015-01-01

86

Eruptive solar magnetic fields  

Microsoft Academic Search

This paper considers the quasi-steady evolution of solar magnetic fields in response to gradual photospheric changes. Special interest is taken in the threshold of a sudden eruption in the solar atmosphere. The formal model of an evolving, force-free field dependent on two Cartesian coordinates has been treated previously, and we extend it to a field which is not force free

B. C. Low

1981-01-01

87

Mapping Magnetic Field Lines  

NSDL National Science Digital Library

This is an activity about electromagnetism. Learners will use a compass to map the magnetic field lines surrounding a coil of wire that is connected to a battery. This activity requires a large coil or spool of wire, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and magnetic compasses. This is the third lesson in the second session of the Exploring Magnetism teachers guide.

88

Magnetic field dosimeter development  

SciTech Connect

In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1980-09-01

89

Solar magnetic fields  

Microsoft Academic Search

Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar\\u000a physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical\\u000a star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail.\\u000a The PRL

J. O. Stenflo

2008-01-01

90

Solar magnetic fields  

Microsoft Academic Search

This paper is a review of our observational knowledge on solar magnetic fields. In Section 1 we make an attempt to summarize all observations of the general magnetic field (m.f.) of the Sun. Section 2 deals with the local m.f. at low latitudes and their connection with some features on the disk. The m.f. of sunspots and their peculiar character

A. Severny

1964-01-01

91

Magnetic fields in protoplanetary disks  

E-print Network

Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary discs. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface, and magnetically-driven mixing has implications for disk chemistry and evolution of the grain population. However, the weak ionisation of protoplanetary discs means that magnetic fields may not be able to effectively couple to the matter. I present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas. For a standard population of 0.1 micron grains the active surface layers have a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated to 3 microns the active surface density is 80 g/cm^2. In the absence of grains, x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150 g/cm^2). At 5 AU the entire disk thickness becomes active once grains have aggregated to 1 micron in size.

Mark Wardle

2007-04-07

92

A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation  

NASA Astrophysics Data System (ADS)

We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27?989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap and to provide a program which allows users to calculate as comprehensively as possible energies, wavelengths, and oscillator strengths of medium-Z atoms and ions up to Z=26 in neutron star magnetic field strengths. Obviously, the method for achieving this goal must be highly efficient since for the calculation of synthetic spectra data of many thousands or even millions of atomic transitions may be required. Solution method: As in previous work on the problem (cf. [3,7]) we exploit the fact that a strong magnetic field results in an approximate decoupling of the dynamics of the electrons parallel and perpendicular to the field. In this adiabatic approximation the single-particle wave functions take the form: ?(?,?,z)=?(?,?)?P(z), where ?(?,?) are Landau wave functions, describing the (fast) motion perpendicular to the field, and the P(z) are the longitudinal wave functions, describing the (slow) bound motion along the direction of the field. The spins of the electrons are all aligned antiparallel to the magnetic field and need not be accounted for explicitly. The total N-electron wave function is constructed as a Slater determinant of the single-particle wave functions, and the unknown longitudinal wave functions are determined from the Hartree-Fock equations, which follow from inserting the total N-electron wave function into Schrödinger's variational principle for the total energy. The novel feature of our approach [8] is to use finite-element and B-spline techniques to solve the Hartree-Fock equations for atoms in strong magnetic fields. This is accomplished through the following steps: 1) decomposition of the z-axis into finite elements with quadratically widening element borders; 2) sixth-order B-spline expansion of the single-particle wave functions on the individual finite elements; 3) formulation of the variational principle equivalent to the Hartree-Fock equations in terms of the expansion coefficients. This leads to a simple system of linear equations for the expansion coefficients, which is solved numerically, and, since the direct and

Engel, D.; Klews, M.; Wunner, G.

2009-02-01

93

A highly optimized code for calculating atomic data at neutron star magnetic field strengths using a doubly self-consistent Hartree-Fock-Roothaan method  

NASA Astrophysics Data System (ADS)

Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comp. Phys. Comm. 180, 3-2-311 (2009)] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error) and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78, 032515 (2008)].

Schimeczek, C.; Engel, D.; Wunner, G.

2014-05-01

94

Magnetic Field Problem: Current  

NSDL National Science Digital Library

A cross section of a circular wire loop carrying an unknown current is shown above. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You can double-click in the animation to add magnetic field lines, click-drag the center of the loop to reposition it, and click-drag the top or bottom of the loop to change its size.

Wolfgang Christian

95

Studies of strong magnetic field produced by permanent magnet array for magnetic refrigeration  

NASA Astrophysics Data System (ADS)

The success of a room temperature magnetic refrigerator (RTMR) depends critically on two essential parts: a high magnetic field and a magnetic refrigerant material with large magnetocaloric effect. A carefully designed hollow cylindrical permanent magnet array (HCPMA) can be used to provide strong magnetic field in the cavity, the magnitude of the resulting static field can be even greater than the remanence magnetization of the magnets comprising a HCPMA. A thorough understanding of the magnetic field distribution will provide an invaluable insight into the design and optimization of HCPMA in the reciprocating and rotary RTMR systems. Here, we show a construction of a 16 piece HCPMA with realistic dimensions and we illustrate the mechanism of generating a high magnetic field in such device. We present an effective way to calculate the field distribution of a permanent magnet array with finite size and an unsymmetrical geometry. Furthermore, detailed numerical results of the magnetic field distribution and its dependence on device dimensions are presented.

Xu, X. N.; Lu, D. W.; Yuan, G. Q.; Han, Y. S.; Jin, X.

2004-06-01

96

Electrically silent magnetic fields.  

PubMed Central

There has been a significant controversy over the past decade regarding the relative information content of bioelectric and biomagnetic signals. In this paper we present a new, theoretical example of an electrically-silent magnetic field, based on a bidomain model of a cylindrical strand of tissue generalized to include off-diagonal components in the conductivity tensors. The physical interpretation of the off-diagonal components is explained, and analytic expressions for the electrical potential and the magnetic field are found. These expressions show that information not obtainable from electrical potential measurements can be obtained from measurements of the magnetic field in systems with conductivity tensors more complicated than those previously examined. PMID:3779008

Roth, B J; Wikswo, J P

1986-01-01

97

Space Quantization in a Gyrating Magnetic Field  

Microsoft Academic Search

The nonadiabatic transitions which a system with angular momentum J makes in a magnetic field which is rotating about an axis inclined with respect to the field are calculated. It is shown that the effects depend on the sign of the magnetic moment of the system. We therefore have an absolute method for measuring the sign and magnitude of the

I. I. Rabi

1937-01-01

98

The magnetic field of an infinite solenoid  

NASA Astrophysics Data System (ADS)

We use the Biot-Savart law for filamentary currents to show that the magnetic field produced by an infinitely long straight strip of infinitesimal width carrying a uniform transverse surface current can be written in simple geometrical terms. We use this result to calculate the magnetic field of an infinite solenoid of arbitrary but uniform cross-sectional shape.

Espinosa, Olivier; Slusarenko, Viktor

2003-09-01

99

Magnetic Fields in Galaxies  

NASA Astrophysics Data System (ADS)

The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 ?G) and in central starburst regions (50-100 ?G). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 ?G strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field ? -? dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos around edge-on galaxies out to large distances from the plane, with X-shaped patterns. In the outflow cone above a starburst region of NGC 253, RM data indicate a helical magnetic field.

Beck, Rainer

100

Solar magnetic fields and convection. IX - A primordial magnetic field  

Microsoft Academic Search

Observational evidence is reviewed in an attempt to decide between a reversing (dynamo) and a nonreversing primordial solar poloidal magnetic field. The data examined include Zeeman-effect measurements, measurements of gross magnetic fluxes in individual magnetic elements, determinations of average field strength, observations of polar-cap magnetic fields, eclipse observations of coronal structure, and observations of interplanetary-magnetic-field polarity reversals. It is suggested

J. H. Piddington

1977-01-01

101

Subnanosecond magnetization dynamics induced by a pulsed magnetic field in diluted magnetic semiconductor quantum wells  

NASA Astrophysics Data System (ADS)

The magnetization dynamics induced by a pulsed magnetic field is investigated by time- and polarization-resolved photoluminescene measurements in (Cd,Mn)Te/(Cd,Mg)Te quantum wells. The magnetization dynamics of Mn2+ ions is found to be strongly dependent on the external static magnetic field. A dynamical response of the magnetization on a subnanosecond time scale is observed at zero static magnetic field, while it drastically slows down and approaches the spin-lattice relaxation time constant for a nonzero static field. Theoretical calculations emphasize the importance of local spin interactions that interplay with the Zeeman interaction for the observed magnetization dynamics.

Chen, Y. S.; Wiater, M.; Karczewski, G.; Wojtowicz, T.; Bacher, G.

2013-04-01

102

Designing magnets with prescribed magnetic fields  

NASA Astrophysics Data System (ADS)

We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

Liu, Liping

2011-03-01

103

High field superconducting magnets  

NASA Technical Reports Server (NTRS)

A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

2011-01-01

104

A highly optimized code for calculating atomic data at neutron star magnetic field strengths using a doubly self-consistent Hartree-Fock-Roothaan method  

NASA Astrophysics Data System (ADS)

Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comput. Phys. Comm. 180 (2009) 302-311] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error), and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code, and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78 (2008) 032515]. New version program summaryProgram title: HFFER II Catalogue identifier: AECC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: v 55 130 No. of bytes in distributed program, including test data, etc.: 293 700 Distribution format: tar.gz Programming language: Fortran 95 Computer: Cluster of 1-13 HP Compaq dc5750 Operating system: Linux Has the code been vectorized or parallelized?: Yes, parallelized using MPI directives. RAM: 1 GByte per node Classification: 2.1 External routines: MPI/GFortran, LAPACK, BLAS, FMlib (included in the package) Catalogue identifier of previous version: AECC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 302 Does the new version supersede the previous version?: Yes Nature of problem: Quantitative modellings of features observed in the X-ray spectra of isolated magnetic neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product, iron, at strong magnetic field strengths. Our code is intended to provide a powerful tool for calculating energies and oscillator strengths of medium-Z atoms and ions at neutron star magnetic field strengths with sufficient accuracy in a routine way to create such databases. Solution method: The Slater determinants of the atomic wave functions are constructed from single-particle orbitals

Schimeczek, C.; Engel, D.; Wunner, G.

2012-07-01

105

The Magnetic Field of Helmholtz Coils  

ERIC Educational Resources Information Center

Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

Berridge, H. J. J.

1975-01-01

106

Nuclear Magnetic Resonance and Magnetic Field Measurements  

NSDL National Science Digital Library

This laboratory is designed for students to become familiar with the principles and detection techniques of Nuclear Magnetic Resonance (NMR), examine the relationship between current and magnetic field in an electromagnet, and gain experience in the use of magnetic field measurement techniques.

2012-01-04

107

Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind  

NASA Technical Reports Server (NTRS)

The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

Burlaga, L. F.; Barouch, E.

1974-01-01

108

The Earth's Magnetic Field  

NSDL National Science Digital Library

This section of the Windows to the Universe website provides information and images about Earth's magnetic field (the magnetosphere), including detailed information about the aurora borealis, magnets, and solar wind. Windows to the Universe is a user-friendly learning system pertaining to the Earth and Space sciences. The objective of this project is to develop an innovative and engaging website that includes a rich array of documents, including images, movies, animations, and data sets that explore the Earth and Space sciences and the historical and cultural ties between science, exploration and the human experience. Links at the top of each page allow users to navigate between beginner, intermediate and advanced levels.

Johnson, Roberta

2000-07-01

109

Measurements of magnetic field strength on T Tauri stars ?  

Microsoft Academic Search

We have investigated the magnetic field strength of one weak-line and four classical T Tauri stars. The magnetic field strength is derived from the differential change of the equivalent width of photospheric Fei lines in the presence of a magnetic field, calculated using a full radiative transfer code. The method was successfully tested by applying it to a non- magnetic

Eike W. Guenther; Holger Lehmann; James P. Emerson

110

Measurements of magnetic field strength on T Tauri stars  

Microsoft Academic Search

We have investigated the magnetic field strength of one weak-line and four classical T Tauri stars. The magnetic field strength is derived from the differential change of the equivalent width of photospheric Fe I lines in the presence of a magnetic field, calculated using a full radiative transfer code. The method was successfully tested by applying it to a non-magnetic

Eike W. Guenther; Holger Lehmann; James P. Emerson; Jürgen Staude

1999-01-01

111

Parity of the Solar Magnetic Fields and Related Astrophysical Phenomena  

Microsoft Academic Search

The cumulative contribution of odd (Bo) and even (BE) parity zonal magnetic multipoles to the solar magnetic fields is calculated using spherical harmonic coefficients of the photospheric magnetic field for the years 1959-1985. The dominant parity of the solar magnetic field is shown to change from odd to even during every sunspot cycle. The association of variations of Bo and

G. Gopkumar; T. E. Girish

2010-01-01

112

Coulomb crystals in the magnetic field.  

PubMed

The body-centered-cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic-field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields B > or approximately equal 10(14) G ). The effect of the magnetic field on ion displacements in a strongly magnetized neutron star crust can suppress the nuclear reaction rates and make them extremely sensitive to the magnetic-field direction. PMID:19905459

Baiko, D A

2009-10-01

113

Mars Observer magnetic fields investigation  

Microsoft Academic Search

The magnetic fields experiment designed for the Mars Observer mission will provide definitive measurements of the Martian magnetic field from the transition and mapping orbits planned for the Mars Observer. The paper describes the instruments (which include a classical magnetometer and an electron reflection magnetometer) and techniques designed to investigate the nature of the Martian magnetic field and the Mars-solar

J. E. P. Connerney; P. Wasilewski; R. P. Lin; K. A. Anderson; C. W. Carlson; J. McFadden; D. W. Curtis; H. Reme; A. Cros; J. L. Médale; J. A. Sauvaud; C. d'Uston; S. J. Bauer; P. Cloutier; Michael Mayhew; N. F. Ness

1992-01-01

114

The WIND magnetic field investigation  

Microsoft Academic Search

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and

R. P. Lepping; M. H. Ac?na; L. F. Burlaga; W. M. Farrell; J. A. Slavin; K. H. Schatten; F. Mariani; N. F. Ness; F. M. Neubauer; Y. C. Whang; J. B. Byrnes; R. S. Kennon; P. V. Panetta; J. Scheifele; E. M. Worley

1995-01-01

115

Magnetic field switchable dry adhesives.  

PubMed

A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field. PMID:25588470

Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

2015-02-01

116

Five years of magnetic field management  

SciTech Connect

The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors` experiences and shows the results of the specific projects completed in recent years.

Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

1995-01-01

117

The internal magnetic field distribution and the diameters of solar magnetic elements  

Microsoft Academic Search

A diagnostic is proposed for the horizontal distribution and vertical gradient of the magnetic field with spatially unresolved solar magnetic elements. Radiative transfer calculations are conducted to model the magnetic field structure, which is fitted to observational data from a Fourier transform spectrometer. It is found that a vertical gradient of the magnetic field strength must be present in solar

I. Zayer; S. K. Solanki; J. O. Stenflo

1989-01-01

118

Fast superconducting magnetic field switch  

SciTech Connect

The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

Goren, Y.; Mahale, N.K.

1995-12-31

119

Nuclear magnetic resonance in magnets with a helicoidal magnetic structure in an external magnetic field  

NASA Astrophysics Data System (ADS)

In this review, the static and dynamic properties of a magnet with a helicoidal magnetic structure placed in an external magnetic field are discussed. The results of the investigation of its ground state and spectra, as well as the amplitudes of the spin excitations are presented. The temperature and field dependences of the basic thermodynamic characteristics (heat capacity, magnetization, and magnetic susceptibility) have been calculated in the spin-wave approximation. The results of calculating the local and integral dynamic magnetic susceptibility are given. This set of data represents a methodical basis for constructing a consistent (in the framework of unified approximations) picture of the NMR absorption in the magnet under consideration. Both local NMR characteristics (resonance frequency, line broadening, enhancement coefficient) and integral characteristics (resultant shape of the absorption line with its specific features) have been calculated. The effective Hamiltonian of the Suhl-Nakamura interaction of nuclear spins through spin waves has been constructed. The second moment and the local broadening of the line of the NMR absorption caused by this interaction have been calculated. The role of the basic local inhomogeneities in the formation of the integral line of the NMR absorption has been analyzed. The opportunities for the experimental NMR investigations in magnets with a chiral spin structure are discussed.

Tankeyev, A. P.; Borich, M. A.; Smagin, V. V.

2014-11-01

120

Magnetic field of the Earth  

NASA Astrophysics Data System (ADS)

The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the period

Popov, Aleksey

2013-04-01

121

The CMS Magnetic Field Map Performance  

E-print Network

The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field values. The value of the field at a given point of a volume is obtained by interpolation from a regular grid of values resulting from a TOSCA calculation or, when available, from a parameterization. The results of the measurements and calculations are presented, compared and discussed.

V. I. Klyukhin; N. Amapane; V. Andreev; A. Ball; B. Curé; A. Hervé; A. Gaddi; H. Gerwig; V. Karimaki; R. Loveless; M. Mulders; S. Popescu; L. I. Sarycheva; T. Virdee

2011-10-04

122

Photonic Magnetic Field Sensor  

NASA Astrophysics Data System (ADS)

Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

Wyntjes, Geert

2002-02-01

123

The Heliospheric Magnetic Field  

NASA Astrophysics Data System (ADS)

The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

Owens, Mathew J.; Forsyth, Robert J.

2013-11-01

124

Field Mapping System for Solenoid Magnet  

NASA Astrophysics Data System (ADS)

A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

2007-01-01

125

Magnetic Propeller for Uniform Magnetic Field Levitation  

E-print Network

Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

Mark Krinker; Alexander Bolonkin

2008-07-12

126

Anisotropy of magnetic susceptibility measured in variable weak magnetic fields  

NASA Astrophysics Data System (ADS)

Theory of the low-field anisotropy of magnetic susceptibility (AMS) of rocks is based on the assumption of the linear relationship between magnetization and magnetizing field, resulting in field independent susceptibility. This relationship is by definition valid in diamagnetic and paramagnetic minerals, while in ferrimagnetic and antiferromagnetic minerals this relationship is in general non-linear (represented by hysteresis loop), being linear only in very weak fields in which the initial susceptibility is measured. Among these minerals, magnetite shows no field variation of susceptibility and its anisotropy in the low fields used in common AMS meters. In pyrrhotite, hematite and titanomagnetite bearing rocks, in which these minerals are very fine-grained, the field variation of susceptibility is insignificant. Using linear theory in calculating the AMS is fully legitimate in all these cases. In pyrrhotite, hematite, and titanomagnetite bearing rocks, in which these minerals are relatively coarse-grained (typically hundreds of micrometers), clear field variation of magnetic susceptibility may exist even in the low fields used in common AMS meters, often resulting in bad fit of the susceptibility tensor to the measured data. Strictly speaking, linear theory in calculating the AMS is in general incorrect in this case. The KLY-3S Kappabridge has been modified in such a way to enable AMS measurement also in the fields down to 3 A/m. Examples are shown of the effect of this field decrease on the measured data.

Pokorny, J.; Suza, P.; Hrouda, F.

2003-04-01

127

Eddy-current-induced multipole field calculations.  

SciTech Connect

Time-varying magnetic fields of magnets in booster accelerators induce substantial eddy currents in the vacuum chambers. The eddy currents in turn act to produce various multipole fields that act on the beam. These fields must be taken into account when doing a lattice design. In the APS booster, the relatively long dipole magnets (3 meters) are linearly ramped to accelerate the injected 325 MeV beam to 7 GeV. Substantial dipole and sextupole fields are generated in the elliptical vacuum chamber from the induced eddy currents. In this note, formulas for the induced dipole and sextupole fields are derived for elliptical and rectangular vacuum chambers for a time-varying dipole field. A discussion is given on how to generalize this derivation method to include eddy-current-induced multipole fields from higher multipole magnets (quadrupole, sextupole, etc.). Finally, transient effects are considered.

Sereno, N. S.; Kim, S. H.

2003-10-15

128

Fast superconducting magnetic field switch  

DOEpatents

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01

129

Fast superconducting magnetic field switch  

DOEpatents

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

Goren, Y.; Mahale, N.K.

1996-08-06

130

[Magnetic fields and fish behavior].  

PubMed

In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25508098

2013-01-01

131

[Magnetic fields and fish behavior].  

PubMed

In the review, contemporary data on the influence of natural and artificial magnetic fields on fish behavior are considered. In this regard, elasmobranchs and teleosts appear to be studied most exhaustively. Elasmobranchs and some teleosts are able to perceive magnetic fields via electroreceptors. A number of teleosts can sense magnetic fields via sensory cells containing crystals of biogenic magnetite. Laboratory experiments and field observations indicate the influence of magnetic fields on fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. Besides, artificial magnetic fields and natural fluctuations of the geomagnetic field can affect fish embryos leading to alterations in their development. It is suggested that, afterwards, these alterations can have an effect on fish behavior. PMID:25438567

Krylov, V V; Iziumov, Iu G; Izvekov, E I; Nepomniashchikh, V A

2013-01-01

132

Exposure guidelines for magnetic fields  

SciTech Connect

The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

Miller, G.

1987-12-01

133

The Magnetic Field of the Quiet-Time Proton Belt  

Microsoft Academic Search

The distortion of the earth's magnetic field produced by the proton belt is dis- cussed. The magnetic field is calculated numerically, to a first approximation, for an analogous model belt in a steady state. It is estimated that in the equatorial plane, at the earth's surface, the magnetic field produced by this belt is of the order of 38 ?.

Syun-Ichi Akasofu; Joseph C. Cain; Sydney Chapman

1962-01-01

134

Magnetic fields in massive stars  

E-print Network

Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

S. Hubrig

2007-03-09

135

Magnetostatic potential theory and the lunar magnetic dipole field  

NASA Technical Reports Server (NTRS)

The lunar magnetic dipole moment is discussed. It is proposed that if a primordial core magnetic field existed, it would give rise to a present day nonzero external dipole magnetic field. This conclusion is based on the assumption that the lunar mantle is at least slightly ferromagnetic, and thus would maintain a permanent magnetization after the disappearance of the core magnetic field. Using a simple mathematical model of the moon, calculations are performed which support this hypothesis.

Goldstein, M. L.

1975-01-01

136

Calculation of free energy of three-dimensional uniaxial magnet in external field based on the higher non-Gaussian distribution  

NASA Astrophysics Data System (ADS)

The analytical calculation of the free energy of a three-dimensional Ising-like system in a homogeneous external field is performed in the higher non-Gaussian approximation (the ?6 model) at temperatures above the critical value of Tc (Tc is the phase-transition temperature in the absence of an external field). The free energy of the system is found by separating the contributions from the short- and long-wave spin-density oscillation modes taking into account the generalized point of exit of the system from the critical regime as a function of both the temperature and field variables. A calculation technique is based on the first principles of statistical physics and is naturally realized without any general assumptions and without any adjustable parameters. The obtained expression for the free energy does not involve series expansions in the scaling variable and is valid near the critical point not only in the regions of the so-called weak and strong external fields but also in the crossover region between these fields. In this region, the temperature and field effects on the system are equivalent, the scaling variable is of the order of unity and power series are not efficient. The free energy contains the leading terms and terms determining the temperature and field confluent corrections.

Pylyuk, I. V.; Kozlovskii, M. P.

2009-12-01

137

Mean-field theory for Bose-Hubbard model under a magnetic field  

SciTech Connect

We consider the superfluid-insulator transition for cold bosons under an effective magnetic field. We investigate how the applied magnetic field affects the Mott transition within mean-field theory and find that the critical hopping strength (t/U){sub c} increases with the applied field. The increase in the critical hopping follows the bandwidth of the Hofstadter butterfly at the given value of the magnetic field. We also calculate the magnetization and superfluid density within mean-field theory.

Oktel, M. Oe.; Tanatar, B. [Department of Physics, Bilkent University, 06800 Bilkent, Ankara (Turkey); Nita, M. [Institute of Physics and Technology of Materials, P.O. Box MG7, Bucharest-Magurele (Romania)

2007-01-15

138

Ferrofilm in a magnetic field  

NASA Astrophysics Data System (ADS)

A vertically draining thin ferrofilm under the influence of gravity and a nonuniform magnetic field is considered. It is observed experimentally that the presence of the magnetic field greatly alters the drainage of the film. A mathematical model is developed to describe the behavior. Experiments are conducted for multiple magnetic field configurations. The model is solved for two different sets of boundary conditions and results are compared to experiments. It is shown that the magnetic field structure, the concentration of magnetite in the solution, and the boundary conditions all have noticeable affects on the evolution of the thinning film. Good qualitative agreement between the model and the experiments is observed.

Back, Randy; Beckham, J. Regan

2012-10-01

139

External-field-free magnetic biosensor  

SciTech Connect

In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm?×?200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2014-03-24

140

External-field-free magnetic biosensor  

NASA Astrophysics Data System (ADS)

In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 ?l magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

2014-03-01

141

Self-consistent calculation of spin transport and magnetization dynamics  

NASA Astrophysics Data System (ADS)

A spin-polarized current transfers its spin-angular momentum to a local magnetization, exciting various types of current-induced magnetization dynamics. So far, most studies in this field have focused on the direct effect of spin transport on magnetization dynamics, but ignored the feedback from the magnetization dynamics to the spin transport and back to the magnetization dynamics. Although the feedback is usually weak, there are situations when it can play an important role in the dynamics. In such situations, simultaneous, self-consistent calculations of the magnetization dynamics and the spin transport can accurately describe the feedback. This review describes in detail the feedback mechanisms, and presents recent progress in self-consistent calculations of the coupled dynamics. We pay special attention to three representative examples, where the feedback generates non-local effective interactions for the magnetization after the spin accumulation has been integrated out. Possibly the most dramatic feedback example is the dynamic instability in magnetic nanopillars with a single magnetic layer. This instability does not occur without non-local feedback. We demonstrate that full self-consistent calculations generate simulation results in much better agreement with experiments than previous calculations that addressed the feedback effect approximately. The next example is for more typical spin valve nanopillars. Although the effect of feedback is less dramatic because even without feedback the current can make stationary states unstable and induce magnetization oscillation, the feedback can still have important consequences. For instance, we show that the feedback can reduce the linewidth of oscillations, in agreement with experimental observations. A key aspect of this reduction is the suppression of the excitation of short wavelength spin waves by the non-local feedback. Finally, we consider nonadiabatic electron transport in narrow domain walls. The non-local feedback in these systems leads to a significant renormalization of the effective nonadiabatic spin transfer torque. These examples show that the self-consistent treatment of spin transport and magnetization dynamics is important for understanding the physics of the coupled dynamics and for providing a bridge between the ongoing research fields of current-induced magnetization dynamics and the newly emerging fields of magnetization-dynamics-induced generation of charge and spin currents.

Lee, Kyung-Jin; Stiles, M. D.; Lee, Hyun-Woo; Moon, Jung-Hwan; Kim, Kyoung-Whan; Lee, Seo-Won

2013-10-01

142

Theory of fossil magnetic field  

NASA Astrophysics Data System (ADS)

Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.

Dudorov, Alexander E.; Khaibrakhmanov, Sergey A.

2015-02-01

143

Cosmic Magnetic Fields - An Overview  

NASA Astrophysics Data System (ADS)

Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

Wielebinski, Richard; Beck, Rainer

144

Measurements of magnetic field alignment  

SciTech Connect

The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

Kuchnir, M.; Schmidt, E.E.

1987-11-06

145

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Structure of Magnetic  

E-print Network

CHAPTER 3. STRUCTURE OF MAGNETIC FIELDS 1 Chapter 3 Structure of Magnetic Fields Many of the most interesting plasmas are permeated by or imbedded in magnetic fields.1 As shown in Fig. 3.1, the magnetic field properties of magnetic fields in plasmas can be discussed without specifying a model for the plasma

Callen, James D.

146

Distortion of magnetic field and magnetic force of a brushless dc motor due to deformed rubber magnet  

NASA Astrophysics Data System (ADS)

This paper investigates the distortion of magnetic field of a brushless dc (BLDC) motor due to deformed rubber magnet. Global or local deformation of rubber magnet in the BLDC motor is mathematically modeled by using the Fourier series. Distorted magnetic field is calculated by using the finite element method, and unbalanced magnetic force is calculated by using the Maxwell stress tensor. When the rubber magnet is globally or locally deformed, the unbalanced magnetic force has the frequencies with the first harmonic and the harmonics of slot number ±1. However, the harmonic deformation with multiple of common divisor of pole and slot does not generate unbalanced magnetic force due to the rotational symmetry.

Lee, C. J.; Jang, G. H.

2008-04-01

147

Magnetic Field Problem: Measuring Current  

NSDL National Science Digital Library

A cross section of two circular wire loops carrying the exact same current is shown above (position given in centimeters and magnetic field given in milli-Tesla). You can click-drag to read the magnitude of the magnetic field.

Christian, Wolfgang; Belloni, Mario

2007-03-03

148

Studies of solar magnetic fields  

Microsoft Academic Search

An estimate of the average magnetic field strength at the poles of the Sun from Mount Wilson measurements is made by comparing low latitude magnetic measurements in the same regions made near the center of the disk and near the limb. There is still some uncertainty because the orientation angle of the field lines in the meridional plane is unknown,

Robert Howard

1977-01-01

149

Numerical Object Oriented Quantum Field Theory Calculations  

E-print Network

The qft++ package is a library of C++ classes that facilitate numerical (not algebraic) quantum field theory calculations. Mathematical objects such as matrices, tensors, Dirac spinors, polarization and orbital angular momentum tensors, etc. are represented as C++ objects in qft++. The package permits construction of code which closely resembles quantum field theory expressions, allowing for quick and reliable calculations.

M. Williams

2009-05-07

150

Flux buildup in field reversed configurations using rotating magnetic fields  

NASA Astrophysics Data System (ADS)

Rotating magnetic field (RMF) current drive is a very attractive method for both increasing the flux and sustaining the current in field reversed configurations (FRC). It has been demonstrated in low temperature, low field rotamaks, and will now be applied to a new translation, confinement, and sustainment (TCS) experiment attached to the LSX/mod (Large s field-reversed configuration Experiment) facility [Hoffman et al. Fusion Technol. 23, 185 (1993)]. Previous RMF calculations have been concerned primarily with the plasma currents and particle orbits produced in one-dimensional cylinders with the rotating field strength of near equal magnitude to the confining axial field. Both fluid current and particle orbits are calculated here in the more interesting regime appropriate to TCS and reactors where the confinement field far exceeds the rotating field strength. New insight is gained into both the flux buildup requirements for two-dimensional equilibria and into the limits on ion rotation in this high confinement field regime.

Hoffman, Alan L.

1998-04-01

151

Iron Electrode Potential in a Magnetic Field  

Microsoft Academic Search

REFERENCE is made in text-books on magnetism to experiments by Paillot1 and others in which potential differences such as 0.05 volt for 30,000 gauss were obtained between an iron electrode in the field and another which is not. It seems, however, that one should expect only the much smaller potential difference calculable by equating the magnetic energy change involved per

A. L. Parson

1942-01-01

152

Tachyon Condensation: Calculations in String Field Theory  

E-print Network

In this Ph.D. thesis, we study tachyon condensation in string field theories. In chapter 2, we review Witten's bosonic string field theory and calculate the tachyon potential. In chapter 3, we calculate the tachyon potential in Berkovits' superstring field theory. In chapter 4, we look for exact solutions in a toy model. Unpublished result: we use conservation laws to calculate the level (4,8) approximation of the tachyon potential in Berkovits' superstring field theory. We verify Sen's conjecture up to 94.4%.

Pieter-Jan De Smet

2001-09-24

153

Solar magnetic fields and convection  

Microsoft Academic Search

The solar magnetic fields observed in active regions and their residues are thought to be parts of toroidal field systems renewed every 11-yr cycle from a poloidal field. The latter may be either a reversing (dynamo) field or a non-reversing, primordial field. The latter view was held for some 70 yr, but the apparent reversals of the polar-cap fields in

J. H. Piddington

1977-01-01

154

The study on the magnetic field effect and the microwave effect on the photoconductivity observed in the photolysis of N, N, N', N'-tetramethyl- p-phenylenediamine: theoretical calculation trial by the stochastic Liouville equation  

NASA Astrophysics Data System (ADS)

The magnetic field effect on the photoconductivity and photoconductivity detected magnetic resonance spectra observed in the photoionization system of N, N, N', N'-tetramethyl- p-phenylenediamine (TMPD) in alcohol are analyzed by the numerical calculation. The stochastic Liouville equation is applied to the study of the dynamics of the transiently formed radical-ion pair (RIP). We succeeded in estimating the appropriate physical parameters according to the simulation of the line-width and the other observed phenomena. However, we realized that a new model, the formation of a cluster-like network structure between the RIP and the solvent molecules, should be introduced, because the calculation of the RIP dynamics in homogeneous solutions cannot reproduce the experimental results of the viscosity dependence.

Kitahama, Yasutaka; Murai, Hisao

1998-12-01

155

PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS  

SciTech Connect

Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.

Yamamoto, Tetsuya T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan); Kusano, K., E-mail: tyamamot@stelab.nagoya-u.ac.jp [Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Kanagawa 236-0001 (Japan)

2012-06-20

156

Thermometers in Low Magnetic Fields  

NASA Astrophysics Data System (ADS)

In this article the effect of low amplitude DC magnetic fields on different types of thermometers is discussed. By means of a precision water-cooled electromagnet, the effect of a magnetic field on platinum resistance thermometers, thermistors, and type T, J, and K thermocouples was investigated, while thermometers were thermally stabilized in thermostatic baths. Four different baths were used for temperatures from 77 K (-196 °C) to 353 K (80 °C): liquid nitrogen bath (nitrogen boiling point at atmospheric pressure), ice-point bath, room-temperature air bath, and hot-water bath. The generated DC magnetic field of high relative precision (2 × 10-4 at 1 T, 4 × 10-5 short-term stability) and high relative uniformity (2 × 10-5 over 1 cm2, 10 mm gap) had a magnetic flux density of 1 T in the center of the gap between the magnet pole caps. The results indicate a magnetic effect of up to 100 mK due to a 1 T magnetic field for the types of thermocouples composed of ferromagnetic materials (Fe, Cr, Ni). For platinum resistance thermometers, thermistors, and non-magnetic type T thermocouples, the detected magnetic effect was weaker, i.e., under 10 mK.

Geršak, G.; Beguš, S.

2010-09-01

157

Low-Magnetic-Field Magnetars  

NASA Astrophysics Data System (ADS)

It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these "magnetar candidates" exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (? 4.4×1013 G). The recent discovery of fully qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.

Turolla, Roberto; Esposito, Paolo

2013-11-01

158

Resonant magnetic fields from inflation  

SciTech Connect

We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of O(10{sup ?15} Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

Byrnes, Christian T. [CERN, PH-TH Division, CH-1211, Genève 23 (Switzerland); Hollenstein, Lukas; Jain, Rajeev Kumar [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24, Quai Ernest Ansermet, CH-1211 Genève 4 (Switzerland); Urban, Federico R., E-mail: cbyrnes@cern.ch, E-mail: lukas.hollenstein@unige.ch, E-mail: rajeev.jain@unige.ch, E-mail: urban@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada)

2012-03-01

159

Investigating Magnetic Force Fields  

NSDL National Science Digital Library

In this classroom activity, the students will investigate the magnetic pull of a bar magnet at varying distances with the use of paper clips. Students will hypothesize, conduct the experiment, collect the data, and draw conclusions that support their data. Each student will record the experiment and their findings in their science journals. As a class, students will compare each groups' data and their interpretation of the results.

Daryl ("Tish") Monjeau, Bancroft Elementary School, Minneapolis, MN

2012-03-18

160

Preface: Cosmic magnetic fields  

NASA Astrophysics Data System (ADS)

Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.

Kosovichev, Alexander

2015-02-01

161

The magnetic field of Canopus  

Microsoft Academic Search

Zeeman spectrograms taken at the ESO in 1978 for Canopus (F0 Ib-II) confirm the presence of the weak magnetic field detected by Schermann (1977) and Rakosch et al. (1977), and a new period of 6.90 days for the Canopus magnetic field variation is proposed. It is noted that with the MSHIFT-technique (Weiss et al., 1978) the plate-mean Zeeman shifts can

W. W. Weiss

1986-01-01

162

Solar magnetic fields and convection  

Microsoft Academic Search

The flux-rope model of solar magnetic fields is developed further by the use of a variety of observational results.(i)It is confirmed that magnetic fields emerging to form active regions are already in the form of helically twisted flux ropes.(ii)A flux rope is not a homogeneous structure but is made up of hundreds or thousands of flux fibres. These are individually

J. H. Piddington

1976-01-01

163

Magnetic Field Created by Tile Permanent R. Ravaud, G. Lemarquand, V. Lemarquand  

E-print Network

1 Magnetic Field Created by Tile Permanent Magnets R. Ravaud, G. Lemarquand, V. Lemarquand Abstract1 This paper presents the analytical calculation of the three components of the magnetic field created by2 tile permanent magnets whose magnetization is either radial or axial. The calculations

Boyer, Edmond

164

Magnetic field induced dynamical chaos  

SciTech Connect

In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra, E-mail: bidhanchandra.bag@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati, Santiniketan 731 235 (India)

2013-12-15

165

Numerical simulation of graphene in an external magnetic field  

NASA Astrophysics Data System (ADS)

In this paper the results of numerical simulation of graphene effective field theory in external magnetic field are presented. The numerical simulation is performed using noncompact (3+1)-dimensional Abelian lattice gauge fields and (2+1)-dimensional staggered lattice fermions. The dependences of fermion condensate and conductivity on the dielectric permittivity of the substrate for different values of external magnetic field are calculated. It is found that magnetic field shifts insulator-semimetal phase transition to larger values of the dielectric permittivity of the substrate. The phase diagram of graphene in external magnetic field is drawn.

Boyda, D. L.; Braguta, V. V.; Valgushev, S. N.; Polikarpov, M. I.; Ulybyshev, M. V.

2014-06-01

166

Calculated Vertical Cutoff Rigidities for the International Space Station During Magnetically Quiet Times  

Microsoft Academic Search

We have calculated a world grid of cosmic ray cutoff rigidities each 5 degrees in latitude and 15 degrees in longitude at 450 km altitude. The geomagnetic cutoff rigidity values have been calculated employing the Tsyganenko magnetic field model combined with the International Geomagnetic Reference Field for 1995.0 The cutoff values were calculated by the trajectory-tracing method for particles arriving

Don Smart; M. A. Shea; E. O. Flückiger

1999-01-01

167

Graphene transparency in weak magnetic fields  

NASA Astrophysics Data System (ADS)

We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity B perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order (eB)2, where e is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is irradiated with monochromatic light of frequency ? along the external field direction, from the modified Maxwell equations we derive the intensity of transmitted light. Corrections to this quantity, both calculated and measured, are of the order of (eB)2/?4. Our findings generalize and complement previously known results reported in the literature regarding the light absorption problem in graphene from the experimental and theoretical points of view, with and without external magnetic fields.

Valenzuela, David; Hernández-Ortiz, Saúl; Loewe, Marcelo; Raya, Alfredo

2015-02-01

168

Damping of cosmic magnetic fields  

SciTech Connect

We examine the evolution of magnetic fields in an expanding fluid composed of matter and radiation with particular interest in the evolution of cosmic magnetic fields. We derive the propagation velocities and damping rates for relativistic and non-relativistic fast and slow magnetosonic and Alfv{acute e}n waves in the presence of viscous and heat conducting processes. The analysis covers all magnetohydrodynamics modes in the radiation diffusion and the free-streaming regimes. When our results are applied to the evolution of magnetic fields in the early universe, we find that cosmic magnetic fields are damped from prior to the epoch of neutrino decoupling up to recombination. Similar to the case of sound waves propagating in a demagnetized plasma, fast magnetosonic waves are damped by radiation diffusion on all scales smaller than the radiation diffusion length. The characteristic damping scales are the horizon scale at neutrino decoupling (M{sub {nu}}{approx}10{sup {minus}4}M{sub {circle_dot}} in baryons) and the Silk mass at recombination (M{sub {gamma}}{approx}10{sup 13}M{sub {circle_dot}} in baryons). In contrast, the oscillations of slow magnetosonic and Alfv{acute e}n waves get overdamped in the radiation diffusion regime, resulting in frozen-in magnetic field perturbations. Further damping of these perturbations is possible only if before recombination the wave enters a regime in which radiation free-streams on the scale of the perturbation. The maximum damping scale of slow magnetosonic and Alfv{acute e}n modes is always smaller than or equal to the damping scale of fast magnetosonic waves, and depends on the magnetic field strength and its direction relative to the wave vector. Our findings have multifold implications for cosmology. The dissipation of magnetic field energy into heat during the epoch of neutrino decoupling ensures that most magnetic field configurations generated in the very early universe satisfy big bang nucleosynthesis constraints. Further dissipation before recombination constrains models in which primordial magnetic fields give rise to galactic magnetic fields or density perturbations. Finally, the survival of Alfv{acute e}n and slow magnetosonic modes on scales well below the Silk mass may be of significance for the formation of structure on small scales. {copyright} {ital 1998} {ital The American Physical Society}

Jedamzik, K. [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany)] [Max-Planck-Institut fuer Astrophysik, 85748 Garching bei Muenchen (Germany); Katalinic, V.; Olinto, A.V. [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)] [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637 (United States)

1998-03-01

169

Damping of cosmic magnetic fields  

NASA Astrophysics Data System (ADS)

We examine the evolution of magnetic fields in an expanding fluid composed of matter and radiation with particular interest in the evolution of cosmic magnetic fields. We derive the propagation velocities and damping rates for relativistic and non-relativistic fast and slow magnetosonic and Alfvén waves in the presence of viscous and heat conducting processes. The analysis covers all magnetohydrodynamics modes in the radiation diffusion and the free-streaming regimes. When our results are applied to the evolution of magnetic fields in the early universe, we find that cosmic magnetic fields are damped from prior to the epoch of neutrino decoupling up to recombination. Similar to the case of sound waves propagating in a demagnetized plasma, fast magnetosonic waves are damped by radiation diffusion on all scales smaller than the radiation diffusion length. The characteristic damping scales are the horizon scale at neutrino decoupling (M?~10-4Msolar in baryons) and the Silk mass at recombination (M?~1013Msolar in baryons). In contrast, the oscillations of slow magnetosonic and Alfvén waves get overdamped in the radiation diffusion regime, resulting in frozen-in magnetic field perturbations. Further damping of these perturbations is possible only if before recombination the wave enters a regime in which radiation free-streams on the scale of the perturbation. The maximum damping scale of slow magnetosonic and Alfvén modes is always smaller than or equal to the damping scale of fast magnetosonic waves, and depends on the magnetic field strength and its direction relative to the wave vector. Our findings have multifold implications for cosmology. The dissipation of magnetic field energy into heat during the epoch of neutrino decoupling ensures that most magnetic field configurations generated in the very early universe satisfy big bang nucleosynthesis constraints. Further dissipation before recombination constrains models in which primordial magnetic fields give rise to galactic magnetic fields or density perturbations. Finally, the survival of Alfvén and slow magnetosonic modes on scales well below the Silk mass may be of significance for the formation of structure on small scales.

Jedamzik, Karsten; Katalini?, Višnja; Olinto, Angela V.

1998-03-01

170

Semiconductor nanocrystals in a magnetic field  

NASA Astrophysics Data System (ADS)

The influence of a magnetic field on the electron and hole energy spectra of spherical uniform and multilayer semiconductor nanocrystals is investigated. The calculations are performed within the k.p method and envelope function approximation. The valence subband mixing is taken into account by considering a two-band Hamiltonian for the hole states. It is shown that the magnetic-field dependence of the energy spectrum varies strongly with the size and composition of the nanocrystals. Several interesting phenomena, like spatial polar separation of the one-electron charge density in quantum dot-quantum well structures or crossover from confinement in the external shell to the internal core in quantum dot-quantum barrier systems under the influence of a magnetic field are reported.

Planelles, J.; Díaz, J. G.; Climente, J.; Jaskólski, W.

2002-05-01

171

Constraints on a Primordial Magnetic Field  

SciTech Connect

We derive an upper limit of B{sub 0}{lt}3.4{times}10{sup -9}({Omega}{sub 0}h{sup 2}{sub 50}){sup 1/2} G on the present strength of any primordial homogeneous magnetic field. The microwave background anisotropy created by cosmological magnetic fields is calculated in the most general flat and open anisotropic cosmologies containing expansion-rate and 3-curvature anisotropies. Our limit is derived from a statistical analysis of the 4-year Cosmic Background Explorer (COBE) data for anisotropy patterns characteristic of homogeneous anisotropy averaged over all possible sky orientations with respect to the COBE receiver. The limits we obtain on homogeneous magnetic fields are stronger than those imposed by nucleosynthesis. {copyright} {ital 1997} {ital The American Physical Society}

Barrow, J.D.; Ferreira, P.G.; Silk, J. [Center for Particle Astrophysics, and Departments of Astronomy and Physics, University of California, Berkely, California 94720-7304 (United States)] [Center for Particle Astrophysics, and Departments of Astronomy and Physics, University of California, Berkely, California 94720-7304 (United States); Barrow, J.D. [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)] [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)

1997-05-01

172

Fossil magnetic field of accretion disks of young stars  

E-print Network

We elaborate the model of accretion disks of young stars with the fossil large-scale magnetic field in the frame of Shakura and Sunyaev approximation. Equations of the MHD model include Shakura and Sunyaev equations, induction equation and equations of ionization balance. Magnetic field is determined taking into account ohmic diffusion, magnetic ambipolar diffusion and buoyancy. Ionization fraction is calculated considering ionization by cosmic rays and X-rays, thermal ionization, radiative recombinations and recombinations on the dust grains. Analytical solution and numerical investigations show that the magnetic field is coupled to the gas in the case of radiative recombinations. Magnetic field is quasi-azimuthal close to accretion disk inner boundary and quasi-radial in the outer regions. Magnetic field is quasi-poloidal in the dusty "dead" zones with low ionization degree, where ohmic diffusion is efficient. Magnetic ambipolar diffusion reduces vertical magnetic field in 10 times comparing to the frozen-i...

Dudorov, A E

2014-01-01

173

Parity of the Solar Magnetic Fields and Related Astrophysical Phenomena  

E-print Network

The cumulative contribution of odd (Bo) and even (BE) parity zonal magnetic multipoles to the solar magnetic fields is calculated using spherical harmonic coefficients of the photospheric magnetic field for the years 1959-1985. The dominant parity of the solar magnetic field is shown to change from odd to even during every sunspot cycle. The association of variations of Bo and BE with different astrophysical phenomena such as magnetic reversal of solar polar magnetic fields, north-south asymmetry in sunspot activity and strength of the interplanetary magnetic field will be also discussed. Using solar observations we could infer that dominant parity of the solar magnetic field is changing from even to odd during the past 12 solar cycles when the solar activity is showing an increasing trend during this period.

G. Gopkumar; T. E. Girish

2010-12-16

174

IR photodetector based on rectangular quantum wire in magnetic field  

SciTech Connect

In this paper we study rectangular quantum wire based IR detector with magnetic field applied along the wires. The energy spectrum of a particle in rectangular box shows level repulsions and crossings when external magnetic field is applied. Due to this complex level dynamics, we can tune the spacing between any two levels by varying the magnetic field. This method allows user to change the detector parameters according to his/her requirements. In this paper, we numerically calculate the energy sub-band levels of the square quantum wire in constant magnetic field along the wire and quantify the possible operating wavelength range that can be obtained by varying the magnetic field. We also calculate the photon absorption probability at different magnetic fields and give the efficiency for different wavelengths if the transition is assumed between two lowest levels.

Jha, Nandan, E-mail: nandanj@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

2014-04-24

175

Smallscale Solar Magnetic Fields - an Overview  

Microsoft Academic Search

An overview is given of the observational and the theoretical methods used to investigate solar magnetic fields. It includes an introduction to the Stokes parameters, their radiative transfer in the presence of a magnetic field, and empirical techniques used to measure various properties of solar magnetic features, such as the strength and direction of the magnetic field, magnetic flux, temperature,

Sami K. Solanki

1993-01-01

176

Baryon magnetic moments in the background field method [rapid communication  

NASA Astrophysics Data System (ADS)

We present a calculation of the magnetic moments for the baryon octet and decuplet using the background-field method and standard Wilson gauge and fermion actions in the quenched approximation of lattice QCD. Progressively smaller static magnetic fields are introduced on a 244 lattice at beta = 6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the background field.

Lee, F. X.; Kelly, R.; Zhou, L.; Wilcox, W.

2005-10-01

177

Baryon magnetic moments in the external field method  

NASA Astrophysics Data System (ADS)

We present a calculation of the magnetic moments of the baryon octet and decuplet using the external field method and standard Wilson gauge and fermion actions in the quenched approximation. Progressively smaller static magnetic fields are introduced on a 24 4 lattice at beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the external field.

Lee, F. X.; Kelly, R.; Zhou, L.; Wilcox, W.

2005-03-01

178

Baryon magnetic moments in the external field method  

E-print Network

We present a calculation of the magnetic moments of the baryon octet and decuplet using the external field method and standard Wilson gauge and fermion actions in the quenched approximation. Progressively smaller static magnetic fields are introduced on a $24^4$ latticeat beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the external field.

F. X. Lee; R. Kelly; L. Zhou; W. Wilcox

2004-10-25

179

Maximum magnetic recording density and switching field distribution  

NASA Astrophysics Data System (ADS)

An analytical calculation of the parameters of magnetic recording on a square lattice of magnetic granules of the patterned medium has been carried out. The maximum density of the longitudinal and perpendicular recording, which is limited by the thermal instability of the magnetic state and by the magnetic dipole interaction of magnetic granules (bits), has been calculated. The switching field distribution function with the parameters determined by the magnetic dipole interaction of granules and their geometry has been determined for perpendicular recording on rod-shaped granules.

Meilikhov, E. Z.; Farzetdinova, R. M.

2014-12-01

180

Turbulent magnetic diffusivity tensor for time-dependent mean fields.  

PubMed

We reexamine the nature of the turbulent magnetic diffusivity tensor of mean field electrodynamics and show that the predicted growth rate of the mean field is, in general, incorrect if the tensor is calculated via consideration of time-independent mean magnetic fields. We describe how the traditional expansion procedure for the mean electromotive force should be extended to include time derivatives of the mean magnetic field, and illustrate the consistency of this approach by means of a perturbation analysis for a mean field varying on long spatial scales. Finally, we examine the magnitude of this new contribution to the magnetic diffusion for a particular flow. PMID:20366600

Hughes, David W; Proctor, Michael R E

2010-01-15

181

Analytical Calculation of Cubodal Magnet Interactions in 3D Jean-Paul YONNET and Hicham ALLAG  

E-print Network

Analytical Calculation of Cuboïdal Magnet Interactions in 3D Jean-Paul YONNET and Hicham ALLAG field ­ Material: Permanent Magnets Abstract : A synthesis of all the analytical expressions of all the interactions when the magnetizations are in any direction. The 3D analytical expressions

Paris-Sud XI, Université de

182

Observations of Mercury's magnetic field  

NASA Technical Reports Server (NTRS)

Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

1975-01-01

183

Calculation Method of Permanent Magnet Pickups for Electric Guitars  

E-print Network

1 Calculation Method of Permanent Magnet Pickups for Electric Guitars G. Lemarquand and V This paper first presents the structures of permanent magnet pickups for electric guitar and the considered device: string, magnet, coil. It then describes a method to calculate the induced electromotive force

Paris-Sud XI, Université de

184

Applied magnetic field design for the field reversed configuration compression heating experiment.  

PubMed

Detailed calculations of the formation, guide, and mirror applied magnetic fields in the FRC compression-heating experiment (FRCHX) were conducted using a commercially available generalized finite element solver, COMSOL Multiphysics(®). In FRCHX, an applied magnetic field forms, translates, and finally captures the FRC in the liner region sufficiently long to enable compression. Large single turn coils generate the fast magnetic fields necessary for FRC formation. Solenoidal coils produce the magnetic field for translation and capture of the FRC prior to liner implosion. Due to the limited FRC lifetime, liner implosion is initiated before the FRC is injected, and the magnetic flux that diffuses into the liner is compressed. Two-dimensional axisymmetric magnetohydrodynamic simulations using MACH2 were used to specify optimal magnetic field characteristics, and this paper describes the simulations conducted to design magnetic field coils and compression hardware for FRCHX. This paper presents the vacuum solution for the magnetic field. PMID:23635196

Domonkos, M T; Amdahl, D; Camacho, J F; Coffey, S K; Degnan, J H; Delaney, R; Frese, M; Gale, D; Grabowski, T C; Gribble, R; Intrator, T P; McCullough, J; Montano, N; Robinson, P R; Wurden, G

2013-04-01

185

Magnetic-field-induced kinetics of ferroelectric phase transitions  

NASA Astrophysics Data System (ADS)

The dynamics of ferroelectric interphase boundaries is studied in external magnetic fields. On the basis of the exact solution of the time-dependent Ginzburg-Landau equation the velocity of the interphase boundary and its width are calculated as functions of the applied magnetic field.

Gordon, A.; Wyder, P.

1992-09-01

186

Quark gap equation in an external magnetic field  

NASA Astrophysics Data System (ADS)

The nonperturbative quark gap equation under the rainbow truncation and with two versions of a phenomenological one-gluon exchange interaction is studied in the presence of a uniform external magnetic field, with emphasis on the small field limit. The chiral quark condensate, magnetic moment, and susceptibility are calculated and compared to recent lattice data.

Watson, P.; Reinhardt, H.

2014-02-01

187

Dynamical evolution of a solar coronal magnetic field arcade  

Microsoft Academic Search

Calculations of the long-term dynamical evolution of a solar coronal magnetic field arcade which is subjected to shearing photospheric flows are presented. The evolution is obtained by numerical solution of a subset of the resistive magnetohydrodynamic equations. For a simplified model of the bipolar magnetic field observed in the solar corona, it is found that photospheric flow produces a slow

Z. Mikic; D. C. Barnes; D. D. Schnack

1988-01-01

188

Pressure, chaotic magnetic fields, and magnetohydrodynamic equilibria S. R. Hudsona  

E-print Network

Pressure, chaotic magnetic fields, and magnetohydrodynamic equilibria S. R. Hudsona and N. Nakajima the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure and not suitable for numerical calculations. If the pressure and magnetic field are continuous, the only nontrivial

Hudson, Stuart

189

Magnetic Forces and Field Line Density  

NSDL National Science Digital Library

This is an activity about depicting the relative strength of magnetic fields using field line density. Learners will use the magnetic field line drawing of six magnetic poles created in a previous activity and identify the areas of strong, weak, and medium magnetic intensity using the density of magnetic field lines. This is the fifth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website. How to Draw Magnetic Fields - II in the Magnetic Math booklet must be completed prior to this activity.

190

Photospheric and coronal magnetic fields  

SciTech Connect

Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

Sheeley, N.R., Jr. (USAF, Geophysics Laboratory, Hanscom AFB, MA (United States))

1991-01-01

191

Self-Consistent Field Calculations Spreadsheet  

NSDL National Science Digital Library

A Self-Consistent Field Calculations Spreadsheet can help your students understand the self-consistent field (SCF) procedure, typically presented in an undergraduate physical chemistry course. The spreadsheet helps students easily perform SCF calculations on a two-electron atom and see graphically how the proper solution is obtained. It is also possible for more advanced students to apply this spreadsheet to more ambitious systems. The wave function for the two-electron atom is assumed to be a product of two identical one-electron orbital functions. The system is assumed to be a spin-singlet so that only the spatial functions need to be considered here. The SCF procedure involves two repeated steps. First, using a guess for the orbital function, an effective potential is generated. Second, with this effective potential, the differential equation for the orbital function is solved. The new orbital function is used to generate a new effective potential, which is then used to generate a newer orbital function. The procedure is repeated until successive orbital functions are considered to be close enough to each other. A Self-Consistent Field Calculations Spreadsheet file contains two spreadsheets. The first is the one described in the associated article (1). It performs the calculation with relatively simple approximations and numerical methods, and serves to illustrate the SCF procedure for the student. The second presents a more sophisticated calculation that may be of interest to more advanced students.

192

EXPLORER 10 MAGNETIC FIELD MEASUREMENTS  

Microsoft Academic Search

Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are

J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman

1963-01-01

193

Large-scale solar magnetic fields  

Microsoft Academic Search

Topics discussed in this review of large-scale solar magnetic fields include large-scale magnetic surface features, the solar activity cycle and the large-scale patterns, and magnetic fields in the corona. Features considered include the decay of active regions, the background field pattern, the polar fields, giant regular structures, expansion of the field in surface harmonics, and the average inclination of magnetic-field

R. Howard

1977-01-01

194

Electromagnetic radiation by quark-gluon plasma in magnetic field  

E-print Network

The electromagnetic radiation by quark-gluon plasma in strong magnetic field is calculated. The contributing processes are synchrotron radiation and one--photon annihilation. It is shown that in relativistic heavy--ion collisions at RHIC and LHC synchrotron radiation dominates over the annihilation. Moreover, it constitutes a significant part of all photons produced by the plasma at low transverse momenta; its magnitude depends on the plasma temperature and the magnetic field strength. Electromagnetic radiation in magnetic field is probably the missing piece that resolves a discrepancy between the theoretical models and the experimental data. It is argued that electromagnetic radiation increases with the magnetic field strength and plasma temperature.

Kirill Tuchin

2012-06-03

195

Magnetic Field - Stellar Winds Interaction  

NASA Astrophysics Data System (ADS)

As per the recent study by the MiMeS collaboration, only about 10% of massive stars possess organized global magnetic fields, typically dipolar in nature. The competition between such magnetic fields and highly non-linear radiative forces that drive the stellar winds leads to a highly complex interaction. Such an interplay can lead to a number of observable phenomena, e.g. X-ray, wind confinement, rapid stellar spindown. However, due to its complexity, such an interaction cannot usually be modeled analytically, instead numerical modeling becomes a necessary tool. In this talk, I will discuss how numerical magnetohydrodynamic (MHD) simulations are employed to understand the nature of such magnetized massive star winds.

ud-Doula, Asif

2015-01-01

196

Bulk Properties of a Fermi Gas in a Magnetic Field  

E-print Network

We calculate the number density, energy density, transverse pressure, longitudinal pressure, and magnetization of an ensemble of spin one-half particles in the presence of a homogenous background magnetic field. The magnetic field direction breaks spherical symmetry causing the pressure transverse to the magnetic field direction to be different than the pressure parallel to it. We present explicit formulae appropriate at zero and finite temperature for both charged and uncharged particles including the effect of the anomalous magnetic moment. We demonstrate that the resulting expressions satisfy the canonical relations, Omega = - P_parallel and P_perp = P_parallel - M B, with M = - d Omega/d B being the magnetization of the system. We numerically calculate the resulting pressure anisotropy for a gas of protons and a gas of neutrons and demonstrate that the inclusion of the anomalous magnetic increases the level of pressure anisotropy in both cases.

Michael Strickland; Veronica Dexheimer; Debora P. Menezes

2012-09-14

197

How to Draw Magnetic Fields - I  

NSDL National Science Digital Library

This is an activity about depicting magnetic fields. Learners will observe two provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines for both orientations. This is the third activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

198

Crystal field and magnetic properties  

NASA Technical Reports Server (NTRS)

Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

Flood, D. J.

1977-01-01

199

Studies of solar magnetic fields  

Microsoft Academic Search

The telescope, spectrograph, and magnetograph at the 150-ft Tower Telescope are described, and a chronology of changes in the instrumentation is given. The average magnetic field strengths over the last seven years are discussed. The changes in polarity at the poles of the Sun are described. The characteristics of these polarity reversals at both poles are similar. A reversal is

Robert Howard

1974-01-01

200

A magnetic field model for wigglers and undulators  

Microsoft Academic Search

Recent interest in applications of wiggler magnets in storage rings has motivated efforts to incorporate their effects in calculations of beam dynamics. This paper presents an analytic model of wiggler fields that can be used with symplectic integration to evaluate such effects. Coefficients needed by the model are generated by fitting to the results of a finite-element field calculation. The

D. Sagan; J. A. Crittenden; D. Rubin; E. Forest

2003-01-01

201

Quantum Monte Carlo Calculations Applied to Magnetic Molecules  

SciTech Connect

We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these ideas in hand, we then provide a detailed explanation of the current QMC method in Chapter 4. The remainder of the thesis is devoted to presenting specific results: Chapters 5 and 6 contain articles in which this method has been used to answer general questions that are relevant to broad classes of systems. Then, in Chapter 7, we provide an analysis of four different species of magnetic molecules that have recently been synthesized and studied. In all cases, comparisons between QMC calculations and experimental data allow us to distinguish a viable microscopic model and make predictions for future experiments. In Chapter 8, the infamous ''negative sign problem'' is described in detail, and we clearly indicate the limitations on QMC that are imposed by this obstacle. Finally, Chapter 9 contains a summary of the present work and the expected directions for future research.

Larry Engelhardt

2006-08-09

202

CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM.  

SciTech Connect

A mercury jet is being considered as the production target for a muon storage ring facility to produce an intense neutrino beam. A 20 T solenoid magnet that captures pions for muon production surrounds the mercury target. As the liquid metal jet enters or exits the field eddy currents are induced. We calculate the effects that a liquid metal jet experiences in entering and exiting the magnetic field for the magnetic configuration considered in the Neutrino Factory Feasibility Study II.

GALLARDO, J.; KAHN, S.; PALMER, R.B.; THIEBERGER, P.; WEGGEL, R.J.; MCDONALD, K.

2001-06-18

203

Specific features of magnetic and electrical hyperfine interactions in titanates according to ab initio calculations  

NASA Astrophysics Data System (ADS)

Ab initio calculations of the parameters of magnetic and electrical hyperfine interactions at the nuclei of magnetic ions 47,49Ti and nonmagnetic ions 139La and 89Y have been performed in the model of a periodic crystal and in the cluster model for lanthanum and yttrium titanates. A comparison has been performed with experimental data and with the results of calculations in the model of crystalline field and with data from calculations in the LDA and LDA + U approximations.

Agzamova, P. A.; Leskova, Yu. V.; Petrov, V. P.; Chernyshev, V. A.; Zakir'yanov, D. O.; Nikiforov, A. E.

2014-12-01

204

Magnetism of a relativistic degenerate electron gas in a strong magnetic field  

SciTech Connect

The magnetization and magnetic susceptibility of a degenerate electron gas in a strong magnetic field in which electrons are located on the ground Landau level and the electron gas has the properties of a nonlinear paramagnet have been calculated. The paradoxical properties of the electron gas under these conditions-a decrease in the magnetization with the field and an increase in the magnetization with the temperature-have been revealed. It has been shown that matter under the corresponding conditions of neutron stars is a paramagnet with a magnetic susceptibility of {chi} {approx} 0.001.

Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

2012-09-15

205

Magnetic fields in extragalactic jets. II. Specific models and radiative processes  

Microsoft Academic Search

The authors previously calculated magnetic fields produced in axisymmetric charged particle beams (jets) in which electrons (electrons and positrons) have drift velocities with respect to protons. In the present paper numerical solutions are compared with Bessel function and helical magnetic field solutions. Magnetic fields are calculated within mildly relativistic, relativistic, and ultrarelativistic jets interacting with the 2.7 K background radiation.

William K. Rose

1989-01-01

206

Magnetic fields in extragalactic jets. II - Specific models and radiative processes  

Microsoft Academic Search

The authors previously calculated magnetic fields produced in axisymmetric charged particle beams (jets) in which electrons (electrons and positrons) have drift velocities with respect to protons. In the present paper numerical solutions are compared with Bessel function and helical magnetic field solutions. Magnetic fields are calculated within mildly relativistic, relativistic, and ultrarelativistic jets interacting with the 2.7 K background radiation.

William K. Rose

1989-01-01

207

Calculation of electric fields in conductive media  

SciTech Connect

A method is presented, based upon finite-difference forms of Laplace's equation, for the iterative calculation of three-dimensional electric field distributions in electrically conductive media. The method, while generally applicable to any conductive media, will be presented with emphasis on its use for the prediction of power density in tissue when radio-frequency hyperthermia is utilized in the treatment of cancer. A computer code which performs these calculations has been written in BASIC so that it may be adapted to relatively inexpensive desktop computers for use in treatment planning. Example calculations of the distribution of electric potential, gradient, and power density with specific electrode configurations are presented. Applications and limitations of the technique are discussed.

Doss, J.D.

1982-07-01

208

Dynamic Behavior Analysis of Crystal with Magnetic Anisotropy under Imposition of Rotating Magnetic Field  

NASA Astrophysics Data System (ADS)

The alignment behavior of a crystal with a magnetic anisotropy of ?c < ?a under the imposition of a rotating magnetic field has been investigated by numerical calculation. The promotion of the crystal alignment when the projection of the magnetically hard axis on the magnetic field rotating plane is parallel to the magnetic field direction and its suppression when the magnetically hard axis is perpendicular to the magnetic field direction can be explained by the fact that the direction of the driving torque acting on the crystal minimizes the magnetic energy. Non dimensional alignment time normalized by the alignment time under the imposition of a static field is constant in the out-of-step region where the crystal cannot follow the magnetic field rotation during its alignment. The initial phase difference between the projection of the magnetically hard axis on the magnetic field rotating plane and its direction hardly affects the alignment time in the out-of-step region but strongly affects that in the synchronous region where the crystal rotation synchronous with the magnetic field rotation. A crystal aligns quickly if the initial phase difference is between 0 and 90° in the synchronous region. The minimum alignment time is the same as that under the imposition of a static field.

Iwai, Kazuhiko

2010-12-01

209

Entanglement of two-qubit photon beam by magnetic field  

E-print Network

We have studied the possibility of affecting the entanglement measure of 2-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, by the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact with both the photons and the magnetic field. The possibility of exact theoretical analysis of this scheme is based on known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measure of the photon beam as a function of the applied magnetic field and parameters of the electron medium.

A. D. Levin; D. M. Gitman; R. C. Castro

2014-09-05

210

Magnetic field generated resistivity maximum in graphite  

NASA Technical Reports Server (NTRS)

In zero magnetic field, B, the electrical resistivity, rho(O,T) of highly oriented pyrolytic (polycrystalline) graphite drops smoothly with decreasing T, becoming constant below 4 K. However, in a fixed applied magnetic field B, the resistivity rho(B,T) goes through a maximum as a function of T, with larger maximum for larger B. The temperature of the maximum increases with B, but saturates to a constant value near 25 K (exact T depends on sample) at high B. In single crystal graphite a maximum in rho(B,T) as a function of T is also present, but has the effects of Landau level quantization superimposed. Several possible explanations for the rho(B,T) maximum are proposed, but a complete explanation awaits detailed calculations involving the energy band structure of graphite, and the particular scattering mechanisms involved.

Wollam, J. A.; Kreps, L. W.; Rojeski, M.; Vold, T.; Devaty, R.

1976-01-01

211

Modified methods of stellar magnetic field measurements  

NASA Astrophysics Data System (ADS)

The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator \\hat{L} to both sides of this relation. As the operator \\hat{L}, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star ?2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared to be in good agreement with those determined by other methods.

Kholtygin, A. F.

2014-12-01

212

Field errors in superconducting magnets  

SciTech Connect

The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

Barton, M.Q.

1982-01-01

213

Overlapping grids for flow field calculations  

NASA Technical Reports Server (NTRS)

Many problems in computational fluid dynamics (CFD) involve the calculation of flow fields within or around complex geometric configurations. The flow solution is computed on a computational grid. The construction of the grid is one of the major difficulties in the application of CFD to the analysis of flow about actual aircraft configurations. Due to geometric complexity, the grid has to be constructed in simple subregions and then all of these subgrids have to be pieced together to form a complete grid for the entire flow field. The entire grid, which is called a composite grid because it is formed from many parts, may have common regions. In either case, the computation of the flow field, using any numerical algorithm, will require the transfer of information between individual subgrids. The transfer of information is more difficult with overlapping grids. Algorithms have been developed and tested for automating the transfer of information between two overlapping grids.

Mastin, Charles Wayne

1988-01-01

214

Development Trends in High Field Magnet Technology  

Microsoft Academic Search

The production of high magnetic fields using low temperature superconductors (LTS) has become common place. However, large magnet sizes and associated high cooling costs have often precluded the full utilization of these research capabilities. Recent advances in internal Sn superconductors and cryogen free technology have opened up a new era in superconducting magnet development. Ultra-compact, laboratory sized magnets producing fields

R. Harrison; R. Bateman; J. Brown; F. Domptail; C. M. Friend; P. Ghoshal; C. King; A. Van der Linden; Z. Melhem; P. Noonan; A. Twin; M. Field; S. Hong; J. Parrell; Y. Zhang

2008-01-01

215

Variability in Martian Magnetic Field Topology  

NASA Astrophysics Data System (ADS)

We have determined the locations of open and closed magnetic field lines at Mars as a function of four different controlling influences: solar wind magnetic field direction, solar wind pressure, martian season, and solar EUV flux.

Brain, D. A.; Halekas, J. S.; Eastwood, J. P.; Ulusen, D.; Lillis, R. J.

2014-07-01

216

Plasma stability in a dipole magnetic field  

E-print Network

The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...

Simakov, Andrei N., 1974-

2001-01-01

217

Measurements of Solar Vector Magnetic Fields  

NASA Technical Reports Server (NTRS)

Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

Hagyard, M. J. (editor)

1985-01-01

218

Theory and numerical calculation of the acoustic field exerted by eddy-current forces  

Microsoft Academic Search

The equations for calculating the acoustic field produced within a nonmagnetic metal by interaction of eddy currents with a static magnetic field were obtained on the assumptions that: (1) an ultrasonic wave is generated by the electromagnetic force through classical and macroscopic phenomena; (2) the electric, magnetic, and elastic properties of the metal are linear, isotropic, and homogeneous throughout the

K. Kawashima

1976-01-01

219

Estimation of ionospheric electric fields, ionospheric currents, and field-aligned currents from ground magnetic records  

Microsoft Academic Search

An approximate method of separating the effects of ionospheric currents from those of field-aligned currents in ground magnetic perturbations observed in high latitudes is developed. The distribution of ionospheric electric fields can also be estimated. The procedure includes the following steps: (1) the calculation of the equivalent ionospheric current function on the basis of magnetic H and D component records

Y. Kamide; A. D. Richmond; S. Matsushita

1981-01-01

220

Diffusion of charged particles in a random magnetic field  

NASA Technical Reports Server (NTRS)

When charged particles move in a random magnetic field superimposed upon a relatively large constant field, their pitch angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.

Earl, J. A.

1972-01-01

221

Topological constraints in magnetic field relaxation  

NASA Astrophysics Data System (ADS)

Stability and reconnection of magnetic fields play a fundamental role in natural and manmade plasma. In these applications the field's topology determines the stability of the magnetic field. Here I will describe the importance of one topology quantifier, the magnetic helicity, which impedes any free decay of the magnetic energy. Further constraints come from the fixed point index which hinders the field to relax into the Taylor state.

Candelaresi, S.

2014-10-01

222

FIELD manual: Calculation of electric fields in conducting media  

NASA Astrophysics Data System (ADS)

A computer program (FIELD) written in BASIC that may be used to calculate electric potential, gradient, and power density distribution in conducting media is discussed. Either cylindrical or rectangular coordinate systems may be used. Information is supplied to assist users in providing necessary data for the program and in interpreting output. A program listing is appended.

Doss, J. D.

1981-10-01

223

Applied Magnetic Field Enhances Arc Vapor Deposition  

NASA Technical Reports Server (NTRS)

Applied magnetic field enhances performance of vaporization part of arc vapor deposition apparatus. When no magnetic field applied by external means, arc wonders semirandomly over cathode, with net motion toward electrical feedthrough. When magnetic field applied arc moves circumferentially around cathode, and downward motion suppressed.

Miller, T. A.; Loutfy, R. O.; Withers, J. C.

1993-01-01

224

Mars: a magnetic field due to thermoremanence?  

Microsoft Academic Search

Presently available magnetic field data suggest a dipole moment of Mars of less than 10?4 times the Earth's dipole moment. Presumably, Mars does not have an active dynamo at present which could give rise to a significant magnetic field. Nevertheless, the presently available data do not rule out a minor intrinsic field which may originate from a magnetized lithosphere. The

Martin Leweling; Tilman Spohn

1997-01-01

225

Prediction of the interplanetary magnetic field strength  

Microsoft Academic Search

A new model of the coronal and interplanetary magnetic field can predict both the interplanetary magnetic field strength and its polarity from measurements of the photospheric magnetic field. The model includes the effects of the large-scale horizontal electric currents flowing in the inner corona, of the warped heliospheric current sheet in the upper corona, and of volume currents flowing in

Xuepu Zhao; J. Todd Hoeksema

1995-01-01

226

CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION  

E-print Network

observations have provided a direct measurement of magnetic field strengths in the solar corona. It is a happy probes of the magnetic field strength above active regions, and this unique capability is one to a different magnetic field strength, the coronal structure can be "peeled away" by using different frequencies

White, Stephen

227

Tunable Polarization of Spin Polarized Current by Magnetic Field  

SciTech Connect

The spin polarization of a high g-factor bulk semiconductor is theoretically investigated in the presence of a magnetic field parallel to a driving electric field. Calculations have been carried out using the energy-dependent relaxation time approximation in association with spin-flip scattering. As the magnitude of the magnetic field increases, the spin-polarized current alternates between the spin-up and spin-down states for the low spin-scattering system. This implies that the current polarization can be tuned by controlling the magnetic field strength, suggesting possible applications to spintronic devices. An experimental method for investigating alternative current polarization is also considered.

Joo, S.; Kim, K.; Lee, J.; Kim, T.; Rhie, K.; Hong, J.; Shin, K-H.

2010-10-10

228

Magnetic dipole moment determination by near-field analysis  

NASA Technical Reports Server (NTRS)

A method for determining the magnetic moment of a spacecraft from magnetic field data taken in a limited region of space close to the spacecraft. The spacecraft's magnetic field equations are derived from first principles. With measurements of this field restricted to certain points in space, the near-field equations for the spacecraft are derived. These equations are solved for the dipole moment by a least squares procedure. A method by which one can estimate the magnitude of the error in the calculations is also presented. This technique was thoroughly tested on a computer. The test program is described and evaluated, and partial results are presented.

Eichhorn, W. L.

1972-01-01

229

Magnetic Moment of Vector Mesons in the Background Field Method  

E-print Network

We report some results for the magnetic moments of vector mesons extracted from mass shifts in the presence of static external magnetic fields. The calculations are done on $24^4$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method.

Frank X. Lee; Scott Moerschbacher; Walter Wilcox

2007-10-11

230

High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields  

Microsoft Academic Search

General characteristics of magnetic bremsstrahlung (synchrotron radiation) are derived on the basis of calculations utilizing exact relativistic matrix elements. The spectral and total energy losses may be described by compact expressions incorporating radiative and quantum corrections. Comparisons of the relative efficacy of matter and magnetic fields as bremsstrahlung radiators indicate that even under relatively conservative conditions the natural conversion rates

Thomas Erber

1966-01-01

231

Magnetic monopole and the nature of the static magnetic field  

E-print Network

We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.

Xiuqing Huang

2008-12-10

232

The influence of vertical magnetic field gradients on the measured field strength and filling factor in late-type stars  

Microsoft Academic Search

The influence of a vertical gradient of the magnetic field in late type stars on the measurement of magnetic field strengths and filling factors is studied. Line profiles and contribution functions of spectral lines with large Lande factors are calculated in model stellar atmospheres in the presence of a magnetic field with a vertical gradient. It is found that the

U. Grossmann-Doerth; S. K. Solanki

1990-01-01

233

Analysis of Electric Field Induced by ELF Magnetic Field Utilizing Generalized Equivalent Multipole-Moment Method  

NASA Astrophysics Data System (ADS)

This paper presents a generalized equivalent multipole-moment method for calculating three-dimensional Laplacian fields in multi-spherical system. The Greengard & Rokhlin's M2M, M2L, and L2L formulae enable the multipole-moment method to calculate the fields in general arrangement of multi-spheres, which involve exclusive and multi-layered spherical arrangement. We applied this method to electric field calculation in biological structures induced by ELF magnetic fields. The induced electric fields in a three eccentric and exclusive spheres system, which models human head with two eyeballs, are calculated under the application of homogeneous and magnetic-dipole fields. The validity of this method is successfully confirmed by comparing the calculated fields with those by the fast-multipole surface-charge-simulation method.

Hamada, Shoji; Yamamoto, Osamu; Kobayashi, Tetsuo

234

Magnetic field sources and their threat to magnetic media  

NASA Technical Reports Server (NTRS)

Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.

Jewell, Steve

1993-01-01

235

Thinned fiber Bragg grating magnetic field sensor with magnetic fluid  

Microsoft Academic Search

The refractive index of magnetic fluid may be changed by external magnetic field. Therefore, through measuring its refractive index, the intensity of the magnetic field can be obtained. Fiber Bragg grating (FBG) is sensitive to the refractive index surrounding its cladding when the diameter of cladding is reduced to a certain degree. In order to prove the sensitivity of the

Ciming Zhou; Li Ding; Dongli Wang; Yaqi Kuang; Desheng Jiang

2011-01-01

236

Magnetic properties of the neutron in a uniform background field  

E-print Network

We present calculations of the magnetic moment and magnetic polarisability of the neutron from the background field method. The calculations are performed on $32^3\\times64$ dynamical lattices generated by the PACS-CS collaboration and made available via the ILDG. We consider uniform fields quantised by the periodic spatial volume. We explore different approaches for improving the quality of the fits used in the results. Also included are initial results for the magnetic moment of the lowest lying negative parity nucleon states.

Thomas Primer; Waseem Kamleh; Derek Leinweber; Matthias Burkardt

2012-12-10

237

Harmonic undulator radiations with constant magnetic field  

NASA Astrophysics Data System (ADS)

Harmonic undulators has been analysed in the presence of constant magnetic field along the direction of main undulator field. The spectrum modifications in harmonic undulator radiations and intensity degradation as a function of constant magnetic field magnitude at fundamental and third harmonics have been evaluated with a numerical integration method and generalised Bessel function. The role of harmonic field to overcome the intensity reduction due to constant magnetic field and energy spread in electron beam has also been demonstrated.

Jeevakhan, Hussain; Mishra, G.

2015-01-01

238

Fast nonparaxial scalar focal field calculations.  

PubMed

An efficient algorithm for calculating nonparaxial scalar field distributions in the focal region of a lens is discussed. The algorithm is based on fast Fourier transform implementations of the first Rayleigh-Sommerfeld diffraction integral and assumes that the input field at the pupil plane has a larger extent than the field in the focal region. A sampling grid is defined over a finite region in the output plane and referred to as a tile. The input field is divided into multiple separate spatial regions of the size of the output tile. Finally, the input tiles are added coherently to form a summed tile, which is propagated to the output plane. Since only a single tile is propagated, there are significant reductions of computational load and memory requirements. This method is combined either with a subpixel sampling technique or with a chirp z-transform to realize smaller sampling intervals in the output plane than in the input plane. For a given example the resulting methods enable a speedup of approximately 800× in comparison to the normal angular spectrum method, while the memory requirements are reduced by more than 99%. PMID:24977358

Hillenbrand, Matthias; Hoffmann, Armin; Kelly, Damien P; Sinzinger, Stefan

2014-06-01

239

Features of the Martian Magnetic Field Structure  

Microsoft Academic Search

Based on the single-fluid MHD model of Mars space simulation, this paper has studied the magnetic field structure in the near-Mars space and investigated the influence of Martian crustal magnetic anomalies on the magnetic field structure. In the process of the solar wind interaction with Mars, the bow shock and magnetic pile-up region are produced. The interplanetary magnetic lines are

Yi-Teng Zhang; Lei Li

2009-01-01

240

How to Draw Magnetic Fields - II  

NSDL National Science Digital Library

This is an activity about depicting magnetic polarity. Learners will observe several provided drawings of magnetic field line patterns for bar magnets in simple orientations of like and unlike polarities and carefully draw the field lines and depict the polarities for several orientations, including an arrangement of six magnetic poles. This is the fourth activity in the Magnetic Math booklet; this booklet can be found on the Space Math@NASA website.

241

Test chambers for cell culture in static magnetic field  

NASA Astrophysics Data System (ADS)

Article presents a test chamber intended to be used for in vitro cell culture in homogenous constant magnetic field with parametrically variable magnitude. We constructed test chambers with constant parameters of control homeostasis of cell culture for the different parameters of static magnetic field. The next step was the computer calculation of 2D and 3D simulation of the static magnetic field distribution in the chamber. The analysis of 2D and 3D calculations of magnetic induction in the cells' exposition plane reveals, in comparison to the detection results, the greater accuracy of 2D calculations (Figs. 9 and 10). The divergence in 2D method was 2-4% and 8 to 10% in 3D method (reaching 10% only out of the cells' cultures margins).

Glinka, Marek; Gawron, Stanis?aw; Siero?, Aleksander; Paw?owska–Góral, Katarzyna; Cie?lar, Grzegorz; Siero?–Sto?tny, Karolina

2013-04-01

242

Graphene transparency in weak magnetic fields  

E-print Network

We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order $(eB)^2$, where $e$ is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is radiated with monochromatic light of frequency $\\omega$ along the external field direction, from the modified Maxwell's equations we derive the intensity of transmitted light and the angle of polarization rotation in terms of the longitudinal ($\\sigma_{xx}$) and transverse ($\\sigma_{xy}$) conductivities. Corrections to these quantities, both calculated and measured, are of order $(eB)^2/\\omega^4$. Our findings generalize and complement previously known results reported in literature regarding the light absorption problem in graphene from the experimental and theoretical points of view, with and without external magnetic fields.

David Valenzuela; Saúl Hernández-Ortiz; Marcelo Loewe; Alfredo Raya

2014-10-20

243

Analytical representation of cyclotron magnetic field  

SciTech Connect

A model has been developed for the rapid but accurate calculation of the static magnetic field in the Chalk River cyclotron. The field is expressed in terms of elementary functions which can be handled efficiently in differential-algebra trajectory integrations. Maxwell`s equations are satisfied exactly. Each of seven subdivisions of the superconducting coils is treated by a moment expansion about a central circle. Each pole is modeled as a uniformly magnetized semi-infinite prism. Monopoles and dipoles at the vertices of the polygonal pole faces correct for departures from the true pole shape. Uniform distributions of dipole strength along the edges of the pole-face polygons correct for the local inappropriateness of the assumption of uniform magnetization. The contributions of the yoke and of other relatively distant parts of the structure to the field in the region of particle acceleration are represented by low-order polynomials. Some of the source parameters are obtained by fitting to the measured values of B{sub z} in the horizontal plane of symmetry.

Lee-Whiting, G.E.; Davies, W.G. [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.] [AECL Research, Chalk River, Ontario (Canada). Chalk River Labs.

1994-07-01

244

Spontaneous magnetization of a vacuum in the hot Universe and intergalactic magnetic fields  

NASA Astrophysics Data System (ADS)

We review the spontaneous magnetization of the vacuum of non-Abelian gauge fields at high temperature. The standard model of particles is investigated as a particular example. By using both analytic methods of quantum field theory and gauge field theory on a lattice, we determine the Abelian (chromo)magnetic fields in the restored phase of the model at high temperatures T ? T ew . The fields are stable and temperature dependent, B = B( T). We investigate the mechanisms of the field stabilization in detail. The screening parameters for electric and magnetic fields—the Debye, m D ( B, T), and magnetic, m magn ( B, T), masses—are calculated. It is shown that, in the field presence, the former one is smaller than at zero field. The magnetic mass of the (chromo)magnetic fields is determined to be zero, as for usual U(1) magnetic field. We also show that the vacuum magnetization stops at temperatures below the electroweak phase transition temperature, T ? T ew , when a scalar condensate creates. These properties make reasonable a possibility that the intergalactic magnetic fields observed recently were spontaneously generated in the hot Universe at the reheating epoch due to vacuum polarization of non-Abelian gauge fields. We present a procedure for estimating the field strengths B( T) at different temperatures. In particular, the value of B( T ew ) ˜ 1014 G, at T ew is estimated with taking into consideration the observed intergalactic magnetic field B 0 ˜ 10-15 G. The magnetic field scale is also estimated. Some model dependent peculiarities of the phenomena studied are briefly discussed.

Demchik, V.; Skalozub, V.

2015-01-01

245

Plasma-satellite interaction driven magnetic field perturbations  

SciTech Connect

We report the first fully kinetic quantitative estimate of magnetic field perturbations caused by the interaction of a spacecraft with space environment. Such perturbations could affect measurements of geophysical magnetic fields made with very sensitive magnetometers on-board satellites. Our approach is illustrated with a calculation of perturbed magnetic fields near the recently launched Swarm satellites. In this case, magnetic field perturbations do not exceed 20 pT, and they are below the sensitivity threshold of the on-board magnetometers. Anticipating future missions in which satellites and instruments would be subject to more intense solar UV radiation, however, it appears that magnetic field perturbations associated with satellite interaction with space environment, might approach or exceed instruments' sensitivity thresholds.

Saeed-ur-Rehman, E-mail: surehman@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Theoretical Physics Division, PINSTECH, Nilore Islamabad 44000 (Pakistan); Marchand, Richard, E-mail: Richard.Marchand@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

2014-09-15

246

Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization  

DOEpatents

In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

2000-12-19

247

Graphene in high magnetic fields  

NASA Astrophysics Data System (ADS)

Carbon-based nano-materials, such as graphene and carbon nanotubes, represent a fascinating research area aiming at exploring their remarkable physical and electronic properties. These materials not only constitute a playground for physicists, they are also very promising for practical applications and are envisioned as elementary bricks of the future of the nano-electronics. As for graphene, its potential already lies in the domain of opto-electronics where its unique electronic and optical properties can be fully exploited. Indeed, recent technological advances have demonstrated its effectiveness in the fabrication of solar cells and ultra-fast lasers, as well as touch-screens and sensitive photo-detectors. Although the photo-voltaic technology is now dominated by silicon-based devices, the use of graphene could very well provide higher efficiency. However, before the applied research to take place, one must first demonstrates the operativeness of carbon-based nano-materials, and this is where the fundamental research comes into play. In this context, the use of magnetic field has been proven extremely useful for addressing their fundamental properties as it provides an external and adjustable parameter which drastically modifies their electronic band structure. In order to induce some significant changes, very high magnetic fields are required and can be provided using both DC and pulsed technology, depending of the experimental constraints. In this article, we review some of the challenging experiments on single nano-objects performed in high magnetic and low temperature. We shall mainly focus on the high-field magneto-optical and magneto-transport experiments which provided comprehensive understanding of the peculiar Landau level quantization of the Dirac-type charge carriers in graphene and thin graphite.

Orlita, Milan; Escoffier, Walter; Plochocka, Paulina; Raquet, Bertrand; Zeitler, Uli

2013-01-01

248

Analysis and measurement of the 3D magnetic field in a rotating magnetic field driven FRC  

NASA Astrophysics Data System (ADS)

A translatable three-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, B?, and Bz at 30 radial positions. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Probe measurements are used to calculate the end-shorting torque and the rotating magnetic field (RMF) torque. The torque applied to the plasma is the RMF torque reduced by the shorting torque. An estimate of the plasma resistivity is made based on the steady state balance between the applied torque and the resistive torque. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Data from even- and odd-parity experiments will be presented. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n=0 components of the calculated fields to the 3-axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.

Velas, K. M.; Milroy, R. D.

2012-10-01

249

Effects of magnetic fields on the quark-gluon plasma  

NASA Astrophysics Data System (ADS)

In this talk, the response of the thermal QCD medium to external (electro)magnetic fields is studied using continuum extrapolated lattice results at physical quark masses. The magnetic susceptibility of QCD is calculated, revealing a strong paramagnetic response at high temperatures. This paramagnetism is shown to result in an anisotropic squeezing of the quark-gluon plasma in non-central heavy-ion collisions, implying a sizeable contribution to the elliptic flow. Another aspect is the magnetic response of topologically non-trivial domains to the magnetic field. We quantify this effect on the lattice and compare the results to a simple model estimate.

Bali, G. S.; Bruckmann, F.; Endr?di, G.; Fodor, Z.; Katz, S. D.; Schäfer, A.

2014-11-01

250

Vlasov Equation In Magnetic Field  

E-print Network

The linearized Vlasov equation for a plasma system in a uniform magnetic field and the corresponding linear Vlasov operator are studied. The spectrum and the corresponding eigenfunctions of the Vlasov operator are found. The spectrum of this operator consists of two parts: one is continuous and real; the other is discrete and complex. Interestingly, the real eigenvalues are infinitely degenerate, which causes difficulty solving this initial value problem by using the conventional eigenfunction expansion method. Finally, the Vlasov equation is solved by the resolvent method.

Biao Wu

1999-09-07

251

An analytic solar magnetic field model  

Microsoft Academic Search

We describe a simple analytic model for the magnetic field in the solar corona and interplanetary space which is appropriate to solar minimum conditions. The model combines an azimuthal current sheet in the equatorial plane with an axisymmetric multipole field representing the internal magnetic field of the Sun. The radial component of the field filling interplanetary space is approximately monopolar

M. Banaszkiewicz; W. I. Axford; J. F. McKenzie

1998-01-01

252

On the origin of solar magnetic fields  

Microsoft Academic Search

A fresh approach to the theoretical problems raised by observations of solar magnetic fields is outlined. Tentative conclusions are made that the large-scale magnetic field from which Cowling's (1953) hypothetical toroidal field is generated by differential rotation is not itself regenerated by diffusive processes in the sun's outer layers and that this field enters the differentially rotating layer from below

D. Layzer; R. Rosner; H. T. Doyle

1979-01-01

253

Nonlinear turbulent magnetic diffusion and mean-field dynamo.  

PubMed

The nonlinear coefficients defining the mean electromotive force (i.e., the nonlinear turbulent magnetic diffusion, the nonlinear effective velocity, the nonlinear kappa tensor, etc.) are calculated for an anisotropic turbulence. A particular case of an anisotropic background turbulence (i.e., the turbulence with zero-mean magnetic field) with one preferential direction is considered. It is shown that the toroidal and poloidal magnetic fields have different nonlinear turbulent magnetic diffusion coefficients. It is demonstrated that even for a homogeneous turbulence there is a nonlinear effective velocity that exhibits diamagnetic or paramagnetic properties depending on the anisotropy of turbulence and the level of magnetic fluctuations in the background turbulence. The diamagnetic velocity results in the field being pushed out from the regions with stronger mean magnetic field, while the paramagnetic velocity causes the magnetic field to be concentrated in the regions with stronger field. Analysis shows that an anisotropy of turbulence strongly affects the nonlinear turbulent magnetic diffusion, the nonlinear effective velocity, and the nonlinear alpha effect. Two types of nonlinearities (algebraic and dynamic) are also discussed. The algebraic nonlinearity implies a nonlinear dependence of the mean electromotive force on the mean magnetic field. The dynamic nonlinearity is determined by a differential equation for the magnetic part of the alpha effect. It is shown that for the alphaOmega axisymmetric dynamo the algebraic nonlinearity alone (which includes the nonlinear alpha effect, the nonlinear turbulent magnetic diffusion, the nonlinear effective velocity, etc.) cannot saturate the dynamo generated mean magnetic field while the combined effect of the algebraic and dynamic nonlinearities limits the mean magnetic field growth. PMID:11736094

Rogachevskii, I; Kleeorin, N

2001-11-01

254

Magnetic field effects on microwave absorbing materials  

NASA Technical Reports Server (NTRS)

The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

1991-01-01

255

Full 180° magnetization reversal with electric fields.  

PubMed

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

Wang, J J; Hu, J M; Ma, J; Zhang, J X; Chen, L Q; Nan, C W

2014-01-01

256

Full 180° Magnetization Reversal with Electric Fields  

NASA Astrophysics Data System (ADS)

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals.

Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

2014-12-01

257

Full 180° Magnetization Reversal with Electric Fields  

PubMed Central

Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

2014-01-01

258

Sub arcsec evolution of solar magnetic fields  

Microsoft Academic Search

Context: .The evolution of the concentrated magnetic field in flux tubes is one challenge of the nowadays Solar physics which requires time sequence with high spatial resolution. Aims: .Our objective is to follow the properties of the magnetic concentrations during their life, in intensity (continuum and line core), magnetic field and Doppler velocity. Methods: .We have observed solar region NOAA

Th. Roudier; J. M. Malherbe; J. Moity; S. Rondi; P. Mein; Ch. Coutard

2006-01-01

259

Exploring Magnetic Fields with a Compass  

ERIC Educational Resources Information Center

A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

Lunk, Brandon; Beichner, Robert

2011-01-01

260

Discovery of Magnetic Fields in CPNs  

NASA Astrophysics Data System (ADS)

For the first time we have directly detected magnetic fields in central stars of planetary nebulae by means of spectro-polarimetry with FORS1 at the VLT. In all four objects of our sample we found kilogauss magnetic fields, in NGC 1360 and LSS 1362 with very high significance, while in Abell 36 and EGB 5 the existence of a magnetic field is probable but with less certainty. This discovery supports the hypothesis that the non-spherical symmetry of most planetary nebulae is caused by magnetic fields in AGB stars. Our high discovery rate demands mechanisms to prevent full conservation of magnetic flux during the transition to white dwarfs.

Jordan, S.; Werner, K.; O'Toole, S. J.

2005-07-01

261

Neutrino Conversions in Solar Random Magnetic Fields  

E-print Network

We consider the effect of a random magnetic field in the convective zone of the Sun superimposed to a regular magnetic field on resonant neutrino spin-flavour oscillations. We argue for the existence of a field of strongly chaotic nature at the bottom of the convective zone. In contrast to previous attempts we employ in addition a model motivated regular twisting magnetic field profile. In this scenario electron antineutrinos are produced through cascades like $\

V. B Semikoz; E. Torrente-Lujan

1998-09-16

262

Differential rotation of solar magnetic fields  

Microsoft Academic Search

The connection of the differential rotation of solar magnetic fields with the field sign and strength is studied. The synoptic\\u000a maps of magnetic fields over the last three solar cycles taken at the Kitt Peak Observatory served as input data for the study.\\u000a The algorithm of magnetic field filtering over 14 chosen strengt intervals and successive 5-degree latitude zones was

O. A. Andreyeva; Ya. I. Zyelyk; N. N. Stepanian

2008-01-01

263

Calculation of nonlinear magnetic susceptibility tensors for a uniaxial antiferromagnet  

NASA Astrophysics Data System (ADS)

In this paper, we present a derivation of the nonlinear susceptibility tensors for a two-sublattice uniaxial antiferromagnet up to the third-order effects within the standard definition by which the rf magnetization m is defined as a power series expansion in the rf fields h with the susceptibility tensors ?(q) as the coefficients. The starting point is the standard set of torque equations of motion for this problem. A complete set of tensor elements is derived for the case of a single-frequency input wave. Within a circular polarization frame (pnz) expressions are given for the first-order susceptibility, second-harmonic generation, optical rectification, third-harmonic generation and intensity-dependent susceptibility. Some of the coefficients with representative resonance features in the far infrared are illustrated graphically and we conclude with a brief discussion of the implications of the resonance features arising from the calculations and their potential applications.

Lim, Siew-Choo; Osman, Junaidah; Tilley, D. R.

2000-11-01

264

Thomson scattering in magnetic fields. [of white dwarf stars  

NASA Technical Reports Server (NTRS)

The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.

Whitney, Barbara

1989-01-01

265

Vector magnetic field changes associated with X-class flares  

NASA Technical Reports Server (NTRS)

We present high-resolution transverse and longitudinal magnetic field measurements bracketing five X-class solar flares. We show that the magnetic shear, defined as the angular difference between the measured field and calculated potential field, actually increases after all of these flares. In each case, the shear is shown to increase along a substantial portion of the magnetic neutral line. For two of the cases, we have excellent time resolution, on the order of several minutes, and we demonstrate that the shear increase is impulsive. We briefly discuss the theoretical implications of our results.

Wang, Haimin; Ewell, M. W., Jr.; Zirin, H.; Ai, Guoxiang

1994-01-01

266

Casimir momentum of a chiral molecule in a magnetic field.  

PubMed

In a classical description, a neutral, polarizable object acquires a kinetic momentum when exposed to crossed electric and magnetic fields. In the presence of only a magnetic field no such momentum exists classically, although it is symmetry allowed for an object lacking mirror symmetry. We perform a full QED calculation to show that the quantum vacuum coupled to a chiral molecule provides it with a kinetic "Casimir" momentum directed along the magnetic field, and proportional to its molecular rotatory power and to the fine structure constant. PMID:24138239

Donaire, M; van Tiggelen, B A; Rikken, G L J A

2013-10-01

267

Hofstadter butterflies in a modulated magnetic field: Superconducting wire network with magnetic decoration  

E-print Network

Hofstadter butterflies in a modulated magnetic field: Superconducting wire network with magnetic April 2004; published 29 October 2004) Hofstadter butterfly spectra of tight-binding electron systems butterfly, have since been calculated for a variety of lattices,3­5 and they have been discussed in various

Iye, Yasuhiro

268

Magnetic field waves at Uranus  

NASA Technical Reports Server (NTRS)

The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

1994-01-01

269

Particle aggregation in colloids in high magnetic fields  

NASA Astrophysics Data System (ADS)

The influence of high magnetic fields on the stability of colloidal dispersions of paramagnetic and diamagnetic particles has been investigated. The theory of Svoboda is extended to allow examination of the dynamics of particle aggregation in colloids. Particle trajectories are calculated leading to binary pair formation. Experimental results are presented on particle aggregation in high magnetic fields (flocculation). Here binary pairs seem to form and to be stable at enhanced rates of settling.

Parker, M. R.; van Kleef, R. P. A. R.; Myron, H. W.; Wyder, P.

1982-06-01

270

Pressure, Chaotic Magnetic Fields and MHD Equilibria  

SciTech Connect

Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ?p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ?p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.

S.R. Hudson & N. Nakajima

2010-05-12

271

Magnetic properties of PrRhIn5—Experimental study and ab initio calculations  

NASA Astrophysics Data System (ADS)

The magnetization (magnetic susceptibility), specific heat and electrical resistivity of a PrRhIn 5 single crystal were studied. Van Vleck-type paramagnetic behavior and strong magnetocrystalline anisotropy were observed, which is attributed to a strong crystal-field effect on the Pr 3+ ion. A crystal-field effect on the electrical resistivity was observed as well. We focused on the measurement of the specific heat down to low temperatures (down to 0.4 K) in different magnetic fields. Indications of a field-induced transition to the quadrupolar ordered state below 0.4 K were found in the specific-heat data in magnetic fields. First-principles calculations based on density functional theory of the electronic structure and crystal-field interaction were performed in order to better understand the experimental findings.

Uhlí?ová, K.; Diviš, M.; Sechovský, V.

2008-11-01

272

Bipolar pulse field for magnetic refrigeration  

DOEpatents

A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

Lubell, Martin S. (Oak Ridge, TN)

1994-01-01

273

The magnetic fields of accreting T Tauri stars  

NASA Astrophysics Data System (ADS)

Models of magnetospheric accretion on to classical T Tauri stars often assume that the stellar magnetic field is a simple dipole. Recent Zeeman-Doppler imaging studies of V2129 Oph and BP Tau have shown however that their magnetic fields are more complex. V2129 Oph is a high mass T Tauri star and despite its young age is believed to have already developed a radiative core. In contrast to this, the lower mass BP Tau is likely to be completely convective. As the internal structure and therefore the magnetic field generation process is different in both stars, it is of particular interest to compare the structure of their magnetic fields obtained by field extrapolation from magnetic surface maps. We compare both field structures to mulitpole magnetic fields, and calculate the disk truncation radius for both systems. We find that by considering magnetic fields with a realistic degree of complexity, the disk is truncated at, or within, the radius obtained for dipole fields.

Gregory, S. G.; Matt, S. P.; Donati, J.-F.; Jardine, M.

2009-02-01

274

Thermodynamics of ferrofluids in applied magnetic fields  

NASA Astrophysics Data System (ADS)

The thermodynamic properties of ferrofluids in applied magnetic fields are examined using theory and computer simulation. The dipolar hard sphere model is used. The second and third virial coefficients (B2 and B3) are evaluated as functions of the dipolar coupling constant ?, and the Langevin parameter ?. The formula for B3 for a system in an applied field is different from that in the zero-field case, and a derivation is presented. The formulas are compared to results from Mayer-sampling calculations, and the trends with increasing ? and ? are examined. Very good agreement between theory and computation is demonstrated for the realistic values ??2. The analytical formulas for the virial coefficients are incorporated in to various forms of virial expansion, designed to minimize the effects of truncation. The theoretical results for the equation of state are compared against results from Monte Carlo simulations. In all cases, the so-called logarithmic free energy theory is seen to be superior. In this theory, the virial expansion of the Helmholtz free energy is re-summed in to a logarithmic function. Its success is due to the approximate representation of high-order terms in the virial expansion, while retaining the exact low-concentration behavior. The theory also yields the magnetization, and a comparison with simulation results and a competing modified mean-field theory shows excellent agreement. Finally, the putative field-dependent critical parameters for the condensation transition are obtained and compared against existing simulation results for the Stockmayer fluid. Dipolar hard spheres do not undergo the transition, but the presence of isotropic attractions, as in the Stockmayer fluid, gives rise to condensation even in zero field. A comparison of the relative changes in critical parameters with increasing field strength shows excellent agreement between theory and simulation, showing that the theoretical treatment of the dipolar interactions is robust.

Elfimova, Ekaterina A.; Ivanov, Alexey O.; Camp, Philip J.

2013-10-01

275

Polar magnetic field reversals on the Sun  

NASA Astrophysics Data System (ADS)

The polar magnetic fields on the Sun have been an attractive subject for solar researches since Babcock measured them in solar cycle 19. One of the remarkable features of the polar magnetic fields is their reversal during the maxima of 11-year sunspot cycles. I have present results of the investigations of the polar magnetic field using SOHO-mdi data. It is found, that the polar magnetic field reversal is detected with mdi data for polar region within 78° 88°. The North Pole has changed polarity in CR1975 (April 2001). The South reversed later in CR1980 (September 2001). The total unsigned magnetic flux does not show the dramatic decreasing during the polar reversals due to omnipresent bi-polar small-scale magnetic elements. The observational and theoretical aspects of the polar magnetic field reversals are discussed.

Benevolenskaya, Elena E.

2007-08-01

276

Exploring Magnetic Fields in Your Environment  

NSDL National Science Digital Library

This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide.

277

Bifurcation of force-free solar magnetic fields: A numerical approach  

Microsoft Academic Search

Numerical calculations of two-dimensional force-free fields as models of solar active regions are presented. For a given ‘toroidal’ component of the photospheric magnetic field two branches of solutions are numerically obtained which merge at the critical point of maximum allowed toroidal magnetic field. Depending on boundary conditions magnetic islands may or may not form. The results are discussed with respect

Klaus Jockers

1978-01-01

278

Cosmological Magnetic Fields and CMBR Polarization  

E-print Network

A simple introduction to physics of CMBR polarization and the Faraday rotation of the latter in cosmic magnetic field is presented. The content of the lecture is the following: 1. Description of polarization of photons. 2. Polarization field of CMBR. 3. Faraday effect. 4. Cosmic magnetic fields. 5. Faraday rotation of CMBR polarization.

A. D. Dolgov

2005-03-21

279

Representation of magnetic fields in space  

NASA Technical Reports Server (NTRS)

Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

Stern, D. P.

1975-01-01

280

Fiber Bragg Grating Magnetic Field Sensor  

Microsoft Academic Search

In this paper we demonstrate experimentally a magnetic field sensor using a fiber Bragg grating. The shift in the Bragg condition as a result of strain applied on the fiber mounted on a nickel base by the magnetic field gives an indirect measure of the field. The proposed method overcomes the need for long fiber lengths required in methods such

K. V. Madhav; K. Ravi Kumar; T. Srinivas; S. Asokan

2006-01-01

281

Static uniform magnetic fields and amoebae  

SciTech Connect

Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A. [Tennessee Technological Univ., Cookeville, TN (United States)] [Tennessee Technological Univ., Cookeville, TN (United States)

1997-03-01

282

Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane  

NASA Technical Reports Server (NTRS)

A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

2001-01-01

283

Interaction of magnetic resonators studied by the magnetic field enhancement  

SciTech Connect

It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.

Hou, Yumin, E-mail: ymhou@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)] [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

2013-12-15

284

Magnetic field waves at Uranus  

NASA Technical Reports Server (NTRS)

The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

1991-01-01

285

Lattice distortions in magnetic fields  

NASA Astrophysics Data System (ADS)

A study is made of the stability of the possible lattice structures which result from the magnetic-field-induced lattice deformation introduced by Araujo and Khmelnitskii. The deformed lattice may either be the result of a single distortion occurring along a particular direction or of a superposition of distortions in different directions. In a noninteracting electron model the energy variation of the electron system will determine which final lattice structure is the most stable. When electron interactions are considered in the Hartree approximation we find that the energy variation of the electron system alone will not determine which final structure is the most stable. The latter is then imposed by the lattice itself. If the distortion turns out to be unidirectional then the corresponding charge-density wave should be weakly pinned even in the absence of impurities.

Araujo, Miguel A. N.

1996-09-01

286

Extraterrestrial Magnetic Fields: Achievements and Opportunities  

Microsoft Academic Search

The major scientific achievements associated with the measurement of magnetic fields in space over the past decade and a half are reviewed. Aspects of space technology relevant to magnetic-field observations are discussed, including the different types of magnetometers used and how they operate, problems arising from spacecraft-generated magnetic fields and the appropriate countermeasures that have been developed and on-board processing

EDWARD J. SMITHAND; Charles Sonett

1976-01-01

287

Femtotesla Magnetic Field Measurement with Magnetoresistive Sensors  

Microsoft Academic Search

The measurement of magnetic fields in the femtotesla (fT, 10-15 tesla) range is important for applications such as magnetometry, quantum computing, solid-state nuclear magnetic resonance, and magnetoencephalography. The only sensors capable of detecting these very small fields have been based on low-temperature superconducting quantum interference devices operating at 4.2 kelvin. We present a magnetic field sensor that combines a superconducting

Myriam Pannetier; Claude Fermon; Gerald Le Goff; Juha Simola; Emma Kerr

2004-01-01

288

Dynamics of solar magnetic fields. VI  

Microsoft Academic Search

A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined

B. C. Low; Y. Nakagawa

1975-01-01

289

Modeling solar force-free magnetic fields  

Microsoft Academic Search

A class of nonlinear force-free magnetic fields is presented, described in terms of the solutions to a second-order, nonlinear ordinary differential equation. These magnetic fields are three-dimensional, filling the infinite half-space above a plane where the lines of force are anchored. They model the magnetic fields of the sun over active regions with a striking geometric realism. The total energy

B. C. Low; Y. Q. Lou

1990-01-01

290

Fractal properties of solar magnetic fields  

Microsoft Academic Search

We study the spatial properties of solar magnetic fields using data from the Solar Vector Magnetograph of the Marshall Space\\u000a Flight Center (MSFC) (FeI 5250.2 Å) and SOHO\\/MDI longitudinal magnetic field measurements (Ni 6767.8 Å) (96-min full-disk\\u000a maps). Our study is focused on two objects: the fractal properties of sunspots and the fractal properties of the spatial magnetic\\u000a field distribution

B. A. Ioshpa; V. N. Obridko; E. A. Rudenchik

2008-01-01

291

Fractal properties of solar magnetic fields  

Microsoft Academic Search

We study the spatial properties of solar magnetic fields using data from the Solar Vector Magnetograph of the Marshall Space Flight Center (MSFC) (FeI 5250.2 Å) and SOHO\\/MDI longitudinal magnetic field measurements (Ni 6767.8 Å) (96-min full-disk maps). Our study is focused on two objects: the fractal properties of sunspots and the fractal properties of the spatial magnetic field distribution

B. A. Ioshpa; V. N. Obridko; E. A. Rudenchik

2008-01-01

292

Power spectrum of post-inflationary primordial magnetic fields  

NASA Astrophysics Data System (ADS)

The origin of large scale magnetic fields is one of the most puzzling topics in cosmology and astrophysics. It is assumed that the observed magnetic fields result from the amplification of an initial field produced in the early universe. In this paper we compute the exact power spectrum of magnetic fields created after inflation best known as post-inflationary magnetic fields, using the first order cosmological perturbation theory. Our treatment differs from others' works because we include an infrared cutoff which encodes only causal modes in the spectrum. The cross-correlation between magnetic energy density with Lorentz force and the anisotropic part of the electromagnetic field are exactly computed. We compare our results with previous works finding agreement in cases where the ratio between lower and upper cutoff is very small. However, we found that spectrum is strongly affected when this ratio is greater than 0.2. Moreover, the effect of a post-inflationary magnetic field with a lower cutoff on the angular power spectrum in the temperature distribution of cosmic microwave background was also exactly calculated. The main feature is a shift of the spectrum's peak as a function of the infrared cutoff, therefore analyzing this effect we could infer the value of this cutoff and thus constraining the primordial magnetic fields generation models.

Hortúa, Héctor J.; Castañeda, Leonardo

2014-12-01

293

Ferroelectric Cathodes in Transverse Magnetic Fields  

SciTech Connect

Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

2002-07-29

294

Magnetic field measurements in tokamak plasmas  

SciTech Connect

The measurement of the poloidal magnetic field in a tokamak plasma from the Zeeman splitting and polarization of the magnetic dipole radiation from heavy ions is discussed. When viewed from a direction perpendicular to the toroidal field, the effect of the poloidal field on the circularly polarized radiation is detectable using a photoelectric polarimeter. The Zeeman splittings for a number of magnetic dipole transitions with wavelengths in the range 2300--9300 A are presented. An imaging polarimeter is proposed that can measure the poloidal magnetic field with space and time resolution.

Feldman, U.; Seely, J.F.; Sheeley,Jr., N.R.; Suckewer, S.; Title, A.M.

1984-11-01

295

Magnetic fields in anisotropic relativistic stars  

E-print Network

Relativistic, spherically symmetric configurations consisting of a gravitating magnetized anisotropic fluid are studied. For such configurations, we obtain static equilibrium solutions with an axisymmetric, poloidal magnetic field produced by toroidal electric currents. The presence of such a field results in small deviations of the shape of the configuration from spherical symmetry. This in turn leads to the modification of an equation for the current and correspondingly to changes in the structure of the internal magnetic field for the systems supported by the anisotropic fluid, in contrast to the case of an isotropic fluid, where such deviations do not affect the magnetic field.

Vladimir Folomeev; Vladimir Dzhunushaliev

2015-01-26

296

Magnetic monopole field exposed by electrons  

NASA Astrophysics Data System (ADS)

The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

2014-01-01

297

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given.

Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

2012-12-01

298

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, Gernot; Haagmans, Roger; Floberghagen, Rune; Menard, Yvon

2013-04-01

299

Swarm: ESA's Magnetic Field Mission  

NASA Astrophysics Data System (ADS)

Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in fall 2013. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of three identical satellites. The mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth's core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently in the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products for the Swarm user community. The setup of the Swarm ground segment and the contents of the data products will be addressed. In case the Swarm satellites are already in orbit, a summary of the on-going mission operations activities will be given. More information on Swarm can be found at www.esa.int/esaLP/LPswarm.html.

Plank, G.; Floberghagen, R.; Menard, Y.; Haagmans, R.

2013-12-01

300

Magnetic field optimization of permanent magnet undulators for arbitrary polarization  

NASA Astrophysics Data System (ADS)

Techniques for improving the magnetic field quality of APPLE II undulators are discussed. Individual block characterization including the inhomogeneities of the magnetization permits a precise prediction of field integrals as required for sorting. Specific shimming procedures adapted to the magnetic design of APPLE II undulators have to be employed in order to meet the stringent requirements of insertion devices in third generation synchrotron radiation sources as demonstrated for BESSY.

Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.; Englisch, U.

2004-01-01

301

The QCD equation of state in background magnetic fields  

E-print Network

We determine the equation of state of 2+1-flavor QCD with physical quark masses, in the presence of a constant (electro)magnetic background field on the lattice. To determine the free energy at nonzero magnetic fields we develop a new method, which is based on an integral over the quark masses up to asymptotically large values where the effect of the magnetic field can be neglected. The method is compared to other approaches in the literature and found to be advantageous for the determination of the equation of state up to large magnetic fields. Thermodynamic observables including the longitudinal and transverse pressure, magnetization, energy density, entropy density and interaction measure are presented for a wide range of temperatures and magnetic fields, and provided in ancillary files. The behavior of these observables confirms our previous result that the transition temperature is reduced by the magnetic field. We calculate the magnetic susceptibility and permeability, verifying that the thermal QCD medium is paramagnetic around and above the transition temperature, while we also find evidence for weak diamagnetism at low temperatures.

G. S. Bali; F. Bruckmann; G. Endrodi; S. D. Katz; A. Schafer

2014-06-02

302

Applications of magnetic line ratio method to magnetographic observations of large-scale solar magnetic fields  

Microsoft Academic Search

We interpret Measurements of the large-scale magnetic field strength, obtained with the magnetograph of the STOP telescope at the Sayan observatory, in terms of a two-component model. Theoretical magnetic field strength ratios for used spectral lines are calculated. For this purpose, the Stokes-V parameters are derived by solving the radiative transfer equations for four flux tube models. By means of

R. M. Veretsky; M. L. Demidov

2002-01-01

303

Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field  

PubMed Central

Optical and electrical control of the nuclear spin system allows enhancing the sensitivity of NMR applications and spin-based information storage and processing. Dynamic nuclear polarization in semiconductors is commonly achieved in the presence of a stabilizing external magnetic field. Here we report efficient optical pumping of nuclear spins at zero magnetic field in strain-free GaAs quantum dots. The strong interaction of a single, optically injected electron spin with the nuclear spins acts as a stabilizing, effective magnetic field (Knight field) on the nuclei. We optically tune the Knight field amplitude and direction. In combination with a small transverse magnetic field, we are able to control the longitudinal and transverse components of the nuclear spin polarization in the absence of lattice strain—that is, in dots with strongly reduced static nuclear quadrupole effects, as reproduced by our model calculations. PMID:24500329

Sallen, G.; Kunz, S.; Amand, T.; Bouet, L.; Kuroda, T.; Mano, T.; Paget, D.; Krebs, O.; Marie, X.; Sakoda, K.; Urbaszek, B.

2014-01-01

304

SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES  

SciTech Connect

We present self-consistent high-resolution simulations of NGC 4038/4039 (the 'Antennae galaxies') including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10{sup -9} to 10{sup -4} G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of {approx}10 {mu}G, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H. [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Dolag, K.; Stasyszyn, F. A., E-mail: kotarba@usm.lmu.d [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

2010-06-20

305

Model calculations of lightning electric fields  

NASA Technical Reports Server (NTRS)

Calculated time-domain waveforms and frequency spectra are presented for three of the most important processes in a lightning discharge to ground: the return stroke, the stepped leader, and the preliminary breakdown. For each of these processes, the model calculations are given for 200 m and 50 km. The calculations are compared with available time and frequency domain measurements.

Master, M. J.; Uman, M. A.; Krider, E. P.

1982-01-01

306

Fine structure of solar magnetic fields  

Microsoft Academic Search

The deduction of magnetic fields from chromospheric structure is extended to active regions and transverse fields. Fields independently predicted by these rules from a high resolution Ha filtergram are compared with a high resolution magnetogram. The Ha method has the advantage over conventional magnetograms that it shows transverse fields and relates the fields to the real Sun. It has the

Harold Zirin

1972-01-01

307

Yoke-free magnetic system for low field studies in magnetically affected reaction yield spectroscopy  

NASA Astrophysics Data System (ADS)

The article reports the development of a specialized magnetic system for application in low field studies of chemical reactions involving paramagnetic intermediates. We have designed and built a yoke-free magnetic system optimized for creating rather low static homogeneous magnetic fields that can be cleanly swept through zero value. The actually built system creates magnetic field in the range from "-500" to "+500" G in a cylindrical working region with a length of 8 cm and a diameter of 1 cm with a relative field homogeneity of about 10-4 without using ferromagnetic elements or employing a field-sensing feedback loop. At a distance of greater than or equal to 15 cm from the center of the system along the sweeping axis, the magnetic field does not exceed 100 G due to active shielding, which allows putting magnetic field-sensitive elements of the installation that close to the sample. We have tried to provide a detailed account of the design choices we faced and the compromises we had reached for each key aspect of the system, being rather specific about the reasoning behind each decision. The system actually built was thoroughly tested to verify the assumptions made at the design and the calculation stages and to check their practical realizability. The system will serve as the basis of a magnetically affected reaction yield spectrometer that is currently being developed in our laboratory, but hopefully can also be used in a wider array of applications centered around studies in low magnetic fields.

Kalneus, Evgeny V.; Stass, Dmitri V.; Grishin, Yuri A.

2005-08-01

308

Magnetic helicity of the Parker field. [IMF within heliosphere  

NASA Technical Reports Server (NTRS)

The topological properties of the interplanetary magnetic field are discussed based on a calculation of the magnetic helicity of the Parker field. The most striking feature of the helicity is that it is negative north of the heliospheric current sheet and positive south of the current sheet, regardless of the sign of the solar poloidal magnetic field. Informal arguments based on MHD turbulence theory suggest that the magnetic helicity of turbulence in the interplanetary medium may be related to the large-scale Parker helicity. Because charged particle scattering in certain types of magnetic turbulence (such as slab turbulence) depends strongly upon helicity, the existence of such a relationship could have important implications to cosmic-ray transport in the heliosphere.

Bieber, J. W.; Evenson, P. A.; Matthaeus, W. H.

1987-01-01

309

Transport properties of high-temperature air in a magnetic field  

SciTech Connect

Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

Bruno, D. [Institute of Inorganic Methodologies and Plasmas, CNR, 70126 Bari (Italy); Capitelli, M.; Catalfamo, C. [Department of Chemistry, University of Bari, 70126 Bari (Italy); Giordano, D. [Aerothermodynamics Section, ESA-ESTEC, 2200 AG Noordwijk (Netherlands)

2011-01-15

310

Magnetic-field effects in non-magnetic glasses  

NASA Astrophysics Data System (ADS)

Recently, it was found that the multi-component glass a-BaO-Al2O3-SiO2 exhibits unusual magnetic properties at very low temperatures. Thus the question arises whether this is a specialty of that particular glass or a more general phenomenon. We report here on our studies of the magnetic-field dependence of the dielectric properties of the borosilicate glass BK7 which contains only a negligible amount of magnetic impurities. Since this glass also responds sensitively to magnetic fields, our investigations demonstrate that the reaction of glasses to magnetic fields is not caused by magnetic impurities but reflects a more general phenomenon. In addition, we have observed that the variation of the dielectric constant and the loss angle with magnetic field depend on the amplitude of the electric field that is used to measure the glass capacitance. We present the data and discuss possible origins of the magnetic-field phenomena in non-magnetic glasses.

Wohlfahrt, M.; Strehlow, P.; Enss, C.; Hunklinger, S.

2001-12-01

311

Thinned fiber Bragg grating magnetic field sensor with magnetic fluid  

NASA Astrophysics Data System (ADS)

The refractive index of magnetic fluid may be changed by external magnetic field. Therefore, through measuring its refractive index, the intensity of the magnetic field can be obtained. Fiber Bragg grating (FBG) is sensitive to the refractive index surrounding its cladding when the diameter of cladding is reduced to a certain degree. In order to prove the sensitivity of the thinned fiber Bragg grating to refractive index, series of experiments, such as the fabrication of thinned FBG, tuning magnetic field and obtaining spectral characterizations, are carried out. After the FBG is etched for 193 minutes by HF solution at 22%, the FBG starts to be sensitive to the surrounding refractive index and the Bragg wavelength decreases sharply with the etching process. The thinned FBG has been packaged to a container filled with MF. Using a tunable magnetic field the refractive index of magnetic fluid could be changed and the Bragg wavelength of FBG shifts correspondingly. Both the wavelength and the light power are sensitive to magnetic field and the sensitivity of wavelength is 2.3 pm/mT at least in the condition of proposed experiment. The obtained results show that the thinned FBG sensor with magnetic fluid could be applicable for magnetic field and current sensing.

Zhou, Ciming; Ding, Li; Wang, Dongli; Kuang, Yaqi; Jiang, Desheng

2011-05-01

312

Polarized neutron reflectometry in high magnetic fields  

SciTech Connect

A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe{sub 2}/DyFe{sub 2} multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada.

Fritzsche, H. [National Research Council Canada, Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario K0J 1J0 (Canada)

2005-11-15

313

Energy buildup in sheared force-free magnetic fields  

NASA Technical Reports Server (NTRS)

Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

Wolfson, Richard; Low, Boon C.

1992-01-01

314

A classical calculation of the leptonic magnetic moment  

E-print Network

In this paper we will show that purely classical concepts based on a few heuristic considerations about extended field configurations are enough to compute the leptonic magnetic moment with corrections up to the order $\\alpha$ perturbatively.

Luca Fabbri

2014-11-24

315

Saturated symmetric nuclear matter in strong magnetic fields  

NASA Astrophysics Data System (ADS)

Strongly magnetized symmetric nuclear matter is investigated within the context of effective baryon-meson exchange models. The magnetic field is coupled to the charge as well as the dipole moment of the baryons by including the appropriate terms in the Lagrangian density. The saturation density of magnetized, symmetric nuclear matter ?0(B) was calculated for magnetic fields of the order of 1017 gauss. For the calculated range of ?0(B) the binding energy, symmetry energy coefficient a4, and compressibility K of nuclear matter were also calculated. It is found that with an increasing magnetic field ?0(B) increases, while the system becomes less bound. Furthermore, the depopulation of proton Landau levels leaves a distinct fluctuating imprint on K and a4. The calculations were also performed for increased values of the baryon magnetic dipole moment. By increasing the dipole moment strength ?0(B) is found to decrease, but the system becomes more tightly bound while the fluctuations in K and a4 persist.

Diener, J. P. W.; Scholtz, F. G.

2013-06-01

316

On the magnetic field near the center of Helmholtz coils.  

PubMed

We develop a series expansion for the calculation of the magnetic field near the center of Helmholtz coils and apply the result to a magnet of our design. Our analysis considers geometric details of the coils, the magnetic properties of the form and windings, conductor insulation effects, and several winding imperfections. We also consider the relaxation of coil symmetry which happens when the mean radius of each coil and the coil midplane separation distance are unequal. We compute the field uniformity near the coil's center for three cases, including one where axial symmetry remains but geometric imperfections of the order of 10(-3) of the coil "radius" exist. PMID:20815620

Crosser, M S; Scott, Steven; Clark, Adam; Wilt, P M

2010-08-01

317

Separation of Charged Particles from Magnetic Field Lines in Two-Component Magnetic Turbulence  

NASA Astrophysics Data System (ADS)

In interplanetary space, the transport of energetic charged particles is influenced by a turbulent magnetic field. Previous studies have shown that a two-component (2D+slab) magnetic model of turbulence is a useful model for the magnetic field in the heliosphere. Normally, the diffusive behavior of charged particles in a turbulent magnetic field is observed when they approach the long time limit. The charged particles are often assumed to follow and diffuse according to the random walk of the field lines but some theories of perpendicular particle transport, such as nonlinear guiding center theory (NLGC), implicitly assume some true cross-field diffusion in which particles separate from the field line connected to their initial location. Furthermore, such cross-field diffusion is of specific interest because it is the only way that particles can diffuse across boundaries of magnetic field topology, such as the heliospheric current sheet and boundaries of interplanetary magnetic flux ropes. In this work, we study such cross-field diffusion using numerical techniques to simulate the trajectories of charged particles and magnetic field lines in two-component magnetic turbulence and to find the separation between the particles and their initial magnetic field lines. The guiding centers (GC) of the particles are computed here. Then we calculate the spreading between the GC of the particles and the trajectories of the field lines. We found that, in the pure slab turbulence, the particles stick with the magnetic field lines at which they initially start. In the 2D+slab case, the particles initially follow their initial field lines and then spread diffusively in the long time limit. We perform simulations for varying particle energy, ratio of 2D to slab fluctuations, and strength of the magnetic fluctuation in order to understand the relationship between the particle and magnetic field line trajectories. The diffusion coefficients of the particles have been calculated and compared with previous theories. This will lead to better understanding about the mechanisms of particle transport and will also help in developing a more complete transport theory of energetic charged particles in magnetic turbulence. Partially supported by the Thailand Research Fund, NSF SHINE ATM-0752135, and NASA Heliophysics Theory Program NNX08AI47G.

Chuychai, P.; Ruffolo, D. J.; Matthaeus, W. H.

2010-12-01

318

The contrasting magnetic fields of superconducting pulsars and magnetars  

NASA Astrophysics Data System (ADS)

We study equilibrium magnetic field configurations in a neutron star (NS) whose core has type-II superconducting protons. Unlike the equations for normal matter, which feature no special field strength, those for superconductors contain the lower critical field, of the order of 1015 G. We find that the ratio of this critical field to the smooth-averaged stellar field at the crust-core boundary is the key feature dictating the field geometry. Our results suggest that pulsar- and magnetar-strength fields have notably different configurations. Field decay for NSs with Bpole ˜ 1014 G could thus result in substantial internal rearrangements, pushing the toroidal field component out of the core; this may be related to observed magnetar activity. In addition, we calculate the magnetically induced ellipticities of our models.

Lander, S. K.

2014-01-01

319

Videomagnetograph studies of solar magnetic fields  

Microsoft Academic Search

Observations of magnetic field diffusion in weak plage regions have been made using the analog videomagnetograph at the California Institute of Technology. Points of magnetic flux, usually described as ‘vertex points’ of the magnetic network, were found to have a mean lifetime of three to four days, and to disperse primarily by means of two mechanisms: a random walk with

Robert C. Smithson

1973-01-01

320

The Moessbauer effect in homogeneous magnetic field  

E-print Network

We derive the probability of the Moessbauer effect realized by the charged particle moving in the homogeneous magnetic field, or, in accelerating field. The submitted approach represents new deal of the Moessbauer physics. Key

Miroslav Pardy

2014-03-20

321

Magnetic field decay in model SSC dipoles  

SciTech Connect

We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

1988-08-01

322

Magnetic Field Seeding through Supernova Feedback  

NASA Astrophysics Data System (ADS)

Stellar feedback occurring at small-scales can significantly impact the evolution of galaxies at much larger scales. For example, an appropriate feedback mechanism, including thermal and radiative components, can help regulate star formation, particularly in low-mass galaxies. While feedback models are generally prevalent in numerical simulations, the magnetic component is often neglected. However, measurements of galaxies indicate the presence of fields with a strength on the order of µG. Previous studies have demonstrated the formation of these fields through the amplification of a primordial magnetic field. Here, we describe a self-consistent prescription where magnetic fields are injected in supernova injections, calibrated by observations of magnetic fields in supernova remnants. These fields will then become seeds that evolve by way of mixing and turbulence to result in galactic-scale magnetic fields. As a proof of concept, we apply this method to model the supernova of a single Population III star and trace the evolution of the injected magnetic field. Future studies will apply this prescription to study not only the effects of magnetic fields on galaxy formation and evolution, but also the growth of the magnetized bubbles that form in the IGM.

Koh, Daegene; Wise, John

2015-01-01

323

Graphene Nanoribbon in Sharply Localized Magnetic Fields  

E-print Network

We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.

Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal

2011-03-21

324

Massive neutrinos and magnetic fields in the early universe  

SciTech Connect

Primordial magnetic fields and massive neutrinos can leave an interesting signal in the CMB temperature and polarization. We perform a systematic analysis of general perturbations in the radiation-dominated universe, accounting for any primordial magnetic field and including leading-order effects of the neutrino mass. We show that massive neutrinos qualitatively change the large-scale perturbations sourced by magnetic fields, but that the effect is much smaller than previously claimed. We calculate the CMB power spectra sourced by inhomogeneous primordial magnetic fields, from before and after neutrino decoupling, including scalar, vector and tensor modes, and consistently modeling the correlation between the density and anisotropic stress sources. In an appendix we present general series solutions for the possible regular primordial perturbations.

Shaw, J. Richard; Lewis, Antony [Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

2010-02-15

325

Parker's magnetic field and relativistic jets  

NASA Astrophysics Data System (ADS)

We consider the motion of high-energy charged particles (cosmic rays) in Parker's spiral magnetic field. We show that under radial particle ejection from a sphere outside which there is Parker's magnetic field, all of the particles escaping from the sphere are focused either along the field symmetry axis or in the equatorial plane, depending on the field polarity. Based on the results obtained, we propose a possible model that explains the origin of relativistic jets.

Kichigin, G. N.

2014-10-01

326

Magnetic isotope and magnetic field effects on the DNA synthesis  

PubMed Central

Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases ? with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases ? carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases ? with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases ? with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636

Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

2013-01-01

327

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2  

E-print Network

MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value against expansion into the unbounded space. This property as a basic mechanism for solar coronal mass

Fornberg, Bengt

328

Status of lattice field theory calculations  

SciTech Connect

This report briefly discusses the following topics: overview of all present calculation; reliability criteria for quenched calculation; quenched versus full QCD, and difficulties facing full QCD; results for the quenched pion wavefunction''; results for the quenched hadron spectrum; results for quenched B{sub K}; A new method for calculating the surface tension; the non-pertubative upper bound on the Higgs mass; and toward the TERAFLOP machine.

Sharpe, S.R.

1990-01-01

329

The magnetic field of ? Ori A  

NASA Astrophysics Data System (ADS)

Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ? Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ? Ori A. We identify that it belongs to ? Ori Aa and characterize it.

Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

2015-01-01

330

High concentration ferronematics in low magnetic fields  

E-print Network

We investigated experimentally the magneto-optical and dielectric properties of magnetic-nanoparticle-doped nematic liquid crystals (ferronematics). Our studies focus on the effect of the very small orienting bias magnetic field $B_{bias}$, and that of the nematic director pretilt at the boundary surfaces in our systems sensitive to low magnetic fields. Based on the results we assert that $B_{bias}$ is not necessarily required for a detectable response to low magnetic fields, and that the initial pretilt, as well as the aggregation of the nanoparticles play an important (though not yet explored enough) role.

T. Tóth-Katona; P. Salamon; N. Éber; N. Tomašovi?ová; Z. Mitróová; P. Kop?anský

2014-09-05

331

psi¯psi condensate in constant magnetic fields  

Microsoft Academic Search

We solve the Dirac equation in the presence of a constant magnetic field in (3+1) and (2+1) dimensions. Quantizing the fermion field, we calculate the psi¯psi condensate from first principles for parity conserving and violating Lagrangians for arbitrary field strength. We make a comparison with the results already known in the literature for some particular cases and point out the

M. de J. Anguiano-Galicia; A. Bashir; A. Raya

2007-01-01

332

Parallel magnetic field perturbations in gyrokinetic simulations  

SciTech Connect

At low beta it is common to neglect parallel magnetic field perturbations on the basis that they are of order beta{sup 2}. This is only true if effects of order beta are canceled by a term in the nablaB drift also of order beta[H. L. Berk and R. R. Dominguez, J. Plasma Phys. 18, 31 (1977)]. To our knowledge this has not been rigorously tested with modern gyrokinetic codes. In this work we use the gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)] to investigate whether the compressional magnetic field perturbation B{sub ||} is required for accurate gyrokinetic simulations at low beta for microinstabilities commonly found in tokamaks. The kinetic ballooning mode (KBM) demonstrates the principle described by Berk and Dominguez strongly, as does the trapped electron mode, in a less dramatic way. The ion and electron temperature gradient (ETG) driven modes do not typically exhibit this behavior; the effects of B{sub ||} are found to depend on the pressure gradients. The terms which are seen to cancel at long wavelength in KBM calculations can be cumulative in the ion temperature gradient case and increase with eta{sub e}. The effect of B{sub ||} on the ETG instability is shown to depend on the normalized pressure gradient beta{sup '} at constant beta.

Joiner, N.; Hirose, A. [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Dorland, W. [University of Maryland, College Park, Maryland 20742 (United States)

2010-07-15

333

Fluctuating magnetic field induced resonant activation.  

PubMed

In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (?) increases under the fixed field strength then the mean first passage time rapidly grows at low ? and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers' turn over phenomenon may occur in the presence of a fluctuating magnetic field. PMID:25494726

Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

2014-12-14

334

Fluctuating magnetic field induced resonant activation  

NASA Astrophysics Data System (ADS)

In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (?) increases under the fixed field strength then the mean first passage time rapidly grows at low ? and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers' turn over phenomenon may occur in the presence of a fluctuating magnetic field.

Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

2014-12-01

335

The effect of magnetic fields on star cluster formation  

NASA Astrophysics Data System (ADS)

We examine the effect of magnetic fields on star cluster formation by performing simulations following the self-gravitating collapse of a turbulent molecular cloud to form stars in ideal magnetohydrodynamics. The collapse of the cloud is computed for global mass-to-flux ratios of ?,20,10,5 and 3, i.e. using both weak and strong magnetic fields. Whilst even at very low strengths the magnetic field is able to significantly influence the star formation process, for magnetic fields with plasma ? < 1 the results are substantially different to the hydrodynamic case. In these cases we find large-scale magnetically supported voids imprinted in the cloud structure; anisotropic turbulent motions and column density striations aligned with the magnetic field lines, both of which have recently been observed in the Taurus molecular cloud. We also find strongly suppressed accretion in the magnetized runs, leading to up to a 75 per cent reduction in the amount of mass converted into stars over the course of the calculations and a more quiescent mode of star formation. There is also some indication that the relative formation efficiency of brown dwarfs is lower in the strongly magnetized runs due to a reduction in the importance of protostellar ejections.

Price, Daniel J.; Bate, Matthew R.

2008-04-01

336

Homogenization of nanostructured media in magnetic field  

NASA Astrophysics Data System (ADS)

Problem of homogenization of nanostructured media in magnetic field has been considered. Possibility of introduction of effective material parameters dielectric permittivity and magnetic permeability for three classes of media such as magnetic metal nanostructures, film metal-dielectric composite media and 3D-nanocomposites on the base of opal matrices has been investigated. It has been stated that the introduction of effective parameters far from magnetic resonance conditions is possible at millimeter waveband frequencies. Strict introduction of effective magnetic permeability of nanostructured media near magnetic resonance is not possible.

Rinkevich, A. B.; Perov, D. V.

2014-11-01

337

Two-axis magnetic field sensor  

NASA Technical Reports Server (NTRS)

A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

2006-01-01

338

Graphical interactive generation of gravity and magnetic fields  

NASA Astrophysics Data System (ADS)

Gravity and magnetic observation surveys aimed to the exploration of Earth subsurface are nowadays increasingly growing, due to their superior cost-effectiveness. They can be applied to a great variety of applications, ranging in scale from archaeological and engineering site investigations up to regional and global crust studies of Earth. In potential fields analysis, many algorithms, designed to extract quantitative subsurface information, do exist. Before using these methods on real data and in order to verify their effectiveness, they are usually tested on synthetic data. However, due to synthetic calculation complexity, magnetic and gravimetric sources are often replaced with simple geometrical primitives (spheres, cylinders or prisms) very far from being representative of real geological sources. A suite of MATLABs procedures called GamField is presented that greatly simplifies the graphical windows interactive construction of complex 3-D distributions of Cartesian prisms for gravity and magnetic anomaly modeling. The package can be used to compute a large variety of synthetic fields aimed at testing the quality of several interpretation techniques. Unlike already published PC-based codes, that compute either a magnetic or gravity field, GamField permits the combined calculation of both fields, their gradients and the magnetic vector components, through a graphical interactive 3-D approach in the construction of generic sources. GamField is maintained by the Italian National Institute of Geophysics and Volcanology (INGV) and can be freely downloaded.

Pignatelli, A.; Nicolosi, I.; Carluccio, R.; Chiappini, M.; von Frese, R. R.

2011-12-01

339

Orientation effects in pulsed magnetic field treatment  

Microsoft Academic Search

This paper presents the orientation effects on residual stress release by pulsed magnetic field treatment. Specimens are produced by tungsten inert gas (TIG) welding and the initial residual stresses in them are measured by the hole-drilling method. With different orientations these specimens are treated in the same magnetic field and the residual stresses are measured for the second time. By

Cai Zhipeng; Lin Jian; Zhao Haiyan; Lu Anli

2005-01-01

340

A search for weak stellar magnetic fields  

Microsoft Academic Search

The magnetic fields of normal main sequence stars, supergiants, and mercury-manganese stars were measured in metal lines with the magnetometer of the main stellar spectrograph and in hydrogen lines with the spectropolarimeter at the 6-meter telescope. These data were analyzed statistically with data obtained by other authors. It is concluded that the dipole magnetic fields of the stars studied hardly

Yu. V. Glagolevskij; I. I. Romanyuk; I. D. Najdenov; V. G. Shtol

1991-01-01

341

Magnetic Fields at the Center of Coils  

ERIC Educational Resources Information Center

In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

2014-01-01

342

Does the solar magnetic field increase?  

Microsoft Academic Search

We consider measurements of the general magnetic field (GMF) of the Sun as a star at four world observatories from 1968 until\\u000a 1999. We show that, within the error limits, the mean strength of the photospheric magnetic field H (of its longitudinal component, in magnitude) has not changed over the last 32 years. This is in conflict with the recent

V. A. Kotov; I. V. Kotova

2001-01-01

343

ON THE EFFECT OF A WEAK INTERPLANETARY MAGNETIC FIELD ON THE INTERACTION BETWEEN THE SOLAR WIND AND THE GEOMAGNETIC FIELD  

Microsoft Academic Search

the presence of a weak interplanetary magnetic field may lead to the ; formation of a collision-free shock wave upstream from the boundary of the ; geomagnetic field and to a transition region characterized by an irregular ; magnetic field in the intervening space. Previous calculations of the ; coordinates of the shock wave are improved upon by application of

John R. Spreiter; Wm. Prichard Jones

1963-01-01

344

Magnetic field spectral crossings of Luttinger holes in quantum wells  

NASA Astrophysics Data System (ADS)

We develop an analytic approach to two-dimensional (2D) holes in a magnetic field that allows us to gain insight into physics of measuring the parameters of holes, such as cyclotron resonance, Shubnikov-de Haas effect and spin resonance. We derive hole energies, cyclotron masses, and the g factors in the semiclassical regime analytically, as well as analyze numerical results outside the semiclassical range of parameters, qualitatively explaining the experimentally observed magnetic field dependence of the cyclotron mass. In the semiclassical regime with large Landau level indices, and for size quantization energy much bigger than the cyclotron energy, the cyclotron mass coincides with the in-plane effective mass, calculated in the absence of a magnetic field. The hole g factor in a magnetic field perpendicular to the 2D plane is defined not only by the constant of direct coupling of the angular momentum of the holes to the magnetic field, but also by the Luttinger constants defining the effective masses of holes. We find that the g factor for quasi-2D holes with heavy mass in the [001] growth direction in GaAs quantum well is g =4.05 in the semiclasssical regime. Outside the semiclassical range of parameters, holes behave as a species completely different from electrons. Spectra for size- and magnetic-field-quantized holes are nonequidistant, not fanlike, and exhibit multiple crossings, including crossing in the ground level. We calculate the effect of Dresselhaus terms, which transform some of the crossings into anticrossings, and the effects of the anisotropy of the Luttinger Hamiltonian on the 2D hole spectra. Dresselhaus terms of different symmetries are taken into account, and a regularization procedure is developed for the kz3 Dresselhaus terms. Control of the nonequidistant levels and crossing structure by the magnetic field can be used to control the Landau level mixing in hole systems, and thereby control hole-hole interactions in the magnetic field.

Simion, G. E.; Lyanda-Geller, Y. B.

2014-11-01

345

Alignment Behavior of Crystal with Magnetic Anisotropy of ?c < ?a under Rotating Magnetic Field  

NASA Astrophysics Data System (ADS)

The alignment behavior of a crystal has been investigated by numerical calculation and an in situ observation experiment with a process combining magnetic field imposition and sample rotation to form unidirectionally aligned crystals with a magnetic anisotropy of ?c < ?a. The experimentally observed alignment behavior of a polymeric fiber and its alignment time agreed with the numerically calculated ones. Crystal alignment under the out-of-step condition alternately repeats the alignment duration and the keeping of a constant duration, and finally the crystal aligns in a specific direction. The alignment time under the synchronous condition is longer than that under the out-of-step condition if the magnetic field intensity is constant. To reduce the alignment time, a strong magnetic field under the out-of-step condition is desirable in this process.

Iwai, Kazuhiko; Niimi, Masahiro; Kohama, Takenori

2009-10-01

346

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

Tatchyn, R.O.

1997-01-21

347

Permanent magnet edge-field quadrupole  

DOEpatents

Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

Tatchyn, Roman O. (Mountain View, CA)

1997-01-01

348

Solar magnetic fields and the dynamo theory  

Microsoft Academic Search

Unlike Earth’s dipolar magnetic fields, solar magnetic fields consist of wide ranges of length-scales and strengths, and interestingly, they evolve in a cyclic fashion with a 22-year periodicity. A magnetohydrodynamic dynamo operating in the Sun is most likely responsible for producing the solar magnetic activity cycle. While the first solar dynamo models were built half a century ago, recent views

M. Dikpati

2005-01-01

349

Fields from a relativistic magnetic explosion  

NASA Astrophysics Data System (ADS)

Following Prendergast, we study the relativistically expanding electromagnetic fields generated by an axisymmetric explosion of magnetic energy in a small volume. The magnetic field expands uniformly either within a cone or in all directions and it is therefore accompanied by an electric field. In the highly conducting plasma, the charges move to annul the electric field in the frame of the moving plasma. The solutions presented are analytical and semi-analytical. We find that the time-scale for the winding up of the initial magnetic field is crucial, as short time-scales lead to strong radiant fields. Assuming a magnetic field of 1013G emerging from a magnetosphere of 109cm, we end with a jet when confined by a pressure environment that falls more slowly than r-4. The jet carries energy of 1051erg, which is mostly due to differential rotation at the base.

Gourgouliatos, K. N.; Lynden-Bell, D.

2008-11-01

350

Search for order in magnetic dispersions: Magnetic field and shear induced particle orientations  

NASA Astrophysics Data System (ADS)

Magnetic tapes are manufactured by a coating process where a magnetic dispersion is cast onto a polymer base film. Immediately after coating the wet films are subjected to a magnetic field that orients the rod-like magnetic particles parallel to the machine direction of the tape. In reality there is a distribution of particle orientations. Our interest in increasing the particle orientation order in magnetic tape has led us to search for methods of achieving high particle orientation order in magnetic dispersions. An understanding of the particle orientation order in the dispersion is of great importance in controlling the properties of the final product. Inspired by a mean field model and cryo-VSM technique, we have developed an experimental method to measure the degree of particle orientation order in magnetic dispersions, which can not only reveal the quality of dispersion quantitatively, but also help refine existing theoretical models. In this method, the angular dependence remanence of a frozen magnetic dispersion sample is measured using a vibrating sample magnetometer, and then the degree of particle order orientation can be calculated from those experimental results. The effect of the external magnetic field on the particle orientation of the magnetic dispersion is investigated using the technique of cryo-VSM. The effect of the particle loading is also investigated. We also compare the cryo-VSM results to the calculated orientation order parameter from the single particle mean field model developed by Bhandar and Wiest. Small angle neutron scattering measurements were performed to investigate effects of the magnetic field and shear flow on the orientation order of particles in magnetic dispersions. The order parameter S obtained by the SANS agreed well with the values obtained by the cryo-VSM method. We also introduce Dr. Mankey's idea to model the SANS experimental data. The particle size distributions are considered in Dr. Mankey's model.

He, Bin

351

Magnetic field amplification in supernova shock precursor  

NASA Astrophysics Data System (ADS)

Galactic cosmic rays are believed to be mostly accelerated at supernova shocks. However, the interstellar magnetic field is too weak to efficiently accelerate galactic cosmic rays up to the highest energies. A stronger magnetic field in the preshock region could provide the efficiency required. Cosmic ray streaming instability has been claimed to be responsible for the amplification of precursor magnetic fields. An alternative mechanism has been proposed in which the cosmic ray pressure gradient forms the shock precursor and drives turbulence, amplifying the magnetic field via the small-scale dynamo. We explore this last scenario through 3-D MHD numerical simulations. We show under which conditions an efficient amplification of the magnetic field is achieved.

Del Valle, Maria Victoria; Lazarian, Alex

352

Chaotic magnetic fields: Particle motion and energization  

SciTech Connect

Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

Dasgupta, Brahmananda [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Ram, Abhay K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Li, Gang [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Li, Xiaocan [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

2014-02-11

353

Direction of Optical Energy Flow in a Transverse Magnetic Field  

NASA Astrophysics Data System (ADS)

In this Letter, we report a theoretical and experimental study of the direction of optical energy flow in homogeneous media subject to a transverse magnetic field. For transparent media we verify experimentally for the first time the existence of magnetic deflection of circularly polarized light. In absorbing media the calculated directions of the Poynting vector and of a wave packet do not coincide. Experimentally we demonstrate that the Poynting vector result is not correct.

Rikken, G. L. J. A.; van Tiggelen, B. A.

1997-02-01

354

Warm inflation in presence of magnetic fields  

SciTech Connect

We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

Piccinelli, Gabriella [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico)] [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico); Sánchez, Ángel [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States)] [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ayala, Alejandro; Mizher, Ana Julia [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)] [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)

2013-07-23

355

Deriving the Coronal Magnetic Field Using Parametric Transformation Analysis  

NASA Technical Reports Server (NTRS)

When plasma-beta greater than 1 then the gas pressure dominates over the magnetic pressure. This ratio as a function along the coronal magnetic field lines varies from beta greater than 1 in the photosphere at the base of the field lines, to beta much less than 1 in the mid-corona, to beta greater than 1 in the upper corona. Almost all magnetic field extrapolations do not or cannot take into account the full range of beta. They essentially assume beta much less than 1, since the full boundary conditions do not exist in the beta greater than 1 regions. We use a basic parametric representation of the magnetic field lines such that the field lines can be manipulated to match linear features in the EUV and SXR coronal images in a least squares sense. This research employs free-form deformation mathematics to generate the associated coronal magnetic field. In our research program, the complex magnetic field topology uses Parametric Transformation Analysis (PTA) which is a new and innovative method to describe the coronal fields that we are developing. In this technique the field lines can be viewed as being embedded in a plastic medium, the frozen-in-field-line concept. As the medium is deformed the field lines are similarly deformed. However the advantage of the PTA method is that the field line movement represents a transformation of one magnetic field solution into another magnetic field solution. When fully implemented, this method will allow the resulting magnetic field solution to fully match the magnetic field lines with EUV/SXR coronal loops by minimizing the differences in direction and dispersion of a collection of PTA magnetic field lines and observed field lines. The derived magnetic field will then allow beta greater than 1 regions to be included, the electric currents to be calculated, and the Lorentz force to be determined. The advantage of this technique is that the solution is: (1) independent of the upper and side boundary conditions, (2) allows non-vanishing magnetic forces, and (3) provides a global magnetic field solution, which contains high- and low-beta regimes and maximizes the similarity between the field lines structure and all the coronal images of the region. The coronal image analysis is crucial to the investigation and for the first time these images can be exploited to derive the coronal magnetic field in a well-posed mathematical formulation. This program is an outgrowth of an investigation in which an extrapolated potential field was required to be "inflated" in order to have the field lines match the Yohkoh/SXT images. The field lines were radially stretched resulting in a better match to the coronal loops of an active region. The PTA method of radial and non-radial deformations of field lines to provide a match to the EUV/SXR images will be presented.

Gary, G. Allen; Rose, M. Franklin (Technical Monitor)

2001-01-01

356

Magnetic field error characterization and mitigation in tokamaks  

NASA Astrophysics Data System (ADS)

Two questions will be addressed: (1) How should control coils be chosen to optimally mitigate the effects of the magnetic field errors? (2) How should the expected properties of the magnetic field errors be characterized while deciding on the importance of various control coils? Although magnetic field errors are caused by misplacements in coil locations and winding patterns, the actual source of the error in an as-built tokamak is not relevant to the mitigation of the error field effects unless coils are to be repositioned or replaced. Nevertheless, certain properties of the errors are important for the choice of control coils. These properties can be estimated using a Monte Carlo model of likely errors, but it is not clear that existing Monte Carlo calculations, which take coil displacements as independent random variables, predict these properties correctly or in accordance with the actual field errors in existing tokamaks.

Boozer, Allen H.

2012-09-01

357

Evolution of Magnetic Fields in Supernova Remnants  

E-print Network

Supernova remnants (SNR) are now widely believed to be a source of cosmic rays (CRs) up to an energy of 1 PeV. The magnetic fields required to accelerate CRs to sufficiently high energies need to be much higher than can result from compression of the circumstellar medium (CSM) by a factor 4, as is the case in strong shocks. Non-thermal synchrotron maps of these regions indicate that indeed the magnetic field is much stronger, and for young SNRs has a dominant radial component while for old SNRs it is mainly toroidal. How these magnetic fields get enhanced, or why the field orientation is mainly radial for young remnants, is not yet fully understood. We use an adaptive mesh refinement MHD code, AMRVAC, to simulate the evolution of supernova remnants and to see if we can reproduce a mainly radial magnetic field in early stages of evolution. We follow the evolution of the SNR with three different configurations of the initial magnetic field in the CSM: an initially mainly toroidal field, a turbulent magnetic field, and a field parallel to the symmetry axis. Although for the latter two topologies a significant radial field component arises at the contact discontinuity due to the Rayleigh-Taylor instability, no radial component can be seen out to the forward shock. Ideal MHD appears not sufficient to explain observations. Possibly a higher compression ratio and additional turbulence due to dominant presence of CRs can help us to better reproduce the observations in future studies.

K. M. Schure; J. Vink; A. Achterberg; R. Keppens

2008-10-28

358

The moon's permanent magnetic field - A cratered-shell model  

NASA Technical Reports Server (NTRS)

The possibility is considered that the properties of the larger-scale lunar magnetic field may depend in a rather straightforward manner on the geometrical properties of the distribution of larger craters. The relevant effects of cratering are analyzed in the framework of a model of a spherically symmetric shell magnetized to some specific intensity by a concentric dipolar magnetic field. The remanent dipole moment of the model is determined by calculating the dipole moment of the material removed to form craters and them computing the remanent dipole moment for three mutually orthogonal orientations of the magnetizing dipole. The resulting absolute values for the remanent dipole moment are found to be comparable to the upper limit of 10 to the -19th power G-cu cm estimated from Apollo subsatellite measurements. It is concluded that for a crust with an empirically reasonable mean magnetization, the craters can account for a dipole moment as great as that indicated by the estimated upper limit.

Weiss, H.; Coleman, P. J., Jr.

1977-01-01

359

Magnetic fields in noninvasive brain stimulation.  

PubMed

The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985. PMID:23787954

Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

2014-04-01

360

Accounting for crustal magnetization in models of the core magnetic field  

NASA Technical Reports Server (NTRS)

The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.

Jackson, Andrew

1990-01-01

361

Origin of magnetic fields in galaxies  

SciTech Connect

Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation -dissipation theorem, predicts {approx}0.034 {mu}G fields over {approx}0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation-dissipation theorem are not completely random, microgauss fields over regions > or approx. 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in < or approx. 10{sup 9} years in high redshift galaxies.

Souza, Rafael S. de; Opher, Reuven [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)

2010-03-15

362

Probing Primordial Magnetic Fields Using Ly? Clouds  

NASA Astrophysics Data System (ADS)

From previous studies of the effect of primordial magnetic fields on early structure formation, we know that the presence of primordial magnetic fields during early structure formation could induce more perturbations at small scales (at present 1-10 h -1 Mpc) as compared to the usual ?CDM theory. Matter power spectra over these scales are effectively probed by cosmological observables such as shear correlation and Ly? clouds. In this paper we discuss the implications of primordial magnetic fields on the distribution of Ly? clouds. We simulate the line-of-sight density fluctuation including the contribution coming from the primordial magnetic fields. We compute the evolution of Ly? opacity for this case and compare our theoretical estimates of Ly? opacity with the existing data to constrain the parameters of the primordial magnetic fields. We also discuss the case when the two density fields are correlated. Our analysis yields an upper bound of roughly 0.3-0.6 nG on the magnetic field strength for a range of nearly scale-invariant models, corresponding to a magnetic field power spectrum index n ~= -3.

Pandey, Kanhaiya L.; Sethi, Shiv K.

2013-01-01

363

Magnetic-field-controlled reconfigurable semiconductor logic.  

PubMed

Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices. PMID:23364687

Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

2013-02-01

364

Magnetic field experiment on the Freja Satellite  

NASA Astrophysics Data System (ADS)

Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600×1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth, language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth's magnetic field taken at 128 vector samples s-1 and digitized to 16 bit, resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis ‘AC’ channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (˜40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (˜160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users. Distributed management of spacecraft operations by the science team is also achieved by this advanced communications system. An exciting new discovery of the field-aligned current systems is the high frequency wave power or structure associated with the various large-scale currents. The spin axis ‘AC’ data and its standard deviation is a measure of this high-frequency component of the Birkeland current regions. The exact response of these channels and filters as well as the physics behind these wave and/or fine-scale current structures accompanying the large-scale currents is being pursued; nevertheless, the association is clear and the results are used for the MFE Birkeland current monitor calculated in the MFE microprocessor. This monitor then sets a trigger when it is greater than a commandable, preset threshold. This ‘event’ flag can be read by the system unit and used to remotely command all instruments into burst mode data taking and local memory storage. In addition,Freja is equipped with a 400 MHz ‘Low Speed Link’ transmitter which transmits spacecraft hcusekeeping that can be received with a low cost, portable receiver. These housekeeping data include the MFE auroral zone current detector; this space weather information indicates the location and strength of ionospheric current systems that directly impact communications, power systems, long distance telephone lines and near-Earth satellite operations. The JHU/APL MFE is a joint effort with NASA/GSFC and was co-sponsored by the Office of Naval Research and NASA/Headquarters in cooperation with the Swedish National Space Board and the Swedish Space Corporation.

Freja Magnetic Field Experiment Team

1994-11-01

365

Compact low field magnetic resonance imaging magnet: Design and optimization  

NASA Astrophysics Data System (ADS)

Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

2000-03-01

366

Magnetic field corrections to solar oscillation frequencies  

NASA Technical Reports Server (NTRS)

It is argued that the frequencies of both the solar p- and g-modes of oscillation are modified by a magnetic field. In particular, the decrease in p-mode frequencies is attributed to a magnetic field within the solar interior evolving over the solar cycle. Field strengths at the base of the convection zone of at least 500,000 G are required.

Roberts, B.; Campbell, W. R.

1986-01-01

367

Saturation magnetic moments, magnetic hyperfine fields and electric field gradients at nuclei in the heavy rare earth metals  

Microsoft Academic Search

The contributions of 4f, 5d and 6s electrons to the saturation magnetic moments and magnetic hyperfine fields in the heavy rare earth metals are calculated using the model described in the previous paper. It is found that 4f shell moments are reduced from their free ion values by amounts varying from 0.05µB in Gd to several tenths of a Bohr

D. M. Eagles

1975-01-01

368

Vector Magnetic Field in Emerging Flux Regions  

NASA Astrophysics Data System (ADS)

A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

Schmieder, B.; Pariat, E.

369

Structure and evolution of the heliospheric magnetic field  

NASA Astrophysics Data System (ADS)

Global structure of the heliospheric magnetic field is investigated through several solar cycles. The study includes magnetic field measurements by space probes located in various spaces in the heliosphere. The latitudinal extent of the heliospheric current sheet is determined from the off-ecliptic observation by Ulysses during the declining phase of solar cycles 22 and 23. The results are compared to the latitudinal excursion of the neutral line on the source surface maps, the deviations are interpreted in relation with the characteristics of the solar cycles. The open magnetic flux of the sun, as determined from interplanetary measurements is best characterized by the radial component of the magnetic field. It is shown that the distribution of the radial component is a complex function of the location in the heliosphere, of the type of solar wind (i.e., slow or fast), and of the phase of the solar cycle. We demonstrate that this complexity is due to fluctuations of the magnetic field, the effect of which can be largely reduced by exploiting the symmetry features of the waves. Two methods are presented for the corrections of the interplanetary flux measurements. It is shown that the corrected magnetic flux density measured by the Ulysses around its solar polar orbit from 1990 to 2009 matches that calculated from the OMNI in-ecliptic, 1 AU data set over the same interval. This result shows that the sun's magnetic flux is generally distributed uniformly in the heliosphere and depends only on the total open magnetic flux of the sun. We calculate the open magnetic flux of the sun from the OMNI data base covering four solar cycles and the values are compared to the total open magnetic flux of the sun as determined from source surface models. The match is fairly good except for the raising phase of the solar cycles. The possible reasons are discussed.

Erdos, Geza

370

Neutron in a strong magnetic field: Finite volume effects  

NASA Astrophysics Data System (ADS)

We investigate the neutron's response to magnetic fields on a torus with the aid of chiral perturbation theory, and expose effects from nonvanishing holonomies. The determination of such effects necessitates nonperturbative treatment of the magnetic field; and, to this end, a strong-field power counting is employed. Using a novel coordinate-space method, we find the neutron propagates in a coordinate-dependent effective potential that we obtain by integrating out charged pions winding around the torus. Knowledge of these finite volume effects will aid in the extraction of neutron properties from lattice QCD computations in external magnetic fields. In particular, we obtain finite volume corrections to the neutron magnetic moment and magnetic polarizability. These quantities have not been computed correctly in the literature. In addition to effects from nonvanishing holonomies, finite volume corrections depend on the magnetic flux quantum through an Aharonov-Bohm effect. We make a number of observations that demonstrate the importance of nonperturbative effects from strong magnetic fields currently employed in lattice QCD calculations. These observations concern neutron physics in both finite and infinite volume.

Tiburzi, Brian C.

2014-04-01

371

Neutron in a Strong Magnetic Field: Finite Volume Effects  

E-print Network

We investigate the neutron's response to magnetic fields on a torus with the aid of chiral perturbation theory, and expose effects from non-vanishing holonomies. The determination of such effects necessitates non-perturbative treatment of the magnetic field; and, to this end, a strong-field power counting is employed. Using a novel coordinate-space method, we find the neutron propagates in a coordinate-dependent effective potential that we obtain by integrating out charged pions winding around the torus. Knowledge of these finite volume effects will aid in the extraction of neutron properties from lattice QCD computations in external magnetic fields. In particular, we obtain finite volume corrections to the neutron magnetic moment and magnetic polarizability. These quantities have not been computed correctly in the literature. In addition to effects from non-vanishing holonomies, finite volume corrections depend on the magnetic flux quantum through an Aharonov-Bohm effect. We make a number of observations that demonstrate the importance of non-perturbative effects from strong magnetic fields currently employed in lattice QCD calculations. These observations concern neutron physics in both finite and infinite volume.

Brian C. Tiburzi

2014-03-04

372

Magnetic reconnection at the edge of Uranus's magnetic field  

NASA Astrophysics Data System (ADS)

A new modeling study sheds light on how the magnetosphere of Uranus compares to those of other planets. Magnetospheres around the inner planets Mercury and Earth are primarily driven by the solar wind—the charged particles spewed out from the Sun—through magnetic reconnection, in which the planet's magnetic field lines break and reconnect, releasing energy in the process.

Balcerak, Ernie

2014-09-01

373

Polymer gel dosimetry of an electron beam in the presence of a magnetic field  

NASA Astrophysics Data System (ADS)

The effect of a strong external magnetic field on 4 MeV electron beam was measured with polymer gel dosimetry. The measured entrance dose distribution was compared with a calculated fluence map. The magnetic field was created by use of two permanent Neodymium (NdFeB) magnets that were positioned perpendicular to the electron beam. The magnetic field between the magnets was measured with Hall sensors. Based on the magnetic field measurement and the law of Biot-Savart, the magnetic field distribution was extrapolated. Electron trajectories were calculated using a relativistic Lorentz force operator. Although the simplified computational model that was applied, the shape and position of the calculated entrance fluence map are found to be in good agreement with the measured dose distribution in the first layer of the phantom. In combination with the development of low density polymer gel dosimeters, these preliminary results show the potential of 3D gel dosimetry in MRI-linac applications.

Vandecasteele, J.; De Deene, Y.

2013-06-01

374

Effective fields in atomic polarizability calculations  

Microsoft Academic Search

An approximate method of estimating the electric polarizability of atoms is considered. The influence of the polarization of one electron state on others is described in terms of induced effective fields. Parameters involved in the model are (i) uncoupled polarizabilities alphai for electron states of types i, (ii) quantities xii related to the induced field at the nucleus due to

D. M. Eagles

1977-01-01

375

Calculation and Analysis of magnetic gradient tensor components of global magnetic models  

NASA Astrophysics Data System (ADS)

Magnetic mapping missions like SWARM and its predecessors, e.g. the CHAMP and MAGSAT programs, offer high resolution Earth's magnetic field data. These datasets are usually combined with magnetic observatory and survey data, and subject to harmonic analysis. The derived spherical harmonic coefficients enable magnetic field modelling using a potential series expansion. Recently, new instruments like the JeSSY STAR Full Tensor Magnetic Gradiometry system equipped with very high sensitive sensors can directly measure the magnetic field gradient tensor components. The full understanding of the quality of the measured data requires the extension of magnetic field models to gradient tensor components. In this study, we focus on the extension of the derivation of the magnetic field out of the potential series magnetic field gradient tensor components and apply the new theoretical framework to the International Geomagnetic Reference Field (IGRF) and the High Definition Magnetic Model (HDGM). The gradient tensor component maps for entire Earth's surface produced for the IGRF show low values and smooth variations reflecting the core and mantle contributions whereas those for the HDGM gives a novel tool to unravel crustal structure and deep-situated ore bodies. For example, the Thor Suture and the Sorgenfrei-Thornquist Zone in Europe are delineated by a strong northward gradient. Derived from Eigenvalue decomposition of the magnetic gradient tensor, the scaled magnetic moment, normalized source strength (NSS) and the bearing of the lithospheric sources are presented. The NSS serves as a tool for estimating the lithosphere-asthenosphere boundary as well as the depth of plutons and ore bodies. Furthermore changes in magnetization direction parallel to the mid-ocean ridges can be obtained from the scaled magnetic moment and the normalized source strength discriminates the boundaries between the anomalies of major continental provinces like southern Africa or the Eastern European Craton.

Schiffler, Markus; Queitsch, Matthias; Schneider, Michael; Stolz, Ronny; Krech, Wolfram; Meyer, Hans-Georg; Kukowski, Nina

2014-05-01

376

Particle Transport in Therapeutic Magnetic Fields  

NASA Astrophysics Data System (ADS)

Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

Puri, Ishwar K.; Ganguly, Ranjan

2014-01-01

377

The Measurement of Magnetic Fields  

ERIC Educational Resources Information Center

Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

Berridge, H. J. J.

1973-01-01

378

Faraday's Magnetic Field Induction Experiment  

NSDL National Science Digital Library

This java simulation illustrates magnetic induction in a wire coil. The user can move a magnet in and out along the axis of a coil while a galvanometer shows the current induced in the coil. The deflection depends on the speed at which the coil moves.

Davidson, Michael

2010-12-29

379

Wannier-based calculation of the orbital magnetization in crystals  

NASA Astrophysics Data System (ADS)

We present a first-principles scheme that allows the orbital magnetization of a magnetic crystal to be evaluated accurately and efficiently even in the presence of complex Fermi surfaces. Starting from an initial electronic-structure calculation with a coarse ab initio k-point mesh, maximally localized Wannier functions are constructed and used to interpolate the necessary k-space quantities on a fine mesh, in parallel to a previously developed formalism for the anomalous Hall conductivity [X. Wang, J. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.195118 74, 195118 (2006)]. We formulate our new approach in a manifestly gauge-invariant manner, expressing the orbital magnetization in terms of traces over matrices in Wannier space. Since only a few (e.g., of the order of 20) Wannier functions are typically needed to describe the occupied and partially occupied bands, these Wannier matrices are small, which makes the interpolation itself very efficient. The method has been used to calculate the orbital magnetization of bcc Fe, hcp Co, and fcc Ni. Unlike an approximate calculation based on integrating orbital currents inside atomic spheres, our results nicely reproduce the experimentally measured ordering of the orbital magnetization in these three materials.

Lopez, M. G.; Vanderbilt, David; Thonhauser, T.; Souza, Ivo

2012-01-01

380

Generation of high magnetic fields using superconducting magnets  

Microsoft Academic Search

High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4T. It was achieved with a combination of NbTi, Nb3Sn, and Bi-2212 conductors in 1999. Since high Tc (critical temperature) superconductors (HTS) have

T. Kiyoshi; A. Otsuka; M. Kosuge; M. Yuyama; H. Nagai; F. Matsumoto

2006-01-01

381

Magnetic Field Measurement with Ground State Alignment  

NASA Astrophysics Data System (ADS)

Observational studies of magnetic fields are crucial. We introduce a process "ground state alignment" as a new way to determine the magnetic field direction in diffuse medium. The alignment is due to anisotropic radiation impinging on the atom/ion. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1 G ? B ? 10^{-15} G). In fact, the effects of atomic/ionic alignment were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. A unique feature of the atomic realignment is that they can reveal the 3D orientation of magnetic field. In this chapter, we shall review the basic physical processes involved in atomic realignment. We shall also discuss its applications to interplanetary, circumstellar and interstellar magnetic fields. In addition, our research reveals that the polarization of the radiation arising from the transitions between fine and hyperfine states of the ground level can provide a unique diagnostics of magnetic fields in the Epoch of Reionization.

Yan, Huirong; Lazarian, A.

382

Magnetic Fields from Heterotic Cosmic Strings  

E-print Network

Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies -- the dynamo mechanism -- a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5--branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

Gwyn, Rhiannon; Brandenberger, Robert H; Dasgupta, Keshav

2008-01-01

383

Magnetic fields from heterotic cosmic strings  

SciTech Connect

Large-scale magnetic fields are observed today to be coherent on galactic scales. While there exists an explanation for their amplification and their specific configuration in spiral galaxies--the dynamo mechanism--a satisfying explanation for the original seed fields required is still lacking. Cosmic strings are compelling candidates because of their scaling properties, which would guarantee the coherence on cosmological scales of any resultant magnetic fields at the time of galaxy formation. We present a mechanism for the production of primordial seed magnetic fields from heterotic cosmic strings arising from M theory. More specifically, we make use of heterotic cosmic strings stemming from M5-branes wrapped around four of the compact internal dimensions. These objects are stable on cosmological time scales and carry charged zero modes. Therefore a scaling solution of such defects will generate seed magnetic fields which are coherent on galactic scales today.

Gwyn, Rhiannon; Alexander, Stephon H.; Brandenberger, Robert H.; Dasgupta, Keshav [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Department of Physics and Astronomy, Koshland Center for Integrated Sciences, Haverford College, Haverford, Pennsylvania 19041 (United States); Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada)

2009-04-15

384

The magnetic field of Mercury, part 1  

NASA Technical Reports Server (NTRS)

An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

1974-01-01

385

Magnetic field induced optical vortex beam rotation  

E-print Network

Light with orbital angular momentum (OAM) has drawn a great deal of attention for its important applications in the fields of precise optical measurements and high capacity optical communications. Here we adopt a method to study the rotation of a light beam, which is based on magnetic field induced circular birefringence in warm 87Rb atomic vapor. The dependence of the rotation angle to the intensity of the magnetic field makes it appropriate for weak magnetic field measurement. We derive a detail theoretical description that is in well agreement with the experimental observations. The experiment shows here provides a new method for precise measurement of magnetic field intensity and expands the application of OAM-carrying light.

Shi, Shuai; Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen

2015-01-01

386

Charged and neutral vector ? mesons in a magnetic field  

NASA Astrophysics Data System (ADS)

The vector meson ? in the presence of an external magnetic field has been investigated in the framework of the Nambu-Jona-Lasinio model, in which mesons are constructed by the infinite sum of quark-loop chains by using random phase approximation. The quark loop of ? meson polarization function is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in Ritus form as well the Landau level representation. It is found that the constituent quark mass increases with magnetic field, the masses of the neutral vector meson ?0 with spin component sz=0 ,±1 , and the charged vector meson ?± with sz=0 also increases with magnetic field. However, the mass square of the charged vector meson ?+ (?-) with sz=+1 (sz=-1 ) decreases linearly with magnetic field and drops to zero at the critical magnetic field e Bc?0.2 GeV2 , which indicates the possible condensation of a charged vector meson in the vacuum. The value of the critical magnetic field is the same by using the Ritus quark propagator as well the Landau level representation of the quark propagator, which is much lower than the value e Bc?0.6 GeV2 predicted by a pointlike vector meson.

Liu, Hao; Yu, Lang; Huang, Mei

2015-01-01

387

Gyrokinetic Calculations of the Neoclassical Radial Electric Field in Stellarator Plasmas  

SciTech Connect

A novel method to calculate the neoclassical radial electric field in stellarator plasmas is described. The method, which does not have the inconvenience of large statistical fluctuations (noise) of standard Monte Carlo technique, is based on the variation of the combined parallel and perpendicular pressures on a magnetic surface. Using a three-dimensional gyrokinetic delta f code, the calculation of the radial electric field in the National Compact Stellarator Experiment has been carried out. It is shown that a direct evaluation of radial electric field based on a direct calculation of the radial particle flux is not tractable due to the considerable noise.

Lewandowski, J.L.V.; Williams, J.; Boozer, A.H.; Lin, Z.

2001-04-09

388

QCD string breaking in strong magnetic field  

NASA Astrophysics Data System (ADS)

At sufficiently large separation between a quark and an antiquark the quantum chromodynamics (QCD) string breaks into parts due to creation of light quark-antiquark pairs. We show that a background magnetic field affects the breaking of the QCD string oriented in the transverse directions with respect to the axis of the magnetic field. Using semiclassical approach we argue that above certain, the background magnetic field eB ?0.3 GeV2 breaking of the transverse string should become energetically unfavorable.

Chernodub, M. N.

2014-09-01

389

Magnetic fields from second-order interactions  

E-print Network

It is well known that when two types of perturbations interact in cosmological perturbation theory, the interaction may lead to the generation of a third type. In this article we discuss the generation of magnetic fields from such interactions. We determine conditions under which the interaction of a first-order magnetic field with a first-order scalar-or vector-, or tensor-perturbations would lead to the generation of second order magnetic field. The analysis is done in a covariant-index-free approach, but could be done in the standard covariant indexed-approach.

Bob Osano

2014-03-21

390

Small-scale solar magnetic fields  

E-print Network

As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.

A. G. de Wijn; J. O. Stenflo; S. K. Solanki; S. Tsuneta

2008-12-24

391

The magnetic field of solar prominences  

E-print Network

In his famous monographs, Einar Tandberg-Hanssen writes that "the single, physically most important parameter to study in prominences may be the magnetic field. Shapes, motions, and in fact the very existence of prominences depend on the nature of the magnetic field threading the prominence plasma". Hereafter we sumarize recent contributions and advances in our knowledge about the magnetic field of solar prominences. It mostly relies on high resolution and high sensitivity spectropolarimetry made both in the visible and in the near infrared.

F. Paletou

2008-10-15

392

Magnetic Field of Lightning Return Stroke  

Microsoft Academic Search

The magnetic flux density due to first and to subsequent lightning return strokes is calculated for distances from the strokes of 0.5 to 200 kin. The basis of the calculations is various assumed forms for the channel current as a function of time and of channel height. Two new channel-current models are introduced for first strokes and one new model

Martin A. Uman; D. Kenneth McLain

1969-01-01

393

Environmental magnetic fields: Influences on early embryogenesis  

SciTech Connect

A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.

Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. (Univ. of Texas Health Science Center, San Antonio (United States))

1993-04-01

394

Magnetic fields of the terrestrial planets  

NASA Technical Reports Server (NTRS)

The four terrestrial planets, together with the Earth's Moon, provide a significant range of conditions under which dynamo action could occur. All five bodies have been visited by spacecraft, and from three of the five bodies (Earth, Moon and Mars) we have samples of planetary material upon which paleomagnetic studies have been undertaken. At the present time, only the Earth and Mercury appear to have a significant dipole magnetic field. However, the Moon, and possibly Mars, appear to have had ancient planetary dynamos. Venus does not now have a significant planetary magnetic field, and the high surface temperatures should have prevented the recording of evidence of any ancient magnetic field. Since the solidification of the solid inner core is thought to be the energy source for the terrestrial magnetic field, and since smaller bodies evolve thermally more rapidly than larger bodies, we conjecture that the terrestrial planets are today in three different phases of magnetic activity. Venus is in a predynamo phase, not having cooled to the point of core solidification. Mercury and the Earth are in the middle of their dynamo phase, with Mercury perhaps near the end of its activity. Mars and the Moon seem to be well past their dynamo phase. Much needs to be done in the study of the magnetism of the terrestrial planets. We need to characterize the multipole harmonic structure of the Mercury magnetic field plus its secular variation, and we need to analyze returned samples to attempt to unfold the long-term history of Mercury's dynamo. We need to more thoroughly map the magnetism of the lunar surface and to analyze samples obtained from a wider area of the lunar surface. We need a more complete survey of the present Martian magnetic field and samples from a range of different ages of Martian surface material. Finally, a better characterization of the secular variation of the terrestrial magnetic field is needed in order to unfold the workings of the terrestrial dynamo.

Russell, C. T.

1993-01-01

395

HMI/SDO results with the vector magnetic field data  

NASA Astrophysics Data System (ADS)

Since May 2010, the Helioseismic Magnetic Imager (HMI) has made full-disk vector magnetic field measurement of the Sun with a cadence of 12 minutes. The angular resolution is about 1 arc second, corresponding to about 300 km per pixel at solar disk center. Rapid, continuous HMI measurements allow us to follow each small-scale magnetic field element on the photosphere, which will help our understanding of the dynamics in a wide span of space and time. For active regions and sunspots, this temporal and spatial resolution allows us to estimate the energy fluxes passing through the solar photosphere. Those fluxes provide the boundary values for coronal models, such as three-dimensional time-dependent magneto-hydrodynamics (MHD) and magneto-friction simulations and the nonlinear force free field (NLFFF) model. The calculations determine the three-dimensional magnetic field structures and theoretically reproduce their evolution above the photosphere. In principle full-disk coverage of the vector field observations (with low enough noise) can give better determination of the magnetic field near the limb, including the polar field, as well as mitigate artifacts in converting the line-of-sight magnetic field observations to the radial component. The HMI vector data products will help study and answer various long-standing questions in field of solar physics. This presentation provides an introductory review of the HMI magnetic field data products being provided through the JSOC (Joint Science Operation Center, http://jsoc.stanford.edu). Products include the 3-component vector data derived with a fast ME-inversion and disambiguation, inferred inductive flows determined by means of DAVE4VM and ILCT, model results by means of the NLFFF and MHD models, as well as near-real-time space weather products.

Hayashi, K.; HMI Vector Magnetic Field Team

2011-12-01

396

The CMS Magnetic Field Map Performance  

E-print Network

The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

Klyukhin, VI; Sarycheva, L I; Klyukhin, V I; Ball, A; Gaddi, A; Amapane, N; Gerwig, H; Andreev, V; Cure, B; Mulders, M; Loveless, R; Karimaki, V; Popescu, S; Herve, A

2010-01-01

397

Screening magnetic fields by superconductors: A simple model  

SciTech Connect

We introduce a simple approach to evaluate the magnetic field distribution around superconducting samples, based on the London equations; the elementary variable is the vector potential. This procedure has no adjustable parameters, only the sample geometry and the London length, ?, determine the solution. This approach was validated by comparing the induction field calculated to the one measured above MgB{sub 2} disks of different diameters, at 20?K and for applied fields lower than 0.4?T. The model can be applied if the flux line penetration inside the sample can be neglected when calculating the induction field distribution outside the superconductor. We conclude by showing on a cup-shape geometry how one can design a magnetic shield satisfying a specific constraint.

Caputo, J.-G., E-mail: caputo@insa-rouen.fr [Laboratoire de Mathématiques, INSA de Rouen, Avenue de l'Université, 76801 Saint-Etienne du Rouvray (France); Gozzelino, L.; Laviano, F.; Ghigo, G.; Gerbaldo, R. [Department of Applied Science and Technology, Politecnico di Torino, 10129, Torino (Italy); Noudem, J.; Thimont, Y.; Bernstein, P. [CRISMAT/LUSAC, Physics Department, Université de Caen (France)

2013-12-21

398

Space applications of superconductivity - High field magnets  

NASA Technical Reports Server (NTRS)

The paper discusses developments in superconducting magnets and their applications in space technology. Superconducting magnets are characterized by high fields (to 15T and higher) and high current densities combined with low mass and small size. The superconducting materials and coil design are being improved and new high-strength composites are being used for magnet structural components. Such problems as maintaining low cooling temperatures (near 4 K) for long periods of time and degradation of existing high-field superconductors at low strain levels can be remedied by research and engineering. Some of the proposed space applications of superconducting magnets include: cosmic ray analysis with magnetic spectrometers, energy storage and conversion, energy generation by magnetohydrodynamic and thermonuclear fusion techniques, and propulsion. Several operational superconducting magnet systems are detailed.

Fickett, F. R.

1979-01-01

399

Field Directed Ordering in Magnetic Nanocrystal Structures  

NASA Astrophysics Data System (ADS)

Iron oxide nanocrystals (NCs) have been the focus of intense research owing to the observation of tunable magnetic properties which could lead to advances in many fields including magnetic storage devices and medicine. We have been targeting the use of iron oxide NCs as magnetoresistance (MR) based sensors using ordered NC arrays. In this work, we will present our efforts toward using external magnetic fields to induce intraparticle ordering in iron oxide NC drop cast films. We use x-ray diffraction to analyze effects of the external fields on the NC array structure, while using SQUID magnetometry to probe the effects of NC interactions on the magnetic properties of iron oxide NCs ranging from 5 - 20 nm in diameter. MR measurements suggest large changes in the MR ratio can be achieved using the directed ordering approach for NC arrays. Our work could provide new avenues towards the fabrication of new magnetic devices.

Lawson, Stuart; Meulenberg, Robert

2013-03-01

400

Calculation of the static magnetism of metamagnetic La sub 2 CuO sub 4  

SciTech Connect

Interactions in La{sub 2}CuO{sub 4} are predominantly antiferromagnetic. However a strong field induced transition is seen in the static magnetic susceptibility which points to the existence of a net ferromagnetic moment in the CuO layers. Here, this net ferromagnetic moment is incorporated into a description of the CuO layers by the inclusion of a modified Dzyaloshinskii-Moriya term in the Hamiltonian. The spin wave spectrum in the presence of an applied field is calculated with this Hamiltonian and the ground state is determined as a function of applied field from the free energy. A calculation of the static magnetization as a function applied field perpendicular to the CuO layers is used to determine the parameters of the model. Comparison is made with experiment. 10 refs., 1 fig.

Coffey, D.

1990-01-01

401

Interaction of gravitational waves with magnetic and electric fields  

SciTech Connect

The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

Barrabes, C.; Hogan, P. A.

2010-03-15

402

An effect of a strong magnetic field on the phase transformation in plain carbon steels  

NASA Astrophysics Data System (ADS)

The effect of a magnetic field on the Gibbs free energy of a material depends on its magnetization behaviors. To investigate the change in the Fe-Fe3C phase diagram caused by a high external magnetic field, the magnetic Gibbs free energies of the phases such as austenite, ferrite, and cementite are calculated on the basis of the molecular field theory. Using the calculated Gibbs free energy as a function of weight percent carbon and temperature at a particular magnetic field, a phase diagram of the Fe-Fe3C system is drawn. The phase diagram is shifted upward so that the Ac 1 and Ac 3 temperatures increase as the magnetic field is applied, but the Ac m temperature change is almost independent of applied magnetic field value. The increase of eutectoid temperature and composition and its application to microstructural control are discussed.

Joo, H. D.; Kim, S. U.; Koo, Y. M.; Shin, N. S.; Choi, J. K.

2004-06-01

403

Slow twists of solar magnetic flux tubes and the polar magnetic field of the sun  

NASA Technical Reports Server (NTRS)

The solar wind model of Weber and Davis (1967) is generalized to compute the heliospheric magnetic field resulting from solar rotation or a steady axisymmetric twist including a geometrical expansion which is more rapid than spherical. The calculated increase in the ratio of the toroidal to poloidal field components with heliocentric radial distance r clarifies an expression derived recently by Jokipii and Kota (1989). Magnetic-field components transverse to r do not in general grow to dominate the radial component at large r. The analysis also yields expressions for the Poynting flux associated with the steady twists.

Hollweg, Joseph V.; Lee, Martin A.

1989-01-01

404

Slow twists of solar magnetic flux tubes and the polar magnetic field of the sun  

NASA Astrophysics Data System (ADS)

The solar wind model of Weber and Davis (1967) is generalized to compute the heliospheric magnetic field resulting from solar rotation or a steady axisymmetric twist including a geometrical expansion which is more rapid than spherical. The calculated increase in the ratio of the toroidal to poloidal field components with heliocentric radial distance r clarifies an expression derived recently by Jokipii and Kota (1989). Magnetic-field components transverse to r do not in general grow to dominate the radial component at large r. The analysis also yields expressions for the Poynting flux associated with the steady twists.

Hollweg, Joseph V.; Lee, Martin A.

1989-08-01

405

Juno and Jupiter's Magnetic Field (Invited)  

NASA Astrophysics Data System (ADS)

The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

2013-12-01

406

Current Sheets in Stressed Coronal Magnetic Fields  

NASA Astrophysics Data System (ADS)

The extrapolation of magnetic fields into the solar corona generally assumes that the fields are fully relaxed - all possible reconnection has occurred. This assumption is in conflict with the low magnetic diffusivity in the corona. I will present initial results on extrapolation based on stressed magnetic fields - those for which no reconnection has occurred. As an opposite extreme to traditional methods, stressed fields offer a different view of coronal fields. The locations of current sheets between flux systems are directly determined. Observational evidence of coronal reconnection can test the completeness of the extrapolation, as the field lines spanning flux systems must be in contact prior to reconnection. This work is supported by NASA SEC GI grant NAG5-13020.

Labonte, B. J.

2003-12-01

407

High-field superconducting nested coil magnet  

NASA Technical Reports Server (NTRS)

Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

Laverick, C.; Lobell, G. M.

1970-01-01

408

Interpretation of Solar Magnetic Field Strength Observations  

Microsoft Academic Search

This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have

R. K. Ulrich; L. Bertello; J. E. Boyden; L. Webster

2009-01-01

409

High field magnets at the international laboratory Wroclaw  

Microsoft Academic Search

At Wroclaw high magnetic fields have been produced since the late 1960s. At present there are several magnets for stationary fields and one magnet for pulsed fields. The biggest, Bitter-type magnet generates magnetic fields up to 20 T, total power exceeds 6.0 MW.

K. Trojnar; N. Koppetzki

1989-01-01

410

Heat Capacity Measurements in Pulsed Magnetic Fields  

SciTech Connect

The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 45 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool.

Jaime, M.; Movshovich, R.; Sarrao, J.L.; Kim, J.; Stewart, G.; Beyermann, W.P.; Canfield, P.C.

1998-10-23

411

Improved Spindle Cusp Magnetic Field for ECRIS  

SciTech Connect

Magnetic field of minimum-B configuration is very important for achieving more plasma confinement and closed electron cyclotron resonance (ECR) surface for electron heating and plasma discharge. The spindle cusp magnetic field configuration forms the modified minimum-B configuration. The absolute magnetic field at the chamber surface on mid-plane has been optimized and improved sufficiently and symmetrized to the field at the point cusp positions on the central axis. With enhancement of electrostatic and magnetic mirror action at the cusp positions the density of the plasma as well as confinement is boosted. The system becomes simpler, more compact and cost-effective compared to the conventional one to generate and extract highly charged heavy ions (HCHI). A co-operative and collaborative effort is essential to develop and test such conceived new ECRIS.

Rashid, M.H.; Mallik, C.; Bhandari, R.K. [Variable Energy Cyclotron Centre, Sector-1, Block-AF, Bidhan Nagar, Kolkata- 700 064 (India)

2005-03-15

412

A Holographic Bound on Cosmic Magnetic Fields  

E-print Network

Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary) times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark-gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description. We show that holography imposes an upper bound on the intensity of magnetic fields (scaled by the squared temperature) in these circumstances, and that the values expected in some models of cosmic magnetism come close to attaining that bound.

McInnes, Brett

2015-01-01

413

Lunar magnetic field measurements with a cubesat  

E-print Network

We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...

Garrick-Bethell, Ian

414

Cyclic evolution and reversal of the solar magnetic field. I. The large-scale magnetic fields  

E-print Network

On the base of the solar magnetic field measurements obtained in Stanford in 1976--2003 the properties of the cyclic evolution of the large-scale magnetic field are investigated. Some regularities are found in longitudinal and latitudinal evolution of the magnetic field in cycles 21, 22 and 23. The cyclic development of the large-scale magnetic field can be divided into two main phases. The phase I, which includes a period approximately from two years before and until three years after the maximum of the solar cycle, is studied in detail. It is found that before the reversal of the large-scale magnetic field the neutral line of the magnetic field in antipodal longitudinal intervals shifts from the equator to opposite directions in cycles 21 and 22, but not in cycle 23. During the sign reversal of the large-scale magnetic field in cycles 21 and 22 in the antipodal longitudinal intervals the magnetic field of opposite polarity is observed in all latitudes, thereby forming an equatorial dipole. After the magnetic field reversal a longitudinal oscillation of the magnetic neutral line with regard to the equator takes place, which has a period about 2 years and damps to the minimum of the 11-year cycle. The intervening longitudinal intervals of the large-scale magnetic field correspond to positions of the active longitudes of sunspot activity, thus indicating a close connection of the large-scale and the local magnetic fields. In evolution of the large-scale magnetic field a periodicity with period $1.23\\pm0.16$ year is revealed, which is close to the period found by helioseismological methods in variations of the solar rotation near the tachocline.

R. N. Ikhsanov; V. G. Ivanov

2003-10-20

415

Prediction of daily average solar wind velocity from solar magnetic field observations using hybrid intelligent systems  

Microsoft Academic Search

A hybrid intelligent system, combining theory driven and data driven models, is used to predict the daily solar wind velocity at 1 AU from solar magnetic field observations. The Potential Field Model (theory driven) is used to calculate the coronal magnetic field up to the source surface placed at 2.5R?. The Earth's position is projected onto the source surface using

P. Wintoft; H. Lundstedt

1997-01-01

416

Conductivity of granular superconductors in a strong magnetic field  

NASA Astrophysics Data System (ADS)

We suggest a theory of the negative magnetoresistance in a metallic granular superconductors. Calculations are performed in a strong magnetic field when the superconducting gap inside the grains is already destroyed by orbital mechanism. We found that even without including the effects of weak localization the conductivity of granular system strongly decreases due to reduction of the density of states by superconducting fluctuations. At the same time, it is shown that Aslamazov-Larkin and Maki-Thompson corrections vanish at very low temperaturs. Our results can explain the unusual experimental behaviour of the resistivity of granular system in a strong magnetic field.

Beloborodov, I. S.; Efetov, K. B.

1999-11-01

417

Low Temperature Thermometry in High Magnetic Fields  

Microsoft Academic Search

The calibration and reproducibilty of various commercial and homemade thermometers have been investigated over a temperature range from 20 mK to 4.2 K and magnetic field strength from 0 to 16 Tesla. The performance of resistance thermometers made of different materials varies widely as a function of magnetic field. One type (Scientific Instruments RO600) is found to have a relatively

Gary G. Ihas; L. Frederick; J. P. McFarland

1998-01-01

418

Search for weak magnetic fields of stars  

Microsoft Academic Search

The magnetic fields of some normal stars of the main sequence, supergiants and Hg-Mn stars have been measured from metallic and hydrogen lines on the 6-m telescope with the Fabry-Perot magnetometer and spectropolarimeter. These results and the data of other authors are statistically analysed. A conclusion is drawn that the studied types of stars hardly contain a magnetic field exceeding

Yu. V. Glagolevskij; I. I. Romanyuk; I. D. Najdenov; V. G. Shtol

1989-01-01

419

Magnetic field effects on mass transport  

Microsoft Academic Search

It has been shown that the stationary limiting diffusion current on a steady electrode is proportional to {ital B}¹³{ital C}⁴³ where {ital C} is the electroactive species concentration and {ital B} the magnetic field intensity. A new impedance technique is developed which consists of the frequency response analysis of the limiting diffusion current to a sinusoidal magnetic field perturbation. In

O. Aaboubi; J. P. Chopart; J. Douglade; C. Gabrielli; B. Tribollet

1990-01-01

420

The magnetic field investigation on Cluster  

NASA Technical Reports Server (NTRS)

The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

1988-01-01

421

The large-scale solar magnetic field  

Microsoft Academic Search

The large-scale photospheric magnetic field, measured by the Mt. Wilson magnetograph, has been analyzed in terms of surface harmonics (Pnm)(?)cosmf and Pnm(?)sinmf) for the years 1959 through 1972. Our results are as follows. The single harmonic which most often characterized the general solar magnetic field throughout the period of observation corresponds to a dipole lying in the plane of the

Martin D. Altschuler; Dorothy E. Trotter; Gordon Newkirk; Robert Howard

1974-01-01

422

Strain Sensors for High Field Pulse Magnets  

Microsoft Academic Search

\\u000a In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical\\u000a deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic\\u000a temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective\\u000a of this preliminary study

Christian Martinez; Yan Zheng; Daniel Easton; Kevin M Farinholt

2009-01-01

423

Non-perturbative calculation of molecular magnetic properties within current-density functional theory  

SciTech Connect

We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway)] [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)] [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

2014-01-21

424

Planetary Magnetic Fields and Climate Evolution  

NASA Astrophysics Data System (ADS)

We explore the possible connections between magnetic fields and climate at the terrestrial bodies Venus, Earth, Mars, and Titan. Magnetic fields are thought to have negligible effects on the processes that change a planet's climate, except for processes that alter the abundance of atmospheric gases. Particles can be added or removed at the top of an atmosphere, where collisions are infrequent and a more substantial fraction of particles are ionized (and therefore subject to magnetic forces) than at lower altitudes. The absence of a global magnetic field at Mars for much of its history may have contributed to the removal of a substantial fraction of its atmosphere to space. The persistence of a global magnetic field should have decreased both ionization and removal of atmospheric ions by several processes, and may have indirectly decreased the loss rate of neutral particles as well. While it is convenient to think of magnetic fields as shields for planetary atmospheres from impinging plasma (such as the solar wind), observations of ions escaping from Earth's polar cusp regions suggest that magnetic shielding effects may not be as effective as previously thought. One explanation that requires further testing is that magnetic fields transfer momentum and energy from incident plasma to localized regions of the atmosphere, resulting in similar (or possibly greater) escape rates than if the momentum and energy were imparted more globally to the atmosphere in the absence of a magnetic field. Trace gases can be important for climate despite their low relative abundance in planetary atmospheres. At Venus, removal of O+ over the history of the planet has likely contributed to the loss of water from the atmosphere, leading to a runaway greenhouse situation and having implications for the chemistry of atmosphere-surface interactions. Conversely, Titan's robust atmospheric chemistry may result from the addition of trace amounts of oxygen from Saturn's magnetosphere, which then participate in chemical reactions that produce carbon monoxide (CO) and carbon dioxide (CO2). Models of the entire atmosphere system (including planetary plasma interactions) should continue to shed light on the connections between magnetic fields and climate, as well as models that consider a single planetary body in both magnetized and unmagnetized states. Future measurements, such as those that will be made by the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft to Mars, will provide better constraints on the importance of magnetic fields in the evolution of atmospheres.

Brain, D. A.; Leblanc, F.; Luhmann, J. G.; Moore, T. E.; Tian, F.

425

Theory and numerical calculation of the acoustic field produced in metal by an electromagnetic ultrasonic transducer. [Nonmagnetic metal  

Microsoft Academic Search

The equations for calculating the acoustic field produced within a nonmagnetic metal by an interaction of eddy current with a static magnetic field were obtained on the assumptions that an ultrasonic wave is generated by the electromagnetic force through classical and macroscopic phenomena; the electric, magnetic, and elastic properties of the metal are linear, isotropic, and homogeneous throughout the metal,

Kawashima

1976-01-01

426

Magnetic Field Problem: Mesuring Current in Wire  

NSDL National Science Digital Library

A wire carrying an unknown current is shown above. An external magnetic field that has constant magnitude and direction is applied to the top half of the simulation (The gray rectangle is at the boundary for your reference). In addition, there is the magnetic field produced by the current in the wire. The direction arrows show the vector sum of these two fields. (The color of the direction arrows represents the magnitude of the field as before.) Observe the force vector and the force/length in the yellow message box in the lower left hand corner.

Wolfgang Christian

427

Magnetic field transfer device and method  

DOEpatents

A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

Wipf, S.L.

1990-02-13

428

Magnetic field transfer device and method  

DOEpatents

A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

Wipf, Stefan L. (Hamburg, DE)

1990-01-01

429

Eddy-Current-Induced Multipole Field Calculations September 29, 2003 1 Eddy-Current-Induced Multipole Field  

E-print Network

Eddy-Current-Induced Multipole Field Calculations September 29, 2003 1 Eddy-Current of magnets in booster accelerators induce substantial eddy currents in the vacuum chambers. The eddy currents are generated in the elliptical vacuum chamber from the induced eddy currents. In this note, formulas

Kemner, Ken

430

Molecules and chains in a strong magnetic field - Statistical treatment  

NASA Astrophysics Data System (ADS)

A Thomas-Fermi-Dirac-Weizsaecker statistical model is developed and employed to investigate diatomic molecules and infinite molecular chains in strong magnetic fields. The standard magnetic Thomas-Fermi-Dirac kinetic, potential, and exchange energy functionals are supplemented by a gradient correction to the kinetic energy. The numerical method used for solving this system in two spatial dimensions is detailed. Numerical solutions for a wide range of magnetic strengths and elements are presented to demonstrate the robustness, as well as the limitations, of the statistical approach. These calculations qualitatively reproduce many of the results of detailed quantum mechanical treatments. For example, the fractional binding energy is greatest for low atomic numbers and for strong magnetic fields.

Abrahams, Andrew M.; Shapiro, Stuart L.

1991-11-01

431

Molecules and chains in a strong magnetic field - Statistical treatment  

NASA Technical Reports Server (NTRS)

A Thomas-Fermi-Dirac-Weizsaecker statistical model is developed and employed to investigate diatomic molecules and infinite molecular chains in strong magnetic fields. The standard magnetic Thomas-Fermi-Dirac kinetic, potential, and exchange energy functionals are supplemented by a gradient correction to the kinetic energy. The numerical method used for solving this system in two spatial dimensions is detailed. Numerical solutions for a wide range of magnetic strengths and elements are presented to demonstrate the robustness, as well as the limitations, of the statistical approach. These calculations qualitatively reproduce many of the results of detailed quantum mechanical treatments. For example, the fractional binding energy is greatest for low atomic numbers and for strong magnetic fields.

Abrahams, Andrew M.; Shapiro, Stuart L.

1991-01-01

432

Effect of magnetic field on a magnetic topological insulator film with structural inversion asymmetry  

NASA Astrophysics Data System (ADS)

The effect of magnetic field on an ultrathin magnetic topological insulator film with structural inversion asymmetry is investigated. We introduce the phase diagram, calculate the Landau level spectrum analytically, and simulate the transport behavior in Landauer-Büttiker formalism. The quantum anomalous Hall phase will survive increasing magnetic field. Due to the two spin-polarized zero modes of Landau levels, a nontrivial phase similar with the quantum spin Hall effect can be induced by a magnetic field, which is protected by structural inversion symmetry. Some exotic longitudinal and Hall resistance plateaus with fractional values are also found in a six-terminal Hall bar, arising from the coupling between edge states due to an inverted energy band and Landau levels.

Zhang, Shu-feng; Jiang, Hua; Xie, X. C.; Sun, Qing-feng

2014-04-01

433

Laminated magnet field coil sheath  

DOEpatents

A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

Skaritka, J.R.

1987-05-15

434

Laminated magnet field coil sheath  

DOEpatents

a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

Skaritka, John R. (Coram, NY)

1987-12-01

435

Master equations for pulsed magnetic fields: Application to magnetic molecules  

NASA Astrophysics Data System (ADS)

We extend spin-lattice relaxation theory to incorporate the use of pulsed magnetic fields for probing the hysteresis effects and magnetization steps and plateaus exhibited, at low temperatures, by the dynamical magnetization of magnetic molecules. The main assumption made is that the lattice degrees of freedom equilibrate in times much shorter than both the experimental time scale (determined by the sweep rate) and the typical spin-lattice relaxation time. We first consider the isotropic case (a magnetic molecule with a ground state of spin S well separated from the excited levels and also the general isotropic Heisenberg-Hamiltonian where all energy levels are relevant) and then we include small off-diagonal terms in the spin Hamiltonian to take into account the Landau-Zener-Stückelberg (LZS) effect. In the first case, and for an S=1/2 magnetic molecule we arrive at the generalized Bloch equation recently used for the magnetic molecule {V6} in [Phys. Rev. Lett. 94, 147204 (2005)]. An analogous equation is derived for the magnetization, at low temperatures, of antiferromagnetic ring systems. The LZS effect is discussed for magnetic molecules with a low spin ground state, for which we arrive at a very convenient set of equations that take into account the combined effects of LZS and thermal transitions. In particular, these equations explain the deviation from exact magnetization reversal at B?0 observed in {V6} . They also account for the small magnetization plateaus (“magnetic Foehn effect”), following the LZS steps that have been observed in several magnetic molecules. Finally, we discuss the role of the phonon bottleneck effect at low temperatures and specifically we indicate how this can give rise to a pronounced Foehn effect.

Rousochatzakis, Ioannis; Luban, Marshall

2005-10-01

436

Dynamic signatures of quiet sun magnetic fields  

NASA Technical Reports Server (NTRS)

The collision and disappearance of opposite polarity fields is observed most frequently at the borders of network cells. Due to observational limitations, the frequency, magnitude, and spatial distribution of magnetic flux loss have not yet been quantitatively determined at the borders or within the interiors of the cells. However, in agreement with published hypotheses of other authors, the disapperance of magnetic flux is speculated to be a consequence of either gradual or rapid magnetic reconnection which could be the means of converting magnetic energy into the kinetic, thermal, and nonthermal sources of energy for microflares, spicules, the solar wind, and the heating of the solar corona.

Martin, S. F.

1983-01-01

437

Can slow roll inflation induce relevant helical magnetic fields?  

SciTech Connect

We study the generation of helical magnetic fields during single field inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with B{sup 2}(k)?k, as long as the theory is treated perturbatively. The magnetic energy density at the end of inflation is found to be typically too small to backreact on the background dynamics of the inflaton. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. We conclude that except for low scale inflation with very strong coupling, the magnetic fields generated by such an axial coupling in single field slow roll inflation with perturbative coupling to the inflaton are too weak to provide the seeds for the observed fields in galaxies and clusters.

Durrer, Ruth; Hollenstein, Lukas; Jain, Rajeev Kumar, E-mail: Ruth.Durrer@unige.ch, E-mail: Lukas.Hollenstein@unige.ch, E-mail: Rajeev.Jain@unige.ch [Département de Physique Théorique, Université de Genève, 24, Quai Ernest Ansermet, CH-1211 Genève 4 (Switzerland)

2011-03-01

438

H2+ in a weak magnetic field  

NASA Astrophysics Data System (ADS)

The electronic energy of H2+ in magnetic fields of up to B=0.2{{B}0} (or 4.7× {{10}4} T) is investigated. Numerical values of the magnetic susceptibility for both the diamagnetic and paramagnetic contributions are reported for arbitrary orientations of the molecule in the magnetic field. It is shown that both diamagnetic and paramagnetic susceptibilities grow with inclination, while paramagnetic susceptibility is systematically much smaller than the diamagnetic one. Accurate two-dimensional Born–Oppenheimer surfaces are obtained with special trial functions. Using these surfaces, vibrational and rotational states are computed and analyzed for the isotopologues H2+ and D2+.

Medel Cobaxin, Héctor; Alijah, Alexander; López Vieyra, Juan Carlos; Turbiner, Alexander V.

2015-02-01

439

Effects of static magnetic fields on plants.  

NASA Astrophysics Data System (ADS)

In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (? ? < 0). High gradient magnetic fields (HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that intracellular magnetophoresis of statoliths is the only significant effect of the magnetic field on plant cells and organs in the tested magnetic systems.

Kuznetsov, O.